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Abstract

This thesis investigates the evolution of structured populations involving multiplayer

evolutionary games, with a particular focus on realistic, coordinated movement be-

haviours. Building on recent advancements in evolutionary graph theory, most

notably the Broom-Rychtár̂ framework, which extends the classical evolutionary

models to incorporate more realistic features such as multiplayer interactions, this

thesis addresses a gap in the existing mathematical literature concerning the mod-

elling of coordinated movement within evolutionary settings. Existing models have

primarily focused on independent movement, and more recently, history-dependent

movement. Although the theory underlying the framework has been explored in

various directions, several movement mechanisms have been developed that char-

acterise coordinated movement, for example, herding and dispersal. By extending

existing parameters within the framework, this thesis develops a general methodol-

ogy for embedding a wide range of considered movement processes into evolutionary

settings on arbitrary network structures. We demonstrate that certain levels of ag-

gregation and dispersal can benefit specific types of individuals depending on the

considered game, for example, public goods. Throughout this thesis, we consider

key evolutionary measures, including fixation probabilities, predictors such as mean

group size and temperature and aggregation metrics, and show that their influence

is determined by the nature of both the movement process and game.

xix
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Chapter 1

Introduction

Despite being a well-established theory, the field of evolution has remained at the

forefront of scientific research due to the very nature of its description. Evolution

describes the origin of the diversity of life through the mechanism of natural selec-

tion. In 1859, Charles Darwin published the book On the Origin of Species, which

provided the first accurate exposition on the subject. Natural selection is the process

by which individuals exhibiting advantageous characteristics are more likely to sur-

vive and, therefore, reproduce, passing their favourable genetics to their offspring.

This is because an individual with a survival advantage is more likely to reproduce

than one without such traits. Similarly, an individual who exhibits a disadvanta-

geous trait is less likely to survive and reproduce; consequently, its genetic code is

likely to disappear over time. In simple terms, natural selection is the non-random

differential survival of genes within gene pools. Genetic mutation also plays a signif-

icant role in the evolutionary process. Through mutation, the genetic code passed to

offspring may change. When mutated genes provide an advantage or disadvantage

to the host, then they are subject to the forces of natural selection. However, if the

mutated genes are neither beneficial nor detrimental to the host, they are considered

neutral. These neutral genes may become incorporated into the population through

neutral drift. Evolution is a multifaceted theory and can be studied through various

approaches, particularly through evolutionary game theory.

Evolutionary game theory, as it is broadly recognised today, was formalised by

John Maynard Smith, particularly through his influential book Evolution and the

Theory of Games (1982). Evolutionary game theory is a versatile mathematical

modelling tool that has become increasingly popular for studying the evolution of
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populations. It has cross-disciplinary influences in Economics and Biology, appealing

to practitioners in both fields. This is because evolutionary game theory not only

serves as a theoretical foundation for modelling population evolution but also offers

a diverse framework with the potential to explore and explain a vast range of natural

phenomena (Broom & Rychtar 2013).

The purpose of this section is to first explain the foundation on which evolution-

ary game theory is built: classical game theory. We then highlight key developments

in this area and demonstrate the connection between game theory and evolution,

which led to the emergence of evolutionary game theory. Subsequently, we discuss

significant, established work in the field, such as the Moran Process, Evolutionary

graph theory and the Broom-Rychtář framework before outlining the contributions

presented in this thesis.

1.1 Classical Game Theory

Game theory is a mathematical framework used to analyse interactions between in-

dividuals involving strategic decisions. Its inception can be traced to the publication

of John von Neumann and Oskar Morgenstern’s book Game Theory and Economic

Behaviour, (von Neumann & Morgenstern 1944), and it has since been widely ap-

plied across various fields. This section begins by defining a game, highlighting

important developments before applying them to population evolution.

A game is primarily considered as a mathematical model that describes a sit-

uation where a finite number of entities, or players, interact with each other, with

each player acting in their own self-interest. At each stage of the game, every player

must perform an action. The actions that players choose to take against one other

are defined by their strategies. A strategy catalogues all of the actions a player can

take in every scenario of the game. While a pure strategy specifies a single action

for all possible scenarios, a mixed strategy is a combination of pure strategies, where

each pure strategy is played with a certain probability. The motivation for a player

to adopt a particular strategy is represented by the payoff they receive from playing

that strategy. In symmetric games, players have the same set of strategies, and

for a two player symmetric game, with N strategies, S1, ..., SN , the game can be
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represented by a payoff matrix given by

S1 S2 · · · SN

S1 E(1, 1) E(1, 2) · · · E(1, N)

S2 E(2, 1) E(2, 2) · · · E(2, N)
...

...
...

. . .
...

SN E(N, 1) E(N, 2) · · · E(N,N)

(1.1)

where each entry E(i, j) is the payoff to a player using strategy Si against their

opponent using strategy Sj . For simplicity, consider a symmetric two-player game

with the payoff matrix given by

A B

A a b

B c d

(1.2)

The matrix entries a, b, c, d represent the payoffs for the individuals. For example,

both players receive the payoff a if they both use strategy A. Games are analysed in

terms of the best responses. A best response is a strategy that provides the highest

payoff compared to all other available strategies. If both players adopt their best

response strategies, the game reaches a Nash equilibrium, (Nash 1951) a situation

where neither individual can improve their payoff by switching to another strategy.

This concept represents a significant development in game theory, providing a robust

method for determining optimal strategies within this framework.

1.2 Evolutionary Game Theory

One of the first indirect uses of game theory in an evolutionary setting was by Fisher

(1930) who mathematically developed Darwin’s argument regarding why natural se-

lection should act to equalise the sex ratio (1874). This was later explicitly explained

by Hamilton (1967), who published one of the first works on the subject. While

classical game theory attempts to describe the Nash equilibria in isolated social

interactions, typically between two individuals, evolutionary game theory explains

changes in macro-behavioural regularities within a given population by determining

the evolutionary stability points, where the composition of the population remains

constant over time.
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The strategy that an individual adopts reflects their phenotype, which is genet-

ically determined. The payoff an individual receives from interacting with others

contributes to their fitness. Fitness measures the likelihood of an individual repro-

ducing and propagating their genetic code to their offspring and, thus, to future

generations. During reproduction, the forces of natural selection come into play,

as individuals with a higher fitness will reproduce more frequently, leading to an

increased proportion of such individuals within the population. Conversely, the

frequency of individuals with lower fitness decreases.

However, mutations within the population may occur, which can be interpreted

as an offspring adopting a different strategy from their parent. Evolutionary pro-

cesses have generally been studied in unstructured, infinite populations, where each

individual is equally likely to encounter others. Traditionally, this research has con-

sisted of two approaches: static and dynamic analyses.

1.2.1 Evolutionarily Stable Strategies (ESS)

The term Evolutionarily Stable Strategy (ESS) was coined by John Maynard Smith

and George Price (1973) and is arguably one of the most central concepts in Evolu-

tionary game theory. ESSs are commonly used to analyse evolutionary games, where

a strategy qualifies as an ESS if it is adopted by all members of the population and

can resist invasion by any alternative strategy. The mathematical definition of an

ESS considers the population at a certain point in time when a mutant strategy is

introduced and adopted by a small subset of individuals. The ESS provides a condi-

tion under which the mutant strategy is not favoured by natural selection, meaning

the fitness of the mutant is lower than that of the resident strategy. Consequently,

over time, the mutants die out.

Assuming an infinite population where individuals are equally likely to interact

with each other, then the condition for an ESS is given as follows. If 1 − ϵ of the

population plays the resident strategy i, and a small ϵ proportion of the population

adopts a mutant strategy j (where j ̸= i), then strategy i is an ESS for the population

if

(1− ϵ)E(i, i) + ϵE(i, j) > (1− ϵ)E(j, i) + ϵE(j, j) (1.3)

where the fitness of a resident using strategy i is given by (1 − ϵ)E(i, i) + ϵE(i, j)

and the fitness of a mutant using strategy j is given by (1− ϵ)E(j, i) + ϵE(j, j).
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Alternatively, one can derive a pair of conditions from the equation above by

letting ϵ → 0. A strategy i can be classified as an ESS if and only if for all j ̸= i.

we have:

E(i, i) > E(i, j) or E(i, i) = E(j, i), and E(i, j) > E(j, j). (1.4)

The first condition states that a mutant must not perform better within the popu-

lation compared to a resident. This is called the equilibrium condition. The second

condition states that if a mutant performs as well as a resident when playing against

another resident, then the mutant must perform worse than a resident when playing

against a mutant. This is known as the stability condition.

1.2.2 The Replicator equation

Whereas the static approach analyses a population playing a given strategy against

mutants to assess stability, the dynamic approach examines how the composition

of the population changes over time. This involves defining a reproduction stage

within the evolutionary structure, which can be described by an equation, specifically

the replicator equation (Taylor & Jonker 1978, Hofbauer et al. 1979, Hofbauer &

Sigmund 1998).
d

dt
pi = pi(Fi − γ). (1.5)

Here, pi represents the frequency of individuals playing strategy i, Fi denotes the

fitness of an individual who plays strategy i and γ is the average fitness of the

population. Evidently, if the fitness of an individual using strategy i is greater than

the average fitness of the population, the frequency of such individuals will increase.

Conversely, if their fitness is lower than the average fitness of the population, their

frequency will decrease. Hence, the replicator equation describes a deterministic

dynamic process in which advantageous strategies gradually spread throughout the

population. It is important to note, however, that the replicator dynamics do not

consider mutation, therefore, any strategy not originally present in the population

will never appear throughout the evolutionary process.

We can determine the evolutionary equilibria for the two strategy game from

(1.2) by solving the equation (1.5). Assume that the frequency of individuals playing

strategy A is z. The fitness of each type of individual is given by
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FA = za+ (1− z)b and FB = zc+ (1− z)d.

We have that the average fitness of the population is

γ = zFA + (1− z)FB

By substituting these fitnesses into equation (1.5), the change in the frequency of

type A individuals is given by

d

dt
pA = pA(FA − γ)

= z(FA − zFA − (1− z)FB)

= z(1− z)(FA − FB)

= z(1− z)(z(a− b− c+ d) + b− d).

In order to determine the equilibrium values z∗, we must solve d
dtpA = 0. Evidently,

this gives the equilibrium values

z∗ = 0, z∗ = 1 and z∗ =
d− b

a− b− c+ d
.

The stability of the equilibrium points depends upon the values of the payoffs. We

have the following cases:

• z∗ = 1 stable: This corresponds to a > c and b > d. i.e. strategy A is a strict

Nash Equilibrium. Therefore, regardless of the starting frequency z of type

A individuals, the population eventually reaches an equilibrium state where

there are only type A individuals.

• z∗ = 0 stable: in this case we have that c > a and d > b, which is the exact

opposite of the previous case i.e. strategy B is a strict Nash Equilibrium.

• z∗ = 0 and z∗ = 1 are both stable: in this case, a > c and d > b. This means

that both A and B are the best responses to themselves. The equilibrium

point the population converges to depends upon the starting frequency z. If

z > d−b
a−b−c+d , the population converges to z∗ = 1, and z∗ = 0 otherwise.

• z∗ = d−b
a−b−c+d is stable: in this case a < c and d < b, showing that strategy A

is the best response to strategy B and vice versa. As a result, both strategies
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can coexist and eventually stabilise at the equilibrium state.

1.3 Evolutionary processes in a finite population

The ESS and the replicator equation are determinstic models, providing valuable

insights into how effective particular strategies are at resisting invasion and deter-

mining the stability points of a given population. However, these concepts assume

that the population in question is infinite, which is unrealistic since biological pop-

ulations are finite. Capturing natural phenomena such as genetic drift and neutral

drift is important and requires a different set of evolutionary dynamics, incorporat-

ing a stochastic process.

One of the earliest stochastic models in population genetics, which examines

the changes in allele frequencies within a population’s gene pool, is the Wright-

Fisher model (Fisher 1930, Wright 1930). This classical process originally modelled

neutral populations, but has since been extended in several directions such as the

implementation of multiple alleles and selection (Edwards 2000, Waxman 2011) and

acts as an important framework for inferring selection on genetic data (Paris et al.

2019). For large finite populations, the Wright-Fisher model can be approximated

by a diffusion process, which was first done by Kimura (1964) and Zheng et al.

(2011) extensively consider diffusion approximation in the context of evolutionary

games.

Another stochastic model, the Moran process (Moran 1958, 1962), was developed

to investigate evolution in finite, homogeneous populations, consisting of two types

of individuals where each individual is equally likely to interact with every other in-

dividual. This framework was later extended to consider evolutionary games (Nowak

et al. 2004, Taylor et al. 2004).

Consider an N -sized population with k type A individuals and N − k type B

individuals. Type A individuals have fitness r, while type B individuals have fitness

1. Unlike the previously considered evolutionary setting governed by the repli-

cator equation, the fitness of individuals within the Moran process is frequency-

independent, i.e. it does not depend on the population composition. The stochastic

dynamics incorporated into the Moran process ensure that the population always

remains at size N . At each time step, an individual is selected to reproduce a copy

of itself with probability proportional to its fitness. Its offspring then replaces a
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Initial population Selection for reproduction

Selection for replacementEnd population

Figure 1.1: The Moran process (Moran 1958, 1962) describes the stochastic evolution of a
finite population. At each time step, an individual is selected to reproduce with probability
proportional to its fitness. The offspring then randomly replaces another individual (excluding
its parent) ensuring the population size remains constant.

random member of the population other than its parent. The probability that a

type A or B individual is selected for reproduction is given by

bA =
r

kr + (N − k)
, bB =

1

kr + (N − k)
,

The offspring then replaces another random member of the population (excluding

its parent) with probability 1
N−1 (as seen in Fig.1.1).

It should be noted that the order of the birth and death events matters, as

the parent of the offspring is excluded from being replaced. The Moran process

follows birth-death dynamic with selection occurring at birth (BD-B). Similar to the

replicator equation, we assume that there are no mutations during the evolutionary

process. However, this does not mean that mutation is entirely disregarded. The

evolutionary system is set up by assuming a population of native type B individuals,

into which a single type A individual is introduced via mutation. As the population is

of finite size, one of the types will eventually fixate and replace the other. Naturally,

one may ask ”What is the probability of the type Amutant fixating the population?”.

More precisely, this is referred to as the fixation probability of a type A individual,

denoted ρA.

To calculate ρA, we must consider the transition probabilities, which are used to
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determine the fixation probability. The transition probabilities Pk,m describe the

population transitioning from a state where there are k type A individuals to a

state where there are m type A individuals. Since there is only one birth and one

replacement in each time step, m can only be equal to k + 1, k − 1 or k.

Pk,m =


kr

kr+N−k
N−k
N , m = k + 1

N−k
kr+N−k

k
N , m = k − 1

1− kr
kr+N−k

N−k
N − N−k

kr+N−k
k
N , m = k

(1.6)

The standard expression of the fixation probability is provided in (Karlin & Taylor

1975).

ρA =
1

1 +
N−1∑
j=1

j∏
k=1

Pk,k−1

Pk,k+1

(1.7)

Substituting the transition probabilities gives

ρA =


1−( 1

r
)

1−( 1
r
)N

, r ̸= 1

1
N , r = 1

(1.8)

This solution is known as the Moran probability and serves as the standard bench-

mark for comparing fixation probabilities in other complex evolutionary models. The

phenomenon of neutral drift is captured by this solution. Consider r = 1, which rep-

resents a neutral mutation that provides neither a benefit nor a disadvantage to the

type A individual compared to the type B residents. In this case, ρA = 1
N . Evi-

dently, selection favours neither type of individual, as a type A mutant has an equal

chance of fixating within the population as a type B individual. When r < 1, selec-

tion favours the type B residents, as the fixation probability is less than that of a

neutral individual (i.e., ρA < 1
N ). Conversely, when r > 1, selection favours the type

A mutant, as ρA > 1
N . It is important to note that even when r ̸= 1, the fixation or

extinction of a mutant is not guaranteed. This is because even the fittest or weakest

member of the population may not be necessarily be selected for reproduction or

replacement.
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1.3.1 Evolutionary games in finite populations

The Moran process was later extended by Taylor et al.(2004) to incorporate frequency-

dependent fitness, where individuals play a game whose payoff matrix is shown in

(1.2). In this extension, the fitness of individuals (previously constant in the Moran

process) becomes variable due to the inclusion of evolutionary games. With these

fitnesses, the transition probabilities (1.6) must be recalculated in this new context

and substituted into (1.7). This yields a new rule that indicates when a type A indi-

vidual is favoured by selection. Assume there are k type A individuals, the fitnesses

are given by

FA(n) = 1− w + w

(
a(k − 1) + (N − k)b

N − 1

)
. (1.9)

FB(n) = 1− w + w

(
ck + (N − k − 1)d

N − 1

)
. (1.10)

The terms inside the brackets represent the average payoff to the individual, as

all members of the population are equally likely to interact with each other. For

example, for a type A individual, the probability they meet another type A individual

is k−1
N−1 , which gives a payoff of a. The probability they meet a type B individual

is N−k
N−1 , which gives a payoff of b. The background payoff gained from activities

unrelated to the games is 1, and the intensity of selection is governed by 0 ≤ w ≤ 1.

A small w presents weak selection, meaning that the game has a minimal effect on

fitness compared to the background payoff. At w = 1, the fitness is equal to the

payoff in the game. Therefore, selection with respect to the game is strong, as it

fully determines the fitness of the individuals. With the fitnesses calculated, we can

determine the transition probabilities (1.6) and substitute them into (1.7). For small

w ≈ 0,
pi,i−1

pi,i+1
≈ 1 + w

(
ak + (N − k)b

N − 1
− ck + (N − k − 1)d

N − 1

)
(1.11)

Selection favours type A individuals if ρA > 1
N . By substituting (1.11) into (1.7)

and applying approximation methods, we have

a(N − 2) + b(2N − 1) > c(N + 1) + d(2N − 4)

Assuming a large population, we need only consider the terms multiplied by N ,

which gives

b < d and a+ 2b < c+ 2d
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where the second equation can be simplified to d−b
a−c+d−b < 1

3 , which Taylor et al.

(2004) referred to as the rule of 1/3. This states that selection favours a type A

mutant fixating if the internal equilibrium point is less than 1
3 . Note that it was

previously shown in section 1.2.2 that d−b
a−c+d−b is an internal equilibrium using the

replicator equation.

1.4 Evolutionary Graph Theory

Traditionally, developments in evolutionary game theory have often relied on the un-

realistic assumption that populations are homogeneous, that is, all members of the

population are equally likely to interact with one another. However, in reality, pop-

ulations often exhibit heterogeneous structures, influencing the relationships among

members of the population, as individuals are more likely to interact with neigh-

bours in their local vicinity than with those who are distant. Recently, the process

of modelling the evolution of structured populations using a graph, where individu-

als exclusively interact with their neighbours, was formalised as Evolutionary graph

theory (Lieberman et al. 2005).

(a)

A

A

B

B

A
A

A

A

B

B

B

B

(b)

Figure 1.2: These two figures represent a population composed of type A and B individuals.
Figure (a) shows an unstructured population where all individuals can interact with one an-
other whereas figure (b) represents a structured population. The population is represented by
a graph where the vertices represent individuals such that individuals can only interact with
each other if they are connected.

The population structure is defined as follows. The matrix W = [wij ] determines

the structure of the graph. Individuals are labelled i = 1, 2, ..., N and are situated on

the vertices of the graph. The probability that the offspring of individual i replaces

individual j is given by wij > 0. If wij = 0 and wji = 0, then the vertices i and

j are not connected; therefore, the individuals i and j cannot interact with each

other. The BD-B dynamics used in the Moran process were adapted to be used in

this evolutionary framework such that at each time step, an individual i is selected
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to reproduce with probability proportional to its fitness (as in the Moran process)

but its offspring replaces individual j and occupies its vertex with probability wij .

The temperature measures how likely individuals are to be replaced and is given by

Tij =
N∑
i=1

wij (1.12)

Similar to the Moran process, it is possible to determine the fixation probability of

a type A mutant within a structured population of type B residents. In some cases,

an explicit solution can be derived such as in Broom & Rychtar (2008).

Lieberman et al. (2005) were able to generalise the Moran process to certain

graph structures with specific properties by establishing the isothermal theorem,

which states the fixation probability of a type A mutant, ρA, equals the Moran

probability (1.8) if and only if the underlying graph is isothermal. A graph is said to

be isothermal if every individual has the same temperature. This significant result

allows us to classify structures that hold no influence on the evolutionary process.

This result was further generalised in Lieberman et al. (2005) to all graph structures

whose evolutionary behaviour matches that of the Moran process by the circulation

theorem. The circulation theorem states that if a graph is a circulation, that is, the

sum of the incoming weights is equal to the sum of the outgoing weights at each

vertex, then ρA is equal to the Moran probability (1.8).

Lieberman et al. (2005) also provided examples of graphs that can act as either

amplifiers or suppressors of selection. For example, consider the burst graph, where

a central node has edges directed outward to other nodes. Regardless of the mutant’s

fitness, the fixation probability is always equal to 1
N , as the individual occupying

the central node will always fixate the population. In contrast, the super-star graph

has the property that for any advantageous mutant (r > 1), the fixation probability

of the mutant tends to one as N → ∞.

The significant advantage of evolutionary graph theory lies in its ability to con-

sider a wide range of population structures (Antal & Scheuring 2006, Broom &

Rychtar 2008, Shakarian et al. 2013, Maciejewski 2014, Hindersin & Traulsen 2014,

Cuesta et al. 2017). Both population structure and evolutionary dynamics play in-

fluential roles in population evolution (Santos & Pacheco 2006, Broom & Rychtar

2008, Voorhees 2013, Tkadlec et al. 2020, Shakarian et al. 2012). In fact, heteroge-

neous structures are pivotal in facilitating the formation of clusters of cooperators

12



(Li et al. 2013).

Beyond evolutionary graph theory, structured population modelling has been

widely applied in metapopulation and epidemic modelling. In metapopulations,

communities naturally form due to migration and habitat segmentation (Hanski

1998). Typically, these models distinguish between within-community reproduction

and between-community migration, which are referred as metapopulation dynamics.

Yagoobi et al. (2023) recently provided a systematic classification of these dynam-

ics. Further extensions have incorporated group-level events such as group splitting

(Traulsen et al. 2008) and group reproduction (Akdeniz & van Veelen 2020), which

entail the replacement of entire groups by other groups or by a single individual.

Epidemic modelling also makes extensive use of graphs to investigate the effects

of network topology on the spread of infection and disease. The original models were

developed by Kermack & McKendrick (1927, 1932, 1933), which act as a foundation

for modern epidemiology. Subsequent work has extended this area to consider net-

work structure Keeling & Eames (2005). More recent work on epidemic modelling

has been explored on heterogeneous graphs (Ball & House 2017).

1.4.1 Modelling evolutionary games on graphs

The development of evolutionary graph theory enables the consideration of frequency-

dependent fitness on heterogeneous structures (Santos & Pacheco 2006, Hadjichrysan-

thou et al. 2011, Ohtsuki et al. 2006). For example, Broom et al. (2010) applied the

classical Hawk-Dove game on the three non-directed graphs: the star, the circle and

the complete graph. They generated theoretical formuale for the exact solutions of

fixation probabilities and also for the speed of the evolutionary processes, namely

the fixation time, which was also studied in Frean et al. (2013).

Also, Ohtsuki et al. (2006) considered a two-player Public Goods game where

players are required to cooperate to reach the optimal outcome. The payoff matrix

is defined as

A B

A b− c −c

B b 0

(1.13)

where the type A individuals are cooperators because they are willing to endure a

cost c to provide a public good to the individual they are interacting with. Type

B individuals are defectors because they never pay a cost and, therefore, do not
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provide a public good to the individual they interact with. However, defectors will

receive a public good if the individual they interact with is a cooperator. Consider a

regular graph with k-degree, the payoff to a cooperator who is connected to i other

cooperators is bi − ck. The payoff to a defector connected to j cooperators is bj.

Therefore, the fitnesses of cooperators and defectors is given by

FA = 1− w + w(bi− ck), FB = 1− w + wbj (1.14)

Under weak selection i.e. small w, Ohtsuki et al. (2006) demonstrated that for a

large population, the fixation probability of a mutant cooperator is greater than

1/N and of a mutant defector is less than 1/N if

b

c
> k, (1.15)

where k is the degree of the graph. This tells us that the more limited the connections

on the graph, the easier it is for cooperation to spread, therefore, the complete graph

is the most difficult regular graph for the spread of cooperation.

1.5 Multiplayer Games

The previous models we considered primarily focused on pairwise games, as many

real-life conflicts often involve two participants, and valuable insights can be gained

from analysing them. However, interactions in real life often involve several individ-

uals, and this emphasis on pairwise games has created a notable gap in the study

of multiplayer games within biological populations. The significant challenge lies in

the mathematical framework and analysis required for multiplayer games, which are

significantly more complex, making it difficult to derive generalisable results. For

example, in species such as killer whales, cooperative behaviours such as collective

hunting require coordination among all members of the group. However, not all

whales may cooperate, and some may act selfishly, and hunt alone, which can affect

the group’s success. These types of interactions, where multiple individuals are in-

volved, need to be captured by the mathematical theory to more accurately model

real-life dynamics.

One of the earliest contributions to evolutionary multiplayer games was made

by Palm (1984). However, the theoretical foundations of evolutionary multiplayer
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games were substantially developed by Broom et al. (1997) who considered mul-

tiplayer matrix games specifically, symmetric games, meaning that there was no

significance to the ordering of the players within the group interaction. Thus an

individual’s payoff depends only upon its strategy and the strategies of the other

individuals. However, in assymetric games, the order of the players and their strate-

gies affects the payoff. Gokhale & Traulsen (2010) demonstrated that if groups

are wholly randomly selected from the population, then there is no real difference

between symmetric and non-symmetric games and this was the assumption made

in Broom et al. (1997), who considered an infinite population, where groups of m

players were randomly selected to play a game (see also Bukowski & Miekisz (2004)

and Gokhale & Traulsen (2014)). Under these assumptions, the ESS for an m-player

game can be stated as follows: a strategy p in an m-player game is called an evolu-

tionarily stable strategy against a strategy q if there is an ϵq ∈ (0, 1] such that for

all ϵ ∈ (0, ϵq]

E [p; (1− ϵ)δp + ϵδq] > E [q; (1− ϵ)δp + ϵδq] (1.16)

where

E [x; (1− ϵ)δy + ϵδz] =
m−1∑
l=0

(
m− 1

l

)
(1− ϵ)lϵm−1−lE[x;yl, zm−1−l]. (1.17)

We say that p is an ESS for the game if for every q ̸= p, there is ϵq > 0 such

that (1.16) is satisfied for all ϵ ∈ (0, ϵq]. (1.17) is derived under the assumption that

groups within the infinite population are formed randomly, therefore the probability

of a group with two strategies forming can be described by a binomial distribu-

tion. Gokhale & Traulsen (2010) extended this analysis to finite populations under

the Moran process, where individuals participated in two-strategy, m-player matrix

games. They were able to derive rules within finite populations on how the internal

dynamics proceed. Also, Lessard (2011) considered the extension of the law of 1/3

from two-player to m-player games.

