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Abstract

This thesis investigates the evolution of structured populations involving multiplayer
evolutionary games, with a particular focus on realistic, coordinated movement be-
haviours. Building on recent advancements in evolutionary graph theory, most
notably the Broom-Rychtat framework, which extends the classical evolutionary
models to incorporate more realistic features such as multiplayer interactions, this
thesis addresses a gap in the existing mathematical literature concerning the mod-
elling of coordinated movement within evolutionary settings. Existing models have
primarily focused on independent movement, and more recently, history-dependent
movement. Although the theory underlying the framework has been explored in
various directions, several movement mechanisms have been developed that char-
acterise coordinated movement, for example, herding and dispersal. By extending
existing parameters within the framework, this thesis develops a general methodol-
ogy for embedding a wide range of considered movement processes into evolutionary
settings on arbitrary network structures. We demonstrate that certain levels of ag-
gregation and dispersal can benefit specific types of individuals depending on the
considered game, for example, public goods. Throughout this thesis, we consider
key evolutionary measures, including fixation probabilities, predictors such as mean
group size and temperature and aggregation metrics, and show that their influence

is determined by the nature of both the movement process and game.
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Chapter 1

Introduction

Despite being a well-established theory, the field of evolution has remained at the
forefront of scientific research due to the very nature of its description. Evolution
describes the origin of the diversity of life through the mechanism of natural selec-
tion. In 1859, Charles Darwin published the book On the Origin of Species, which
provided the first accurate exposition on the subject. Natural selection is the process
by which individuals exhibiting advantageous characteristics are more likely to sur-
vive and, therefore, reproduce, passing their favourable genetics to their offspring.
This is because an individual with a survival advantage is more likely to reproduce
than one without such traits. Similarly, an individual who exhibits a disadvanta-
geous trait is less likely to survive and reproduce; consequently, its genetic code is
likely to disappear over time. In simple terms, natural selection is the non-random
differential survival of genes within gene pools. Genetic mutation also plays a signif-
icant role in the evolutionary process. Through mutation, the genetic code passed to
offspring may change. When mutated genes provide an advantage or disadvantage
to the host, then they are subject to the forces of natural selection. However, if the
mutated genes are neither beneficial nor detrimental to the host, they are considered
neutral. These neutral genes may become incorporated into the population through
neutral drift. Evolution is a multifaceted theory and can be studied through various

approaches, particularly through evolutionary game theory.

Evolutionary game theory, as it is broadly recognised today, was formalised by
John Maynard Smith, particularly through his influential book FEwvolution and the
Theory of Games (1982). Evolutionary game theory is a versatile mathematical

modelling tool that has become increasingly popular for studying the evolution of



populations. It has cross-disciplinary influences in Economics and Biology, appealing
to practitioners in both fields. This is because evolutionary game theory not only
serves as a theoretical foundation for modelling population evolution but also offers
a diverse framework with the potential to explore and explain a vast range of natural

phenomena (Broom & Rychtar 2013).

The purpose of this section is to first explain the foundation on which evolution-
ary game theory is built: classical game theory. We then highlight key developments
in this area and demonstrate the connection between game theory and evolution,
which led to the emergence of evolutionary game theory. Subsequently, we discuss
significant, established work in the field, such as the Moran Process, Evolutionary
graph theory and the Broom-Rychtar framework before outlining the contributions

presented in this thesis.

1.1 Classical Game Theory

Game theory is a mathematical framework used to analyse interactions between in-
dividuals involving strategic decisions. Its inception can be traced to the publication
of John von Neumann and Oskar Morgenstern’s book Game Theory and FEconomic
Behaviour, (von Neumann & Morgenstern 1944), and it has since been widely ap-
plied across various fields. This section begins by defining a game, highlighting

important developments before applying them to population evolution.

A game is primarily considered as a mathematical model that describes a sit-
uation where a finite number of entities, or players, interact with each other, with
each player acting in their own self-interest. At each stage of the game, every player
must perform an action. The actions that players choose to take against one other
are defined by their strategies. A strategy catalogues all of the actions a player can
take in every scenario of the game. While a pure strategy specifies a single action
for all possible scenarios, a mized strategy is a combination of pure strategies, where
each pure strategy is played with a certain probability. The motivation for a player
to adopt a particular strategy is represented by the payoff they receive from playing
that strategy. In symmetric games, players have the same set of strategies, and

for a two player symmetric game, with N strategies, Si,..., Sy, the game can be



represented by a payoff matriz given by

S S5 Sy
S | EQ1,1) EQ1,2) --- E(1,N)
Sy | E(2,1) E@2,2) --- E(2,N) (1.1)
Sy | E(N,1) E(N,2) --- E(N,N)

where each entry E(i,j) is the payoff to a player using strategy S; against their
opponent using strategy S;. For simplicity, consider a symmetric two-player game

with the payoff matrix given by

A B
Ala b (1.2)
B|lc d

The matrix entries a, b, ¢, d represent the payoffs for the individuals. For example,
both players receive the payoff a if they both use strategy A. Games are analysed in
terms of the best responses. A best response is a strategy that provides the highest
payoff compared to all other available strategies. If both players adopt their best
response strategies, the game reaches a Nash equilibrium, (Nash 1951) a situation
where neither individual can improve their payoff by switching to another strategy.
This concept represents a significant development in game theory, providing a robust

method for determining optimal strategies within this framework.

1.2 Evolutionary Game Theory

One of the first indirect uses of game theory in an evolutionary setting was by Fisher
(1930) who mathematically developed Darwin’s argument regarding why natural se-
lection should act to equalise the sex ratio (1874). This was later explicitly explained
by Hamilton (1967), who published one of the first works on the subject. While
classical game theory attempts to describe the Nash equilibria in isolated social
interactions, typically between two individuals, evolutionary game theory explains
changes in macro-behavioural regularities within a given population by determining
the evolutionary stability points, where the composition of the population remains

constant over time.



The strategy that an individual adopts reflects their phenotype, which is genet-
ically determined. The payoff an individual receives from interacting with others
contributes to their fitness. Fitness measures the likelihood of an individual repro-
ducing and propagating their genetic code to their offspring and, thus, to future
generations. During reproduction, the forces of natural selection come into play,
as individuals with a higher fitness will reproduce more frequently, leading to an
increased proportion of such individuals within the population. Conversely, the
frequency of individuals with lower fitness decreases.

However, mutations within the population may occur, which can be interpreted
as an offspring adopting a different strategy from their parent. Evolutionary pro-
cesses have generally been studied in unstructured, infinite populations, where each
individual is equally likely to encounter others. Traditionally, this research has con-

sisted of two approaches: static and dynamic analyses.

1.2.1 Evolutionarily Stable Strategies (ESS)

The term Evolutionarily Stable Strategy (ESS) was coined by John Maynard Smith
and George Price (1973) and is arguably one of the most central concepts in Evolu-
tionary game theory. ESSs are commonly used to analyse evolutionary games, where
a strategy qualifies as an ESS if it is adopted by all members of the population and
can resist invasion by any alternative strategy. The mathematical definition of an
ESS considers the population at a certain point in time when a mutant strategy is
introduced and adopted by a small subset of individuals. The ESS provides a condi-
tion under which the mutant strategy is not favoured by natural selection, meaning
the fitness of the mutant is lower than that of the resident strategy. Consequently,
over time, the mutants die out.

Assuming an infinite population where individuals are equally likely to interact
with each other, then the condition for an ESS is given as follows. If 1 — € of the
population plays the resident strategy ¢, and a small € proportion of the population
adopts a mutant strategy j (where j # 7), then strategy i is an ESS for the population
if

(1 —€)E(i,i) +€E(i,5) > (1 —€)E(j,1) + €E(j,7) (1.3)

where the fitness of a resident using strategy i is given by (1 — €)E(i,7) + eE(i, j)
and the fitness of a mutant using strategy j is given by (1 — €)E(j,1) + €E(j, ).



Alternatively, one can derive a pair of conditions from the equation above by
letting € — 0. A strategy i can be classified as an ESS if and only if for all j # i.

we have:
E(i,i) > E(i,j) or E(i,i) = E(j,7), and E(i,j) > E(j,7). (1.4)

The first condition states that a mutant must not perform better within the popu-
lation compared to a resident. This is called the equilibrium condition. The second
condition states that if a mutant performs as well as a resident when playing against
another resident, then the mutant must perform worse than a resident when playing

against a mutant. This is known as the stability condition.

1.2.2 The Replicator equation

Whereas the static approach analyses a population playing a given strategy against
mutants to assess stability, the dynamic approach examines how the composition
of the population changes over time. This involves defining a reproduction stage
within the evolutionary structure, which can be described by an equation, specifically
the replicator equation (Taylor & Jonker 1978, Hofbauer et al. 1979, Hofbauer &
Sigmund 1998).

d
—pi = pi(F; — 7). 1.
=i = pi(Fi =) (15)

Here, p; represents the frequency of individuals playing strategy ¢, F; denotes the
fitness of an individual who plays strategy ¢ and ~ is the average fitness of the
population. Evidently, if the fitness of an individual using strategy i is greater than
the average fitness of the population, the frequency of such individuals will increase.
Conversely, if their fitness is lower than the average fitness of the population, their
frequency will decrease. Hence, the replicator equation describes a deterministic
dynamic process in which advantageous strategies gradually spread throughout the
population. It is important to note, however, that the replicator dynamics do not
consider mutation, therefore, any strategy not originally present in the population
will never appear throughout the evolutionary process.

We can determine the evolutionary equilibria for the two strategy game from
(1.2) by solving the equation (1.5). Assume that the frequency of individuals playing
strategy A is z. The fitness of each type of individual is given by



Fa=za+ (1—2z)band Fp = zc+ (1 — 2)d.

We have that the average fitness of the population is

vy=zFa+(1—2)Fp

By substituting these fitnesses into equation (1.5), the change in the frequency of
type A individuals is given by

d
—pa =pa(Fa—7)

dt
=2z(Fga—2Fa—(1—2)Fp)
=2(1—2)(Fa— Fp)

=z2(1—2)(z(a—b—c+d)+b—d).

In order to determine the equilibrium values z*, we must solve %p 4 = 0. Evidently,

this gives the equilibrium values

d—2b
Z* :O’Z* =1 and Z* = m
The stability of the equilibrium points depends upon the values of the payoffs. We

have the following cases:

e 2* =1 stable: This corresponds to a > ¢ and b > d. i.e. strategy A is a strict
Nash Equilibrium. Therefore, regardless of the starting frequency z of type
A individuals, the population eventually reaches an equilibrium state where

there are only type A individuals.

e z* = ( stable: in this case we have that ¢ > a and d > b, which is the exact

opposite of the previous case i.e. strategy B is a strict Nash Equilibrium.

e z* =0 and z* = 1 are both stable: in this case, a > ¢ and d > b. This means
that both A and B are the best responses to themselves. The equilibrium

point the population converges to depends upon the starting frequency z. If

z > #‘I;d, the population converges to z* = 1, and z* = 0 otherwise.
e ¥ = #*Z’er is stable: in this case a < ¢ and d < b, showing that strategy A

is the best response to strategy B and vice versa. As a result, both strategies



can coexist and eventually stabilise at the equilibrium state.

1.3 Evolutionary processes in a finite population

The ESS and the replicator equation are determinstic models, providing valuable
insights into how effective particular strategies are at resisting invasion and deter-
mining the stability points of a given population. However, these concepts assume
that the population in question is infinite, which is unrealistic since biological pop-
ulations are finite. Capturing natural phenomena such as genetic drift and neutral
drift is important and requires a different set of evolutionary dynamics, incorporat-
ing a stochastic process.

One of the earliest stochastic models in population genetics, which examines
the changes in allele frequencies within a population’s gene pool, is the Wright-
Fisher model (Fisher 1930, Wright 1930). This classical process originally modelled
neutral populations, but has since been extended in several directions such as the
implementation of multiple alleles and selection (Edwards 2000, Waxman 2011) and
acts as an important framework for inferring selection on genetic data (Paris et al.
2019). For large finite populations, the Wright-Fisher model can be approximated
by a diffusion process, which was first done by Kimura (1964) and Zheng et al.
(2011) extensively consider diffusion approximation in the context of evolutionary
games.

Another stochastic model, the Moran process (Moran 1958, 1962), was developed
to investigate evolution in finite, homogeneous populations, consisting of two types
of individuals where each individual is equally likely to interact with every other in-
dividual. This framework was later extended to consider evolutionary games (Nowak
et al. 2004, Taylor et al. 2004).

Consider an N-sized population with k type A individuals and N — k type B
individuals. Type A individuals have fitness r, while type B individuals have fitness
1. Unlike the previously considered evolutionary setting governed by the repli-
cator equation, the fitness of individuals within the Moran process is frequency-
independent, i.e. it does not depend on the population composition. The stochastic
dynamics incorporated into the Moran process ensure that the population always
remains at size N. At each time step, an individual is selected to reproduce a copy

of itself with probability proportional to its fitness. Its offspring then replaces a
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Figure 1.1: The Moran process (Moran 1958, 1962) describes the stochastic evolution of a
finite population. At each time step, an individual is selected to reproduce with probability
proportional to its fitness. The offspring then randomly replaces another individual (excluding
its parent) ensuring the population size remains constant.

random member of the population other than its parent. The probability that a

type A or B individual is selected for reproduction is given by

B r b 1
T kr+(N—k) P kr+(N—k)

ba
The offspring then replaces another random member of the population (excluding
its parent) with probability 2 (as seen in Fig.1.1).

It should be noted that the order of the birth and death events matters, as
the parent of the offspring is excluded from being replaced. The Moran process
follows birth-death dynamic with selection occurring at birth (BD-B). Similar to the
replicator equation, we assume that there are no mutations during the evolutionary
process. However, this does not mean that mutation is entirely disregarded. The
evolutionary system is set up by assuming a population of native type B individuals,
into which a single type A individual is introduced via mutation. As the population is
of finite size, one of the types will eventually fixate and replace the other. Naturally,
one may ask ”What is the probability of the type A mutant fixating the population?”.
More precisely, this is referred to as the fixation probability of a type A individual,
denoted p4.

To calculate p4, we must consider the transition probabilities, which are used to



determine the fixation probability. The transition probabilities Py ,, describe the
population transitioning from a state where there are k type A individuals to a
state where there are m type A individuals. Since there is only one birth and one

replacement in each time step, m can only be equal to k + 1, k — 1 or k.

k N—k —
AN TE N m=k+1
= N-k k —
Plom = v v m=k—1 (1.6)

N—k N—k

kr k _
l— v~ —mavagN m=k

The standard expression of the fixation probability is provided in (Karlin & Taylor

1975).
- ! (1.7)
PA = o Nz_l ll[ s .
=1 k=1 Plee+1

Substituting the transition probabilities gives

1—(L
1_(&33\77 r # 1
%, r=1

This solution is known as the Moran probability and serves as the standard bench-
mark for comparing fixation probabilities in other complex evolutionary models. The
phenomenon of neutral drift is captured by this solution. Consider » = 1, which rep-
resents a neutral mutation that provides neither a benefit nor a disadvantage to the
type A individual compared to the type B residents. In this case, pg = % Evi-
dently, selection favours neither type of individual, as a type A mutant has an equal
chance of fixating within the population as a type B individual. When r < 1, selec-
tion favours the type B residents, as the fixation probability is less than that of a
neutral individual (i.e., p4 < %) Conversely, when r > 1, selection favours the type
A mutant, as pg > % It is important to note that even when r # 1, the fixation or
extinction of a mutant is not guaranteed. This is because even the fittest or weakest

member of the population may not be necessarily be selected for reproduction or

replacement.



1.3.1 Evolutionary games in finite populations

The Moran process was later extended by Taylor et al.(2004) to incorporate frequency-
dependent fitness, where individuals play a game whose payoff matrix is shown in
(1.2). In this extension, the fitness of individuals (previously constant in the Moran
process) becomes variable due to the inclusion of evolutionary games. With these
fitnesses, the transition probabilities (1.6) must be recalculated in this new context
and substituted into (1.7). This yields a new rule that indicates when a type A indi-
vidual is favoured by selection. Assume there are k type A individuals, the fitnesses

are given by

Fa(n) =1—w+w (“(’“ - 1])V+_(ff - k)b) . (1.9)
FB(n)zl—w+w<Ck+(]]\\;:I;—1)d>. (1.10)

The terms inside the brackets represent the average payoff to the individual, as

all members of the population are equally likely to interact with each other. For

example, for a type A individual, the probability they meet another type A individual
k—1

is §—7, which gives a payoff of a. The probability they meet a type B individual

is %, which gives a payoff of b. The background payoff gained from activities

unrelated to the games is 1, and the intensity of selection is governed by 0 < w < 1.
A small w presents weak selection, meaning that the game has a minimal effect on
fitness compared to the background payoff. At w = 1, the fitness is equal to the
payoff in the game. Therefore, selection with respect to the game is strong, as it
fully determines the fitness of the individuals. With the fitnesses calculated, we can
determine the transition probabilities (1.6) and substitute them into (1.7). For small
w = 0,

(1.11)

Piicl 1 4w <ak—|—(N—k)b B ck+(N—k;—1)d>
Dii+1 N -1 N -1
Selection favours type A individuals if p4 > . By substituting (1.11) into (1.7)

and applying approximation methods, we have
a(N —2)+b(2N —1) >c¢(N+1)+d2N —4)

Assuming a large population, we need only consider the terms multiplied by N,
which gives

b<d and a+2b<c+2d
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where the second equation can be simplified to % < 5, which Taylor et al.

(2004) referred to as the rule of 1/3. This states that selection favours a type A

mutant fixating if the internal equilibrium point is less than :1,) Note that it was

d—b

a—erd—p s an internal equilibrium using the

previously shown in section 1.2.2 that

replicator equation.

1.4 Evolutionary Graph Theory

Traditionally, developments in evolutionary game theory have often relied on the un-
realistic assumption that populations are homogeneous, that is, all members of the
population are equally likely to interact with one another. However, in reality, pop-
ulations often exhibit heterogeneous structures, influencing the relationships among
members of the population, as individuals are more likely to interact with neigh-
bours in their local vicinity than with those who are distant. Recently, the process
of modelling the evolution of structured populations using a graph, where individu-
als exclusively interact with their neighbours, was formalised as FEvolutionary graph

theory (Lieberman et al. 2005).

@ @) .
®
‘@Q

(a)

Figure 1.2: These two figures represent a population composed of type A and B individuals.
Figure (a) shows an unstructured population where all individuals can interact with one an-
other whereas figure (b) represents a structured population. The population is represented by
a graph where the vertices represent individuals such that individuals can only interact with
each other if they are connected.

&G

O
®

—~

b)

The population structure is defined as follows. The matrix W = [w;;] determines
the structure of the graph. Individuals are labelled ¢ = 1,2, ..., N and are situated on
the vertices of the graph. The probability that the offspring of individual 7 replaces
individual j is given by w;; > 0. If w;; = 0 and wj; = 0, then the vertices 7 and
j are not connected; therefore, the individuals ¢ and j cannot interact with each
other. The BD-B dynamics used in the Moran process were adapted to be used in

this evolutionary framework such that at each time step, an individual i is selected
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to reproduce with probability proportional to its fitness (as in the Moran process)
but its offspring replaces individual j and occupies its vertex with probability w;;.

The temperature measures how likely individuals are to be replaced and is given by

N
T%j = Zwij (112)
=1

Similar to the Moran process, it is possible to determine the fixation probability of
a type A mutant within a structured population of type B residents. In some cases,

an explicit solution can be derived such as in Broom & Rychtar (2008).

Lieberman et al. (2005) were able to generalise the Moran process to certain
graph structures with specific properties by establishing the isothermal theorem,
which states the fixation probability of a type A mutant, p4, equals the Moran
probability (1.8) if and only if the underlying graph is isothermal. A graph is said to
be isothermal if every individual has the same temperature. This significant result
allows us to classify structures that hold no influence on the evolutionary process.
This result was further generalised in Lieberman et al. (2005) to all graph structures
whose evolutionary behaviour matches that of the Moran process by the circulation
theorem. The circulation theorem states that if a graph is a circulation, that is, the
sum of the incoming weights is equal to the sum of the outgoing weights at each
vertex, then py4 is equal to the Moran probability (1.8).

Lieberman et al. (2005) also provided examples of graphs that can act as either
amplifiers or suppressors of selection. For example, consider the burst graph, where
a central node has edges directed outward to other nodes. Regardless of the mutant’s
fitness, the fixation probability is always equal to %, as the individual occupying
the central node will always fixate the population. In contrast, the super-star graph
has the property that for any advantageous mutant (r > 1), the fixation probability

of the mutant tends to one as N — oo.

The significant advantage of evolutionary graph theory lies in its ability to con-
sider a wide range of population structures (Antal & Scheuring 2006, Broom &
Rychtar 2008, Shakarian et al. 2013, Maciejewski 2014, Hindersin & Traulsen 2014,
Cuesta et al. 2017). Both population structure and evolutionary dynamics play in-
fluential roles in population evolution (Santos & Pacheco 2006, Broom & Rychtar
2008, Voorhees 2013, Tkadlec et al. 2020, Shakarian et al. 2012). In fact, heteroge-

neous structures are pivotal in facilitating the formation of clusters of cooperators
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(Li et al. 2013).

Beyond evolutionary graph theory, structured population modelling has been
widely applied in metapopulation and epidemic modelling. In metapopulations,
communities naturally form due to migration and habitat segmentation (Hanski
1998). Typically, these models distinguish between within-community reproduction
and between-community migration, which are referred as metapopulation dynamics.
Yagoobi et al. (2023) recently provided a systematic classification of these dynam-
ics. Further extensions have incorporated group-level events such as group splitting
(Traulsen et al. 2008) and group reproduction (Akdeniz & van Veelen 2020), which
entail the replacement of entire groups by other groups or by a single individual.

Epidemic modelling also makes extensive use of graphs to investigate the effects
of network topology on the spread of infection and disease. The original models were
developed by Kermack & McKendrick (1927, 1932, 1933), which act as a foundation
for modern epidemiology. Subsequent work has extended this area to consider net-
work structure Keeling & Eames (2005). More recent work on epidemic modelling

has been explored on heterogeneous graphs (Ball & House 2017).

1.4.1 Modelling evolutionary games on graphs

The development of evolutionary graph theory enables the consideration of frequency-
dependent fitness on heterogeneous structures (Santos & Pacheco 2006, Hadjichrysan-
thou et al. 2011, Ohtsuki et al. 2006). For example, Broom et al. (2010) applied the
classical Hawk-Dove game on the three non-directed graphs: the star, the circle and
the complete graph. They generated theoretical formuale for the exact solutions of
fixation probabilities and also for the speed of the evolutionary processes, namely
the fization time, which was also studied in Frean et al. (2013).

Also, Ohtsuki et al. (2006) considered a two-player Public Goods game where
players are required to cooperate to reach the optimal outcome. The payoff matrix

is defined as
A B

Alb—c —c (1.13)
B b 0

where the type A individuals are cooperators because they are willing to endure a
cost ¢ to provide a public good to the individual they are interacting with. Type

B individuals are defectors because they never pay a cost and, therefore, do not
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provide a public good to the individual they interact with. However, defectors will
receive a public good if the individual they interact with is a cooperator. Consider a
regular graph with k-degree, the payoff to a cooperator who is connected to ¢ other
cooperators is bi — ck. The payoff to a defector connected to j cooperators is bj.

Therefore, the fitnesses of cooperators and defectors is given by
Fa=1—w+wbi—ck), Fp=1—w-+wbj (1.14)

Under weak selection i.e. small w, Ohtsuki et al. (2006) demonstrated that for a
large population, the fixation probability of a mutant cooperator is greater than

1/N and of a mutant defector is less than 1/N if

b
= >k, (1.15)

C

where k is the degree of the graph. This tells us that the more limited the connections
on the graph, the easier it is for cooperation to spread, therefore, the complete graph

is the most difficult regular graph for the spread of cooperation.

1.5 Multiplayer Games

The previous models we considered primarily focused on pairwise games, as many
real-life conflicts often involve two participants, and valuable insights can be gained
from analysing them. However, interactions in real life often involve several individ-
uals, and this emphasis on pairwise games has created a notable gap in the study
of multiplayer games within biological populations. The significant challenge lies in
the mathematical framework and analysis required for multiplayer games, which are
significantly more complex, making it difficult to derive generalisable results. For
example, in species such as killer whales, cooperative behaviours such as collective
hunting require coordination among all members of the group. However, not all
whales may cooperate, and some may act selfishly, and hunt alone, which can affect
the group’s success. These types of interactions, where multiple individuals are in-
volved, need to be captured by the mathematical theory to more accurately model
real-life dynamics.

