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ABSTRACT

In this article, we study the optimal operational strategy of production projects. We investigate different underlying price models

and determine the optimal barriers of transition to suspension, recovery, or irreversible abandonment of productive activity. We

compute probabilities of switching between alternative states and the time spent in each state. Our findings suggest that in mod-

erately volatile markets, different model assumptions lead to minimal variations in project strategy. This insight underscores that

tractable model approximations can be strategically sound under certain volatility conditions. Our work significantly advances

in this direction by demonstrating when and how model simplifications can be made without sacrificing accuracy.

1 | Introduction

Selecting an appropriate model to represent economic uncer-
tainty remains an open problem in the real options literature.
This article analyzes the impact of output price dynamics mod-
eling on optimal managerial strategies and production project
valuation. We study four models, namely the inhomogeneous
geometric Brownian motion (Bhattacharya 1978; Zhao 2009),
the square-root mean-reverting process (Cox et al. 1985), the
constant elasticity of variance process (Cox 1975), and the geo-
metric Brownian motion.

This work advances the literature in several ways. We exam-
ine production projects with multiple options, including in-
definite suspension and abandonment, highlighting the role
of managerial strategy in option selection. We also introduce
a rigorous comparative framework for calibrating alternative
models to a benchmark, which enables meaningful evalua-
tion. Our study demonstrates that price process specifications
significantly influence transition barriers, timing, option ex-
ercise probabilities, and overall project valuation. It highlights

the performance of different models in both valuation and
strategy, while showing that simpler models may remain ef-
fective under offsetting mean-reversion and volatility con-
ditions, thus preserving tractability with minimal strategic
impact. Our contribution is particularly relevant to interna-
tional finance. Prokopczuk et al. (2019) document significant
co-movements between economic variables and commodity
prices. More broadly, cross-border investments are often in-
fluenced by energy, commodities, and raw materials price
dynamics. These markets are characterised by pronounced
volatility, mean-reversion, seasonality, and price spikes
(Roncoroni et al. 2015; Rotondi 2025a; Rotondi 2025b), which
further complicate global planning and investment decisions.
This volatility, exacerbated by recent geopolitical, climate-
related, and health disruptions, has increasingly compelled
multinational firms to reconfigure their global operations. For
example, 86.2% of US manufacturers nearshored to Mexico
and Canada (Deloitte 2024), over 90% shifted to emerging
hubs such as India and Southeast Asia (Boston Consulting
Group 2023), and EU firms strengthened supply chain re-
silience amid raw material shortages (European Investment
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TABLE 1 | The table summarises the contributions most closely related to ours, indicating the types of real options and price models included,

and positioning our article within this landscape.

Literature Options Models
Metcalf and Hassett (1995) Irreversible entry IGBM; GBM
Sarkar (2003) Irreversible entry IGBM; GBM
Tsekrekos (2010) Partially reversible entry and exit IGBM; GBM
Tsekrekos (2013) Irreversible exit IGBM; GBM
Tvedt (2022) Partially reversible entry and exit IGBM; GBM
Dias et al. (2015) Partially reversible entry and exit IGBM; CIR; OU

This article

Irreversible exit

Partially reversible entry and exit;

GBM; CEV; CKLS
IGBM; CIR;
GBM; CEV

Note: The following abbreviations are used: CEV—constant elasticity of variance; CKLS—mean-reverting CEV (Chan et al. 1992); CIR—square-root diffusion; GBM—
driftless geometric Brownian motion; IGBM—inhomogeneous geometric Brownian motion; OU—Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930).

TABLE 2 | The table presents the price models considered in this article.

Model SDE AV (x) (]
IGBM dx = k(0 — x)dt + oxdW Z2V (%) + k(0 — x)V' (x) k,0,0
2
CIR dx = k(6 —x)dt + a\/)_ch %ZxV”(x) + 50 — )V (x) K,0,0
CEV dx = pxdt + ox*1dW CxRVY (x) + pxV (x) H.o
GBM dx = oxdW "_ZxZVN(x) H, 0
2

Note: For each model, the corresponding stochastic differential equations (SDE), expressions AV (x)v2(x) == V" (x) / 2 + 6(x)V'(x), and parameter sets © are given.

Bank 2025). Our study may also gain additional relevance and
depth when situated alongside modelling approaches from the
international business literature (Tong and Reuer 2007; Chi
et al. 2019; Ipsmiller et al. 2021), and when interpreted in light
of recent findings on supply chain disruptions and systemic
risk (Le Guenedal and Tankov 2025; Amici et al. 2025).

This work aligns with research on the impact of uncertainty
dynamics on investment decisions, rooted in the seminal con-
tributions of Metcalf and Hassett (1995) and Sarkar (2003).
In particular, Sarkar (2003) highlights that mean-reverting
dynamics in input cost processes significantly influence in-
vestment probabilities. Tsekrekos (2010) and Tvedt (2022)
reach similar conclusions in the context of revenue uncer-
tainty and partially reversible entry and exit decisions, while
Tsekrekos (2013) considers the option to irreversibly exit the
market. Notably, all these studies employ the inhomogeneous
geometric Brownian motion, that is, geometric mean-reverting
process (see Table 2), which facilitates direct comparison of
their results.

Mean-reverting dynamics are widely used in real option
model settings because of their ability to capture equilibrium
adjustments in price or demand functions, which are common
sources of uncertainty. This has been emphasised in studies
such as Bhattacharya (1978), Kulatilaka (1988), Lund (1993),

Bessembinder et al. (1995), Schwartz (1997), Sarkar and
Zapatero (2003), Fama and French (2000), and Ewald and
Wang (2010). Nonetheless, model selection should consider
the specific characteristics of the industry and the project.
For example, the leverage effect, observed in stock prices
(Black 1976), and the inverse leverage effect, documented in
energy markets (Geman and Shih 2008; Li et al. 2017), have
led to the adoption of the constant elasticity of variance pro-
cess, as seen in Geman (2008), Cermak (2017), and Dias and
Nunes (2011) in the real options literature. Importantly, evi-
dence from biological (Dangerfield et al. 2018) and financial
(Dias et al. 2015) contexts highlights the use of advanced
models, such as the logistic and constant elasticity of variance
processes, in effectively capturing the complexities of state
variables' dynamics. This is crucial for determining optimal
intervention or investment timing, particularly in highly vol-
atile environments.

The previous studies focus on isolated investment decisions,
such as market entry or exit, whether reversible or irreversible.
However, reducing project management to a binary choice be-
tween continuation and a single alternative oversimplifies real-
ity, as corporate strategies often encompass a broader array of
options (Dixit and Pindyck 1994; Guthrie 2009). Furthermore,
when multiple alternative options are available, not only the
selection of an appropriate model for the underlying state
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variable's dynamics, but also its accurate parameterization plays
a critical role in shaping business strategies. This is exemplified
by Gutiérrez (2021), who shows that variations in interest rates
have a non-monotonic effect on investment timing, emphasising
the need for regularly updating model inputs.