Similarly, as in (1.4), we have that for an m-player matrix game,the mixed strat-

egy p is evolutionarily stable against q if and only if there is a j ∈ {0, 1, . . . ,m− 1}

such that

E[p;pm−1−j ,qj ] > E[q;pm−1−j ,qj ], (1.18)

E[p;pm−1−j ,qi] = E[q;pm−1−i,qi] for all i < j, (1.19)
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A strategy p is called an ESS at level J if, for every q ̸= p, the conditions (1.18)

and (1.19) are satisfied for some j ≤ J and there is at least one q ̸= p for which the

conditions are met for j = J precisely.

In recent years, m-player multiplayer games have been extensively explored in the

mathematical literature. For instance, the evolution of cooperation in such games

was examined by Platkowski & Bujnowski (2009) and Bach et al. (2006). Addi-

tionally, Souza et al. (2009) investigated m-player snowdrift games and extended

the classical Hawk-Dove game to an m-player setting. From a dynamical perspec-

tive, multiplayer games have also been widely studied (Bukowski & Miekisz 2004,

Platkowski 2004, Miekisz 2008).

Notation Description

N Size of the population

I1, . . . , IN List of individuals within population

M Number of available places

P1, . . . , PM List of places

X(t) Matrix representing population distribution at time t

Xn,m(t) Represents In’s presence at place Pm at time t

x The current distribution of X(t)

xn,m Represents In’s presence at place Pm under the current distribution

x<t The entire history of the evolutionary system

pn,m,t(x<t) The probability of In being at place Pm at time t given x<t

Pn In’s home range or territory

R(n,x, t,x<t) Reward function

Rn Mean reward

Table 1.1: Notation used in the Broom-Rychtar framework.

1.6 The Broom-Rychtár̂ Framework

A significant limitation of evolutionary graph theory is its pairwise modelling of

interactions, which fails to account for more realistic arbitrary multilayer game sce-

narios, thus lacking adaptability and realism. To address this limitation, recent re-

search has developed a comprehensive modelling approach that enables the study of

structured population evolution involving multiplayer contests, which we denote as

the Broom-Rychtár̂ framework (Broom & Rychtar 2012, Broom et al. 2015, Broom,

Pattni & Rychtar 2019, Broom et al. 2021). The motivation behind the development

of the Broom-Rychtár̂ framework was to model arbitrary-sized group interactions in
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overlapping territories observed in real life scenarios, such as in African wild dogs

(Ginsberg & Macdonald 1990), roadrunners (Kelley et al. 2011), cheetahs (Marker

et al. 2008), lynx (Schmidt et al. 1997) and chimpanzees (Herbinger et al. 2001). The

framework assumes that there are N individuals distributed across M places, and

group interactions occur whenever two or more individuals are present in the same

place at the same time. The original paper by Broom & Rychtar (2012) focused

primarily on defining the basic setup of the framework and developed examples of

models, while the evolutionary dynamics were not implemented until Broom et al.

Broom et al.. This robust framework serves as the foundation for the work presented

in this thesis, and we first outline the framework in its full generality.

1.6.1 Structure

The population consists of N individuals, I1, ..., IN who move stochastically and

interact across M distinct places, P1, ..., PM . The distribution of individuals across

the places is mathematically represented by the N x M binary matrix X(t) =

(Xn,m(t)) which gives the exact position of every individual within the population.

Xn.m(t) =


1, if the individual In is in place Pm at time t,

0, otherwise.

(1.20)

The nth row of X represents individual In, and the mth column represents place Pm.

The probability of X(t) taking a particular value x can depend on the entire history

of the evolutionary system, x<t = (x1, ...,xt−1) which is expressed as a conditional

distribution

P (X(t) = x)(x<t) = P (X(t) = x)|X(1) = x1, ...,X(t− 1) = xt−1). (1.21)

Given that, at any time t, an individual must be at exactly one place (as the places

are distinct), every evolutionary system constructed under this framework must

satisfy the following property

∑
x

P (X(t) = x)(x<t) = 1 ∀t,x<t. (1.22)

In addition to describing the population as a whole, the framework also captures

the movements and position of any individual. The probability of In being at place
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Pm at time t, conditional on the history of the system x<t is given by

P (Xm,n(t) = 1)(x<t) = pn,m,t(x<t) (1.23)

Since any individual can only be present at one location at any time, every system

must satisfy the property

∑
m

pn,m,t(x<t) = 1 ∀n, t,x<t. (1.24)

Some individuals may not be able to move to certain places, therefore, each individ-

ual In has a subset of places they can move to, referred to as their home range or

territory.

Pn = {Pm : pn,m,t(x<t) > 0, for some t and some history x<t}. (1.25)

This represents the set of places that individual In has a non-zero probability of

visiting at some point in time.

History-dependence

The complexity of the framework can vary based on the specific assumptions made

about the movement of individuals. For example, the movement of individuals

can be defined such that it depends on the history of the system. This allows for a

vast range of evolutionary models therefore Broom & Rychtar (2012) also considered

varying levels of dependency on movement distributions which include the following:

• History independent : This represents the simplest level of dependency, where

the current distribution of the population is entirely independent of all previ-

ous distributions in the evolutionary process. The population distribution is

expressed as

P (X(t) = x)(x<t) = P (X(t) = x) (1.26)

• Markov : The current population distribution at time t depends only on the

previous distribution at time t− 1, which is expressed as

P (X(t) = x)(x<t) = P (X(t) = x|X(t− 1) = xt−1) (1.27)
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• Entire history-dependence: The current population distribution depends on all

previous distributions since the beginning of the evolutionary process. This is

the case discussed earlier (1.21).

Row-dependence

The notion of row independence was defined as individuals moving independently of

one another at time t. If two individuals, In1 and In2 move to places Pm1 and Pm2 ,

respectively, then we have

P (Xn1,m1(t) = 1 and Xn2,m2(t) = 1)(x<t) = pn1,m1,t(x<t)pn2,m2,t(x<t). (1.28)

Complete independence

The simplest case developed from the framework is the fully independent model

(see Fig.1.3), which assumes that the movement of individuals is independent of the

previous population distributions and that individuals move independently of one

another. Consider a population of N individuals I1, ..., IN who can move between M

places P1, ..., PM . The probability of individual In being at place Pm is denoted by

pnm; see Fig.1.3 for a visual representation using a bi-partite graph. Individuals move

along the graph according to their own movement distributions and form groups on

the vertices of the graph. Let G denote a group of individuals, then χ(m,G), the

probability of group G forming at place Pm is given by

χ(m,G) =
∏
i∈G

pim
∏
j /∈G

(1− pjm). (1.29)

In Broom & Rychtar (2012), the mean group size from the individual’s perspective

was found to be

Ḡ =
∑
m

∑
G

χ(m,G)|G|2∑
m

∑
G

χ(m,G)|G|
. (1.30)

1.6.2 Fitness

To model the evolution of a population, we must evaluate the fitnesses of the indi-

viduals. In general, the reward individual In receives from playing a game at time t,

given the current distribution of individuals X(t) = x and the previous distributions
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P1

I1

P2

I2

p2,1

p1,1

p2,2

Pm−1 Pm Pm+1 PM−1 PM

In IN

p1,m−1

pn,m

pn,m+1

pN,M−1 pN,M

Figure 1.3: The fully independent model from (Broom and Rychtar 2012). There are N
individuals who are distributed over M places such that In visits place Pm with probability
pnm. Individuals interact with one another when they meet, for example, I1 and I2 can interact
with one another when they meet in P1

x<t was denoted as

R(n,x, t,x<t, ) (1.31)

The mean reward is the average reward over all possible population distributions at

time t conditional on the previous distributions of the population.

Rn =
∑
x

P(X(t) = x)R(n,x, t,x<t). (1.32)

Under the fully-independent model, individual In’s average fitness is calculated by

considering all payoffs they can receive averaged over all possible groups and places,

Fn =
∑
m

∑
G

n∈G

χ(m,G)Rn,m,G. (1.33)

1.6.3 Evolutionary updating rules

The evolutionary dynamics of structured populations are based on the Moran pro-

cess, ensuring that the population size remains constant. In Broom et al. (2015), the

development of the Broom-Rychtar framework was completed through the introduc-

tion of evolutionary dynamics into the territorial raider model. This framework was

later extended to include the six main updating mechanisms, analogous to those

commonly used in evolutionary graph theory (Pattni et al. 2017). Incorporating

these dynamics into the Broom-Rychtar framework offers a significant advantage, as

it remains accessible to those familiar with evolutionary graph theory, ensuring con-

tinuity between the results from evolutionary graph theory and the Broom-Rychtar
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framework.

Dynamics

BDB bi =
Fi∑

n
Fn

, dij =
wij∑

n
win

BDD bi =
1
N , dij =

wijF
−1
j∑

n
winF

−1
n

DBD dj =
F−1
j∑

n
F−1
n

, bij =
wij∑

n
wnj

DBB dj =
1
N , bij =

wijFi∑
n

wnjFn

LB τij =
wijFi∑

n,k
wnkFn

LD τij =
wijF

−1
j∑

n,k
wnkF

−1
k

Table 1.2: Dynamics defined using the evolutionary graph Wt and fitnesses Fn,t.

1. BDB or IP dynamics (Lieberman et al. 2005): an individual is first selected

for reproduction with probability proportional to its fitness and its offspring

randomly replaces another member of the group.

2. BDD dynamics (Masuda 2009): an individual is first randomly chosen for

reproduction and its offspring replaces another member of the group with

probability inversely proportional to their fitness.

3. DBD dynamics (Antal & Scheuring 2006): an individual is first selected for

death with probability inversely proportional to their fitness and is replaced

by the offspring of another member of the group who is randomly chosen to

reproduce.

4. DBB dynamics (Ohtsuki et al. 2006): an individual is first randomly chosen

for death and is replaced by the offspring of another member of the group who

is selected to reproduce with probability proportional to their fitness.

5. LB dynamics (Masuda & Ohtsuki 2009): each edge is considered separately in

each direction, and weighted proportionally to its undirected weight and the

fitness of the origin vertex. A weighted edge is then selected at random, with

the origin individual replacing the destination one.

6. LD dynamics (Masuda & Ohtsuki 2009): each edge is considered separately in

each direction, and weighted proportionally to its undirected weight and the

inverse fitness of the destination vertex. A weighted edge is then selected at

random, with the origin individual replacing the destination one.
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1.7 The development of the Territorial Raider model

Different examples using the fully independent model were developed in Broom &

Rychtar (2012). The most significant of these is the territorial raider model, see

Fig1.4, which has been extensively explored (Broom et al. 2015, Pattni et al. 2017,

Schimit et al. 2019, Erovenko et al. 2019, Schimit et al. 2022, Pires et al. 2023,

Erovenko & Broom 2024). This model acts as the evolutionary setting for the work

in this thesis.

1.7.1 Population structure

In the territorial raider model, there are N individuals, I1, ...IN who can move and

interact with other individuals at M places P1, ..., PM . It is assumed individual

Ii lives at place Pm throughout the entire evolutionary process. In the original

territorial raider model from Broom & Rychtar (2012) there was a one-to-one cor-

respondence between individuals and places, although this was later generalised in

Pattni et al. (2017) to include subpopulations of individuals at the same place, and

further explored in Pires & Broom (2024). The amount of time an individual spends

on their home vertex is governed by a global home fidelity parameter h, which is a

measure of preference individuals have towards staying on their home vertex. The

higher h is, the more likely individuals are to stay at home and, therefore, less likely

to move and interact with other individuals and vice-versa. Given an individual Ii

with m neighbouring places, the probability of Ii staying home is h/(h + m) and

moving is m/(h+m). If h = 1, this represents an indifference individuals have be-

tween all reachable places and means that they are equally likely to visit any of them

and if the base graph is the complete graph, this is a completely mixed population.

1.7.2 Evolutionary updating process

An evolutionary graph (Lieberman et al. 2005, Nowak 2006, Pattni et al. 2015,

Voorhees & Murray 2013, Möller et al. 2019) is a graph with an associated weighted

adjacency matrix W = (wij) where wij ∈ [0, 1) is referred to as the replacement

weight which governs which members of the population can replace each other.

Every vertex vn of the evolutionary graph is occupied by exactly one individual and

if wij > 0, then the individual on vi can replace the current individual on vj by

placing a copy of itself onto the vertex. The weights are often selected to ensure
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Figure 1.4: The population structures and apriori distributions for small graphs with three,
four and five nodes. An individual remains on their home vertex with probability h

h+m
and

moves to a neighbouring vertex with probability 1
h+m

, where m is the number of neighbours.
(a) the line with three nodes. (b) the complete triangle graph. (c) the square with both
diagonals connected i.e. the complete graph with four vertices. (d) the circle graph with four
nodes. (e) the star graph with 5 nodes.

that the evolutionary graph is strongly connected i.e. there is a finite path between

vertices vi and vj .

A general set of evolutionary dynamics for the Broom-Rychtár̂ framework, anal-

ogous to the corresponding evolutionary graph theory dynamics (defined in section

1.6.3), were successfully adapted into the territorial raider model in Pattni et al.

(2017) via the appropriate selection of the replacement weights.

The replacement weights within this framework are based on the assumption that

an offspring of individual Ii will replace individual Ij with probability proportional

to the time Ii and Ij spend together. The offspring of Ii can also replace its parent

Ii, and it does so with probability proportional to the time Ii spends on its own.

When i ̸= j The probability of individuals Ii and Ij meeting is given by summing all

χ(m,G) over all m such that Ii, Ij ∈ G. We assume that Ii spends an equal amount

of time with all other members of group G, therefore we weight by 1/(|G| − 1) as

there are |G|−1 other members of the group. However, when i = j, we sum χ(m,G)

over all m such that G = {i}. Here there is no need to weight χ(m,G) because Ii is

alone. The replacements weights are thus given as
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wij =


∑
m

∑
G

i,j∈G

χ(m,G)
|G|−1 , i ̸= j,

∑
m

χ(m, {i}), i = j.

(1.34)

1.7.3 The fixation probability

To determine the likelihood of the evolutionary success of a particular strategy within

a finite population, we calculate its fixation probability. The fixation probability

is regarded as the most significant quantity of a finite evolutionary process. To

calculate the fixation probability of a type A mutant within a population of type B

residents on a given spatial structure, the first step is to list all of the states that

describe all of the possible distributions of individuals of both types on the different

places throughout the evolutionary process, from the insertion of a type A mutant

in a population of type B residents until its fixation or extinction. Not accounting

for symmetries, a given population structure N individuals yields an evolutionary

process with 2N different states that are indexed by subsets S ⊂ {1, 2, ..., N}. State

∅ represents a population composed entirely of type B individuals, and state N

represents a population composed of type A individuals only. Let PSS′ denote the

transition probability from state S to state S′ during the evolutionary process.

PSS′ =



∑
i/∈S

bidij ; if S′ = Sn{j} for some j ∈ S

∑
i∈S

bidij ; if S′ = S ∪ {j} for some j /∈ S

0 otherwise

(1.35)

and, therefore,

PSS = 1−
∑
S′ ̸=S

PSS′ . (1.36)

The fixation probability of a type A mutant from state S is

ρAS =
∑

S⊂{1,2,...,N}

PSS′ρAS′ . (1.37)

with boundary conditions

ρA∅ = 0, (1.38)

ρAN = 1. (1.39)
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The mean fixation probability of a type A mutant, will be a weighted average of the

fixation probabilities from all states involving only one type A mutant.

1.7.4 Multiplayer games

Different multiplayer games can be used to model the interactions between individ-

uals within the same group. For example, the Public Goods, Hawk-Dove and Stag-

Hunt games shown in Figure 1.5. Each of the games describes a contest between

two different types of individuals, A and B. Using these games, we will describe

an evolutionary process of a single type A individual within a population of Bs and

vice-versa to determine the fixation probability for both types of individuals.

The Multiplayer Public Goods Game

The multiplayer public goods game consists of two types of individuals, cooperators

(A) and defectors (B). The cooperator pays a cost of C which is shared among the

rest of the group as a reward V but not shared among the individual who paid the

cost. Defectors pay no cost and cooperators pay a cost even when they are alone.

After a game is played between a group of a cooperators and b defectors, the payoffs

for a cooperator and defector are respectively

RA
a,b =


R− C, a = 1,

R− C +

(
a−1

a+b−1

)
V, a > 1,

(1.40)

RB
a,b =


R, a = 0,

R+

(
a

a+b−1

)
V, a > 0.

(1.41)

where R is the background payoffs individuals receive unrelated to the games. The

public good game presented here is one of many variations with other cooperative

strategy games (Archetti & Scheuring 2012, Kurokawa & Ihara 2009, 2013, Santos

et al. 2008a, Souza et al. 2009, Milinski et al. 2006, Li et al. 2016).

The Multiplayer Hawk-Dove Game

The Hawk-Dove game was developed by Maynard Smith & Price (1973) and at-

tempts to explain the occasional use of violence in contests over valuable resources

between animals such as in populations of red deer (Clutton-Brock & Albon 1979).

25



A represents the Hawk strategy, and B the Dove strategy. When individuals meet,

they compete for a reward V . If all individuals in the group are Doves, then they all

split the reward equally. If any hawks are present, then the doves concede and the

hawks fight, with the winner receiving the reward of V while the losing hawks pay

a cost of C. All individuals receive a background payoff of R, a reward gained from

activities unrelated to the contests. In a group of a hawks and b doves, the average

payoffs are given by

RA
a,b = R+

V − (a− 1)C

a
, (1.42)

RB
a,b =


R, if a > 0,

R+ V
b , if a = 0.

(1.43)

The Multiplayer Stag-Hunt Game

The Stag-Hunt game (Pacheco et al. 2009, Broom et al. 2018) consists of two types

of individuals, cooperators (A) and defectors (B). The payoff functions are step

functions where L > 1 cooperators are required to group together for the public

good to be produced. The cooperators always pay a cost C regardless of whether

the threshold is met or not. In a group of x cooperators and y defectors, the payoffs

are given by

RA
x,y =


R− C, x < L

R− C +

(
x

x+y

)
V, x ≥ L

(1.44)

RB
x,y =


R, x < L

R+

(
x

x+y

)
V, x ≥ L

(1.45)

1.8 History-dependence: Markov Movement Model

The Markov movement model was introduced to investigate whether cooperation

can emerge in evolutionary settings where individuals can move strategically. In

these models, individuals assess their current position, choosing to remain if it is

advantageous or relocate otherwise. While similar strategic movement as been ex-

plored in previous studies (Aktipis 2004, 2011), these did not account for multiplayer

interactions. Thus, the Markov movement model provides a deeper understanding

of how strategic movement influences the evolution of cooperation in a multiplayer
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Public-Goods game

Hawk-Dove game

Stag-Hunt game

Figure 1.5: Payoffs for the pairwise and multiplayer versions of the Public Goods,
Hawk–Dove, and Stag–Hunt games. In the Public Goods game, strategy A corresponds to
cooperation and B to defection, with a denoting the number of cooperators and b the number
of defectors in the group. In the Hawk–Dove game, A represents hawks and B represents doves,
where a is the number of hawks and b the number of doves within the group. In the Stag–Hunt
game, A corresponds to the cooperative strategy and B represents the defectors’ strategy, with
a denoting the number of cooperators and b the number of defectors in the group.

setting.

Building on this idea, Pattni et al. (2018) extended the territorial raider model

to consider an evolutionary process in which the movement of individuals is history-

dependent. That is, individuals explore their environment following a Markov pro-

cess, moving through an exploration phase consisting of a fixed number of movement

steps. During each movement step, all individuals independently decide whether to

move or remain in the same position. Individuals that end up in the same position

after a movement step play a multiplayer public goods game and receive a payoff

(1.40) (1.41). At the end of the exploration phase, the payoffs are accumulated

to give the individuals’ fitness. All individuals then return to their home vertices,

and the dynamic time step begins, during which reproduction and replacement oc-

cur (governed by a BDB process). The fitness values are then reset, and a new
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exploration phase begins.

Each individual within the population has two traits: the interactive strategy

used in the public goods game (cooperate or defect) and the exploration strategy

(staying propensity). The staying propensity corresponds to the probability that

an individual stays at their current location or moves, based on their exploration

strategy and the current state of their environment.

During a movement step in the exploration phase, every individual evaluates the

attractiveness of the group they are currently in. If the group is deemed attractive,

the individual is more likely to remain within it. Otherwise, if the group is considered

unattractive, the individual leaves and moves elsewhere. Let Gn(mt−1) denote the

group of individual In at time t − 1. The attractiveness of the group to individual

In (who is a member of the group) was defined as

βGn(mt−1)n{n} =
∑

k∈Gn(mt−1)

βk, (1.46)

where βk represents the attractiveness of group member Ik. The attractiveness of

an individual depends on their interactive strategy and was defined as

βk =


βC , if Ik is a cooperator,

βD, if Ik is a cooperator,

(1.47)

and the values βC = 1 and βD = −1 were used. αn was denoted as the staying

propensity of In. The probability hn(Gn(mt−1)) that individual In remained at its

current location at time t − 1, as a member of the group Gn(mt−1), was expressed

as a sigmoid function, given by

hn(Gn(mt−1)) =
αn

αn + (1− αn)S
βGn(mt−1)n{n}

, (1.48)

where 0 < S < 1 represents the sensitivity to group composition. The greater the

value of S, the less sensitive individuals are to group composition, meaning they are

less likely to react to changes in their group’s composition. The staying propensity

αn in the Markov model is analogous to the home fidelity parameter in the territorial

raider model discussed in section 1.7. However, in the Markov movement model, the

staying propensity is an evolving trait associated with individuals, whereas the home

fidelity parameter in the territorial raider model is a fixed parameter of the model.
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Every individual incurs a cost λ for every movement they make. The movement cost

is carefully chosen to ensure it does not exceed the payoff individuals receive from

the games, as this could result in a negative fitness.

Pattni et al. (2018) demonstrated that on complete networks, cooperation can

evolve under BDB dynamics, despite the fact that traditional evolutionary graph

theory does not support the evolution under such processes (Ohtsuki et al. 2006).

This emphasises the crucial role of the Markov movement model in facilitating co-

operative behaviour. Additionally, longer exploration times, lower movement costs

and larger population sizes were found to further promote the evolution of cooper-

ation. Another key finding was that the type of evolutionary dynamics governing

population evolution had little impact on the outcome..

Erovenko et al. (2019) extended this process to consider heterogeneous struc-

tures, such as the circle and star graphs, which played a crucial role in evolutionary

outcomes. The stability of cooperators within the population was determined by

network structure. On complete networks, cooperators always resisted replacement

from defectors if the population was sufficiently large. On the circle graph, there

existed an intermediate movement cost threshold: lower costs promoted coopera-

tion, while higher costs hindered it. In contrast, on the star graph, defectors always

replaced cooperators.

This was further explored by Pires et al. (2023), who conducted a comprehen-

sive analysis comparing six distinct evolutionary dynamics discussed in 1.6.3. Their

findings demonstrated that different dynamics produced similar results, suggesting

that network structure plays a more significant role than the specific dynamics con-

sidered.

1.9 Row-dependent movement

Coordinated movement is vital for the survival of many organisms, particularly in

higher-order animals, where it is driven by various factors such as seasonal migration,

resource acquisition and mating opportunities (Dingle 2006, Dingle & Drake 2007).

The mechanisms underlying such movement patterns have long been studied (Dingle

2014). Social interactions often influence migration patterns, facilitating collective

decision-making and synchronised movement among individuals (Petit & Bon 2010,

Guttal & Couzin 2010) . Aggregation behaviours, observed in bird flocks, fish schools
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and mammalian hunting groups, arise due to factors like safety, foraging efficiency

and resource availability (Fretwell & Lucas 1969, Ford & Swearer 2013). These

factors create a complex interplay between aggregation and interactive strategies.

A structured way to model coordinated movement is through row-dependent

movement, where an individual’s movement is influenced by the movement of others.

Broom et al. (2020) introduced various row-dependent movement mechanisms to

represent realistic herding and dispersal behaviours. Their work developed a general

movement framework that integrates both well-established and novel concepts of

aggregation and dispersal, accounting for how these processes depend on the presence

of conspecifics. The models were designed to be adaptable, enabling integration into

broader evolutionary modelling frameworks, particularly that of Broom & Rychtar

(2012). The work of Broom et al. (2020) forms a fundamental basis for this thesis.

Therefore, we provide a detailed explanation of the row-dependent models developed

in their study.

The row-dependent movement models serve two purposes; firstly to represent

certain movement mechanisms that lead to a particular distribution of individuals

over the places, and secondly to model movement distributions with certain coor-

dinated movement properties. In our analysis, we will consider a target apriori

distribution, denoted by am, representing the probability of a randomly selected

individual going to any particular place. Our processes will be designed to achieve

this target whilst moving non-independently, for example to maximise herding or

dispersal. Processes where the target distribution matches the apriori distribution

were called faithful (Broom et al. 2020).

For example, for the territorial raider model on a complete graph with M vertices,

the apriori distribution for any individual staying at home is h
h+M−1 and moving to a

specific neighbouring vertex is 1
h+M−1 . More generally, we can select an appropriate

apriori distribution to any given movement scenario.