One of the earliest contributions to evolutionary multiplayer games was made

by Palm (1984). However, the theoretical foundations of evolutionary multiplayer
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games were substantially developed by Broom et al. (1997) who considered mul-
tiplayer matrix games specifically, symmetric games, meaning that there was no
significance to the ordering of the players within the group interaction. Thus an
individual’s payoff depends only upon its strategy and the strategies of the other
individuals. However, in assymetric games, the order of the players and their strate-
gies affects the payoff. Gokhale & Traulsen (2010) demonstrated that if groups
are wholly randomly selected from the population, then there is no real difference
between symmetric and non-symmetric games and this was the assumption made
in Broom et al. (1997), who considered an infinite population, where groups of m
players were randomly selected to play a game (see also Bukowski & Miekisz (2004)
and Gokhale & Traulsen (2014)). Under these assumptions, the ESS for an m-player
game can be stated as follows: a strategy p in an m-player game is called an evolu-

tionarily stable strategy against a strategy q if there is an €q € (0, 1] such that for

all € € (0, €q]
Elp; (1 —€)dp + €dq] > E[q; (1 — €)0p + €dg] (1.16)
where
T m— 1
E[x; (1 —€)0y + €d,] = Z ( ; )(1 —olem I Ex; ! 2™ ). (1.17)
=0

We say that p is an ESS for the game if for every q # p, there is ¢q > 0 such
that (1.16) is satisfied for all € € (0, €q]. (1.17) is derived under the assumption that
groups within the infinite population are formed randomly, therefore the probability
of a group with two strategies forming can be described by a binomial distribu-
tion. Gokhale & Traulsen (2010) extended this analysis to finite populations under
the Moran process, where individuals participated in two-strategy, m-player matrix
games. They were able to derive rules within finite populations on how the internal
dynamics proceed. Also, Lessard (2011) considered the extension of the law of 1/3

from two-player to m-player games.

Similarly, as in (1.4), we have that for an m-player matrix game,the mixed strat-
egy p is evolutionarily stable against q if and only if there isa j € {0,1,...,m —1}
such that

Elp;p" ', d’] > Elg;p™ ', '), (1.18)

Elp;p™ 7. q'] = Elq;p" ", q] for all i < j, (1.19)

15



A strategy p is called an ESS at level J if, for every q # p, the conditions (1.18)
and (1.19) are satisfied for some j < J and there is at least one q # p for which the
conditions are met for j = J precisely.

In recent years, m-player multiplayer games have been extensively explored in the
mathematical literature. For instance, the evolution of cooperation in such games
was examined by Platkowski & Bujnowski (2009) and Bach et al. (2006). Addi-
tionally, Souza et al. (2009) investigated m-player snowdrift games and extended
the classical Hawk-Dove game to an m-player setting. From a dynamical perspec-
tive, multiplayer games have also been widely studied (Bukowski & Miekisz 2004,
Platkowski 2004, Miekisz 2008).

Notation Description
N Size of the population
Ii,....,In List of individuals within population
M Number of available places
P, ..., Py List of places
X(t) Matrix representing population distribution at time ¢
Xnm(t) Represents I,,’s presence at place Py, at time t
X The current distribution of X(t)
Tnm Represents I,,’s presence at place P, under the current distribution
Xt The entire history of the evolutionary system
Dr,m,t(X<t) The probability of I,, being at place P, at time ¢ given x4
Pn I,,’s home range or territory
R(n,x,t,X<t) Reward function
R, Mean reward

Table 1.1: Notation used in the Broom-Rychtar framework.

1.6 The Broom-Rychtar Framework

A significant limitation of evolutionary graph theory is its pairwise modelling of
interactions, which fails to account for more realistic arbitrary multilayer game sce-
narios, thus lacking adaptability and realism. To address this limitation, recent re-
search has developed a comprehensive modelling approach that enables the study of
structured population evolution involving multiplayer contests, which we denote as
the Broom-Rychtéf framework (Broom & Rychtar 2012, Broom et al. 2015, Broom,
Pattni & Rychtar 2019, Broom et al. 2021). The motivation behind the development

of the Broom-Rychtat framework was to model arbitrary-sized group interactions in
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overlapping territories observed in real life scenarios, such as in African wild dogs
(Ginsberg & Macdonald 1990), roadrunners (Kelley et al. 2011), cheetahs (Marker
et al. 2008), lynx (Schmidt et al. 1997) and chimpanzees (Herbinger et al. 2001). The
framework assumes that there are N individuals distributed across M places, and
group interactions occur whenever two or more individuals are present in the same
place at the same time. The original paper by Broom & Rychtar (2012) focused
primarily on defining the basic setup of the framework and developed examples of
models, while the evolutionary dynamics were not implemented until Broom et al.
Broom et al.. This robust framework serves as the foundation for the work presented

in this thesis, and we first outline the framework in its full generality.

1.6.1 Structure

The population consists of N individuals, Iy, ..., Iy who move stochastically and
interact across M distinct places, Pi, ..., Pyr. The distribution of individuals across
the places is mathematically represented by the N x M binary matrix X(t) =

(Xn,m(t)) which gives the exact position of every individual within the population.

1, if the individual I, is in place P,, at time t,
Xnm(t) = (1.20)

0, otherwise.

The n" row of X represents individual I,,, and the m!” column represents place P,.
The probability of X(¢) taking a particular value x can depend on the entire history
of the evolutionary system, x<; = (X, ..., X;—1) which is expressed as a conditional

distribution
P(X(t) =x)(x<¢) = P(X(t) = x)|X(1) = x1, .., X(t = 1) = x¢_1). (1.21)

Given that, at any time ¢, an individual must be at exactly one place (as the places
are distinct), every evolutionary system constructed under this framework must

satisfy the following property
Y PX(t) =x)(x<r) =1 Vit x4 (1.22)

In addition to describing the population as a whole, the framework also captures

the movements and position of any individual. The probability of I,, being at place
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P, at time ¢, conditional on the history of the system x.; is given by

P(Xmn(t) = 1)(X<t) = ppmt(X<t) (1.23)

Since any individual can only be present at one location at any time, every system

must satisfy the property
an7m7t(x<t) =1 Vn,t,x<t. (124)
m

Some individuals may not be able to move to certain places, therefore, each individ-
ual I,, has a subset of places they can move to, referred to as their home range or

territory.
Pr =A{Pm : Pnmt(x<t) > 0, for some ¢t and some history x;}. (1.25)

This represents the set of places that individual I,, has a non-zero probability of

visiting at some point in time.

History-dependence

The complexity of the framework can vary based on the specific assumptions made
about the movement of individuals. For example, the movement of individuals
can be defined such that it depends on the history of the system. This allows for a
vast range of evolutionary models therefore Broom & Rychtar (2012) also considered

varying levels of dependency on movement distributions which include the following;:

e History independent: This represents the simplest level of dependency, where
the current distribution of the population is entirely independent of all previ-
ous distributions in the evolutionary process. The population distribution is
expressed as

P(X(t) = x)(x<) = P(X(t) = x) (1.26)

e Markov: The current population distribution at time ¢ depends only on the

previous distribution at time ¢ — 1, which is expressed as

P(X(t) = x)(x<) = P(X(t) = x|X(t — 1) = x;_1) (1.27)
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e FEntire history-dependence: The current population distribution depends on all
previous distributions since the beginning of the evolutionary process. This is

the case discussed earlier (1.21).

Row-dependence

The notion of row independence was defined as individuals moving independently of
one another at time ¢. If two individuals, I,,, and I,,, move to places P,,, and P,

respectively, then we have
P(anm"d (t> =1 and Xn,m, (t) - 1)(X<t) = pm,ml,t(X<t)pn2,m2,t(X<t)- (1'28)

Complete independence

The simplest case developed from the framework is the fully independent model
(see Fig.1.3), which assumes that the movement of individuals is independent of the
previous population distributions and that individuals move independently of one
another. Consider a population of N individuals Iy, ..., Iy who can move between M
places P, ..., Pys. The probability of individual I,, being at place P,, is denoted by
Pnm; see Fig.1.3 for a visual representation using a bi-partite graph. Individuals move
along the graph according to their own movement distributions and form groups on
the vertices of the graph. Let G denote a group of individuals, then y(m,G), the
probability of group G forming at place P,, is given by

G) = sz’m H(l — Djm)- (1.29)

[=e Jj¢G

In Broom & Rychtar (2012), the mean group size from the individual’s perspective

was found to be

x(m, Q)|G|?
ZZ =S\ GIGT (1.30)

1.6.2 Fitness

To model the evolution of a population, we must evaluate the fitnesses of the indi-
viduals. In general, the reward individual I,, receives from playing a game at time ¢,

given the current distribution of individuals X (¢) = x and the previous distributions
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P1 P2 Pm—l Pm Pm+1 PM—l PM
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Figure 1.3: The fully independent model from (Broom and Rychtar 2012). There are N
individuals who are distributed over M places such that I, visits place P, with probability
Pnm- Individuals interact with one another when they meet, for example, I; and I2 can interact
with one another when they meet in P;

X+ was denoted as

R(?’L,X,t,X<t,) (131)

The mean reward is the average reward over all possible population distributions at

time ¢ conditional on the previous distributions of the population.
Ry =Y P(X(t) = x)R(n,X,t,X<). (1.32)
X

Under the fully-independent model, individual I,,’s average fitness is calculated by

considering all payoffs they can receive averaged over all possible groups and places,

Fo=>_> " x(m,G)Rpmac- (1.33)
m G

neG

1.6.3 Evolutionary updating rules

The evolutionary dynamics of structured populations are based on the Moran pro-
cess, ensuring that the population size remains constant. In Broom et al. (2015), the
development of the Broom-Rychtar framework was completed through the introduc-
tion of evolutionary dynamics into the territorial raider model. This framework was
later extended to include the six main updating mechanisms, analogous to those
commonly used in evolutionary graph theory (Pattni et al. 2017). Incorporating
these dynamics into the Broom-Rychtar framework offers a significant advantage, as
it remains accessible to those familiar with evolutionary graph theory, ensuring con-

tinuity between the results from evolutionary graph theory and the Broom-Rychtar
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framework.

Dynamics
BDB b = <Fio, diy—=<%  BDD b=, dy— et
l_ZFn’ L zwin tT N Z]_ZwinFrjl
n n n
Pt wij i F
5 o _wi 1 _ _wiF
DBD d; SR bij S~ DBB d; =4, by S~wn, P
n n n
-1
o _wil Wik
LB 7ij = suF LD 7=~
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Table 1.2: Dynamics defined using the evolutionary graph W, and fitnesses F, ;.

1. BDB or IP dynamics (Lieberman et al. 2005): an individual is first selected
for reproduction with probability proportional to its fitness and its offspring

randomly replaces another member of the group.

2. BDD dynamics (Masuda 2009): an individual is first randomly chosen for
reproduction and its offspring replaces another member of the group with

probability inversely proportional to their fitness.

3. DBD dynamics (Antal & Scheuring 2006): an individual is first selected for
death with probability inversely proportional to their fitness and is replaced
by the offspring of another member of the group who is randomly chosen to

reproduce.

4. DBB dynamics (Ohtsuki et al. 2006): an individual is first randomly chosen
for death and is replaced by the offspring of another member of the group who

is selected to reproduce with probability proportional to their fitness.

5. LB dynamics (Masuda & Ohtsuki 2009): each edge is considered separately in
each direction, and weighted proportionally to its undirected weight and the
fitness of the origin vertex. A weighted edge is then selected at random, with

the origin individual replacing the destination one.

6. LD dynamics (Masuda & Ohtsuki 2009): each edge is considered separately in
each direction, and weighted proportionally to its undirected weight and the
inverse fitness of the destination vertex. A weighted edge is then selected at

random, with the origin individual replacing the destination one.
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1.7 The development of the Territorial Raider model

Different examples using the fully independent model were developed in Broom &
Rychtar (2012). The most significant of these is the territorial raider model, see
Figl.4, which has been extensively explored (Broom et al. 2015, Pattni et al. 2017,
Schimit et al. 2019, Erovenko et al. 2019, Schimit et al. 2022, Pires et al. 2023,
Erovenko & Broom 2024). This model acts as the evolutionary setting for the work

in this thesis.

1.7.1 Population structure

In the territorial raider model, there are N individuals, I1,...Iy who can move and
interact with other individuals at M places P, ..., Py. It is assumed individual
I; lives at place P,, throughout the entire evolutionary process. In the original
territorial raider model from Broom & Rychtar (2012) there was a one-to-one cor-
respondence between individuals and places, although this was later generalised in
Pattni et al. (2017) to include subpopulations of individuals at the same place, and
further explored in Pires & Broom (2024). The amount of time an individual spends
on their home vertex is governed by a global home fidelity parameter h, which is a
measure of preference individuals have towards staying on their home vertex. The
higher h is, the more likely individuals are to stay at home and, therefore, less likely
to move and interact with other individuals and vice-versa. Given an individual I;
with m neighbouring places, the probability of I; staying home is h/(h + m) and
moving is m/(h +m). If h = 1, this represents an indifference individuals have be-
tween all reachable places and means that they are equally likely to visit any of them

and if the base graph is the complete graph, this is a completely mized population.

1.7.2 Evolutionary updating process

An evolutionary graph (Lieberman et al. 2005, Nowak 2006, Pattni et al. 2015,
Voorhees & Murray 2013, Méller et al. 2019) is a graph with an associated weighted
adjacency matrix W = (wj;) where w;; € [0,1) is referred to as the replacement
weight which governs which members of the population can replace each other.
Every vertex v,, of the evolutionary graph is occupied by exactly one individual and
if w;; > 0, then the individual on v; can replace the current individual on v; by

placing a copy of itself onto the vertex. The weights are often selected to ensure
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Figure 1.4: The population structures and apriori distributions for small graphs with three,

four and five nodes. An individual remains on their home vertex with probability Mim and

moves to a neighbouring vertex with probability ﬁ, where m is the number of neighbours.
(a) the line with three nodes. (b) the complete triangle graph. (c) the square with both
diagonals connected i.e. the complete graph with four vertices. (d) the circle graph with four
nodes. (e) the star graph with 5 nodes.

that the evolutionary graph is strongly connected i.e. there is a finite path between

vertices v; and v;.

A general set of evolutionary dynamics for the Broom-Rychtar framework, anal-
ogous to the corresponding evolutionary graph theory dynamics (defined in section
1.6.3), were successfully adapted into the territorial raider model in Pattni et al.

(2017) via the appropriate selection of the replacement weights.

The replacement weights within this framework are based on the assumption that
an offspring of individual I; will replace individual I; with probability proportional
to the time I; and I; spend together. The offspring of I; can also replace its parent
I;, and it does so with probability proportional to the time I; spends on its own.
When ¢ # j The probability of individuals I; and I; meeting is given by summing all
x(m,G) over all m such that I;,I; € G. We assume that I; spends an equal amount
of time with all other members of group G, therefore we weight by 1/(|G| — 1) as
there are |G| — 1 other members of the group. However, when i = j, we sum x(m, G)
over all m such that G = {i}. Here there is no need to weight x(m,G) because I; is

alone. The replacements weights are thus given as
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Wij = 1,j€EG (134)

ZX(m7 {Z}), L= J.

1.7.3 The fixation probability

To determine the likelihood of the evolutionary success of a particular strategy within
a finite population, we calculate its fixation probability. The fixation probability
is regarded as the most significant quantity of a finite evolutionary process. To
calculate the fixation probability of a type A mutant within a population of type B
residents on a given spatial structure, the first step is to list all of the states that
describe all of the possible distributions of individuals of both types on the different
places throughout the evolutionary process, from the insertion of a type A mutant
in a population of type B residents until its fixation or extinction. Not accounting
for symmetries, a given population structure N individuals yields an evolutionary
process with 2V different states that are indexed by subsets S C {1,2,..., N}. State
() represents a population composed entirely of type B individuals, and state N
represents a population composed of type A individuals only. Let Pgg denote the

transition probability from state S to state S’ during the evolutionary process.

> bidij;  if 8" = Sn{j} for some j € S
i€s
Psst =4 3" bidij; if 8= S U{j} for some j ¢ S (1.35)
€S
0 otherwise

and, therefore,

Pgg=1-— Z Pggr. (1.36)
S'#£S

The fixation probability of a type A mutant from state S is

ps= Y. Pssips. (1.37)
5c{1,2,...,N}
with boundary conditions
pi =0, (1.38)
o = 1. (1.39)
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The mean fixation probability of a type A mutant, will be a weighted average of the

fixation probabilities from all states involving only one type A mutant.

1.7.4 Multiplayer games

Different multiplayer games can be used to model the interactions between individ-
uals within the same group. For example, the Public Goods, Hawk-Dove and Stag-
Hunt games shown in Figure 1.5. Each of the games describes a contest between
two different types of individuals, A and B. Using these games, we will describe
an evolutionary process of a single type A individual within a population of Bs and

vice-versa to determine the fixation probability for both types of individuals.

The Multiplayer Public Goods Game

The multiplayer public goods game consists of two types of individuals, cooperators
(A) and defectors (B). The cooperator pays a cost of C' which is shared among the
rest of the group as a reward V but not shared among the individual who paid the
cost. Defectors pay no cost and cooperators pay a cost even when they are alone.
After a game is played between a group of a cooperators and b defectors, the payoffs

for a cooperator and defector are respectively

R—-C, a=1,
Réb = (1.40)
R—-C+ (aj‘;gll)V, a>1,

R, a =0,
Ryp= (1.41)
R+ <a+z—1> ‘/, a > 0.
where R is the background payoffs individuals receive unrelated to the games. The
public good game presented here is one of many variations with other cooperative

strategy games (Archetti & Scheuring 2012, Kurokawa & Ihara 2009, 2013, Santos
et al. 2008a, Souza et al. 2009, Milinski et al. 2006, Li et al. 2016).

The Multiplayer Hawk-Dove Game

The Hawk-Dove game was developed by Maynard Smith & Price (1973) and at-
tempts to explain the occasional use of violence in contests over valuable resources

between animals such as in populations of red deer (Clutton-Brock & Albon 1979).
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A represents the Hawk strategy, and B the Dove strategy. When individuals meet,
they compete for a reward V. If all individuals in the group are Doves, then they all
split the reward equally. If any hawks are present, then the doves concede and the
hawks fight, with the winner receiving the reward of V while the losing hawks pay
a cost of C. All individuals receive a background payoff of R, a reward gained from
activities unrelated to the contests. In a group of @ hawks and b doves, the average
payoffs are given by

RA =R+ w, (1.42)

a, a

5 R, if a >0,
RE, = (1.43)

R—l—%, if a =0.

The Multiplayer Stag-Hunt Game

The Stag-Hunt game (Pacheco et al. 2009, Broom et al. 2018) consists of two types
of individuals, cooperators (A) and defectors (B). The payoff functions are step
functions where L > 1 cooperators are required to group together for the public
good to be produced. The cooperators always pay a cost C regardless of whether
the threshold is met or not. In a group of = cooperators and y defectors, the payoffs

are given by

R-C, r<L
Ry, = ) (1.44)
R AT
5 R, z<L
RS, = (1.45)
$1y
R (5 )V ozt

1.8 History-dependence: Markov Movement Model

The Markov movement model was introduced to investigate whether cooperation
can emerge in evolutionary settings where individuals can move strategically. In
these models, individuals assess their current position, choosing to remain if it is
advantageous or relocate otherwise. While similar strategic movement as been ex-
plored in previous studies (Aktipis 2004, 2011), these did not account for multiplayer
interactions. Thus, the Markov movement model provides a deeper understanding

of how strategic movement influences the evolution of cooperation in a multiplayer
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Figure 1.5: Payoffs for the pairwise and multiplayer versions of the Public Goods,
Hawk-Dove, and Stag-Hunt games. In the Public Goods game, strategy A corresponds to
cooperation and B to defection, with a denoting the number of cooperators and b the number
of defectors in the group. In the Hawk—Dove game, A represents hawks and B represents doves,
where a is the number of hawks and b the number of doves within the group. In the Stag-Hunt
game, A corresponds to the cooperative strategy and B represents the defectors’ strategy, with
a denoting the number of cooperators and b the number of defectors in the group.

setting.

Building on this idea, Pattni et al. (2018) extended the territorial raider model
to consider an evolutionary process in which the movement of individuals is history-
dependent. That is, individuals explore their environment following a Markov pro-
cess, moving through an exploration phase consisting of a fixed number of movement
steps. During each movement step, all individuals independently decide whether to
move or remain in the same position. Individuals that end up in the same position
after a movement step play a multiplayer public goods game and receive a payoff
(1.40) (1.41). At the end of the exploration phase, the payoffs are accumulated
to give the individuals’ fitness. All individuals then return to their home vertices,
and the dynamic time step begins, during which reproduction and replacement oc-

cur (governed by a BDB process). The fitness values are then reset, and a new
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exploration phase begins.

Each individual within the population has two traits: the interactive strategy
used in the public goods game (cooperate or defect) and the exploration strategy
(staying propensity). The staying propensity corresponds to the probability that
an individual stays at their current location or moves, based on their exploration
strategy and the current state of their environment.

During a movement step in the exploration phase, every individual evaluates the
attractiveness of the group they are currently in. If the group is deemed attractive,
the individual is more likely to remain within it. Otherwise, if the group is considered
unattractive, the individual leaves and moves elsewhere. Let G, (m;_1) denote the
group of individual I,, at time ¢ — 1. The attractiveness of the group to individual

I,, (who is a member of the group) was defined as

Boutmenin} = D Brs (1.46)
kegn(mtfl)
where [ represents the attractiveness of group member I;. The attractiveness of

an individual depends on their interactive strategy and was defined as

Be, if Ij is a cooperator,
Br = (1.47)

Bp, if I}, is a cooperator,

and the values ¢ = 1 and Bp = —1 were used. «, was denoted as the staying
propensity of I,,. The probability h,(G,(m;_1)) that individual I,, remained at its
current location at time ¢ — 1, as a member of the group G, (my;_;), was expressed

as a sigmoid function, given by

an
BGn (my_1)n{n}’
an+ (1 —ay)S t=1

hn(Gn(my—1)) = (1.48)

where 0 < S < 1 represents the sensitivity to group composition. The greater the
value of S, the less sensitive individuals are to group composition, meaning they are
less likely to react to changes in their group’s composition. The staying propensity
., in the Markov model is analogous to the home fidelity parameter in the territorial
raider model discussed in section 1.7. However, in the Markov movement model, the
staying propensity is an evolving trait associated with individuals, whereas the home

fidelity parameter in the territorial raider model is a fixed parameter of the model.
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Every individual incurs a cost A for every movement they make. The movement cost
is carefully chosen to ensure it does not exceed the payoff individuals receive from
the games, as this could result in a negative fitness.

Pattni et al. (2018) demonstrated that on complete networks, cooperation can
evolve under BDB dynamics, despite the fact that traditional evolutionary graph
theory does not support the evolution under such processes (Ohtsuki et al. 2006).
This emphasises the crucial role of the Markov movement model in facilitating co-
operative behaviour. Additionally, longer exploration times, lower movement costs
and larger population sizes were found to further promote the evolution of cooper-
ation. Another key finding was that the type of evolutionary dynamics governing
population evolution had little impact on the outcome..

Erovenko et al. (2019) extended this process to consider heterogeneous struc-
tures, such as the circle and star graphs, which played a crucial role in evolutionary
outcomes. The stability of cooperators within the population was determined by
network structure. On complete networks, cooperators always resisted replacement
from defectors if the population was sufficiently large. On the circle graph, there
existed an intermediate movement cost threshold: lower costs promoted coopera-
tion, while higher costs hindered it. In contrast, on the star graph, defectors always
replaced cooperators.

This was further explored by Pires et al. (2023), who conducted a comprehen-
sive analysis comparing six distinct evolutionary dynamics discussed in 1.6.3. Their
findings demonstrated that different dynamics produced similar results, suggesting
that network structure plays a more significant role than the specific dynamics con-

sidered.

1.9 Row-dependent movement

Coordinated movement is vital for the survival of many organisms, particularly in
higher-order animals, where it is driven by various factors such as seasonal migration,
resource acquisition and mating opportunities (Dingle 2006, Dingle & Drake 2007).
The mechanisms underlying such movement patterns have long been studied (Dingle
2014). Social interactions often influence migration patterns, facilitating collective
decision-making and synchronised movement among individuals (Petit & Bon 2010,

Guttal & Couzin 2010) . Aggregation behaviours, observed in bird flocks, fish schools
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and mammalian hunting groups, arise due to factors like safety, foraging efficiency
and resource availability (Fretwell & Lucas 1969, Ford & Swearer 2013). These

factors create a complex interplay between aggregation and interactive strategies.