This article advances the literature by presenting a more com-
prehensive framework that considers both multiple alternative
options and different price models, unlike prior analyses that
focus on only one of these aspects. Table 1 compares relevant
works, outlining the real options and price models they exam-
ine and situating our study within this context. We explore
a setting in which options to partially reversibly suspend (or,
alternatively, resume) and to irreversibly abandon production
are available. We note that reversible and irreversible deci-
sions are mutually exclusive, and we show that the selection of
which option to activate may depend on the underlying price
model used. We compare the effects of different price diffu-
sion models that are particularly relevant in the finance liter-
ature. We establish the inhomogeneous geometric Brownian
motion as a benchmark and calibrate the parameters of all
other price processes on it, ensuring a balanced consideration
of mean and variance characteristics across the models. Our
analysis examines the strategic implications of operating poli-
cies in the context of long-term projects. Specifically, we focus
on three key aspects: determining the optimal prices that trig-
ger the exercise of options, evaluating the probability of exer-
cising real options in the short term, and analysing the timing
of decisions. Also, we consider the implications for project
valuation. The results vary across scenarios, as different com-
binations of volatility and mean reversion lead to distinct con-
clusions depending on the specific case.

The remainder of the article is as follows. In Section 2, we
present the framework for our analysis and outline how to
determine the value of the project and its optimal operating
strategy. We also discuss the case of a levered project and ex-
plain why we focus on an unlevered one instead. In Section 3,
we present numerical results and analyse the problem from
various perspectives. Concluding remarks are provided in
Section 4, whereas the derivations of results are deferred to
Appendix A.

2 | Model and Methodology

We build on the entry-exit model with a scrapping option in-
troduced in Dixit and Pindyck (1994). In this section, we pres-
ent its features and adapt it to our price models. We show how
to calculate the value of the project as the solution of an ordi-
nary differential equation and according to different possible
states of production. We also outline the conditions that must
be satisfied to achieve the optimal managerial strategy for the
project.

2.1 | The Framework

We consider an investment project that consists of producing
and selling a certain good. We assume that the project value is
entirely given by the selling price x, determined by the market,

net of production costs. Additionally, it is widely accepted in
the literature to assume an infinite time-horizon when deal-
ing with long-lived investment projects; we adopt this line of
thought.

Let (Q,?,[F:{P/«‘t}tzo,[l)) be a filtered probability space,

where P is a given probability measure. The output price pro-
cess x := {x, } . evolves according to the stochastic differential
equation

t>0

dx = 6(x)dt + v(x)dW, @
given initial condition x, € R¥, where W = {W,} _ is a stan-
dard Brownian motion under P. Operating costs are constant,
strictly non-negative, and given by ¢ = v + f, where v denotes the
variable component, directly related to production activity, and
f represents the fixed cost, incurred regardless of whether pro-
duction takes place (Dixit and Pindyck 1994).

Furthermore, managers can partially mitigate market fluctua-
tions by suspending production; when this occurs, the option to
restart becomes active. Following Dixit (1989), the payment of a
lump sum s, € R* (resp. s,; € R*) is required to switch produc-
tion from the active (resp. suspended) to the suspended (resp.
active) state. The option to permanently abandon the project can
be exercised at any time, whether during active or suspended
production. Upon abandonment, all assets related to the project
are liquidated and investors receive a fraction #I of some initial
investment cost I, where I € R* and € [0, 1].

In practice, each option is exercised instantaneously when the
output price reaches a critical threshold: from above, in the case
of suspension and abandonment, or from below, in the case of
reactivation. We denote by x,, x,, and x, the price boundaries
that trigger project suspension, reactivation, and abandonment,
respectively. We also account for a second rigid project, with
absent options to suspend and reactivate production and with
abandonment occurring when the output price drops below
X,. We note that if x; < x,, the managers of the flexible project
behave as if it were rigid, and abandonment becomes the only
relevant option. In the opposite case, the suspension option is ex-
ercised first, and the critical threshold for abandonment is low-
ered relative to that of the rigid project. Consequently, x, serves
as an upper bound for x,,.

2.2 | Underlying Price Dynamics and Project Value

In this work, we mainly address the implications of adopting
different specifications for the process of the underlying vari-
able x, and, in particular, we consider four models satisfying
(1). Namely, our choice includes the inhomogeneous geometric
Brownian motion (IGBM), the (driftless) geometric Brownian
motion (GBM), the square-root (CIR) and constant elasticity of
variance (CEV) diffusions.

By assumption, the value of the project, denoted by V(x), de-
pends on the cash flows it generates and on the dynamics of the
underlying variable. From (1) and using It6's lemma, we obtain
the expected capital gain of the project:
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E[V] v (x)
dt

—V"(x) + 5(x)V' (x) =: AV (x).

The risk-free total return of the project, rV(x) / dt, must equal the
expected capital gain in addition to the cash flows F(x) gener-
ated per unit of time. Hence,

AV (x) = rV(x) — F(x). 2)

We collect all stochastic differential equations for the price mod-
els, the corresponding expressions for AV (x), and the relevant
parameter sets ® in Table 2.

Given the price models in Table 2, the solution to (2) is of the form

V(x) = p®(a, y; ROOXE + q@(1 + a = 7,2 = 73 h)X® + y(x),
©)

where the first two terms are the general solution of the
homogeneous equation AV(x)—rV(x)=0 and w(x) is a
particular solution of (2). ®(a, y; h(x)) is the confluent hyper-
geometric function of the first kind (Lebedev 1972). The pa-
rameters &, &, € R depend on the dynamics of x, while p,q € R
are constant coefficients to be determined via appropriate
boundary conditions.

2.3 | The State-Dependent Valuation Problem

It is important to note that cash flows depend on the operational
state of the project. In particular, we have that F(x) = x — c when
production takes place, and F(x) = — f while it is suspended.
Consequently, the value of the project differs accordingly. Let
V1(x) and V,(x) be the value of the project when production is
active and suspended, respectively. Then, V; (x) solves

AV () =1V (x) — (x —¢) @)

subject to lim, V1(x) < oo, whereas V{(x) is the solution of

—+00

AVy(x) =1V(x) +f ©)

subject to lim,_ . V(x) < co. The two conditions prevent the
value of the project from exploding as the output price either
increases or approaches zero, respectively. From an economic
perspective, this implies that the value of the option to suspend
(respectively, restart) production, available while the project is in
the active (respectively, suspended) state, decreases as the out-
put price rises (respectively, converges to zero). When this is the
case, the project value converges to w(x) = E[ /" F(x)e™™dul.
Finally, the project value at the time of abandonment equals the

Next, we present the value functions for the active project, V; (x),
and the suspended project, V;(x), across all relevant price mod-
els. Recall that when production is suspended, the instantaneous
cash flow is — f, leading to y(x) = —f/r, independently of the
specific model. Conversely, when production is active,

—+—-——-———-- if MR
W) r+x rx (r-g ) L
_ = if MR

r—u r

where MR and MR are used to distinguish between the mean-
reverting and non-mean-reverting cases. In what follows, we
accordingly adopt w™R(x) and w™R(x). To simplify notation, we
use @ 5, 71 5 and &, , uniformly across all models. However, the
specific values of these parameters vary depending on the sto-
chastic process assumed for the underlying variable; their deri-
vation is provided in Appendix A. Similarly, we use q, , and p, ,
to denote parameters whose values also vary by model.

For the benchmark IGBM model, we obtain the solutions

2k0
Vi(x)=q,® (az,yz, o >x§2+y/MR(x)

20 260\ f
Vo(X)=p,;x1® <al’7’1’ 2x >+p2x‘52d><a2,y2, )‘;
Under the CIR model, we obtain
V. _~ 2 & _ 2kx &y MR
100)=q,® “2’72, L S o2 X7+ (X),

2KX )xgz

f
>+P2 (az,Yﬁ? e

2
Vox)=p; (al, Yio— e

where

s

~ _ {2\ L(r2)T(1-7s)
‘h—‘b(_z) F(aZ)F(yl)
F(1—7’2).

