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ABSTRACT
In this article, we study the optimal operational strategy of production projects. We investigate different underlying price models 
and determine the optimal barriers of transition to suspension, recovery, or irreversible abandonment of productive activity. We 
compute probabilities of switching between alternative states and the time spent in each state. Our findings suggest that in mod-
erately volatile markets, different model assumptions lead to minimal variations in project strategy. This insight underscores that 
tractable model approximations can be strategically sound under certain volatility conditions. Our work significantly advances 
in this direction by demonstrating when and how model simplifications can be made without sacrificing accuracy.

1   |   Introduction

Selecting an appropriate model to represent economic uncer-
tainty remains an open problem in the real options literature. 
This article analyzes the impact of output price dynamics mod-
eling on optimal managerial strategies and production project 
valuation. We study four models, namely the inhomogeneous 
geometric Brownian motion (Bhattacharya  1978; Zhao  2009), 
the square-root mean-reverting process (Cox et  al.  1985), the 
constant elasticity of variance process (Cox 1975), and the geo-
metric Brownian motion.

This work advances the literature in several ways. We exam-
ine production projects with multiple options, including in-
definite suspension and abandonment, highlighting the role 
of managerial strategy in option selection. We also introduce 
a rigorous comparative framework for calibrating alternative 
models to a benchmark, which enables meaningful evalua-
tion. Our study demonstrates that price process specifications 
significantly influence transition barriers, timing, option ex-
ercise probabilities, and overall project valuation. It highlights 

the performance of different models in both valuation and 
strategy, while showing that simpler models may remain ef-
fective under offsetting mean-reversion and volatility con-
ditions, thus preserving tractability with minimal strategic 
impact. Our contribution is particularly relevant to interna-
tional finance. Prokopczuk et al. (2019) document significant 
co-movements between economic variables and commodity 
prices. More broadly, cross-border investments are often in-
fluenced by energy, commodities, and raw materials price 
dynamics. These markets are characterised by pronounced 
volatility, mean-reversion, seasonality, and price spikes 
(Roncoroni et al. 2015; Rotondi 2025a; Rotondi 2025b), which 
further complicate global planning and investment decisions. 
This volatility, exacerbated by recent geopolitical, climate-
related, and health disruptions, has increasingly compelled 
multinational firms to reconfigure their global operations. For 
example, 86.2% of US manufacturers nearshored to Mexico 
and Canada (Deloitte  2024), over 90% shifted to emerging 
hubs such as India and Southeast Asia (Boston Consulting 
Group  2023), and EU firms strengthened supply chain re-
silience amid raw material shortages (European Investment 
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Bank 2025). Our study may also gain additional relevance and 
depth when situated alongside modelling approaches from the 
international business literature (Tong and Reuer  2007; Chi 
et al. 2019; Ipsmiller et al. 2021), and when interpreted in light 
of recent findings on supply chain disruptions and systemic 
risk (Le Guenedal and Tankov 2025; Amici et al. 2025).

This work aligns with research on the impact of uncertainty 
dynamics on investment decisions, rooted in the seminal con-
tributions of Metcalf and Hassett  (1995) and Sarkar  (2003). 
In particular, Sarkar  (2003) highlights that mean-reverting 
dynamics in input cost processes significantly influence in-
vestment probabilities. Tsekrekos  (2010) and Tvedt  (2022) 
reach similar conclusions in the context of revenue uncer-
tainty and partially reversible entry and exit decisions, while 
Tsekrekos (2013) considers the option to irreversibly exit the 
market. Notably, all these studies employ the inhomogeneous 
geometric Brownian motion, that is, geometric mean-reverting 
process (see Table  2), which facilitates direct comparison of 
their results.

Mean-reverting dynamics are widely used in real option 
model settings because of their ability to capture equilibrium 
adjustments in price or demand functions, which are common 
sources of uncertainty. This has been emphasised in studies 
such as Bhattacharya (1978), Kulatilaka (1988), Lund (1993), 

Bessembinder et  al.  (1995), Schwartz  (1997), Sarkar and 
Zapatero  (2003), Fama and French  (2000), and Ewald and 
Wang  (2010). Nonetheless, model selection should consider 
the specific characteristics of the industry and the project. 
For example, the leverage effect, observed in stock prices 
(Black 1976), and the inverse leverage effect, documented in 
energy markets (Geman and Shih 2008; Li et al. 2017), have 
led to the adoption of the constant elasticity of variance pro-
cess, as seen in Geman (2008), Čermák (2017), and Dias and 
Nunes  (2011) in the real options literature. Importantly, evi-
dence from biological (Dangerfield et al. 2018) and financial 
(Dias et  al.  2015) contexts highlights the use of advanced 
models, such as the logistic and constant elasticity of variance 
processes, in effectively capturing the complexities of state 
variables' dynamics. This is crucial for determining optimal 
intervention or investment timing, particularly in highly vol-
atile environments.