A structured way to model coordinated movement is through row-dependent
movement, where an individual’s movement is influenced by the movement of others.
Broom et al. (2020) introduced various row-dependent movement mechanisms to
represent realistic herding and dispersal behaviours. Their work developed a general
movement framework that integrates both well-established and novel concepts of
aggregation and dispersal, accounting for how these processes depend on the presence
of conspecifics. The models were designed to be adaptable, enabling integration into
broader evolutionary modelling frameworks, particularly that of Broom & Rychtar
(2012). The work of Broom et al. (2020) forms a fundamental basis for this thesis.
Therefore, we provide a detailed explanation of the row-dependent models developed

in their study.

The row-dependent movement models serve two purposes; firstly to represent
certain movement mechanisms that lead to a particular distribution of individuals
over the places, and secondly to model movement distributions with certain coor-
dinated movement properties. In our analysis, we will consider a target apriori
distribution, denoted by a,,, representing the probability of a randomly selected
individual going to any particular place. Our processes will be designed to achieve
this target whilst moving non-independently, for example to maximise herding or
dispersal. Processes where the target distribution matches the apriori distribution

were called faithful (Broom et al. 2020).

For example, for the territorial raider model on a complete graph with M vertices,
the apriori distribution for any individual staying at home is # and moving to a
specific neighbouring vertex is ﬁ More generally, we can select an appropriate

apriori distribution to any given movement scenario.

Broom et al. (2020) also derived novel measures of aggregation. The most signif-
icant of these measures was denoted as T" which is the probability of two individuals
being together which is one of the most fundamental properties of any movement

process, given by

M
T = N(Nl—l) mZ:lE[Xm(Xm —1)), (1.49)

where X,,, denotes the number of individuals on place Py,.
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We first consider two movement processes where individuals are placed sequen-
tially based on their utility functions (Broom et al. 2020). It is assumed that there
is a set of utility functions {U,,} based upon several place characteristics. The form
of the utility function U, varies according to the movement distribution governing
the evolutionary process. The first type of movement we consider is deterministic
movement, where individuals simply move to the location which provides them with
the most utility. The second is the stochastic counterpart, in the form of a polya-
urn model, where an individual will have a higher probability of moving to a place
that provides them with a larger utility. Then we consider a more novel type of

movement, that simultaneously places all moving individuals.

1.9.1 Deterministic movement: follow the majority

In this process, individual allocation to places is decided sequentially. This repre-
sents a simultaneous movement of the group, however, so that the first step of the
process is to assign the ordering uniformly at random over all possible orderings (or
if simulating a large population, make selection among the remaining individuals at
each step of the sequence with uniform probability).

The type of deterministic movement we consider is the follow the majority move-
ment process where the first individual moves to a place according to its apriori
distribution and subsequent individuals simply move to the location containing the
largest number of individuals. This mathematically translates to any increasing
function, but the simplest example was considered (Broom et al. 2020) which we

also use. The utility an individual receives from place P,, is given by

Up = Yo +1, (1.50)

where Y, is the current number of occupants on place P,,. Such herding movement
has been observed in various animal groups, for example, in fish schools and bird
flocks, the trajectories of individuals are influenced by their own preferences and
the movement of their neighbours, which can result in collective movement towards
a particular direction (Couzin et al. 2005, Hinz & de Polavieja 2017, Winklmayr
et al. 2020). In particular, three-spine sticklebacks (Gasterosteus aculeatus) exhibit
threshold movement responses, effectively implementing a majority rule dependent

on the presence of conspecifics in their movement decisions (Ward et al. 2008).
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For a well-mixed process (equivalent to a territorial raider model on a complete
graph with h = 1) this leads to all individuals being in a single group, the location
of which follows the apriori distribution. We note that if h # 1 we need a variant of

this process to achieve the target apriori distribution, as we see in section 2.3.1.

1.9.2 Probabilistic movement: the Polya-urn

Here, we consider a stochastic counterpart to follow the majority, where individuals
move to a place P, with probability proportional to their utility function i.e. an
individual moves to place P, with probability Uy,/ >, Uy. This probabilistic model
is represented by a standard urn model (Johnson & Kotz 1977), where balls are
numbered 1,2, ..., M and placed into an urn and then sequentially drawn out at ran-
dom. The n'* ball with number m being drawn out correspond to the n‘* individual
moving to place P,,. As utility positively correlates with place occupancy, an extra
ball with the same number is placed back into the urn alongside the original ball.

This is represented by the following utility function

Upm = Bagy, + Yo, (1.51)

where B € (0, 00) corresponds to the initial number of balls in the urn, and a, is the
apriori probability distribution. The scaling parameter B moderates the dependency
social aggregation has on population density. Ba,, represents the initial number of
balls in the urn corresponding to place P,,. Note that as we are simply selecting
the place following a probability distribution rather than actually picking out balls,

there is no requirement for this number to be integer-valued.

This type of movement is commonly observed in ant colonies. Ants leave pheromones
as they travel and can sense the concentration of pheromones present on different
paths. When presented with several options, an ant is more likely to choose the path
with a higher pheromone concentration. Consequently, a path frequently travelled
by preceding ants, and therefore marked with a higher pheromone concentration,
becomes the preferred route for subsequent ants (Deneubourg et al. 1990, Dorigo
& Stiitzle 2004). Polya-urn processes have been used to model the movement and

following behaviour of ants (Shah et al. 2010).
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1.9.3 The wheel and base model

Whereas in the previous models, an underlying movement mechanism had sequen-
tially allocated individuals onto the places, the wheel and base model assumes a
simultaneous allocation of all individuals partaking in the movement process. We
suppose a base disc of perimeter 1 is divided into M place Py, ..., Py; in the shape
of wedges where P, has perimeter length a,, (see Fig.1.6(a)) such that ) a,, = 1.
On top of the base disc, is an upper disc, the wheel representing the N individuals
in the form of N spikes; see Fig.1.6(b). The angle between individuals I; and I; is
given by 2m6;;, where 6;; € [—1/2,1/2] can possibly be determined via a probability
distribution. Note that 6;; = —60;;. When the angles between the spikes have been
set, the wheel is spun and rotates by an angle of 6 selected uniformly at random.
Then, individual I; moves to place P, if and only if the corresponding spike lands
above the corresponding segment; see Fig.1.6(c). This movement mechanism offers
the greatest flexibility and provides a clearer representation of complete aggregation
amongst individuals (0 = 0). For a well-mixed process (equivalent to a territorial
(3 w © .
270 9
Py P

277'(913 Pl

P
1 13 .

Figure 1.6: (a) M = 3 places with a1 = 3,a2 = §,a3 = 3. (b) represents the N = 3
individuals as spikes. The angle between individuals I; and I; is given by 276;;. In this case,
019 = % = —021. (c) shows the simultaneous placement of all individuals after the upper
disc is spun on top of the base. In this case, individuals I1, Iz, Is move to places Ps, P, Ps
respectively.

raider model on a complete graph with A = 1), individuals move simultaneously,
and @ can capture varying degrees of separation. This allows the model to represent
realistic cases where individuals prefer specific distances of separation. For exam-
ple, surf scoters rarely approach closer than one body length, typically maintaining

around 1.45 body lengths apart (Lukeman et al. 2010).

1.10 Outline

We provide an outline of the research carried out in this thesis, pointing out pub-

lished papers where applicable. In chapter 2, we develop a general movement
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methodology that enables the embedding of any of the considered row-dependent
movement mechanisms from section 1.9 into the evolutionary setting of the terri-
torial raider model described in section 1.7. This work establishes a new direction
in the territorial raider model by investigating the effects of coordinated movement
on the evolution of cooperation. The results in this chapter were published in the
Journal of Mathematical Biology (Haq et al. 2024). T developed the theory with my
supervisor Mark Broom. I carried out the majority of the analysis and writing in
this paper. The underlying theory was computationally translated by our collabo-
rator, Pedro H. T. Schimit, who extended the simulation system used in previous
work (Schimit et al. 2019, 2022) to incorporate our movement methodology. I then
tested the system and used the system to conduct a numerical analysis.

In chapter 3, we build on the movement methodology developed in chapter 2
to investigate the effects of row-dependent movement on key predictors of fixation
probability, namely, temperature and mean group size. We also implement the stag-
hunt game into the model to examine a scenario where selection favours the evolution
of cooperation within a well-mixed population. The work presented in this chapter
was published in Dynamic Games and Applications (Haq et al. 2025). I developed
the original theory with my supervisor, Mark Broom, and carried out the majority
of the analysis and writing for this paper. The numerical analysis was conducted
using the computational system developed by our collaborator, Pedro H. T. Schimit,
as part of our earlier work (Haq et al. 2024).

In chapter 4, we extend our models to consider incomplete networks. We demon-
strate that certain properties of our movement methodology developed in chapter
2 no longer hold under sequential movement processes. We also extend the wheel
process for incomplete graph structures and develop an alignment algorithm to ap-
proximate herding behaviour. We also derive upper and lower bounds for a novel
measure, 1,4, which quantifies the maximum probability of two individuals being
together for any movement process. I developed the original theory with my su-
pervisor, Mark Broom. The wheel alignment process for line and circle graphs was
implemented by Pedro H. T. Schimit, and I carried out testing and analysis of the
simulations. This work has not yet been published, but we intend to prepare a paper
based on this chapter, for publication in the near future.

The final chapter explores hybrid models that combine row-dependent movement

processes within the same evolutionary process. While work presented is prelimi-
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nary, we believe it holds significant potential for future investigation. We provide
analytical and numerical results under these hybrid models, offering a foundation
for further exploration of their impact on evolutionary processes. Below, the table

defines the parameters used and explored within this thesis.

Notation Description
N Size of the population
Li,....In List of individuals within population
M Number of available places
P,...,Py List of places
h Home fidelity parameter
|G| Size of group G
F; Fitness of Individual 7
b; Probability of individual ¢ reproducing
dij Probability of individual i’s offspring replacing
individual j given individual ¢ was selected to reproduce
Ti Temperature at vertex ¢
oM Fixation probability of a single mutant
B Number of balls within the Polya-urn model that moderates
social aggregation
0 Represents the angle between the spikes in the wheel model
T Probability of two individuals being together
Traz The maximum possible probability of two individuals being

together for all movement processes

Table 1.3: Notation used in subsequent chapters of the thesis.
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Chapter 2

Extending the Territorial
Raider Model to incorporate

Row-dependent Movement

2.1 Introduction

This chapter consists of two parts. The first extends the territorial raider model
by developing a generalised movement methodology that incorporates the row-
dependent movement mechanisms developed in Broom et al. (2020) into the evo-
lutionary setting of the territorial raider model. In this chapter, it is assumed that
individuals reside within a N-sized, well-mixed population on a complete graph.
This assumption significantly simplifies the analysis, providing useful insights in the

mutant’s fixation probability.

The second part applies this movement methodology to develop evolutionary
models that investigate the effects of row-dependent movement on the evolution
of cooperation. We implemented both analytical and computational methods and
observed that these two approaches can yield different outcomes depending on the
underlying dynamics. We published the work presented in this chapter in Haq et al.
(2024).
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2.2 The Model

Within this section, we define the evolutionary set-up for the analysis carried out in

this chapter.

2.2.1 The population structure and distribution

The population structure is defined by the territorial raider model (refer to section
1.7). Since we assume that individuals reside on a complete graph, all members of
the population have the same apriori distribution. For example, in the territorial
raider model on a complete graph with M vertices, the apriori distribution for any
individual staying at home is % and moving to a specific neighbouring vertex
is ﬁ It is essential to ensure that when embedding the row-dependent move-
ment mechanisms into the model, individuals adhere to their apriori distributions
throughout the evolutionary process to maintain consistency within the model. As
our work in this chapter is only focused on complete graphs, d;; is the same for all
individuals, as all individuals are equally likely to be replaced i.e. we can simply
write d;; as d (and sometimes as dy, when we consider the influence of varying

population size on d, since d depends upon N).

2.2.2 Evolutionary dynamics

The fitness of individuals and the replacement weights are calculated as in the terri-
torial raider model (see section 1.7.2). In this chapter, all of the standard dynamics
defined in Table 1.2 have been considered. However, we only present results under
BDB and BDD dynamics. This is because it was shown in Pattni et al. (2017) that
the results for BDB and DBD are identical (as are those for BDD and DBB). This is
because the replacement structure W is doubly stochastic, therefore it is irrelevant
whether birth or death occurs first. Also, it was shown in Pattni et al. (2015) that
LB and LD dynamics are identical to the BDB and DBD dynamics, respectively.
We note that this process is an idealisation of the original evolutionary process
described in Broom et al. (2015), which is represented by the simulations in subse-
quent chapters, allowing for analytical results to be considered. It was identified in
Pires et al. (2023) that under certain circumstances, such as highly variable fitnesses
or large self-weights, there can be significant differences between these outcomes for

some dynamics, including BDD (but not BDB). We explore this in Chapter 3.
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2.2.3 Fixation probability

As we consider only well-mixed populations, equivalent to a complete graph with
N = M on a territorial raider model. The fixation probability of a mutant (M) in
an N-sized, well-mixed population can be expressed by the standard formula (Karlin

& Taylor 1975).

1
M
Py = T (2.1)
1+ Zj:l {;:1 ﬁ

Here B and di are the respective birth and death rates of the mutant which depend

on the game and dynamics.

2.3 Theoretical results

In this section, we consider our theoretical results. Initially, we describe a generalised
movement method that ensures we can achieve our apriori target for h # 1. We then

consider explicit fixation probability formulae for specific cases.

2.3.1 A generalised movement modelling approach

Our analysis aims to extend the existing territorial raider model to include other
types of movement distributions whilst ensuring the other constituent parts of the
model remain the same, that is, the population structure, the games played, and the
evolutionary dynamics. By considering the home fidelity parameter and the number
of connections an individual has on a complete graph, we can develop a general
procedure that allows us to embed any of the considered row-dependent movement
models into the evolutionary setting of the territorial raider model on complete
networks. In the following, we describe a method of combining a movement process
of the type described in section 1.9 (which we refer to as following the process) with
a simple additional process to achieve our apriori targets.

The procedure involves deriving a probability distribution that accounts for the
various movement choices available to individuals within the population. This in-
cludes both those who follow the process and those who do not, with the available
actions for the latter group depending on the value of h. Specifically, if h > 1,
this indicates a preference for remaining at home; h = 1 represents an indifference
between an individual’s home vertex and their neighbouring vertices; and A < 1

shows a preference for moving elsewhere. We incorporated these scenarios within
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the probability distribution.

Consider a complete graph where there are M places.

e If h > 1, then an individual can either partake in the process and move via
the movement mechanism with probability Hi%_l or they do not move and
h—1

stay at their home vertex with probability ;777

e If h =1, then every member of the population plays the process.

e If A < 1, then an individual can either move via the process with probability

(M—-1)(1—h)
h+M-1

% or they move to a random non-home place with probability
Naturally, this movement distribution is composed of parameters that affect the
likelihood of movement, namely, the home fidelity parameter and the number of con-
nections an individual has (equivalent to M —1 on a complete graph). Incorporating
this probability distribution into the model ensures that all individuals within the
population achieve the target distribution. We show how this distribution explicitly
satisfies the apriori targets. If A > 1, the probability of an individual occupying their

home vertex is % + (5 +%71) =7 ](‘471 and the probability of an individual

being elsewhere is h+%—1 - ﬁ(h-rj\]\;[[—l) = h%\?il' If h < 1, the probability of an

Mh
A+ M—1
(M*I)(lfh)_i_( Mh 1 _Mh )= M—1

h+M—1 R+M—1 ~ Mh+M—-1) = h+M—-1"

individual occupying their home vertex is ﬁ( )= 77 J\}j[_l and the probability

of an individual being elsewhere is

As opposed to the wheel which simultaneously allocates all individuals partic-
ipating in the movement process, ensuring the apriori targets are hit, sequential
movement processes such as the polya-urn involve individuals moving later on in
the process being influenced by preceding individuals. Assuming all individuals
have the same distribution, it was proven that polya-urn process achieves the apri-
ori targets (Broom et al. 2020), therefore this property naturally extends to our
movement modelling approach. It is important to note that individuals who move
via the movement mechanism are not influenced by the presence of individuals who
did not move via the mechanism. This condition was important to add to our ap-
proach as it ensures the apriori targets are met. For example, an individual who
moves via follow the majority, will not follow those who did not partake in the move-
ment process. They may end up in the same place, but this will not be due to the
movement mechanism process.

Regardless of the movement distribution chosen for the evolutionary model, we

define a standard practice to follow when computing the fitnesses of mutants and
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residents within a well-mixed population, which can be characterised as follows:
First, outline the distribution that describes all conceivable ways in which members
of a given population can move. For each specific movement case, establish the
distribution that defines all potential groupings that can emerge as a result of the
considered movement case. Then, average the payoffs from each case to obtain the
average payoffs. These average payoffs are used to compute the necessary evolution-
ary metrics such as the fitnesses for deriving an analytical expression for the fixation
probability.

As an example, we examined a well-mixed population of three individuals on
a complete triangle graph. Using the methodology developed in section 2.3.1, we
calculated average group distributions for each of the movement mechanisms. For
h > 1, we show an example of the average group distribution for the follow the

majority process (the polya-urn and the wheel can be found in the appendix).

e P(all individuals are together) = ?](jr_?;z + (h-2|-72)3 = 27(”;353)21),

e P(I; I, together, I3 alone) = P(I; I3 together, Iy alone) = P(ly I3 together,
_ 2(h=1)2 | 6(h—1) _ 2(h—1)246(h—1)

e P(all individuals are alone) = 3((,::21))32 + EZ;;;; = 3(h7(1}):;§§fl)3

2.3.2 Fitness calculations

In our analysis, we evaluated the fitness of cooperators and defectors for any row-
dependent movement distribution by considering the following scenario: in an N-
sized, well-mixed population consisting of k cooperators and N — k defectors, what
proportion of reward V does a specific cooperator, denoted as C receive on average?

First, we examined what fraction of V' that (' receives from another cooperator
in the population, denoted as Cy. We considered all possible groupings in which
C7 and Cs could be together. We arbitrarily stated that the probability of C7 and
Cs being together in a specific group with S others is ys12. Therefore, C] receives
precisely S+-1V from Cy which is then weighted by the probability of the group

forming, resulting in Vgs—jf. This quantity is then summed to consider all possible

YS+2
S+1°

N—2
group sizes i.e. V > This expression represents the total probability of C
S=0
and Cy being in the same group, which is also a measure of how likely they are to
N—2

interact, therefore, this was re-expressed as ?jf

= dy. In other words, the
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total proportion of V' that Cj receives from Cy can be expressed as dy V.

Fe=R—C+(k—1)Vdy and Fp = R+ kVdy. (2.2)

(2.2) expresses the fitness of a cooperator and defector for any movement mechanism
described in section 1.9, captured by the dy term. The value of dy, measures
the likelihood of two individuals being in the same group, thus influencing their
chances of receiving rewards from each other. A similar, more complex calculation
for fitnesses in the Hawk-Dove game is provided in the appendix, assuming only
independent movement for simplicity. In an N-sized, well-mixed population with &

doves and N — k hawks, the fitnesses for the dove and hawk are given by

R+ 7(h,N,k)V, (2.3)
where
_((hEN=2\"F (N =2V (RN = 1)+ (N = k)(N - 1)
“h’N’k)‘((/mv—l) - () ( ; )
(N = K)(N = 1)(h + N — 2)N-k—1
k(h+ N — 1)N-F >
and
R +w(h, N,k)V — v(h, N, k)C, (2.4)
where
_ ko (N-1(+N-2)¥ 1 k(h+ N —2)N-F
w(h,N,k’)—(l—l—N_k_ (h—l—N—l)N_k _(N—k:)(h—i-N—l)N—k)’
_(E=N+1 kAN -k-D+N-k-D{N-1)
V(h7N7k)_<h—|—N—1_N—k (h+ N —1)2
k(h+ N —2)NF (N —1)(h+ N —2)N-k-1
(N —=Fk)(h+ N —1)N-F (h+ N —1)N—Fk )

(2.3) and (2.4) are the dove’s and hawk’s fitness respectively and the calculations

for these can be found in the appendix given by (1) and (2).

2.3.3 General fixation probability formulae

In this section, we consider only well-mixed populations, equivalent to a complete

graph with N = M on a territorial raider model. The fixation probability of a
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mutant (M) in an N-sized, well-mixed population can be expressed by the standard

formula (Karlin and Taylor 1975).

M 1
GRS 2
Here Sx and dx are the respective birth and death rates of the mutant, the ratio of
which we show to be equivalent to the fitnesses of the mutant and resident respec-
tively under BDB dynamics. The birth rate of a mutant corresponds to an offspring
of the mutant replacing a resident member of the population and vice-versa for the
death rate. This mathematically translates to the following equation where there

are k mutants (M) and N — k residents (R).

0r _ P(a resident replaces a mutant)

Br  P(a mutant replaces a resident)
Fr(dk(N—F))
_ KFM+(N—R)Fg
Fa(dk(N—E))
EEm+(N—k)Fr
Fr

- & (2.6)

(2.5) now becomes

1
M
py’ = N (2.7)
L+3500 e 72

This result means that under a complete graph and BDB dynamics, for any particu-
lar game, we need only substitute the average fitnesses of the mutant and resident to
determine the fixation probability. Using a similar approach, if there are k individ-
uals in the set of mutants K, and N — k in the set of residents LL the corresponding

ratio of the death and birth rates under BDD is

(5k P(a resident replaces a mutant)

(a mutant replaces a resident)

Ly Pt (k(N—F)) >
M +Z wi, F.

>

%‘

zE

'LU]Z

> wiF ‘M + Z wj. F
z€K z€L

(2
(
(3=t Gt )
(k¢

§\§

k4 (N — &+ w*) 2
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Ws —W
M

where w = w;; = wj;, ws = wy; = wj; and wW* =
Therefore, under BDD dynamics, the fixation probability of a single mutant (2.5)

is expressed as

1

M

P = . 2.8

Ly (R =
]:1 k=1 (k_,’_(N_k_;'_w*)FFzRL/ )

With the fitnesses calculated, we can directly substitute them into the fixation prob-
ability of a mutant on a complete N-sized network under BDB dynamics (2.7) and
BDD dynamics (2.8). By substituting (2.2) and (2.3) into (2.7) respectively, we have
that the fixation probability of a mutant cooperator and dove under BDB dynamics

are respectively given by

1

A
Pr = N-117J R+kVd ’ (2.9)
1+ ijl k=1 R—C+(k—1])VVdN
1
B
pB = e FTTgmed (2.10)
1+305 R e

Similarly, by substituting (2.2) and (2.3) into (2.8), the fixation probability of a

mutant cooperator and dove, under BDD dynamics are respectively given by

1
A
= 2.11
& Netpqj Nk o) a e )| (2.11)
1+>505 Tha

R—Ct(h—1)Vdy
ROt (h-1)Vd
(ke (N— ) TG IVAN

1

(N—k(ktw*) Bl rCy ”

N-1
14+ ,.° -
Zj_l F=1 (ke (N—ktw*) Rﬁjr\;i/uc)

op (2.12)

2.3.4 Weak selection

The concept of selection intensity to consider situations in which the game exerts a
minor influence on the evolutionary process was considered and the rule of 1/3 was
established (Taylor et al. 2004) and states that selection favours type A fixating if
the internal equilibrium point is less than 1/3. This general rule was considered for
the Hawk-Dove game and it was found that if % > %, then selection favours the
fixation of the dove. It is worth noting that this analysis only considered pairwise
contests between individuals therefore, we have extended this analysis to encompass

the multiplayer Hawk-Dove game from our model, allowing us to explore the effects

multiplayer interactions have on the evolution of cooperation. We considered the
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effect weak selection has on the fixation formulae in section 2.3.3 by assuming R is

very large compared to V and C'i.e. the game has little influence in the evolutionary

process. This is a similar approach to Ohtsuki et al. (2006), where assuming small
1—w

w implies weak selection which is equivalent to R = = .

The Public Goods game

We first considered the cooperator’s fixation probability under BDB. Consider the

expression inside the product term of (2.9).