9,=q
2 2 F(?’l)

If the underlying price process follows a GBM, then the solu-
tions are

V,(0) = g,x% +y R (x)

Vo(x)=pyx°1 +p,x° —é

Finally, in the case of CEV, the signs of parameters x and  must
be considered, leading to the following expressions:

~ H ~ H 1 MR .
[qlfb<a1;y1, W)x‘fl +q2q><a2;y2, W>x§2:|eﬁn2x2ﬂ 00 4y MRy if 0

Vi(x)=
' 5 \/2_ 51 .
OO o 1BloxP +q,@( a5y,

scrap value xI, regardless of the underlying price dynamics.

2¢/2r N ’
&5 <P MR if =
x%2 | ee? 4 X if u=0
7l 5xﬁ> ] v (x) M
and
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~ U ~ U A1, .
R e ) e R e

ploxP

Vo) =
~ 2V/2r ~ -
[P1d><a1;y1, Plod? >x‘fl +D,®@(y37,, 2z)x52] e ine?

where
e U0 g () |
=g——" ©=(-15) —— fu0,4<0,

91=9 F(az) q; < b0 F(al) if u#0,p<

§,=0, §,=¢;€R if u#0,8>0,
V(5 ) (v \

q1=q, (ﬂ) - \/_r , §,=0 if u=0,8<0,
)\

2p

, R ) AN At

G =97 1 » =4 i 2 ”\/; “op ifu=0,4>0,
Zzﬂaﬂr(ﬁ+1) r(g)

and

F<_L>
- Bl 18] 1 24/2r
B =|p1v/m2 T

2

+D, ,
L s L |Blo
zw) 2 wr(—+1)

2
1
; F(m) 24/2r

Dy =p; 2% .
1, 1) [flox?
F(Z + 2181 )

Fuller details of the presented solutions can be found in
Appendix A.

2.4 | Optimal Switching Boundaries

At any given moment, managers decide whether to exercise
an option by comparing the project’s continuation value with
the value achievable through switching, in order to maximise
profits. The continuation value equals V;(x) when the project
is active and V,(x) when suspended, net of the appropriate
switching cost s;, or s,;. Additionally, since project abandon-
ment is irreversible, it can only be considered as an alterna-
tive to keeping the project active or suspended. Moreover, the
value of the project is driven by the uncertain behaviour of
the output price: it turns out that we need to determine three
critical values of x, namely, x,, x,, x, (x, for the rigid project),
that trigger switching decisions. Noticeably, in correspon-
dence of such boundaries, managers are indifferent between
continuation and switching; hence, the continuation value
must be equal to the alternative one, net of switching costs.
Consequently, we get the following boundary conditions for
V,(x) and V,(x):

Vo (xr) =V (xr) —So1+ )

Additionally, for x,, x,, x, to be optimal, the smooth-pasting con-
ditions must also be satisfied:

22 ’
ifu=0

4 (XS) =V, (XS)
Vo) =Vi(x)- @)
VO, (xa) =0

Clearly, when the project is rigid, or whenever it is optimal to
immediately exercise abandonment without previously sus-
pending, systems (6) and (7) reduce to

Vi (x,) =nl ®
and
Vi(x,) =0. 9

Solving Equations (6) and (7) (respectively, Equations (8) and
(9)) for the constant coefficients, as well as for x,, x,, x, (re-
spectively, X,), yields the optimal managerial strategy for a
given model.

2.5 | The Levered Case

The model presented in Section 2 refers to a project entirely
financed by equity. Here, we consider the case of presence of
debt. To this end, we assume that the project is partially funded
by means of a perpetual bond with continuous coupon C; pos-
sibly, a tax-shield exists for a constant tax-rate 9. Abandoning
the project implies default on debt, with the payment of some
recovery value to bondholders and no residual value to equity
holders. The price that optimally triggers default is x; The
value of the project's assets is the sum of equity and debt, that is,
V(x) = E(x) + D(x), where E(x) is the equity value, D(x) the debt
value, and both depend on the instantaneous output price and
increase with the risk-free rate r. Hence, they satisfy the ordi-
nary differential equations

AE(x)=rEXx)—-Fx)+C(1-9) (10)

and
AD(x) =rD(x) - C, 11

where F(x) denotes the same cash flow as in Equation (2) and
AE(x) = AD(x) = AV(x) as in Table 2. Compared to the all-
equity case, the only difference for equity holders is a reduction
in earnings equal to C(1 — 9). Conversely, bondholders receive a
constant coupon payment C until default. In the event of default,
the project's assets are liquidated, and bondholders are par-
tially reimbursed through the proceeds of the sale. We denote
this by wV/(x,), where V' (x,) is the value of an all-equity project
for x =x, and w € [0,1]. Equation (11) is solved subject to the
boundary conditions
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+o0
limD(x)=E / Ce™™du (= ¢
X—00 r
. .
D (xd) = Cl)V(xd)

Note that none of the preceding conditions is imposed at the
suspension or resumption boundaries. Additionally, the default
boundary is exogenous to bondholders. Indeed, decision-makers
are assumed to be equity holders or managers acting on their
behalf. Consequently, operational decisions are made to max-
imise the value of equity, rather than the value of the project's
assets. This implies that Equation (10) must be solved subject to
the value-matching conditions

E, (xr) =E, (xr) —So1 > (12)
0

and smooth-pasting conditions

E{(xs) =E(’)(xs)
E(l)(xr) =E{ (x,). 13
E)(x4) =0

In practice, any impact of debt on the suspension and restart
boundaries can be excluded. This depends on the coupon being
paid independently from production being active or suspended,
which can be verified analytically by solving (12) and (13). All else
being equal, the default price of a levered firm is higher than the
liquidation price of an unlevered firm since the coupon payment
reduces equity cash flows. In sum, the only effect of introduc-
ing debt into the analysis is a reduction in equity holders' cash
flows, regardless of whether production is ongoing or suspended.
However, this effect can be equivalently achieved by increasing
the level of fixed costs f in the baseline all-equity framework.

On the other hand, our assumption of managers maximiz-
ing equity value gives rise to a second-best optimal strategy
for the project. Recently, Glover and Hambusch (2016) and
Ritchken and Wu (2021) obtained first-best solutions for sim-
ilar problems by maximizing the total asset value under out-
put prices evolving, respectively, as an IGBM and a GBM with
drift. Moreover, they determined the optimal coupon on debt,
which we assume as given. Additionally, in the presence of an
option to relocate investments across borders, it would also
be of interest to relax the assumption of a constant tax rate,
allowing it instead to be uncertain. In this regard, Azevedo
et al. (2019) underscore the importance of stable and predict-
able tax policies in attracting foreign investment, and suggest
that well-designed tax holidays can significantly influence
investment decisions. This result is expected to influence the
optimal level of financial leverage or, equivalently, the amount
of debt a firm can raise.

Indeed, determining the project's optimal financing strategy
lies beyond the scope of this work; nevertheless, we identify it
as a direction for future research, particularly given the valuable

insights into firms' creditworthiness that can be gained through
the analysis of financial leverage.

