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Abstract

To gain a comprehensive view of what the LHC tells us about physics beyond the Stan-
dard Model (BSM), it is crucial that different BSM-sensitive analyses can be combined.
But in general search-analyses are not statistically orthogonal, so performing compre-
hensive combinations requires knowledge of the extent to which the same events co-
populate multiple analyses’ signal regions. We present a novel, stochastic method to
determine this degree of overlap, and a graph algorithm to efficiently find the combina-
tion of signal regions with no mutual overlap that optimises expected upper limits on
BSM-model cross-sections. The gain in exclusion power relative to single-analysis limits
is demonstrated with models with varying degrees of complexity, ranging from simplified
models to a 19-dimensional supersymmetric model.

Copyright J. Y. Araz et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 06-09-2022
Accepted 26-01-2023
Published 20-04-2023

Check for
updates

doi:10.21468/SciPostPhys.14.4.077

Contents

1 Introduction 2

2 Overlap estimation 3
2.1 Model-space sampling and event generation 4
2.2 Overlap-matrix estimation 5

3 Optimal signal-region combination 6
3.1 Compatible signal-region sets as path-finding 7
3.2 Weighted edges for sensitivity optimisation 9

1

https://scipost.org
https://scipost.org/SciPostPhys.14.4.077
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.14.4.077&amp;domain=pdf&amp;date_stamp=2023-04-20
https://doi.org/10.21468/SciPostPhys.14.4.077


SciPost Phys. 14, 077 (2023)

3.3 Performance 10

4 Results 11
4.1 T1 simplified-model combination 11
4.2 pMSSM-19 reinterpretation 13
4.3 t-channel dark-matter 17

5 Conclusions and outlook 21

A BSM-search overlap matrices 23

B HDFS algorithm 25

C WHDFS algorithm 26

References 27

1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) are performing direct
searches for new physics beyond the Standard Model (BSM) in many different channels. The
previous decade of LHC operation has already put strong constraints on the most obvious mod-
els of BSM physics, pushing their viable configurations to arguably untenable high new-particle
masses; compared to these simple models pushed to extreme configurations, it is natural also
for models with subtler phenomenology to enter the new-physics discourse. Such models
bring increasing complexity in both the dimensionality of their parameter spaces, and the
range of phenomenology possible within them. This leads to an increasing presumption that
new physics will not be discoverable via a single, powerful experimental signature, but will
disperse across many signatures at a level below direct exclusion in any one search analysis.

These factors cause a major logistical headache for LHC data-interpretation. At the fully
detector-simulated level used for experiment interpretations, adaptive samplings and scans of
high-dimensional spaces are not feasible, yet the few-parameter simplified-model approach
used in the first LHC runs will no longer be representative of the analysis power to constrain
actually viable BSM models. In this mode, it is clear that analyses must be systematically com-
bined together, and initial scoping of viable parameter-space regions performed via a more
lightweight approximation of experiment response, such as via the MADANALYSIS 5 [1], CHECK-
MATE [2], RIVET + CONTUR [3,4], GAMBIT [5], or similar toolkits.

In this paper we focus on the first problem: how to best combine analyses for optimal
statistical significance, which for the purposes of our analysis is the ability to exclude a specific
BSM model point at fixed confidence level. Definitive LHC statements about any dispersed
signature will require combination of as many analyses as possible, but not all analyses can
be combined. Were we simply to combine the test statistics of every signal region (SR) from
every analysis available in the public collections, we would certainly double-count physics
effects, since the same events will manage to pass multiple analyses’ event-selection cuts and
observable binnings.

Different sets of observables are used for selection-cut purposes in each analysis, but the
disjoint choices are typically highly correlated through a complex dependence on the rest of
the selection phase-space. It is hence impossible to reliably identify degrees of overlap directly
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from a list of cut observables and values. And even when the analysis overlaps are known, there
remains the problem of identifying which compatible subset will place the optimal constraints
on any given BSM model.

Approaches so far have hence been manual, and rather conservative [4,6]. To scale up to
the full set of LHC legacy analyses at 7, 13, and 13.6 TeV, and to obtain maximal statistical
limits from the resulting combination, a more quantitative and automated approach is needed.
This paper provides a blueprint for such an approach: we use the MADANALYSIS 5 analysis
toolkit in conjunction with SMODELS [7] to estimate degrees of analysis overlap over hundreds
of signal regions, and propose a new graph-based algorithm to optimise the subset of non-
overlapping analyses used for testing a given BSM model.

In this work we determine the parameter space accessed by the topologies which populate
the different signal regions contained in a sample of 18 CMS and ATLAS analyses, the current
maximum overlap between the MADANALYSIS 5 and SMODELS re-interpretation toolkits. While
far from a complete set, this is sufficient to illustrate the complexity of (undeclared) overlap-
ping SR acceptances, and the non-triviality of identifying the most significantly exclusionary,
combinable subset of SRs for a given BSM model.

In Section 2, by sampling over the minimal parameter spaces of the SMODELS simplified-
model topologies able to populate these SRs, and using a version of MADANALYSIS 5 modified
to provide information for per-event Poisson bootstrapping, we estimate the statistical overlaps
between the resulting set of 355 signal regions. Applying a threshold on the degree of overlap
acceptable in combination then results in a matrix of acceptable SR–SR combinations, from
which the space of optimal subsets can be explored.

In Section 3, we find that a powerful method for doing so is to represent the SRs in a
graph-theoretic form, in which sensitivity maximisation for a variety of physics-performance
metrics can be formalised as a weighted longest-path problem.

In Section 4, we apply this technique on a series of increasingly complex and general BSM
models, ranging from “closure tests” on simplified models, to compact models with dispersed
phenomenology, to the 19-dimensional phenomenological Minimal Supersymmetric Standard
Model (pMSSM-19).

We conclude with reflections on what is needed in technical and community-coordination
terms to bring this method and the resulting gains in LHC physics sensitivity to practical real-
isation.

2 Overlap estimation

To investigate how analyses can be combined to provide the most stringent constraints
on a BSM model point, we choose the selection of analyses available both in SMOD-
ELS and MADANALYSIS 5 as our database. At the time of writing this includes 18 analy-
ses: ATLAS-SUSY-2013-02 [8], ATLAS-SUSY-2013-04 [9], ATLAS-SUSY-2013-05 [10], ATLAS-
SUSY-2013-11 [11], ATLAS-SUSY-2013-21 [12], ATLAS-SUSY-2015-06 [13], ATLAS-SUSY-
2016-07 [14], ATLAS-SUSY-2018-04 [15], ATLAS-SUSY-2018-06 [16], ATLAS-SUSY-2018-
31 [17], ATLAS-SUSY-2018-32 [18], ATLAS-SUSY-2019-08 [19]; CMS-SUS-13-011 [20], CMS-
SUS-13-012 [21], CMS-SUS-16-033 [22], CMS-SUS-16-039 [23], CMS-SUS-16-048 [24].
CMS-SUS-17-001 [25], and CMS-SUS-19-006 [26].

