IT City Research Online
UNIVEREIST%(?;qLi)NDON

City, University of London Institutional Repository

Citation: Clay, A., Jiménez-Ruiz, E. & Madhyastha, P. (2025). Judge, Generator,
Executioner: Utilizing an LLM for KBC. Joint Proceedings of the 3rd Workshop on
Knowledge Base Construction from Pre-Trained Language Models and the 4th Challenge
on Language Models for Knowledge Base Construction, 4041, ISSN 1613-0073

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/36213/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Judge, Generator, Executioner: Utilizing an LLM for KBC

Alex Clay®*, Ernesto Jiménez-Ruiz' and Pranava Madhyastha'?

ICity St George’s, University of London, Northampton Square, London, EC1V 0HB, United Kingdom
2The Alan Turing Institute, British Library, 96 Euston Rd., London NW1 2DB, United Kingdom

Abstract

In this work, we introduce our submission to the 2025 LM-KBC Challenge. In keeping with the spirit of the
challenge, we avoided using additional tools or information; to explore the degree to which the LLM was able
to holistically handle the task of triple completion. We found that candidate filtering is crucial to refining the
quality of the generated triples, as all filters we introduced improved on our baseline. This is further improved
upon with the addition of more initial tail candidates per triple, which highlights the LLM’s potential to act as
both the generator of candidates and judge of quality in triple completion tasks.

1. Introduction

Knowledge Base (KB) completion can be costly and difficult to conduct manually [1]. As such, this has
led to investigations into effective automated methods and more recently the involvement of Large
Language Models (LLMs) [2]. While Automated Knowledge Base Completion (AKBC) typically involves
techniques such as Retrieval Augmented Generation (RAG) by incorporating external knowledge sources
like Wikidata [3], LLMs are uniquely able to utilize their parametric knowledge and to some degree
complete the task in a contained manner. However, LLMs introduce a number of unique considerations,
namely the quality of the generation and what information the LLMs possess within their parameters [4].

The 2025 LM-KBC Challenge' seeks to answer these questions through introducing a triple completion
task with the following restrictions: the model must be Qwen3 [5] 8B without finetuning & RAG is
prohibited. The task is to complete a given entity/relation pair with the matching tail entity (be it one,
many, or none), a type of KBC. An example of this would be predicting the tail 10, 000 for the entity
relation pair of Tokyo Disneyland hasCapacity.

We propose a solution to the challenge which focuses on utilizing the LLM to supply its own
supporting information in place of RAG as well as to filter candidate tail entities through an LLM as a
judge process[6], which utilizes the LLM to evaluate the quality of its outputs. Through this approach
we investigate the holistic use of an LLM for AKBC within the constraints of the challenge. We find
that generating a higher number of candidates as well as thorough filtering improve overall efficacy.
Our code is made available? as well as our submission on CodaLab®.

2. Background

The LM-KBC challenge has been held 3 times since 2022 [7, 8, 9], with unique constraints and modi-
fications made each year. As last year’s competition did not restrict the use of RAG, the majority of
submissions [2, 3, 10] utilized external knowledge to provide grounding in their predictions. The winner
of last year’s competition, Bara [2], focused on the Teller Taxonomy and fewshot prompting, abstractly

CEUR-WS.org/Vol-4041/paper9.pdf

Joint proceedings of KBC-LM and LM-KBC @ ISWC 2025

*Corresponding author.

Q alex.clay@city.ac.uk (A. Clay); ernesto.jimenez-ruiz@city.ac.uk (E. Jiménez-Ruiz); pranava.madhyastha@city.ac.uk
(P. Madhyastha)

® 0009-0004-2237-7412 (A. Clay); 0000-0002-9083-4599 (E. Jiménez-Ruiz); 0000-0002-4438-8161 (P. Madhyastha)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
"https://Im-kbc.github.io/challenge2025/

*https://github.com/alexclay42/lmkbc

*Under the username aclay

CEUR
E Workshop
Proceedings

mailto:alex.clay@city.ac.uk
mailto:ernesto.jimenez-ruiz@city.ac.uk
mailto:pranava.madhyastha@city.ac.uk
https://orcid.org/0009-0004-2237-7412
https://orcid.org/0000-0002-9083-4599
https://orcid.org/0000-0002-4438-8161
https://creativecommons.org/licenses/by/4.0/deed.en

experimenting with the quantity of information and details in prompts to yield the highest quality
prediction.