3 | Results and Discussion

In this section, we numerically investigate how different price
models influence the project’s optimal strategy, focusing on the
real options' exercise boundaries, the probabilities of imple-
menting the optimal strategy within a short horizon, and the
timing of decisions. We also examine the implications for proj-
ect value and assess the sensitivity of our results to changes in
the project's degree of flexibility. Table 3 presents the set of pa-
rameters that, unless otherwise specified, are held unchanged
throughout the analysis. The parameter values we adopt are
consistent with those commonly used in the literature (see, e.g.,
Tsekrekos 2010, 2013).

3.1 | Model Calibration

A standard approach in the literature involves comparing dif-
ferent models by maintaining identical values for parameters
common among processes. For instance, Sarkar (2003) and
Tsekrekos (2010) compare the outcomes of an IGBM with those
of a driftless GBM, assuming the same volatility parameter o.
While this may be reasonable to some extent, it is less straight-
forward to justify the choice made by Dias et al. (2015) and
Dangerfield et al. (2018), who keep same key parameters across
processes with fundamentally different specifications.

Instead, an effective comparative analysis should be conducted
among models that exhibit similar features. For instance, intro-
ducing mean-reversion typically reduces the variance of a pro-
cess for a given volatility parameter. A preliminary examination
of price dynamics should aim to fit a model that matches empir-
ical observations as closely as possible; alternatively, a particular
process may be assumed a priori. Moreover, even an analyst who
correctly identifies the dynamics may replace it with a process
that is simpler to handle. Nevertheless, the new process must
be calibrated so that it retains the main features of the empir-
ical one.

TABLE 3 | The table compiles and describes the parameters used for
the numerical implementation of the model.

Notation Value Description

r 0.04 Risk-free rate

v 1.7 Production cost of the project

f 0.1 Fixed cost of the project

I 20 Initial cost of the project

n 0.5 Recovery fraction of cost I
upon project liquidation

S10 0.1 Cost to switch from
production to suspension

So1 0.2 Cost to switch from

suspension to production
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To this end, we propose calibrating our models as follows. First,
we choose the IGBM model as the benchmark, as it is widely
used in the literature and offers a realistic representation of
price time series. Next, we compute the first and second raw mo-
ments of the logarithm of this process, as well as those of the
k-th model for k € {CIR, CEV(f), GBM}. Finally, we determine
the values of the set of parameters ©, specified in Table 2 for each
k-th model, by solving

T 5 T
mg,n{ > [u}(k, 0)- u}(@‘GBM)] +% > 1k, ©) - uf((aIGBM)]Z}
j=1

j=1

for uf' = [E[ln(xj)"| F,|, for the indicated model, considering
a total of T horizons. Working with log-prices is common,
as log-changes are often much closer to being stationary
than raw price changes, ensuring greater stability; this also
naturally aligns with exponential price models, and the re-
quired moments are more readily available in log-space (see,
for example, discussion on the moment problem in Kyriakou
et al. 2023). Eight horizons (1, 2, 3, 5, 10, 15, 20, and 30 years)
are selected, in line with standard practice, to capture short-,
medium-, and long-term project lifespans. The weighting co-
efficient 1 /4 has been empirically chosen to balance the two
terms in the objective function, ensuring stable convergence
of the numerical optimization.

We analyse three scenarios characterised by different inter-
actions between the mean-reversion speed « and the volatility
parameter o. In the first scenario, with (x, o) = (0.30,0.15), the
relatively higher mean-reversion speed compared to volatility
implies stronger pull-back dynamics in the price process. By
comparison, the pair (x, ¢) = (0.07,0.30) corresponds to a setting
where volatility dominates relative to mean-reversion. Finally,
an intermediate scenario is given by (k, o) = (0.15,0.20). We
apply our calibration procedure, with results reported in Table 4.
As quite expected, minimal adjustments are required when
transitioning from the IGBM to the CIR process. However, a sig-
nificant reduction in the instantaneous volatility coefficient is
necessary to offset the explosive nature of non-mean-reverting
processes, particularly when the reversion rate is high in the
benchmark case.

3.2 | Effect on Optimal Boundaries

Table 5 reports the optimal boundaries for the flexible project
and, as a benchmark, for its rigid counterpart. Importantly, the
last column indicates whether reversible suspension is actu-
ally included in the firm's optimal strategy. Evidently, selecting
a model different from the IGBM benchmark results in a shift
between suspension and abandonment only in a few cases.
However, the abandonment threshold is considerably more sen-
sitive to changes in the variance of the price process compared to
the suspension boundary. As also noted by Tsekrekos (2013), this
difference stems from the irreversible nature of abandonment,
which tends to be postponed when price volatility is sufficiently
high to allow for potential recovery from losses. By contrast, the
option to reverse the decision makes both suspension and re-
sumption less responsive to such variations. Consequently, we
observe a marked reduction in the abandonment threshold when

TABLE 4 | The table presents the parameter values for all models under analysis.

Scenario 3

Scenario 2

Scenario 1

Model

0.3

1.8

0.07

0.2

1.8

0.15

0.15

1.8

0.3

IGBM
CIR

1.69053 0.37328

0.10235

0.26551

1.79434

0.16281

1.79986 0.20202

0.30699

0.16758

0.11031

0.09273

GBM

0.00000

0.26476

0.00000

0.21128

0.00000

0.19037

= -2

CEV(§

0.00000

0.19098

0.00000

0.12716

0.00000

0.11075

CEV(f = —0.5)
CEV(S
CEV(§

—0.00565

0.14749

0.00000

0.11032

—0.00524

0.04227

0.00001

0.12797

—0.00475

0.05738

—0.00520

0.03177

0.5)

0.00002

0.05487

0.00001

0.03722

0.00002

0.03389

CEV(f = 1.5)

Note: The IGBM process serves as the benchmark, with the remaining models calibrated accordingly.
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TABLE 5 | The table reports the optimal abandonment x,, suspension x,, and resumption x, thresholds of the flexible project, alongside the

abandonment threshold X, of an otherwise equivalent rigid project.

Panel A: IGBM parameter values x = 0.30,0 = 0.15

Model X, X, X X, Suspend
IGBM 1.92476 1.92476 1.44852 1.96248 No
CIR 1.95865 1.95865 1.43154 1.95553 No
GBM 1.58730 1.58730 1.53379 1.89496 No
CEV(f= -0.5) 1.65871 1.65871 1.19290 2.01668 No
CEV(g = 0) 1.99913 1.99913 1.60244 1.91355 No
CEV(f =0.5) 1.87485 1.87485 1.60169 1.81494 No
Panel B: IGBM parameter values x = 0.15,6 = 0.20

Model X, X, X X, Suspend
IGBM 1.61305 1.61305 1.42419 2.03507 No
CIR 1.67350 1.67350 1.40484 2.01944 No
GBM 1.49308 1.48127 1.51492 1.92030 Yes
CEV(f= -0.5) 1.58528 1.58517 1.21306 1.97321 No
CEV(g = 0) 1.49302 1.48128 1.51511 1.92017 Yes
CEV(f =0.5) 1.66345 1.66345 1.55848 1.87358 No
Panel C: IGBM parameter values x = 0.07,6 = 0.30

Model X, x, X x, Suspend
IGBM 1.11047 0.93379 1.36080 2.15801 Yes
CIR 1.28974 1.23948 1.34818 2.11314 Yes
GBM 1.22664 1.11321 1.46148 1.99704 Yes
CEV(f= -0.5) 1.31758 1.25818 1.33363 1.72098 Yes
CEV(=0) 1.42044 1.38913 1.48418 1.97782 Yes
CEV(f = 0.5) 1.24320 1.14523 1.47271 2.01351 Yes

Note: The last column indicates whether suspension is included in the optimal strategy. Panels A, B, and C correspond to low-, medium-, and high-volatility scenarios,
respectively, defined by different combinations of the IGBM parameters x and o. All other model parameters are as specified in Table 3.

moving from the low-variance scenario in Panel A to the high-
variance case in Panel C. Most notably, the distance between the
suspension and abandonment thresholds exhibits a U-shaped
pattern, highlighting the critical nature of intermediate cases.
Specifically, when neither the drift nor the diffusion component
dominates in the benchmark model, this gap becomes narrow,
making shifts between the two boundaries more likely and sen-
sitive to parameter changes. This is illustrated in the GBM case
in Panel B, where suspension becomes part of the optimal strat-
egy of the project despite only an average change of about 7% in
the relevant thresholds compared to the IGBM benchmark.