The previous studies focus on isolated investment decisions, 
such as market entry or exit, whether reversible or irreversible. 
However, reducing project management to a binary choice be-
tween continuation and a single alternative oversimplifies real-
ity, as corporate strategies often encompass a broader array of 
options (Dixit and Pindyck 1994; Guthrie 2009). Furthermore, 
when multiple alternative options are available, not only the 
selection of an appropriate model for the underlying state 

TABLE 1    |    The table summarises the contributions most closely related to ours, indicating the types of real options and price models included, 
and positioning our article within this landscape.

Literature Options Models

Metcalf and Hassett (1995) Irreversible entry IGBM; GBM

Sarkar (2003) Irreversible entry IGBM; GBM

Tsekrekos (2010) Partially reversible entry and exit IGBM; GBM

Tsekrekos (2013) Irreversible exit IGBM; GBM

Tvedt (2022) Partially reversible entry and exit IGBM; GBM

Dias et al. (2015) Partially reversible entry and exit IGBM; CIR; OU

GBM; CEV; CKLS

This article Partially reversible entry and exit; IGBM; CIR;

Irreversible exit GBM; CEV

Note: The following abbreviations are used: CEV—constant elasticity of variance; CKLS—mean-reverting CEV (Chan et al. 1992); CIR—square-root diffusion; GBM—
driftless geometric Brownian motion; IGBM—inhomogeneous geometric Brownian motion; OU—Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein 1930).

TABLE 2    |    The table presents the price models considered in this article.

Model SDE V (x) �

IGBM dx = �(� − x)dt + �xdW �2

2
x2V ��(x) + �(� − x)V �(x) �, �, �

CIR dx = �(� − x)dt + �
√

xdW �2

2
xV��(x) + �(� − x)V �(x) �, �, �

CEV dx = �xdt + �x�+1 dW �2

2
x2�+2V ��(x) + �xV �(x) �, �

GBM dx = �xdW �2

2
x2V ��(x) �, �

Note: For each model, the corresponding stochastic differential equations (SDE), expressions V (x)�2(x) ≔ V ��(x) ∕2 + �(x)V �(x), and parameter sets Θ are given.
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variable's dynamics, but also its accurate parameterization plays 
a critical role in shaping business strategies. This is exemplified 
by Gutiérrez (2021), who shows that variations in interest rates 
have a non-monotonic effect on investment timing, emphasising 
the need for regularly updating model inputs.

This article advances the literature by presenting a more com-
prehensive framework that considers both multiple alternative 
options and different price models, unlike prior analyses that 
focus on only one of these aspects. Table 1 compares relevant 
works, outlining the real options and price models they exam-
ine and situating our study within this context. We explore 
a setting in which options to partially reversibly suspend (or, 
alternatively, resume) and to irreversibly abandon production 
are available. We note that reversible and irreversible deci-
sions are mutually exclusive, and we show that the selection of 
which option to activate may depend on the underlying price 
model used. We compare the effects of different price diffu-
sion models that are particularly relevant in the finance liter-
ature. We establish the inhomogeneous geometric Brownian 
motion as a benchmark and calibrate the parameters of all 
other price processes on it, ensuring a balanced consideration 
of mean and variance characteristics across the models. Our 
analysis examines the strategic implications of operating poli-
cies in the context of long-term projects. Specifically, we focus 
on three key aspects: determining the optimal prices that trig-
ger the exercise of options, evaluating the probability of exer-
cising real options in the short term, and analysing the timing 
of decisions. Also, we consider the implications for project 
valuation. The results vary across scenarios, as different com-
binations of volatility and mean reversion lead to distinct con-
clusions depending on the specific case.

The remainder of the article is as follows. In Section  2, we 
present the framework for our analysis and outline how to 
determine the value of the project and its optimal operating 
strategy. We also discuss the case of a levered project and ex-
plain why we focus on an unlevered one instead. In Section 3, 
we present numerical results and analyse the problem from 
various perspectives. Concluding remarks are provided in 
Section  4, whereas the derivations of results are deferred to 
Appendix A.