The cascade decays, or topologies, covered by these analyses are simplified so that they
focus on the production of two massive BSM states that each decay to at most 2–3 final-
state particles. The topologies covered by these analyses, using the SMODELS naming con-
vention [27], are: T1, T1bbbb, T1btbt, T1tttt(-off), T2, T2bb, T2tt(-off), T2bbWW(-off),
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T2bt, T2cc, T3GQ, T5, T5bbbb, T5tctc, T5tttt, T5GQ, T5WW(-off), T5WZh, T5ZZ, T6bbhh,
T6bbWW(-off), T6WW(-off), T6WZh, TChiChipmSlepL, TChiChipmSlepStau, TChiChipm-
StauStau, TChiChipmSlepSlep, TChipChimSlepSnu, TSlepSlep, TChiZZ TChiWH, TChiWW,
TChiWZ(-off), TChiZoff, TGQ, TSlepSlep, and TStauStau.

2.1 Model-space sampling and event generation

In order to obtain robust conclusions about potential signal overlaps for arbitrary scenarios, we
proceed as follows. For each analysis, we construct a convex hull in each simplified model’s
parameter space that is accessed by a given topology, carried out using the efficiency maps
implemented in SMODELS [28]. The efficiency maps give upper limits on the production cross-
sections of the two relevant BSM states, and depend on the masses in the simplified decay
chains. For each simplified model, one such convex hull exists for each analysis that has a result
for that given simplified model. We are interested in the joint set of convex hulls corresponding
to each simplified model. Thus, we construct a contour around the mass-parameter space
beyond which the expected event-yield from all corresponding analyses is zero. In this way,
the union of regions will be populated with events, without multiply populating those shared
between analyses. We uniformly generate events within this joint convex hulls, so to only
introduce an uninformative flat prior in our procedure.

The MC events were generated at LO with MADGRAPH5_aMC@NLO v2.6.5 [29] at the
partonic level with the NNPDF 2.3 LO [30] set of parton distribution functions via the LHAPDF

library [31], with parton-showering and hadronisation simulated by PYTHIA 8 [32] through
the MADGRAPH5_aMC@NLO interface. Detector-level events were obtained with DELPHES 3
and FASTJET [33, 34], executed through MADANALYSIS 5 with analysis-specific configurations
interleaved with the event-selection logic. The input for the generation pipeline was a corre-
sponding SLHA-format [35] data-file for each topology, with the masses of the produced, final,
and (in some cases) intermediate BSM states defined as free parameters. The initial partonic
processes in the generation chain were in all cases direct production of the topology’s massive
BSM states, with decay chains implemented via PYTHIA 8’s decay mechanism.

The required output of the MC generation procedure is a binary acceptance matrix Θ of
shape Nevt×NSR, where Θe,s = 1 means that event e populated SR-bin s, and vice versa Θe,s = 0
when event e did not pass the cuts for SR s.1 This matrix is produced using the new

set main.recast.TACO_output = <file-name>

command in MADANALYSIS 5, added to the framework for this purpose. The acceptance matrices
are emitted as text files with each event corresponding to a pair of lines encoding first the list
of floating-point event weights [36] (in this study we use only the nominal weight), and then
a list of 0 and 1 characters corresponding to the NSR signal regions. These files are written
separately for each DELPHES 3 configuration to the location

<Output>/SAF/defaultset/<delphes-card-name>.<file-name>

in the output directory of the recasting process.
To determine the minimal number of Monte-Carlo events needed for a reliable estimation

of the overlap matrix, we start with 100 events for 1000 random parameter points sampled
from the union of the convex hulls of the signal regions, so with an initial N=100 000 events.
For any pair of signal regions SR1 and SR2 populated with n1 and n2 events respectively, we
then determine the number k of shared events. If k > 100, we have accumulated enough

1In general this matrix need not be binary, and can represent a per-event bin yield, for observables that can have
multiple fills per event. Event weighting also complicates matters. But in the current context of binary acceptance
or rejection of unweighted events, Θi j ∈ {0,1}.
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start with N=0

generate / add N = N + 100 x 1000 events

compute n₁, n₂, n, k

k>100?
proceed to

bootstrapping

compute f(p;k,n)

f<0.01?

yes

no

proceed to
bootstrapping

yes

no

is N large?
no yes stop:  undetermined/

unimportant

Figure 1: Flowchart for the determination of the number of Monte Carlo events
needed for estimation of the overlap matrix.

statistics, and proceed to the bootstrapping procedure. For k ≤ 100, with n≡ n1 + n2, we use
the confidence interval construction by Clopper and Pearson [37] of the binomial distribution

B(n, p) =
�

n
k

�

pk(1− p)n−k , (1)

where p is a free parameter defined as the probability of overlap. In order to guarantee enough
events for the case of a negligible overlap, we need to obtain a one-sided (upper) confidence
interval for p at confidence level CL ≡ 1− α = 0.95 and guarantee that it is below a certain
threshold. From the Clopper–Pearson construction, this is computed as the 1− α quantile of
the β distribution

f (p; k, n) = β1−α;k+1;n−k . (2)

If this upper bound is below the arbitrarily chosen threshold, f < 0.01, we assume that
we have accumulated enough statistics to safely infer the potential absence of a significant
overlap, and we confidently proceed to the bootstrapping procedure.

Using these criteria we can employ the logic of Figure 1. It will guarantee that enough
statistics is available to robustly and reliably determine both a significant or negligible overlap
between a given pair of signal regions.

2.2 Overlap-matrix estimation

Once with a set of sufficiently populated SRs, we are ready to determine whether or not such
SRs are approximately orthogonal with respect to one another.

The Pearson correlation can be estimated from the acceptance matrix via the event-
averaged acceptance covariance,
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covi j = 〈ΘiΘ j〉 − 〈Θi〉〈Θ j〉 ≡

∑

eΘe,iΘe, j

Nevt
−

∑

e′ Θe′, i ·
∑

e′′ Θe′′, j

N2
evt

, (3)

where Nevt is the number of events in the estimation sample and, as made explicit in the second
line, i and j are SR indices. This method is possible because the entire event-wise acceptance
matrix is available and hence overlaps can be estimated by averaging over the event axis of
the matrix.

An equivalent approach, taken by the current code, is to perform bootstrap sampling
from a unit Poisson distribution. Each event is assigned Nboot random “bootstrap weights”
we,b ∼ Pois(λ = 1), which are aggregated on to Nboot replicas of the SRs’ yield estimates. The
result is a NSR × Nboot bootstrapped yield matrix Y , which expresses the sum of event weights
falling into the set of SRs for each of the Nboot alternative histories generated from the single
set of input events. The overlaps between SRs can then be determined from their common
weight-fluctuations over the set of histories, i.e. another estimate of the covariance:

covi j = 〈YiYj〉 − 〈Yi〉〈Yj〉 ≡

∑

b Yi,bYj,b

Nboot
−

∑

b′ Yi,b′ ·
∑

b′′ Yj,b′′

N2
boot

. (4)

The distinction is that the averaging is now over bootstrap replicas of the aggregate yields,
rather than the per-event acceptance tuple. While not essential in the current implementation,
the bootstrap approach avoids the need to manage a linearly growing acceptance matrix, in
favour of a fixed-size NSR × Nboot yield matrix, which may become computationally relevant
for large event samples.