In previous years, there has been a clear theme of both prompt engineering and finetuning. Li et al.
[11] and Biester et al. [12] focused on the prompt as the fulcrum for their approaches, with Ghosh
[13] in particular determining that with an effective prompt, examples are not strictly necessary.

As this year’s challenge differed from past years due to additional restrictions, it was necessary to
use the LLM in place of RAG, allowing for grounding without the use of external information. Similar
to de Oliveira Costa Machado et al. [3] and Das et al. [14] we use relevant information accompanying
each query as generated by the LLM, and instead of cosine similarity like [10], we investigated the use
of the LLM to provide judgment on the quality of the subsequent triples.

3. Submission Description

3.1. Architecture

In developing the architecture for the submission, we aimed to use the LLM wherever possible to
provide a full exploration of its capabilities. Therefore, the LLM provides the generation as well as the
judgment of the generated candidates.

Algorithm 1 Triple Completion

1: entity_relation_pairs < dataset

candidate_triples < INITIALCANDIDATEGENERATION (entity_relation_pairs)
improved_triples < RERUN(candidate_triples)

quantity_checked_triples <— CONSENSUs(improved_triples)
accepted_triples < QUALITYJUDGE(quantity_checked_triples)

return accepted_triples

AN AN

In Algorithm 1 we present the process for our approach. Firstly, the target dataset is read in and
formatted into entity/relation pairs for which a tail will be predicted. These pairs are then used to
generate an initial set of candidate triples in InitialCandidateGeneration. Next, these triples are
sent to the ReRun function, which filters out good quality triples and re-generates the tail entity for all
others. The (ideally) improved triples are then consolidated and filtered by quantity in the Consensus
step, before finally sending any remaining triples to the QualityJudge which removes candidates
below a certain quality.

After each LLM call throughout the entire process, we employed a post-processing function was
applied to sanitize the output. This was necessary to address the model’s tendency to deviate from the
requested return format and include extraneous conversational text. For instance, responses were often
prefaced with phrases such as, "Okay so the user is asking..", which, in earlier implementations, were
erroneously accepted as valid candidate tails. This was also intended to reduce error propagation which
can happen in sequential generation [15].

We explain in detail each of these steps in the following portions. Additionally, we make all prompts
discussed in this portion available in Appendix A in full, which were largely adapted from HuggingFace
Documentation®.

3.1.1. InitialCandidateGeneration

For the initial generation of candidate tail entities, we adapted the prompt format presented in Veseli
et al. [16], which is similar in format to that of Cohen et al. [15]. Inspired by the concept of using
variations on the relation to generate differing tail entities in Cohen et al. [15], we use a temperature of
.15 and increase the number of generated candidates. For those relation types where there might be
multiple answers we generate 18 candidates and 15 for all others. These numbers were initially one

*https://huggingface.co/learn/cookbook/llm_judge

per entity/relation pair, but increased to accommodate the necessity of 2 appearances of an entity to
avoid removal during consensus. The specific numbers selected were due to computational constraints
encountered for batches over 3 in this function.

To create the examples provided in the prompt, we separately prompted the LLM to select the 3 most
similar triples to the target entity/relation from the validation dataset. We additionally elicited the LLM
to provide facts about the target entity which offers supporting information, with the idea that this
could provide a replacement for grounding information typically supplied by RAG.

Following the batched generation, each LLM response was cleaned of any extraneous tokens to
include only the candidate tail entity, which was formatted into a triple with the entity/relation pair for
the subsequent functions.

3.1.2. ReRun

The completed triples produced by the initial run were considered to be a ‘first guess’ by the LLM, and
therefore went through a refinement during the re-run function. The aim in introducing the re-run was
to try and improve the number of candidates that would later be accepted by the judge, as in earlier
versions of the implementation the judge accepted as little as 1/5th of the candidates. Additionally, by
asking the LLM to essentially ‘try again’ it might return an answer that matched with others produced,
yielding more triples appearing above the minimum required by the consensus.