2   |   Model and Methodology

We build on the entry–exit model with a scrapping option in-
troduced in Dixit and Pindyck (1994). In this section, we pres-
ent its features and adapt it to our price models. We show how 
to calculate the value of the project as the solution of an ordi-
nary differential equation and according to different possible 
states of production. We also outline the conditions that must 
be satisfied to achieve the optimal managerial strategy for the 
project.

2.1   |   The Framework

We consider an investment project that consists of producing 
and selling a certain good. We assume that the project value is 
entirely given by the selling price x, determined by the market, 

net of production costs. Additionally, it is widely accepted in 
the literature to assume an infinite time-horizon when deal-
ing with long-lived investment projects; we adopt this line of 
thought.

Let 
(

Ω,ℱ, 𝔽 =
{

ℱt

}

t≥0
,ℙ

)

 be a filtered probability space, 

where ℙ is a given probability measure. The output price pro-
cess x ≔

{

xt
}

t≥0
 evolves according to the stochastic differential 

equation

given initial condition x0 ∈ ℝ
+, where W =

{

Wt

}

t≥0
 is a stan-

dard Brownian motion under ℙ. Operating costs are constant, 
strictly non-negative, and given by c = v + f , where v denotes the 
variable component, directly related to production activity, and 
f  represents the fixed cost, incurred regardless of whether pro-
duction takes place (Dixit and Pindyck 1994).

Furthermore, managers can partially mitigate market fluctua-
tions by suspending production; when this occurs, the option to 
restart becomes active. Following Dixit (1989), the payment of a 
lump sum s10 ∈ ℝ

+ (resp. s01 ∈ ℝ
+) is required to switch produc-

tion from the active (resp. suspended) to the suspended (resp. 
active) state. The option to permanently abandon the project can 
be exercised at any time, whether during active or suspended 
production. Upon abandonment, all assets related to the project 
are liquidated and investors receive a fraction �I of some initial 
investment cost I, where I ∈ ℝ

+ and � ∈ [0, 1].

In practice, each option is exercised instantaneously when the 
output price reaches a critical threshold: from above, in the case 
of suspension and abandonment, or from below, in the case of 
reactivation. We denote by xs, xr, and xa the price boundaries 
that trigger project suspension, reactivation, and abandonment, 
respectively. We also account for a second rigid project, with 
absent options to suspend and reactivate production and with 
abandonment occurring when the output price drops below 
xa. We note that if xs < xa, the managers of the flexible project 
behave as if it were rigid, and abandonment becomes the only 
relevant option. In the opposite case, the suspension option is ex-
ercised first, and the critical threshold for abandonment is low-
ered relative to that of the rigid project. Consequently, xa serves 
as an upper bound for xa.

2.2   |   Underlying Price Dynamics and Project Value

In this work, we mainly address the implications of adopting 
different specifications for the process of the underlying vari-
able x, and, in particular, we consider four models satisfying 
(1). Namely, our choice includes the inhomogeneous geometric 
Brownian motion (IGBM), the (driftless) geometric Brownian 
motion (GBM), the square-root (CIR) and constant elasticity of 
variance (CEV) diffusions.

By assumption, the value of the project, denoted by V (x), de-
pends on the cash flows it generates and on the dynamics of the 
underlying variable. From (1) and using Itô's lemma, we obtain 
the expected capital gain of the project:

(1)dx = �(x)dt + �(x)dW ,
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The risk-free total return of the project, rV(x)∕dt, must equal the 
expected capital gain in addition to the cash flows F(x) gener-
ated per unit of time. Hence,

We collect all stochastic differential equations for the price mod-
els, the corresponding expressions for V (x), and the relevant 
parameter sets Θ in Table 2.

Given the price models in Table 2, the solution to (2) is of the form

where the first two terms are the general solution of the 
homogeneous equation V (x) − rV(x) = 0 and �(x) is a 
particular solution of (2). Φ(�, � ; h(x)) is the confluent hyper-
geometric function of the first kind (Lebedev  1972). The pa-
rameters �1, �2 ∈ ℝ depend on the dynamics of x, while p, q ∈ ℝ 
are constant coefficients to be determined via appropriate 
boundary conditions.

2.3   |   The State-Dependent Valuation Problem

It is important to note that cash flows depend on the operational 
state of the project. In particular, we have that F(x) = x − c when 
production takes place, and F(x) = − f  while it is suspended. 
Consequently, the value of the project differs accordingly. Let 
V1(x) and V0(x) be the value of the project when production is 
active and suspended, respectively. Then, V1(x) solves

subject to limx→+∞V1(x) < ∞, whereas V0(x) is the solution of

subject to limx→0+V0(x) < ∞. The two conditions prevent the 
value of the project from exploding as the output price either 
increases or approaches zero, respectively. From an economic 
perspective, this implies that the value of the option to suspend 
(respectively, restart) production, available while the project is in 
the active (respectively, suspended) state, decreases as the out-
put price rises (respectively, converges to zero). When this is the 
case, the project value converges to �(x) = �

[

∫
∞

0
F(x)e−rudu

]

 . 
Finally, the project value at the time of abandonment equals the 

scrap value �I, regardless of the underlying price dynamics.