From the covariance matrix, obtained through either strategy, we define the overlap matrix

ρi j =
covi j
p

covii cov j j
, (5)

following the usual Pearson-correlation definition. Lower-triangle plots of this symmetric over-
lap matrix for the sets of signal regions common to SMODELS and MADANALYSIS 5 are shown
in the appendix Figures 14 and 15 for 8 TeV and 13 TeV LHC data-analyses respectively, with
patterns of highly and partially co-populated SRs clearly visible.

Finally, a binary exclusivity matrix E between SR-pairs SRi and SR j is derived by apply-
ing an “acceptable overlap” threshold T such that the exclusivity between SRs i and j is
Ei j = (|ρi j| ≤ T ). The value chosen for T is at present somewhat subjective, reflecting that
for each use-case there will be a finite value of ρi j below which double-counting biases are
not statistically resolvable: treating these low correlations as zero-correlations avoids blocking
useful SR combinations due to irrelevant and noisy correlation estimates.

The procedure described above is implemented in the public PYTHON program TACO (Test-
ing Analyses COrrelations), available at https://gitlab.com/t-a-c-o/taco_code.

3 Optimal signal-region combination

Armed with the exclusivity matrix from the previous section, for a choice of overlap threshold
T , we now have the challenge of identifying the best-expected combination of SRs compatible
with it. We consider this in two steps: first the combinatoric problem of efficiently constructing
all allowed paths, and then the optimisations to this enabled by the specific definition of “best”
used in BSM-analysis reinterpretation.
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SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8 SR9 Sink

SR0

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

Sink

ρij <T

ρij ≥ T
ρii

Figure 2: Overlap matrix of 10 signal regions (SR0 − SR9) with values masked ac-
cording to threshold T giving the exclusivity matrix. The final Sink signal region has
been inserted to provide a target for the path-finding algorithm.

3.1 Compatible signal-region sets as path-finding

Without prior information about overlaps or statistical significances, the process of finding
a preferred subset of signal regions from a set of size n is a combinatorial challenge with
2n possible solutions. Exhaustively generating and evaluating each such combination hence
suffers from exponential time-complexity scaling, and is computationally impractical even for
relatively small n, let alone the n∼O(1000) required by real reinterpretations.

However, considering the SR-acceptance exclusivities Ei j , the majority of these N combi-
nations transpire to be forbidden, as large-r naïve subsets become overwhelmingly likely to
contain at least one overlapping pair of SRs. The question then becomes whether, given prior
awareness of Ei j , it is possible to evaluate all allowed SR-combinations more efficiently than
exhaustive generation followed by overlap-checking.

In this section we show that the answer to this question is yes, and that the problem
can be usefully recast as finding an optimum path through a directed acyclic graph (DAG).
We present an algorithm that reduces the asymptotic time complexity by efficiently select-
ing path-elements based on recursive application of the SR exclusivity matrix, rendering the
combinatoric problem not just tractable but computationally fast.

The key insight is to avoid generating invalid SR-combinations at all: this can be achieved
by generating the combinations directly from the overlap matrix. Hence we must restrict the
generated subsets only to those for which Ei j = 1 for all distinct i, j in the set. This condition
requires that if a subset of all possible signal regions is built up iteratively, its jth element must
have no significant overlap with all the previously selected elements 0... j − 1.

Figure 2 shows the exclusivity matrix Ei j of ten signal regions, computed as the overlap
matrix masked with a threshold T . The matrix elements ρi j that fall below T are shown as
white, and those that are above are shaded black. For reasons that will become clear later, we
restrict ourselves to constructing combinations by adding SRs to the subsets in strictly increas-
ing index order. Starting in the top left-hand corner of Figure 2 (at element ρ00, or (SR0, SR0)),
the signal regions available for combination with SR0 are limited to those corresponding to the
white elements in the first column, i.e. Ei,0 = 1. We define Ai as the ordered set of all allowed
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(non-overlapping) SRs indices with respect to SR i SR indices such that

Ai ≡ { j : ρi, j < T, i < j < n} . (6)

Using Figure 2 as an example, A0 would be {1, 2,3, 5,6, 7,8}. We now define a set of indexed
variables to represent the sets and subsets of signal regions: the single-index version, Ki , is a
set of all allowed paths with initial elements SRi such that

Ki ≡ {{SRi , . . . , SRfinal}, . . .} . (7)

Following this construction, Ki, j is the jth path within Ki , and by extension Ki, j,k would refer to
the kth element of Ki, j . Applying this formalism to Figure 2 and initiating a subset K0,0,0 with
SR0, the available options for the second element are given by indices in A0 (equation (6)). It
follows that K0,0,1 = SR1 as this is the first index in A0, and thus K0,0,2 = SR2 as this is the first
available SR-index that is allowed by the intersection of A0 and A1. Repeating the procedure
and taking the intersection of A1 and A2 results in an empty set, meaning that K0,0 is a complete
subset of three signal regions with overlaps below T . The next combination, K0,1, is the first
allowed alternative to the final element of K0,0: {SR0, SR1, SR2} becomes {SR0, SR1, SR5}.

This method of building paths is close to that of a depth-first search through an unweighted
directed acyclic graph where the “nodes” correspond to signal-regions and “edges” to the al-
lowed pairwise SR-combinations. The directed and acyclic nature of the graph is enforced by
the ordering of SRs and the edges always pointing from lower to higher indices. However,
there is a major difference in that the choice of each signal region is dependent on those al-
lowed by all previous signal regions in the path, or in other words the allowed vertices would
be inherited. Fortunately this hereditary condition can be easily inserted into established DAG
“simple path” algorithms [38,39].

Recasting the problem as an optimum-path search requires a few minor changes to the
definitions covered so far. Firstly, each path has to be defined between two points: a source
and a sink. As previously stated, each combination within the subset Ki has a defined source,
however, the final signal region will depend on the path taken. A convenient way of dealing
with this condition is to define a universally allowed nth signal region such that every possible
path terminates at index n. This can be done by appending an nth “sink” signal region to ρ,
this is shown in Figure 2 but can also be expressed as

ρn,i = ρi,n = 0.0 : 0≤ i ≤ n . (8)

This modification of ρ necessitates that the definition of Ai also be modified to include the nth
term:

Ai ≡ { j : ρi, j < T, i ≤ j ≤ n} . (9)

With Ai defined in terms inclusive of n, we can define a modified hereditary depth-first
search (HDFS) algorithm that generates all the available paths starting from an initial signal
region. This algorithm proceeds by recursively appending diminishing subsets of allowed SRs
S, with the current subset Sc defined as the the intersection of Ac with the previous subset
such that

Sc ≡ Ac ∩Sc−1 . (10)

The remaining compatible SRs are hence given by the total intersection of the compatible-
SR sets for the elements already in the path. As this is constructed iteratively, each stage
of completion-refinement needs only to be compared against the set of completions for the
current final element, Sc−1. The HDFS algorithm uses this condition to efficiently exclude
overlapping SR-combinations from consideration.