R+ kVdy . Vdy+C

rl+—- 2.13
R—CH(hi—)WVdy — " R (2.13)
0 (2.9) now becomes
1
—— . (2.14)
L+ 3 (1+ VdntCy;

7j=1

The term inside the summation can be approximated by the following,

Vdy +C\’ (Vdy+C
14+ — ~1 _ . 2.1
<+ R >— “( R (2.15)

Therefore, (2.14) becomes

1
N1 o (2.16)
1+ Zl (1+5(7%))
]:
which simplifies to
1 B 1( 1
Nt o N\1+ 82 (Vdy +C
N+ (V20) 5 (j) zr (Vv + )
]:
1 N-1

From (2.17), as the parameter dy increases, the situation becomes increasingly un-
favourable for the mutant cooperator due to the defector’s advantageous position.
The defector can receive an additional reward without incurring any cost because,
from their perspective, there is an extra cooperator within the population from
whom they will receive this benefit. Conversely, the cooperator does not have this

advantage as they receive no share from their own contributions. With the growing
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value of dy, the likelihood of the mutant cooperator interacting with defectors rises,
further reinforcing the defector’s advantageous position.
We also considered the cooperator’s fixation probability under BDD dynamics.

By applying similar weak selection methods to (2.11), we have

1 (1 (N 20)(N - 1)

- RN T o) (VdN+C)). (2.18)

N

(2.18) is an approximation of the fixation probability of the mutant cooperator under

BDD dynamics.

The Hawk-Dove game

We carried out a similar, more complicated calculation for considering the dove’s
fixation probability which can be found in the appendix. Using the dove’s fixa-
tion probability (2.10), a calculation was done to determine the dove’s neutrality
condition by setting the dove’s fixation probability to equal % ie. pP = % This
corresponds to neutral selection, where the mutant strategy has no selective advan-

tage or disadvantage, and its fixation is solely random.

(2.19)

where f(h) = H[N — 1, (’;j%—;)k] —In(N — 1) and H[N — 1,a] = ]:Z_ll o

For varying h, the neutrality condition is approximately given b; C =111V
which means that under our models, hawks are generally worse off compared to
doves as the cost does not need to be raised as significantly in the classical models
for hawks and doves to be doing equally well. This intuitively makes sense as larger
groups are generally bad for hawks who are more likely to encounter competition
and, therefore, incur a greater cost due to a larger presence of other hawks in their
game interactions. We also applied weak selection methods to the dove’s fixation
probability under BDD dynamics which can be found in the appendix. We saw that
the dynamics do not affect the dove’s neutrality condition.

The BDD approximations for the fixation probabilities of the cooperator (2.18)
and dove (21) have a similar form to their respective BDB approximations (2.17),

(9). If w* = 0, then the approximations are equal. In other words, if the self-weights

are equal to all other weights, then under weak selection, the fixation probability of
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a mutant cooperator or dove is the same regardless of whether selection acts on the
first or second event. Other dynamics were considered and their functionality was
explained in Pattni et al. (2017), such as the DBD dynamics where death acts first
and selection acts on this event. It was found that the results of DBD and BDB were
identical. If the self-weights are the same as all other weights, then implementing

DBD is equivalent to BDD; therefore, BDD is the same as BDB.

A general condition for the fixation probability of a type A mutant in a type B
population is greater than the fixation probability of a type B mutant in a type A

population was established in Tarnita et al. (2009) given by

oa+b>c+od. (2.20)

where o is the structure coefficient of the process. The value of ¢ depends on both
the graph and the updating rule, but not on the values a,b,c and d (which are the
payoffs to the pairwise matrix game) for example. For regular graphs with degree
k and N > k, we have 0 = % Using this analysis for the pairwise Hawk-Dove
game, it was shown that in an infinite, well-mixed population (kK — o0), hawks
and doves do equally well when V = 2C. We also extended this analysis to our
models under the assumption of an infinite, well-mixed population, where hawks

and doves interact with one another in arbitrary group sizes rather than limiting

pairwise interactions.

By considering the fitness of a dove and hawk in an infinite, well-mixed popula-
tion with a proportion of p doves, we were able to extend the analysis from Tarnita
et al. (2009) by introducing a multiplayer Hawk-Dove game. By using the substi-

tution p = £ and then assuming N — oo, the fitnesses of a dove (2.3) and hawk

N

(2.4) are respectively given by

R+ <ep_1>v, (2.21)

1—ept eP~t—p
R — V- —)C. 2.22
i < l-p ) ( L—p ) (222
By equating these two fitnesses together and solving for %, we have

ep(e’t —p)
(1 —er~t)(ep) — (er —=1)(1 —p)

-
o= (2.23)
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For each value of p, (2.23) provides the corresponding equilibrium ratio of % Our

point of interest is at p = % where both doves and hawks are doing equally well. This

equilibrium condition is given by % = 0.688 i.e. C' = 1.453V which supports our

previous neutrality condition for a dove (2.19), that in a multiplayer game context,

hawks are generally doing worse than in the traditional pairwise game analysis.

24

Numerical results

For considering higher populations on larger graphs, we carried out computational

methods to simulate such processes as analytically carrying them out would be

impractical. The computational methods are the same as the ones carried out in

Schimit et al. (2019) except here, the simulations are carried out on much simpler,

complete networks, and individuals move via our approach developed in section

2.3.1.

One simulation is defined as follows:

The chosen complete network is formed using the iGraph library (Csardi &
Nepusz 2006).

The mutant is randomly placed on one of the nodes.

Every individual probabilistically moves (or not) from their home vertex ac-
cording to the parameters of the model. Groups are formed and multiplayer
games are played where R = 10,C' = 1 and V = 2 for both of the considered

games.
Individuals return to their home places.

Each individual moves (or not) and groups are formed. Here, no games are
played, instead, the dynamic process occurs. One individual is selected to
reproduce an offspring that will replace another random member of the group
(or its parent if the parent is alone). Selection either acts on the birth or death

even according to the chosen dynamics.

The simulation terminates once the population is entirely composed of a single

type of individual.

This process is averaged over 1,000, 000 runs to minimise statistical variability.
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As discussed in section 1.7.2, the assumptions in this section are slightly different
to section 2.3. In the simulations, a single step is used in the contests and in the
dynamic process i.e. individuals only move once. The theoretical section assumes
average weights corresponding to where individuals move many times to accrue

average fitnesses and weights.
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Figure 2.1: The fixation probability of a mutant cooperator in a population of defec-
tors on complete decagon and pentadecagon graphs under BDB and BDD dynamics for
varying h under distinct polya-urn movement processes, For (a), (c), (e) and (g), we set
B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a sufficiently large value
to mirror independent movement). For (b), (d), (f) and (h) we set h = 0.5, h =1, and
h =10 and vary B.
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Figure 2.2: The fixation probability of a mutant dove in a population of hawks on
complete decagon and pentadecagon graphs under BDB and BDD dynamics for varying
h under distinct polya-urn movement processes, For (a), (c), (e) and (g), we set B =0
(follow the majority), B =2, B =6 and B = 10,000 (a sufficiently large value to mirror
independent movement). For (b), (d), (f) and (h) we set h = 0.5, h =1 and h = 10
and vary B.
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Figure 2.3: The fixation probability of a mutant cooperator in a population of de-
fectors on complete decagon and pentadecagon graphs under BDB and BDD dynamics
for varying h under distinct wheel movement processes, For (a), (c), (e) and (g), we
set @ = 0 (follow the majority), 6 = %” (represents a near complete dispersal process),

0 = % For (b), (d), (f) and (h) we set h = 0.5, h =1 and h = 10 and vary 6.
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Figure 2.4: The fixation probability of a mutant dove in a population of hawks on
complete decagon and pentadecagon graphs under BDB and BDD dynamics for varying
h under distinct wheel movement processes, For (a), (c), (e) and (g), we set § = 0 (follow
the majority), 6 = %" (represents a near complete dispersal process), § = +-. For (b),

(d), (f) and (h) we set h = 0.5, h =1, and h = 10 and vary 6.



Figure 2.1 illustrates the fixation probability of a mutant cooperator under polya-
urn processes for BDB and BDD dynamics on complete decagon and pentadecagon
graphs. As h approaches 0.1, the fixation probability remains constant, attributed
to individuals randomly moving to non-home places.

The cooperator’s fixation probability reaches its lowest point when h = 1 where
all members of the population must participate in the movement process, leading
to the formation of groups of varying sizes (depending on the type of movement
governing the process). Recall that from section 2.3.1, the movement methodology
states that when h = 1, all members of the population must participate in the move-
ment process as all individuals are indifferent to their home vertex and neighbouring
vertices. This high level of movement is disadvantageous for cooperators as they are
more likely to encounter defectors due to the high levels of movement within the
population. The ”follow the majority” process is the worst type of movement for
cooperators as it ensures all individuals partaking in the movement process, herd
together at the same place; therefore, ensuring that defectors receive rewards from
cooperators.

As h tends to larger values, regardless of the movement process, the cooperator’s
fixation probability gradually increases because individuals are more likely to remain
on their own therefore, cooperators are highly unlikely to interact with defectors,
thus increasing their relative fitness.

Fig. 2.1 also shows plots of the fixation probability of the cooperator against B
(scaled to BL;l). As B increases, the cooperator’s fixation probability increases. This
is attributed to the gradual shift in the movement mechanism from a deterministic
type (B = 0), where individuals simply move to the place containing the largest
number of individuals, to an independent type (B — oo0) where individuals move
randomly, without influence from other individuals. As B increases, individuals are
less likely to herd together therefore the relative difference in the average cooperator’s
and defector’s fitness gradually decreases, thus increasing the cooperator’s fixation
probability.

The cooperator’s fixation probability is higher under BDD dynamics because
selection affects the second event. During the birth event, the probability of the co-
operator reproducing is simply % as opposed to the less favourable BDB dynamics
where the probability is proportional to the cooperator’s fitness. For large h, the

fixation probability tends to 3, shown in Fig. 2.1(e) and Fig. 2.1(g). Here, individ-
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uals are mostly alone or occasionally with another individual. If an alone individual
is randomly selected to reproduce, then its offspring will replace them. Suppose an
individual within a pair is randomly selected to reproduce. In that case, the other
individual within the pair is guaranteed to be replaced, thus rendering the influence
of selection within the replacement process irrelevant.

Furthermore, Fig. 2.1 shows that row-dependent movement has a more promi-
nent effect on the cooperator’s fixation probability when selection acts on the second
event. In Fig. 2.1(e) — (h), there is a greater disparity in the fixation probabilities
between the different movement processes compared to Fig. 2.1(a) — (d) where there
is a smaller effect. Under BDD dynamics, even though cooperators are more likely
to reproduce, they are also more likely to be replaced (depending on the movement
mechanism governing the process). For instance, if individuals are moving via fol-
low the majority and h = 1, then all individuals herd together and cooperators
are more likely to be replaced because of selection acting on the replacement event.
Whereas under BDB dynamics, all individuals within the group are equally likely
to be replaced.

Figure 2.2 portrays the fixation probability of a mutant dove under distinct
polya-urn processes for BDB and BDD dynamics on the complete decagon and
pentadecagon. In these figures, as h approaches one, the dove’s fixation probability
increases and reaches its maximum when h = 1.

As all members of the population partake in the movement process when h = 1,
hawks are more likely to interact with one another, incurring greater costs, thus
reducing their relative fitness. Therefore, in this game, follow the majority is the
most beneficial movement process for doves because this process forces all hawks
partaking in the movement process to interact with each other. As h increases, the
dove’s fixation probability decreases because hawks are more likely to stay on their
home vertices and, therefore, less likely to interact with each other, increasing their
relative fitness. As h becomes infinitely large, the dove’s fixation probability tends
to % regardless of the dynamics. Hawks and doves will have the same fitness if they
are always alone therefore, selection does not affect the process. Also, Fig. 2.2 shows
that as B increases, the dove’s fixation probability falls. This occurs because as B
increases, hawks are no longer forced to group, thus their relative fitness gradually
increases alongside B.

Furthermore, if selection acts on the second event, independent movement is no
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longer the worst type of movement for doves. Instead, a polya-urn process (close to
independent movement) is the worst type of movement as shown in Fig. 2.2(f) and
Fig. 2.2(h), where the value of % reaches its lowest point slightly below 1 but
begins to increase after. This occurs due to the combined effects of the game and
dynamics but this effect is largely insignificant.

Figure 4.4 shows the fixation probability of a mutant cooperator under the
wheel process for both BDB and BDD dynamics on the complete decagon and
pentadecagon. The chosen values of theta remain consistent for each graph. 6 = 0
represents the follow the majority process, while 8 = %r signifies a near complete
dispersal process where all individuals are separated. Note that in our simulations,
theta is rounded to three decimal places to allow for a minimal degree of pairwise
interaction between individuals under this angle. Without this adjustment, the sim-
ulation would fail to complete as individuals would only replace themselves if they
were always separated, thus the evolutionary process would never reach extinction
or fixation. § = & corresponds to an intermediary angle between complete herding
and separation.

The trends depicted in Fig. 4.4 resemble those observed in the polya-urn in Fig.
2.1, particularly concerning the influences of herding, dynamics, and the level of h
have on the cooperator’s fixation probability. However, the key finding from these
figures is that 0 = QW”, provides the maximum fixation probability for the mutant
cooperator for all h. When h =1 and 6§ = %’T, all individuals are nearly always alone.
This leads to an increase in the cooperator’s relative fitness, as they rarely provide
any rewards to defectors. Consequently, the fixation probability rises significantly
at this point. Fig. 4.4(e) and Fig. 4.4(g) show that when § = 27 or § = % and
h = 1, the fixation probability is % because individuals are either alone or in a pair
rendering selection insignificant as fitness is negligible in these cases due to selection
acting on the second event.

Figure 2.4 depicts the fixation probability of a mutant dove under the wheel pro-
cess for both BDB and BDD dynamics on the complete decagon and pentadecagon.

Fig. 2.4(a— d) show that when h =1 and 6 = QW“, the dove’s fixation probability
is % despite selection acting on the first event. This occurs as nearly every member
of the population is separated, therefore individuals do not compete with each other

over resources. Therefore, both hawks and doves have the same fitness rendering

selection insignificant. When h = 1 and 6 = £, the fixation probability is at its
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lowest. Under this angle, there are at most pairwise groups which is beneficial for
hawks who incur very small costs from the game interactions.

Also, Fig. 2.4 shows that follow the majority (6 = 0) gives a fixation probability
greater than % As there is a large native hawk population, they herd together
leading to them incurring significant costs, greatly reducing their relative fitness,
therefore, increasing the dove’s fixation probability. In the Hawk-Dove Game, it is
clear that herding favours the evolution of cooperation more than dispersal.

Below, we show a table summarising how the different movement processes gen-

erally affect the mutant cooperator’s and dove’s fixation probability (FP).

Cooperator’s FP | Dove’s FP

Follow the majority (B = 0) Minimum Maximum
Polya-Urn (increasing B) Increases Decreases
Random movement (B — o0) Increases Minimum
The wheel (separation angle) Maximum Increases

Table 2.1: Fixation probabilities (FP) of cooperators and doves under different movement
processes: follow the majority (B = 0), polya-urn (increasing B), random movement (B — c0),
and the wheel (separation angle).

2.5 Discussion

In this chapter, we have developed the framework from Broom & Rychtar (2012),
by considering the evolution of structured populations on complete networks involv-
ing multiplayer interactions where individuals move in a coordinated manner (row-
dependent movement). Specifically, we have extended the territorial raider model
developed by Broom et al. (2015) as we have devised a methodology to model an
evolutionary process where individuals move in a coordinated manner described by
the movement mechanisms developed by Broom et al. (2020). In previous models,
(Broom et al. 2015, Schimit et al. 2019, 2022) individuals moved independently irre-
spective of how other individuals moved. Other models (Pattni et al. 2018, Erovenko
et al. 2019, Pires et al. 2023, Erovenko & Broom 2024) involved the development of
a Markov movement model, where the movement of individuals depends upon the
population’s history. Hence, the model in this chapter provides a different perspec-
tive on the movement of individuals. In particular, we explored the relation between
row-dependent movement and the evolution of cooperation.

The main objective of this chapter was to embed realistic coordinated movement

systems into a complete evolutionary setting and use different social dilemma games
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to illustrate this as this has previously not been considered in modelling the evolution
of structured populations. In Krieger et al. (2017) the effects of an abstract type of
motion on the evolution of cooperation in structured populations were explored. In
the context of evolutionary graph theory, individuals swap or shuffle vertices on the
graph structure, independent of the reproductive events. They demonstrated that
the presence of motion can amplify or suppress selection depending on the graph
structure. For instance, motion suppresses selection on the cycle graph. However,
it was also shown that this type of motion did not change the population’s config-
uration on the complete graph and, therefore, has no effects on the evolutionary
dynamics. This, however, differs from our results in this chapter focused on com-
plete graphs as we have illustrated the several effects the movement mechanisms
have on the evolution of cooperation. However, the work done in this chapter is
largely different as individuals move more realistically and can form multiplayer
groups. More importantly, in the models developed in this chapter, individuals have
a preference towards their unique home vertex, governed by the home fidelity pa-
rameter. When h # 1, individuals do not share the same movement distribution
due to the bias towards their home vertex. This represents a significant disparity
to evolutionary graph theory models involving complete graphs, where individuals
typically have identical distributions in well-mixed populations (when the weights
are equal). By using the Broom-Rychtar framework, we are able to further investi-
gate the mutant cooperator’s fixation probability and capture the realistic influence

of territorial preference on complete graph structures.

In the context of the Public Goods game, we demonstrated that herding hinders
the evolution of cooperation as aggregation provides defectors with opportunities
to exploit cooperators in their contest interactions. Dispersal, however, increases
the likelihood of cooperative behaviour evolving as defectors are less likely to be
in groups containing cooperators and, therefore, cannot receive a benefit from their
presence. Ohtsuki et al. (2006) showed that, in general, birth-death processes
do not favour the evolution of cooperation. Consequently, in the Public Goods
game, the cooperator’s fixation probability is always under 1/N, even with the
implementation of the movement mechanisms. However, in the Hawk-Dove Game,
aggregation benefits the evolution of cooperation. In Broom et al. (2015), it was
shown that the dove’s fixation probability can occasionally exceed 1/N if the reward

is adjusted. However, the results in this chapter show that even if the reward
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remains constant, the movement distributions, particularly follow the majority, have
a stronger effect in increasing the dove’s fixation probability above 1/N as hawks are
forced to herd together. This forces hawks to interact with one another, incurring
a greater cost, thus decreasing their relative fitness. While dispersal also benefits
doves, herding has a stronger effect.

Moreover, we derived analytical expressions for the fixation probabilities of the
cooperator and dove in both BDB and BDD dynamics. By applying weak selection
methods, we extended previous analyses (Tarnita et al. 2009, Taylor et al. 2004) by
producing neutrality and equilibrium conditions for the Hawk-Dove game. These
conditions align with our expectations, indicating that, in the models developed in
this chapter, hawks generally perform worse than in the traditional evolutionary
graph theory models. The work in this chapter accounts for a more realistic multi-
player game scenario compared to the limiting pairwise case. Notably, larger group

sizes negatively impact the hawk’s fixation probability as expected.
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Chapter 3

Predictors of Fixation
Probability under Coordinated

Movement Systems

3.1 Introduction

In the previous chapter, the effects of the row-dependent movement mechanisms on
the evolution of cooperation in the Public Goods and Hawk-Dove games on com-
plete networks were extensively explored. However, it has been previously shown
that measures such as mean group size and temperature are strong predictors of
fixation probability, with temperature often being the stronger predictor (Broom
et al. 2015, Schimit et al. 2019, 2022). The purpose of this chapter is to extend
the previous analysis by using the evolutionary model developed in the previous
chapter to investigate how the row-dependent movement mechanisms affect the pre-
dictors of fixation probability, and whether the measures retain their significance as
strong predictors of fixation. We also consider the Stag-Hunt game as this has not
been previously considered in our models, to investigate the effects of row-dependent
movement in a social dilemma game where selection can potentially favour cooper-

ation. We published the work presented in this chapter in Haq et al. (2025).

61



3.2 The Model

The evolutionary model in this chapter follows the same formulation as presented
in Chapter 2 (refer to section 2.2). For clarity, the key assumptions are briefly
summarised below, with references to relevant sections where necessary.

The population structure is defined as before in section 2.2.1 via the territorial
raider model. Similarly, this chapter only considers complete networks. Due to
this assumption, all individuals have the same temperature (1.12) and this can be

expressed as

v = (N — 1)dy. (3.1)

We also considered BDB and BDD dynamics, the same as in section 2.2.2.

3.3 Results

In this section, we first demonstrate how to calculate significant evolutionary pre-
dictors of fixation probability. We then present simulation results on fixation prob-
abilities for mutant cooperative strategies from the games defined in Section 1.7.4,
under the coordinated movement mechanisms described in section 1.9, and their re-
lationships with mean group size and temperature in a well-mixed population on the
complete decagon. This is followed by an analytical explanation for certain trends

observed in the simulations.

3.3.1 Evolutionary measures impacting the fixation probability
We first considered how T (1.49) relates to the expected group size. From (1.30),

the expected group size is given by

EllG] = = E[X7). (3.2)

As we only considered well-mixed populations on complete graphs where each indi-
vidual resides within their unique home vertex, the expected number of individuals
on a given place is one i.e. F[X,,] = 1. By substituting (3.2) into (1.49) and

simplifying,

T = ——(F[Gl] - 1) (3.3)
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(3.3) demonstrates that the aggregation measure 7' is directly related to the mean
group size and if either 7' or F[|G|] is known, the other can be calculated. We
analytically calculated the evolutionary measures considered in this chapter on an
N-sized complete network, for A > 1, under the follow the majority, independent
and wheel processes. As an example, we show how we calculated the mean group

size under follow the majority.

_iv;)( Loy _ N_L(][\j>(N];L<(L+1)2+NN_L_1>
i
N

|G| A1 =)
L
N/(L?+N—-1L
'z N)>’

sora-v () ex () =5 (0)
1+)\<1+ (1- %)((N— DA+ 1)), (3.4)

where A = ﬁ By using similar methods, the mean group size under indepen-

dent movement is given by
1
|G|:1—|—)\<2—N(2+)\N—)\)), (3.5)

and the mean group size for the wheel is given by

=12 (X (el el (Y- 12 )

L%
" Li%z_: <L2 + -0 1>>><A>L<1 - N @7:22)
+ Q(AN_XZ)> (3.6)

The calculations for (3.5) and (3.6) can be found in the appendix leading to the
above, labelled (22) and (25). By using (3.3), we were able to calculate T for the
movement processes by using (3.4), (3.5) and (3.6). For the follow the majority

process

T = 1)\<1 +(1— %)((N A+ 1)). (3.7)
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Similarly, 7' under independent movement is given by

T:N1_1A<2—]1V(2+AN—A)>, (3.8)

and T for the wheel is

=7 (( Li (L3507 + 33+ Lagh (520 - Lagh - 1)
+ Li%; <L2 4 Lz;L(]gfu - 1))>(A)L(1 _NL (f:;)

N 2()\];)\2))'

(3.9)

To calculate the temperature, we considered an N-sized, well-mixed population and
all of the possible ways two individuals I; and I; can replace each other within an
L-sized group and used the relation 7y = (N — 1)dy. We show how we calculated
this measure under the follow the majority process (the calculations for independent
movement and the wheel can be found in the appendix leading to (26), (27) and

(28)). A group of size L can form in one of three ways:
e [; and I; move with L — 2 individuals to an empty vertex;
e [; moves with L — 2 individuals to I;’s home vertex or vice-versa;
e [; and I; move with L — 3 individuals to a place containing an individual.

We then obtain the following expression where the first summation represents the

first two cases and the second summation represents the third case.

™w=N-1 ( ZN:(A)HQ — )N @7:22) <z1v> <LL_1(A)2 +2X(1 — A))

L=2
ey (1) (7))

where \ = % By expanding the summations and simplifying, the temperature

for follow the majority process on a complete N-sized network is given by

1—=X (1=XNN
=+ _ N) , (3.10)
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Using similar methods, the temperature under independent movement is given by
equation (3.11), while the temperature for the wheel is provided in equations (3.12)
and (3.13).

(N + NAA — 1) — A2)(N — A)N-2

NV (3.11)

™w=1-—

;0 ()\ + 3((1 “NA-1=-""H N -1\ - 1)(/\))>>. (3.12)

™ = ((1+(1A)N+A(A+2)N(A2+)‘1>>

_297T<_1+(1—>\)N+)\(N+3)\—3N)\)>>. (3.13)

The detailed calculations for (3.11), (3.12) and (3.13) can be found in the appendix
(26), (27) and (28).