Next, we present the value functions for the active project, V1(x), 
and the suspended project, V0(x), across all relevant price mod-
els. Recall that when production is suspended, the instantaneous 
cash flow is − f , leading to �(x) = − f ∕r, independently of the 
specific model. Conversely, when production is active,

where MR and MR are used to distinguish between the mean-
reverting and non-mean-reverting cases. In what follows, we 
accordingly adopt �MR(x) and �MR(x). To simplify notation, we 
use �1,2, �1,2, and �1,2 uniformly across all models. However, the 
specific values of these parameters vary depending on the sto-
chastic process assumed for the underlying variable; their deri-
vation is provided in Appendix A. Similarly, we use q1,2 and p1,2 
to denote parameters whose values also vary by model.

For the benchmark IGBM model, we obtain the solutions

Under the CIR model, we obtain

where

If the underlying price process follows a GBM, then the solu-
tions are

Finally, in the case of CEV, the signs of parameters � and � must 
be considered, leading to the following expressions:

and

�[dV ]

dt
≈

�2(x)

2
V ��(x) + �(x)V �(x) = :V (x).

(2)V (x) = rV(x) − F(x).

(3)

V (x) = pΦ(�, � ; h(x))x�1 + qΦ(1 + � − � , 2 − � ; h(x))x�2 + �(x),

(4)V1(x) = rV1(x) − (x − c)

(5)V0(x) = rV0(x) + f

�(x) =

⎧

⎪

⎨

⎪

⎩

x

r+�
+
�

r
−

�

(r+�)
−
c

r
if MR

x

r−�
−
c

r
if MR

,

V1(x)=q2Φ
(

�2, �2;
2��

�2x

)

x�2 +�MR(x),

V0(x)=p1x
�1Φ

(

�1, �1;
2��

�2x

)

+p2x
�2Φ

(

�2, �2;
2��

�2x

)

−
f

r
.

V1(x)= q̃2Φ
(

�2, �2;
2�x

�2

)

x�2 − q̃1Φ
(

�1, �1;
2�x

�2

)

x�1 +�MR(x),

V0(x)=p1Φ
(

�1, �1;
2�x

�2

)

+p2Φ
(

�2, �2;
2�x

�2

)

x�2 −
f

r
,

q̃1=q2

(

2k

�2

)1−�2 Γ
(

�2
)

Γ
(

1−�2
)

Γ
(

�2
)

Γ
(

�1
) ,

q̃2=q2
Γ
(

1−�2
)

Γ
(

�1
) .

V1(x)=q2x
�2 +�MR(x)

V0(x)=p1x
�1 +p2x

�2 −
f

r
.

V1(x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�q1Φ

�

𝛼1;𝛾1,
𝜇

�𝛽�𝜎2x2𝛽

�

x𝜉1 +�q2Φ

�

𝛼2;𝛾2,
𝜇

�𝛽�𝜎2x2𝛽

�

x𝜉2
�

e
𝜇

𝛽𝜎2x2𝛽
1{𝛽<0} +𝜓MR(x) if 𝜇≠0

�

�q1Φ

�

𝛼1;𝛾1,
2
√

2r

�𝛽�𝛿x𝛽

�

x𝜉1 +�q2Φ

�

𝛼2;𝛾2,
2
√

2r

�𝛽�𝛿x𝛽

�

x𝜉2

�

e

√

2r

∣𝛽∣𝛿x𝛽 +𝜓MR(x) if 𝜇=0

,
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where

and

Fuller details of the presented solutions can be found in 
Appendix A.