In summary, initiated from a source SRi , with the first element of S being Ai , the set of
all allowed paths Ki can be built by recursively evaluating the subsets of S. Once the current
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SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8 SR9

SR0

SR1

SR2

SR3

SR4
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SR6

SR7

SR8

SR9

ρij <T

ρij ≥ T
ρii

Figure 3: Exclusivity matrix of 10 signal regions (SR0 − SR9) with values masked
according to threshold T . For clarity, the sink SR is not shown. The coloured lines
show all allowed paths originating at SR0.

iteration has reached the “sink” SRn, a full path is defined by the steps taken. Figure 3 shows
the results from running this algorithm using the exclusivity matrix from Figure 2, for paths
starting from SR0. The full DAG HDFS algorithm is given in pseudocode as Algorithm 1 in
Appendix B.

3.2 Weighted edges for sensitivity optimisation

In generating the set of allowed paths, we have been concerned only with SR-exclusivity and
treated all graph edges (and hence SRs) as of equivalent value, within the fixed DAG ordering
provided. But in our physics application, of course, this is not the case: for each specific BSM
model, some signal regions will be more sensitive than others. For example, leptophilic models
naturally tend to see most sensitivity in SRs with multilepton signatures; models with enhanced
couplings to the third generation have most impact on t- and b-quark and τ-lepton signatures;
and dark-matter models favour jet + missing transverse-energy signatures. In addition, when
not all SRs have the same integrated luminosity, SRs in high-luminosity datasets are naturally
more sensitive than those in low-statistics ones. These intuitive sensitivity metrics can be
incorporated into the graph model in the form of variable edge-weights.

Such weights should be motivated by the statistical goal being tested, and ideally should
be additive so standard longest-path optimisation can be used to identify the most sensitive
allowed SR-combination. A typically appropriate choice for the edge weights, and the one
used in this paper, is the logarithm of the expected likelihood-ratios (LLR) between the signal-
model under test and the background-only model, ln(Lsb/Lb), for pseudodata equal to the
expected yields under the background-only model. This is motivated by the following logic:

1. As we are combining a set of direct-search analyses in which no individual significant
signal was found, we choose to frame our mission primarily as maximising the volume
of model-exclusion rather than a discovery. Our null hypothesis is hence the BSM signal
model, and we seek to overturn it with a preference for the SM at every point in its
parameter-space.

2. We hence aim to maximise the expected significance of exclusion Z at each point in the
BSM parameter space. Under the assumptions of Wald’s Theorem [40], the expected
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significance is given by the square-root of the LLR between the models, hence maximising
the LLR maximises the expected model-exclusion.

As any generated path is by definition composed of signal regions which can be treated
as non-overlapping, the total log likelihood-ratio (LLR)

∑

i∈SRs ln(Lsb,i/Lb,i) of an SR subset
is just the sum of such weights along its corresponding path candidate. The use of expected
background pseudodata rather than the actual observed data-counts is important to avoid
cherry-picking of statistical fluctuations: we identify the optimal SR-combinations for each
point as if the data has not yet been recorded, to avoid bias. Other use-cases, in particular
anomaly-detection, in which the observed data is compared to background expectations in
search of the most consistent, discrepant non-overlapping subset of measurements, require a
modified metric but with similar motivation. For such use cases, however, the edge-weights
are in general no longer additive, resulting in a more complicated and CPU-intensive task.

In general, the optimal path can be found in reasonable time by evaluating the overall
sensitivity metric for every allowed SR-combination identified by the HDFS algorithm of the
previous section. However, in the case of additive weights, further algorithmic optimisations
are possible by a) ordering the SRs in decreasing order of individual sensitivity, and b) exiting
early from generation of allowed-path subsets for which there is no possibility of exceeding
the metric obtained for the current maximum-sensitivity path. The first of these conditions is
simply implemented by a priori ordering the SRs according to decreasing expected LLR, such
that paths containing the expected dominant contributions to total LLR are evaluated first —
this opens the possibility of evaluating only the sets of paths starting with the first O(10) SRs.
The second, however, makes such a manual cutoff largely redundant by maintaining records
of the highest complete-path LLR, and the sum of LLRs over all remaining SRs in Sc as the
allowed paths are generated. Should the sum of the current path’s LLR and its maximum
possible completion become smaller than the current best complete path, there is no point
in continuing to evaluate that set of completions and they can be “short-circuited” to further
reduce the algorithmic complexity of the path-finding.

We refer to this combination of DAG hereditary depth-first search and these optimisations
for weighted graph edges as the weighted HDFS algorithm (WHDFS). This algorithm is our
final method for efficiently addressing the specific problem of finding the combination of sta-
tistically non-overlapping SRs which maximises their additive combination of expected LLR
sensitivities to a given BSM model.

3.3 Performance

The algorithm performance was evaluated by randomly selecting 20 mass-points from the “T1”
simplified gluino-pair analysis to be shown in the following physics-results section, and calcu-
lating the optimal combinations for each of a set of reduced SR collections {SR0, . . . , SRm−1}
and its corresponding m × m exclusivity submatrix. The number of elements m ≤ n in the
reduced SR-sets was evaluated from m = 20 to 80 in steps of 10, and from m = 80 to 140 in
steps of 20. The upper limit on m was determined by the requirement to find 20 mass points
(for timing-uncertainty estimation) with at least that many supported SRs.

Figure 4 shows the CPU-performance comparison between the three graph-based algo-
rithms discussed in Section 3.1 on these SR-combination problems of varying size. The plot
clearly shows that the simple depth-first search (DFS) does not scale sufficiently for physics
purposes: in BSM scans considering many thousands or millions of model points and hundreds
of SRs, the decision of which SR combination to use for each point needs to be made typi-
cally on the order of seconds, but the DFS algorithm requires hundreds of seconds by 40 SRs,
with extremely strong exponential scaling. The HDFS algorithm fares much better, scaling
up to 100 SRs with a flatter exponential growth than DFS, and with slightly sub-exponential
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Figure 4: Comparison of CPU-runtime scaling against number of signal regions be-
tween the standard depth-first search (DFS), the hereditary DFS (HDFS), and the
weighted hereditary DFS (WHDFS) algorithms.

thereafter. Regardless, it requires O(100) seconds for 100 SRs, insufficient for many practical
applications. But the further optimisations enabled by the WHDFS formulation show a flatter
still scaling exponent, with sub-exponential growth that becomes particularly flat for large SR
counts. 230 SRs were obtained in around 2 seconds, very compatible with adaptive sampling,
and indicating little issue in scaling further toward thousands of SRs. These performance gains
indicate the effectiveness of the WHDFS algorithm and that it can meet the current practical
requirements of large-scale analysis combination.

4 Results

To illustrate the power of our approach, we now present physics results for various BSM-
reinterpretation scenarios. In order of increasing complexity, we first demonstrate increases in
model-exclusion limits in the context of simplified models in Section 4.1. Raising the stakes,
we then demonstrate the effect of our combinations on the pMSSM-19 model in Section 4.2.
We end with a discussion of our combination results in the context of a simple t-channel dark
matter model, this time fully recasting the relevant analyses, in Section 4.3.