Broom et al. (2020) also derived novel measures of aggregation. The most signif-

icant of these measures was denoted as T which is the probability of two individuals

being together which is one of the most fundamental properties of any movement

process, given by

T =
1

N(N − 1)

M∑
m=1

E[Xm(Xm − 1)], (1.49)

where Xm denotes the number of individuals on place Pm.
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We first consider two movement processes where individuals are placed sequen-

tially based on their utility functions (Broom et al. 2020). It is assumed that there

is a set of utility functions {Um} based upon several place characteristics. The form

of the utility function Um varies according to the movement distribution governing

the evolutionary process. The first type of movement we consider is deterministic

movement, where individuals simply move to the location which provides them with

the most utility. The second is the stochastic counterpart, in the form of a polya-

urn model, where an individual will have a higher probability of moving to a place

that provides them with a larger utility. Then we consider a more novel type of

movement, that simultaneously places all moving individuals.

1.9.1 Deterministic movement: follow the majority

In this process, individual allocation to places is decided sequentially. This repre-

sents a simultaneous movement of the group, however, so that the first step of the

process is to assign the ordering uniformly at random over all possible orderings (or

if simulating a large population, make selection among the remaining individuals at

each step of the sequence with uniform probability).

The type of deterministic movement we consider is the follow the majority move-

ment process where the first individual moves to a place according to its apriori

distribution and subsequent individuals simply move to the location containing the

largest number of individuals. This mathematically translates to any increasing

function, but the simplest example was considered (Broom et al. 2020) which we

also use. The utility an individual receives from place Pm is given by

Um = Ym + 1, (1.50)

where Ym is the current number of occupants on place Pm. Such herding movement

has been observed in various animal groups, for example, in fish schools and bird

flocks, the trajectories of individuals are influenced by their own preferences and

the movement of their neighbours, which can result in collective movement towards

a particular direction (Couzin et al. 2005, Hinz & de Polavieja 2017, Winklmayr

et al. 2020). In particular, three-spine sticklebacks (Gasterosteus aculeatus) exhibit

threshold movement responses, effectively implementing a majority rule dependent

on the presence of conspecifics in their movement decisions (Ward et al. 2008).
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For a well-mixed process (equivalent to a territorial raider model on a complete

graph with h = 1) this leads to all individuals being in a single group, the location

of which follows the apriori distribution. We note that if h ̸= 1 we need a variant of

this process to achieve the target apriori distribution, as we see in section 2.3.1.

1.9.2 Probabilistic movement: the Polya-urn

Here, we consider a stochastic counterpart to follow the majority, where individuals

move to a place Pm with probability proportional to their utility function i.e. an

individual moves to place Pm with probability Um/
∑

k Uk. This probabilistic model

is represented by a standard urn model (Johnson & Kotz 1977), where balls are

numbered 1, 2, ...,M and placed into an urn and then sequentially drawn out at ran-

dom. The nth ball with number m being drawn out correspond to the nth individual

moving to place Pm. As utility positively correlates with place occupancy, an extra

ball with the same number is placed back into the urn alongside the original ball.

This is represented by the following utility function

Um = Bam + Ym, (1.51)

where B ∈ (0,∞) corresponds to the initial number of balls in the urn, and am is the

apriori probability distribution. The scaling parameter B moderates the dependency

social aggregation has on population density. Bam represents the initial number of

balls in the urn corresponding to place Pm. Note that as we are simply selecting

the place following a probability distribution rather than actually picking out balls,

there is no requirement for this number to be integer-valued.

This type of movement is commonly observed in ant colonies. Ants leave pheromones

as they travel and can sense the concentration of pheromones present on different

paths. When presented with several options, an ant is more likely to choose the path

with a higher pheromone concentration. Consequently, a path frequently travelled

by preceding ants, and therefore marked with a higher pheromone concentration,

becomes the preferred route for subsequent ants (Deneubourg et al. 1990, Dorigo

& Stützle 2004). Polya-urn processes have been used to model the movement and

following behaviour of ants (Shah et al. 2010).
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1.9.3 The wheel and base model

Whereas in the previous models, an underlying movement mechanism had sequen-

tially allocated individuals onto the places, the wheel and base model assumes a

simultaneous allocation of all individuals partaking in the movement process. We

suppose a base disc of perimeter 1 is divided into M place P1, ..., PM in the shape

of wedges where Pm has perimeter length am (see Fig.1.6(a)) such that
∑

m am = 1.

On top of the base disc, is an upper disc, the wheel representing the N individuals

in the form of N spikes; see Fig.1.6(b). The angle between individuals Ii and Ij is

given by 2πθij , where θij ∈ [−1/2, 1/2] can possibly be determined via a probability

distribution. Note that θij = −θji. When the angles between the spikes have been

set, the wheel is spun and rotates by an angle of θ selected uniformly at random.

Then, individual Ii moves to place Pm if and only if the corresponding spike lands

above the corresponding segment; see Fig.1.6(c). This movement mechanism offers

the greatest flexibility and provides a clearer representation of complete aggregation

amongst individuals (θ = 0). For a well-mixed process (equivalent to a territorial

(a) (b)
2πθ 3 1

2πθ 13

I1

I3

I2

P1

P2

P3

(c)

I1

I2

I3

P1

P2

P3

Figure 1.6: (a) M = 3 places with a1 = 1
3
, a2 = 1

6
, a3 = 1

2
. (b) represents the N = 3

individuals as spikes. The angle between individuals Ii and Ij is given by 2πθij . In this case,
θ12 = 1

4
= −θ21. (c) shows the simultaneous placement of all individuals after the upper

disc is spun on top of the base. In this case, individuals I1, I2, I3 move to places P3, P1, P3

respectively.

raider model on a complete graph with h = 1), individuals move simultaneously,

and θ can capture varying degrees of separation. This allows the model to represent

realistic cases where individuals prefer specific distances of separation. For exam-

ple, surf scoters rarely approach closer than one body length, typically maintaining

around 1.45 body lengths apart (Lukeman et al. 2010).

1.10 Outline

We provide an outline of the research carried out in this thesis, pointing out pub-

lished papers where applicable. In chapter 2, we develop a general movement
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methodology that enables the embedding of any of the considered row-dependent

movement mechanisms from section 1.9 into the evolutionary setting of the terri-

torial raider model described in section 1.7. This work establishes a new direction

in the territorial raider model by investigating the effects of coordinated movement

on the evolution of cooperation. The results in this chapter were published in the

Journal of Mathematical Biology (Haq et al. 2024). I developed the theory with my

supervisor Mark Broom. I carried out the majority of the analysis and writing in

this paper. The underlying theory was computationally translated by our collabo-

rator, Pedro H. T. Schimit, who extended the simulation system used in previous

work (Schimit et al. 2019, 2022) to incorporate our movement methodology. I then

tested the system and used the system to conduct a numerical analysis.

In chapter 3, we build on the movement methodology developed in chapter 2

to investigate the effects of row-dependent movement on key predictors of fixation

probability, namely, temperature and mean group size. We also implement the stag-

hunt game into the model to examine a scenario where selection favours the evolution

of cooperation within a well-mixed population. The work presented in this chapter

was published in Dynamic Games and Applications (Haq et al. 2025). I developed

the original theory with my supervisor, Mark Broom, and carried out the majority

of the analysis and writing for this paper. The numerical analysis was conducted

using the computational system developed by our collaborator, Pedro H. T. Schimit,

as part of our earlier work (Haq et al. 2024).

In chapter 4, we extend our models to consider incomplete networks. We demon-

strate that certain properties of our movement methodology developed in chapter

2 no longer hold under sequential movement processes. We also extend the wheel

process for incomplete graph structures and develop an alignment algorithm to ap-

proximate herding behaviour. We also derive upper and lower bounds for a novel

measure, Tmax which quantifies the maximum probability of two individuals being

together for any movement process. I developed the original theory with my su-

pervisor, Mark Broom. The wheel alignment process for line and circle graphs was

implemented by Pedro H. T. Schimit, and I carried out testing and analysis of the

simulations. This work has not yet been published, but we intend to prepare a paper

based on this chapter, for publication in the near future.

The final chapter explores hybrid models that combine row-dependent movement

processes within the same evolutionary process. While work presented is prelimi-
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nary, we believe it holds significant potential for future investigation. We provide

analytical and numerical results under these hybrid models, offering a foundation

for further exploration of their impact on evolutionary processes. Below, the table

defines the parameters used and explored within this thesis.

Notation Description

N Size of the population

I1, . . . , IN List of individuals within population

M Number of available places

P1, . . . , PM List of places

h Home fidelity parameter

|G| Size of group G

Fi Fitness of Individual i

bi Probability of individual i reproducing

dij Probability of individual i’s offspring replacing

individual j given individual i was selected to reproduce

τi Temperature at vertex i

ρM1 Fixation probability of a single mutant

B Number of balls within the Polya-urn model that moderates

social aggregation

θ Represents the angle between the spikes in the wheel model

T Probability of two individuals being together

Tmax The maximum possible probability of two individuals being

together for all movement processes

Table 1.3: Notation used in subsequent chapters of the thesis.
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Chapter 2

Extending the Territorial

Raider Model to incorporate

Row-dependent Movement

2.1 Introduction

This chapter consists of two parts. The first extends the territorial raider model

by developing a generalised movement methodology that incorporates the row-

dependent movement mechanisms developed in Broom et al. (2020) into the evo-

lutionary setting of the territorial raider model. In this chapter, it is assumed that

individuals reside within a N -sized, well-mixed population on a complete graph.

This assumption significantly simplifies the analysis, providing useful insights in the

mutant’s fixation probability.

The second part applies this movement methodology to develop evolutionary

models that investigate the effects of row-dependent movement on the evolution

of cooperation. We implemented both analytical and computational methods and

observed that these two approaches can yield different outcomes depending on the

underlying dynamics. We published the work presented in this chapter in Haq et al.

(2024).
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2.2 The Model

Within this section, we define the evolutionary set-up for the analysis carried out in

this chapter.

2.2.1 The population structure and distribution

The population structure is defined by the territorial raider model (refer to section

1.7). Since we assume that individuals reside on a complete graph, all members of

the population have the same apriori distribution. For example, in the territorial

raider model on a complete graph with M vertices, the apriori distribution for any

individual staying at home is h
h+M−1 and moving to a specific neighbouring vertex

is 1
h+M−1 . It is essential to ensure that when embedding the row-dependent move-

ment mechanisms into the model, individuals adhere to their apriori distributions

throughout the evolutionary process to maintain consistency within the model. As

our work in this chapter is only focused on complete graphs, dij is the same for all

individuals, as all individuals are equally likely to be replaced i.e. we can simply

write dij as d (and sometimes as dN , when we consider the influence of varying

population size on d, since d depends upon N).

2.2.2 Evolutionary dynamics

The fitness of individuals and the replacement weights are calculated as in the terri-

torial raider model (see section 1.7.2). In this chapter, all of the standard dynamics

defined in Table 1.2 have been considered. However, we only present results under

BDB and BDD dynamics. This is because it was shown in Pattni et al. (2017) that

the results for BDB and DBD are identical (as are those for BDD and DBB). This is

because the replacement structure W is doubly stochastic, therefore it is irrelevant

whether birth or death occurs first. Also, it was shown in Pattni et al. (2015) that

LB and LD dynamics are identical to the BDB and DBD dynamics, respectively.

We note that this process is an idealisation of the original evolutionary process

described in Broom et al. (2015), which is represented by the simulations in subse-

quent chapters, allowing for analytical results to be considered. It was identified in

Pires et al. (2023) that under certain circumstances, such as highly variable fitnesses

or large self-weights, there can be significant differences between these outcomes for

some dynamics, including BDD (but not BDB). We explore this in Chapter 3.
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2.2.3 Fixation probability

As we consider only well-mixed populations, equivalent to a complete graph with

N = M on a territorial raider model. The fixation probability of a mutant (M) in

an N -sized, well-mixed population can be expressed by the standard formula (Karlin

& Taylor 1975).

ρM1 =
1

1 +
∑N−1

j=1

∏j
k=1

δk
βk

. (2.1)

Here βK and δK are the respective birth and death rates of the mutant which depend

on the game and dynamics.

2.3 Theoretical results

In this section, we consider our theoretical results. Initially, we describe a generalised

movement method that ensures we can achieve our apriori target for h ̸= 1. We then

consider explicit fixation probability formulae for specific cases.

2.3.1 A generalised movement modelling approach

Our analysis aims to extend the existing territorial raider model to include other

types of movement distributions whilst ensuring the other constituent parts of the

model remain the same, that is, the population structure, the games played, and the

evolutionary dynamics. By considering the home fidelity parameter and the number

of connections an individual has on a complete graph, we can develop a general

procedure that allows us to embed any of the considered row-dependent movement

models into the evolutionary setting of the territorial raider model on complete

networks. In the following, we describe a method of combining a movement process

of the type described in section 1.9 (which we refer to as following the process) with

a simple additional process to achieve our apriori targets.

The procedure involves deriving a probability distribution that accounts for the

various movement choices available to individuals within the population. This in-

cludes both those who follow the process and those who do not, with the available

actions for the latter group depending on the value of h. Specifically, if h > 1,

this indicates a preference for remaining at home; h = 1 represents an indifference

between an individual’s home vertex and their neighbouring vertices; and h < 1

shows a preference for moving elsewhere. We incorporated these scenarios within
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the probability distribution.

Consider a complete graph where there are M places.

• If h > 1, then an individual can either partake in the process and move via

the movement mechanism with probability M
h+M−1 or they do not move and

stay at their home vertex with probability h−1
h+M−1 .

• If h = 1, then every member of the population plays the process.

• If h < 1, then an individual can either move via the process with probability

Mh
h+M−1 or they move to a random non-home place with probability (M−1)(1−h)

h+M−1 .

Naturally, this movement distribution is composed of parameters that affect the

likelihood of movement, namely, the home fidelity parameter and the number of con-

nections an individual has (equivalent to M−1 on a complete graph). Incorporating

this probability distribution into the model ensures that all individuals within the

population achieve the target distribution. We show how this distribution explicitly

satisfies the apriori targets. If h > 1, the probability of an individual occupying their

home vertex is h−1
h+M−1 + 1

M ( M
h+M−1) =

h
h+M−1 and the probability of an individual

being elsewhere is M
h+M−1 − 1

M ( M
h+M−1) =

M−1
h+M−1 . If h < 1, the probability of an

individual occupying their home vertex is 1
M ( Mh

h+M−1) =
h

h+M−1 and the probability

of an individual being elsewhere is (M−1)(1−h)
h+M−1 + ( Mh

h+M−1 − 1
M

Mh
h+M−1) =

M−1
h+M−1 .

As opposed to the wheel which simultaneously allocates all individuals partic-

ipating in the movement process, ensuring the apriori targets are hit, sequential

movement processes such as the polya-urn involve individuals moving later on in

the process being influenced by preceding individuals. Assuming all individuals

have the same distribution, it was proven that polya-urn process achieves the apri-

ori targets (Broom et al. 2020), therefore this property naturally extends to our

movement modelling approach. It is important to note that individuals who move

via the movement mechanism are not influenced by the presence of individuals who

did not move via the mechanism. This condition was important to add to our ap-

proach as it ensures the apriori targets are met. For example, an individual who

moves via follow the majority, will not follow those who did not partake in the move-

ment process. They may end up in the same place, but this will not be due to the

movement mechanism process.

Regardless of the movement distribution chosen for the evolutionary model, we

define a standard practice to follow when computing the fitnesses of mutants and
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residents within a well-mixed population, which can be characterised as follows:

First, outline the distribution that describes all conceivable ways in which members

of a given population can move. For each specific movement case, establish the

distribution that defines all potential groupings that can emerge as a result of the

considered movement case. Then, average the payoffs from each case to obtain the

average payoffs. These average payoffs are used to compute the necessary evolution-

ary metrics such as the fitnesses for deriving an analytical expression for the fixation

probability.

As an example, we examined a well-mixed population of three individuals on

a complete triangle graph. Using the methodology developed in section 2.3.1, we

calculated average group distributions for each of the movement mechanisms. For

h > 1, we show an example of the average group distribution for the follow the

majority process (the polya-urn and the wheel can be found in the appendix).

• P(all individuals are together) = 9(h−1)
(h+2)3

+ 27
(h+2)3

= 27+9(h−1)
(h+2)3

,

• P(I1 I2 together, I3 alone) = P(I1 I3 together, I2 alone) = P(I2 I3 together,

I1 alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(all individuals are alone) = 3(h−1)2

(h+2)3
+ (h−1)3

(h+2)3
= 3(h−1)2+(h−1)3

(h+2)3
.

2.3.2 Fitness calculations

In our analysis, we evaluated the fitness of cooperators and defectors for any row-

dependent movement distribution by considering the following scenario: in an N -

sized, well-mixed population consisting of k cooperators and N − k defectors, what

proportion of reward V does a specific cooperator, denoted as C1 receive on average?

First, we examined what fraction of V that C1 receives from another cooperator

in the population, denoted as C2. We considered all possible groupings in which

C1 and C2 could be together. We arbitrarily stated that the probability of C1 and

C2 being together in a specific group with S others is γS+2. Therefore, C1 receives

precisely 1
S+1V from C2 which is then weighted by the probability of the group

forming, resulting in V
γS+2

S+1 . This quantity is then summed to consider all possible

group sizes i.e. V
N−2∑
S=0

γS+2

S+1 . This expression represents the total probability of C1

and C2 being in the same group, which is also a measure of how likely they are to

interact, therefore, this was re-expressed as
N−2∑
S=0

γS+2

S+1 = dN . In other words, the
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total proportion of V that C1 receives from C2 can be expressed as dNV .

FC = R− C + (k − 1)V dN and FD = R+ kV dN . (2.2)

(2.2) expresses the fitness of a cooperator and defector for any movement mechanism

described in section 1.9, captured by the dN term. The value of dN , measures

the likelihood of two individuals being in the same group, thus influencing their

chances of receiving rewards from each other. A similar, more complex calculation

for fitnesses in the Hawk-Dove game is provided in the appendix, assuming only

independent movement for simplicity. In an N -sized, well-mixed population with k

doves and N − k hawks, the fitnesses for the dove and hawk are given by

R+ τ(h,N, k)V, (2.3)

where

τ(h,N, k) =

((
h+N − 2

h+N − 1

)N−k

−
(
(h+N − 2)N−1

(h+N − 1)N

)(
k(N − 1) + (N − k)(N − 1)

k

)
+
(N − k)(N − 1)(h+N − 2)N−k−1

k(h+N − 1)N−k

)
and

R+ ω(h,N, k)V − ν(h,N, k)C, (2.4)

where

ω(h,N, k) =

(
1+

k

N − k
− (N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k
− k(h+N − 2)N−k

(N − k)(h+N − 1)N−k

)
,

ν(h,N, k) =

(
k −N + 1

h+N − 1
− k

N − k
+

h(N − k − 1) + (N − k − 1)(N − 1)

(h+N − 1)2

+
k(h+N − 2)N−k

(N − k)(h+N − 1)N−k
+
(N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k

)
.

(2.3) and (2.4) are the dove’s and hawk’s fitness respectively and the calculations

for these can be found in the appendix given by (1) and (2).

2.3.3 General fixation probability formulae

In this section, we consider only well-mixed populations, equivalent to a complete

graph with N = M on a territorial raider model. The fixation probability of a
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mutant (M) in an N -sized, well-mixed population can be expressed by the standard

formula (Karlin and Taylor 1975).

ρM1 =
1

1 +
∑N−1

j=1

∏j
k=1

δk
βk

. (2.5)

Here βK and δK are the respective birth and death rates of the mutant, the ratio of

which we show to be equivalent to the fitnesses of the mutant and resident respec-

tively under BDB dynamics. The birth rate of a mutant corresponds to an offspring

of the mutant replacing a resident member of the population and vice-versa for the

death rate. This mathematically translates to the following equation where there

are k mutants (M) and N − k residents (R).

δk
βk

=
P (a resident replaces a mutant)

P (a mutant replaces a resident)

=

FR(dk(N−k))
kFM+(N−k)FR

FM(dk(N−k))
kFM+(N−k)FR

=
FR
FM

. (2.6)

(2.5) now becomes

ρM1 =
1

1 +
∑N−1

j=1

∏j
k=1

FR
FM

. (2.7)

This result means that under a complete graph and BDB dynamics, for any particu-

lar game, we need only substitute the average fitnesses of the mutant and resident to

determine the fixation probability. Using a similar approach, if there are k individ-

uals in the set of mutants K, and N − k in the set of residents L the corresponding

ratio of the death and birth rates under BDD is

δk
βk

=
P(a resident replaces a mutant)

P(a mutant replaces a resident)

=

(
1
N
wijF

−1
M (k(N−k))∑

z∈K
wizF

−1
M +

∑
z∈L

wizF
−1
R

)
(

1
N
wjiF

−1
R (k(N−k))∑

z∈K
wjzF

−1
M +

∑
z∈L

wjzF
−1
R

)

=

(
N − k + (k + w∗) FR

FM

)
(
k + (N − k + w∗)FM

FR

) ,
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where w = wij = wji, ws = wii = wjj and w∗ = ws−w
w .

Therefore, under BDD dynamics, the fixation probability of a single mutant (2.5)

is expressed as

ρM1 =
1

1 +
∑N−1

j=1

∏j
k=1

(N−k+(k+w∗)
FR
FM

)

(k+(N−k+w∗)
FM
FR

)

. (2.8)

With the fitnesses calculated, we can directly substitute them into the fixation prob-

ability of a mutant on a complete N -sized network under BDB dynamics (2.7) and

BDD dynamics (2.8). By substituting (2.2) and (2.3) into (2.7) respectively, we have

that the fixation probability of a mutant cooperator and dove under BDB dynamics

are respectively given by

ρA1 =
1

1 +
∑N−1

j=1

∏j
k=1

R+kV dN
R−C+(k−1)V dN

, (2.9)

ρB1 =
1

1 +
∑N−1

j=1

∏j
k=1

R+ωV−νC
R+τV

. (2.10)

Similarly, by substituting (2.2) and (2.3) into (2.8), the fixation probability of a

mutant cooperator and dove, under BDD dynamics are respectively given by

ρA1 =
1

1 +
∑N−1

j=1

∏j
k=1

(N−k+(k+w∗)
R+kV dN

R−C+(k−1)V dN
)

(k+(N−k+w∗)
R−C+(k−1)V dN

R+kV dN
)

, (2.11)

ρB1 =
1

1 +
∑N−1

j=1

∏j
k=1

(N−k+(k+w∗)R+ωV −νC
R+τV

)

(k+(N−k+w∗) R+τV
R+ωV −νC

)

. (2.12)

2.3.4 Weak selection

The concept of selection intensity to consider situations in which the game exerts a

minor influence on the evolutionary process was considered and the rule of 1/3 was

established (Taylor et al. 2004) and states that selection favours type A fixating if

the internal equilibrium point is less than 1/3. This general rule was considered for

the Hawk-Dove game and it was found that if V
C > 2

3 , then selection favours the

fixation of the dove. It is worth noting that this analysis only considered pairwise

contests between individuals therefore, we have extended this analysis to encompass

the multiplayer Hawk-Dove game from our model, allowing us to explore the effects

multiplayer interactions have on the evolution of cooperation. We considered the

44



effect weak selection has on the fixation formulae in section 2.3.3 by assuming R is

very large compared to V and C i.e. the game has little influence in the evolutionary

process. This is a similar approach to Ohtsuki et al. (2006), where assuming small

w implies weak selection which is equivalent to R = 1−w
w .

The Public Goods game

We first considered the cooperator’s fixation probability under BDB. Consider the

expression inside the product term of (2.9).

R+ kV dN
R− C + (k − 1)V dN

≊ 1 +
V dN + C

R
, (2.13)

so (2.9) now becomes
1

1 +
N−1∑
j=1

(1 + V dN+C
R )j

. (2.14)

The term inside the summation can be approximated by the following,

(
1 +

V dN + C

R

)j

≊ 1 + j

(
V dN + C

R

)
. (2.15)

Therefore, (2.14) becomes

1

1 +
N−1∑
j=1

(1 + j(V dN+C
R ))

, (2.16)

which simplifies to

1

N + (V dN+C
R )

N−1∑
j=1

(j)

=
1

N

(
1

1 + N−1
2R (V dN + C)

)

≊
1

N

(
1− N − 1

2R
(V dN + C)

)
. (2.17)

From (2.17), as the parameter dN increases, the situation becomes increasingly un-

favourable for the mutant cooperator due to the defector’s advantageous position.

The defector can receive an additional reward without incurring any cost because,

from their perspective, there is an extra cooperator within the population from

whom they will receive this benefit. Conversely, the cooperator does not have this

advantage as they receive no share from their own contributions. With the growing
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value of dN , the likelihood of the mutant cooperator interacting with defectors rises,

further reinforcing the defector’s advantageous position.

We also considered the cooperator’s fixation probability under BDD dynamics.

By applying similar weak selection methods to (2.11), we have

1

N

(
1− (N + 2w∗)(N − 1)

2R(N + w∗)
(V dN + C)

)
. (2.18)

(2.18) is an approximation of the fixation probability of the mutant cooperator under

BDD dynamics.

The Hawk-Dove game

We carried out a similar, more complicated calculation for considering the dove’s

fixation probability which can be found in the appendix. Using the dove’s fixa-

tion probability (2.10), a calculation was done to determine the dove’s neutrality

condition by setting the dove’s fixation probability to equal 1
N i.e. ρB1 = 1

N . This

corresponds to neutral selection, where the mutant strategy has no selective advan-

tage or disadvantage, and its fixation is solely random.

V =
(12 − 1

e )

(1e (γ − 1− f(h)) + 1)
C, (2.19)

where f(h) = H[N − 1,

(
h+N−1
h+N−2

)k

]− ln(N − 1) and H[N − 1, a] =
N−1∑
k=1

ak

k .

For varying h, the neutrality condition is approximately given by C = 1.11V

which means that under our models, hawks are generally worse off compared to

doves as the cost does not need to be raised as significantly in the classical models

for hawks and doves to be doing equally well. This intuitively makes sense as larger

groups are generally bad for hawks who are more likely to encounter competition

and, therefore, incur a greater cost due to a larger presence of other hawks in their

game interactions. We also applied weak selection methods to the dove’s fixation

probability under BDD dynamics which can be found in the appendix. We saw that

the dynamics do not affect the dove’s neutrality condition.