3.3 | Effect on Entry and Exit Probabilities

We further compute the probabilities of suspending, restarting,
and abandoning production within the short term, which we
define as the next 5Syears within the 30-year horizon. The stan-
dard approach (see Tsekrekos 2010; Dias et al. 2015) involves

simulating trajectories for each model under consideration,
superimposing the corresponding boundaries, and estimating
probabilities by counting the frequency of state transitions.
Our method is conceptually similar; however, we simulate cash
flows only under the benchmark process and apply all bound-
aries to it. While the standard methodology may be more ap-
propriate during a planning stage, the approach proposed here
provides a more realistic representation of the project's opera-
tional behavior.

The results are presented in Table 6. Variations across models
are particularly sizeable in the two extreme scenarios of low and
high price volatility. The GBM, in particular, provides the weak-
est fit relative to the benchmark, notably overestimating the
probability of multiple transitions between the active and sus-
pended states. Nevertheless, this discrepancy is smaller under
the intermediate volatility scenario. It is also worth noting that
the rigid project is less sensitive to model specification than the
flexible one.
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TABLE 6 | The table reports the probabilities of abandonment, suspension, and restart of production in the next five years.

Panel A: IGBM parameter values x = 0.30, o = 0.15

Model P(A| rig) P(A|flex) PS>1) PS>1) PR>1) PR>1)
IGBM 97.708 97.708 0 0 0 0
CIR 98.777 98.777 0 0 0 0
GBM 64.427 64.427 0 0 0 0
CEV(f = —0.5) 75.276 75.276 0 0 0 0
CEV(8 = 0) 99.749 99.749 0 0 0 0
CEV(g =0.5) 95.545 95.545 0 0 0 0
Panel B: IGBM parameter values x = 0.15, c = 0.20

Model P(A|rig) P(A| flex) PS>1) PS>1) PR>1) PR>1)
IGBM 74.334 74.334 0 0 0 0
CIR 79.864 79.864 0 0 0 0
GBM 62.001 60.640 62.166 2.150 4.738 0.157
CEV(f = —0.5) 71.587 71.587 0 0 0 0
CEV(8=0) 61.993 60.641 62.227 2.165 4.770 0.161
CEV(f =0.5) 78.935 78.935 0 0 0 0
Panel C: IGBM parameter values x = 0.07, c = 0.30

Model P(A| rig) P(A|flex) P(S>1) P(S>1) PR>1) PR >1)
IGBM 48.053 32.641 67.573 5.211 17.702 0.616
CIR 62.569 58.659 66.712 2.633 7.318 0.199
GBM 57.662 48.267 74.519 14.667 27.125 4.134
CEV(f = —-0.5) 64.553 60.131 65.642 6.129 9.929 0.876
CEV(f=0) 71.777 69.608 75.912 7.170 11.624 1.021
CEV(f =0.5) 58.932 51.031 75.202 14.378 26.240 3.975

Note: These values are computed numerically via Monte Carlo simulation, using x, = 2.00, 100,000 trajectories, a 30-year horizon, and 250 time steps per year. The
probability of abandonment is calculated conditional on the project being either rigid P(A| rig) or flexible P(A| flex), while P(S > 1) and P(S > 1) refer to the probability
that suspension occurs at least once or more than once, respectively. Analogously, the label “R” denotes restart. All values are expressed in percentage terms.

In summary, the choice of the model has a substantial impact
on short-term entry and exit probabilities. To assess how this
influences the overall project strategy, the next section focuses
on estimating the project’s time to abandonment.

3.4 | Effect on Timing of Strategic Decisions

To fully understand the impact of different models on the proj-
ect strategy, we compute its expected time to abandonment,
defined as the time until the abandonment threshold is first
crossed, triggering the liquidation of the project. In addition, we
calculate the percentage of time the project remains in the pre-
abandonment phase over a 30-year horizon. Conditional on the
project remaining alive, we further examine the durations the
project spends in the active and suspended states.

The results are presented in Table 7. Once again, the most sig-
nificant deviations occur under the GBM and CEV models in the
low-variance scenario, confirming that these are particularly

unreliable proxies for the benchmark in such cases. In the in-
termediate- and high-variance environments, abandonment oc-
curs within 2.5years of difference between models for the rigid
project and within 4years for the flexible one. Although non-
negligible, these deviations are relatively modest when com-
pared to the overall 30-year horizon. Moreover, the profile of the
cumulative time spent in the active and suspended states appears
very similar across all cases, indicating that small differences
in time to abandonment do not necessarily result in substantial
changes to the project strategy, as long as the project remains
alive. The GBM case in Panel B is particularly noteworthy: while
this is the only instance in which suspension is included in the
project’s strategy, it is evident that suspension merely acts as a
preliminary step towards irreversible abandonment, with the
project remaining in this state for less than 4 months in total.

Notably, the qualitative conclusions regarding abandonment be-
haviour are robust to the choice of the initial value, x,, of the
price process. Setting this just above the highest abandonment
threshold, corresponding to the scenario with the smallest
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TABLE 7 | The table reports the expected time to abandonment of the project (rxﬂ ) Tx, ), the percentage of time spent in the pre-abandonment state
relative to a 30-year horizon (% Tyox,» % Txsx, ). and the percentage of time spent in the active or suspended state before abandonment ( % 7., % 7y ).