2.4   |   Optimal Switching Boundaries

At any given moment, managers decide whether to exercise 
an option by comparing the project's continuation value with 
the value achievable through switching, in order to maximise 
profits. The continuation value equals V1(x) when the project 
is active and V0(x) when suspended, net of the appropriate 
switching cost s10 or s01. Additionally, since project abandon-
ment is irreversible, it can only be considered as an alterna-
tive to keeping the project active or suspended. Moreover, the 
value of the project is driven by the uncertain behaviour of 
the output price: it turns out that we need to determine three 
critical values of x, namely, xs, xr, xa (xa for the rigid project), 
that trigger switching decisions. Noticeably, in correspon-
dence of such boundaries, managers are indifferent between 
continuation and switching; hence, the continuation value 
must be equal to the alternative one, net of switching costs. 
Consequently, we get the following boundary conditions for 
V1(x) and V0(x):

Additionally, for xs, xr, xa to be optimal, the smooth-pasting con-
ditions must also be satisfied1:

Clearly, when the project is rigid, or whenever it is optimal to 
immediately exercise abandonment without previously sus-
pending, systems (6) and (7) reduce to

and

Solving Equations (6) and (7) (respectively, Equations (8) and 
(9)) for the constant coefficients, as well as for xs, xr, xa (re-
spectively, xa), yields the optimal managerial strategy for a 
given model.

2.5   |   The Levered Case

The model presented in Section  2 refers to a project entirely 
financed by equity. Here, we consider the case of presence of 
debt. To this end, we assume that the project is partially funded 
by means of a perpetual bond with continuous coupon C; pos-
sibly, a tax-shield exists for a constant tax-rate �. Abandoning 
the project implies default on debt, with the payment of some 
recovery value to bondholders and no residual value to equity 
holders. The price that optimally triggers default is xd. The 
value of the project's assets is the sum of equity and debt, that is, 
V (x) = E(x) + D(x), where E(x) is the equity value, D(x) the debt 
value, and both depend on the instantaneous output price and 
increase with the risk-free rate r. Hence, they satisfy the ordi-
nary differential equations

and

where F(x) denotes the same cash flow as in Equation (2) and 
E(x) =D(x) =V (x) as in Table  2. Compared to the all-
equity case, the only difference for equity holders is a reduction 
in earnings equal to C(1 − �). Conversely, bondholders receive a 
constant coupon payment C until default. In the event of default, 
the project's assets are liquidated, and bondholders are par-
tially reimbursed through the proceeds of the sale. We denote 
this by �V

(

xd
)

, where V
(

xd
)

 is the value of an all-equity project 
for x = xd and � ∈ [0, 1]. Equation  (11) is solved subject to the 
boundary conditions

V0(x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�p1Φ

�

𝛼1;𝛾1,
𝜇

�𝛽�𝜎2x2𝛽

�

x𝜉1 +�p2Φ

�

𝛼2;𝛾2,
𝜇

�𝛽�𝜎2x2𝛽

�

x𝜉2
�

e
𝜇

𝛽𝜎2x2𝛽
1{𝛽<0} +𝜓(x) if 𝜇≠0
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(10)E(x) = rE(x) − F(x) + C(1 − �)

(11)D(x) = rD(x) − C,

 10991158, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.70090 by Ioannis K

yriakou - U
niversity C

ollege D
ublin L

ibr , W
iley O

nline L
ibrary on [10/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 International Journal of Finance & Economics, 2025

Note that none of the preceding conditions is imposed at the 
suspension or resumption boundaries. Additionally, the default 
boundary is exogenous to bondholders. Indeed, decision-makers 
are assumed to be equity holders or managers acting on their 
behalf. Consequently, operational decisions are made to max-
imise the value of equity, rather than the value of the project's 
assets. This implies that Equation (10) must be solved subject to 
the value-matching conditions

and smooth-pasting conditions

In practice, any impact of debt on the suspension and restart 
boundaries can be excluded. This depends on the coupon being 
paid independently from production being active or suspended, 
which can be verified analytically by solving (12) and (13). All else 
being equal, the default price of a levered firm is higher than the 
liquidation price of an unlevered firm since the coupon payment 
reduces equity cash flows. In sum, the only effect of introduc-
ing debt into the analysis is a reduction in equity holders' cash 
flows, regardless of whether production is ongoing or suspended. 
However, this effect can be equivalently achieved by increasing 
the level of fixed costs f  in the baseline all-equity framework.

On the other hand, our assumption of managers maximiz-
ing equity value gives rise to a second-best optimal strategy 
for the project. Recently, Glover and Hambusch  (2016) and 
Ritchken and Wu (2021) obtained first-best solutions for sim-
ilar problems by maximizing the total asset value under out-
put prices evolving, respectively, as an IGBM and a GBM with 
drift. Moreover, they determined the optimal coupon on debt, 
which we assume as given. Additionally, in the presence of an 
option to relocate investments across borders, it would also 
be of interest to relax the assumption of a constant tax rate, 
allowing it instead to be uncertain. In this regard, Azevedo 
et al. (2019) underscore the importance of stable and predict-
able tax policies in attracting foreign investment, and suggest 
that well-designed tax holidays can significantly influence 
investment decisions. This result is expected to influence the 
optimal level of financial leverage or, equivalently, the amount 
of debt a firm can raise.