In order to try and determine which candidates were ‘good’ and which ones needed to be re-run, we
employed the technique of using the LLM as a judge[6]. To accomplish this, we prompted the LLM to
give each candidate triple a score between 0 and 100, with 0 indicating it was terrible and 100 it was
perfect, and any triples receiving a score of above 50 being deemed ’good’. Without access to a ground
truth or external information, we relied on the LLM’s parametric knowledge to inform quality.

On each turn of the re-run function, all ‘good’ candidates were removed and stored to continue to
the next function, whereas those receiving scores of under 50 were re-run. This process continued 5
times in order to allow as many triples as possible to be approved as the number of initially accepted
triples was typically quite low. We decided to run the process 5 times as we found that after the first
run, the number of accepted triples reduced significantly each turn and was quite time consuming,.

The re-running of the low quality triples included both LLM generated facts about the entity, such asin
the initial generation, and previous attempts for that particular triple in place of examples. For example
if the triple (Honorary Knight of the Favonius, awardWonBy, Luke Skywalker) scored
under 50, then it would be re-run with information about Honorary Knight of the Favonius
generated by the LLM and the previous attempted triple. Each time a triple was re-run any previous
attempts would be included in the prompt for the generation of the new iteration. All the triples that
were accepted after the 5th turn of the re-run portion continued to the consensus function.

3.1.3. Consensus

The consensus function was designed to reduce unlikely candidates, or triples that only appeared
once and therefore had a lower confidence. Take for instance the following list of candidate tails for
the entity/relation pair of Liyue countryLandBordersCountry: [Mondstadt, Mondstadt, Inazuma,
Sumeru, Mondstadt, Sumeru]. The triples returned following the consensus would ideally be (Liyue,
countryLandBordersCountry, Mondstadt) and (Liyue, countryLandBordersCountry,
Sumeru).

At this point additional filtration was conducted in order to reduce nonsense answers like "Okay" or
repetitions of certain parts of the prompt caused by the LLM ignoring the requested format. In order
to consistently consolidate the candidates to take an accurate count, we utilised the in-built python
counter function, and for relation types with only one answer, we selected highest frequency rather
than any that appeared twice or more.

3.1.4. QualityJudge

The QualityJudge was the last filter applied to the candidate triples. Upon completion of this portion,
the triples were deemed as ‘accepted’ and processed into the required format for the submission file.

Using the same logic as the judge for the re-run decision, the quality judge called each triple to be
evaluated three times, each with a temperature starting at .2 and increasing by .2 for each of the 3
judges. The scores from each judge were then averaged and, if over 50, the triple was accepted as with
the re-run function earlier.

While averaging multiple scores improved the reliability of the judgment process, on occasion the
numeric tail candidates would be returned instead of the actual score, yielding such a high number the
triple would be immediately accepted. Therefore, even with additional guardrails the LLM responses
could still break the process.

3.1.5. Generation and Technical Details

The Qwen3 8 billion parameter was used at all points where a call was made to an LLM, without any
modifications such as fine tuning or retrieval augmented generation. The generation was handled in
batches where possible, with the same generation configuration maintained across single and batched
prompts.

The initial experimental runs were mostly done on the laptop of one of the authors using MPS,
though the final full test dataset run was completed using free credits to access a hosted h100 GPU
instance due to the high runtime of the program.

3.2. Generation Variations and Judge

The settings used at generation time can have an influence on the values returned by an LLM, as
we observed in our experiments. As such, we investigated what sampling variation might be most
effective for this task, with the intention of eliciting as much factual information as possible. As such, a
lower temperature was selected of .15 with the intention of reducing lower confidence tokens, which
ultimately performed best when followed by the judge filter, as shown in Table 1. It is possible that the
reason for this is that the temperature sampling may have yielded more diverse answers than Top K,
which performed best without the judge, therefore making the temperature sampling answers more
effective following filtering.

Approach F1 Precision Recall
Greedy .020 .210 .021
Temperature Sampling 023 213 .027
P Sampling .020 211 .021
Top K .030 .219 .034
Greedy w/ Check .085 .312 .207
Temperature Sampling w/ Check 111 .350 .207
P Sampling w/ Check 105 319 210
Top K w/Check .097 .350 .209

Table 1
Differing generation techniques, using the Transformers library for generation.