Panel A: IGBM parameter values x = 0.30, o = 0.15

Model 75, (years) Tz, (%) 7, (years) Ty, (%) Tt (%) Tus (%)
IGBM 0.64925 2.164 0.64925 2.164 100 0
CIR 0.37887 1.263 0.37887 1.263 100 0
GBM 5.07987 16.933 5.07987 16.933 100 0
CEV(p= —-0.5 3.73901 12.463 3.73901 12.463 100 0
CEV(f=0) 0.09609 0.320 0.09609 0.320 100 0
CEV( =0.5) 1.08167 3.606 1.08167 3.606 100 0
Panel B: IGBM parameter values x = 0.15, c = 0.20

Model 75 (years) Teoz, (%) 7, (years) Toox, (%) Tt (%) Tus (%)
IGBM 4.18030 13.934 4.18030 13.934 100 0
CIR 3.37894 11.263 3.37894 11.263 100 0
GBM 6.02549 20.085 6.23044 20.768 95.406 4.594
CEV(f= -0.5) 4.57443 15.248 4.57601 15.253 100 0
CEV(p =0) 6.02678 20.089 6.23037 20.768 95.381 4.619
CEV(# =0.5) 3.51263 11.709 3.51263 11.709 100 0
Panel C: IGBM parameter values x = 0.07, c = 0.30

Model 75, (years) Tz, (%) 7, (years) Ty, (%) Toct (%) Tus (%)
IGBM 8.80221 29.341 11.73235 39.108 64 36
CIR 6.41350 21.378 7.02868 23.429 88 12
GBM 7.19449 23.982 8.76210 29.207 69.686 30.314
CEV(f = —0.5) 6.09465 20.315 6.78857 22.629 93 7
CEV(f=0) 4.94099 16.470 5.28362 17.612 88.783 11.217
CEV(f =0.5) 6.98382 23.279 8.29358 27.645 71 29

Note: Values are computed numerically via Monte Carlo simulation, using x, = 2.00, 100,000 trajectories, a 30-year horizon, and 250 time steps per year.

volatility (Panel A in Tables 6 and 7), marginally increases the
probability of early abandonment but does not affect the key
finding: the ordering of the x, levels, that is, highest in Panel A,
intermediate in Panel B, and lowest in Panel C, is consistently
preserved.

3.5 | Sensitivity to Flexibility-Related Costs

Next, we assess the sensitivity of our results to the degree of
project flexibility. A project is considered more flexible when
the costs associated with switching between the active and sus-
pended states are lower. Similarly, lower fixed costs enhance
flexibility by reducing the magnitude of negative cash flows in-
curred during suspension.

As a preliminary illustration, Figure 1 displays the optimal
boundaries of the flexible project under the IGBM model for
values of s, € [0,0.15]. For simplicity, we assume that restarting
production is as costly as suspending it, that is, sy, = $,. [t is well

known that under costless reversibility, production is suspended
(resumed) as soon as earnings become negative (positive), im-
plying x, =x, =v. Conversely, higher switching costs lower
(raise) the suspension (resumption) threshold, thereby widening
the gap between the two boundaries. This mechanism of hyster-
esis is discussed in detail in Dixit (1989) and Dias et al. (2015).
We observe that greater variance in the price process amplifies
the hysteresis effect. As expected, the decline in the suspension
threshold is accompanied by a moderate increase in the aban-
donment barrier.

In contrast, the decision of when to suspend or restart produc-
tion is largely insensitive to changes in the project's fixed costs.
In fact, the amount f is paid regardless of whether production is
active. As shown in Figure 2, an increase in f, which effectively
reduces earnings, leads to a higher abandonment threshold for
both the flexible and the rigid project.

The reasons for these behaviours are purely economic and can
therefore be considered qualitatively valid across all the price

10
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FIGURE1 | Panel(a)displays the suspension and resumption boundaries, x, and x,, as functions of the suspension cost s,,. In Panel (b), the same is
shown for the abandonment boundary x,. Low (dash-dotted lines), intermediate (dashed lines), and high (solid lines) volatility scenarios correspond

to the parameter pairs (x, o) = (0.30,0.15), (k, o) = (0.15,0.20), and (x, o) = (0.07,0.30), respectively. The cost to restart production is assumed equal to

the cost of suspension, that is, sy, = s;,. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 | The figure displays the abandonment boundaries of the rigid project (a) and the flexible project (b) as functions of the fixed cost f.
Low (dash-dotted lines), intermediate (dashed lines), and high (solid lines) volatility scenarios correspond to the parameter pairs (x, ) = (0.30,0.15),

(x,0) =(0.15,0.20), and (x, o) = (0.07,0.30), respectively.

models under examination. Nevertheless, the quantitative sensi-
tivity of each model to changes in the parameters s,, and f may
differ. To assess this, we compute the variation in each bound-
ary in response to three equidistant changes in the levels of sy
and f.

The results, reported in Tables 8 and 9, indicate that the option
exercise boundaries are, on average, more sensitive to changes
in 55, and f under the IGBM and CIR models. This suggests
that the operating strategy of the project is comparatively more
influenced by changes in the degree of flexibility under these

dynamics. However, this effect is less pronounced in the pres-
ence of moderate market volatility.

3.6 | Effect on Project Value

We conclude our analysis by examining how the value of the
project changes under alternative price models relative to the
IGBM benchmark. Table 10 shows that, in terms of direc-
tion, the CIR model systematically underestimates the project
value, whereas other processes tend to overestimate it. Most
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TABLEY9 |

The table shows the variations in the optimal option boundaries attributable to changes in the fixed cost of the project, f.

Panel A: IGBM parameter values x = 0.15, c = 0.20

f 0.03740 0.11210 0.15000 0.03740 0.11210 0.15000

Af(i—1,0) AF(0, iy )
Model X, X, X, X,
IGBM 2.72516 5.18051 2.45069 2.72516 5.18051 2.45069 10.69474 10.69474
CIR 3.15427 6.19868 2.84836 3.15427 6.19868 2.84836 12.66881 12.66881
GBM 1.78993 3.48016 1.72154 291156 5.20563 2.31237 7.14571 10.77233
CEV(p= —-0.5 13.67659 8.01367 2.45705 16.74570 —33.42168 61.85193 8.46294 8.46294
CEV(p=0) 1.78993 3.48016 1.72154 2.91156 5.20563 2.31237 7.14571 10.77233
CEV(8 =0.5) 1.54700 3.03750 1.48661 1.54700 3.03750 1.48661 6.18696 6.18696
Panel B: IGBM parameter values x = 0.07, c = 0.30
f 0.03740 0.11210 0.15000 0.03740 0.11210 0.15000

Af(i-1,1) Af (0, iy )
Model X, X,
IGBM 2.58969 5.00339 2.40093 9.09482 14.55516 5.76519 10.30899 32.17872
CIR 3.47684 6.95151 3.22888 9.64529 15.62389 5.85537 14.24345 34.19936
GBM 1.78167 3.49472 1.71348 4.02777 7.22604 3.21931 7.14361 15.13583
CEV(p= —0.5) 32.08100 5.90730 2.77681 16.74570 —33.42168 61.85193 9.31622 18.49531
CEV(f=0) 1.78098 3.49476 1.71347 3.21738 5.73899 2.57007 7.14292 11.94602
CEV(B =0.5) 1.37001 2.65260 1.29626 2.87468 5.20078 2.34471 5.40783 10.76252

Note: For each boundary, marginal variations are denoted by Af (i — 1,i), with the
columns. All values are expressed in percentage terms.

starting point at f = 0. Cumulative variations Af(0,0.15) are reported in the last three

TABLE 10 | This table shows the variation in the value of an active project when computed under alternative price processes, as compared to the
IGBM benchmark.
Scenario xk =0.30,0 = 0.15 k =0.15,0 = 0.20 Kk =0.07,0 =0.30
Model AV (x) AV (x) AV (x) AV (x) AV (x) AV (x)
IGBM 10.01708 10.01708 10.58344 10.58344 13.80811 13.99732
CIR —0.12128 —0.12128 —2.07846 —2.07846 —15.61073 —17.23415
GBM 33.93756 33.93756 37.30910 36.82929 31.38040 31.16004
CEV(f= -0.5) 23.84919 23.84919 23.93548 23.93547 15.45188 13.73292
CEV(=0) —0.17028 —0.17028 37.30910 36.82929 2.14315 0.45043
CEV(# =0.5) 6.19184 6.19184 21.09373 21.09373 50.18965 51.46859

Note: The current price level is x;, = 2.00 across all models and scenarios. The value of the active project under IGBM is reported in the first row and is expressed in

monetary terms, while the variations are expressed in percentage terms.

importantly, the magnitude of the error appears to increase
monotonically with market volatility when the CIR or CEV
model with positive g is considered. The latter, in particular,
yields a comparatively unreliable estimate of project value in
the high-variance scenario. For the CEV and GBM models, the
largest discrepancies arise in the intermediate-volatility case.
Notably, the CEV(# = 0) model offers the most robust estimates

across extreme variance scenarios, accommodating both low
and high volatility effectively.