The BDD approximations for the fixation probabilities of the cooperator (2.18)

and dove (21) have a similar form to their respective BDB approximations (2.17),

(9). If w∗ = 0, then the approximations are equal. In other words, if the self-weights

are equal to all other weights, then under weak selection, the fixation probability of
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a mutant cooperator or dove is the same regardless of whether selection acts on the

first or second event. Other dynamics were considered and their functionality was

explained in Pattni et al. (2017), such as the DBD dynamics where death acts first

and selection acts on this event. It was found that the results of DBD and BDB were

identical. If the self-weights are the same as all other weights, then implementing

DBD is equivalent to BDD; therefore, BDD is the same as BDB.

A general condition for the fixation probability of a type A mutant in a type B

population is greater than the fixation probability of a type B mutant in a type A

population was established in Tarnita et al. (2009) given by

σa+ b > c+ σd. (2.20)

where σ is the structure coefficient of the process. The value of σ depends on both

the graph and the updating rule, but not on the values a, b, c and d (which are the

payoffs to the pairwise matrix game) for example. For regular graphs with degree

k and N ≫ k, we have σ = k+1
k−1 . Using this analysis for the pairwise Hawk-Dove

game, it was shown that in an infinite, well-mixed population (k → ∞), hawks

and doves do equally well when V = 2C. We also extended this analysis to our

models under the assumption of an infinite, well-mixed population, where hawks

and doves interact with one another in arbitrary group sizes rather than limiting

pairwise interactions.

By considering the fitness of a dove and hawk in an infinite, well-mixed popula-

tion with a proportion of p doves, we were able to extend the analysis from Tarnita

et al. (2009) by introducing a multiplayer Hawk-Dove game. By using the substi-

tution p = k
N , and then assuming N → ∞, the fitnesses of a dove (2.3) and hawk

(2.4) are respectively given by

R+

(
ep − 1

ep

)
V, (2.21)

R+

(
1− ep−1

1− p

)
V −

(
ep−1 − p

1− p

)
C. (2.22)

By equating these two fitnesses together and solving for V
C , we have

V

C
=

ep(ep−1 − p)

(1− ep−1)(ep)− (ep − 1)(1− p)
. (2.23)
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For each value of p, (2.23) provides the corresponding equilibrium ratio of V
C . Our

point of interest is at p = 1
2 where both doves and hawks are doing equally well. This

equilibrium condition is given by V
C = 0.688 i.e. C = 1.453V which supports our

previous neutrality condition for a dove (2.19), that in a multiplayer game context,

hawks are generally doing worse than in the traditional pairwise game analysis.

2.4 Numerical results

For considering higher populations on larger graphs, we carried out computational

methods to simulate such processes as analytically carrying them out would be

impractical. The computational methods are the same as the ones carried out in

Schimit et al. (2019) except here, the simulations are carried out on much simpler,

complete networks, and individuals move via our approach developed in section

2.3.1.

One simulation is defined as follows:

• The chosen complete network is formed using the iGraph library (Csardi &

Nepusz 2006).

• The mutant is randomly placed on one of the nodes.

• Every individual probabilistically moves (or not) from their home vertex ac-

cording to the parameters of the model. Groups are formed and multiplayer

games are played where R = 10, C = 1 and V = 2 for both of the considered

games.

• Individuals return to their home places.

• Each individual moves (or not) and groups are formed. Here, no games are

played, instead, the dynamic process occurs. One individual is selected to

reproduce an offspring that will replace another random member of the group

(or its parent if the parent is alone). Selection either acts on the birth or death

even according to the chosen dynamics.

• The simulation terminates once the population is entirely composed of a single

type of individual.

• This process is averaged over 1, 000, 000 runs to minimise statistical variability.
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As discussed in section 1.7.2, the assumptions in this section are slightly different

to section 2.3. In the simulations, a single step is used in the contests and in the

dynamic process i.e. individuals only move once. The theoretical section assumes

average weights corresponding to where individuals move many times to accrue

average fitnesses and weights.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.1: The fixation probability of a mutant cooperator in a population of defec-
tors on complete decagon and pentadecagon graphs under BDB and BDD dynamics for
varying h under distinct polya-urn movement processes, For (a), (c), (e) and (g), we set
B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a sufficiently large value
to mirror independent movement). For (b), (d), (f) and (h) we set h = 0.5, h = 1, and
h = 10 and vary B.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2: The fixation probability of a mutant dove in a population of hawks on
complete decagon and pentadecagon graphs under BDB and BDD dynamics for varying
h under distinct polya-urn movement processes, For (a), (c), (e) and (g), we set B = 0
(follow the majority), B = 2, B = 6 and B = 10,000 (a sufficiently large value to mirror
independent movement). For (b), (d), (f) and (h) we set h = 0.5, h = 1 and h = 10
and vary B.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: The fixation probability of a mutant cooperator in a population of de-
fectors on complete decagon and pentadecagon graphs under BDB and BDD dynamics
for varying h under distinct wheel movement processes, For (a), (c), (e) and (g), we
set θ = 0 (follow the majority), θ = 2π

N (represents a near complete dispersal process),
θ = π

N . For (b), (d), (f) and (h) we set h = 0.5, h = 1 and h = 10 and vary θ.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: The fixation probability of a mutant dove in a population of hawks on
complete decagon and pentadecagon graphs under BDB and BDD dynamics for varying
h under distinct wheel movement processes, For (a), (c), (e) and (g), we set θ = 0 (follow
the majority), θ = 2π

N (represents a near complete dispersal process), θ = π
N . For (b),

(d), (f) and (h) we set h = 0.5, h = 1, and h = 10 and vary θ.



Figure 2.1 illustrates the fixation probability of a mutant cooperator under polya-

urn processes for BDB and BDD dynamics on complete decagon and pentadecagon

graphs. As h approaches 0.1, the fixation probability remains constant, attributed

to individuals randomly moving to non-home places.

The cooperator’s fixation probability reaches its lowest point when h = 1 where

all members of the population must participate in the movement process, leading

to the formation of groups of varying sizes (depending on the type of movement

governing the process). Recall that from section 2.3.1, the movement methodology

states that when h = 1, all members of the population must participate in the move-

ment process as all individuals are indifferent to their home vertex and neighbouring

vertices. This high level of movement is disadvantageous for cooperators as they are

more likely to encounter defectors due to the high levels of movement within the

population. The ”follow the majority” process is the worst type of movement for

cooperators as it ensures all individuals partaking in the movement process, herd

together at the same place; therefore, ensuring that defectors receive rewards from

cooperators.

As h tends to larger values, regardless of the movement process, the cooperator’s

fixation probability gradually increases because individuals are more likely to remain

on their own therefore, cooperators are highly unlikely to interact with defectors,

thus increasing their relative fitness.

Fig. 2.1 also shows plots of the fixation probability of the cooperator against B

(scaled to B
B+1). As B increases, the cooperator’s fixation probability increases. This

is attributed to the gradual shift in the movement mechanism from a deterministic

type (B = 0), where individuals simply move to the place containing the largest

number of individuals, to an independent type (B → ∞) where individuals move

randomly, without influence from other individuals. As B increases, individuals are

less likely to herd together therefore the relative difference in the average cooperator’s

and defector’s fitness gradually decreases, thus increasing the cooperator’s fixation

probability.

The cooperator’s fixation probability is higher under BDD dynamics because

selection affects the second event. During the birth event, the probability of the co-

operator reproducing is simply 1
N as opposed to the less favourable BDB dynamics

where the probability is proportional to the cooperator’s fitness. For large h, the

fixation probability tends to 1
N shown in Fig. 2.1(e) and Fig. 2.1(g). Here, individ-
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uals are mostly alone or occasionally with another individual. If an alone individual

is randomly selected to reproduce, then its offspring will replace them. Suppose an

individual within a pair is randomly selected to reproduce. In that case, the other

individual within the pair is guaranteed to be replaced, thus rendering the influence

of selection within the replacement process irrelevant.

Furthermore, Fig. 2.1 shows that row-dependent movement has a more promi-

nent effect on the cooperator’s fixation probability when selection acts on the second

event. In Fig. 2.1(e) − (h), there is a greater disparity in the fixation probabilities

between the different movement processes compared to Fig. 2.1(a)−(d) where there

is a smaller effect. Under BDD dynamics, even though cooperators are more likely

to reproduce, they are also more likely to be replaced (depending on the movement

mechanism governing the process). For instance, if individuals are moving via fol-

low the majority and h = 1, then all individuals herd together and cooperators

are more likely to be replaced because of selection acting on the replacement event.

Whereas under BDB dynamics, all individuals within the group are equally likely

to be replaced.

Figure 2.2 portrays the fixation probability of a mutant dove under distinct

polya-urn processes for BDB and BDD dynamics on the complete decagon and

pentadecagon. In these figures, as h approaches one, the dove’s fixation probability

increases and reaches its maximum when h = 1.

As all members of the population partake in the movement process when h = 1,

hawks are more likely to interact with one another, incurring greater costs, thus

reducing their relative fitness. Therefore, in this game, follow the majority is the

most beneficial movement process for doves because this process forces all hawks

partaking in the movement process to interact with each other. As h increases, the

dove’s fixation probability decreases because hawks are more likely to stay on their

home vertices and, therefore, less likely to interact with each other, increasing their

relative fitness. As h becomes infinitely large, the dove’s fixation probability tends

to 1
N regardless of the dynamics. Hawks and doves will have the same fitness if they

are always alone therefore, selection does not affect the process. Also, Fig. 2.2 shows

that as B increases, the dove’s fixation probability falls. This occurs because as B

increases, hawks are no longer forced to group, thus their relative fitness gradually

increases alongside B.

Furthermore, if selection acts on the second event, independent movement is no
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longer the worst type of movement for doves. Instead, a polya-urn process (close to

independent movement) is the worst type of movement as shown in Fig. 2.2(f) and

Fig. 2.2(h), where the value of B
B+1 reaches its lowest point slightly below 1 but

begins to increase after. This occurs due to the combined effects of the game and

dynamics but this effect is largely insignificant.

Figure 4.4 shows the fixation probability of a mutant cooperator under the

wheel process for both BDB and BDD dynamics on the complete decagon and

pentadecagon. The chosen values of theta remain consistent for each graph. θ = 0

represents the follow the majority process, while θ = 2π
N signifies a near complete

dispersal process where all individuals are separated. Note that in our simulations,

theta is rounded to three decimal places to allow for a minimal degree of pairwise

interaction between individuals under this angle. Without this adjustment, the sim-

ulation would fail to complete as individuals would only replace themselves if they

were always separated, thus the evolutionary process would never reach extinction

or fixation. θ = π
N corresponds to an intermediary angle between complete herding

and separation.

The trends depicted in Fig. 4.4 resemble those observed in the polya-urn in Fig.

2.1, particularly concerning the influences of herding, dynamics, and the level of h

have on the cooperator’s fixation probability. However, the key finding from these

figures is that θ = 2π
N , provides the maximum fixation probability for the mutant

cooperator for all h. When h = 1 and θ = 2π
N , all individuals are nearly always alone.

This leads to an increase in the cooperator’s relative fitness, as they rarely provide

any rewards to defectors. Consequently, the fixation probability rises significantly

at this point. Fig. 4.4(e) and Fig. 4.4(g) show that when θ = 2π
N or θ = π

N and

h = 1, the fixation probability is 1
N because individuals are either alone or in a pair

rendering selection insignificant as fitness is negligible in these cases due to selection

acting on the second event.

Figure 2.4 depicts the fixation probability of a mutant dove under the wheel pro-

cess for both BDB and BDD dynamics on the complete decagon and pentadecagon.

Fig. 2.4(a−d) show that when h = 1 and θ = 2π
N , the dove’s fixation probability

is 1
N despite selection acting on the first event. This occurs as nearly every member

of the population is separated, therefore individuals do not compete with each other

over resources. Therefore, both hawks and doves have the same fitness rendering

selection insignificant. When h = 1 and θ = π
N , the fixation probability is at its
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lowest. Under this angle, there are at most pairwise groups which is beneficial for

hawks who incur very small costs from the game interactions.

Also, Fig. 2.4 shows that follow the majority (θ = 0) gives a fixation probability

greater than 1
N . As there is a large native hawk population, they herd together

leading to them incurring significant costs, greatly reducing their relative fitness,

therefore, increasing the dove’s fixation probability. In the Hawk-Dove Game, it is

clear that herding favours the evolution of cooperation more than dispersal.

Below, we show a table summarising how the different movement processes gen-

erally affect the mutant cooperator’s and dove’s fixation probability (FP).

Cooperator’s FP Dove’s FP

Follow the majority (B = 0) Minimum Maximum
Polya-Urn (increasing B) Increases Decreases

Random movement (B → ∞) Increases Minimum
The wheel (separation angle) Maximum Increases

Table 2.1: Fixation probabilities (FP) of cooperators and doves under different movement
processes: follow the majority (B = 0), polya-urn (increasing B), random movement (B → ∞),
and the wheel (separation angle).

2.5 Discussion

In this chapter, we have developed the framework from Broom & Rychtar (2012),

by considering the evolution of structured populations on complete networks involv-

ing multiplayer interactions where individuals move in a coordinated manner (row-

dependent movement). Specifically, we have extended the territorial raider model

developed by Broom et al. (2015) as we have devised a methodology to model an

evolutionary process where individuals move in a coordinated manner described by

the movement mechanisms developed by Broom et al. (2020). In previous models,

(Broom et al. 2015, Schimit et al. 2019, 2022) individuals moved independently irre-

spective of how other individuals moved. Other models (Pattni et al. 2018, Erovenko

et al. 2019, Pires et al. 2023, Erovenko & Broom 2024) involved the development of

a Markov movement model, where the movement of individuals depends upon the

population’s history. Hence, the model in this chapter provides a different perspec-

tive on the movement of individuals. In particular, we explored the relation between

row-dependent movement and the evolution of cooperation.

The main objective of this chapter was to embed realistic coordinated movement

systems into a complete evolutionary setting and use different social dilemma games
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to illustrate this as this has previously not been considered in modelling the evolution

of structured populations. In Krieger et al. (2017) the effects of an abstract type of

motion on the evolution of cooperation in structured populations were explored. In

the context of evolutionary graph theory, individuals swap or shuffle vertices on the

graph structure, independent of the reproductive events. They demonstrated that

the presence of motion can amplify or suppress selection depending on the graph

structure. For instance, motion suppresses selection on the cycle graph. However,

it was also shown that this type of motion did not change the population’s config-

uration on the complete graph and, therefore, has no effects on the evolutionary

dynamics. This, however, differs from our results in this chapter focused on com-

plete graphs as we have illustrated the several effects the movement mechanisms

have on the evolution of cooperation. However, the work done in this chapter is

largely different as individuals move more realistically and can form multiplayer

groups. More importantly, in the models developed in this chapter, individuals have

a preference towards their unique home vertex, governed by the home fidelity pa-

rameter. When h ̸= 1, individuals do not share the same movement distribution

due to the bias towards their home vertex. This represents a significant disparity

to evolutionary graph theory models involving complete graphs, where individuals

typically have identical distributions in well-mixed populations (when the weights

are equal). By using the Broom-Rychtar framework, we are able to further investi-

gate the mutant cooperator’s fixation probability and capture the realistic influence

of territorial preference on complete graph structures.

In the context of the Public Goods game, we demonstrated that herding hinders

the evolution of cooperation as aggregation provides defectors with opportunities

to exploit cooperators in their contest interactions. Dispersal, however, increases

the likelihood of cooperative behaviour evolving as defectors are less likely to be

in groups containing cooperators and, therefore, cannot receive a benefit from their

presence. Ohtsuki et al. (2006) showed that, in general, birth-death processes

do not favour the evolution of cooperation. Consequently, in the Public Goods

game, the cooperator’s fixation probability is always under 1/N , even with the

implementation of the movement mechanisms. However, in the Hawk-Dove Game,

aggregation benefits the evolution of cooperation. In Broom et al. (2015), it was

shown that the dove’s fixation probability can occasionally exceed 1/N if the reward

is adjusted. However, the results in this chapter show that even if the reward
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remains constant, the movement distributions, particularly follow the majority, have

a stronger effect in increasing the dove’s fixation probability above 1/N as hawks are

forced to herd together. This forces hawks to interact with one another, incurring

a greater cost, thus decreasing their relative fitness. While dispersal also benefits

doves, herding has a stronger effect.

Moreover, we derived analytical expressions for the fixation probabilities of the

cooperator and dove in both BDB and BDD dynamics. By applying weak selection

methods, we extended previous analyses (Tarnita et al. 2009, Taylor et al. 2004) by

producing neutrality and equilibrium conditions for the Hawk-Dove game. These

conditions align with our expectations, indicating that, in the models developed in

this chapter, hawks generally perform worse than in the traditional evolutionary

graph theory models. The work in this chapter accounts for a more realistic multi-

player game scenario compared to the limiting pairwise case. Notably, larger group

sizes negatively impact the hawk’s fixation probability as expected.
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Chapter 3

Predictors of Fixation

Probability under Coordinated

Movement Systems

3.1 Introduction

In the previous chapter, the effects of the row-dependent movement mechanisms on

the evolution of cooperation in the Public Goods and Hawk-Dove games on com-

plete networks were extensively explored. However, it has been previously shown

that measures such as mean group size and temperature are strong predictors of

fixation probability, with temperature often being the stronger predictor (Broom

et al. 2015, Schimit et al. 2019, 2022). The purpose of this chapter is to extend

the previous analysis by using the evolutionary model developed in the previous

chapter to investigate how the row-dependent movement mechanisms affect the pre-

dictors of fixation probability, and whether the measures retain their significance as

strong predictors of fixation. We also consider the Stag-Hunt game as this has not

been previously considered in our models, to investigate the effects of row-dependent

movement in a social dilemma game where selection can potentially favour cooper-

ation. We published the work presented in this chapter in Haq et al. (2025).
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3.2 The Model

The evolutionary model in this chapter follows the same formulation as presented

in Chapter 2 (refer to section 2.2). For clarity, the key assumptions are briefly

summarised below, with references to relevant sections where necessary.

The population structure is defined as before in section 2.2.1 via the territorial

raider model. Similarly, this chapter only considers complete networks. Due to

this assumption, all individuals have the same temperature (1.12) and this can be

expressed as

τN = (N − 1)dN . (3.1)

We also considered BDB and BDD dynamics, the same as in section 2.2.2.

3.3 Results

In this section, we first demonstrate how to calculate significant evolutionary pre-

dictors of fixation probability. We then present simulation results on fixation prob-

abilities for mutant cooperative strategies from the games defined in Section 1.7.4,

under the coordinated movement mechanisms described in section 1.9, and their re-

lationships with mean group size and temperature in a well-mixed population on the

complete decagon. This is followed by an analytical explanation for certain trends

observed in the simulations.

3.3.1 Evolutionary measures impacting the fixation probability

We first considered how T (1.49) relates to the expected group size. From (1.30),

the expected group size is given by

E[|G|] = E[X2
m]

E[Xm]
= E[X2

m]. (3.2)

As we only considered well-mixed populations on complete graphs where each indi-

vidual resides within their unique home vertex, the expected number of individuals

on a given place is one i.e. E[Xm] = 1. By substituting (3.2) into (1.49) and

simplifying,

T =
1

N − 1
(E[|G|]− 1). (3.3)
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(3.3) demonstrates that the aggregation measure T is directly related to the mean

group size and if either T or E[|G|] is known, the other can be calculated. We

analytically calculated the evolutionary measures considered in this chapter on an

N -sized complete network, for h > 1, under the follow the majority, independent

and wheel processes. As an example, we show how we calculated the mean group

size under follow the majority.

|G| =
N∑

L=0

(λ)L(1− λ)N−L

(
N

L

)(
N − L

N

(
(L+ 1)2 +N − L− 1

N

)
+

N

L

(
L2 +N − L

N

))
,

=

N∑
L=0

(λ)L(1− λ)N−L

((
N

L

)
+

1

N

(
N

L− 1

)
+

L2(N − 2)

N

(
N

L

))
,

= 1 + λ

(
1 + (1− 2

N
)((N − 1)λ+ 1)

)
, (3.4)

where λ = N
h+N−1 . By using similar methods, the mean group size under indepen-

dent movement is given by

|G| = 1 + λ

(
2− 1

N
(2 + λN − λ)

)
, (3.5)

and the mean group size for the wheel is given by

|G| = 1 +
1

N

(( N∑
⌊ 2π
Nθ

⌋

(
⌊ 2π
Nθ

⌋2 + 1

2
(⌊ 2π
Nθ

⌋2 + ⌊ 2π
Nθ

⌋)
(
Nθ

2π
(1− ⌊ 2π

Nθ
⌋)− 1

)

+

⌊ 2π
Nθ

⌋−1∑
L=2

(
L2 +

L2 + L

2
(
Nθ

6π
(1− L)− 1)

))
(λ)L(1− λ)N−L

(
N − 2

L− 2

)
+

2(λ− λ2)

N

)
. (3.6)

The calculations for (3.5) and (3.6) can be found in the appendix leading to the

above, labelled (22) and (25). By using (3.3), we were able to calculate T for the

movement processes by using (3.4), (3.5) and (3.6). For the follow the majority

process

T =
1

N − 1
λ

(
1 + (1− 2

N
)((N − 1)λ+ 1)

)
. (3.7)
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Similarly, T under independent movement is given by

T =
1

N − 1
λ

(
2− 1

N
(2 + λN − λ)

)
, (3.8)

and T for the wheel is

T =
1

N(N − 1)

(( N∑
⌊ 2π
Nθ

⌋

(
⌊ 2π
Nθ

⌋2 + 1

2
(⌊ 2π
Nθ

⌋2 + ⌊ 2π
Nθ

⌋)
(
Nθ

2π
(1− ⌊ 2π

Nθ
⌋)− 1

)

+

⌊ 2π
Nθ

⌋−1∑
L=2

(
L2 +

L2 + L

2
(
Nθ

6π
(1− L)− 1)

))
(λ)L(1− λ)N−L

(
N − 2

L− 2

)
+

2(λ− λ2)

N

)
. (3.9)

To calculate the temperature, we considered an N -sized, well-mixed population and

all of the possible ways two individuals Ii and Ij can replace each other within an

L-sized group and used the relation τN = (N − 1)dN . We show how we calculated

this measure under the follow the majority process (the calculations for independent

movement and the wheel can be found in the appendix leading to (26), (27) and

(28)). A group of size L can form in one of three ways:

• Ii and Ij move with L− 2 individuals to an empty vertex;

• Ii moves with L− 2 individuals to Ij ’s home vertex or vice-versa;

• Ii and Ij move with L− 3 individuals to a place containing an individual.

We then obtain the following expression where the first summation represents the

first two cases and the second summation represents the third case.

τN = N − 1

( N∑
L=2

(λ)L−2(1− λ)N−L

(
N − 2

L− 2

)(
1

N

)(
L

L− 1
(λ)2 + 2λ(1− λ)

)

+
N∑

L=3

(λ)L−1(1− λ)N−L+1

(
N − 2

L− 3

)(
1

L− 1
− 1

N

))
,

where λ = N
h+N−1 . By expanding the summations and simplifying, the temperature

for follow the majority process on a complete N -sized network is given by

τN = λ+
1− λ

N
− (1− λ)N−1

N
. (3.10)
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Using similar methods, the temperature under independent movement is given by

equation (3.11), while the temperature for the wheel is provided in equations (3.12)

and (3.13).

τN = 1− (N +Nλ(λ− 1)− λ2)(N − λ)N−2

NN−1
. (3.11)

0 ≤ θ ≤ π
N :

τN = 1−
(

1

N
(N − 1)(1− λ)(1− (1− λ)N−1) + (1− λ)N

+
θ

π

(
λ+

1

2
((1− λ)(1− (1− λ)N−1) + (N − 1)(λ− 1)(λ))

))
. (3.12)

π
N ≤ θ ≤ 2π

N :

τN = 1−
(

1

N

(
− 1 + (1− λ)N + λ(λ+ 2)−N(λ2 + λ− 1)

)
− θ

2π

(
− 1 + (1− λ)N + λ(N + 3λ− 3Nλ)

))
. (3.13)

The detailed calculations for (3.11), (3.12) and (3.13) can be found in the appendix

(26), (27) and (28).

In Broom et al. (2015), it was identified that temperature and fixation proba-

bility share a linear relationship. This was observed under conditions of high home

fidelity and independent movement. However, our analysis in section 3.3.2 demon-

strates that this result generalises across all values of h and for all movement pro-

cesses. To support this analytically, Haq et al. (2024) showed that the fixation

probability of a mutant cooperator on a complete N -sized network under BDB dy-

namics is given by (2.9). Using the definition of the temperature from (1.12), we

can re-express (2.9) in terms of the temperature

ρA1 =
1

1 +
∑N−1

j=1

∏j
k=1

R+kV (
τN
N−1

)

R−C+(k−1)V (
τN
N−1

)

. (3.14)

(3.14) shows that by simply knowing the temperature, the cooperator’s fixation

probability can be calculated, without knowing the governing movement mecha-

nism. Therefore, in the models considered in this paper for the Public Goods game,

temperature matters more than the governing movement mechanism and is the most

significant measure in the evolutionary process.
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In Haq et al. (2024), it was shown that under independent movement, the fixation

probability of a mutant dove under BDB dynamics on a complete N -sized network

is given by (2.10). It is clear that unlike (2.9), the fitnesses cannot be expressed

in terms of dN and, therefore, cannot be re-expressed in terms of the temperature.

This implies that the governing movement procedure plays a more significant role

in the Hawk-Dove game than in the Public Goods game, hence the presence of the

non-linear trends in Figure 7. A similar analysis holds for the Stag-Hunt game,

where the fitnesses will not simply depend on dN , but other significant factors such

as the threshold value.

3.3.2 Numerical results

In this section, we conducted similar simulation methods to those used in the second

chapter to investigate evolutionary processes involving the games defined in section

1.7.4 and whether mean group size (1.30) and temperature (1.12) continue to serve

as strong predictors of fixation, under models involving row-dependent movement.

One simulation is delineated as follows:

• The decagon complete network is formed using the iGraph library (Csardi and

Nepusz 2006).

• The mutant is randomly placed on one of the vertices.

• Every individual moves (or not) from their home vertex according to the model

as described in section 2.3.1. Groups are formed and multiplayer games are

played.

• Individuals return to their home places.

• Each individual moves (or not) and groups are formed and the dynamic process

occurs. No games are played. Instead, one individual is selected to reproduce

an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.

• The simulation ends once the mutant fixates in the population or becomes

extinct.