Indeed, determining the project's optimal financing strategy 
lies beyond the scope of this work; nevertheless, we identify it 
as a direction for future research, particularly given the valuable 

insights into firms' creditworthiness that can be gained through 
the analysis of financial leverage.

3   |   Results and Discussion

In this section, we numerically investigate how different price 
models influence the project's optimal strategy, focusing on the 
real options' exercise boundaries, the probabilities of imple-
menting the optimal strategy within a short horizon, and the 
timing of decisions. We also examine the implications for proj-
ect value and assess the sensitivity of our results to changes in 
the project's degree of flexibility. Table 3 presents the set of pa-
rameters that, unless otherwise specified, are held unchanged 
throughout the analysis. The parameter values we adopt are 
consistent with those commonly used in the literature (see, e.g., 
Tsekrekos 2010, 2013).

3.1   |   Model Calibration

A standard approach in the literature involves comparing dif-
ferent models by maintaining identical values for parameters 
common among processes. For instance, Sarkar  (2003) and 
Tsekrekos (2010) compare the outcomes of an IGBM with those 
of a driftless GBM, assuming the same volatility parameter �. 
While this may be reasonable to some extent, it is less straight-
forward to justify the choice made by Dias et  al.  (2015) and 
Dangerfield et al. (2018), who keep same key parameters across 
processes with fundamentally different specifications.

Instead, an effective comparative analysis should be conducted 
among models that exhibit similar features. For instance, intro-
ducing mean-reversion typically reduces the variance of a pro-
cess for a given volatility parameter. A preliminary examination 
of price dynamics should aim to fit a model that matches empir-
ical observations as closely as possible; alternatively, a particular 
process may be assumed a priori. Moreover, even an analyst who 
correctly identifies the dynamics may replace it with a process 
that is simpler to handle. Nevertheless, the new process must 
be calibrated so that it retains the main features of the empir-
ical one.

⎧
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TABLE 3    |    The table compiles and describes the parameters used for 
the numerical implementation of the model.

Notation Value Description

r 0.04 Risk-free rate

v 1.7 Production cost of the project

f 0.1 Fixed cost of the project

I 20 Initial cost of the project

� 0.5 Recovery fraction of cost I 
upon project liquidation

s10 0.1 Cost to switch from 
production to suspension

s01 0.2 Cost to switch from 
suspension to production
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To this end, we propose calibrating our models as follows. First, 
we choose the IGBM model as the benchmark, as it is widely 
used in the literature and offers a realistic representation of 
price time series. Next, we compute the first and second raw mo-
ments of the logarithm of this process, as well as those of the 
k-th model for k ∈ {CIR, CEV(�), GBM}. Finally, we determine 
the values of the set of parameters Θ, specified in Table 2 for each 
k-th model, by solving

for �n
j
= �

[

ln
(

xj
)n
|ℱ0

]

, for the indicated model, considering 
a total of T horizons. Working with log-prices is common, 
as log-changes are often much closer to being stationary 
than raw price changes, ensuring greater stability; this also 
naturally aligns with exponential price models, and the re-
quired moments are more readily available in log-space (see, 
for example, discussion on the moment problem in Kyriakou 
et al. 2023). Eight horizons (1, 2, 3, 5, 10, 15, 20, and 30 years) 
are selected, in line with standard practice, to capture short-, 
medium-, and long-term project lifespans. The weighting co-
efficient 1∕4 has been empirically chosen to balance the two 
terms in the objective function, ensuring stable convergence 
of the numerical optimization.

We analyse three scenarios characterised by different inter-
actions between the mean-reversion speed � and the volatility 
parameter �. In the first scenario, with (�, �) = (0.30,0.15), the 
relatively higher mean-reversion speed compared to volatility 
implies stronger pull-back dynamics in the price process. By 
comparison, the pair (�, �) = (0.07,0.30) corresponds to a setting 
where volatility dominates relative to mean-reversion. Finally, 
an intermediate scenario is given by (�, �) = (0.15,0.20). We 
apply our calibration procedure, with results reported in Table 4. 
As quite expected, minimal adjustments are required when 
transitioning from the IGBM to the CIR process. However, a sig-
nificant reduction in the instantaneous volatility coefficient is 
necessary to offset the explosive nature of non-mean-reverting 
processes, particularly when the reversion rate is high in the 
benchmark case.