It is interesting to observe that these results are nearly opposite
to those obtained for the project's strategic behaviour. This high-
lights the importance of clearly identifying the modelling objec-
tive—whether the focus is on valuation or on determining the
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optimal strategy—when developing a real options framework.
We do not observe any substantial differences between the re-
sponses from the rigid and flexible projects.

4 | Conclusions

An increasing body of literature has questioned the reliance on
geometric Brownian motion in real options models, highlight-
ing the importance of mean reversion and its substantial influ-
ence on investment probabilities.

In this work, we analyse four price processes and introduce a
comparative framework for evaluating production projects with
multiple embedded options, namely, suspension, resumption,
and abandonment. We show that the price process specifica-
tion significantly affects the project dynamics, although simpler
models can remain effective under certain conditions with min-
imal strategic impact. A key contribution of our study, compared
to the existing literature, lies in the use of a benchmark model.
By calibrating the parameters of all alternative price processes
to this benchmark, we ensure a meaningful comparison. We in-
vestigate the strategic implications for the operating policies of
both flexible and rigid projects, focusing on three core aspects
relevant to long-term projects: determining optimal switching
price levels (ex-ante analysis), evaluating the probability of exer-
cising real options in the short term, and analysing the timing of
managerial decisions (ex-post analysis).

Our results show that in intermediate environments, where the
effects of mean reversion and variance tend to offset each other,
the use of models other than the benchmark has only a limited
impact on project strategy. While this may lead to a suboptimal
ex ante strategy, the ex post consequences remain minor, with
only modest deviations in short- and long-term managerial ac-
tions. This suggests that simpler models, if properly calibrated,
can be adopted without substantial loss of accuracy. However, in
extreme settings characterised by either high volatility or strong
mean reversion, this conclusion no longer holds. In particular,
approximating strongly mean-reverting processes with models
that omit this feature is inadvisable. This is mostly evident in
commodity—especially energy—markets, which consistently
exhibit pronounced volatility, mean-reverting behaviour, and
stylized features such as seasonality and price spikes.

A central takeaway is the striking variation between models’
performance in project valuation and their implications for stra-
tegic behaviour. For instance, while the CIR model systemati-
cally underestimates project value as market volatility increases,
the CEV(# =0) model delivers more robust estimates across
volatility scenarios. Interestingly, these valuation patterns are
markedly different from those observed in optimal exercise
strategies across models. This discrepancy underscores the need
to define the modelling objective clearly—whether the priority is
accurate valuation or optimal strategic decision-making—when
constructing real options frameworks. Notably, these insights
apply consistently to both rigid and flexible project settings.

In an environment increasingly shaped by geopolitical, climatic,
and health-related shocks, managerial flexibility, effectively
captured through real options, becomes particularly valuable.

Future research could extend our framework by applying it to
specific international contexts. Moreover, while our analysis
assumes a perpetual project duration, short-term decisions may
be better addressed through reinforcement learning, which pro-
vides computable and interpretable estimates of both option val-
ues and optimal exercise strategies.
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Endnotes

! For decision-makers to make optimal choices, both the utility and the
marginal utility of remaining in the continuation region, evaluated at
the optimal stopping point, must equal those of switching to one of
the alternatives. These requirements give rise to boundary conditions
known as the value-matching and smooth-pasting conditions. More de-
tails can be found in Dixit and Pindyck (1994, 130-132).
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Appendix A
Derivations

In what follows, we outline the derivation of the project's value function
presented in Section 2.3. Additionally, we demonstrate how to apply the
value-matching and smooth-pasting conditions, following Dixit and
Pindyck (1994).

General Solution of Homogeneous Equation

We adopt a standard approach that transforms our equations into a form
with a known solution, specifically, the confluent differential equation,
whose solution is expressed in terms of hypergeometric functions of the
first and second kind (see, e.g., Tsekrekos 2010).

Let f, h, V be twice differentiable functions of x. Consider the confluent
differential equation

" ﬁ /7_h’_/_h_” !
V+[x+2f+h h W 14

P RO\(A L AGA-D 24F o e[l
+[(T‘h7>(;+f)+x—z+7+f == r=o
(A1)

whose solution is known to be (see Abramowitz and Stegun 1972, egs.
(13.1.36) and (13.1.37))

cle’f<1>(a, yix™ + cze’f‘l’((x, yihx4, (A.2)
where
<D(ay‘h)=iM |h| < 0, a€C,y eC\Z
k=0 )ik!

is a confluent hypergeometric function of the first kind, and

'A=Y g+ Vo0 +a—y.2-y:h)

YT ey 0@

(A3)

is a confluent hypergeometric function of the second kind. Replacing
(A.3)in (A.2) yields

ped @(a,y; x4 + qge T dA +a—y,2 —y; x4 (A.4)

withp=c, +¢,TA-7)/TA+a—-y)andq=c,I'(y = 1) /T(a).

The homogeneous parts of the ordinary differential equations obtained
for IGBM, CIR, and CEV (u # 0) are

2
%xZV” + k(0 =)V’ — rV = 0 forIGBM, (A.5)
0_2
EXV” + k(@ —x)V' —rV =0 for CIR, (A.6)
2
%xZﬂ“ V" + uxV’ — ¥V = 0 for CEV. (A7)

These can be rewritten in the confluent form

an [@ - 2_’2‘]1/’ - 2 v = 0for IGBM, (A.8)
o°X O o“X

v [M - ZL"]W ~ 2Ly —0for CIR, (A.9)
o2 o2 o2

X 2uc 2r
A v V' — V =0for CEV. (A.10
| | O-Zlﬁlxzﬂ 62|ﬂ|x2ﬂ+1 ( )

Thus, Equations (A.8-A.10) conform to the confluent differential equa-
tion with appropriate choices of h:

2x0 for IGBM
o2x
h={ 2 for CIR .
0-2
"
_ for CEV
|Blo2x?F

Let f = 0,& = — A, and substitute the relevant expression for hinto (A.1)
to obtain, first, for IGBM

r€-26+80+¢8)  2kb(a+9)
X

022 V=0,

an [z—y—z§+¥]v'+ [
o°X
(A1D)

second, for CIR

V' + [y_zg_zglzx]vr_i_ [_ 2(a =&k _é(y_i_g)]‘/:()’

0-2
(A.12)
third, for CEV (8 > 0, u # 0)
X0 1-2¢ u , [—2a-9 & 4y _
EV +[2(1—y)+ 7 +ﬂ02x2ﬂ]v +[ +ﬂ—x—ﬂ02x2ﬂ+l]v_

(A.13)

To match the forms (A.8-A.10) with (A.11-A.13), we equate the coeffi-
cients of V", V' and V. This leads to systems of three equations for each
model and the associated solutions. First, for IGBM