• This process is averaged over 1,000,000 cases to minimise statistical variability.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: The fixation probabilities of the cooperator and defector in the Stag-
Hunt game on the complete decagon under the Polya-urn and wheel processes. (the
payoffs are set as R = 10, C = 1, V = 12 and L = 2). (a), (b), (c) and (d) show the
fixation probability of a mutant cooperator in a population of defectors and vice-versa
for (e), (f), (g) and (h). Figures (a), (b), (c) and (d) represent the cooperator’s fixation
probability and figures (e), (f), (g) and (h) represent the defector’s. For the Polya-urn,
in (a) and (e) we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value to mirror independent movement). For the wheel, in (c) and
(g) we set θ = 0 (follow the majority), θ = 2π

N (represents a near complete dispersal
process), θ = π

N . For (b) and (f), we plot the fixation probability against B (for the
Polya-urn) and set h = 1, h = 20 and h = 500. For (d) and (h), we plot the fixation
probability against θ (for the wheel) and set h = 1, h = 20 and h = 500.



(a) (b)

(c) (d)

Figure 3.2: The mean group size and temperature of individuals within the a well-
mixed population on the complete decagon for varying h under distinct Polya-urn pro-
cesses and wheel processes. (a) and (b) show the mean group size and (c) and (d) show
the temperature. We set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000
(a sufficiently large value of B representing independent movement). We also set θ = 0
(follow the majority), θ = 2π

N (represents a near complete dispersal process) and θ = π
N .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The fixation probability plotted against the mean group size for a well-
mixed population in the Public Goods, Hawk-Dove and Stag-Hunt games on the com-
plete decagon graph. As we vary h, we plot the corresponding fixation probability and
mean group size values against each other. Figures (a), (c) and (e) illustrate Polya-urn
processes where we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value of B representing independent movement). (b), (d) and (f) show
wheel processes where we set θ = 0 (follow the majority), θ = 2π

N (represents a near
complete dispersal process) and θ = π

N .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: The fixation probability plotted against the temperature for a well-mixed
population in the Public Goods, Hawk-Dove and Stag-Hunt games on the complete
decagon graph. As we vary h, we plot the corresponding fixation probability and
temperature values against each other. Figures (a), (c) and (e) illustrate Polya-urn
processes where we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value of B representing independent movement). (b), (d) and (f) show
wheel processes where we set θ = 0 (follow the majority), θ = 2π

N (represents a near
complete dispersal process) and θ = π

N .
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Figure 3.1 illustrates the fixation probability of a mutant cooperator and defector

in the Stag-Hunt game under the Polya-urn and wheel processes on the complete

decagon. Figures 3.1(a) and 3.1(b) show that for the Polya-urn processes where

B ̸= 0, the cooperator’s fixation probability reaches its maximum when h = 1,

meaning that all members of the population participate in the movement process.

This leads to the formation of groups of varying sizes that reach the threshold,

enabling members to share the reward among themselves. At this point, the coop-

erator’s fixation probability exceeds 1/N = 0.1, whereas Figure 3.1(e) indicates that

the corresponding fixation probability for the defector remains below 1/N . This

demonstrates the significant impact of row-dependent movement in the Stag-Hunt

game, as it can raise the cooperator’s fixation probability not only above neutral-

ity but also above the defector’s, thereby facilitating the evolution of cooperation.

Corresponding figures are shown in Haq et al. (2024) for the Public Goods game.

It was shown that under this social dilemma game, cooperation is always below

neutrality for all movement processes. However, the results in the Stag-Hunt game

demonstrate a stronger influence of the movement mechanisms, as these can raise

the cooperator’s fixation probability not only above neutrality, but also above the

defector’s. This is due to the nature of the Stag-Hunt game, where cooperators can

generate rewards when in groups that reach the threshold. However, in the Public

Goods game, defectors always benefit from the presence of cooperators, regardless

of whether the threshold is met, thereby undermining the advantages of cooperative

behaviour.

We see a similar trend in Figures 3.1(c) and 3.1(g) which show an important

example where the wheel process significantly influences the evolution of coopera-

tion. When h = 1 and θ = π/10, the cooperator’s fixation probability is above 0.15,

whereas the defector’s corresponding fixation probability is below 0.02. This angle

proves very beneficial for cooperators and allows them to meet each other in pair-

wise groups that meet the threshold to produce the reward. Under these conditions,

defectors mostly find themselves in pairwise groups that either contain another de-

fector or a single cooperator, in either case, the reward cannot be produced and the

defector’s fitness remains relatively low. Therefore, there is a significant disparity

between the cooperator’s and defector’s fixation probabilities.

As h increases, the cooperator’s fixation probability gradually decreases. This is

due to individuals being more likely to remain on their home vertex and, therefore,
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less likely to move and interact with one another. Therefore, the likelihood of coop-

erators being in groups where the threshold is reached diminishes, while defectors

have a higher relative fitness when all individuals are alone, thereby reducing the

cooperator’s fixation probability.

For the follow the majority process (B = 0), the cooperator’s fixation probability

is at its lowest compared to the other movement processes. This is due to all mem-

bers partaking in the movement process aggregating on the same vertex, allowing

defectors to exploit cooperators by receiving a share of the produced reward without

incurring any cost. Under this movement process, defectors have a greater relative

fitness than cooperators, thereby minimising the cooperator’s fixation probability.

An important result in this context is that herding proves quite detrimental to co-

operators, as it reduces their fixation probability below the neutral benchmark of

1
N and raises the defector’s above this level, thereby favouring the evolution of de-

fection. As h rises, the fixation probability gradually rises, as individuals are more

likely to be in smaller groups, until h reaches a level where individuals are most

inclined to remain on their home vertex. As h continues to increase, the fixation

probability falls as cooperators are always alone and continue to pay a cost, unlike

defectors who do not and, therefore, maintain a higher relative fitness.

Figure 3.2 illustrates the mean group size and temperature under distinct Polya-

urn and wheel processes for varying values of h on the complete decagon graph. In

Figure 4a, the mean group size reaches its maximum when h = 1 across all movement

processes. This is because all individuals participate in the movement process at this

value of h, meaning that under the follow the majority process, the mean group size

is equal to the population size. However, as the value of B increases, the value of the

mean group size decreases. This is due to the movement process gradually shifting

from a deterministic type to a stochastic process, eventually becoming a completely

random movement process as the number of balls in the urn increases. The trends

in Figure 3.2(b) for the wheel process are largely similar to the Polya-urn, except

when the angle between the spikes is approximately 2π
N and h = 1. At this point,

all individuals within the population are nearly always alone. Given the significant

effects of the movement processes on the mean group size, we considered the impact

of mean group size on the fixation probability of cooperative strategies, as shown in

Figure 3.3.

Figure 3.3 illustrates the fixation probabilities of cooperative strategies plotted
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against the mean group size under the Polya-urn and wheel processes on the com-

plete decagon. Figures 3.3(a) and 3.3(b) show the fixation probability of a mutant

cooperator in the Public Goods game. As the mean group size increases, the co-

operator’s fixation probability decreases for all movement processes. This result is

expected, as larger group sizes lead to interactions between cooperators and defec-

tors, allowing defectors to gain rewards and thereby reducing the relative fitness of

cooperators. Figures 3.3(c) and 3.3(d) depict the fixation probability of a mutant

dove. In contrast, as the mean group size increases, the fixation probability also

increases. This occurs because hawks are more likely to be grouped together as

the group size grows, causing them to endure greater costs, which lowers their rel-

ative fitness and, consequently, raises the dove’s fixation probability. Figures 3.3(e)

and 3.3(f) represent the cooperator’s fixation probability in the Stag-Hunt game.

Initially, as the mean group size increases, the fixation probability rises until the

mean group size reaches the threshold level (set as L = 2). This benefits cooper-

ators, as they either find themselves in groups with another cooperator, enabling

them to produce and share the reward, or with a defector, in which case the reward

cannot be produced. Other values of L would change the mean group size where

the maximum fixation probability occurs, constrained by the group formations of

the considered movement process. However, as the mean group size continues to

increase, the fixation probability declines. This is because larger group sizes do not

provide significant additional benefits to cooperators beyond the threshold level and

instead allow defectors to join cooperative groups and receive a share of the reward.

Figures 3.2(c) and 3.2(d) show the temperature for various Polya-urn (c) and

wheel (d) processes for varying values of h on the complete decagon graph. The

trends observed here are very similar to those in Figures 3.2a and 3.2b, as it has been

previously demonstrated that temperature increases with mean group size (Broom et

al. 2015). This unsurprisingly holds under the considered movement processes. Low

values of h correspond to high levels of movement within the population, therefore

when h = 1, the temperature is at its highest, as individuals are more likely to be

replaced by others due to frequent interactions (except for the case where θ = 2π
N ,

as individuals are nearly always alone, the temperature is at its lowest). As h

increases, individuals are less likely to move and, therefore, less likely to interact

with one another, leading to a decrease in temperature across all of the movement

processes.
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Figure 3.4 depicts the fixation probabilities of cooperative strategies plotted

against the temperature under the Polya-urn and wheel processes on the complete

decagon. Figures 3.4(a) and 3.4(b) show the fixation probability of a mutant coop-

erator in the Public Goods game. As the temperature increases, the cooperator’s

fixation probability decreases for all movement processes. This is because higher

temperatures indicate greater levels of mixing between cooperators and defectors,

enabling defectors to gain rewards from cooperators. Notably, the different move-

ment processes overlap, indicating that, regardless of the movement mechanism,

the temperature consistently predicts the cooperator’s fixation probability. In other

words, the temperature is the most significant predictor in the Public Goods evolu-

tionary process as shown in table 3.1.

Furthermore, from Figures 3.4(c) and 3.4(d), we observe that in the Hawk-Dove

game, as the temperature increases, the dove’s fixation probability increases. High

temperature levels correspond to low values of h and, therefore, high levels of inter-

action between doves and hawks. As hawks interact with one another, they incur

greater costs, which reduces their relative fitness and, consequently, increases the

dove’s fixation probability. Additionally, the relationship between temperature and

the dove’s fixation probability is linear for small temperature values but breaks

down as temperature increases, particularly for the follow the majority process.

Low temperatures, correspond to high values of h, meaning many individuals are

not partaking in the movement process and are either alone or in small pairwise

groups. As temperature increases, more individuals become mobile, leading to the

formation of groups of various sizes, particularly for the follow the majority process,

which significantly disadvantages hawks and causes the linearity breakdown. Thus,

in the Hawk-Dove game, at higher temperatures, the governing movement process

holds an important role in the evolutionary process.

Furthermore, from Figures 3.4(e) and 3.4(f), we observe that in the Stag-Hunt

game, the cooperator’s fixation probability increases as the temperature rises, until

it reaches a level where the fixation probability begins to decrease. Low temperature

values indicate limited interaction between individuals. Consequently, the relation-

ship between temperature and fixation probability is linear, similar to that observed

in the Hawk-Dove game. As temperature increases, individuals are more likely to

move and interact in pairwise groups, when cooperators interact with at least one

other cooperator, they can produce the reward, leading to an increase in fixation
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probability. When B = 0 or θ = 0, the fixation probability declines rapidly as tem-

perature rises, due to the deterministic nature of the movement process, which causes

individuals to herd together. This herding effect is disadvantageous to cooperators,

reducing their relative fitness and, consequently, their fixation probability. When

B ̸= 0 or θ ̸= 0, the decrease in fixation probability is more gradual, as cooperators

move probabilistically and can still engage in beneficial pairwise interactions.

Below, we present table 3.1 summarising how effective the evolutionary measures

are at predicting fixation probability for each of the games considered, and when

the movement mechanism holds a more influential role.

Game Mean group size Temperature

Public-Goods Strong predictor at low values,
the effect diminishes for larger
groups.

Strongest predictor across all
temperatures.

Hawk–Dove Strong predictor at low mean
group size values.

Strong predictor for low tem-
peratures.

Stag–Hunt fixation is dependent on the
movement mechanism and
threshold value (L).

Strong predictor for low tem-
peratures.

Table 3.1: Summary of the relative effectiveness of mean group size and temperature in
predicting fixation probability across the Public-Goods, Hawk–Dove and Stag–Hunt games
under BDB dynamics.

3.3.3 Differences between processes

In the Public Goods game, the fixation probability of a mutant cooperator under

BDD dynamics, expressed in terms of the temperature, is given by

ρA1 =
1

1 +
∑N−1

j=1

∏j
k=1

(N−k+(k−N+ 1
τN

(N−1))
R+kV (

τN
N−1

)

R−C+(k−1)V (
τN
N−1

)
)

(k+( 1
τN

(N−1)−k)
R−C+(k−1)V (

τN
N−1

)

R+kV (
τN
N−1

)
)

. (3.15)

This equation has a similar structure to that of the BDB case (3.14). In both

cases, the temperature plays a more significant role in determining the fixation

probability than the governing movement mechanism. This pattern is illustrated

in Figure 3.4(a), where, under BDB dynamics, a fixed temperature value results in

approximately identical fixation probabilities across all movement processes. This

suggests that the temperature alone is sufficient to determine the fixation probability

in the Public-Goods game.
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However, Figure 3.5 demonstrates a different relationship under BDD dynamics.

Specifically, for a fixed temperature value, the different movement processes yield

varying fixation probabilities. Unlike in the BDB case, the analytical predictions

and simulations do not match. The difference arises because the theoretical process

assumes that individuals effectively participate in an infinite number of games, which

is the same process as in Broom et al. (2015) and Pattni et al. (2017). However,

the simulations assume that individuals only play a single game before the dynamic

time step, which is consistent with the process in Schimit et al. (2019) (2022).

Figure 3.5: The fixation probability plotted against the temperature in the Public Goods
games on the complete decagon graph under BDD dynamics for distinct Polya-urn processes.
We set B = 0 (follow the majority), B = 2, B = 6 and B = 10, 000 (a sufficiently large value
of B representing independent movement).

These two processes might be expected to produce the same results, however,

under certain updating rules, they yield differing outcomes due to three key averag-

ing effects: payoff averaging, weight averaging and averaging of reciprocals of fitness.

As Broom, Cressman & Křivan (2019) discussed, the expectation of a ratio, E[a/b],

is not equal to the ratio of expectations, E[a]/E[b].

This distinction between the expectation of a ratio and the ratio of expecta-

tions manifests differently across the updating rules, occasionally leading to differ-

ent outcomes between the two processes. For example, under BDB dynamics, the

simulations, an extension of Schimit et al. (2019), assume

E[bi] = E

[
Fi

N∑
k

Fk

]
, (3.16)

whereas the theoretical analysis, an extension of Broom et al. (2015) and Pattni
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et al. (2017) assume,

E[bi] =
E[Fi]

E

[
N∑
k

Fk

] . (3.17)

Although this discrepancy can lead to differences between the two processes, the

error becomes negligible under BDB dynamics when the background payoff is high

or the population size is large. This averaging effect is present under all dynamics,

but its influence varies depending on the specific updating rule.

A further averaging issue occurs when considering the weights under dynamics

where selection acts on the second event (such as BDD and DBB), introducing

an additional layer of difference between the two processes. For example, when h

is large, the self weight dominates the others, emphasising this effect. However,

under dynamics where selection acts on the first event (such as BDB and DBD),

the denominator in the replacement event sums to one, therefore removing this

additional issue of averaging.

The third averaging issue occurs in dynamics where selection acts on the replace-

ment event (such as DBD and BDD). These dynamics involve terms with reciprocals

of individuals’ fitnesses, which further contributes to the differences between the two

processes.

Consequently, for BDD dynamics, the analytical and simulation results do not

coincide, as they are derived from different processes based on different assumptions.

Table 3.2 shows that all three effects are present in BDD dynamics. For this reason,

we did not compare the analytical results with the simulations in Chapter 2.

Below, we present a table summarising these three factors and their presence in

the different dynamics.

Dynamics Payoff Averaging Weight Averaging Fitness Inverses

BDB ✓ x x
BDD ✓ ✓ ✓
DBD ✓ x ✓
DBB ✓ ✓ x

Table 3.2: Summary of the three effects across different dynamics. A tick (✓) represents the
presence of the effect, whereas a cross (x) indicates its absence.

77



3.4 Discussion

In this chapter, we have extended the modelling framework developed in Broom &

Rychtar (2012), by utilising the evolutionary model introduced in Haq et al. (2024)

to not only examine the effects of row-dependent movement (Broom et al. 2020) on

predictors of fixation probability, but also to implement the multiplayer Stag-Hunt

game within the evolutionary context of the territorial raider model. In previous

models, (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019) individuals moved

independently, meaning that only random movement was considered in the prior

analysis of predictors of fixation probability. Also, individuals primarily interacted

via the Public Goods, Hawk-Dove or Fixed Fitness Games. We have considered a

different social dilemma in the form of the multiplayer Stag-Hunt game, where selec-

tion can favour the evolution of cooperation depending on the movement mechanism

governing the process (unlike in the Public Goods game, where cooperation cannot

evolve in well-mixed populations).

We first demonstrated in section 3.3.1 how previously defined measures of aggre-

gation from Broom et al. (2020), specifically T (1.49) relate to the mean group size

and showed how T , mean group size and temperature can be calculated. Previous

work by Broom et al. (2015) and Schimit et al. (2019) explained the importance of

these predictors, and our aim was to demonstrate that these measures not only hold

theoretical significance, but can also be practically calculated for various movement

processes. In section 3.3.2, we examined the Stag-Hunt game and showed that herd-

ing can be significantly detrimental to the evolution of cooperation, to the extent

that selection opposes its evolution. However, other movement processes raise the

cooperator’s fixation probability above that of the defector and above the neutral

benchmark, thereby supporting the evolution of cooperation. A significant example

of this was shown in the wheel process. In the Stag-Hunt game, row-dependent

movement plays a more influential role than in the Public Goods game considered

by Haq et al. (2024). Dispersal can also be detrimental to cooperators as it ensures

cooperators partaking in the movement process, do not interact with each other,

reducing their chances of being in a group that meets the threshold.

We also considered the effects of various movement processes on the mean group

size and temperature and, in turn, their influence on fixation probability and have

observed patterns in our model that have not been previously observed in evolu-
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tionary graph theory (Pattni et al. 2015, Traulsen et al. 2007). In the Public Goods

game, we demonstrated that temperature is a stronger predictor of fixation than

mean group size across all levels of h, regardless of the movement process. Our

findings indicated that temperature maintains a linear relationship with fixation

probability for all movement processes, signifying its importance as the most crucial

parameter in the evolutionary process. This was first identified by Broom et al.

(2015) but only for high levels of home fidelity and independent movement. Our

analysis extends this work by incorporating more complex movement mechanisms,

demonstrating that temperature’s predictive property remains robust even when in-

dividuals move in a coordinated manner. In the Hawk-Dove game, we showed that

temperature continues to be a stronger predictor of fixation. However, due to the

greater complexity of the game compared to the Public Goods game, the linear re-

lationship between temperature and fixation breaks down as the temperature rises,

with a similar pattern observed in the Stag-Hunt game. We provided an analytical

analysis of this relationship, highlighting that while temperature is generally a re-

liable predictor, the nature of the game and the governing movement process play

significant roles in determining the relationship between temperature and fixation.

In addition to examining the impact of the row-dependent movement mecha-

nisms, we also investigated the differences between two modelling processes used in

the territorial raider model (Broom et al. 2015, Pattni et al. 2017, Schimit et al.

2019, 2022). One process assumes that individuals effectively participate in an in-

finite number of games per time step, an assumption underlying the process from

Broom et al. (2015) and Pattni et al. (2017). The other process assumes that indi-

viduals play a single game before each update, often assumed in the simulations such

as in Schimit et al. (2019, 2022). Although these processes might appear equivalent,

we identified three averaging issues, payoffs, weights and reciprocal fitness terms that

can lead to different outcomes depending on the evolutionary dynamics governing

the process. Although the simulation process from Schimit et al. (2019, 2022) can

be seen as extensions of the theoretical process from Broom et al. (2015) and Pat-

tni et al. (2017), under BDB dynamics, this equivalence does not generally hold

under other dynamics. Schimit et al. (2019) considered the territorial raider model

involving complex networks which could be revisited using an approach where indi-

viduals play a large number of games per time step, but this would involve significant

computational resources.

79



80



Chapter 4

Extending the Movement

Methodology to Incomplete

Networks

4.1 Introduction

In the previous chapters, we analysed the effects of row-dependent movement on the

evolution of cooperation, focusing on complete graphs. In such settings, tracking the

level of herding among individuals is relatively straightforward. For example, under

the follow the majority process with h = 1, all individuals are located at the same

place. On incomplete graphs, however, perfect aggregation is no longer guaranteed.

To address this, we begin by extending T (1.49) by establishing upper and lower

bounds on the maximum possible aggregation for all movement processes on a given

graph structure.

An important question is whether the generalised movement methodology devel-

oped in section 2.3.1 retains its faithful property when applied to incomplete graphs.

In chapter 2, we showed that this methodology ensures all individuals achieve the

target apriori distribution. In this chapter, however, we provide a simple counterex-

ample demonstrating that the property can fail on incomplete graphs for sequential

movement processes. This result motivates our focus on the wheel process, where

we extend the mechanism to incomplete graphs and develop an alignment algorithm

to approximate maximum herding. We intend to submit the results in this chapter

as a publication.
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4.2 The Model

The evolutionary set-up in this chapter uses the same underlying framework dis-

cussed in chapters 2 and 3 (refer to sections 2.2 and 3.2). The population structure

is again defined by the territorial raider model (refer to section 2.2.1). However, in

this chapter, we consider cases where the underlying network is incomplete. As a

result, certain assumptions that held in the previous chapters no longer apply. For

instance, some individuals in the population no longer have access to all locations,

meaning the movement methodology developed in section 2.3.1 may no longer en-

sure the movement mechanisms remain faithful i.e. a given target distribution may

not be achieved. Additionally, individuals in the same population no longer share

the same temperature, that is, equation (3.1) does not hold globally. As before, we

consider both BDB and BDD dynamics, consistent with the dynamics in chapters 2

and 3.

4.3 Results

In this section, we first establish upper and lower bounds for measures introduced

by Broom et al. (2020). These bounds provide insight into the maximum achievable

aggregation on incomplete graphs because, unlike complete graphs considered in

chapters 2 and 3, total aggregation is not guaranteed on incomplete graphs, which

motivates this direction.

We then show that the movement methodology developed in Section 2.3.1 no

longer guarantees the faithfulness of sequential movement processes (follow the ma-

jority and Polya-urn), by providing a simple counterexample where this property

fails. This demonstrates a limitation of the methodology when applied to incom-

plete graphs and motivates our focus on the wheel process.

Next, we extend the wheel process to incomplete networks and introduce an

alignment algorithm designed to approximate maximal aggregation. We provide

illustrative examples of the alignment algorithm and conclude with simulations in-

vestigating how the extended wheel process affects the evolution of cooperation on

complete networks.
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4.3.1 Upper and lower bounds on Tmax

In section 1.9, T (1.49) was defined as the probability of two individuals being

together under a particular movement process. Then, Tmax is the maximum possible

probability over all movement processes on a particular structure. In this section,

we provide upper and lower bounds on Tmax. To determine an upper bound for

Tmax, we present a step-by-step explanation leading to (4.1). Consider an arbitrary

number of individuals who have moved to Ii’s home vertex, denoted by ki+1, where

ki is the number of Ii’s neighbours and the +1 accounts for Ii, remaining on their

home place to maximise aggregation. The number of pairs that can form within this

group is given by
(
ki+1
2

)
. An upper bound for the probability of this group forming

is determined by the minimum number of connections Ii or one of its neighbours

possesses. Accordingly, this probability is bounded above by 1
ki,min+1

(
ki+1
2

)
, where

ki,min denotes the minimal degree among Ii’s neighbours. To capture this across the

entire network, we sum over all vertices, yielding,
∑N

i=1
1

ki,min+1

(
ki+1
2

)
. Hence, the

upper bound for Tmax is given by

1(
N
2

) N∑
i=1

1

ki,min + 1

(
ki + 1

2

)
. (4.1)

Similarly, to determine a lower bound for Tmax, we weight by 1/N as we can coor-

dinate Ii and all of their neighbours to meet on Ii’s home place by partitioning the

probability into N segments, one per place, and move all that can go there to that

place. Therefore, we can achieve an expected number of pairs given by
N∑
i=1

1
N

(
ki+1
2

)
.

Therefore, a lower bound for Tmax is given by

1(
N
2

) N∑
i=1

1

N

(
ki + 1

2

)
. (4.2)

Alternatively, one might naturally consider a potentially tighter lower bound for

Tmax by weighting by 1/(ki,max + 1), where ki,max denotes the maximal degree

among Ii and their neighbours. This leads to the expression:

1(
N
2

) N∑
i=1

1

ki,max + 1

(
ki + 1

2

)
. (4.3)

However, we show that this proposed lower bound can fail. Consider a cycle graph

with four nodes. Under maximum alignment, three individuals aggregate at a single
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location while the remaining individual is alone. In this case, there are three possible

pairs of individuals who are together and three other possible pairs that are not

resulting in Tmax = 1
2 . Applying the expression in (4.3), we obtain: 1

6(
4
3

(
3
2

)
) = 2

3 ,

which overestimates the true value. In contrast, using (4.2), we find 1
6
1
4(4
(
3
2

)
) = 1

2 .

This example illustrates that while (4.3) may seem like a natural alternative, it

does not always provide a valid lower bound. The failure arises because, under

these higher probabilities, we cannot always achieve the same level of coordination

between individuals that was guaranteed in the previous case.

Consider an N -sized, regular graph with k degree, then the upper and lower

bounds of Tmax are given by

1(
N
2

) N∑
i=1

1

N

(
k + 1

2

)
≤ Tmax ≤ 1(

N
2

) N∑
i=1

1

k + 1

(
k + 1

2

)
,

1(
N
2

) k(k + 1)

2
≤ Tmax ≤ 1(

N
2

)Nk

2
,

k(k + 1)

N(N − 1)
≤ Tmax ≤ k

N − 1
. (4.4)

4.3.2 Example of an unfaithful process

In chapter 2, we developed a general movement methodology with two main pur-

poses. Firstly, it embedded the row-dependent movement mechanisms of Broom

et al. (2020) into the evolutionary framework of the territorial raider model intro-

duced by Broom et al. (2015). Secondly, it ensured that individuals within the

population achieve a specified target distribution, given by the apriori distribution.

This property also held in chapter 3, as the graphs considered were all complete.