As is the case throughout this paper, control regions are ignored, as are overlaps in the
background expectations of the signal regions. This reflects an implicit assumption that the
signal regions are specific enough to event topology and kinematic phase-space that events
falling into them are indistinguishable between signal and background (the job of removing
reducible backgrounds having already been performed by the pre-selection and SR-cut defi-
nitions). One could hence also perform the overlap estimation using large background-event
samples in place of the sampling over signal models.

4.1 T1 simplified-model combination

Following the method described in Section 2, an overlap matrix was constructed from the se-
lection of analyses available in SMODELS and MADANALYSIS 5. Using the SMODELS database,
an exclusivity matrix of 393 SRs was created with a 1% threshold of maximum overlap. The
first test of the TACO formalism was to compare the combination results to the validation
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Figure 5: Validation plots comparing the (a) expected and (b) observed results of the
TACO SR-combination against three individual-analysis limits available in the SMOD-
ELS results database for the T1 topology. The lines show the exclusion limits in terms
of r-value where r = 1 is analogous to the 95% confidence-level exclusion. The CMS-
SUS-19-006-ma5 analysis is so-named due to the efficiency map being obtained for
SMODELS by use of MADANALYSIS 5 rather than direct from the experiment-provided
analysis data. The dashed-grey line indicates the boundary of the efficiency maps.

plots for analyses and topologies available in the SMODELS database, chosen as this checks
for consistency within a model-space completely understood and mapped by SMODELS. The
first simplified model chosen was the “T1” topology, which is a simplified version of gluino
pair production in which each gluino undergoes a three-body decay g̃ → qq̄χ̃0

1 to a light-flavor
quark-antiquark pair plus the lightest stable particle (LSP) χ̃0

1 .
Figure 5 shows the T1-topology validation plot of (a) expected and (b) observed limits

for the combined SRs against three individual analyses. The contour lines show the exclusion
limits in terms of the ratio of the predicted cross-section σpred and the upper limit on that
cross-section σUL , r ≡ σpred/σUL, such that r = 1 corresponds to the line of exclusion at 95%
confidence. A total of 265 SRs were available with contributions to the T1 topology. For each
point in the model space, the number of available SRs was determined by identifying those
with efficiency maps whose parameter ranges included the model point. Once a set of available
SRs was identified, they were ordered by the expected upper-limit (UL) on the expected yield
(luminosity × cross-section × efficiency) at the model point for each SR. This selection and
ordering of the signal regions was propagated to the exclusivity matrix, and the WHDFS SR-
selection algorithm was applied. Figure 5 shows that the combined result pushes the exclusion
line beyond that of the best performing analysis available in the current SMODELS database
by approximately 150 GeV.

Looking deeper into the combined results, Figure 6(a) shows the distribution of starting
(i.e. lowest) SR-indices over the set of maximum-sensitivity combinations. This confirms the
statements made in Section 3 that the efficiency of the path-finding would be greatly increased
by sorting the exclusivity matrix by individual SR sensitivities. The histogram shows that, when
ordered, the optimum combination is typically seen early in the iteration process, allowing
many later path-sets to be vetoed when there is no prospect of their completions beating the
current best. The right-hand plot of Figure 6 shows the percentage prevalence of the number
of SRs in each best-sensitivity combination, with typically 6–10 of the available 265 SRs being
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Figure 6: Fractional distributions of (a) starting SR-index and (b) number of SRs
in each combination. Data is taken from the optimum SR combination found for
each model point in the T1 model space. As mentioned in Section 3 the nodes are
constructed from an ordered set of SRs that is optimised for each point in the model
space.

used. This small number is conveniently compatible with expensive statistical treatments such
as coherent profiling or marginalisation of systematic uncertainties across analyses, which
would be prohibitively expensive over the 265 (and ever-increasing) full set of SRs.

We also considered the T1tttt topology, a modification of the T1 model in which the gluino
decays exclusively into top quark–antiquark pairs ( g̃ → t t̄χ̃0

1 ). Figure 7 shows (a) the T1tttt
topology validation plot of expected and (b) observed results, again comparing the exclusion
ranges of the combined SRs to that of three individual analyses. The construction of the plot
follows the same methods used for Figure 5. Similarly, the dominant contribution to the T1tttt
combinations is the CMS-SUS-19-006 analysis [26] (seen in the blue dot-dashed exclusion
line). Again, a significant expansion of the 95% exclusion contour over the single-SR results is
seen, with the combination seen to smooth out the particular weakness of the most constrain-
ing analysis around mχ̃0

1
∼ 1.1 TeV.

4.2 pMSSM-19 reinterpretation

With the machinery in place to construct the exclusivity matrix from SRs based on a given
model-point, it was now possible to extend the analysis to increasingly complex models. The
19-parameter phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) was
chosen as a testing ground for reinterpretation, as a model with considerably more degrees of
freedom than typically studied in experimental publications. We used data points sourced from
the ATLAS 2015 pMSSM-19 scan paper [41], independently for that paper’s two scenarios of
bino-like and wino-like LSPs. These points were identified by ATLAS according to their model
viability compared to 8 TeV ATLAS data, and hence provide an a priori interesting set for re-
evaluation against 13 TeV LHC data.

p-values from 13 TeV LHC Run-2 data analyses were calculated from the first (randomly or-
dered) 27 000 model points in the bino and wino scenarios separately, run through the SMOD-
ELS analysis chain and discarding those points which lay outside the bounds of the SMODELS
efficiency maps, with ∼20 000 points surviving in each run.
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Figure 7: Validation plots comparing (a) the expected and (b) observed results of the
combination results with 3 single analyses available in the SMODELS results database
for the T1tttt topology. The lines show the exclusion limits in terms of r-value where
r = 1 is analogous to the 95% confidence level. The dashed-grey line indicates the
boundary of the efficiency maps.

LLRs were calculated using the SMODELS best-single-expected SR-selection process and
the best-expected-combination results. The resulting p-value distributions from the pMSSM-
19 bino-LSP reinterpretation are shown in Figure 8. The histograms show that in both the
(a) expected and (b) observed cases the combination procedure moves a significant fraction
of points from below the 95% exclusion into the excluded category, an increase in exclusion
fraction from approximately 35% to 70% of all points in the ATLAS set of bino-like models.

This mean shift from single to combined could be seen as confirmation of the exclusionary
power of the TACO approach, but before making any conclusions it is prudent to review ex-
actly how the model points are behaving on a bin-to-bin level. To this end, Figure 9 shows the
transition matrices (also known as stochastic matrices) for the pMSSM-19 bino dataset, show-
ing the probability of a model point “moving” between p-value bins depending on whether
the single-SR or combined-SR LLR construction method is used. This can either be framed as
the probability of points in a particular single-SR bin moving to each combined-SR bin, or the
“origin distribution” of the points ending up in a particular combined-SR p-value bin; both
versions are informative and are shown in the left- and right-hand subfigure columns respec-
tively, with expected and observed results in the subfigure rows. As the values in each matrix
are given as a probability P(row|column) the sum over the column values equals 1.