In Broom et al. (2015), it was identified that temperature and fixation proba-
bility share a linear relationship. This was observed under conditions of high home
fidelity and independent movement. However, our analysis in section 3.3.2 demon-
strates that this result generalises across all values of h and for all movement pro-
cesses. To support this analytically, Haq et al. (2024) showed that the fixation
probability of a mutant cooperator on a complete N-sized network under BDB dy-
namics is given by (2.9). Using the definition of the temperature from (1.12), we

can re-express (2.9) in terms of the temperature

1
A _
L= 1 +ZN_1 7 RJFkV(]\?Xl) ' (314)
J=1 1k=1 R—C+(k-1)V(325)

(3.14) shows that by simply knowing the temperature, the cooperator’s fixation
probability can be calculated, without knowing the governing movement mecha-
nism. Therefore, in the models considered in this paper for the Public Goods game,
temperature matters more than the governing movement mechanism and is the most

significant measure in the evolutionary process.
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In Haq et al. (2024), it was shown that under independent movement, the fixation
probability of a mutant dove under BDB dynamics on a complete N-sized network
is given by (2.10). It is clear that unlike (2.9), the fitnesses cannot be expressed
in terms of dy and, therefore, cannot be re-expressed in terms of the temperature.
This implies that the governing movement procedure plays a more significant role
in the Hawk-Dove game than in the Public Goods game, hence the presence of the
non-linear trends in Figure 7. A similar analysis holds for the Stag-Hunt game,
where the fitnesses will not simply depend on dp, but other significant factors such

as the threshold value.

3.3.2 Numerical results

In this section, we conducted similar simulation methods to those used in the second
chapter to investigate evolutionary processes involving the games defined in section
1.7.4 and whether mean group size (1.30) and temperature (1.12) continue to serve
as strong predictors of fixation, under models involving row-dependent movement.

One simulation is delineated as follows:

The decagon complete network is formed using the iGraph library (Csardi and
Nepusz 2006).

e The mutant is randomly placed on one of the vertices.

e Every individual moves (or not) from their home vertex according to the model
as described in section 2.3.1. Groups are formed and multiplayer games are

played.
e Individuals return to their home places.

e Each individual moves (or not) and groups are formed and the dynamic process
occurs. No games are played. Instead, one individual is selected to reproduce
an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.

e The simulation ends once the mutant fixates in the population or becomes

extinct.

e This process is averaged over 1,000,000 cases to minimise statistical variability.
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Figure 3.1: The fixation probabilities of the cooperator and defector in the Stag-
Hunt game on the complete decagon under the Polya-urn and wheel processes. (the
payoffs are set as R = 10,C = 1,V = 12 and L = 2). (a), (b), (c¢) and (d) show the
fixation probability of a mutant cooperator in a population of defectors and vice-versa
for (e), (f), (g) and (h). Figures (a), (b), (c¢) and (d) represent the cooperator’s fixation
probability and figures (e), (f), (g) and (h) represent the defector’s. For the Polya-urn,
in (a) and (e) we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value to mirror independent movement). For the wheel, in (c) and
(g) we set @ = 0 (follow the majority), @ = 2T (represents a near complete dispersal
process), ¢ = . For (b) and (f), we plot the fixation probability against B (for the
Polya-urn) and set h = 1, h = 20 and h = 500. For (d) and (h), we plot the fixation
probability against 6 (for the wheel) and set h = 1, h = 20 and h = 500.
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Figure 3.3: The fixation probability plotted against the mean group size for a well-
mixed population in the Public Goods, Hawk-Dove and Stag-Hunt games on the com-
plete decagon graph. As we vary h, we plot the corresponding fixation probability and
mean group size values against each other. Figures (a), (c) and (e) illustrate Polya-urn
processes where we set B = 0 (follow the majority), B =2, B = 6 and B = 10,000 (a
sufficiently large value of B representing independent movement). (b), (d) and (f) show

wheel processes where we set 6§ = 0 (follow the majority), 0 = 57

complete dispersal process) and 0 = %.
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Figure 3.4: The fixation probability plotted against the temperature for a well-mixed
population in the Public Goods, Hawk-Dove and Stag-Hunt games on the complete
decagon graph. As we vary h, we plot the corresponding fixation probability and
temperature values against each other. Figures (a), (c) and (e) illustrate Polya-urn
processes where we set B = 0 (follow the majority), B =2, B =6 and B = 10,000 (a
sufficiently large value of B representing independent movement). (b), (d) and (f) show
wheel processes where we set § = 0 (follow the majority), = 2T (represents a near

complete dispersal process) and 6 = %.
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Figure 3.1 illustrates the fixation probability of a mutant cooperator and defector
in the Stag-Hunt game under the Polya-urn and wheel processes on the complete
decagon. Figures 3.1(a) and 3.1(b) show that for the Polya-urn processes where
B # 0, the cooperator’s fixation probability reaches its maximum when h = 1,
meaning that all members of the population participate in the movement process.
This leads to the formation of groups of varying sizes that reach the threshold,
enabling members to share the reward among themselves. At this point, the coop-
erator’s fixation probability exceeds 1/N = 0.1, whereas Figure 3.1(e) indicates that
the corresponding fixation probability for the defector remains below 1/N. This
demonstrates the significant impact of row-dependent movement in the Stag-Hunt
game, as it can raise the cooperator’s fixation probability not only above neutral-
ity but also above the defector’s, thereby facilitating the evolution of cooperation.
Corresponding figures are shown in Haq et al. (2024) for the Public Goods game.
It was shown that under this social dilemma game, cooperation is always below
neutrality for all movement processes. However, the results in the Stag-Hunt game
demonstrate a stronger influence of the movement mechanisms, as these can raise
the cooperator’s fixation probability not only above neutrality, but also above the
defector’s. This is due to the nature of the Stag-Hunt game, where cooperators can
generate rewards when in groups that reach the threshold. However, in the Public
Goods game, defectors always benefit from the presence of cooperators, regardless
of whether the threshold is met, thereby undermining the advantages of cooperative

behaviour.

We see a similar trend in Figures 3.1(c) and 3.1(g) which show an important
example where the wheel process significantly influences the evolution of coopera-
tion. When h =1 and 6 = /10, the cooperator’s fixation probability is above 0.15,
whereas the defector’s corresponding fixation probability is below 0.02. This angle
proves very beneficial for cooperators and allows them to meet each other in pair-
wise groups that meet the threshold to produce the reward. Under these conditions,
defectors mostly find themselves in pairwise groups that either contain another de-
fector or a single cooperator, in either case, the reward cannot be produced and the
defector’s fitness remains relatively low. Therefore, there is a significant disparity

between the cooperator’s and defector’s fixation probabilities.

As h increases, the cooperator’s fixation probability gradually decreases. This is

due to individuals being more likely to remain on their home vertex and, therefore,
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less likely to move and interact with one another. Therefore, the likelihood of coop-
erators being in groups where the threshold is reached diminishes, while defectors
have a higher relative fitness when all individuals are alone, thereby reducing the
cooperator’s fixation probability.

For the follow the majority process (B = 0), the cooperator’s fixation probability
is at its lowest compared to the other movement processes. This is due to all mem-
bers partaking in the movement process aggregating on the same vertex, allowing
defectors to exploit cooperators by receiving a share of the produced reward without
incurring any cost. Under this movement process, defectors have a greater relative
fitness than cooperators, thereby minimising the cooperator’s fixation probability.
An important result in this context is that herding proves quite detrimental to co-
operators, as it reduces their fixation probability below the neutral benchmark of
% and raises the defector’s above this level, thereby favouring the evolution of de-
fection. As h rises, the fixation probability gradually rises, as individuals are more
likely to be in smaller groups, until h reaches a level where individuals are most
inclined to remain on their home vertex. As h continues to increase, the fixation
probability falls as cooperators are always alone and continue to pay a cost, unlike
defectors who do not and, therefore, maintain a higher relative fitness.

Figure 3.2 illustrates the mean group size and temperature under distinct Polya-
urn and wheel processes for varying values of A on the complete decagon graph. In
Figure 4a, the mean group size reaches its maximum when h = 1 across all movement
processes. This is because all individuals participate in the movement process at this
value of h, meaning that under the follow the majority process, the mean group size
is equal to the population size. However, as the value of B increases, the value of the
mean group size decreases. This is due to the movement process gradually shifting
from a deterministic type to a stochastic process, eventually becoming a completely
random movement process as the number of balls in the urn increases. The trends
in Figure 3.2(b) for the wheel process are largely similar to the Polya-urn, except
when the angle between the spikes is approximately QW” and h = 1. At this point,
all individuals within the population are nearly always alone. Given the significant
effects of the movement processes on the mean group size, we considered the impact
of mean group size on the fixation probability of cooperative strategies, as shown in

Figure 3.3.

Figure 3.3 illustrates the fixation probabilities of cooperative strategies plotted
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against the mean group size under the Polya-urn and wheel processes on the com-
plete decagon. Figures 3.3(a) and 3.3(b) show the fixation probability of a mutant
cooperator in the Public Goods game. As the mean group size increases, the co-
operator’s fixation probability decreases for all movement processes. This result is
expected, as larger group sizes lead to interactions between cooperators and defec-
tors, allowing defectors to gain rewards and thereby reducing the relative fitness of
cooperators. Figures 3.3(c) and 3.3(d) depict the fixation probability of a mutant
dove. In contrast, as the mean group size increases, the fixation probability also
increases. This occurs because hawks are more likely to be grouped together as
the group size grows, causing them to endure greater costs, which lowers their rel-
ative fitness and, consequently, raises the dove’s fixation probability. Figures 3.3(e)
and 3.3(f) represent the cooperator’s fixation probability in the Stag-Hunt game.
Initially, as the mean group size increases, the fixation probability rises until the
mean group size reaches the threshold level (set as L = 2). This benefits cooper-
ators, as they either find themselves in groups with another cooperator, enabling
them to produce and share the reward, or with a defector, in which case the reward
cannot be produced. Other values of L. would change the mean group size where
the maximum fixation probability occurs, constrained by the group formations of
the considered movement process. However, as the mean group size continues to
increase, the fixation probability declines. This is because larger group sizes do not
provide significant additional benefits to cooperators beyond the threshold level and

instead allow defectors to join cooperative groups and receive a share of the reward.

Figures 3.2(c) and 3.2(d) show the temperature for various Polya-urn (c¢) and
wheel (d) processes for varying values of h on the complete decagon graph. The
trends observed here are very similar to those in Figures 3.2a and 3.2b, as it has been
previously demonstrated that temperature increases with mean group size (Broom et
al. 2015). This unsurprisingly holds under the considered movement processes. Low
values of h correspond to high levels of movement within the population, therefore
when h = 1, the temperature is at its highest, as individuals are more likely to be
replaced by others due to frequent interactions (except for the case where 6 = QW”,
as individuals are nearly always alone, the temperature is at its lowest). As h
increases, individuals are less likely to move and, therefore, less likely to interact

with one another, leading to a decrease in temperature across all of the movement

processes.
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Figure 3.4 depicts the fixation probabilities of cooperative strategies plotted
against the temperature under the Polya-urn and wheel processes on the complete
decagon. Figures 3.4(a) and 3.4(b) show the fixation probability of a mutant coop-
erator in the Public Goods game. As the temperature increases, the cooperator’s
fixation probability decreases for all movement processes. This is because higher
temperatures indicate greater levels of mixing between cooperators and defectors,
enabling defectors to gain rewards from cooperators. Notably, the different move-
ment processes overlap, indicating that, regardless of the movement mechanism,
the temperature consistently predicts the cooperator’s fixation probability. In other
words, the temperature is the most significant predictor in the Public Goods evolu-

tionary process as shown in table 3.1.

Furthermore, from Figures 3.4(c) and 3.4(d), we observe that in the Hawk-Dove
game, as the temperature increases, the dove’s fixation probability increases. High
temperature levels correspond to low values of A and, therefore, high levels of inter-
action between doves and hawks. As hawks interact with one another, they incur
greater costs, which reduces their relative fitness and, consequently, increases the
dove’s fixation probability. Additionally, the relationship between temperature and
the dove’s fixation probability is linear for small temperature values but breaks
down as temperature increases, particularly for the follow the majority process.
Low temperatures, correspond to high values of h, meaning many individuals are
not partaking in the movement process and are either alone or in small pairwise
groups. As temperature increases, more individuals become mobile, leading to the
formation of groups of various sizes, particularly for the follow the majority process,
which significantly disadvantages hawks and causes the linearity breakdown. Thus,
in the Hawk-Dove game, at higher temperatures, the governing movement process

holds an important role in the evolutionary process.

Furthermore, from Figures 3.4(e) and 3.4(f), we observe that in the Stag-Hunt
game, the cooperator’s fixation probability increases as the temperature rises, until
it reaches a level where the fixation probability begins to decrease. Low temperature
values indicate limited interaction between individuals. Consequently, the relation-
ship between temperature and fixation probability is linear, similar to that observed
in the Hawk-Dove game. As temperature increases, individuals are more likely to
move and interact in pairwise groups, when cooperators interact with at least one

other cooperator, they can produce the reward, leading to an increase in fixation
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probability. When B = 0 or 8 = 0, the fixation probability declines rapidly as tem-
perature rises, due to the deterministic nature of the movement process, which causes
individuals to herd together. This herding effect is disadvantageous to cooperators,
reducing their relative fitness and, consequently, their fixation probability. When
B # 0 or 6 #£ 0, the decrease in fixation probability is more gradual, as cooperators
move probabilistically and can still engage in beneficial pairwise interactions.
Below, we present table 3.1 summarising how effective the evolutionary measures
are at predicting fixation probability for each of the games considered, and when

the movement mechanism holds a more influential role.

Game Mean group size Temperature
Public-Goods | Strong predictor at low values, | Strongest predictor across all
the effect diminishes for larger | temperatures.

groups.
Hawk—Dove | Strong predictor at low mean | Strong predictor for low tem-
group size values. peratures.

Stag—Hunt fixation is dependent on the | Strong predictor for low tem-
movement mechanism and | peratures.

threshold value (L).

Table 3.1: Summary of the relative effectiveness of mean group size and temperature in
predicting fixation probability across the Public-Goods, Hawk—Dove and Stag—-Hunt games
under BDB dynamics.

3.3.3 Differences between processes

In the Public Goods game, the fixation probability of a mutant cooperator under

BDD dynamics, expressed in terms of the temperature, is given by

1
A _
1= : PR (3.15)
Nty NRHENE (1) )
1+ 00 They

R—C+(k-1)V(525)
R—CH(k—1)V (55 ))

RAEV ()

(2 (N—1) =)

This equation has a similar structure to that of the BDB case (3.14). In both
cases, the temperature plays a more significant role in determining the fixation
probability than the governing movement mechanism. This pattern is illustrated
in Figure 3.4(a), where, under BDB dynamics, a fixed temperature value results in
approximately identical fixation probabilities across all movement processes. This
suggests that the temperature alone is sufficient to determine the fixation probability

in the Public-Goods game.
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However, Figure 3.5 demonstrates a different relationship under BDD dynamics.
Specifically, for a fixed temperature value, the different movement processes yield
varying fixation probabilities. Unlike in the BDB case, the analytical predictions
and simulations do not match. The difference arises because the theoretical process
assumes that individuals effectively participate in an infinite number of games, which
is the same process as in Broom et al. (2015) and Pattni et al. (2017). However,
the simulations assume that individuals only play a single game before the dynamic

time step, which is consistent with the process in Schimit et al. (2019) (2022).
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Figure 3.5: The fixation probability plotted against the temperature in the Public Goods
games on the complete decagon graph under BDD dynamics for distinct Polya-urn processes.
We set B = 0 (follow the majority), B =2, B =6 and B = 10,000 (a sufficiently large value
of B representing independent movement).

These two processes might be expected to produce the same results, however,
under certain updating rules, they yield differing outcomes due to three key averag-
ing effects: payoff averaging, weight averaging and averaging of reciprocals of fitness.
As Broom, Cressman & Kiivan (2019) discussed, the expectation of a ratio, E[a/b],

is not equal to the ratio of expectations, E|a]/Eb].

This distinction between the expectation of a ratio and the ratio of expecta-
tions manifests differently across the updating rules, occasionally leading to differ-
ent outcomes between the two processes. For example, under BDB dynamics, the

simulations, an extension of Schimit et al. (2019), assume

E[bi]:E[ Fi } (3.16)

whereas the theoretical analysis, an extension of Broom et al. (2015) and Pattni
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et al. (2017) assume,
ElF]

(3.17)

Although this discrepancy can lead to differences between the two processes, the
error becomes negligible under BDB dynamics when the background payoff is high
or the population size is large. This averaging effect is present under all dynamics,

but its influence varies depending on the specific updating rule.

A further averaging issue occurs when considering the weights under dynamics
where selection acts on the second event (such as BDD and DBB), introducing
an additional layer of difference between the two processes. For example, when h
is large, the self weight dominates the others, emphasising this effect. However,
under dynamics where selection acts on the first event (such as BDB and DBD),
the denominator in the replacement event sums to one, therefore removing this

additional issue of averaging.

The third averaging issue occurs in dynamics where selection acts on the replace-
ment event (such as DBD and BDD). These dynamics involve terms with reciprocals
of individuals’ fitnesses, which further contributes to the differences between the two

processes.

Consequently, for BDD dynamics, the analytical and simulation results do not
coincide, as they are derived from different processes based on different assumptions.
Table 3.2 shows that all three effects are present in BDD dynamics. For this reason,

we did not compare the analytical results with the simulations in Chapter 2.

Below, we present a table summarising these three factors and their presence in

the different dynamics.

Dynamics Payoff Averaging Weight Averaging Fitness Inverses

BDB v X X
BDD v v v
DBD v X v
DBB v v X

Table 3.2: Summary of the three effects across different dynamics. A tick (v') represents the
presence of the effect, whereas a cross (x) indicates its absence.
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3.4 Discussion

In this chapter, we have extended the modelling framework developed in Broom &
Rychtar (2012), by utilising the evolutionary model introduced in Haq et al. (2024)
to not only examine the effects of row-dependent movement (Broom et al. 2020) on
predictors of fixation probability, but also to implement the multiplayer Stag-Hunt
game within the evolutionary context of the territorial raider model. In previous
models, (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019) individuals moved
independently, meaning that only random movement was considered in the prior
analysis of predictors of fixation probability. Also, individuals primarily interacted
via the Public Goods, Hawk-Dove or Fixed Fitness Games. We have considered a
different social dilemma in the form of the multiplayer Stag-Hunt game, where selec-
tion can favour the evolution of cooperation depending on the movement mechanism
governing the process (unlike in the Public Goods game, where cooperation cannot

evolve in well-mixed populations).

We first demonstrated in section 3.3.1 how previously defined measures of aggre-
gation from Broom et al. (2020), specifically T (1.49) relate to the mean group size
and showed how 7', mean group size and temperature can be calculated. Previous
work by Broom et al. (2015) and Schimit et al. (2019) explained the importance of
these predictors, and our aim was to demonstrate that these measures not only hold
theoretical significance, but can also be practically calculated for various movement
processes. In section 3.3.2, we examined the Stag-Hunt game and showed that herd-
ing can be significantly detrimental to the evolution of cooperation, to the extent
that selection opposes its evolution. However, other movement processes raise the
cooperator’s fixation probability above that of the defector and above the neutral
benchmark, thereby supporting the evolution of cooperation. A significant example
of this was shown in the wheel process. In the Stag-Hunt game, row-dependent
movement plays a more influential role than in the Public Goods game considered
by Haq et al. (2024). Dispersal can also be detrimental to cooperators as it ensures
cooperators partaking in the movement process, do not interact with each other,

reducing their chances of being in a group that meets the threshold.

We also considered the effects of various movement processes on the mean group
size and temperature and, in turn, their influence on fixation probability and have

observed patterns in our model that have not been previously observed in evolu-
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tionary graph theory (Pattni et al. 2015, Traulsen et al. 2007). In the Public Goods
game, we demonstrated that temperature is a stronger predictor of fixation than
mean group size across all levels of h, regardless of the movement process. Our
findings indicated that temperature maintains a linear relationship with fixation
probability for all movement processes, signifying its importance as the most crucial
parameter in the evolutionary process. This was first identified by Broom et al.
(2015) but only for high levels of home fidelity and independent movement. Our
analysis extends this work by incorporating more complex movement mechanisms,
demonstrating that temperature’s predictive property remains robust even when in-
dividuals move in a coordinated manner. In the Hawk-Dove game, we showed that
temperature continues to be a stronger predictor of fixation. However, due to the
greater complexity of the game compared to the Public Goods game, the linear re-
lationship between temperature and fixation breaks down as the temperature rises,
with a similar pattern observed in the Stag-Hunt game. We provided an analytical
analysis of this relationship, highlighting that while temperature is generally a re-
liable predictor, the nature of the game and the governing movement process play
significant roles in determining the relationship between temperature and fixation.

In addition to examining the impact of the row-dependent movement mecha-
nisms, we also investigated the differences between two modelling processes used in
the territorial raider model (Broom et al. 2015, Pattni et al. 2017, Schimit et al.
2019, 2022). One process assumes that individuals effectively participate in an in-
finite number of games per time step, an assumption underlying the process from
Broom et al. (2015) and Pattni et al. (2017). The other process assumes that indi-
viduals play a single game before each update, often assumed in the simulations such
as in Schimit et al. (2019, 2022). Although these processes might appear equivalent,
we identified three averaging issues, payoffs, weights and reciprocal fitness terms that
can lead to different outcomes depending on the evolutionary dynamics governing
the process. Although the simulation process from Schimit et al. (2019, 2022) can
be seen as extensions of the theoretical process from Broom et al. (2015) and Pat-
tni et al. (2017), under BDB dynamics, this equivalence does not generally hold
under other dynamics. Schimit et al. (2019) considered the territorial raider model
involving complex networks which could be revisited using an approach where indi-
viduals play a large number of games per time step, but this would involve significant

computational resources.
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Chapter 4

Extending the Movement
Methodology to Incomplete
Networks

4.1 Introduction

In the previous chapters, we analysed the effects of row-dependent movement on the
evolution of cooperation, focusing on complete graphs. In such settings, tracking the
level of herding among individuals is relatively straightforward. For example, under
the follow the majority process with h = 1, all individuals are located at the same
place. On incomplete graphs, however, perfect aggregation is no longer guaranteed.
To address this, we begin by extending 7' (1.49) by establishing upper and lower
bounds on the maximum possible aggregation for all movement processes on a given

graph structure.

An important question is whether the generalised movement methodology devel-
oped in section 2.3.1 retains its faithful property when applied to incomplete graphs.
In chapter 2, we showed that this methodology ensures all individuals achieve the
target apriori distribution. In this chapter, however, we provide a simple counterex-
ample demonstrating that the property can fail on incomplete graphs for sequential
movement processes. This result motivates our focus on the wheel process, where
we extend the mechanism to incomplete graphs and develop an alignment algorithm
to approximate maximum herding. We intend to submit the results in this chapter

as a publication.
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4.2 The Model

The evolutionary set-up in this chapter uses the same underlying framework dis-
cussed in chapters 2 and 3 (refer to sections 2.2 and 3.2). The population structure
is again defined by the territorial raider model (refer to section 2.2.1). However, in
this chapter, we consider cases where the underlying network is incomplete. As a
result, certain assumptions that held in the previous chapters no longer apply. For
instance, some individuals in the population no longer have access to all locations,
meaning the movement methodology developed in section 2.3.1 may no longer en-
sure the movement mechanisms remain faithful i.e. a given target distribution may
not be achieved. Additionally, individuals in the same population no longer share
the same temperature, that is, equation (3.1) does not hold globally. As before, we
consider both BDB and BDD dynamics, consistent with the dynamics in chapters 2
and 3.

4.3 Results

In this section, we first establish upper and lower bounds for measures introduced
by Broom et al. (2020). These bounds provide insight into the maximum achievable
aggregation on incomplete graphs because, unlike complete graphs considered in
chapters 2 and 3, total aggregation is not guaranteed on incomplete graphs, which

motivates this direction.

We then show that the movement methodology developed in Section 2.3.1 no
longer guarantees the faithfulness of sequential movement processes (follow the ma-
jority and Polya-urn), by providing a simple counterexample where this property
fails. This demonstrates a limitation of the methodology when applied to incom-

plete graphs and motivates our focus on the wheel process.