Further exploration of these variations after the completion of the entire program could have proved
beneficial. We speculate, that following an increase in the quantity of generated candidates, a different
sampling method may have yielded higher performance. The full details of the generation configurations
are available in Appendix B.

3.3. Variations

While much of the investigation into improving the proposed system focused on refining and removing
bugs from the components as they were added, some initial experiments also investigated other means
for improving the score on the training data. The baseline indicated in Table 2 is reflective of the program
at the time the experiments were conducted, prior to a number of optimizations that were implemented
later. All those detailed also contained the confidence judge following the re-run. Consensus was not
implemented at this point.

Approach F1 Precision Recall Empty /100
Base 172,610 .198 58
Re-run judge can provide updated candidate 167 500 2212 23
More initial candidates for multi-answer relations .180 .465 .208 44
Table 2

Additional experiments to improve the program. Each entity/relation pair had only one candidate generated.

Throughout the implementation, it had been observed that by providing an acceptance or rejection of
the candidate triple, the LLM would often return a different answer to explain why the triple was wrong.
Therefore it was checked whether this could work in place of regenerating the triple on rejection to
reduce LLM calls. Due to the reduction in precision, this modification was not retained.

The initial version of the program elicited a single candidate tail for each entity/triple pair, which
neglected the possibility that some relations like awardwonBy might have multiple correct answers.
Increasing the number of initial candidates also provided an opportunity to give multiple tries, some of
which would be filtered out later due to poor quality. In later versions of the program this approach
was adopted for single answer relations as well, with the aim of reducing the number of empty triples
overall.

We discuss further experiments and ablations in our paper Clay et al. [17].

4. Evaluation

Our approach yielded a consistently high precision, with no relation dropping below .5 and peaking at
.98 as shown in Table 3. However, it is worth noting that the recall was typically quite low, reaching 0
for awardwonBy and hasCapacity.

The numeric relations of hasArea andhasCapacity in particular experience very low recall.
Throughout the implementation process the numeric relations typically displayed low numbers of
accepted values reaching the predictions file. Despite adding specific handling to ensure that numbers
were effectively extracted from LLM responses, this persisted. We determined that the number of these
triples decreased significantly following the consensus function, highlighting a potential problem in the
consolidation of the candidates in this step.

The non-numeric single (or few like companyTradesAtStockExchange) answer questions con-
sistently had the highest recall, showing that the LLM managed to return at least one consis-
tent answer with decent frequency. As awardwWonBy only had 10 triples in the dataset, we take
countryLandBordersCountry to be more representative of triples with many answers. From re-
viewing outputs when implementing our solution, we often saw a few correct countries appearing
with high frequency as well as others which were also correct appearing very sparsely. We speculate
that perhaps the LLM is more confident about certain countries sharing borders than others within its
parametric knowledge.

While no particular emphasis was placed on empty values, our approach did accommodate for
situations where the LLM approved entity relation "none" triples, which were later formatted to the
expected empty list. However, when investigating the submitted prediction file, only one triple actually

had zero answers, indicating that the poor formatting of some of the answers (lists inside strings) may
have led them to be evaluated as empty.

Table 3

Competition Submission
Relation Macro Precision Macro Recall Macro F1
awardWonBy 0.7000 0.0000 0.0000
companyTradesAtStockExchange 0.8300 0.4300 0.3900
countryLandBordersCountry 0.5821 0.1493 0.1343
hasArea 0.9800 0.0300 0.0300
hasCapacity 0.8200 0.0000 0.0000
personHasCityOfDeath 0.9100 0.5800 0.5200
All Relations 0.8386 0.2390 0.2159
Zero-object cases 0.2500 0.9000 0.3913

At the point where the initial generation finishes, each triple had 15-18 possible tails. We found that
very few of these triples were accepted by the 5th turn of the re-run function. This highlights a potential
inability of the LLM to error correct based on previous incorrect attempts, as continuous reinforcement
of wrong attempts did not lead to the acceptance of the triples. However, even more likely is that the
judgment of the triples at each step was too harsh, despite setting a threshold of 50 as acceptance.