We start with the expected P(combined|single) result shown in the top-left of Figure 9 (a),
which shows how TACO combination changes the p-values of model points given their ini-
tial p-value as obtained from the single best-expected SR. The overall form of the transi-
tion pattern is logically consistent with the aim to use SR combinations to increase exclu-
sionary ability, thus it is expected that all transitions be located in the upper triangle of the
P(combined|single) matrix. Encouragingly, the transitions are dominated by movements into
the excluded p ∈ [0, 0.05) bin, not just from neighbouring “nearly excluded” single-SR bins,
but across the whole spectrum of single-SR p-values: this shows that even 40% of the least
excluded single-SR points can be excluded when combination of independent SRs is enabled.
Some subleading transition structures can be seen within the matrix, showing below-threshold
increases in exclusion which can potentially be brought above threshold by availability of more
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Figure 8: Results from the pMSSM-19 bino reinterpretation using the TACO combina-
tion method. p-values were calculated from a selection of 22 000 points taken from
the ATLAS pMSSM-19 data set. The blue and orange dashed lines show the mean
p-values for the single and combined results respectively. The histograms show that
in both the (a) expected and (b) observed cases a large fraction of points are moved
beyond the 95% exclusion limit by WHDFS SR-combination.

analyses. The expected P(single|combined) results in Figure 9 (b) are concentrated in the
lower triangle of the matrix, as expected, with similar evidence of structures in the transition
pattern.

Moving to the observed case in the lower plots of Figure 9, the results become more nu-
anced as the distribution of transition becomes dilute. The dominant transition into the ex-
clusion bin identified in plot (a) is replicated in the observed case shown in plot (c), as was
expected from the histogram results. The “negative transition” of model points in the direction
opposite to expectation is caused by over-fluctuations in the observed yields of the SRs used to
calculate the combined result. This may be a statistical feature intrinsic to combining multiple
SRs, although only present in a small minority of cases (≈ 5%). Looking back to Figure 8 (b)
it can be seen that the percentage of points in the exclusion bin jumps from ≈ 35% to over
90% when using the combined SRs. Thus, the negative transitions seen in plot (d) of Figure 9
are only representative of a small fraction of model points.

Figure 10 shows the pMSSM-19 wino-LSP reinterpretation results. When compared to the
bino results in Figure 8 we can see a similar overall shift to the exclusion bins, with the migra-
tion into the 95%-exclusion bin now from approximately 15% (single) to over 50% (combined)
in both the expected and observed cases. Notably the wino scenario has a larger fraction of
expected single-SR points at p-values > 0.3, meaning there is a larger population of points at
moderate and high-p able to be improved upon by SR combination.

Considering the transition matrices shown in Figure 11, we see similar trends to the bino
case. The P(combined|single) plots show the clear shift into the exclusion bin identified in the
1D histogram, and the observed plots again contain a degree of negative transitions, although
not enough for the overall population of higher-p bins to increase.

The expected transitions into the 95%-excluded p-value bin extend less far along the single-
SR p-value spectrum than in the bino-LSP case, with only 12% of the least-excluded single-SR
points (those in the single-SR p > 0.95 bin) expected to transition into the combined-SR
exclusion bin. In practice, seen in the observed-yield plots, over-fluctuations in SR yields led
to greater exclusion than expected for poorly constrained single-SR model points, with nearly
50% of the least excluded being eliminated in combination.
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Figure 9: Transition matrices showing the pMSSM-19 bino results. The matrices de-
scribe the probability of a model point moving from one p-value bin to another, by
use of the SR-combination scheme rather than the conservative single-best-SR strat-
egy adopted by current recasting tools. The subfigure columns split the transition
behaviours by the transition to combined p-value distributions given single-SR per-
formance, and the single-SR origins of each combined-SR p-value range. The top
and bottom subfigure rows show the expected and observed transitions respectively.

The filament structures in both the expected and observed sets of transition plots are more
prominent than in the wino case, allowing identification of their origin. One, the shallower
lower line in subfigure (b), can be identified with the single-SR peak structures at ∼ 0.95
and ∼0.65 for expected and observed respectively; the other is the main trend of migration,
showing that the dominant contribution to a given combined p-value bin comes from a single-
SR p-value bin 0.2 units higher. These transition structures again highlight potential for further
improvements in model-point exclusion fraction upon availability of more SRs.

As in the simplified-model interpretation of Section 4.1, we can examine the performance
of the WHDFS SR-combination algorithm in both the bino- and wino-LSP pMSSM-19 reinter-
pretations. The distributions of initial SR indices are shown in the upper row of Figure 12,
with the same bias toward low starting indices as in Figure 6.

The lower two plots of Figure 12 show the distribution of the number of SRs per combina-
tion for (c) the bino and (d) the wino reinterpretations. The rapid fall-off of this distribution
is a direct consequence of the hereditary condition which reduces the number of available SRs
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Figure 10: Results from the pMSSM-19 wino reinterpretation using the TACO com-
bination method. p-values were calculated from a selection of 20 000 points taken
from the pMSSM-19 data set. The blue and orange dashed lines show the mean p-
values for the single and combined results respectively. The histograms show that in
both the (a) expected and (b) observed cases a large fraction of points are moved
beyond the 95% exclusion limit by WHDFS SR-combination.

with each iteration of the path-building. Thus, there is a critical point beyond which the cu-
mulative drop-off of available SRs becomes statistically evident in the mean number of SRs.
For the pMSSM-19 bino and wino analyses, this critical point occurs around 11 SRs.

4.3 t-channel dark-matter

As a final illustration of the strength of our approach, we consider in this section one of the t-
channel dark matter models explored in Refs. [42,43]. Here, the Standard Model is extended
by one fermionic dark-matter candidate χ and one scalar mediator state Y , which interact
with the right-handed up-quark. The model’s Lagrangian reads

L= LSM +Lkin +
�

y
�

χuR

�

Y † +H.c.
�

, (11)

where LSM is the Standard-Model Lagrangian, Lkin contains kinetic and mass terms for all new
states, and y dictates the strength of the interaction between the mediator, the dark matter
and the up-quark. In such a model, the full new-physics signal contains three contributions,
namely

1. direct dark-matter production in association with one hard jet originating from initial-
state radiation (pp→ χχ j);

2. on-shell mediator-pair production followed by mediator decays into dark matter and jets
(pp→ Y Y ∗→ χ jχ j);

3. and the associated production of a mediator (that then decays into a χ j system) and a
dark-matter state (pp→ χY → χ(χ j)).

Such a signal can be searched for through analyses targetting the production of multi-
ple jets in association with missing transverse-energy, each component of the signal yielding
a different jet-multiplicity spectrum and different jet properties. We therefore focus on the
reinterpretation of the results of the ATLAS-SUSY-2015-06 [13], ATLAS-SUSY-2016-07 [14],
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Figure 11: Transition matrices showing the pMSSM-19 wino results. The matrices
describe the probability of a model point moving from one p-value bin to another, by
use of the SR-combination scheme rather than the conservative single-best-SR strat-
egy adopted by current recasting tools. The subfigure columns split the transition
behaviours by the transition to combined p-value distributions given single-SR per-
formance, and the single-SR origins of each combined-SR p-value range. The top
and bottom subfigure rows show the expected and observed transitions respectively.