Next, we extend the wheel process to incomplete networks and introduce an
alignment algorithm designed to approximate maximal aggregation. We provide
illustrative examples of the alignment algorithm and conclude with simulations in-
vestigating how the extended wheel process affects the evolution of cooperation on

complete networks.
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4.3.1 Upper and lower bounds on T},

In section 1.9, T (1.49) was defined as the probability of two individuals being
together under a particular movement process. Then, T}, is the maximum possible
probability over all movement processes on a particular structure. In this section,
we provide upper and lower bounds on T},q,. To determine an upper bound for
Tnaz, We present a step-by-step explanation leading to (4.1). Consider an arbitrary
number of individuals who have moved to I;’s home vertex, denoted by k; + 1, where
k; is the number of I;’s neighbours and the 41 accounts for I;, remaining on their
home place to maximise aggregation. The number of pairs that can form within this
group is given by (k H) An upper bound for the probability of this group forming

is determined by the minimum number of connections I; or one of its neighbours

possesses. Accordingly, this probability is bounded above by (l’“; 1), where

k'L 7YLZTL+1

ki min denotes the minimal degree among I;’s neighbours. To capture this across the
. : : : N 1 ki+1

entire network, we sum over all vertices, yielding, > .’ m( A ) Hence, the

upper bound for 7,4, is given by

N
1 1 ki +1
0 2 b ¥ 1 +1< ) ) (4.1)
2 i=1 7, min
Similarly, to determine a lower bound for T},,,, we weight by 1/N as we can coor-
dinate I; and all of their neighbours to meet on I;’s home place by partitioning the
probability into N segments, one per place, and move all that can go there to that

k+1)‘

place. Therefore, we can achieve an expected number of pairs given by Z ( 2

=1
Therefore, a lower bound for 75,4, is given by

(21%,) g % (k’ ; 1). (4.2)

Alternatively, one might naturally consider a potentially tighter lower bound for
Trmax by weighting by 1/(kimaez + 1), where kjpmqe denotes the maximal degree

among I; and their neighbours. This leads to the expression:
N
1 1 k; + 1)
— D — . 4.3
B2l -

2

However, we show that this proposed lower bound can fail. Consider a cycle graph

with four nodes. Under maximum alignment, three individuals aggregate at a single
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location while the remaining individual is alone. In this case, there are three possible

pairs of individuals who are together and three other possible pairs that are not

Applying the expression in (4.3), we obtain: %(%(g)) =

. . 1
resulting in Tinee = 3. ,

N— Wl

which overestimates the true value. In contrast, using (4.2), we find %i(él (g)) =
This example illustrates that while (4.3) may seem like a natural alternative, it
does not always provide a valid lower bound. The failure arises because, under
these higher probabilities, we cannot always achieve the same level of coordination

between individuals that was guaranteed in the previous case.

Consider an N-sized, regular graph with k& degree, then the upper and lower

bounds of T},,, are given by

R ]

2/ =1 =1
%k(k_‘_ 1) < Tmaz < %Niku
(;) 2 () 2
1
e+l p ok (4.4)

4.3.2 Example of an unfaithful process

In chapter 2, we developed a general movement methodology with two main pur-
poses. Firstly, it embedded the row-dependent movement mechanisms of Broom
et al. (2020) into the evolutionary framework of the territorial raider model intro-
duced by Broom et al. (2015). Secondly, it ensured that individuals within the
population achieve a specified target distribution, given by the apriori distribution.

This property also held in chapter 3, as the graphs considered were all complete.

A natural next step is to ask whether this methodology extends to incomplete
graph structures, which represent more realistic and complex population networks.
Faithfulness was a key property intended in the previous chapters, and it is impor-
tant to determine whether it holds in this broader setting. We demonstrate, however,
through a simple counterexample that faithfulness can fail under sequential move-
ment processes (follow the majority and Polya-urn). Specifically, we examined a line
graph with three nodes and individuals, illustrated in Figure 4.1, where movement

is governed by the follow the majority process.
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Figure 4.1: The line graph for three individuals. I; resides on place X, I resides on place
Y, Is resides on place Z.

The apriori distribution for I; is given by: P(I; is on their home vertex) =
h/(h + 1) and P(I; is not on their home vertex) = 1/(h + 1). Assuming h > 1,
the probability that I; partakes in the movement process is P( I; partakes in the
movement process) = 2/(h + 1), while the probability that I; does not move and,
therefore, remains on their home vertex is P( I; does not partake in the movement
process) = (h — 1)/(h + 1). Using the movement methodology developed, we con-
sidered all the possible ways in which I; remains on their home vertex to determine

whether the target distribution aligns with their apriori distribution.

The probability that only I; partakes in the movement process and returns to
their home vertex (h — 1)2/(h + 2)(h + 1)%. If only I moves, then I; must remain
on their home vertex; the same holds if only I3 moves. The probability of these
cases occurring is 5(h — 1)2/(h +2)(h + 1)%. If both I and I move, the probability
of I; being on their home vertex is 3(h — 1)/(h + 2)(h + 1)2. If I and I3 partake in
the movement process, then I; must remain on their home vertex, with probability
6(h —1)/(h +2)(h + 1)2. If only I; and I3 move, the probability of I; being on
their home vertex is 3(h — 1)/2(h + 2)(h + 1)2. If all individuals move, then the
probability of I; being on their home vertex is 29/6(h +2)(h+1)2. If no one moves,
then the probability of I; being on their home vertex is (h — 1)3/(h + 2)(h + 1)2.
Hence, the total probability of I; being on their home vertex is 6(h —1)2/(h+2)(h+
12 421(h—1)/2(h +2)(h +1)24+29/6(h +2)(h + 1)? + (h — 1)3/(h + 2)(h + 1)2.
To determine the correct value of A’ that achieves the target apriori distribution, we

must solve for A’ in the following equation

Ko 12(h—1)%2421(h—1) 29 (h—1)3
R+1 2(h+2)(h+1)2 + 6(h +2)(h+1)2 + (h+2)(h+1)?

(4.5)

By carrying out a very similar calculation for the probability of I being on their

home vertex, we must also solve for A’ in the following equation

W 5(h—1)>+9(h—1) 35 (h—1)3
W2 (h+ 2412 6+ T )+ )2

(4.6)
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Equations (4.5) and (4.6) show that two distinct values of h’ are required to ensure
that Iy and Is meet their respective target distributions. In other words, each
individual would require their unique value home fidelity value. Therefore, in our
models with a single global home fidelity parameter, individuals following sequential

processes on incomplete networks may not always achieve their target distributions.

However, this result may be expected, particularly in heterogeneous graph struc-
tures, where the evolutionary setting is governed by a single global home fidelity
parameter. In such models, collective movement becomes increasingly constrained
by factors such as spatial connectivity. As a result, individual movement choices
are not solely governed by the row-dependent movement mechanism but are also
influenced by structural limitations and the ordering of others within the movement
process, making it difficult to achieve a target distribution that aligns with the apri-
ori. In a more complex model where each individual has their unique home fidelity

parameter, it may be possible to achieve the apriori distribution as a target.

It is important to note that, unlike the sequential movement processes, the wheel
continues to be a faithful movement process due to its mechanism. For instance,
consider an incomplete graph where there are M places. Suppose individual I;
has d — 1 neighbours. Then their target apriori distribution is: P(at home vertex)

= WZ—U P(elsewhere) = hi&il‘ Assuming h > 1, I; engages in the wheel process

with probability #, their wheel is split into d evenly-sized segments, therefore the

probability I; is at their home place is hfﬁil + é( T +‘;71) =5 +271. The probability
1

they are elsewhere is (1— %)(Hg_l) = hi&—l’

Both of these match the target apriori

distribution exactly.

This agreement occurs because the wheel allocates individuals simultaneously,
preserving the intended distribution. However, sequential movement processes intro-
duce dependence on the order in which individuals move. Once the first individual
moves, it can alter the marginal distribution of the next individual, potentially alter-
ing the achieved distribution away from the intended target. This makes it difficult
for all individuals to simultaneously satisfy the apriori distribution on incomplete
networks. For this reason, we focus on the wheel process for the remainder of the

chapter.
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4.3.3 Extending the wheel to incomplete graph structures

The sequential movement processes can be implemented on incomplete graphs, but,
as demonstrated, they may fail to preserve faithfulness, making them unsuitable
for maintaining target distributions. However, the wheel process is faithful on in-
complete graphs, but it must be extended to function on incomplete graphs where
individuals may have access to unique locations. On a complete graph, individuals
within a well-mixed population have access to all locations, allowing them to be
represented as spikes on the same wheel. On an incomplete graph, however, individ-
uals may have unique apriori distributions granting them access to specific locations
unavailable to others, so a single shared wheel is generally no longer possible.

To address this, we modified the wheel procedure from section 1.9. The first step
involves identifying all individuals participating in the movement process, followed
by stacking their corresponding wheels on top of each other, ensuring that each
individual’s spike is aligned above their respective wheel, as illustrated in Figure

4.
L

QT

=
~
I I I I3 -

(a) (b)

Figure 4.2: The wheel process for incomplete graphs. (a) The wheels for different individuals,
where each wheel represents the accessible locations for each individual. Individual [; can
move to places A, B and C, I can move to U, V and W and I3 can move to X, Y and
Z. (b) represents the wheel stacking procedure. Each individual’s spike is positioned above
their respective wheel, ensuring that movements are correctly carried out on incomplete graph
structures.

4.3.4 The wheel alignment process

The wheel was introduced in previous chapters as a simple, idealised model of si-
multaneous allocation, designed to construct distributions with specific properties
while preserving faithfulness. For instance, in a well-mixed population, when h =1

and 6 = 27 /N, all individuals in the population are alone, representing a movement
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process where all individuals simultaneously move and eventually become separated.
One could imagine a population of animals dispersing from a central location with
particular requirements for levels of separation from others. When h =1 and 6 = 0,
all individuals within the population occupy the same place, representing a move-
ment process where all individuals prefer to move simultaneously and aggregate at
the same location. These examples highlight the wheel’s ability to capture both
dispersal and herding behaviours.

An important consideration is to ensure that the fundamental behaviours cap-
tured in earlier chapters, such as aggregation when ¢ = 0, remain consistent when
the wheel is applied on an incomplete graph. To address this, we developed an
alignment algorithm to approximate maximal aggregation by rotating the stacked
wheels in such a way that it enables as many individuals as possible herd together
at the same location 6 = 0.

Consider an N-sized population on an incomplete graph. The alignment proce-

dure is defined as follows:

e Construct an N x N matrix, where the (i, j)-entry represents the probability

of individual I; moving to the j** place.

e Identify the column with the least zero entries. Within this column, subtract
the minimum non-zero value from all non-zero entries. This step is referred to

as the primary alignment.

e Record the alignment in a table. Each column label corresponds to a location
where individuals aggregate. For example, P; : A implies that the individuals
within the first primary alignment are aligned to place A. The entries within
each column will either be the value subtracted during the primary alignment,
or its negative. A negative value indicates that the corresponding individual

cannot move to that place and will instead be aligned elsewhere.

e If a column in the alignment table contains any negative entries, examine the
corresponding rows in the matrix to determine whether another column can
group at least some of these individuals during the previous primary alignment.
If so, repeat the same procedure as the primary alignment. This step is referred

to as the secondary alignment.

e Ensure that the secondary alignment does not interfere with subsequent pri-
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mary alignments, as the objective is to maximise aggregation. If there is a
conflict, carry out the secondary alignment if it aligns more individuals than

the next primary alignment.

e Once the cumulative total of all primary alignments sums to one, then the
alignment process is complete. Any remaining secondary alignments can now

be managed accordingly.

To illustrate this process, we present two examples. The first example considers
a simple line graph with three nodes, offering an intuitive understanding of how the
primary alignment operates in a straightforward setting. The second example ex-
plores a more complex and heterogeneous structure, demonstrating the importance
of secondary alignments when full alignment between all individuals is not achieved
during the primary step. This allows us to observe how our alignment methodol-
ogy handles more complex networks and ensures that approximately the maximum
number of individuals are grouped together.

The first example considers a line graph with three nodes (see figure 4.1). As-

suming h = 1, the corresponding matrix for this graph is given by

[en}

(4.7)

O W= N
NI W~ N
NI—= W=

The second column has the least zero entries, therefore, we apply the primary align-
ment to this column aligning 1/3 of each individual’s wheels to location Y. The

matrix then becomes

O W= N
S o=
= W= O

D=

The alignment table is updated as follows:

P1 1Y
I
I

I3

Wl Wl Wl

Each column now contains one zero, therefore, a primary alignment can be applied
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to any of them. For simplicity, we perform the alignment in the first column, aligning
1/3 of I;’s and I5’s wheel to location X. I3 will be aligned elsewhere in the secondary

alignment step.

11
6 6 U
00 3 (4.9)
1
0 5 3
The alignment table is updated as follows:
P1 Y P2 : X
I 1 1
b8 3 (4.10)
L| 3 5
A

Only one negative value has appeared as a result of the primary alignment. There-
fore, we do no need to consider the secondary alignment yet and can proceed with
the next primary alignment step. The final primary alignment is carried out in the
third column. We align 1/3 of Iy’s and I3’s wheels are aligned to location Z, while I3
is aligned elsewhere. Note that the alternative approach would have been to subtract
1/6 from the second column and then another 1/6 from the third column. However,

both methods are equivalent and yield the same results in terms of aggregation.

11
§ 5
0 0 0 (4.11)
1
0% &
The alignment table is updated as follows:
P1 'Y P2 : X P3 A
1 1 —1
Lls 3 3 (4.12)
T 1 1 1
2 3 3 3
1 -1 1
Is| 3 3 3
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We can now include the secondary alignments in the table,

P:Y P:X P3:Z Sy:Y So:7Z S3:X S3:Y
1 1 —1 1 1
L 3 3 3 0 0 5 5 (4.13)
L| 3 3 3 0 0 0 0
1 —1 1 1 1
Iz| 3 3 3 6 6 0 0

Using the results from the final alignment table, we interpret, for example, the P> : X
column to imply that I; and I each have 1/3 of their wheels aligned to location X.
Similarly, columns Ss : Y and Sy : Z shows that I3 has 1/6 of their wheel aligned to
both locations Y and Z, respectively. The formulation for each individual’s wheel

is illustrated in Figure 4.3. By using (4.1), we calculated that on this network, the

GHEIES

(a)

Figure 4.3: The alignments for each individual on the line graph with three nodes

upper bound of T}, is

6000w

Similarly, by using (4.2), the lower bound of T}, is

SO0

Calculating the actual value of T under the wheel alignment process gives

H0OHEOAE)E

The actual value of T' coincides with the lower bound of T},,, on this network.

We also examined the application of the alignment process on a complex graph
structure to investigate factors that influence when it is necessary to perform a

secondary alignment before proceeding with the next primary alignment. The graph
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structure used for this analysis is shown in figure 4.4.

Figure 4.4: A graphical representation of a network considered in the alignment process.

Assuming h = 1, the corresponding matrix for the graph in Figure 4.4 is given

by

)
jan)
@)

S G
) S G

(4.17)

(@) S O Gl g
[a) o o S G

[an} @) @) [an} S g
@) jes} ) @) es} O G

o o (el ST STE Sl LS N

NI= NI= N

o o o o S = G
] S O O w=

@) @) S NI

() S N

S NI

D=

By carrying out the first primary alignment in the first column, aligning 1/5 of the

five individuals’ wheels to place A.

0 Looo Ll
0 Ll Lt ioo0o0
0 2200000
0 204210000 (4.18)
0 0012000
20000 5 00
200000 30
2000000 3
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The alignment table is updated as:

P A
n| 4
L| 1
Is|
I
| 2
| %
I| %
Is| %

Before the next primary alignment in the second column of the matrix, we address
the negative values that appear in rows 3,4 and 5 of the alignment table. These
three individuals can be secondarily aligned using 1/5 of the apriori probability in
the second column of the matrix. While the first five individuals are aligned to place
A, the remaining three are secondarily aligned to place B to maximise aggregation.

This secondary alignment does not interfere with the next primary alignment.

0 L oo0o0 Ly
0 L itioo0o0
0 & 100000
0 % 030000 (4.19)
0 2003000
2 0 000 % 00
20 0000 %0
2 0 0000 0 %
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and the alignment table is updated as:

P:A S:B
L| 1 0
L| 1 0
Ll 5 3
Ll 5 5
Ll 5 5
| % 0
I| % 0
Iy| 1 0

The next primary alignment is carried out in the second column, which contains
fewer zero entries than the other columns. The smallest non-zero entry in this

column 1is % This value is subtracted from all non-zero entries in the column.

o 0000+ 11
oot it looo
0 & 300000
0 45 0 3 00 0 0 (4.20)
0 5 00 % 000
20 000 100
20 0000 %0
2 0 00000 3
P:A S:B P:B
L| % 0 3
L i 0 :
Ll 5 5 s
LI 5 5 3
Ll 5 5 s
| 5 0 %
Ll s 03
Ll 5 0 %

Following the same reasoning as before, a secondary alignment to place A can be

94



carried out during this primary alignment.

—~
—
N
<#
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<t
e o (e ] o S o —=ho —=ho
—ho O (an) (@) (@) (@)} S HIN N\nué
—ho O (@) (an) (@) o H O B
- O O O O Ha O O e e ke e —iho 1_;5 1;5 1;5
o —ho O o Ha O (] o
S —ho O A O o o o B
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o o 2 2 -2 o o o <
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o ©o o o o —3 A2 ~g A
N < e © b~ 0
A N L

The next primary alignment can be in the first or second columns. For simplicity,

we choose the first,

(4.22)

—ho O

—ho O

—ho O

0 0 0 O
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o o
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O e
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0 0 0 O
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1
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P:A S51:B Pb:B Sy:A P3: A
L 3 0 5 0 T
L] 3 0 5 U
I
A
L 5 3 5 0 T
i 5 0 3 5 5%
Ir| 3 0 F 5 W
Is| 3 U

The next primary alignment is in the second column where three individuals can
be aligned to place B, however, this can be slotted in a secondary alignment to the

previous primary alignment.

_00000%%%_
00+ 1 ooo
00300000
0004 0000 (4.23)
000031000
000003 00
000O0O0GO 030
000O0O0O OO0 3
P:A S1:B Pb:B S:A P3:A S3:B
L| & 0 i 0 o 0
L| 1 0 i 0 = 0
Iy 5 5 0 0] i
LI 5 5 5 0 W 1w
Ll 5 5 0 w1
I | 3 0 = : i 0
i 5 0 5 5 w O
i 5 0 5 5 1w 0

The other two secondary alignments for the remaining two individuals can also be
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done now as they do not interfere with the next primary alignments.

_00000%%%_
00 & £ £+ 0 00
00 %+ 00000
000 300 00 (4.24)
00 0 03 0 00
000 O0O0 32 00
00 0 00 0 3 0
000 00 0 0 3

P:A S:B Pb:B Sy:A P3:A S3:B S3:F S3:C
L| % 0 i 0 = 0 = 0
L| % 0 i 0 o 0 0 i5
I ST S N S (R
L 5 3 5 0 T wx 0 0
L 5 3 5 U R 0
I | 1 0 = i + 0 0 0
I| 1 0 = 3 = 0 0 0
Is| % 0 = i + 0 0 0

The remaining alignments are essentially all equivalent, consisting of a pair of indi-
viduals grouped together while all others are aligned alone elsewhere. The purpose
of this example was to provide an example of the decision-making process involved

in carrying out a secondary alignment.

By using (4.1), we calculated that on this network, the upper bound of T}, is

5(0+46)-:

Similarly, by using (4.2), the lower bound of T}, is
11 ) 2 13
—=| 2 = —. 4.2
(3) 8( (2) +6(2)) 112 (4.26)
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Calculating the actual value of T under the wheel alignment process gives

-HE00-0)5 e

The actual value of T lies within the upper and lower bounds of T},4.

We also derived a general rule that explicitly describes the alignment of each
individual’s wheel on a line or circle graph of size N. On these graphs, each indi-
vidual has access to three locations: their own home place or their two connected
neighbour’s (except for the two individuals at either end of the line graph, who
only have access to two locations, their own or their neighbour’s). Consider a wheel
model divided into three equally sized segments of 27 /3 (illustrated in figure 4.2
(a)). Assuming a general wheel, with labels A, B and C, the alignment rule on an

N-sized circle or line graph is given by table 4.1.

A B C
e | 3k-1 3k 3k+1
Iyjeq | 3k+2 3k 3k+1
Iyjio | 3k+2 3k+3  3k+1

Table 4.1: Alignment rule for individuals on a line or circle graph of size N, where each
individual’s wheel is divided into three equal segments. The table shows how individuals
indexed I3k, Isk+1, and Isg42 align to locations A, B, and C based on their relative positions
in the network.

It is important to note that at the endpoints of the line graph, individuals have
access to two locations. Therefore, one of their wheel segments is equally redis-
tributed between the two accessible places. Also, this result does not provide the
most optimal alignment for circle graphs of size 3k + 1 where k € Z. For example,
consider a circle graph with four vertices, the alignment rule gives the following
alignments presented in Figure 4.5.

In figure 4.5 (b), it is clear that a better, more optimal alignment can be achieved
by swapping ”1” and ”4” on I;’s wheel. However, this result does yield the most
optimal alignment for all other sizes on the circle graph and all sizes on the line

graph.

4.4 Simulations

In this section, we conducted similar simulation methods to those used in the previ-

ous chapters to demonstrate that the alignment method developed in section 4.3.4
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(a) (b)
Figure 4.5: The alignments for four individuals on the circle graph. (a) shows the circle

graph with four individuals I+, I.I3 and I4 with vertices labelled as 1,2,3 and 4. (b) shows
the wheel alignments for each individual.

can be successfully implemented within the evolutionary setting.

One simulation is delineated as follows:

e The chosen network is formed using the iGraph library (Csardi and Nepusz
2006).

e The mutant is randomly placed on one of the vertices.

e Every individual moves (or not) from their home vertex according to the model
as described in section 2.3.1 under the wheel alignment process discussed in
section 4.3.4. Groups are formed and multiplayer games are played where

R =10,C =1 and V = 2 for both of the considered games.
e Individuals return to their home places.

e Each individual moves (or not) and groups are formed and the dynamic process
occurs. No games are played. Instead, one individual is selected to reproduce
an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.

e The simulation ends once the mutant fixates in the population or becomes

extinct.

e This process is averaged over 25,000 cases to balance computational efficiency

and low statistical variability.
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Figure 4.6: The fixation probability of a mutant cooperator and defector plotted against the
home fidelity parameter, h in the Public Goods game under the wheel alignment process on
the line and circle graphs with nine nodes. (a), (c), (e) and (g) show the cooperator’s fixation
probability and (b), (d), (f) and (h) show the defector’s fixation probability. For the wheel

process, we set § = 0, {5 and %’r (to represent a near dispersal process).
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Figure 4.7: The fixation probability of a mutant dove and hawk plotted against the home
fidelity parameter, h in the Public Goods game under the wheel alignment process on the line
and circle graphs with nine nodes. (a), (¢), (e) and (g) show the hawk’s fixation probability
and (b), (d), (f) and (h) show the dove’s fixation probability. For the wheel process, we set

0 =0, {5 and %’r (to represent a near dispersal process).

Figure 4.6 illustrates the fixation probabilities of a mutant cooperator and de-

fector in the Public Goods game under wheel alignment processes on line and circle

graphs with nine nodes. Figure 4.6 (a), (b), (e) and (f) show that the angle

has minimal effect on fixation probability under BDB dynamics.
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to results on complete graphs, such as in Figure in chapter 2, where much larger
group sizes, up to the size of the population can form, enabling the row-dependent
movement process to have a more influential effect.

The limited impact of # under BDB dynamics occurs due to the incomplete
structure of the line and circle graphs, where the maximum group size achievable is
only three. As BDB dynamics involve selection on the birth event, and cooperators
generally have a lower average fitness than defectors in the Public Goods game,
their fixation probability is below 1/N. Furthermore, the restricted group sizes im-
posed by the graph structure limit the influence of the row-dependent movement
mechanisms on the evolutionary outcome. As h increases, the cooperator’s (defec-
tor’s) fixation probability slightly increases (decreases). This is because individuals
are more likely to be alone, reducing opportunities for cooperators to interact with
defectors and provide them with rewards. Therefore, the relative fitness between co-
operators and defectors reduces, thereby slightly increasing the cooperator’s fixation
probability.

Figure 4.6 (c), (d), (g) and (h) illustrate the fixation probabilities of the mutant
cooperator and defector under BDD dynamics, where the angle € has a more influen-
tial effect on the evolutionary outcome. When h is small, individuals are more likely
to partake in the movement process, resulting in the formation of groups of size 2
or 3. Under BDD dynamics, each individual has probability 1/N of being chosen to
reproduce. If a cooperator reproduces in a pairwise group, the other group member
is guaranteed to be replaced. This mechanism allows cooperators to achieve higher
fixation probabilities than under the corresponding BDB dynamics, making the role
of 6 more significant.

As expected, the angle § = 27/3 yields the highest fixation probability when
h =1 as it allows for the greatest degree of separation between individuals. At this
point, many individuals are alone, and the cooperator’s fixation probability reaches
1/N = 1/9, remaining at this level as h increases. However, § = 0 results in the
lowest fixation probability, as it maximises aggregation and increases the likelihood
of cooperators interacting with defectors, which negatively impacts cooperation. A
similar trend was observed in chapter 2 in Figure .