3.2   |   Effect on Optimal Boundaries

Table 5 reports the optimal boundaries for the flexible project 
and, as a benchmark, for its rigid counterpart. Importantly, the 
last column indicates whether reversible suspension is actu-
ally included in the firm's optimal strategy. Evidently, selecting 
a model different from the IGBM benchmark results in a shift 
between suspension and abandonment only in a few cases. 
However, the abandonment threshold is considerably more sen-
sitive to changes in the variance of the price process compared to 
the suspension boundary. As also noted by Tsekrekos (2013), this 
difference stems from the irreversible nature of abandonment, 
which tends to be postponed when price volatility is sufficiently 
high to allow for potential recovery from losses. By contrast, the 
option to reverse the decision makes both suspension and re-
sumption less responsive to such variations. Consequently, we 
observe a marked reduction in the abandonment threshold when 
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moving from the low-variance scenario in Panel A to the high-
variance case in Panel C. Most notably, the distance between the 
suspension and abandonment thresholds exhibits a U-shaped 
pattern, highlighting the critical nature of intermediate cases. 
Specifically, when neither the drift nor the diffusion component 
dominates in the benchmark model, this gap becomes narrow, 
making shifts between the two boundaries more likely and sen-
sitive to parameter changes. This is illustrated in the GBM case 
in Panel B, where suspension becomes part of the optimal strat-
egy of the project despite only an average change of about 7% in 
the relevant thresholds compared to the IGBM benchmark.

3.3   |   Effect on Entry and Exit Probabilities

We further compute the probabilities of suspending, restarting, 
and abandoning production within the short term, which we 
define as the next 5 years within the 30-year horizon. The stan-
dard approach (see Tsekrekos  2010; Dias et  al.  2015) involves 

simulating trajectories for each model under consideration, 
superimposing the corresponding boundaries, and estimating 
probabilities by counting the frequency of state transitions. 
Our method is conceptually similar; however, we simulate cash 
flows only under the benchmark process and apply all bound-
aries to it. While the standard methodology may be more ap-
propriate during a planning stage, the approach proposed here 
provides a more realistic representation of the project's opera-
tional behavior.

The results are presented in Table 6. Variations across models 
are particularly sizeable in the two extreme scenarios of low and 
high price volatility. The GBM, in particular, provides the weak-
est fit relative to the benchmark, notably overestimating the 
probability of multiple transitions between the active and sus-
pended states. Nevertheless, this discrepancy is smaller under 
the intermediate volatility scenario. It is also worth noting that 
the rigid project is less sensitive to model specification than the 
flexible one.

TABLE 5    |    The table reports the optimal abandonment xa, suspension xs, and resumption xr thresholds of the flexible project, alongside the 
abandonment threshold xa of an otherwise equivalent rigid project.

Panel A: IGBM parameter values � = 0.30,� = 0.15

Model xa xa xs xr Suspend

IGBM 1.92476 1.92476 1.44852 1.96248 No

CIR 1.95865 1.95865 1.43154 1.95553 No

GBM 1.58730 1.58730 1.53379 1.89496 No

CEV(� = − 0.5) 1.65871 1.65871 1.19290 2.01668 No

CEV(� = 0) 1.99913 1.99913 1.60244 1.91355 No

CEV(� = 0.5) 1.87485 1.87485 1.60169 1.81494 No

Panel B: IGBM parameter values � = 0.15,� = 0.20

Model xa xa xs xr Suspend

IGBM 1.61305 1.61305 1.42419 2.03507 No

CIR 1.67350 1.67350 1.40484 2.01944 No

GBM 1.49308 1.48127 1.51492 1.92030 Yes

CEV(� = − 0.5) 1.58528 1.58517 1.21306 1.97321 No

CEV(� = 0) 1.49302 1.48128 1.51511 1.92017 Yes

CEV(� = 0.5) 1.66345 1.66345 1.55848 1.87358 No

Panel C: IGBM parameter values � = 0.07,� = 0.30

Model xa xa xs xr Suspend

IGBM 1.11047 0.93379 1.36080 2.15801 Yes

CIR 1.28974 1.23948 1.34818 2.11314 Yes

GBM 1.22664 1.11321 1.46148 1.99704 Yes

CEV(� = − 0.5) 1.31758 1.25818 1.33363 1.72098 Yes

CEV(� = 0) 1.42044 1.38913 1.48418 1.97782 Yes

CEV(� = 0.5) 1.24320 1.14523 1.47271 2.01351 Yes

Note: The last column indicates whether suspension is included in the optimal strategy. Panels A, B, and C correspond to low-, medium-, and high-volatility scenarios, 
respectively, defined by different combinations of the IGBM parameters � and �. All other model parameters are as specified in Table 3.
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In summary, the choice of the model has a substantial impact 
on short-term entry and exit probabilities. To assess how this 
influences the overall project strategy, the next section focuses 
on estimating the project's time to abandonment.