CMS-SUS-16-033 [22] and CMS-SUS-19-006 [26] analyses to investigate which mediator and
dark-matter mass configurations are allowed by data, for a new-physics coupling set to y = 1.
All analyses considered are integrated in the MADANALYSIS 5 Public Analysis Database [44],
the recast codes and their detailed validation notes being available from Refs. [45–49] and on
the database webpage.2

To estimate the individual exclusion limits originating from each analysis, we used MAD-
GRAPH5_aMC@NLO v2.6.5 [29] to generate hard-scattering events at leading-order (LO) ac-
curacy. We grouped the three different contributions to the signal in two sets according to
the parton-level jet multiplicity. A first matrix-element describes the production of a pair of
dark-matter states with a single hard jet (pp → χχ j), and a second one concerns mediator
pair-production and decay (pp→ Y Y ∗→ χ jχ j). The associated production of a dark-matter
particle with a mediator is hence included in the first subprocess, as it yields the same final-
state (pp→ χY → χ(χ j)with the intermediate mediator Y being on-shell). These two matrix-
elements were convolved with the NNPDF 2.3 LO [30] set of parton distribution functions, and

2See http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase.
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Figure 12: Fractional distributions of starting-SR (a, b) and number of SRs (c, d) in
each combination. Data is taken from the optimum SR-combination found for each
model-point for both the pMSSM-19 bino and wino reinterpretations. As mentioned
in Section 3 the combinations are constructed from an differently ordered set of SRs
for each point in the model space, so the identity of the zeroth SR is free to change
from point to point.

we generated 200 000 signal events per model-point to limit statistical uncertainties. Hadro-
nisation and parton showering were handled with PYTHIA 8 v8.240 [50] and the simulation
of the CMS and ATLAS detector responses was approximated with DELPHES 3 [33], using the
custom detector-parameterisation provided with each recast code.

The results are displayed in the (mY , mχ) plane in Figure 13, for a mediator mass
mY ∈ [0.5,1.8] TeV and a dark-matter mass mχ ∈ [0.1,1] TeV. We separately show exclu-
sions extracted from single-jet events only (pp→ χχ j, upper left panel) and from dijet events
only (pp→ Y Y ∗ → χ jχ j, upper right panel), as well as the combined limits derived by con-
sidering the full new-physics signal (lower panel). In these three figures, the dashed lines rep-
resent the individual limits obtained by the reinterpretation of the results of the ATLAS-SUSY-
2015-06 (purple), ATLAS-SUSY-2016-07 (green), CMS-SUS-16-033 (blue) and CMS-SUS-19-
006 (orange) analyses, which respectively probe integrated luminosities of 3.2 fb−1, 36.1 fb−1,
35.9 fb−1, and 137 fb−1. These limits were obtained by conservatively considering the signal
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region of a given analysis giving rise to the best expected exclusion, for a given benchmark
point.
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Figure 13: 95% confidence level exclusions for the studied t-channel simplified
model of dark matter. We explore separately the two components of the new-
physics signal respectively arising from the processes pp → χχ j (upper left) and
pp → Y Y ∗ → χ jχ j (upper right), as well as their sum (lower panel). We display
exclusion limits originating from the individual recast analyses, i.e. for the ATLAS-
SUSY-2015-06 (dashed purple line), ATLAS-SUSY-2016-07 (dashed green line), CMS-
SUS-16-033 (dashed blue line) and CMS-SUS-19-006 (dashed orange line) analyses,
as well as those derived from their combination through the method proposed in this
paper (solid red line).

Unsurprisingly, the analysis making use of the largest amount of data, CMS-SUS-19-006,
leads to the strongest individual exclusion. Considering only the “single-jet” component of
the signal (Figure 13, upper left panel), mediator masses up to 1.5 TeV are excluded by the
CMS-SUS-19-006 analysis for small dark-matter masses mχ . By comparison, the ATLAS-SUSY-
2016-07 and CMS-SUS-16-033 analyses which analysed only one third of the Run 2 integrated
luminosity, are only sensitive to mediator masses smaller than 900 GeV to 1000 GeV for the
same mχ assumptions. Similarly, scenarios with more compressed spectra, which are intrin-
sically harder to probe as they correspond to the production of softer final-state objects, see
better coverage from the most recent analysis than from the two partial Run 2 analyses. By
contrast to all of these, the early- Run 2 ATLAS-SUSY-2015-06 analysis barely reaches exclusion
for new-physics masses at 500 GeV.

20

https://scipost.org
https://scipost.org/SciPostPhys.14.4.077


SciPost Phys. 14, 077 (2023)

Similar conclusions hold for the “dijet” component of the signal (Figure 13, upper right
panel). The most recent CMS-SUS-19-006 analysis is sensitive to both larger new-physics
masses and more compressed spectra than the partial Run 2 analyses — the latter are in this
case barely sensitive to any signal. The sensitivity is found to be significantly milder than for the
single-jet signal component, due to the phase-space suppression associated with the production
of two heavy mediators. Consequently, it turns out that for the range of masses to which Run 2
of the LHC is sensitive, the limits obtained for the full new-physics scenario (Figure 13, lower
panel) are almost identical to these obtained in the single-jet scenario. For light dark matter,
we observe an improvement of about 100 GeV; this demonstrates that even when it yields mild
effects, use of the full new-physics signal is always better than an approximate modelling that
does not include all relevant subprocesses.

Figure 13 also shows the impact of combining the four analyses, first for the individual
components of the new-physics signal (upper panel), and next after combining them (lower
panel). This was enabled by determining and using the overlaps between the various anal-
yses’ signal regions cf. Sections 2 and 3. Despite the fact that the analyses targeted similar
topologies (multijet and missing energy), some of their signal regions proved uncorrelated
enough for combination to be performed. This ilustrates the advantage of an objective and
quantified measure of acceptance overlap in place of an informal guesstimate of orthogonal-
ity. The allowed level of combination allows for an increase in parameter-space coverage, as
displayed by the solid red contours in Figure 13. We observe a substantial improvement of
the limits through WHDFS SR-combination, both for split-mass spectra (light dark-matter and
heavy mediator) and compressed spectra. For mχ ≈ 100 GeV, mediator masses ranging up to
1.9 TeV are reachable, whereas scenarios with a dark-matter mass mχ < 600GeV get excluded
for mY < 1.2TeV.

5 Conclusions and outlook

In this paper we have argued that maximising the BSM-search power of the LHC and other
colliders, in the light of Run 2’s significant list of null-result direct searches, necessitates com-
bination of analyses for sensitivity to more subtle dispersed-signal models than have so far
been considered.

But combination cannot be performed naively, due to overlaps in analyses’ event accep-
tance. Short of many-year, top-down coordination within experimental collaborations to for-
bid phase-space overlaps (with implicit prioritisation of some analyses over others) or public
lists of which collider-event numbers entered which signal regions across all published anal-
yses, a post hoc method is needed to estimate the extent of such overlaps. In this paper we
have presented the TACO method for this estimation, using the SMODELS and MADANALYSIS 5
analysis databases to guide simulated-event population of all recastable signal regions. A new
augmentation to the MADANALYSIS 5 analysis machinery enables the overlap coefficients be-
tween pairs of signal regions to then be computed via Poisson bootstrapping.