Figure 4.7 illustrates the fixation probabilities of a mutant hawk and dove in the
Hawk-Dove game under wheel alignment processes on line and circle graphs with

nine nodes. These figures show that, regardless of the evolutionary dynamics, 6
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plays a more influential role here than in the Public Goods game.

When 6 = 0, individuals are more likely to herd together. In chapter 2, Figure
2.4, we observed that such aggregation was detrimental for hawks and beneficial
for doves, as hawks were more likely to be in larger groups and incur significant
costs. However, due to the incomplete structure of the line and circle graphs, the
maximums group size is restricted to just two or three individuals. This structural
limitation means hawks do not experience the same level of costly interactions as
they would on complete graphs, where the risk of multiple hawks interacting is much
larger. Therefore, aggregation positively impacts the hawks fixation probability
in this evolutionary setting, since he presence of just a single hawk in a group is
sufficient to deny all doves a share of the reward, lowering their relative fitness and,

therefore, the dove’s fixation probability.

4.5 Discussion

In this chapter, we have developed the framework of Broom & Rychtar (2012) by
examining the evolution of structured populations on incomplete networks involving
multiplayer interactions, where individuals move in a coordinated (row-dependent)
manner. While previous models, such as those presented in chapters 2 and 3 (Haq
et al. 2024, 2025) focused on complete graphs, this chapter marks the first step in
applying those models to more complex, incomplete graphs. This extension allows
us to test whether the dynamics and insights established in the previous chapters
continue to hold in more complex settings.

Earlier studies on incomplete networks (Broom et al. 2015, Schimit et al. 2019,
2022) assumed independent movement. However, our model retains the coordinated
movement process introduced in earlier chapters, ensuring continuity of methodology
while exploring their under new structural constraints. Building on the aggregation
measure 7' (1.49) from Broom et al. (2020), which was examined in chapter 3, we
investigated its maximum value, T;,4:, and established upper and lower bounds.
These bounds provide insight into the maximum level of aggregation that can be
achieved on a heterogeneous structure.

An important motivation behind the development of the general movement
methodology in Section 2.3.1 was faithfulness, ensuring the movement processes

preserved the intended apriori distributions. In chapter 2, we showed that while the
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sequential movement processes guaranteed faithfulness on complete networks, this
property no longer holds on incomplete graphs. This represents a fundamental dif-
ference between the two settings, emphasising the need for alternatives that ensure
faithfulness, such as the wheel process. The wheel’s mechanism was extended in
this chapter to incomplete networks via the development of an alignment algorithm
designed to approximate maximal herding. Importantly, the equivalence between
# = 0 and follow the majority, observed in complete graphs in chapters 2 and 3,
breaks down in this chapter due to network constraints. This demonstrates that for
the sequential movement processes, properties that hold for complete networks do

not necessarily hold on incomplete graph structures.

We then explored the evolutionary implications of the wheel alignment process in
the Public-Goods and Hawk-Dove games. In the context of the Public Goods game,
we showed that under BDB dynamics, the wheel alignment process has minimal
effect on the evolution of cooperation. This is due to the restrictive group sizes per-
mitted by the underlying network structure. In other words, network topology exerts
a stronger influence than the movement rules. Ohtsuki et al. (2006) demonstrated
that, in general, birth-death processes do not support the evolution of cooperation.
Therefore, in the Public Goods game, our results show that the cooperator’s fixation
probability typically remains below 1/N. Under BDD, however, the wheel’s herding
effect becomes more pronounced, again reflecting but also extending earlier findings

on complete graphs in chapter 2.

In the Hawk-Dove game, we showed that herding benefits hawks, contrary to
the previous analysis in chapter 2 (Haq et al. 2024), where herding hindered their
evolutionary success. This reversal is attributed to the limiting group sizes that can
be formed on circle and line graphs. These limitations benefit the hawk as they
do not incur significant costs from large group interactions, therefore improving the
hawk’s fixation probability and worsening the dove’s chances of fixating. In Broom
et al. (2015), it was shown that the dove’s fixation probability could exceed 1/N if
the reward was adjusted and in chapter 2, it was demonstrated that even without
altering the reward, the row-dependent movement mechanisms, particularly follow
the majority, can raise the dove’s fixation probability above 1/N due to hawks
being forced to herd together in large groups. However, our results show that on
the considered incomplete networks, similar movement processes now favour hawks,

emphasising the significant role of the underlying network structure in influencing

104



evolutionary outcomes.

Overall, this chapter bridges the gap between the complete graph analysis in
chapters 2 and 3 and the more complex setting of incomplete graph structures con-
sidered in this chapter. Whereas the earlier chapters established the foundations of
coordinated movement and analysed their evolutionary consequences in well-mixed
populations, here we extended these ideas to structured populations where access
to locations is restricted. In doing so, we showed that some properties from the
complete case, such as the applicability of the aggregation measure 7', remain ro-
bust, while others, such as the faithfulness of sequential movement processes, break
down once network constraints are introduced. This finding emphasises why the
wheel continues to serve as a flexible model of coordinated movement as it is able

to ensure an achievable target distribution.
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Chapter 5

Hybrid models

5.1 Introduction

The previous chapters examined models in which all individuals within the popula-
tion followed the same movement mechanism throughout the evolutionary process.
This chapter, however, focuses exclusively on hybrid movement models, extending
the methodology developed in chapter 2 to incorporate several movement mecha-
nisms within a single population. Broom et al. (2020) introduced these models to
capture situations in which individuals adapt their mobility in response to external
factors such as predator presence, resource availability, or the search for potential
mates.

By formally embedding the hybrid models into the evolutionary setting, this
chapter investigates how varying movement mechanisms influence evolutionary out-
comes in simulations. The analysis provides a direct extension of the work carried
out in chapter 2, which focused on developing the theory to model a single move-
ment process and complements chapter 4’s analysis by further broadening the scope
of movement modelling.

This is a relatively short chapter, presenting preliminary results and outlining the

initial progress made in extending evolutionary analysis to include hybrid models.

5.2 Hybrid type 1

In Broom et al. (2020), the hybrid type 1 model was defined as follows: assume

there are R movement procedures and R non-negative numbers si, sa, ..., sg with
R
> s, = 1. The movement process is then governed by the following probabilistic
T
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rule: with probability s,, all members of the population follow the 7* movement
procedure.

This hybrid model can be incorporated into the evolutionary setting at two
distinct levels. The first level of hybridisation consists of selecting a movement pro-
cedure being probabilistically selected that the entire population follows throughout
the entire evolutionary process. We denote this level of hybridisation as hybrid type
1,1. For example, suppose a single mutant has a fixation probability of x under
the follow the majority process and a fixation probability of y under the indepen-
dent movement process. If the population follows the follow the majority process
with probability p or follows the independent movement process with probability
1 — p, then the mutant’s fixation probability under the hybrid type 1,1 is simply a

weighted average given by

Pt = (p)(z) + (1= p)(y).

The second level of hybridisation occurs at the dynamic time steps. At each time
step, a new movement procedure is probabilistically selected for the entire population
to follow. While this process may seem more complex, its intuition is straightfor-
ward. Since the movement distribution is chosen at each time step, the transition
probabilities from all considered movement procedures must be weighted accord-
ingly. These averaged transition probabilities are then used to compute the fixation

probability. We denote this model as hybrid type 1,2.

5.3 Hybrid type 2

In Broom et al. (2020), the hybrid type 2 model was defined as follows: assume
there are R movement procedures, each associated with a non-negative weight
81, 82,...,S8R, such that f:sT = 1. In this model, each individual independently
follows the 7" movement ;rocedure with probability s,.

Within this hybrid model, we do not consider the first level of hybridisation i.e.
hybrid type 2,1. In such a setting, where each individual probabilistically selects
a movement procedure at the start of the evolutionary process and adheres to it
throughout, it becomes necessary to track each individual’s movement. Analytically,

this process is highly complex and requires advanced computational methods to
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solve. Moreover, additional important complications arise when considering how
new offspring should behave after reproduction. For instance, whether they should
choose a row-dependent movement process at random, inherit the same movement
mechanism as their parent, or adopt the same movement strategy from the previous
location owner. These considerations further increase the complexity of the model,
making this level of hybridisation increasingly difficult to be analytically tractable
and, therefore, less preferable to currently consider.

For hybrid type 2,2, at each time step, individuals independently select a new
movement procedure. Unlike the previous case, where individuals commit to a fixed
movement process throughout the entire evolutionary process, here, tracking the
replacement of individuals is unnecessary because all members of the population

probabilistically select a new movement procedure at each dynamic time step.

5.4 Simulations

In this section, we present preliminary simulations of the hybrid models to demon-
strate that various approaches to hybridisation discussed in this chapter can be
successfully implemented within the evolutionary setting.

One simulation is defined as follows:

e The complete decagon network is formed using the iGraph library (Csardi and

Nepusz 2006).
e The mutant is randomly placed on one of the vertices.

e Every individual moves (or not) from their home vertex according to the move-
ment methodology described in section 2.3.1 except here, the movement of
individuals is hybridised and governed by the wheel process § = 7/10 with
probability 1/2 or the follow the majority process with probability 1/2. Fol-

lowing this, groups are formed and multiplayer games are played.
e Individuals return to their home places.

e Each individual moves (or not) and groups are formed and the dynamic process
occurs. No games are played. Instead, one individual is selected to reproduce
an offspring that will replace another random member of the group (or its

parent if the parent is alone) explained in section 1.7.2.
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e The simulation ends once the mutant fixates in the population or becomes

extinct.

e This process is averaged over 25,000 cases to balance computational efficiency

and low statistical variability.

Figure 5.1 illustrates the fixation probabilities of a mutant cooperator and defec-
tor in the Public Goods game under the wheel (0 = 27/N) and follow the majority
(B = 0) processes on the complete decagon. The figures illustrate three hybrid levels
1,1, 1,2 and 2,2. Figures 4.6 (a) and (b) implement BDB dynamics and the figure
portrays that the three hybrid models have very little effect on the evolutionary
outcomes. In the Public Goods game, under BDB processes where the network is
sufficiently large, the row-dependent movement mechanisms have little effect on the
fixation probability, therefore it makes sense that regardless of the hybrid model,
fixation is approximately the same for all of the models considered.

Figure 5.1 (¢) and (d) show the cooperator’s and defector’s fixation probability
under BDD dynamics. Notably, the hybrid 1,2 model gives the lowest fixation prob-
ability compared to hybrid 1,1 which gives the highest. The key difference between
hybrid type 1,1 and type 1,2 is in the frequency at which the movement process
is selected. In type 1,1, a single movement process is probabilistically selected at
the start and fixed throughout the evolutionary process. This means that when the
dispersal process is selected (with probability 1/2), cooperators benefit from a fixed
environment that favours their strategy. However, type 1,2, involves randomly se-
lecting the movement process at each time step. Although each movement process is
equally likely at every time step, cooperators may not experience extended periods
of beneficial separation before the movement process switches to herding again. This
lack of sustained separation weakens the mutant cooperator’s prospects of fixating.
Therefore, the hybrid type 1,2 gives a lower fixation probability for the cooperator
than hybrid type 1, 1. This demonstrates that perhaps consistency in dispersal and
separation plays a pivotal role in the evolutionary success of cooperation.

Figure 5.2 illustrates the fixation probabilities of a mutant hawk and dove in
the Hawk-Dove game under the wheel (§ = 27/N) and follow the majority (B = 0)
processes on the complete decagon. The figures illustrate three hybrid types 1,1,
1,2 and 2, 2.

In the Hawk-Dove game, the hybrid type 1, 1 gives the lowest fixation probability
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Figure 5.1: The fixation probability of a mutant cooperator and defector plotted against
the home fidelity parameter, h in the Public Goods game under the hybrid models on the
complete decagon and pentadecagon graphs. (a), (c), (e) and (g) show the cooperator’s fixation
probability. (b), (d), (f) and (h) show the defector’s fixation probability. The hybridised
movement processes are the wheel process (§ = 27/10) and the follow the majority process
(B=0).

for hawks. If follow the majority is selected, hawks are more likely to interact with

each other and incur costs from the violent contests. If dispersal is chosen, hawks
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Figure 5.2: The fixation probability of a mutant hawk and dove plotted against the home
fidelity parameter, h in the Public Goods game under the hybrid models on the complete
decagon graph. (a), (¢), (e) and (g) show the hawk’s fixation probability. (b), (d), (f) and (h)
show the dove’s fixation probability. The hybridised movement processes are the wheel process
(0 = 27/10) and the follow the majority process (B = 0).

cannot meet doves and deny them their rewards. Therefore, the lack of strategic,
reliable movement gives the lowest fixation probability for hawks. However, hy-

brid type 2,2 enables each individual to probabilistically select their own movement
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process to follow at every time step. This flexibility creates heterogeneous group
structures where some hawks herd and deny doves a share of the reward, while oth-
ers disperse to avoid violent encounters with other hawks. This strategic variation
increases the likelihood of hawks both exploiting doves and avoiding mutual conflict,
resulting in the highest fixation probability for hawks.

Figures 5.1 (e-h) and Figures 5.2 (e-h) show similar simulations on the pen-
tadecagon. Because § = 27/10, the wheel process does not correspond to near-
dispersal movement as theta would need to equal 27 /15 for that. Therefore, the
trends in these figures are less pronounced compared to the corresponding figures

on the decagon.

5.5 Discussion

In this chapter, we have explored a new direction within the modelling framework
introduced by Broom & Rychtar (2012), by integrating the hybrid models developed
in Broom et al. (2020) into the evolutionary setting of the territorial raider model
introduced by Broom et al. (2015) for the first time. Our work extends previous
research by incorporating probabilistic decision-making at both the population and
individual levels in the movement phase, providing a more dynamic modelling envi-
ronment. This chapter directly builds on the modelling foundations established in
chapter 2, which introduced and analysed single movement processes on complete
graphs, and on chapter 4, which extended these methods to incomplete graphs.
While the previous chapters demonstrated how the movement mechanisms and net-
work topology can influence evolutionary outcomes, this chapter demonstrates how
diversity in movement mechanisms adds a further layer of complexity, altering out-
comes on simple graphs.

We analytically formalised two broad classes of hybrid models, type 1 and type
2, and developed methods to embed them into the evolutionary setting. For hybrid
type 1, the movement mechanism is chosen at the population level from a weighted
set of movement procedures. In the type 1,1 model, the population selects one
movement mechanism at the beginning and follows it throughout the evolutionary
process. This yields a simple weighted average of the fixation probabilities under
each considered movement process. The type 1,2 model allows the entire population

to randomly select a new movement procedure at each dynamic time step, therefore
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the transition probabilities from each movement process are averaged accordingly.
For hybrid type 2, each individual probabilistically selects their own movement pro-
cedure. Although type 2,1, where individuals randomly choose a movement process
to follow throughout the evolutionary process, was analytically complex due to com-
plications with individual tracking and movement inheritance, we considered a type
2,2 model, where each individual selects a new rule at each time step, avoiding the
need to track the replacement of certain individuals.

By utilising numerical simulations, we found differing outcomes in how hybridi-
sation influences evolutionary success depending on the game and dynamics used.
In the Public Goods game under BDB dynamics, hybridisation has minimal effect
when the network is sufficiently large, with fixation probabilities remaining similar
across the different hybrid types. However, under BDD dynamics, fixation prob-
abilities vary significantly. Hybrid type 1,1 yields the highest fixation probability
for the mutant cooperator, while type 1,2 produced the lowest fixation probability.
This suggests that consistent dispersal, even if probabilistically chosen, supports the
evolutionary success of cooperation better than frequent switching between herding
and dispersal, which disrupts the environmental stability for cooperators.

In the Hawk-Dove game, hybrid type 1,1 led to the lowest fixation probability for
hawks, because fixed herding or dispersal either resulted in costly violent contests or
prevented hawks from interacting with doves. However, type 2,2 led to the highest
fixation probability for hawks. This flexibility allows some hawks to herd and deny
doves rewards while other hawks disperse to avoid violent contests with other hawks.

These preliminary findings highlight that combining movement procedures can
play a central role in influencing evolutionary outcomes. Hybrid models capture
these complex scenarios with robust flexibility, offering new insights into population
behaviours that cannot be represented by traditional models. This preliminary
research acts as the foundation for future work to explore hybridisation under varied

games, complex networks and updating mechanisms.
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Chapter 6

Conclusion

This thesis has extensively explored the mathematical modelling of the evolution
of structured populations involving multiplayer interactions under row-dependent
movement, with the motivation of incorporating more realistic features that the clas-
sical models often lacked. Using the Broom-Rychtaf framework (Broom & Rychtar
2012) as the theoretical foundation, we have extended the framework in several
directions, primarily providing theoretical and methodological advances while main-
taining conceptual links to biology. These extensions are important because they
allow the analysis of evolutionary dynamics that previous models, focused on either
pairwise contests or independent movement, could not capture. Our models provide
a new understanding of how structured populations evolve under coordinated move-
ment. By incorporating row-dependent movement mechanisms, this thesis extends
a well-established framework for understanding how theoretical and methodological

advances can reveal insights that would be overlooked in simpler models.

Theoretically, we developed a new methodology enabling the row-dependent
movement mechanisms from Broom et al. (2020) to be incorporated into the ter-
ritorial raider model (Broom et al. 2015). This enabled us to analyse new models
involving coordinated movement and multiplayer group interactions. This involved
deriving expressions for fixation probabilities under BDB and BDD dynamics and
investigate evolutionary outcomes under weak selection by establishing neutrality
and equilibrium conditions, extending results from pairwise models, revealing how
movement and multiplayer interactions influence evolutionary processes. Further-
more, the movement methodology enabled the analysis of key predictors of fixation

and novel measures of aggregation, providing a more comprehensive theoretical un-
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derstanding of the relationship between row-dependent movement and the evolution
of cooperation.

Methodologically, this thesis introduces row-dependent movement mechanisms
on graphical structures, including deterministic follow the majority, probabilistic
Polya-urn and the wheel process. The introduction of these movement systems im-
proves the realism of the territorial raider model by capturing real-life coordinated
movement exhibited in animal species. For example, follow the majority captures
herding behaviour observed in fish schools and bird flocks (Couzin et al. 2005, Hinz
& de Polavieja 2017, Winklmayr et al. 2020). Polya-Urn models can be used to cap-
ture pheromone-guided movement in ant colonies (Deneubourg et al. 1990, Dorigo
& Stiitzle 2004, Shah et al. 2010). The wheel process represents simultaneous move-
ment with a certain degree of separation, analagous to behaviour in surf scoters
(Lukeman et al. 2010). Furthermore, this thesis extends the wheel mechanisms to
incomplete networks by developing an alignment algorithm to approximate maxi-
mum herding. The hybrid models combine movement processes at individual and
population levels, enabling complex simulations of the movement processes. These
methodological advances are significant because they allow more realistic simula-
tions and analytical analysis, enabling the investigation of evolutionary outcomes in
more complex models that could not be captured before.

Although largely theoretical, the models incorporate conceptual biological be-
haviours. Across the chapters, the simulations of social dilemma games showed
that, at least on complete graphs, aggregation among unrelated individuals tends to
hinder the evolutionary success of cooperation. This effect may not necessarily hold
on heterogeneous structures, as certain individuals are often more related to others
compared to other individuals due to the underlying population structure. In such
cases, aggregation may not disadvantage cooperation in the same way. Therefore,
while the complete graph setting provides clear explanations, different structures
could produce more varied outcomes. As an example, our findings are consistent
with infanticide by male lions (Pusey & Packer 1994), where unrelated infants are
killed so that the male can increase his own reproductive success. However, other
biological scenarios will not align our findings.

In chapter 2, we developed a general movement methodology to incorporate row-
dependent movement into the evolutionary framework on complete graphs, building

on previous analysis (Broom & Rychtar 2012, Broom et al. 2015, 2020). Unlike
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previous models where individuals moved independently (Broom et al. 2015, Pattni
et al. 2017) or in a history-dependent manner (Pattni et al. 2018, Erovenko et al.
2019, Pires et al. 2023, Erovenko & Broom 2024), our models allow for more realistic
movement behaviours within evolutionary settings. Using this methodology, we
investigated how the row-dependent movement mechanisms affect the evolution of
cooperation in the Public Goods and Hawk-Dove games.

Although previous research, such as Krieger et al. (2017) have demonstrated
that an abstract type of motion where individuals swap vertices on the graph (in the
context of evolutionary graph theory) has no impact on the evolutionary dynamics
on complete networks, our findings in this chapter revealed that the nature of the
movement distribution can significantly influence the evolution of cooperation, even
in well-mixed populations on complete networks. However, the work presented in
this chapter is very different, as individuals move more realistically and can interact
in arbitrary group sizes.

In the context of the Public Goods game, we demonstrated that aggregation
inhibits the evolution of cooperation as herding provides defectors access to groups
containing cooperators. However, dispersal proves beneficial for cooperators by lim-
iting the opportunities defectors have to exploit them despite the significant disad-
vantage posed by the BDB updating process, which keeps the mutant cooperator’s
fixation probability below 1/N, explained in Ohtsuki et al. (2006). In the Hawk-
Dove game, aggregation benefits doves by increasing interactions between hawks
who endure greater costs from the violent contests. While earlier work by Broom
et al. (2015) demonstrated that the dove’s fixation probability can exceed 1/N from
certain reward adjustments, our results illustrate that herding alone can raise the
dove’s fixation probability above 1/N, without altering the payoffs. While dispersal
also favours doves, herding exerts a more pronounced effect.

We derived analytical expressions for fixation probabilities for both considered
games under both BDB and BDD dynamics, and extended previous work by Tar-
nita et al. (2009) and Taylor et al. (2004), who focused on pairwise interactions.
However, our analysis established neutrality and equilibrium conditions under weak
selection approximations involving multiplayer interactions. These conditions align
with our expectations, showing that hawks tend to perform worse in our models
developed in this chapter than in the traditional evolutionary graph theory models.

By capturing interactions in arbitrary group sizes, our results show that increasing
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group sizes negatively impact the hawk’s fixation probability.

A potential future direction may involve adapting the movement mechanisms to
respond to strategy distributions such as individuals favouring patches with more
cooperators. Also, another possible direction may involve investigating how row-
dependent movement can be simultaneously implemented with history-dependent
movement from Pattni et al. (2018) to capture more complex, behavioural movement
procedures within evolutionary processes on complete networks.

In chapter 3, we extended the modelling framework of Broom & Rychtar (2012)
in a different direction by utilising the evolutionary setting of chapter 2 (Haq et al.
2024) to examine how row-dependent movement (Broom et al. 2020) influences
strong predictors of fixation probability, namely mean group size and temperature.
These predictors were identified in previous work such as (Broom et al. 2015, Pat-
tni et al. 2017, Schimit et al. 2019, 2022) where individuals moved independently.
We have observed trends in our models that have not been previously identified in
evolutionary graph theory (Pattni et al. 2015, Traulsen et al. 2007). In the Public
Goods game, we observed that temperature is a stronger predictor of fixation than
the mean group size for all values of h, across all of the movement processes. For
a fixed temperature value, the movement processes yield the same fixation value,
representing the temperature’s importance as the most crucial measure in the evo-
lutionary process. A similar result was given in Broom et al. (2015) but only for
high levels of h and under independent movement. Within the Hawk-Dove game,
temperature consistently outperforms other variables in predicting fixation proba-
bilities. In the Hawk-Dove game, temperature continues to be a stronger predictor
of fixation. However, due to the greater complexity of the game compared to the
Public Goods game, there is a breakdown of the linear relationship between temper-
ature and fixation, at higher temperatures. With a detailed analytical explanation,
we showed that while temperature is generally a reliable predictor, the game and
the underlying movement mechanism significantly influence this relationship.

In previous work, (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,
2022), the predictors of fixation were primarily examined to explore their theoretical
significance. While we have adopted a similar perspective, we have also extended this
approach by demonstrating that these measures, specifically, T, mean group size and
temperature can be practically calculated for a range of movement processes. We

showed how the aggregation measure 7', introduced by Broom et al. (2020), relates
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directly to the mean group size, and provided explicit formulae for calculating all
three measures under different movement mechanisms.

Previous research by (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,
2022, Haq et al. 2024) exclusively looked at the Public Goods, Hawk-Dove and Fixed
Fitness games therefore we extended the current literature by considering the Stag-
Hunt game. Our analysis showed that herding can hinder the evolution of coopera-
tion, to the extent where selection opposes its evolution. However, other movement
processes such as the wheel can enhance the cooperator’s fixation probability above
that of the neutral benchmark and the defector, thus facilitating the evolution of
cooperation. Compared to the Public Goods game examined by Haq et al. (2024),
row-dependent movement has a stronger influence on evolutionary outcomes in the
Stag-Hunt game. Dispersal can also undermine cooperators by preventing cooper-
ators involved in the movement process from interacting with one another, thereby
lowering their likelihood of forming groups that satisfy the cooperation threshold.