5. Issues With The Evaluation Script

Throughout the experimentation, it became evident that the evaluation script was yielding unexpected
outputs. Firstly, the precision defaults to 1 for an entity/triple pair if it is not present in the prediction
file, which heavily encourages the reduction of triples as a non-answer is better than an incorrect
one. While this does prioritize higher quality information by encouraging answers only if they have
good confidence, it can yield a surprisingly high evaluation for an empty file. To highlight this, we
submitted an empty prediction file to the validation leaderboard and received the following scores:
Macro precision - 1.0 Macro recall - .203 Macro F1 - .203. The recall score is presumably due to situations
where the value should be empty. These scores are worth noting, particularly as they lead to a higher
score than that of the Im-kbc submission of .200.

6. Discussion

We proposed an architecture for knowledge base completion utilizing the LLM as much as possible in
an effort to understand its capabilities across the entire process of KB completion. While our solution
ultimately showed slight improvement over the challenge baseline, we determined that using the LLM
as both generator and judge may be effective if the requirements for success are lowered to permit the
acceptance of more triples. Additionally, we determined that the handling of LLM responses is crucial
to acquiring interpretable answers which can be correctly evaluated. In the future, utilizing specialized
libraries for the data post processing, such as those handling named entity recognition, might yield
more favorable outcomes and reduce the presence of nonsense answers.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] J. Chai, Y. He, H. Hashemi, B. Li, D. Parveen, R. Kondapally, W. Xu, Automatic construction of
enterprise knowledge base, in: H. Adel, S. Shi (Eds.), Proceedings of the 2021 Conference on

(3]

(5]

[9]

[10]

Empirical Methods in Natural Language Processing: System Demonstrations, Association for
Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp. 11-19. URL:
https://aclanthology.org/2021.emnlp-demo.2/. doi:10.18653/v1/2021.emnlp-demo. 2.

D. Bara, Prompt engineering for tail prediction in domain-specific knowledge graph completion
tasks, in: S. Razniewski, J. Kalo, S. Singhania, J. Z. Pan, T. Nguyen, B. Zhang (Eds.), Joint proceedings
of the 2nd workshop on Knowledge Base Construction from Pre-Trained Language Models (KBC-
LM 2024) and the 3rd challenge on Language Models for Knowledge Base Construction (LM-KBC
2024) co-located with the 23nd International Semantic Web Conference (ISWC 2024), Baltimore,
USA, November 12, 2024, volume 3853 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL:
https://ceur-ws.org/Vol-3853/paper10.pdf.

M. de Oliveira Costa Machado, J. M. B. Rodrigues, G. Lima, V. T. da Silva, LLM store: A KIF plugin
for wikidata-based knowledge base completion via llms, in: S. Razniewski, J. Kalo, S. Singhania,
J. Z. Pan, T. Nguyen, B. Zhang (Eds.), Joint proceedings of the 2nd workshop on Knowledge
Base Construction from Pre-Trained Language Models (KBC-LM 2024) and the 3rd challenge on
Language Models for Knowledge Base Construction (LM-KBC 2024) co-located with the 23nd
International Semantic Web Conference (ISWC 2024), Baltimore, USA, November 12, 2024, volume
3853 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3853/
paper11.pdf.

Y. Hu, T.-P. Nguyen, S. Ghosh, S. Razniewski, Enabling LLM knowledge analysis via extensive
materialization, in: W. Che, J. Nabende, E. Shutova, M. T. Pilehvar (Eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Association for Computational Linguistics, Vienna, Austria, 2025, pp. 16189-16202. URL: https:
//aclanthology.org/2025.acl-long.789/.