A natural next step is to ask whether this methodology extends to incomplete

graph structures, which represent more realistic and complex population networks.

Faithfulness was a key property intended in the previous chapters, and it is impor-

tant to determine whether it holds in this broader setting. We demonstrate, however,

through a simple counterexample that faithfulness can fail under sequential move-

ment processes (follow the majority and Polya-urn). Specifically, we examined a line

graph with three nodes and individuals, illustrated in Figure 4.1, where movement

is governed by the follow the majority process.
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I1 I2 I3

X Y Z

Figure 4.1: The line graph for three individuals. I1 resides on place X, I2 resides on place
Y , I3 resides on place Z.

The apriori distribution for I1 is given by: P (I1 is on their home vertex) =

h/(h + 1) and P (I1 is not on their home vertex) = 1/(h + 1). Assuming h > 1,

the probability that I1 partakes in the movement process is P ( I1 partakes in the

movement process) = 2/(h + 1), while the probability that I1 does not move and,

therefore, remains on their home vertex is P ( I1 does not partake in the movement

process) = (h − 1)/(h + 1). Using the movement methodology developed, we con-

sidered all the possible ways in which I1 remains on their home vertex to determine

whether the target distribution aligns with their apriori distribution.

The probability that only I1 partakes in the movement process and returns to

their home vertex (h − 1)2/(h+ 2)(h+ 1)2. If only I2 moves, then I1 must remain

on their home vertex; the same holds if only I3 moves. The probability of these

cases occurring is 5(h− 1)2/(h+2)(h+1)2. If both I1 and I2 move, the probability

of I1 being on their home vertex is 3(h− 1)/(h+ 2)(h+ 1)2. If I2 and I3 partake in

the movement process, then I1 must remain on their home vertex, with probability

6(h − 1)/(h + 2)(h + 1)2. If only I1 and I3 move, the probability of I1 being on

their home vertex is 3(h − 1)/2(h + 2)(h + 1)2. If all individuals move, then the

probability of I1 being on their home vertex is 29/6(h+2)(h+1)2. If no one moves,

then the probability of I1 being on their home vertex is (h − 1)3/(h + 2)(h + 1)2.

Hence, the total probability of I1 being on their home vertex is 6(h−1)2/(h+2)(h+

1)2 + 21(h − 1)/2(h + 2)(h + 1)2 + 29/6(h + 2)(h + 1)2 + (h − 1)3/(h + 2)(h + 1)2.

To determine the correct value of h′ that achieves the target apriori distribution, we

must solve for h′ in the following equation

h′

h′ + 1
=

12(h− 1)2 + 21(h− 1)

2(h+ 2)(h+ 1)2
+

29

6(h+ 2)(h+ 1)2
+

(h− 1)3

(h+ 2)(h+ 1)2
. (4.5)

By carrying out a very similar calculation for the probability of I2 being on their

home vertex, we must also solve for h′ in the following equation

h′

h′ + 2
=

5(h− 1)2 + 9(h− 1)

(h+ 2)(h+ 1)2
+

35

6(h+ 2)(h+ 1)2
+

(h− 1)3

(h+ 2)(h+ 1)2
. (4.6)
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Equations (4.5) and (4.6) show that two distinct values of h′ are required to ensure

that I1 and I2 meet their respective target distributions. In other words, each

individual would require their unique value home fidelity value. Therefore, in our

models with a single global home fidelity parameter, individuals following sequential

processes on incomplete networks may not always achieve their target distributions.

However, this result may be expected, particularly in heterogeneous graph struc-

tures, where the evolutionary setting is governed by a single global home fidelity

parameter. In such models, collective movement becomes increasingly constrained

by factors such as spatial connectivity. As a result, individual movement choices

are not solely governed by the row-dependent movement mechanism but are also

influenced by structural limitations and the ordering of others within the movement

process, making it difficult to achieve a target distribution that aligns with the apri-

ori. In a more complex model where each individual has their unique home fidelity

parameter, it may be possible to achieve the apriori distribution as a target.

It is important to note that, unlike the sequential movement processes, the wheel

continues to be a faithful movement process due to its mechanism. For instance,

consider an incomplete graph where there are M places. Suppose individual Ii

has d − 1 neighbours. Then their target apriori distribution is: P(at home vertex)

= h
h+d−1 , P(elsewhere) =

d−1
h+d−1 . Assuming h > 1, Ii engages in the wheel process

with probability d
h+d−1 , their wheel is split into d evenly-sized segments, therefore the

probability Ii is at their home place is h−1
h+d−1 + 1

d(
d

h+d−1) =
h

h+d−1 . The probability

they are elsewhere is (1− 1
d)(

d
h+d−1) =

d−1
h+d−1 . Both of these match the target apriori

distribution exactly.

This agreement occurs because the wheel allocates individuals simultaneously,

preserving the intended distribution. However, sequential movement processes intro-

duce dependence on the order in which individuals move. Once the first individual

moves, it can alter the marginal distribution of the next individual, potentially alter-

ing the achieved distribution away from the intended target. This makes it difficult

for all individuals to simultaneously satisfy the apriori distribution on incomplete

networks. For this reason, we focus on the wheel process for the remainder of the

chapter.
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4.3.3 Extending the wheel to incomplete graph structures

The sequential movement processes can be implemented on incomplete graphs, but,

as demonstrated, they may fail to preserve faithfulness, making them unsuitable

for maintaining target distributions. However, the wheel process is faithful on in-

complete graphs, but it must be extended to function on incomplete graphs where

individuals may have access to unique locations. On a complete graph, individuals

within a well-mixed population have access to all locations, allowing them to be

represented as spikes on the same wheel. On an incomplete graph, however, individ-

uals may have unique apriori distributions granting them access to specific locations

unavailable to others, so a single shared wheel is generally no longer possible.

To address this, we modified the wheel procedure from section 1.9. The first step

involves identifying all individuals participating in the movement process, followed

by stacking their corresponding wheels on top of each other, ensuring that each

individual’s spike is aligned above their respective wheel, as illustrated in Figure

4.2.

A
BC

U
VW

X
YZ

I1

I2

I3

A B

C

U V

W

X Y

Z

I1 I2 I3

(a) (b)

Figure 4.2: The wheel process for incomplete graphs. (a) The wheels for different individuals,
where each wheel represents the accessible locations for each individual. Individual I1 can
move to places A, B and C, I2 can move to U , V and W and I3 can move to X, Y and
Z. (b) represents the wheel stacking procedure. Each individual’s spike is positioned above
their respective wheel, ensuring that movements are correctly carried out on incomplete graph
structures.

4.3.4 The wheel alignment process

The wheel was introduced in previous chapters as a simple, idealised model of si-

multaneous allocation, designed to construct distributions with specific properties

while preserving faithfulness. For instance, in a well-mixed population, when h = 1

and θ = 2π/N , all individuals in the population are alone, representing a movement
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process where all individuals simultaneously move and eventually become separated.

One could imagine a population of animals dispersing from a central location with

particular requirements for levels of separation from others. When h = 1 and θ = 0,

all individuals within the population occupy the same place, representing a move-

ment process where all individuals prefer to move simultaneously and aggregate at

the same location. These examples highlight the wheel’s ability to capture both

dispersal and herding behaviours.

An important consideration is to ensure that the fundamental behaviours cap-

tured in earlier chapters, such as aggregation when θ = 0, remain consistent when

the wheel is applied on an incomplete graph. To address this, we developed an

alignment algorithm to approximate maximal aggregation by rotating the stacked

wheels in such a way that it enables as many individuals as possible herd together

at the same location θ = 0.

Consider an N -sized population on an incomplete graph. The alignment proce-

dure is defined as follows:

• Construct an N x N matrix, where the (i, j)-entry represents the probability

of individual Ii moving to the jth place.

• Identify the column with the least zero entries. Within this column, subtract

the minimum non-zero value from all non-zero entries. This step is referred to

as the primary alignment.

• Record the alignment in a table. Each column label corresponds to a location

where individuals aggregate. For example, P1 : A implies that the individuals

within the first primary alignment are aligned to place A. The entries within

each column will either be the value subtracted during the primary alignment,

or its negative. A negative value indicates that the corresponding individual

cannot move to that place and will instead be aligned elsewhere.

• If a column in the alignment table contains any negative entries, examine the

corresponding rows in the matrix to determine whether another column can

group at least some of these individuals during the previous primary alignment.

If so, repeat the same procedure as the primary alignment. This step is referred

to as the secondary alignment.

• Ensure that the secondary alignment does not interfere with subsequent pri-
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mary alignments, as the objective is to maximise aggregation. If there is a

conflict, carry out the secondary alignment if it aligns more individuals than

the next primary alignment.

• Once the cumulative total of all primary alignments sums to one, then the

alignment process is complete. Any remaining secondary alignments can now

be managed accordingly.

To illustrate this process, we present two examples. The first example considers

a simple line graph with three nodes, offering an intuitive understanding of how the

primary alignment operates in a straightforward setting. The second example ex-

plores a more complex and heterogeneous structure, demonstrating the importance

of secondary alignments when full alignment between all individuals is not achieved

during the primary step. This allows us to observe how our alignment methodol-

ogy handles more complex networks and ensures that approximately the maximum

number of individuals are grouped together.

The first example considers a line graph with three nodes (see figure 4.1). As-

suming h = 1, the corresponding matrix for this graph is given by


1
2

1
2 0

1
3

1
3

1
3

0 1
2

1
2

 (4.7)

The second column has the least zero entries, therefore, we apply the primary align-

ment to this column aligning 1/3 of each individual’s wheels to location Y . The

matrix then becomes 
1
2

1
6 0

1
3 0 1

3

0 1
6

1
2

 (4.8)

The alignment table is updated as follows:

P1 : Y

I1
1
3

I2
1
3

I3
1
3

Each column now contains one zero, therefore, a primary alignment can be applied
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to any of them. For simplicity, we perform the alignment in the first column, aligning

1/3 of I1’s and I2’s wheel to location X. I3 will be aligned elsewhere in the secondary

alignment step. 
1
6

1
6 0

0 0 1
3

0 1
6

1
2

 (4.9)

The alignment table is updated as follows:

P1 : Y P2 : X

I1
1
3

1
3

I2
1
3

1
3

I3
1
3

−1
3

(4.10)

Only one negative value has appeared as a result of the primary alignment. There-

fore, we do no need to consider the secondary alignment yet and can proceed with

the next primary alignment step. The final primary alignment is carried out in the

third column. We align 1/3 of I2’s and I3’s wheels are aligned to location Z, while I1

is aligned elsewhere. Note that the alternative approach would have been to subtract

1/6 from the second column and then another 1/6 from the third column. However,

both methods are equivalent and yield the same results in terms of aggregation.


1
6

1
6 0

0 0 0

0 1
6

1
6

 (4.11)

The alignment table is updated as follows:

P1 : Y P2 : X P3 : Z

I1
1
3

1
3

−1
3

I2
1
3

1
3

1
3

I3
1
3

−1
3

1
3

(4.12)
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We can now include the secondary alignments in the table,

P1 : Y P2 : X P3 : Z S2 : Y S2 : Z S3 : X S3 : Y

I1
1
3

1
3

−1
3 0 0 1

6
1
6

I2
1
3

1
3

1
3 0 0 0 0

I3
1
3

−1
3

1
3

1
6

1
6 0 0

(4.13)

Using the results from the final alignment table, we interpret, for example, the P2 : X

column to imply that I1 and I2 each have 1/3 of their wheels aligned to location X.

Similarly, columns S2 : Y and S2 : Z shows that I3 has 1/6 of their wheel aligned to

both locations Y and Z, respectively. The formulation for each individual’s wheel

is illustrated in Figure 4.3. By using (4.1), we calculated that on this network, the

X Y X Y Y

Z

I1 I2 I3

(a)

Y

Z

ZX Y

Figure 4.3: The alignments for each individual on the line graph with three nodes

upper bound of Tmax is

1(
3
2

)(1

3

(
2

2

)
+

1

3

(
3

2

)
+

1

3

(
2

2

))
=

13

18
. (4.14)

Similarly, by using (4.2), the lower bound of Tmax is

1(
3
2

) 1
3

((
2

2

)
+

(
3

2

)
+

(
2

2

))
=

5

9
. (4.15)

Calculating the actual value of T under the wheel alignment process gives

T =
1(
3
2

)(1

3

(
3

2

)
+

1

3

(
2

2

)
+

1

3

(
2

2

))
=

5

9
. (4.16)

The actual value of T coincides with the lower bound of Tmax on this network.

We also examined the application of the alignment process on a complex graph

structure to investigate factors that influence when it is necessary to perform a

secondary alignment before proceeding with the next primary alignment. The graph
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structure used for this analysis is shown in figure 4.4.

F

G

H

A B

E

D

C

Figure 4.4: A graphical representation of a network considered in the alignment process.

Assuming h = 1, the corresponding matrix for the graph in Figure 4.4 is given

by 

1
5

1
5 0 0 0 1

5
1
5

1
5

1
5

1
5

1
5

1
5

1
5 0 0 0

0 1
2

1
2 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0

0 1
2 0 0 1

2 0 0 0

1
2 0 0 0 0 1

2 0 0

1
2 0 0 0 0 0 1

2 0

1
2 0 0 0 0 0 0 1

2



(4.17)

By carrying out the first primary alignment in the first column, aligning 1/5 of the

five individuals’ wheels to place A.

0 1
5 0 0 0 1

5
1
5

1
5

0 1
5

1
5

1
5

1
5 0 0 0

0 1
2

1
2 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0

0 1
2 0 0 1

2 0 0 0

3
10 0 0 0 0 1

2 0 0

3
10 0 0 0 0 0 1

2 0

3
10 0 0 0 0 0 0 1

2



(4.18)
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The alignment table is updated as:

P1 : A

I1
1
5

I2
1
5

I3
−1
5

I4
−1
5

I5
−1
5

I6
1
5

I7
1
5

I8
1
5

Before the next primary alignment in the second column of the matrix, we address

the negative values that appear in rows 3, 4 and 5 of the alignment table. These

three individuals can be secondarily aligned using 1/5 of the apriori probability in

the second column of the matrix. While the first five individuals are aligned to place

A, the remaining three are secondarily aligned to place B to maximise aggregation.

This secondary alignment does not interfere with the next primary alignment.

0 1
5 0 0 0 1

5
1
5

1
5

0 1
5

1
5

1
5

1
5 0 0 0

0 3
10

1
2 0 0 0 0 0

0 3
10 0 1

2 0 0 0 0

0 3
10 0 0 1

2 0 0 0

3
10 0 0 0 0 1

2 0 0

3
10 0 0 0 0 0 1

2 0

3
10 0 0 0 0 0 0 1

2



(4.19)
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and the alignment table is updated as:

P1 : A S1 : B

I1
1
5 0

I2
1
5 0

I3
−1
5

1
5

I4
−1
5

1
5

I5
−1
5

1
5

I6
1
5 0

I7
1
5 0

I8
1
5 0

The next primary alignment is carried out in the second column, which contains

fewer zero entries than the other columns. The smallest non-zero entry in this

column is 1
5 . This value is subtracted from all non-zero entries in the column.



0 0 0 0 0 1
5

1
5

1
5

0 0 1
5

1
5

1
5 0 0 0

0 1
10

1
2 0 0 0 0 0

0 1
10 0 1

2 0 0 0 0

0 1
10 0 0 1

2 0 0 0

3
10 0 0 0 0 1

2 0 0

3
10 0 0 0 0 0 1

2 0

3
10 0 0 0 0 0 0 1

2



(4.20)

P1 : A S1 : B P2 : B

I1
1
5 0 1

5

I2
1
5 0 1

5

I3
−1
5

1
5

1
5

I4
−1
5

1
5

1
5

I5
−1
5

1
5

1
5

I6
1
5 0 −1

5

I7
1
5 0 −1

5

I8
1
5 0 −1

5

Following the same reasoning as before, a secondary alignment to place A can be
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carried out during this primary alignment.

0 0 0 0 0 1
5

1
5

1
5

0 0 1
5

1
5

1
5 0 0 0

0 1
10

1
2 0 0 0 0 0

0 1
10 0 1

2 0 0 0 0

0 1
10 0 0 1

2 0 0 0

1
10 0 0 0 0 1

2 0 0

1
10 0 0 0 0 0 1

2 0

1
10 0 0 0 0 0 0 1

2



(4.21)

P1 : A S1 : B P2 : B S2 : A

I1
1
5 0 1

5 0

I2
1
5 0 1

5 0

I3
−1
5

1
5

1
5 0

I4
−1
5

1
5

1
5 0

I5
−1
5

1
5

1
5 0

I6
1
5 0 −1

5
1
5

I7
1
5 0 −1

5
1
5

I8
1
5 0 −1

5
1
5

The next primary alignment can be in the first or second columns. For simplicity,

we choose the first, 

0 0 0 0 0 1
5

1
5

1
5

0 0 1
5

1
5

1
5 0 0 0

0 1
10

1
2 0 0 0 0 0

0 1
10 0 1

2 0 0 0 0

0 1
10 0 0 1

2 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 1
2



(4.22)
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P1 : A S1 : B P2 : B S2 : A P3 : A

I1
1
5 0 1

5 0 −1
10

I2
1
5 0 1

5 0 −1
10

I3
−1
5

1
5

1
5 0 −1

10

I4
−1
5

1
5

1
5 0 −1

10

I5
−1
5

1
5

1
5 0 −1

10

I6
1
5 0 −1

5
1
5

1
10

I7
1
5 0 −1

5
1
5

1
10

I8
1
5 0 −1

5
1
5

1
10

The next primary alignment is in the second column where three individuals can

be aligned to place B, however, this can be slotted in a secondary alignment to the

previous primary alignment.

0 0 0 0 0 1
5

1
5

1
5

0 0 1
5

1
5

1
5 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 1
2



(4.23)

P1 : A S1 : B P2 : B S2 : A P3 : A S3 : B

I1
1
5 0 1

5 0 −1
10 0

I2
1
5 0 1

5 0 −1
10 0

I3
−1
5

1
5

1
5 0 −1

10
1
10

I4
−1
5

1
5

1
5 0 −1

10
1
10

I5
−1
5

1
5

1
5 0 −1

10
1
10

I6
1
5 0 −1

5
1
5

1
10 0

I7
1
5 0 −1

5
1
5

1
10 0

I8
1
5 0 −1

5
1
5

1
10 0

The other two secondary alignments for the remaining two individuals can also be
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done now as they do not interfere with the next primary alignments.

0 0 0 0 0 1
10

1
5

1
5

0 0 1
10

1
5

1
5 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 1
2



(4.24)

P1 : A S1 : B P2 : B S2 : A P3 : A S3 : B S3 : F S3 : C

I1
1
5 0 1

5 0 −1
10 0 1

10 0

I2
1
5 0 1

5 0 −1
10 0 0 1

10

I3
−1
5

1
5

1
5 0 −1

10
1
10 0 0

I4
−1
5

1
5

1
5 0 −1

10
1
10 0 0

I5
−1
5

1
5

1
5 0 −1

10
1
10 0 0

I6
1
5 0 −1

5
1
5

1
10 0 0 0

I7
1
5 0 −1

5
1
5

1
10 0 0 0

I8
1
5 0 −1

5
1
5

1
10 0 0 0

The remaining alignments are essentially all equivalent, consisting of a pair of indi-

viduals grouped together while all others are aligned alone elsewhere. The purpose

of this example was to provide an example of the decision-making process involved

in carrying out a secondary alignment.

By using (4.1), we calculated that on this network, the upper bound of Tmax is

1(
8
2

)((5
2

)
+

6

5

(
2

2

))
=

2

5
. (4.25)

Similarly, by using (4.2), the lower bound of Tmax is

1(
8
2

) 1
8

(
2

(
5

2

)
+ 6

(
2

2

))
=

13

112
. (4.26)

97



Calculating the actual value of T under the wheel alignment process gives

T =
1(
8
2

)(2

5

(
5

2

)
+

3

5

(
3

2

)
+

(
2

2

))
=

17

70
. (4.27)

The actual value of T lies within the upper and lower bounds of Tmax.

We also derived a general rule that explicitly describes the alignment of each

individual’s wheel on a line or circle graph of size N . On these graphs, each indi-

vidual has access to three locations: their own home place or their two connected

neighbour’s (except for the two individuals at either end of the line graph, who

only have access to two locations, their own or their neighbour’s). Consider a wheel

model divided into three equally sized segments of 2π/3 (illustrated in figure 4.2

(a)). Assuming a general wheel, with labels A,B and C, the alignment rule on an

N -sized circle or line graph is given by table 4.1.

A B C

I3k 3k-1 3k 3k+1
I3k+1 3k+2 3k 3k+1
I3k+2 3k+2 3k+3 3k+1

Table 4.1: Alignment rule for individuals on a line or circle graph of size N , where each
individual’s wheel is divided into three equal segments. The table shows how individuals
indexed I3k, I3k+1, and I3k+2 align to locations A,B, and C based on their relative positions
in the network.

It is important to note that at the endpoints of the line graph, individuals have

access to two locations. Therefore, one of their wheel segments is equally redis-

tributed between the two accessible places. Also, this result does not provide the

most optimal alignment for circle graphs of size 3k + 1 where k ∈ Z. For example,

consider a circle graph with four vertices, the alignment rule gives the following

alignments presented in Figure 4.5.

In figure 4.5 (b), it is clear that a better, more optimal alignment can be achieved

by swapping ”1” and ”4” on I4’s wheel. However, this result does yield the most

optimal alignment for all other sizes on the circle graph and all sizes on the line

graph.

4.4 Simulations

In this section, we conducted similar simulation methods to those used in the previ-

ous chapters to demonstrate that the alignment method developed in section 4.3.4
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2 4

1

2 3
1

2 3

4

I1 I2

I3
(b)

1 3

4
I4

(a)

I1 I2

I3I4

1 2

34

Figure 4.5: The alignments for four individuals on the circle graph. (a) shows the circle
graph with four individuals I1, I2.I3 and I4 with vertices labelled as 1, 2, 3 and 4. (b) shows
the wheel alignments for each individual.

can be successfully implemented within the evolutionary setting.

One simulation is delineated as follows:

• The chosen network is formed using the iGraph library (Csardi and Nepusz

2006).

• The mutant is randomly placed on one of the vertices.

• Every individual moves (or not) from their home vertex according to the model

as described in section 2.3.1 under the wheel alignment process discussed in

section 4.3.4. Groups are formed and multiplayer games are played where

R = 10, C = 1 and V = 2 for both of the considered games.

• Individuals return to their home places.

• Each individual moves (or not) and groups are formed and the dynamic process

occurs. No games are played. Instead, one individual is selected to reproduce

an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.

• The simulation ends once the mutant fixates in the population or becomes

extinct.

• This process is averaged over 25,000 cases to balance computational efficiency

and low statistical variability.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: The fixation probability of a mutant cooperator and defector plotted against the
home fidelity parameter, h in the Public Goods game under the wheel alignment process on
the line and circle graphs with nine nodes. (a), (c), (e) and (g) show the cooperator’s fixation
probability and (b), (d), (f) and (h) show the defector’s fixation probability. For the wheel
process, we set θ = 0, π

12
and 2π

9
(to represent a near dispersal process).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: The fixation probability of a mutant dove and hawk plotted against the home
fidelity parameter, h in the Public Goods game under the wheel alignment process on the line
and circle graphs with nine nodes. (a), (c), (e) and (g) show the hawk’s fixation probability
and (b), (d), (f) and (h) show the dove’s fixation probability. For the wheel process, we set
θ = 0, π

12
and 2π

9
(to represent a near dispersal process).

Figure 4.6 illustrates the fixation probabilities of a mutant cooperator and de-

fector in the Public Goods game under wheel alignment processes on line and circle

graphs with nine nodes. Figure 4.6 (a), (b), (e) and (f) show that the angle θ

has minimal effect on fixation probability under BDB dynamics. This contrasts
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to results on complete graphs, such as in Figure in chapter 2, where much larger

group sizes, up to the size of the population can form, enabling the row-dependent

movement process to have a more influential effect.

The limited impact of θ under BDB dynamics occurs due to the incomplete

structure of the line and circle graphs, where the maximum group size achievable is

only three. As BDB dynamics involve selection on the birth event, and cooperators

generally have a lower average fitness than defectors in the Public Goods game,

their fixation probability is below 1/N . Furthermore, the restricted group sizes im-

posed by the graph structure limit the influence of the row-dependent movement

mechanisms on the evolutionary outcome. As h increases, the cooperator’s (defec-

tor’s) fixation probability slightly increases (decreases). This is because individuals

are more likely to be alone, reducing opportunities for cooperators to interact with

defectors and provide them with rewards. Therefore, the relative fitness between co-

operators and defectors reduces, thereby slightly increasing the cooperator’s fixation

probability.

Figure 4.6 (c), (d), (g) and (h) illustrate the fixation probabilities of the mutant

cooperator and defector under BDD dynamics, where the angle θ has a more influen-

tial effect on the evolutionary outcome. When h is small, individuals are more likely

to partake in the movement process, resulting in the formation of groups of size 2

or 3. Under BDD dynamics, each individual has probability 1/N of being chosen to

reproduce. If a cooperator reproduces in a pairwise group, the other group member

is guaranteed to be replaced. This mechanism allows cooperators to achieve higher

fixation probabilities than under the corresponding BDB dynamics, making the role

of θ more significant.

As expected, the angle θ = 2π/3 yields the highest fixation probability when

h = 1 as it allows for the greatest degree of separation between individuals. At this

point, many individuals are alone, and the cooperator’s fixation probability reaches

1/N = 1/9, remaining at this level as h increases. However, θ = 0 results in the

lowest fixation probability, as it maximises aggregation and increases the likelihood

of cooperators interacting with defectors, which negatively impacts cooperation. A

similar trend was observed in chapter 2 in Figure .

Figure 4.7 illustrates the fixation probabilities of a mutant hawk and dove in the

Hawk-Dove game under wheel alignment processes on line and circle graphs with

nine nodes. These figures show that, regardless of the evolutionary dynamics, θ
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plays a more influential role here than in the Public Goods game.