We have also shown how this information can be used in a scalable way to obtain the
expected optimally model-excluding, non-overlapping subset of signal regions for a given BSM
model or model-point. The combinatorically hard problem of evaluating all allowed subsets
of O(400) signal regions (at present, and guaranteed to grow) is mapped to construction of
directed acyclic graphs representing SR combinations. This construction is made tractable and
even rapid by use of a binarised form of the SR-overlap matrix to efficiently exclude sequences
of partially overlapping graphs, and by ordering SRs in the graph construction according to
their expected log likelihood-ratios. The expected best-sensitivity combination can then be
efficiently identified by a weighted hereditary depth-first search (WHDFS) algorithm, in direct
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analogy to a weighted longest-path problem.
Code for both the overlap estimation and SR-combination aspects of this paper is publicly

available from the https://gitlab.com/t-a-c-o/taco_code online repository.
Computation of such SR-subsets using the TACO WHDFS algorithm is a practical alternative

to direct use of the overlap matrix to compute a correlated χ2 or other measure across all signal
regions, given the latter approach’s high risk of numerical instabilities in covariance inversion,
and the huge computational cost of simultaneously likelihood-profiling over a full set of SRs.
This graph-based approach hence has potential not just as a route to composite likelihoods in
reinterpretation, but also as a dimension-reduction technique for visualising and interpreting
how dominant categories of analyses and signal-regions evolve through model spaces.

We have tested the TACO overlap-estimation and optimal-subset computations against sev-
eral BSM models of increasing complexity: a SUSY simplified model, ATLAS’ 8 TeV scan of
pMSSM-19 points re-evaluated on 13 TeV measurements, and a t-channel dark-matter model.
In all cases we see the algorithmic combination of SRs providing a significant increase in ex-
perimental limit-setting reach, typically O(100)GeV in the mass parameters of both the simple
and complex BSM models considered with currently available reinterpretation analyses. The
study of transition matrices for the SR combination indicates that the gains obtained are not
just marginal — moving already near-exclusion model points over the line — but holistic, with
evidence that combination of up to ten relatively weak signal regions can create a complemen-
tary strong limit.

This method hence demonstrates that post hoc combination of BSM direct-search data is
possible and can be made computationally efficient, and that pessimistic use of at most one
signal-region from each event topology is no longer necessary. As an efficient and empirical
computational method, TACO is scalable to hundreds of potentially overlapping analyses, be-
yond the capacity of manual and fallible assessment of uncorrelated analysis sets. It is, of
course, imperfect. The assumption of effective orthogonality of finitely overlapping ρi j < T
signal regions is key to efficient computation of SR subsets, but a hybrid of subset-identification
with correlated LLR evaluation on the reduced set is easily appended to the procedure de-
scribed here. Systematic uncertainties are also missing from the current treatment, but — at
least on the subset of uncertainties that can be evaluated by event reweighting — this is again
not an intractable problem. We hope that this method and toolkit will prove a useful target
for how collider BSM-combinations are designed and performed in the coming years, with
submission of analysis routines to the key reinterpretation-analysis frameworks and provision
of event-bootstrapping machinery beyond MADANALYSIS 5.
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A BSM-search overlap matrices
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Figure 14: The overlap matrix ρi j obtained from the TACO sampling procedure be-
tween all LHC BSM searches at 8 TeV commonly implemented in SMODELS and MAD-
ANALYSIS 5. Non-overlap between ATLAS and CMS analyses is manually imposed, as
the same proton-collisions could not be accepted by analyses from both experiments
regardless of the MC overlaps, and similarly overlaps between 8 and 13 TeV analyses
must be zero regardless of final-state acceptances. The set of SR pairs considered suf-
ficiently independent in the analyses of Sections 3 and 4, with T < 0.01, are shown
in white.
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Figure 15: The overlap matrix ρi j obtained from the TACO sampling procedure be-
tween all LHC BSM searches at 13 TeV commonly implemented in SMODELS and
MADANALYSIS 5. Non-overlap between ATLAS and CMS analyses is manually im-
posed, as the same proton-collisions could not be accepted by analyses from both
experiments regardless of the MC overlaps, and similarly overlaps between 8 and
13 TeV analyses must be zero regardless of final-state acceptances. The set of SR
pairs considered sufficiently independent in the analyses of Sections 3 and 4, with
T < 0.01, are shown in white.
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B HDFS algorithm

The pseudocode shown in Algorithms 1 and 2 are written in a Pythonic syntax as the code
makes use of the generator – donoted by the term Gen() – functionality which allows for
efficient iteration ordering. Aspects of the code are heavily influenced by the “all simple paths”
method from the Python NETWORKX package [39].

Algorithm 1 Hereditary Depth-First Search (HDFS)

Require: source = i
Target = n
Cutoff = n− 1
Visited = [i]
Stack = [Gen(Ai)]
S = [Ai]
while Stack is not empty do

Children = last element of stack
c = Next element in Children or None if Empty
if c is None then

Drop last element of Stack
Drop last element of S
Drop last element of Visited

else if length(Visited) < cutoff then
if c = Target then

Yield: Visited + [c]
end if
Visited += [c]
if target not in Visited then

Sc = Ac ∩ Sc−1
Stack += [Gen(j: for index in Ac if index ∈ Sc)]

else if then
Drop last element of Visited

end if
else if length(Visited) = cutoff then

Drop last element of Stack
Drop last element of S
Drop last element of Visited
Yield: Visited + [Target]

end if
end while
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C WHDFS algorithm

The pseudocode shown in Algorithm 2 is a modification of Algorithm 1. WHDFS uses the edge
weights to calculate an upper limit of total weight available at each step in the path. This mod-
ification eliminated the need to explore all allowed paths instead limiting the combinations to
those that have the greatest potential.

Algorithm 2 Weighted Hereditary Depth-First Search (WHDFS)

Require: source = i
Require: maximum weight

Best Path = []
Target = n
Cutoff = n− 1
Visited = [i]
Stack = [Gen(Ai)]
S = [Ai]
while Stack is not empty do

Children = last element of stack
c = Next element in Children or None if Empty
if c is None then

Drop last element of Stack
Drop last element of S
Drop last element of Visited

else if length(Visited) < cutoff then
if Target in Visited then

continue
end if
Sc = Ac ∩ Sc−1
Visited += [c]
Current Weight = weight function (Visited)
Available Weight = weight function (Sc)
if c = Target & Current Weight > Max weight then

Max weight = Current Weight
Best Path = Visited

end if
if (Current Weight + Remaining Weight) > Max weight then

Stack += [Gen(j: for index in Ac if index ∈ Sc)]
else if then

Drop last element of Visited
end if

else if length(Visited) = cutoff then
Drop last element of Stack
Drop last element of S
Drop last element of Visited

end if
end while
return Best Path
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