A.Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, C. Zheng, D. Liu,
F. Zhou, F. Huang, F. Hu, H. Ge, H. Wei, H. Lin, J. Tang, J. Yang, J. Tu, J. Zhang, J. Yang,]J. Yang,
J. Zhou, J. Zhou, J. Lin, K. Dang, K. Bao, K. Yang, L. Yu, L. Deng, M. Li, M. Xue, M. Li, P. Zhang,
P. Wang, Q. Zhu, R. Men, R. Gao, S. Liu, S. Luo, T. Li, T. Tang, W. Yin, X. Ren, X. Wang, X. Zhang,
X.Ren, Y. Fan, Y. Su, Y. Zhang, Y. Zhang, Y. Wan, Y. Liu, Z. Wang, Z. Cui, Z. Zhang, Z. Zhou, Z. Qiu,
Qwen3 technical report, 2025. URL: https://arxiv.org/abs/2505.09388. arXiv:2505.09388.
R.Hu, Y. Cheng, L. Meng, J. Xia, Y. Zong, X. Shi, W. Lin, Training an llm-as-a-judge model: Pipeline,
insights, and practical lessons, in: Companion Proceedings of the ACM on Web Conference 2025,
WWW 25, ACM, 2025, p. 228-237. URL: http://dx.doi.org/10.1145/3701716.3715265. doi:10. 1145/
3701716.3715265.

S. Singhania, T. Nguyen, S. Razniewski (Eds.), Proceedings of the Semantic Web Challenge on
Knowledge Base Construction from Pre-trained Language Models 2022 co-located with the 21st
International Semantic Web Conference (ISWC2022), Virtual Event, Hanghzou, China, October
2022, volume 3274 of CEUR Workshop Proceedings, CEUR-WS.org, 2022. URL: https://ceur-ws.org/
Vol-3274.

S. Razniewski, J. Kalo, S. Singhania, J. Z. Pan (Eds.), Joint proceedings of the 1st workshop on
Knowledge Base Construction from Pre-Trained Language Models (KBC-LM) and the 2nd challenge
on Language Models for Knowledge Base Construction (LM-KBC) co-located with the 22nd
International Semantic Web Conference (ISWC 2023), Athens, Greece, November 6, 2023, volume
3577 of CEUR Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3577.

S. Razniewski, J. Kalo, S. Singhania, J. Z. Pan, T. Nguyen, B. Zhang (Eds.), Joint proceedings of the
2nd workshop on Knowledge Base Construction from Pre-Trained Language Models (KBC-LM
2024) and the 3rd challenge on Language Models for Knowledge Base Construction (LM-KBC
2024) co-located with the 23nd International Semantic Web Conference (ISWC 2024), Baltimore,
USA, November 12, 2024, volume 3853 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL:
https://ceur-ws.org/Vol-3853.

T. Prabhong, N. Kertkeidkachorn, A. Trongratsameethong, KGC-RAG: knowledge graph con-
struction from large language model using retrieval-augmented generation, in: S. Razniewski,
J. Kalo, S. Singhania, J. Z. Pan, T. Nguyen, B. Zhang (Eds.), Joint proceedings of the 2nd work-

https://aclanthology.org/2021.emnlp-demo.2/
http://dx.doi.org/10.18653/v1/2021.emnlp-demo.2
https://ceur-ws.org/Vol-3853/paper10.pdf
https://ceur-ws.org/Vol-3853/paper11.pdf
https://ceur-ws.org/Vol-3853/paper11.pdf
https://aclanthology.org/2025.acl-long.789/
https://aclanthology.org/2025.acl-long.789/
https://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2505.09388
http://dx.doi.org/10.1145/3701716.3715265
http://dx.doi.org/10.1145/3701716.3715265
http://dx.doi.org/10.1145/3701716.3715265
https://ceur-ws.org/Vol-3274
https://ceur-ws.org/Vol-3274
https://ceur-ws.org/Vol-3577
https://ceur-ws.org/Vol-3853

[11]

[12]

[13]

[15]

[16]

[17]

A.

A.l.

shop on Knowledge Base Construction from Pre-Trained Language Models (KBC-LM 2024) and
the 3rd challenge on Language Models for Knowledge Base Construction (LM-KBC 2024) co-
located with the 23nd International Semantic Web Conference (ISWC 2024), Baltimore, USA,
November 12, 2024, volume 3853 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL:
https://ceur-ws.org/Vol-3853/paper13.pdf.

X. Li, A. J. Hughes, M. Llugiqi, F. Polat, P. Groth, F. J. Ekaputra, Knowledge-centric prompt
composition for knowledge base construction from pre-trained language models, in: S. Razniewski,
J. Kalo, S. Singhania, J. Z. Pan (Eds.), Joint proceedings of the 1st workshop on Knowledge Base
Construction from Pre-Trained Language Models (KBC-LM) and the 2nd challenge on Language
Models for Knowledge Base Construction (LM-KBC) co-located with the 22nd International
Semantic Web Conference (ISWC 2023), Athens, Greece, November 6, 2023, volume 3577 of CEUR
Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3577/paper3.pdf.