When θ = 0, individuals are more likely to herd together. In chapter 2, Figure

2.4, we observed that such aggregation was detrimental for hawks and beneficial

for doves, as hawks were more likely to be in larger groups and incur significant

costs. However, due to the incomplete structure of the line and circle graphs, the

maximums group size is restricted to just two or three individuals. This structural

limitation means hawks do not experience the same level of costly interactions as

they would on complete graphs, where the risk of multiple hawks interacting is much

larger. Therefore, aggregation positively impacts the hawks fixation probability

in this evolutionary setting, since he presence of just a single hawk in a group is

sufficient to deny all doves a share of the reward, lowering their relative fitness and,

therefore, the dove’s fixation probability.

4.5 Discussion

In this chapter, we have developed the framework of Broom & Rychtar (2012) by

examining the evolution of structured populations on incomplete networks involving

multiplayer interactions, where individuals move in a coordinated (row-dependent)

manner. While previous models, such as those presented in chapters 2 and 3 (Haq

et al. 2024, 2025) focused on complete graphs, this chapter marks the first step in

applying those models to more complex, incomplete graphs. This extension allows

us to test whether the dynamics and insights established in the previous chapters

continue to hold in more complex settings.

Earlier studies on incomplete networks (Broom et al. 2015, Schimit et al. 2019,

2022) assumed independent movement. However, our model retains the coordinated

movement process introduced in earlier chapters, ensuring continuity of methodology

while exploring their under new structural constraints. Building on the aggregation

measure T (1.49) from Broom et al. (2020), which was examined in chapter 3, we

investigated its maximum value, Tmax, and established upper and lower bounds.

These bounds provide insight into the maximum level of aggregation that can be

achieved on a heterogeneous structure.

An important motivation behind the development of the general movement

methodology in Section 2.3.1 was faithfulness, ensuring the movement processes

preserved the intended apriori distributions. In chapter 2, we showed that while the
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sequential movement processes guaranteed faithfulness on complete networks, this

property no longer holds on incomplete graphs. This represents a fundamental dif-

ference between the two settings, emphasising the need for alternatives that ensure

faithfulness, such as the wheel process. The wheel’s mechanism was extended in

this chapter to incomplete networks via the development of an alignment algorithm

designed to approximate maximal herding. Importantly, the equivalence between

θ = 0 and follow the majority, observed in complete graphs in chapters 2 and 3,

breaks down in this chapter due to network constraints. This demonstrates that for

the sequential movement processes, properties that hold for complete networks do

not necessarily hold on incomplete graph structures.

We then explored the evolutionary implications of the wheel alignment process in

the Public-Goods and Hawk-Dove games. In the context of the Public Goods game,

we showed that under BDB dynamics, the wheel alignment process has minimal

effect on the evolution of cooperation. This is due to the restrictive group sizes per-

mitted by the underlying network structure. In other words, network topology exerts

a stronger influence than the movement rules. Ohtsuki et al. (2006) demonstrated

that, in general, birth-death processes do not support the evolution of cooperation.

Therefore, in the Public Goods game, our results show that the cooperator’s fixation

probability typically remains below 1/N . Under BDD, however, the wheel’s herding

effect becomes more pronounced, again reflecting but also extending earlier findings

on complete graphs in chapter 2.

In the Hawk-Dove game, we showed that herding benefits hawks, contrary to

the previous analysis in chapter 2 (Haq et al. 2024), where herding hindered their

evolutionary success. This reversal is attributed to the limiting group sizes that can

be formed on circle and line graphs. These limitations benefit the hawk as they

do not incur significant costs from large group interactions, therefore improving the

hawk’s fixation probability and worsening the dove’s chances of fixating. In Broom

et al. (2015), it was shown that the dove’s fixation probability could exceed 1/N if

the reward was adjusted and in chapter 2, it was demonstrated that even without

altering the reward, the row-dependent movement mechanisms, particularly follow

the majority, can raise the dove’s fixation probability above 1/N due to hawks

being forced to herd together in large groups. However, our results show that on

the considered incomplete networks, similar movement processes now favour hawks,

emphasising the significant role of the underlying network structure in influencing
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evolutionary outcomes.

Overall, this chapter bridges the gap between the complete graph analysis in

chapters 2 and 3 and the more complex setting of incomplete graph structures con-

sidered in this chapter. Whereas the earlier chapters established the foundations of

coordinated movement and analysed their evolutionary consequences in well-mixed

populations, here we extended these ideas to structured populations where access

to locations is restricted. In doing so, we showed that some properties from the

complete case, such as the applicability of the aggregation measure T , remain ro-

bust, while others, such as the faithfulness of sequential movement processes, break

down once network constraints are introduced. This finding emphasises why the

wheel continues to serve as a flexible model of coordinated movement as it is able

to ensure an achievable target distribution.
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Chapter 5

Hybrid models

5.1 Introduction

The previous chapters examined models in which all individuals within the popula-

tion followed the same movement mechanism throughout the evolutionary process.

This chapter, however, focuses exclusively on hybrid movement models, extending

the methodology developed in chapter 2 to incorporate several movement mecha-

nisms within a single population. Broom et al. (2020) introduced these models to

capture situations in which individuals adapt their mobility in response to external

factors such as predator presence, resource availability, or the search for potential

mates.

By formally embedding the hybrid models into the evolutionary setting, this

chapter investigates how varying movement mechanisms influence evolutionary out-

comes in simulations. The analysis provides a direct extension of the work carried

out in chapter 2, which focused on developing the theory to model a single move-

ment process and complements chapter 4’s analysis by further broadening the scope

of movement modelling.

This is a relatively short chapter, presenting preliminary results and outlining the

initial progress made in extending evolutionary analysis to include hybrid models.

5.2 Hybrid type 1

In Broom et al. (2020), the hybrid type 1 model was defined as follows: assume

there are R movement procedures and R non-negative numbers s1, s2, ..., sR with
R∑
r
sr = 1. The movement process is then governed by the following probabilistic
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rule: with probability sr, all members of the population follow the rth movement

procedure.

This hybrid model can be incorporated into the evolutionary setting at two

distinct levels. The first level of hybridisation consists of selecting a movement pro-

cedure being probabilistically selected that the entire population follows throughout

the entire evolutionary process. We denote this level of hybridisation as hybrid type

1, 1. For example, suppose a single mutant has a fixation probability of x under

the follow the majority process and a fixation probability of y under the indepen-

dent movement process. If the population follows the follow the majority process

with probability p or follows the independent movement process with probability

1− p, then the mutant’s fixation probability under the hybrid type 1, 1 is simply a

weighted average given by

ρM1 = (p)(x) + (1− p)(y).

The second level of hybridisation occurs at the dynamic time steps. At each time

step, a new movement procedure is probabilistically selected for the entire population

to follow. While this process may seem more complex, its intuition is straightfor-

ward. Since the movement distribution is chosen at each time step, the transition

probabilities from all considered movement procedures must be weighted accord-

ingly. These averaged transition probabilities are then used to compute the fixation

probability. We denote this model as hybrid type 1, 2.

5.3 Hybrid type 2

In Broom et al. (2020), the hybrid type 2 model was defined as follows: assume

there are R movement procedures, each associated with a non-negative weight

s1, s2, . . . , sR, such that
R∑
r
sr = 1. In this model, each individual independently

follows the rth movement procedure with probability sr.

Within this hybrid model, we do not consider the first level of hybridisation i.e.

hybrid type 2, 1. In such a setting, where each individual probabilistically selects

a movement procedure at the start of the evolutionary process and adheres to it

throughout, it becomes necessary to track each individual’s movement. Analytically,

this process is highly complex and requires advanced computational methods to
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solve. Moreover, additional important complications arise when considering how

new offspring should behave after reproduction. For instance, whether they should

choose a row-dependent movement process at random, inherit the same movement

mechanism as their parent, or adopt the same movement strategy from the previous

location owner. These considerations further increase the complexity of the model,

making this level of hybridisation increasingly difficult to be analytically tractable

and, therefore, less preferable to currently consider.

For hybrid type 2, 2, at each time step, individuals independently select a new

movement procedure. Unlike the previous case, where individuals commit to a fixed

movement process throughout the entire evolutionary process, here, tracking the

replacement of individuals is unnecessary because all members of the population

probabilistically select a new movement procedure at each dynamic time step.

5.4 Simulations

In this section, we present preliminary simulations of the hybrid models to demon-

strate that various approaches to hybridisation discussed in this chapter can be

successfully implemented within the evolutionary setting.

One simulation is defined as follows:

• The complete decagon network is formed using the iGraph library (Csardi and

Nepusz 2006).

• The mutant is randomly placed on one of the vertices.

• Every individual moves (or not) from their home vertex according to the move-

ment methodology described in section 2.3.1 except here, the movement of

individuals is hybridised and governed by the wheel process θ = π/10 with

probability 1/2 or the follow the majority process with probability 1/2. Fol-

lowing this, groups are formed and multiplayer games are played.

• Individuals return to their home places.

• Each individual moves (or not) and groups are formed and the dynamic process

occurs. No games are played. Instead, one individual is selected to reproduce

an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.
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• The simulation ends once the mutant fixates in the population or becomes

extinct.

• This process is averaged over 25,000 cases to balance computational efficiency

and low statistical variability.

Figure 5.1 illustrates the fixation probabilities of a mutant cooperator and defec-

tor in the Public Goods game under the wheel (θ = 2π/N) and follow the majority

(B = 0) processes on the complete decagon. The figures illustrate three hybrid levels

1, 1, 1, 2 and 2, 2. Figures 4.6 (a) and (b) implement BDB dynamics and the figure

portrays that the three hybrid models have very little effect on the evolutionary

outcomes. In the Public Goods game, under BDB processes where the network is

sufficiently large, the row-dependent movement mechanisms have little effect on the

fixation probability, therefore it makes sense that regardless of the hybrid model,

fixation is approximately the same for all of the models considered.

Figure 5.1 (c) and (d) show the cooperator’s and defector’s fixation probability

under BDD dynamics. Notably, the hybrid 1, 2 model gives the lowest fixation prob-

ability compared to hybrid 1, 1 which gives the highest. The key difference between

hybrid type 1, 1 and type 1, 2 is in the frequency at which the movement process

is selected. In type 1, 1, a single movement process is probabilistically selected at

the start and fixed throughout the evolutionary process. This means that when the

dispersal process is selected (with probability 1/2), cooperators benefit from a fixed

environment that favours their strategy. However, type 1, 2, involves randomly se-

lecting the movement process at each time step. Although each movement process is

equally likely at every time step, cooperators may not experience extended periods

of beneficial separation before the movement process switches to herding again. This

lack of sustained separation weakens the mutant cooperator’s prospects of fixating.

Therefore, the hybrid type 1, 2 gives a lower fixation probability for the cooperator

than hybrid type 1, 1. This demonstrates that perhaps consistency in dispersal and

separation plays a pivotal role in the evolutionary success of cooperation.

Figure 5.2 illustrates the fixation probabilities of a mutant hawk and dove in

the Hawk-Dove game under the wheel (θ = 2π/N) and follow the majority (B = 0)

processes on the complete decagon. The figures illustrate three hybrid types 1, 1,

1, 2 and 2, 2.

In the Hawk-Dove game, the hybrid type 1, 1 gives the lowest fixation probability
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Figure 5.1: The fixation probability of a mutant cooperator and defector plotted against
the home fidelity parameter, h in the Public Goods game under the hybrid models on the
complete decagon and pentadecagon graphs. (a), (c), (e) and (g) show the cooperator’s fixation
probability. (b), (d), (f) and (h) show the defector’s fixation probability. The hybridised
movement processes are the wheel process (θ = 2π/10) and the follow the majority process
(B = 0).

for hawks. If follow the majority is selected, hawks are more likely to interact with

each other and incur costs from the violent contests. If dispersal is chosen, hawks
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Figure 5.2: The fixation probability of a mutant hawk and dove plotted against the home
fidelity parameter, h in the Public Goods game under the hybrid models on the complete
decagon graph. (a), (c), (e) and (g) show the hawk’s fixation probability. (b), (d), (f) and (h)
show the dove’s fixation probability. The hybridised movement processes are the wheel process
(θ = 2π/10) and the follow the majority process (B = 0).

cannot meet doves and deny them their rewards. Therefore, the lack of strategic,

reliable movement gives the lowest fixation probability for hawks. However, hy-

brid type 2, 2 enables each individual to probabilistically select their own movement
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process to follow at every time step. This flexibility creates heterogeneous group

structures where some hawks herd and deny doves a share of the reward, while oth-

ers disperse to avoid violent encounters with other hawks. This strategic variation

increases the likelihood of hawks both exploiting doves and avoiding mutual conflict,

resulting in the highest fixation probability for hawks.

Figures 5.1 (e-h) and Figures 5.2 (e-h) show similar simulations on the pen-

tadecagon. Because θ = 2π/10, the wheel process does not correspond to near-

dispersal movement as theta would need to equal 2π/15 for that. Therefore, the

trends in these figures are less pronounced compared to the corresponding figures

on the decagon.

5.5 Discussion

In this chapter, we have explored a new direction within the modelling framework

introduced by Broom & Rychtar (2012), by integrating the hybrid models developed

in Broom et al. (2020) into the evolutionary setting of the territorial raider model

introduced by Broom et al. (2015) for the first time. Our work extends previous

research by incorporating probabilistic decision-making at both the population and

individual levels in the movement phase, providing a more dynamic modelling envi-

ronment. This chapter directly builds on the modelling foundations established in

chapter 2, which introduced and analysed single movement processes on complete

graphs, and on chapter 4, which extended these methods to incomplete graphs.

While the previous chapters demonstrated how the movement mechanisms and net-

work topology can influence evolutionary outcomes, this chapter demonstrates how

diversity in movement mechanisms adds a further layer of complexity, altering out-

comes on simple graphs.

We analytically formalised two broad classes of hybrid models, type 1 and type

2, and developed methods to embed them into the evolutionary setting. For hybrid

type 1, the movement mechanism is chosen at the population level from a weighted

set of movement procedures. In the type 1, 1 model, the population selects one

movement mechanism at the beginning and follows it throughout the evolutionary

process. This yields a simple weighted average of the fixation probabilities under

each considered movement process. The type 1, 2 model allows the entire population

to randomly select a new movement procedure at each dynamic time step, therefore
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the transition probabilities from each movement process are averaged accordingly.

For hybrid type 2, each individual probabilistically selects their own movement pro-

cedure. Although type 2, 1, where individuals randomly choose a movement process

to follow throughout the evolutionary process, was analytically complex due to com-

plications with individual tracking and movement inheritance, we considered a type

2, 2 model, where each individual selects a new rule at each time step, avoiding the

need to track the replacement of certain individuals.

By utilising numerical simulations, we found differing outcomes in how hybridi-

sation influences evolutionary success depending on the game and dynamics used.

In the Public Goods game under BDB dynamics, hybridisation has minimal effect

when the network is sufficiently large, with fixation probabilities remaining similar

across the different hybrid types. However, under BDD dynamics, fixation prob-

abilities vary significantly. Hybrid type 1, 1 yields the highest fixation probability

for the mutant cooperator, while type 1, 2 produced the lowest fixation probability.

This suggests that consistent dispersal, even if probabilistically chosen, supports the

evolutionary success of cooperation better than frequent switching between herding

and dispersal, which disrupts the environmental stability for cooperators.

In the Hawk-Dove game, hybrid type 1, 1 led to the lowest fixation probability for

hawks, because fixed herding or dispersal either resulted in costly violent contests or

prevented hawks from interacting with doves. However, type 2, 2 led to the highest

fixation probability for hawks. This flexibility allows some hawks to herd and deny

doves rewards while other hawks disperse to avoid violent contests with other hawks.

These preliminary findings highlight that combining movement procedures can

play a central role in influencing evolutionary outcomes. Hybrid models capture

these complex scenarios with robust flexibility, offering new insights into population

behaviours that cannot be represented by traditional models. This preliminary

research acts as the foundation for future work to explore hybridisation under varied

games, complex networks and updating mechanisms.
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Chapter 6

Conclusion

This thesis has extensively explored the mathematical modelling of the evolution

of structured populations involving multiplayer interactions under row-dependent

movement, with the motivation of incorporating more realistic features that the clas-

sical models often lacked. Using the Broom-Rychtár̂ framework (Broom & Rychtar

2012) as the theoretical foundation, we have extended the framework in several

directions, primarily providing theoretical and methodological advances while main-

taining conceptual links to biology. These extensions are important because they

allow the analysis of evolutionary dynamics that previous models, focused on either

pairwise contests or independent movement, could not capture. Our models provide

a new understanding of how structured populations evolve under coordinated move-

ment. By incorporating row-dependent movement mechanisms, this thesis extends

a well-established framework for understanding how theoretical and methodological

advances can reveal insights that would be overlooked in simpler models.

Theoretically, we developed a new methodology enabling the row-dependent

movement mechanisms from Broom et al. (2020) to be incorporated into the ter-

ritorial raider model (Broom et al. 2015). This enabled us to analyse new models

involving coordinated movement and multiplayer group interactions. This involved

deriving expressions for fixation probabilities under BDB and BDD dynamics and

investigate evolutionary outcomes under weak selection by establishing neutrality

and equilibrium conditions, extending results from pairwise models, revealing how

movement and multiplayer interactions influence evolutionary processes. Further-

more, the movement methodology enabled the analysis of key predictors of fixation

and novel measures of aggregation, providing a more comprehensive theoretical un-
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derstanding of the relationship between row-dependent movement and the evolution

of cooperation.

Methodologically, this thesis introduces row-dependent movement mechanisms

on graphical structures, including deterministic follow the majority, probabilistic

Polya-urn and the wheel process. The introduction of these movement systems im-

proves the realism of the territorial raider model by capturing real-life coordinated

movement exhibited in animal species. For example, follow the majority captures

herding behaviour observed in fish schools and bird flocks (Couzin et al. 2005, Hinz

& de Polavieja 2017, Winklmayr et al. 2020). Polya-Urn models can be used to cap-

ture pheromone-guided movement in ant colonies (Deneubourg et al. 1990, Dorigo

& Stützle 2004, Shah et al. 2010). The wheel process represents simultaneous move-

ment with a certain degree of separation, analagous to behaviour in surf scoters

(Lukeman et al. 2010). Furthermore, this thesis extends the wheel mechanisms to

incomplete networks by developing an alignment algorithm to approximate maxi-

mum herding. The hybrid models combine movement processes at individual and

population levels, enabling complex simulations of the movement processes. These

methodological advances are significant because they allow more realistic simula-

tions and analytical analysis, enabling the investigation of evolutionary outcomes in

more complex models that could not be captured before.

Although largely theoretical, the models incorporate conceptual biological be-

haviours. Across the chapters, the simulations of social dilemma games showed

that, at least on complete graphs, aggregation among unrelated individuals tends to

hinder the evolutionary success of cooperation. This effect may not necessarily hold

on heterogeneous structures, as certain individuals are often more related to others

compared to other individuals due to the underlying population structure. In such

cases, aggregation may not disadvantage cooperation in the same way. Therefore,

while the complete graph setting provides clear explanations, different structures

could produce more varied outcomes. As an example, our findings are consistent

with infanticide by male lions (Pusey & Packer 1994), where unrelated infants are

killed so that the male can increase his own reproductive success. However, other

biological scenarios will not align our findings.

In chapter 2, we developed a general movement methodology to incorporate row-

dependent movement into the evolutionary framework on complete graphs, building

on previous analysis (Broom & Rychtar 2012, Broom et al. 2015, 2020). Unlike
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previous models where individuals moved independently (Broom et al. 2015, Pattni

et al. 2017) or in a history-dependent manner (Pattni et al. 2018, Erovenko et al.

2019, Pires et al. 2023, Erovenko & Broom 2024), our models allow for more realistic

movement behaviours within evolutionary settings. Using this methodology, we

investigated how the row-dependent movement mechanisms affect the evolution of

cooperation in the Public Goods and Hawk-Dove games.

Although previous research, such as Krieger et al. (2017) have demonstrated

that an abstract type of motion where individuals swap vertices on the graph (in the

context of evolutionary graph theory) has no impact on the evolutionary dynamics

on complete networks, our findings in this chapter revealed that the nature of the

movement distribution can significantly influence the evolution of cooperation, even

in well-mixed populations on complete networks. However, the work presented in

this chapter is very different, as individuals move more realistically and can interact

in arbitrary group sizes.

In the context of the Public Goods game, we demonstrated that aggregation

inhibits the evolution of cooperation as herding provides defectors access to groups

containing cooperators. However, dispersal proves beneficial for cooperators by lim-

iting the opportunities defectors have to exploit them despite the significant disad-

vantage posed by the BDB updating process, which keeps the mutant cooperator’s

fixation probability below 1/N , explained in Ohtsuki et al. (2006). In the Hawk-

Dove game, aggregation benefits doves by increasing interactions between hawks

who endure greater costs from the violent contests. While earlier work by Broom

et al. (2015) demonstrated that the dove’s fixation probability can exceed 1/N from

certain reward adjustments, our results illustrate that herding alone can raise the

dove’s fixation probability above 1/N , without altering the payoffs. While dispersal

also favours doves, herding exerts a more pronounced effect.

We derived analytical expressions for fixation probabilities for both considered

games under both BDB and BDD dynamics, and extended previous work by Tar-

nita et al. (2009) and Taylor et al. (2004), who focused on pairwise interactions.

However, our analysis established neutrality and equilibrium conditions under weak

selection approximations involving multiplayer interactions. These conditions align

with our expectations, showing that hawks tend to perform worse in our models

developed in this chapter than in the traditional evolutionary graph theory models.

By capturing interactions in arbitrary group sizes, our results show that increasing
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group sizes negatively impact the hawk’s fixation probability.

A potential future direction may involve adapting the movement mechanisms to

respond to strategy distributions such as individuals favouring patches with more

cooperators. Also, another possible direction may involve investigating how row-

dependent movement can be simultaneously implemented with history-dependent

movement from Pattni et al. (2018) to capture more complex, behavioural movement

procedures within evolutionary processes on complete networks.

In chapter 3, we extended the modelling framework of Broom & Rychtar (2012)

in a different direction by utilising the evolutionary setting of chapter 2 (Haq et al.

2024) to examine how row-dependent movement (Broom et al. 2020) influences

strong predictors of fixation probability, namely mean group size and temperature.

These predictors were identified in previous work such as (Broom et al. 2015, Pat-

tni et al. 2017, Schimit et al. 2019, 2022) where individuals moved independently.

We have observed trends in our models that have not been previously identified in

evolutionary graph theory (Pattni et al. 2015, Traulsen et al. 2007). In the Public

Goods game, we observed that temperature is a stronger predictor of fixation than

the mean group size for all values of h, across all of the movement processes. For

a fixed temperature value, the movement processes yield the same fixation value,

representing the temperature’s importance as the most crucial measure in the evo-

lutionary process. A similar result was given in Broom et al. (2015) but only for

high levels of h and under independent movement. Within the Hawk-Dove game,

temperature consistently outperforms other variables in predicting fixation proba-

bilities. In the Hawk-Dove game, temperature continues to be a stronger predictor

of fixation. However, due to the greater complexity of the game compared to the

Public Goods game, there is a breakdown of the linear relationship between temper-

ature and fixation, at higher temperatures. With a detailed analytical explanation,

we showed that while temperature is generally a reliable predictor, the game and

the underlying movement mechanism significantly influence this relationship.

In previous work, (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,

2022), the predictors of fixation were primarily examined to explore their theoretical

significance. While we have adopted a similar perspective, we have also extended this

approach by demonstrating that these measures, specifically, T , mean group size and

temperature can be practically calculated for a range of movement processes. We

showed how the aggregation measure T , introduced by Broom et al. (2020), relates
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directly to the mean group size, and provided explicit formulae for calculating all

three measures under different movement mechanisms.

Previous research by (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,

2022, Haq et al. 2024) exclusively looked at the Public Goods, Hawk-Dove and Fixed

Fitness games therefore we extended the current literature by considering the Stag-

Hunt game. Our analysis showed that herding can hinder the evolution of coopera-

tion, to the extent where selection opposes its evolution. However, other movement

processes such as the wheel can enhance the cooperator’s fixation probability above

that of the neutral benchmark and the defector, thus facilitating the evolution of

cooperation. Compared to the Public Goods game examined by Haq et al. (2024),

row-dependent movement has a stronger influence on evolutionary outcomes in the

Stag-Hunt game. Dispersal can also undermine cooperators by preventing cooper-

ators involved in the movement process from interacting with one another, thereby

lowering their likelihood of forming groups that satisfy the cooperation threshold.

Additionally, we investigated the differences between two processes used in the

territorial raider model (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,

2022). The process explained in Broom et al. (2015) and Pattni et al. (2017) assumes

that individuals participate in effectively an infinite number of games prior to each

dynamic time step. However, the process described in Schimit et al. (2019, 2022),

assumes that individuals play a single game prior to each update. We identified

these two processes differ due to three averaging effects from the payoffs, weights

and reciprocals of fitness terms, depending on the governing dynamics. While the

simulation process in Schimit et al. (2019, 2022) can be viewed as an extension of

the process from Broom et al. (2015) and Pattni et al. (2017) under BDB dynamics,

this equivalence does not naturally hold for the other dynamics. A potential future

direction would be to revisit the evolutionary models of Schimit et al. (2019, 2022)

and adapt them to incorporate a large number of games per dynamic time step, but

this would require significant computational resources.

Chapter 4 extended the analysis carried out in chapter 2 by investigating row-

dependent movement on incomplete networks involving multiplayer interactions,

marking the first integration of such movement behaviours within incomplete graph

structures. Previous research involving the territorial raider model on incomplete

networks assumed independent or history-dependent movement (Broom et al. 2015,

Erovenko et al. 2019, Schimit et al. 2019, Pires et al. 2023). The models developed in
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this chapter introduce a novel perspective with the introduction of row-dependent

movement on incomplete graphs. Extending previous results from Broom et al.

(2020), who derived the measure T (1.49), to determine the probability a pair of

individuals are together. We examined Tmax, in section 4.3.1, and derived upper

and lower bounds for general network structures (4.1) (4.2). These bounds were

tested on regular, line, and more complex graphs. In doing so, we extended the

theoretical work of Broom et al. (2020) by embedding these aggregation measures

into a well-established evolutionary setting, demonstrating how such measures can

be used to provide meaningful analysis.