Additionally, we investigated the differences between two processes used in the
territorial raider model (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,
2022). The process explained in Broom et al. (2015) and Pattni et al. (2017) assumes
that individuals participate in effectively an infinite number of games prior to each
dynamic time step. However, the process described in Schimit et al. (2019, 2022),
assumes that individuals play a single game prior to each update. We identified
these two processes differ due to three averaging effects from the payoffs, weights
and reciprocals of fitness terms, depending on the governing dynamics. While the
simulation process in Schimit et al. (2019, 2022) can be viewed as an extension of
the process from Broom et al. (2015) and Pattni et al. (2017) under BDB dynamics,
this equivalence does not naturally hold for the other dynamics. A potential future
direction would be to revisit the evolutionary models of Schimit et al. (2019, 2022)
and adapt them to incorporate a large number of games per dynamic time step, but
this would require significant computational resources.

Chapter 4 extended the analysis carried out in chapter 2 by investigating row-
dependent movement on incomplete networks involving multiplayer interactions,
marking the first integration of such movement behaviours within incomplete graph
structures. Previous research involving the territorial raider model on incomplete
networks assumed independent or history-dependent movement (Broom et al. 2015,

Erovenko et al. 2019, Schimit et al. 2019, Pires et al. 2023). The models developed in
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this chapter introduce a novel perspective with the introduction of row-dependent
movement on incomplete graphs. Extending previous results from Broom et al.
(2020), who derived the measure T' (1.49), to determine the probability a pair of
individuals are together. We examined T},4., in section 4.3.1, and derived upper
and lower bounds for general network structures (4.1) (4.2). These bounds were
tested on regular, line, and more complex graphs. In doing so, we extended the
theoretical work of Broom et al. (2020) by embedding these aggregation measures
into a well-established evolutionary setting, demonstrating how such measures can
be used to provide meaningful analysis.

An important result in this chapter is that we provided a simple counterexam-
ple showing that the movement methodology from section 2.3.1 fails to achieve the
apriori target distribution under sequential movement processes (follow the majority
and the Polya-urn) due to the underlying network structure being incomplete. This
was first explored in Broom et al. (2020), who showed that assuming all individuals
share the same distribution, the Polya-urn process remains faithful with the apriori
target distribution. This property was a significant motivating factor in the devel-
opment of the movement methodology developed in chapter 2 (Haq et al. 2024) who
considered complete networks. In this chapter, however, we showed that on incom-
plete networks, this methodology does not always guarantee the target distribution
is met. This limitation was illustrated with a simple counterexample on a line graph
with three nodes in section 4.3.2. However, the wheel process remains robust in this
context.

In chapters 2 and 3 (Haq et al. 2024, 2025), the wheel process was used when
the underlying population structure was a complete graph. To consider the wheel
process in an evolutionary setting involving an incomplete graph, the wheel process
had to first be extended (discussed in section 4.3.3). Previous findings from Haq
et al. (2024, 2025) demonstrated that the wheel process (f = 0) was equivalent to
the follow the majority process, however, this equivalence no longer holds true on
incomplete graph structures. Therefore, to approximate herding for the wheel, we
developed an alignment algorithm that approximates the optimal alignment on a
general network (discussed in section 4.3.4).

In the multiplayer Public Goods game, the wheel alignment process had negli-
gible impact on the cooperator’s fixation probability under BDB dynamics due to

the limiting group sizes caused by the underlying network structure. Ohtsuki et al.
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(2006) showed that birth-death processes do not favour the evolution of cooperation.
Therefore, in the Public Goods game, our results show that the cooperator’s fixation
probability typically remains below 1/N. Similarly, this was observed in Haq et al.
(2024) for complete networks, and the results in this chapter demonstrate that this
trend persists for the considered incomplete networks.

In the multiplayer Hawk-Dove game, our results showed that herding benefits
hawks, contrary to the findings from chapter 2 (Haq et al. 2024), where aggregation
negatively impacted their fixation probability. This effect is due to the limiting
group sizes that can form on the line and circle graphs, which prevent hawks from
interacting with each other within large groups, thus reducing their likelihood of
incurring significant costs from the violent contests, which increases their fixation
probability. In Broom et al. (2015), the dove’s fixation probability was higher than
1/N if the reward payoff was adjusted and Haq et al. (2024) showed that the follow
the majority process can increase the dove’s fixation probability above 1/N without
altering the game payoffs. This, however, differs from our results where a very similar
movement process now worsens the likelihood of the mutant dove’s evolutionary
success, emphasising the importance of the underlying population structure and its
impact on the evolutionary process.

There are several directions for future work. One avenue involves further inves-
tigation in the upper and lower bounds of T,4,. The current lower bound (4.2)
gives a conservative value, therefore, it may be beneficial to improve this for more
complex or irregular graph structures. Another direction is the further optimisation
of the alignment algorithm to improve its accuracy on arbitrary graph topologies.
This can be tested against the developed bounds of T},4,. Furthermore, future work
may involve simulations on heterogeneous graph structures such as those considered
by Schimit et al. (2019), who implemented Erdds-Renyi (random) network, small-
world, scale-free, random regular and Bardbasi-Albert graphs into their processes.

In the final chapter, we explored a preliminary direction by integrating newly
developed hybrid models by Broom et al. (2020) into the evolutionary setting de-
veloped in chapter 2 (Haq et al. 2024). This work extends previous research by
incorporating probabilistic decision-making at both the population and individual
levels during the movement phase, allowing for more realistic biological scenarios
where individuals adapt their movement based on external influences. We analyt-

ically developed two classes of hybrid models, type 1 and type 2. Our simulations
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revealed important effects of hybridisation on evolutionary success, with results vary-
ing across different games and dynamics. In the Public Goods game, hybridisation
had minimal impact under large networks but led to significant differences under
BDD dynamics. In the Hawk-Dove game, flexibility in movement strategies, par-
ticularly with hybrid type 2,2 led to higher fixation probabilities for hawks. These
findings emphasise the importance of combining movement strategies in evolutionary
models, providing a foundation for further research into hybridisation in complex
evolutionary systems.

Despite the several contributions made in this thesis, there are several limitations
that warrant discussion. The row-dependent movement mechanisms explored in
this thesis include: follow the majority, Polya-urn (utility positively correlates with
patch occupancy) and the wheel. These mechanisms could be potentially adapted
to incorporate more realistic, strategy-dependent movement distributions, where
individuals prefer to move places containing a large number of cooperators and
avoid places with a large defector presence. However, such movement is currently
being investigated in an alternative direction of the Broom-Rychtar framework, with
the exploration of the Markov movement models (Pattni et al. 2018, Erovenko et al.
2019, Pires et al. 2023, Erovenko & Broom 2024).

Also, there remain various movement mechanisms potentially worthy of explo-
ration. Broom et al. (2020) also developed other sequential movement models such
as follow the leader and follow the predecessor, which are very similar to the follow
the majority process. We chose to implement the follow the majority process as
it not only accurately reflected realistic animal behaviours, observed in bird flocks,
fish schools and mammalian hunting groups (Fretwell & Lucas 1969, Ford & Swearer
2013), but also made the mathematics more analytically tractable. In the models
developed in this thesis, for the sequential movement processes, it is assumed that
all individuals have equal likelihood of moving first. This egalitarian assumption
has been observed in red-fronted lemurs (Pyritz et al. 2011). Moreover, dispersal
behaviour was explored solely through the wheel process within this thesis. Alterna-
tive models developed in Broom et al. (2020) could be utilised, such as a Polya-urn
process where utility negatively correlates with patch occupancy. This would al-
low for an alternative exploration of dispersal behaviour, moving beyond the wheel
process.

Finally, a general limitation of this work is its theoretical nature. The models
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developed in this thesis have not been tested against empirical data collected from
complex, biological systems. However, this is not a significant flaw, as the funda-
mental aim of this thesis was to mathematically advance the theoretical framework
for modelling the evolution of structured populations involving multiplayer games
and coordinated movement. Our results have been rigorously compared to, and in
some cases extended from, classical results from evolutionary graph theory, ensuring
consistency with an established modelling framework, while providing a robust basis

for future exploration.
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Appendix

Average group distribution on complete triangle graph

Using the methodology defined in section 2.3.1, we showed how to calculate the av-
erage group distribution by considering a well-mixed population of three individuals
Iy, I, and I3 on a complete triangle graph under the follow the majority, Polya-urn,
and wheel processes.

The average group distribution for the follow the majority process is

e P(all individuals are together) = S()l(zﬁ-;;‘g + (hiz)g = 27(—;%53)31)7

e P(I; and I are together while I3 is alone) = 2((}::21))32 + G(S}(:__Q)lg = 2(h_(1,)::;§5§h_1),
e P(I; and I3 are together while I, is alone) = 2((}5:21))5 + f,ﬁ’_g;? = 2(h_(1,)::;§5§h_1),
e P(I; and I3 are together while I is alone) = 2((}5:21)%2 + ?,5’5)12 = 2(h—(1})li:;§5§h—1)7
e P(all individuals are alone) = 3((,2:21))32 + EZ;;;? = 3(h—(1}):’——;§}31—1)3

The average group distribution under a general polya-urn process is given by

3(h—1)(B+3)(B+2)+3(B+3)(B+6)
(h+2)3(B+1)(B+2) ’

e P(all individuals are together) =

2(h—1)2(B+1)(B+2)+6(h—1)(B+3)(B+6)+3(B+3)(2B)

P(I; and I are together while I3 is alone) =

(h+2)3(B+1)(B+2) ’
p— 2 p—
e P(I; and I3 are together while I is alone) = 2(h=1) (B+1)(BJr(i)i;)(g)h(BlJz51)3(;?:2;3%)4—3(34—3)(ZB)7
— 2 J—
e P(I; and I3 are together while I is alone) = 2(h=1) (BH)(Bii)if)(gh(;lgﬁgigﬁ)ﬁwﬂ)(ZB),
o P(all individuals are alone) = 3(h71)2(B+1)(B+2)+3(h71)(2B)(B+2)+3B(23)+(h71)3(B+1)(B+2).

(h42)3(B+1)(B+2)
For the wheel process, we considered an example where 0 <60 < 7,

26 636
9h(1—20) 418630

s

e P(All individuals are together) = h12)3 ;

125



2(h—1)2+6(h—1)+22¢
(h+2)3

P(I; and Iy are together but not with I3) =

2(h—1)2+6(h—1)+ 27
(h+2)3 ’

P(I; and I3 are together but not with Iz) =

2(h—1)2+6(h—1)+2¢
(h+2)3 )

P(Iy and I3 are together but not with ;) =

3(h—1)2427(h—1)(22)+(h—1)°
(h+2)3 ’

P(All individuals are separate) =

The fitness of a dove and hawk

In the Hawk-Dove game, we opted to assume only independent movement to simplify
the fitness calculation. This simplification was necessary because the Hawk-Dove
game exhibits greater complexity in the payoffs to each strategy, which are contin-
gent on group composition and, therefore, the movement distribution. By focusing
on solely independent movement for this game, we were able to evaluate the fitness
of hawks and doves within this framework more effectively.

Consider a population of size N, well-mixed, and composed of k doves and N —k
hawks. A dove will only receive a proportion of a reward V' if it is present in a group
that contains no hawks. This can occur in four distinct scenarios. Consider two

doves, D1, Do and a hawk Hjy:
e [D; remains in its home, and a group of L doves forms on D;’s home patch.

e D; moves to Dy’s home patch, where Do stays at home, and a group of L

doves forms on Dsy’s home patch.

e D; moves to Ds’s home patch, where an L-sized group of doves forms, but Do

leaves their home and moves elsewhere.

e D; moves to Hi’s home patch, where an L-sized group of doves forms, but H;

leaves their home and moves elsewhere.

To compute the average fitness of a dove, we weighted the reward that D; receives
in each of these scenarios by the probability of each group forming. We consider the
first scenario as an example. The probability of D staying at home and an L-sized

group of doves forming on D;’s home patch is given by
8, = h 1 Pk =1\ (h+ N =2\ h e N2\ F
o+ N=—1)\h+ N1 L—-1)\h+N -1 h+N—-1)
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N—k
Note that the term (Zi%:%) ensures the absence of hawks in the group, and

(h+N—2

k—L
T N_1> ensures that all other k— L doves are located elsewhere. We must then

weight 7, by the number of doves in the group, as each dove receives an equal share
of the reward, resulting in BL(%)V. This is summed over all possible group sizes to

k
cover the entire range, . L(%)V. This expression can be simplified as follows
L=1

Zk:ﬁ(l)_h ht N=2\"" (e N-2\"
P T\ N -1 h+N-1) )
By employing similar methods for the other scenarios and combining these expres-

sions, we derive the average fitness of a dove as:

h+N-2\"""  ((h+N-=2N1\ (kN —1)+ (N —k)(N —1)

R+<<h+N—1> _((h+N—1)N>( K )
(N —k)(N —1)(h+ N —2)N -+
k(h+ N —1)N—k >

which we re-express as

R+ 7(h,N,Ek)V, (1)
where
(RN =V (A N 2N (RN~ 1)+ (N — k)N — 1)
T(h’N’k)<<h+N—1> _<(h+N—1)N>< k )

(N —k)(N—-1)(h+ N — 2)Nk1)
k(h+ N —1)N-k

Similarly, to calculate the fitness of a hawk, we must consider all scenarios in which

a hawk can receive a share of the reward and possibly endure a cost. Hawks are

indifferent to the presence of doves within the group, as they will always flee from

a hawk’s presence, leading to them receiving no share of the reward. The portion

of V' that a hawk receives depends on whether other hawks are present within the

group. Consider two hawks, Hy and Hs, along with a dove, Dy:
e H; stays at home, and a group of L hawks forms on H;’s home patch.
e Hq moves to Dq’s home patch, where a group of L hawks forms.

e H; moves to Hy’s home patch, where Hs stays home and a group of L hawks

is formed.
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e H; moves to Hs’s home patch, where a group of L hawks forms, but Hy has

moved elsewhere.

To calculate the average fitness of a hawk, we must weight the reward that H;
receives in each of these scenarios by the probability of each group forming. Consider
the first scenario as an example. The probability of H; staying at home and a group

of L hawks forming on H;7’s home patch is given by

B h 1 PN~k =1\ (h+ N -2\ "
U=\ N 1)\t N1 L-1 J\h+N-1 '

)N—k—L

Note that the term <h+N_2

hN—I ensures that only L hawks are present on H;’s

home patch, with the remaining N — k — L hawks elsewhere. a; must be weighed
by the number of hawks in the group, resulting in « L(%)V. However, the cost that

the average hawk endures must be weighed by (%) C. This is then summed over

N—k N—k
all possible group sizes to cover the entire range, > ar(+)V and Y. ar(X2)C.
L=1 L=1

These expressions can be simplified as follows:

For the reward component:

]Sa Ay (hEN-2 Nk
P A h+N—1 '

And for the cost component:

Nz‘:’“a L S L (N 2\
& B T hEN 1 h+N—1 ‘

By using similar methods for the other scenarios and combining these expressions,

we derive the average fitness of a hawk as:

ko (N=1)(h4 N —2)N-k-1 k(h+ N — 2)N—k
R+<1+N_k— (h+ N 1)V —(N_k)(thN_l)N_k)v
k=N+1 k  hN-k-1)+((N-k-1{N -1
a hH—N—l_N—lcjL (h4+ N —1)2
k(h+ N —2)NF (V- Dt N =V F 1
(N —k)(h+ N —1)N-k (h+ N —1)N—Fk :

which we re-express as

R+ w(h,N,k)V — v(h, N, k)C. (2)
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where

ko (N-1)(h+N-—2)¥ k(h+ N —2)N-k >

w(h,N,k‘):<1+N_k— (h—l—N—l)N_k _(N—k)(h—l-N—l)N_k

C(k=N+1 kAN -k-D+({N-k-1((N-1)
MmMm_(h+N—l_N—k (h+ N —1)2
k(h+ N —2)V* (N —1)(h+ N —2)N-k-1
(N —k)(h+ N —1)N-k (h+ N —1)N—Fk )

Weak selection: dove’s fixation probability

The Dove’s fixation probability under BDB dynamics is given by

1

B

Pr = N-111J BiwV—uC’ (3)
1+305 1 R

We carried out weak selection methods on (3). Consider the expression inside the

product term of (3).

)

R+wV —vC  1+%
R+7V 14+ E

where

A=wV —vC, and B=171V,

1+%~1 A-B

1+2 R

The term inside the product of (3) now becomes

1 GI%) _ (1+ A) J;Bu)) (1+ A2) ];B@)m(H A() ]—%Bw)

k=1
S (A0 E0) @

k=1

So from equation (3)

N-1 j N-1

> X (e (M)
N-1

1
:AL—L+Rg;<wV—uC—TV><N—k>
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which simplifies to
WA= N-1 N-1
N—1+R<Z(wV)(N—k)— (vC)(N — k) — (TV)(N—k)). (5)
k=1 k=1 k=1
By substituting the fitnesses from (1) and (2) and simplifying, we have

N-1

x—ﬂjN
2 —<N(N—1— 1_33)
(N =12Vt - NN vz h—1
+ (—1)2 )(h+N—2)>
Nl 1—h (N — 1)V — NaVN o
> O - (G

l'—fo
—%N(N—l)—kN( = ))0,

N—-1
(ﬂ/) <N — k:) = —<N(N —)(h+N-2"Yh4+N-1N
k=1
N h—1 (N — 1)Vt — N2V + o
h+N -2 (x —1)2
MGt F GRS Ik ) T
heN 2" "k 11—z ’
where N
N—1d vab o hEN -2 @
P k  h+N-1
By inserting (6), (6) and (6) into (5), we arrive at the following
N r—aN (h+ N —2)N-1
N—1+R<((N—1— — )+(N—1)< hEN- DY >(NH[N—1,1]+1—N)
(N —1) N 1 r—aN
7h+N—2(Nx H[N 1’a;k] 1—90) Vv
1—h (N —-1Da¥+H - NaVN 42 1 r—alV
_((h+N—2)( N(z—1)2 )W =D+ (G=))¢) ®)
Substituting (8) into (3) and simplifying, we have
1 1
<I—R((A1+)\2—/\3)V ()\4)0)), 9)

N+ % <()\1 + X — A3)V — ()\4)6’) o
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which is the approximation of the fixation probability of a mutant dove under BDB

dynamics where

A = (N —1- "”f_”“j), (10)
B (h+ N —2)N-1
AQ_(N—1)< AN )(NH[N—1,1]+1—N), (11)
- r—zV
AgzM(NxNH[N—l,;]— = > (12)
B 1—h (N — 12N+t — N2V 4o 1 x—zN
A4_<h+N—2>< N(z—1)2 >_2(N_1)+<1—x>' (13)

We assumed an infinite well-mixed population i.e. as N — oco. We consider each )\;
for i € {1,2,3,4} and deduce an approximation for each \; as N tends to infinity.
For (10), we have,

N
AR —. 14
e (14
For (11), we have
N -1 1
where 7y is the Euler-Mascheroni constant.
For (12) we have,
N N N
A3 = —In(N —1)+ —f(h) = N+ —, (15)
e e e
k
where f(h) = H[N — 1, (ﬁ%:;) ] —In(N —1).
From (13) we have,
2 1 1 1
MEA-hHA—-=-)+N(z—-)+=. 1
R (=)= D)+ NG =)+ (16)

By simplifying (14), (15), and (15),

(>\1+)\2—)\3)V:f(fy—l—f(h,N)) —I—i<2—ln(N—1)—’y—;r> N (7)
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Substituting (17) and (16) into (9), we have

]17<1;(<Z<71f(h,zv)> +i<21n(N1)7]1V> +N>V

~(a-ma-24vG-Dg)o))

which is an approximation of the fixation probability of a mutant dove in an infinite,

well-mixed population. The neutrality condition for this case is given by p’lg =+

N
e, ]:<’Y_1_f(h7N>>+i<2_1n<N—1) ’Y—;[)JrN)V
_<(1—h)(1—ZHN(;—iH;)C:O’ (19)
which simplifies to T
v . (20)

C
(c(y—=1—f(n) +1)
By using similar methods to the dove’s fixation probability under BDD dynamics
(2.12), we deduce a similar weak selection approximation given by

1< (N + 2uw*)

_ m(()\l + Ao — )\3)V — ()\4)C)> . (21)

N

where the neutrality condition remains unchanged.

Mean group size calculation

When we calculated the mean group size under independent movement, we con-
sidered a process where L individuals partake in the movement process. These
individuals can either move to an empty place or to a place already containing an

individual that did not move. The mean group size under independent movement is

P EEER) (R
ARG G ()

Jj=

By expanding the summations and simplifying, we have

]G|:1+)\<2—;[(2+)\N—>\)). (22)
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Therefore, by using (3.3), T, under independent movement is given by

T:N1_1A<2_]1V(2+AN—A)>. (23)

For the wheel process, we first calculated 7' (1.49) and then used (3.3) to then
determine the mean group size. In an N-sized, well-mixed population, there are the
various ways I; and I; can be together. For instance, I; and I; may both partake in
the movement process and move to the same place. Alternatively, I; may partake
in the movement process and move to I;’s home vertex, while I; does not partake

in the movement process and remains on their home vertex, or vice versa.

N—1 jm
OjN N[N =2
P(1; and I; are together) = LX;JZl —7) 1—?)()‘) (1=2) <L—2>

N
— L-1)\N
The first summation represents the probability of individuals I; and I; of distance j
spikes, being together at the same place and 7j,, = min(| 2% ~ol,7) represents the cut-

off point where this no longer holds. By expanding the summations and simplifying,

T is given by

r= v (X (e e 2 (Mo - 22 )

27

+LZ( PR a-n-0) Jora-ny (YD)
2000, o
Therefore, by using (3.3), the mean group size s
rG\:H}V((é(Lﬁ;J%;(L Pl (o= 15 -1)
+LZJ1<L2 P& a-p-n))wra-ar (700
2020, 25)
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Temperature calculations

When calculating the temperature of an individual under independent movement,
it was simpler to consider the probability of an individual being alone, as the tem-
perature is also equal to 1— P(alone). In an N-sized, well-mixed population, there
are various ways I; can be alone. For instance, I; may not partake in the movement
process, remain on their home vertex and have no one else move to the same place.
Alternatively, I; may partake in the movement process, move to their home vertex,
and find themselves alone, with no other individuals moving to the same vertex. An-
other possibility is that I; and I; both partake in the movement process, I; moves

to I;’s home vertex, and is alone, provided no other individuals move to the same

place.
P(I; is alone) = JLV::()\)L(l _AN-E <NL— 1) <1 B ;f)L
oo ()-8
()03

Expanding the summations and simplifying,

N(N 4+ NXA=1) = A2)(N =)V 21 = )Y
(N — NN '

P(1; is alone) =

Therefore, the temperature under independent movement is given by

(N + NAA —1) = A2)(N — A)N-2

NN-1 (26)

™ =1-—

Using a similar approach to calculate the temperature for the wheel, we considered
theta in two possible ranges 0 < 6 < % and % <0< QW” as this includes the cases
where all spikes can aggregate, to complete separation. Consider individual I; where

0<0< &

e [; partakes in the wheel process and moves to their home vertex and no one

else joins them.
e [; partakes in the wheel process and moves to someone else’s vertex, alone.

e [; does not partake in the wheel process and stays on their home vertex, alone.
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e No one in the population partakes in the movement process, therefore I; re-

mains alone.

P(I; is alone) = (\) f:()\)L_l(l -\ ( ) <]LV> ()

vorgen (L) () (-3)
(1N Lf:l(A)Lu N <NL_ ) <1 _ “—217):)*3))
+ (1 =N

By expanding the summations and simplifying, the probability of being alone is

P(I; is alone) — %(N )= A (1= NN 1)+ (1= )Y

- na-a - —poa—no).
7T< 2
and, therefore, the temperature for 0 < 6 < & is given by
:1—<1N—1 1- N1 —-(1=)Nt N
™ 't JA =)A= (1 =X)"")+ (1 =A)
+i<>\+;((1—>\)(1—(1—)\)N_1)+(N—1)(>\—1)()\))>). (27)

By using very similar methods, the temperature for 5 < 6 < %r is given by

N—l—G](—1+(1—A)N+A(A+2)—N(A2+A—1)>

_297r<_1+(1_)\)N+)\(N+3)\—3N>\)>>. (28)
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