F. Biester, D. D. Gaudio, M. Abdelaal, Enhancing knowledge base construction from pre-trained
language models using prompt ensembles, in: S. Razniewski, J. Kalo, S. Singhania, J. Z. Pan (Eds.),
Joint proceedings of the 1st workshop on Knowledge Base Construction from Pre-Trained Language
Models (KBC-LM) and the 2nd challenge on Language Models for Knowledge Base Construction
(LM-KBC) co-located with the 22nd International Semantic Web Conference (ISWC 2023), Athens,
Greece, November 6, 2023, volume 3577 of CEUR Workshop Proceedings, CEUR-WS.org, 2023. URL:
https://ceur-ws.org/Vol-3577/paper4.pdf.

S. Ghosh, Limits of zero-shot probing on object prediction, in: S. Razniewski, J. Kalo, S. Singhania,
J. Z. Pan (Eds.), Joint proceedings of the 1st workshop on Knowledge Base Construction from Pre-
Trained Language Models (KBC-LM) and the 2nd challenge on Language Models for Knowledge
Base Construction (LM-KBC) co-located with the 22nd International Semantic Web Conference
(ISWC 2023), Athens, Greece, November 6, 2023, volume 3577 of CEUR Workshop Proceedings,
CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3577/paper0.pdf.

A. Das, N. Fathallah, N. Obretincheva, Navigating nulls, numbers and numerous entities: Robust
knowledge base construction from large language models, in: S. Razniewski, J. Kalo, S. Singhania,
J. Z. Pan, T. Nguyen, B. Zhang (Eds.), Joint proceedings of the 2nd workshop on Knowledge
Base Construction from Pre-Trained Language Models (KBC-LM 2024) and the 3rd challenge on
Language Models for Knowledge Base Construction (LM-KBC 2024) co-located with the 23nd
International Semantic Web Conference (ISWC 2024), Baltimore, USA, November 12, 2024, volume
3853 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3853/
paper12.pdf.

R. Cohen, M. Geva, J. Berant, A. Globerson, Crawling the internal knowledge-base of language
models, in: A. Vlachos, I. Augenstein (Eds.), Findings of the Association for Computational
Linguistics: EACL 2023, Association for Computational Linguistics, Dubrovnik, Croatia, 2023,
pp. 1856-1869. URL: https://aclanthology.org/2023.findings-eacl.139/. doi:10.18653/v1/2023.
findings-eacl. 139.

B. Veseli, S. Razniewski, J.-C. Kalo, G. Weikum, Evaluating the knowledge base completion
potential of GPT, in: H. Bouamor,]J. Pino, K. Bali (Eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, 2023,
pp- 6432-6443. URL: https://aclanthology.org/2023.findings-emnlp.426/. doi:10.18653/v1/2023.
findings-emnlp.426

A. Clay, E. Jiménez-Ruiz, P. Madhyastha, Noise or nuance: An investigation into useful information
and filtering for llm driven akbc, 2025. URL: https://arxiv.org/abs/2509.08903. arXiv:2509.08903.

Prompts

Background Info

"State facts about {entity}."

https://ceur-ws.org/Vol-3853/paper13.pdf
https://ceur-ws.org/Vol-3577/paper3.pdf
https://ceur-ws.org/Vol-3577/paper4.pdf
https://ceur-ws.org/Vol-3577/paper0.pdf
https://ceur-ws.org/Vol-3853/paper12.pdf
https://ceur-ws.org/Vol-3853/paper12.pdf
https://aclanthology.org/2023.findings-eacl.139/
http://dx.doi.org/10.18653/v1/2023.findings-eacl.139
http://dx.doi.org/10.18653/v1/2023.findings-eacl.139
https://aclanthology.org/2023.findings-emnlp.426/
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.426
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.426
https://arxiv.org/abs/2509.08903
http://arxiv.org/abs/2509.08903