An important result in this chapter is that we provided a simple counterexam-

ple showing that the movement methodology from section 2.3.1 fails to achieve the

apriori target distribution under sequential movement processes (follow the majority

and the Polya-urn) due to the underlying network structure being incomplete. This

was first explored in Broom et al. (2020), who showed that assuming all individuals

share the same distribution, the Polya-urn process remains faithful with the apriori

target distribution. This property was a significant motivating factor in the devel-

opment of the movement methodology developed in chapter 2 (Haq et al. 2024) who

considered complete networks. In this chapter, however, we showed that on incom-

plete networks, this methodology does not always guarantee the target distribution

is met. This limitation was illustrated with a simple counterexample on a line graph

with three nodes in section 4.3.2. However, the wheel process remains robust in this

context.

In chapters 2 and 3 (Haq et al. 2024, 2025), the wheel process was used when

the underlying population structure was a complete graph. To consider the wheel

process in an evolutionary setting involving an incomplete graph, the wheel process

had to first be extended (discussed in section 4.3.3). Previous findings from Haq

et al. (2024, 2025) demonstrated that the wheel process (θ = 0) was equivalent to

the follow the majority process, however, this equivalence no longer holds true on

incomplete graph structures. Therefore, to approximate herding for the wheel, we

developed an alignment algorithm that approximates the optimal alignment on a

general network (discussed in section 4.3.4).

In the multiplayer Public Goods game, the wheel alignment process had negli-

gible impact on the cooperator’s fixation probability under BDB dynamics due to

the limiting group sizes caused by the underlying network structure. Ohtsuki et al.
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(2006) showed that birth-death processes do not favour the evolution of cooperation.

Therefore, in the Public Goods game, our results show that the cooperator’s fixation

probability typically remains below 1/N . Similarly, this was observed in Haq et al.

(2024) for complete networks, and the results in this chapter demonstrate that this

trend persists for the considered incomplete networks.

In the multiplayer Hawk-Dove game, our results showed that herding benefits

hawks, contrary to the findings from chapter 2 (Haq et al. 2024), where aggregation

negatively impacted their fixation probability. This effect is due to the limiting

group sizes that can form on the line and circle graphs, which prevent hawks from

interacting with each other within large groups, thus reducing their likelihood of

incurring significant costs from the violent contests, which increases their fixation

probability. In Broom et al. (2015), the dove’s fixation probability was higher than

1/N if the reward payoff was adjusted and Haq et al. (2024) showed that the follow

the majority process can increase the dove’s fixation probability above 1/N without

altering the game payoffs. This, however, differs from our results where a very similar

movement process now worsens the likelihood of the mutant dove’s evolutionary

success, emphasising the importance of the underlying population structure and its

impact on the evolutionary process.

There are several directions for future work. One avenue involves further inves-

tigation in the upper and lower bounds of Tmax. The current lower bound (4.2)

gives a conservative value, therefore, it may be beneficial to improve this for more

complex or irregular graph structures. Another direction is the further optimisation

of the alignment algorithm to improve its accuracy on arbitrary graph topologies.

This can be tested against the developed bounds of Tmax. Furthermore, future work

may involve simulations on heterogeneous graph structures such as those considered

by Schimit et al. (2019), who implemented Erdős-Renyi (random) network, small-

world, scale-free, random regular and Barábasi-Albert graphs into their processes.

In the final chapter, we explored a preliminary direction by integrating newly

developed hybrid models by Broom et al. (2020) into the evolutionary setting de-

veloped in chapter 2 (Haq et al. 2024). This work extends previous research by

incorporating probabilistic decision-making at both the population and individual

levels during the movement phase, allowing for more realistic biological scenarios

where individuals adapt their movement based on external influences. We analyt-

ically developed two classes of hybrid models, type 1 and type 2. Our simulations
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revealed important effects of hybridisation on evolutionary success, with results vary-

ing across different games and dynamics. In the Public Goods game, hybridisation

had minimal impact under large networks but led to significant differences under

BDD dynamics. In the Hawk-Dove game, flexibility in movement strategies, par-

ticularly with hybrid type 2, 2 led to higher fixation probabilities for hawks. These

findings emphasise the importance of combining movement strategies in evolutionary

models, providing a foundation for further research into hybridisation in complex

evolutionary systems.

Despite the several contributions made in this thesis, there are several limitations

that warrant discussion. The row-dependent movement mechanisms explored in

this thesis include: follow the majority, Polya-urn (utility positively correlates with

patch occupancy) and the wheel. These mechanisms could be potentially adapted

to incorporate more realistic, strategy-dependent movement distributions, where

individuals prefer to move places containing a large number of cooperators and

avoid places with a large defector presence. However, such movement is currently

being investigated in an alternative direction of the Broom-Rychtar framework, with

the exploration of the Markov movement models (Pattni et al. 2018, Erovenko et al.

2019, Pires et al. 2023, Erovenko & Broom 2024).

Also, there remain various movement mechanisms potentially worthy of explo-

ration. Broom et al. (2020) also developed other sequential movement models such

as follow the leader and follow the predecessor, which are very similar to the follow

the majority process. We chose to implement the follow the majority process as

it not only accurately reflected realistic animal behaviours, observed in bird flocks,

fish schools and mammalian hunting groups (Fretwell & Lucas 1969, Ford & Swearer

2013), but also made the mathematics more analytically tractable. In the models

developed in this thesis, for the sequential movement processes, it is assumed that

all individuals have equal likelihood of moving first. This egalitarian assumption

has been observed in red-fronted lemurs (Pyritz et al. 2011). Moreover, dispersal

behaviour was explored solely through the wheel process within this thesis. Alterna-

tive models developed in Broom et al. (2020) could be utilised, such as a Polya-urn

process where utility negatively correlates with patch occupancy. This would al-

low for an alternative exploration of dispersal behaviour, moving beyond the wheel

process.

Finally, a general limitation of this work is its theoretical nature. The models
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developed in this thesis have not been tested against empirical data collected from

complex, biological systems. However, this is not a significant flaw, as the funda-

mental aim of this thesis was to mathematically advance the theoretical framework

for modelling the evolution of structured populations involving multiplayer games

and coordinated movement. Our results have been rigorously compared to, and in

some cases extended from, classical results from evolutionary graph theory, ensuring

consistency with an established modelling framework, while providing a robust basis

for future exploration.
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Appendix

Average group distribution on complete triangle graph

Using the methodology defined in section 2.3.1, we showed how to calculate the av-

erage group distribution by considering a well-mixed population of three individuals

I1, I2, and I3 on a complete triangle graph under the follow the majority, Polya-urn,

and wheel processes.

The average group distribution for the follow the majority process is

• P(all individuals are together) = 9(h−1)
(h+2)3

+ 27
(h+2)3

= 27+9(h−1)
(h+2)3

,

• P(I1 and I2 are together while I3 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(I1 and I3 are together while I2 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(I2 and I3 are together while I1 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(all individuals are alone) = 3(h−1)2

(h+2)3
+ (h−1)3

(h+2)3
= 3(h−1)2+(h−1)3

(h+2)3
.

The average group distribution under a general polya-urn process is given by

• P(all individuals are together) = 3(h−1)(B+3)(B+2)+3(B+3)(B+6)

(h+2)3(B+1)(B+2)
,

• P(I1 and I2 are together while I3 is alone) =
2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(I1 and I3 are together while I2 is alone) =
2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(I2 and I3 are together while I1 is alone) =
2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(all individuals are alone) = 3(h−1)2(B+1)(B+2)+3(h−1)(2B)(B+2)+3B(2B)+(h−1)3(B+1)(B+2)

(h+2)3(B+1)(B+2)
.

For the wheel process, we considered an example where 0 ≤ θ < π
3 ,

• P(All individuals are together) =
9h(1− 2θ

π
)+18− 63θ

π
(h+2)3

,
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• P(I1 and I2 are together but not with I3) =
2(h−1)2+6(h−1)+ 27θ

π
(h+2)3

• P(I1 and I3 are together but not with I2) =
2(h−1)2+6(h−1)+ 27θ

π
(h+2)3

,

• P(I2 and I3 are together but not with I1) =
2(h−1)2+6(h−1)+ 27θ

π
(h+2)3

,

• P(All individuals are separate) =
3(h−1)2+27(h−1)( 2θ

3π
)+(h−1)3

(h+2)3
.

The fitness of a dove and hawk

In the Hawk-Dove game, we opted to assume only independent movement to simplify

the fitness calculation. This simplification was necessary because the Hawk-Dove

game exhibits greater complexity in the payoffs to each strategy, which are contin-

gent on group composition and, therefore, the movement distribution. By focusing

on solely independent movement for this game, we were able to evaluate the fitness

of hawks and doves within this framework more effectively.

Consider a population of size N , well-mixed, and composed of k doves and N−k

hawks. A dove will only receive a proportion of a reward V if it is present in a group

that contains no hawks. This can occur in four distinct scenarios. Consider two

doves, D1, D2 and a hawk H1:

• D1 remains in its home, and a group of L doves forms on D1’s home patch.

• D1 moves to D2’s home patch, where D2 stays at home, and a group of L

doves forms on D2’s home patch.

• D1 moves to D2’s home patch, where an L-sized group of doves forms, but D2

leaves their home and moves elsewhere.

• D1 moves to H1’s home patch, where an L-sized group of doves forms, but H1

leaves their home and moves elsewhere.

To compute the average fitness of a dove, we weighted the reward that D1 receives

in each of these scenarios by the probability of each group forming. We consider the

first scenario as an example. The probability of D1 staying at home and an L-sized

group of doves forming on D1’s home patch is given by

βL =

(
h

h+N − 1

)(
1

h+N − 1

)L−1(k − 1

L− 1

)(
h+N − 2

h+N − 1

)N−k(h+N − 2

h+N − 1

)k−L

.
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Note that the term
(
h+N−2
h+N−1

)N−k
ensures the absence of hawks in the group, and(

h+N−2
h+N−1

)k−L
ensures that all other k−L doves are located elsewhere. We must then

weight βL by the number of doves in the group, as each dove receives an equal share

of the reward, resulting in βL(
1
L)V . This is summed over all possible group sizes to

cover the entire range,
k∑

L=1

βL(
1
L)V . This expression can be simplified as follows

k∑
L=1

βL(
1

L
) =

h

k

((
h+N − 2

h+N − 1

)N−k

−
(
h+N − 2

h+N − 1

)N)
.

By employing similar methods for the other scenarios and combining these expres-

sions, we derive the average fitness of a dove as:

R+

((
h+N − 2

h+N − 1

)N−k

−
(
(h+N − 2)N−1

(h+N − 1)N

)(
k(N − 1) + (N − k)(N − 1)

k

)
+

(N − k)(N − 1)(h+N − 2)N−k−1

k(h+N − 1)N−k

)
which we re-express as

R+ τ(h,N, k)V, (1)

where

τ(h,N, k) =

((
h+N − 2

h+N − 1

)N−k

−
(
(h+N − 2)N−1

(h+N − 1)N

)(
k(N − 1) + (N − k)(N − 1)

k

)
+

(N − k)(N − 1)(h+N − 2)N−k−1

k(h+N − 1)N−k

)
Similarly, to calculate the fitness of a hawk, we must consider all scenarios in which

a hawk can receive a share of the reward and possibly endure a cost. Hawks are

indifferent to the presence of doves within the group, as they will always flee from

a hawk’s presence, leading to them receiving no share of the reward. The portion

of V that a hawk receives depends on whether other hawks are present within the

group. Consider two hawks, H1 and H2, along with a dove, D1:

• H1 stays at home, and a group of L hawks forms on H1’s home patch.

• H1 moves to D1’s home patch, where a group of L hawks forms.

• H1 moves to H2’s home patch, where H2 stays home and a group of L hawks

is formed.
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• H1 moves to H2’s home patch, where a group of L hawks forms, but H2 has

moved elsewhere.

To calculate the average fitness of a hawk, we must weight the reward that H1

receives in each of these scenarios by the probability of each group forming. Consider

the first scenario as an example. The probability of H1 staying at home and a group

of L hawks forming on H1’s home patch is given by

αL =

(
h

h+N − 1

)(
1

h+N − 1

)L−1(N − k − 1

L− 1

)(
h+N − 2

h+N − 1

)N−k−L

.

Note that the term
(
h+N−2
h+N−1

)N−k−L
ensures that only L hawks are present on H1’s

home patch, with the remaining N − k − L hawks elsewhere. αL must be weighed

by the number of hawks in the group, resulting in αL(
1
L)V . However, the cost that

the average hawk endures must be weighed by
(
L−1
L

)
C. This is then summed over

all possible group sizes to cover the entire range,
N−k∑
L=1

αL(
1
L)V and

N−k∑
L=1

αL(
L−1
L )C.

These expressions can be simplified as follows:

For the reward component:

N−k∑
L=1

αL(
1

L
) =

h

N − k

(
1−

(
h+N − 2

h+N − 1

)N−k)
.

And for the cost component:

N−k∑
L=1

αL(
L− 1

L
) =

h

h+N − 1

(
1−

(
h+N − 2

h+N − 1

)N−k−1)
.

By using similar methods for the other scenarios and combining these expressions,

we derive the average fitness of a hawk as:

R+

(
1 +

k

N − k
− (N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k
− k(h+N − 2)N−k

(N − k)(h+N − 1)N−k

)
V

−

(
k −N + 1

h+N − 1
− k

N − k
+

h(N − k − 1) + (N − k − 1)(N − 1)

(h+N − 1)2

+
k(h+N − 2)N−k

(N − k)(h+N − 1)N−k
+

(N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k

)
C.

which we re-express as

R+ ω(h,N, k)V − ν(h,N, k)C. (2)
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where

ω(h,N, k) =

(
1+

k

N − k
− (N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k
− k(h+N − 2)N−k

(N − k)(h+N − 1)N−k

)
,

ν(h,N, k) =

(
k −N + 1

h+N − 1
− k

N − k
+

h(N − k − 1) + (N − k − 1)(N − 1)

(h+N − 1)2

+
k(h+N − 2)N−k

(N − k)(h+N − 1)N−k
+
(N − 1)(h+N − 2)N−k−1

(h+N − 1)N−k

)
.

Weak selection: dove’s fixation probability

The Dove’s fixation probability under BDB dynamics is given by

ρB1 =
1

1 +
∑N−1

j=1

∏j
k=1

R+ωV−νC
R+τV

. (3)

We carried out weak selection methods on (3). Consider the expression inside the

product term of (3).

R+ ωV − νC

R+ τV
=

1 + A
R

1 + B
R

,

where

A = ωV − νC, and B = τV,

1 + A
R

1 + B
R

≊ 1 +
A−B

R
.

The term inside the product of (3) now becomes

j∏
k=1

(
1 + A

R

1 + B
R

)
=

(
1 +

A(1)−B(1)

R

)(
1 +

A(2)−B(2)

R

)
...

(
1 +

A(j)−B(j)

R

)

= 1 +

j∑
k=1

(
A(k)−B(k)

R

)
. (4)

So from equation (3)

N−1∑
j=1

j∏
k=1

R+ ωV − νC

R+ τV
=

N−1∑
j=1

(
1 +

j∑
k=1

(
A(k)−B(k)

R

))

= N − 1 +
1

R

N−1∑
k=1

(
ωV − νC − τV

)(
N − k

)
,
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which simplifies to

N − 1 +
1

R

(N−1∑
k=1

(ωV )(N − k)−
N−1∑
k=1

(νC)(N − k)−
N−1∑
k=1

(τV )(N − k)

)
. (5)

By substituting the fitnesses from (1) and (2) and simplifying, we have

N−1∑
k=1

(ωV )(N − k) =

(
N(N − 1− x− xN

1− x
)

+ (
(N − 1)xN+1 −NxN + x

(x− 1)2
)(

h− 1

h+N − 2
)

)
V,

N−1∑
k=1

(νC)(N − k) =

(
(

1− h

h+N − 2
)(
(N − 1)xN+1 −NxN + x

(x− 1)2
)

− 1

2
N(N − 1) +N(

x− xN

1− x
)

)
C,

N−1∑
k=1

(
τV

)(
N − k

)
= −

(
N(N − 1)(h+N − 2)N−1(h+N − 1)−N

+
h− 1

h+N − 2

(
(N − 1)xN+1 −NxN + x

(x− 1)2

)
+

N(N − 1)

h+N − 2

(
NxNH[N − 1,

1

xk
]− x− xN

1− x

))
, (6)

where

H[N − 1, a] =
N−1∑
k=1

ak

k
and x =

h+N − 2

h+N − 1
. (7)

By inserting (6), (6) and (6) into (5), we arrive at the following

N − 1 +
N

R

((
(N − 1− x− xN

1− x
) + (N − 1)

(
(h+N − 2)N−1

(h+N − 1)N

)
(NH[N − 1, 1] + 1−N)

− (N − 1)

h+N − 2
(NxNH[N − 1,

1

xk
]− x− xN

1− x
)

)
V

−
(
(

1− h

h+N − 2
)(
(N − 1)xN+1 −NxN + x

N(x− 1)2
)− 1

2
(N − 1) + (

x− xN

1− x
)

)
C

)
. (8)

Substituting (8) into (3) and simplifying, we have

1

N + N
R

(
(λ1 + λ2 − λ3)V − (λ4)C

) ≊
1

N

(
1− 1

R
((λ1 + λ2 − λ3)V − (λ4)C)

)
, (9)
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which is the approximation of the fixation probability of a mutant dove under BDB

dynamics where

λ1 =

(
N − 1− x− xN

1− x

)
, (10)

λ2 = (N − 1)

(
(h+N − 2)N−1

(h+N − 1)N

)
(NH[N − 1, 1] + 1−N), (11)

λ3 =
(N − 1)

h+N − 2

(
NxNH[N − 1,

1

xk
]− x− xN

1− x

)
, (12)

λ4 =

(
1− h

h+N − 2

)(
(N − 1)xN+1 −NxN + x

N(x− 1)2

)
− 1

2
(N − 1) +

(
x− xN

1− x

)
. (13)

We assumed an infinite well-mixed population i.e. as N → ∞. We consider each λi

for i ∈ {1, 2, 3, 4} and deduce an approximation for each λi as N tends to infinity.

For (10), we have,

λ1 ≊
N

e
. (14)

For (11), we have

λ2 ≊
(
N − 1

e

)(
ln(N − 1) + γ +

1

N
− 1

)
,

where γ is the Euler-Mascheroni constant.

For (12) we have,

λ3 ≊
N

e
ln(N − 1) +

N

e
f(h)−N +

N

e
, (15)

where f(h) = H[N − 1,

(
h+N−1
h+N−2

)k

]− ln(N − 1).

From (13) we have,

λ4 ≊ (1− h)(1− 2

e
) +N(

1

2
− 1

e
) +

1

2
. (16)

By simplifying (14), (15), and (15),

(λ1 + λ2 − λ3)V =
N

e

(
γ − 1− f(h,N)

)
+

1

e

(
2− ln(N − 1)− γ − 1

N

)
+N. (17)
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Substituting (17) and (16) into (9), we have

1

N

(
1− 1

R

((
N

e

(
γ − 1− f(h,N)

)
+

1

e

(
2− ln(N − 1)− γ − 1

N

)
+N

)
V

−
(
(1− h)(1− 2

e
) +N(

1

2
− 1

e
) +

1

2

)
C

))
,

(18)

which is an approximation of the fixation probability of a mutant dove in an infinite,

well-mixed population. The neutrality condition for this case is given by ρB1 = 1
N

i.e.
N

e

(
γ − 1− f(h,N)

)
+

1

e

(
2− ln(N − 1)− γ − 1

N

)
+N

)
V

−
(
(1− h)(1− 2

e
) +N(

1

2
− 1

e
) +

1

2

)
C = 0,

(19)

which simplifies to

V =
(12 − 1

e )

(1e (γ − 1− f(h)) + 1)
C. (20)

By using similar methods to the dove’s fixation probability under BDD dynamics

(2.12), we deduce a similar weak selection approximation given by

1

N

(
1− (N + 2w∗)

R(N + w∗)
((λ1 + λ2 − λ3)V − (λ4)C)

)
. (21)

where the neutrality condition remains unchanged.

Mean group size calculation

When we calculated the mean group size under independent movement, we con-

sidered a process where L individuals partake in the movement process. These

individuals can either move to an empty place or to a place already containing an

individual that did not move. The mean group size under independent movement is

given by

|G| =
N∑

L=0

(
L

N

L∑
j=0

(
1

N

)j(N − 1

N

)L−j(L
j

)
(j)2

+

(
1− L

N

) L∑
j=0

(
1

N

)j(N − 1

N

)L−j(L
j

)
(j + 1)2

)
(λ)L(1− λ)N−L

(
N

L

)
.

By expanding the summations and simplifying, we have

|G| = 1 + λ

(
2− 1

N
(2 + λN − λ)

)
. (22)
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Therefore, by using (3.3), T, under independent movement is given by

T =
1

N − 1
λ

(
2− 1

N
(2 + λN − λ)

)
. (23)

For the wheel process, we first calculated T (1.49) and then used (3.3) to then

determine the mean group size. In an N -sized, well-mixed population, there are the

various ways Ii and Ij can be together. For instance, Ii and Ij may both partake in

the movement process and move to the same place. Alternatively, Ii may partake

in the movement process and move to Ij ’s home vertex, while Ij does not partake

in the movement process and remains on their home vertex, or vice versa.

P(Ii and Ij are together) =

N−1∑
L=2

jm∑
j=1

(L− j)(1− θjN

2π
)(λ)L(1− λ)N−L

(
N − 2

L− 2

)

+
N∑

L=1

(2)(λ)L(1− λ)N−L

(
N − 2

L− 1

)(
1

N

)
.

The first summation represents the probability of individuals Ii and Ij of distance j

spikes, being together at the same place and jm = min(⌊ 2π
Nθ⌋, r) represents the cut-

off point where this no longer holds. By expanding the summations and simplifying,

T is given by

T =
1

N(N − 1)

(( N∑
⌊ 2π
Nθ

⌋

(
⌊ 2π
Nθ

⌋2 + 1

2
(⌊ 2π
Nθ

⌋2 + ⌊ 2π
Nθ

⌋)
(
Nθ

2π
(1− ⌊ 2π

Nθ
⌋)− 1

)

+

⌊ 2π
Nθ

⌋−1∑
L=2

(
L2 +

L2 + L

2
(
Nθ

6π
(1− L)− 1)

))
(λ)L(1− λ)N−L

(
N − 2

L− 2

)
+

2(λ− λ2)

N

)
. (24)

Therefore, by using (3.3), the mean group size is

|G| = 1 +
1

N

(( N∑
⌊ 2π
Nθ

⌋

(
⌊ 2π
Nθ

⌋2 + 1

2
(⌊ 2π
Nθ

⌋2 + ⌊ 2π
Nθ

⌋)
(
Nθ

2π
(1− ⌊ 2π

Nθ
⌋)− 1

)

+

⌊ 2π
Nθ

⌋−1∑
L=2

(
L2 +

L2 + L

2
(
Nθ

6π
(1− L)− 1)

))
(λ)L(1− λ)N−L

(
N − 2

L− 2

)
+

2(λ− λ2)

N

)
. (25)
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Temperature calculations

When calculating the temperature of an individual under independent movement,

it was simpler to consider the probability of an individual being alone, as the tem-

perature is also equal to 1− P(alone). In an N -sized, well-mixed population, there

are various ways Ii can be alone. For instance, Ii may not partake in the movement

process, remain on their home vertex and have no one else move to the same place.

Alternatively, Ii may partake in the movement process, move to their home vertex,

and find themselves alone, with no other individuals moving to the same vertex. An-

other possibility is that Ii and Ij both partake in the movement process, Ii moves

to Ij ’s home vertex, and is alone, provided no other individuals move to the same

place.

P(Ii is alone) =
N−1∑
L=0

(λ)L(1− λ)N−L

(
N − 1

L

)(
1− 1

N

)L

+
N∑

L=2

(λ)L(1− λ)N−L

(
N − 2

L− 2

)(
N − 1

N

)(
1− 1

N

)L−1

+
N∑

L=1

(λ)L(1− λ)N−L

(
N − 1

L− 1

)(
1

N

)(
1− 1

N

)L−1

.

Expanding the summations and simplifying,

P(Ii is alone) =
N(N +Nλ(λ− 1)− λ2)(N − λ)N−2(1− λ)N

(N −Nλ)N
.

Therefore, the temperature under independent movement is given by

τN = 1− (N +Nλ(λ− 1)− λ2)(N − λ)N−2

NN−1
. (26)

Using a similar approach to calculate the temperature for the wheel, we considered

theta in two possible ranges 0 ≤ θ ≤ π
N and π

N ≤ θ ≤ 2π
N as this includes the cases

where all spikes can aggregate, to complete separation. Consider individual Ii where

0 ≤ θ ≤ π
N :

• Ii partakes in the wheel process and moves to their home vertex and no one

else joins them.

• Ii partakes in the wheel process and moves to someone else’s vertex, alone.

• Ii does not partake in the wheel process and stays on their home vertex, alone.
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• No one in the population partakes in the movement process, therefore Ii re-

mains alone.

P(Ii is alone) = (λ)

N∑
L=1

(λ)L−1(1− λ)N−L

(
N − 1

L− 1

)(
Nθ

Lπ

)(
1

N

)

+ (λ)2
N∑

L=2

(λ)L−2(1− λ)N−L

(
N − 2

L− 2

)(
Nθ

Lπ

)(
1− 1

N

)

+ (1− λ)

N∑
L=1

(λ)L(1− λ)N−L−1

(
N − 1

L

)(
1−

((L− 1)θ + 2π
N

2π
)

)
+ (1− λ)N .

By expanding the summations and simplifying, the probability of being alone is

P(Ii is alone) =
1

N
(N − 1)(1− λ)((1− λ)N−1 − 1) + (1− λ)N

+
θ

π

(
λ+

1

2
((1− λ)(1− (1− λ)N−1) + (N − 1)(λ− 1)(λ))

)
.

and, therefore, the temperature for 0 ≤ θ ≤ π
N is given by

τN = 1−
(

1

N
(N − 1)(1− λ)(1− (1− λ)N−1) + (1− λ)N

+
θ

π

(
λ+

1

2
((1− λ)(1− (1− λ)N−1) + (N − 1)(λ− 1)(λ))

))
. (27)

By using very similar methods, the temperature for π
N ≤ θ ≤ 2π

N is given by

τN = 1−
(

1

N

(
− 1 + (1− λ)N + λ(λ+ 2)−N(λ2 + λ− 1)

)
− θ

2π

(
− 1 + (1− λ)N + λ(N + 3λ− 3Nλ)

))
. (28)
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