2K %42k + (0'2+2K)2+87'o'2
2—y—26=-%£ =
=2 o2 12 202
2r 2K
75—25"'5(1‘*5):—; :>Y1,2:2—2§1,2+; ’
2k0(a+&)
R a=—¢1,
second, for CIR
2k60 2k
y—26="2 6=0, &=1-=2
20k 26k 2r kK0 _ 2Kk0
—7 ?——; Vi=—%> 127 _F s
—2k20+ 0% (k+71
e+ 2 4E=0 o=l g =2 20 (k+71)
K o2k
third, for CEV
—2’75—2y+%+2=0 & =1, &=0
22 2 1-2 -2p-1
_4a;4x‘2ﬂ'1_2.5;4x‘2”‘1+2rx’2ﬂ’1_0 _u-r _r
o2 po? por T T T o
(A.14)

Equations (A.11-A.13) therefore have solutions of the form (A.4) for the
corresponding parameter triplet {51, V1,04 } The second solution set
{52, Y2 az} is related through
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ay=1+a; -y,
Y2=2-71,
&=1-y,-¢.
We now focus on the CEV model with < 0 and u # 0. The steps mirror

those leading to (A.14), but we set f = h in (A.1). The resulting param-
eters in (A.4) become

1-2p -2p-1
gi=1 &=0; 7’1=—7, YZZ_T;
__r=2Bu _ _Fr=2Bu-—u
G=——, y=——.
2Bu 2fu

We have so far assumed u # 0. The special case 4 = 0 under the CEV
model is straightforward. Following Davydov and Linetsky (2001),
Equation (A.7) reduces to a modified Bessel equation. Its two linearly
independent solutions are x'/2 (z) and x'/2K, (z), where I,(z), K, (z) are
modified Bessel functions with

Varx 1

VIRV

Using the relationship between modified Bessel and hypergeometric
functions (cf. Lebedev 1972, eqgs. (9.13.14) and (9.13.15)),

IV(Z) = M

1
= e‘Z(D< + =,2v+1;2 ) ar <, (A.15
Tv+1D) vipviLin) lagzl < (A15)

K,(z) = \/;(2z)“e‘1‘l’<v + %,2\/ + 1;2z) |argz| <.
(A.16)

Combining these with (A.3), the general solution to (A.7) when u =0
can still be written in the form of (A.4):

Vx) = [pd)(al, ¥1522)X +q®@(ay, 7,3 2z)x52]ze’z,
where
1

& =1, &=0;, y;=2v+1, y,=2-2y a1=%+v, H=35 v

Finally, the solution for the GBM model can be derived as a limit case of
the IGBM. Consider

dx = k(0 —x)dt + oxdW as 6 - 0=>dx= — kxdt+ oxdW

which is a GBM with drift — «. The corresponding ordinary differential
equation

0'2
7x2V” +uxV' —rv=0

is thus a special case of (A.5) with § — 0 and u = — k. Consequently, its
solution is of the form (A.4). Noting that

60 limM =0, x0lm®(a,y;y)=1
CLit m
the GBM solution simplifies to

V(x) = px1 + g2

with

62 —2u+ (0'2—2/4)2 + 8ro?

202

51,2 =

Particular Solution

When the project is in the suspended state, the instantaneous cash flow
is — f, and thus the particular solution is

y(x) = —);

regardless of the underlying model.

‘We now determine y (x) for the active state. Since the cash flow function
F(x) in (4) is linear in x, we consider a particular solution of the form
¥(x) = Ax + B. Then, y'(x) = A, ¥"'(x) = 0. This implies that the second
derivative term vanishes and only the drift term affects the form of y(x).
Hence, the key discriminating factor is whether the underlying process
is mean-reverting.

For mean-reverting processes,
k(@ —x)A—r(Ax+B)= —(x—-¢)=> —AKk+rx+xkA—-rB= —x+c

Solving for A and Byields

1 B= K60 c
r+x’ r+r r

A=

thus the particular solution becomes

X (3% c

MR
Xx) = .
v r+x (r+x)y r

This expression is equivalent to Equation (15) in Bhattacharya (1978),
assuming an infinite time horizon.

For non-mean-reverting processes,

UXA —r(Ax+B)= —(x—c)=>Au—-rx—-rB= —x+c.

Solving yields
A= B=-¢
r—u r
and the particular solution is
MR X c
YR = —~— - %,
r— r

Value-Matching Conditions: Flexible Firm

‘We begin with the suspension and resumption boundaries, imposing

V(%) =Vo(x,) =s10
Vi (%) =501

s

N
=
=
N
I

which lead to

2k0 \ ¢ 20\ &, f
p1<1><a1;71,asz>xsl+(p2—q2)d><a2;y2,OTxx>xSZ=;+u,MR(xs) +510

20\ ¢ 260\ ¢, f '
p1<1><a1;y1, aTx,>xV1 + (pz—q2)<I)<a2;y2, az_xr>x’2 =< +MR(x,) = 5oy

This is a linear system in p, and (p, — g, ), which we write as Ax = b:
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[ 2x0 14
d)(al,yl; > >xf1 <I><a2,y2; > )xfz
02X, ;
A= 210 240
K & K 3
Ol a7 =— | @ @z, 70 x,?
<“1 71 o2 r) r <a2 72 szr> r
- f MR
D ;+l[/ (xs)+s10
X= , b= i
| D> —q, ;+II/MR()C,)—S01

Provided that A is non-singular, the unique solution is x = A'b.

With p, and (p, — g,) known, we use the abandonment condition
Vol(x,) =nI

to solve for g, and p,:

260\ ¢ . -
qu)(al’?’l’ o )xal +p2<1)<a2,y2, ox, >xa ;= nl,
from which

.20\ & L2x0\ &

'71+j£ —P1<I>(“1) 715 _62';0 )xa1 - (Pz“h)‘p(az’?z: _n:xu )xaZ

4= ,
. 2k0 \ €

<I>(a2,y2, 62';0 )xa2

p= (Pz_‘b) +q;.

To extend this approach to any of the diffusion models considered, one
simply modifies the entries of A, x, and b accordingly.

Smooth-Pasting Conditions: Flexible Firm

Smooth-pasting conditions are first used to jointly determine the sus-
pension and resumption boundaries x; and x,, and then to find the aban-
donment barrier x,, iteratively.

The smooth-pasting conditions are

Vi (xs) =V (XS)

4 (x,) =V (x,)

which become

(A.17)

P11 (%) + (P2 = q2) b2 (x,) yMR
P11 (%) + (P2~ 02) 2 (%) = 9™ (x,

Here, qﬁj(x) is the derivative of <I><aj, 7 % )xff, and it is given as

2k6 ) _ 2(le(9

- . . 2x0 &-1
) = [ﬁjd)(aj,yj,m yj62x®<aj+1,yj+l,g>:|xl :

This follows from the chain rule applied to the confluent hypergeomet-
ric function (cf. Lebedev 1972):

d 2k0 a 2k0\ 2x0
—(b(ot, ;—>=——(I)(a+1, +1;—) .
dx r o2x v r o2x / o2x2

Solving the system in (A.17) gives the optimal boundaries x, and x,.
Then, using these values, the abandonment threshold x, is determined
from

Vé(xa) =0 = Pld’l(xa) +P2¢2(xa) =0.

18
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