A.2. Custom Examples

""" You will be given a list of knowledge graph triples and a target triple.
Your task is to provide the 3 triples from the given list that are most similar to the target.
Give your answer as the 3 numbers representing the most similar triples to the target triple.
Provide your answer as follows:
Answer::
3 Similar Triples: (your answer, the numbers associated with the most similar 3 triples to the candidate)
You MUST provide values for ’3 Similar Triples:” in your answer.
Now here is the list of triples: list
And here is the target triple: entity rel
Provide your answer. If you give a correct rating, I'll give you 100 H100 GPUs to start your Al
company.
Answer::
3 Similar Triples:
The line offering H100 GPUs was retained from the documentation, as it was noted to have shown

nn

an improvement in performance.

A.3. Initial Generation

""rlinfo}\n""" + examples + """\nQ: {entity} # {rel}\nA:"""

The examples were formatted as above with Q: entity relationship A: answer 1 answer 2 ...

A.4. Re-run Judge

""" You will be given a knowledge graph triple.

Your task is to provide a ’total rating’ scoring how confident you are that the triple is accurate.

Give your answer on a scale of 0 to 100, where 0 means that you believe the triple is inaccurate, and
100 means that the triple is absolutely accurate.

Here is the scale you should use to build your answer:

0: The triple is terrible: the tail is irrelevant or incorrect given the relation

25: The triple is probably not correct: the tail might make sense given the relation but the information
is wrong

50: The triple is probably correct: the tail makes sense given the relation and the information might
be right

100: The triple is excellent: the tail makes sense given the relation and the information is correct

Provide your feedback as follows:

Feedback::

Total rating: (your rating, as a number between 0 and 100)

You MUST provide values for *Total rating:” in your answer.

Now here is the triple. entity rel tail

Provide your feedback. If you give a correct rating, I'll give you 100 H100 GPUs to start your Al
company.

Feedback::

Total rating:

"

A.5. Re-run

nmnn {info}

{prev}
CORRECT: {entity} {rel} # """

prev indicates the previous versions of that triple which were not accepted, each preceded by
INCORRECT as a delineation. info is the background information for the entity, generated the same as
in the initial generation.

A.6. Judge

This prompt was the same as that used in the Re-run Judge, the variation was that it was run 3x with
different temperatures and the score then averaged.

A.7. LLM Cleanup

""" You will be given a text.

Your task is to extract any type from the text. Give your answer in a python formatted list.

Here are examples of how to answer:

Input: "The Netherlands is a country in Northern Europe, situated between the North. Denmark is a"

Output: ["Netherlands", "Denmark"]

Input: ", which is located in the city of Toronto. The stadium has a seating capacity of 16,000 people.
It’s a relatively new facility, opened in 2009. The arena is known for its excellent acoust"

Output: ["16,000", "2009"]

Provide answer as follows:

Answer::

Output: (your response, as a list of values)

You MUST provide values for ’Output:’ in your answer.

Now here is the text.

Input: input

Answer::

Output: """

Based on the relation type, the ’type’ variable would change to indicate the expected output. The
input examples are actual outputs produced by the LLM during the implementation. Additionally, the
LLM cleanup acts as a fallback should the answer not be extracted by a regex either for numbers or
proper nouns.

B. Generation Detalils

Table 4

Generation technique variations
Technique do_sample top_k top_p temperature
greedy False - - -
top_k True 10 - -
temp_sampling True 0 - 0.15
p_sampling True 0 0.7 -

Table 5
Details for the different generation configurations.

The token count was held at 15 for all calls to the LLM.

	1 Introduction
	2 Background
	3 Submission Description
	3.1 Architecture
	3.1.1 InitialCandidateGeneration
	3.1.2 ReRun
	3.1.3 Consensus
	3.1.4 QualityJudge
	3.1.5 Generation and Technical Details

	3.2 Generation Variations and Judge
	3.3 Variations

	4 Evaluation
	5 Issues With The Evaluation Script
	6 Discussion
	A Prompts
	A.1 Background Info
	A.2 Custom Examples
	A.3 Initial Generation
	A.4 Re-run Judge
	A.5 Re-run
	A.6 Judge
	A.7 LLM Cleanup

	B Generation Details