3.4   |   Effect on Timing of Strategic Decisions

To fully understand the impact of different models on the proj-
ect strategy, we compute its expected time to abandonment, 
defined as the time until the abandonment threshold is first 
crossed, triggering the liquidation of the project. In addition, we 
calculate the percentage of time the project remains in the pre-
abandonment phase over a 30-year horizon. Conditional on the 
project remaining alive, we further examine the durations the 
project spends in the active and suspended states.

The results are presented in Table 7. Once again, the most sig-
nificant deviations occur under the GBM and CEV models in the 
low-variance scenario, confirming that these are particularly 

unreliable proxies for the benchmark in such cases. In the in-
termediate- and high-variance environments, abandonment oc-
curs within 2.5 years of difference between models for the rigid 
project and within 4 years for the flexible one. Although non-
negligible, these deviations are relatively modest when com-
pared to the overall 30-year horizon. Moreover, the profile of the 
cumulative time spent in the active and suspended states appears 
very similar across all cases, indicating that small differences 
in time to abandonment do not necessarily result in substantial 
changes to the project strategy, as long as the project remains 
alive. The GBM case in Panel B is particularly noteworthy: while 
this is the only instance in which suspension is included in the 
project's strategy, it is evident that suspension merely acts as a 
preliminary step towards irreversible abandonment, with the 
project remaining in this state for less than 4 months in total.

Notably, the qualitative conclusions regarding abandonment be-
haviour are robust to the choice of the initial value, x0, of the 
price process. Setting this just above the highest abandonment 
threshold, corresponding to the scenario with the smallest 

TABLE 6    |    The table reports the probabilities of abandonment, suspension, and restart of production in the next five years.

Panel A: IGBM parameter values � = 0.30, � = 0.15

Model P(A| rig) P(A| flex) P(S ≥ 1) P(S > 1) P(R ≥ 1) P(R > 1)

IGBM 97.708 97.708 0 0 0 0

CIR 98.777 98.777 0 0 0 0

GBM 64.427 64.427 0 0 0 0

CEV(� = − 0.5) 75.276 75.276 0 0 0 0

CEV(� = 0) 99.749 99.749 0 0 0 0

CEV(� = 0.5) 95.545 95.545 0 0 0 0

Panel B: IGBM parameter values � = 0.15, � = 0.20

Model P(A| rig) P(A| flex) P(S ≥ 1) P(S > 1) P(R ≥ 1) P(R > 1)

IGBM 74.334 74.334 0 0 0 0

CIR 79.864 79.864 0 0 0 0

GBM 62.001 60.640 62.166 2.150 4.738 0.157

CEV(� = − 0.5) 71.587 71.587 0 0 0 0

CEV(� = 0) 61.993 60.641 62.227 2.165 4.770 0.161

CEV(� = 0.5) 78.935 78.935 0 0 0 0

Panel C: IGBM parameter values � = 0.07, � = 0.30

Model P(A| rig) P(A| flex) P(S ≥ 1) P(S > 1) P(R ≥ 1) P(R > 1)

IGBM 48.053 32.641 67.573 5.211 17.702 0.616

CIR 62.569 58.659 66.712 2.633 7.318 0.199

GBM 57.662 48.267 74.519 14.667 27.125 4.134

CEV(� = − 0.5) 64.553 60.131 65.642 6.129 9.929 0.876

CEV(� = 0) 71.777 69.608 75.912 7.170 11.624 1.021

CEV(� = 0.5) 58.932 51.031 75.202 14.378 26.240 3.975

Note: These values are computed numerically via Monte Carlo simulation, using x0 = 2.00, 100,000 trajectories, a 30-year horizon, and 250 time steps per year. The 
probability of abandonment is calculated conditional on the project being either rigid P(A| rig) or flexible P(A| flex), while P(S ≥ 1) and P(S > 1) refer to the probability 
that suspension occurs at least once or more than once, respectively. Analogously, the label “R” denotes restart. All values are expressed in percentage terms.

 10991158, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.70090 by Ioannis K

yriakou - U
niversity C

ollege D
ublin L

ibr , W
iley O

nline L
ibrary on [10/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 International Journal of Finance & Economics, 2025

volatility (Panel A in Tables 6 and 7), marginally increases the 
probability of early abandonment but does not affect the key 
finding: the ordering of the xa levels, that is, highest in Panel A, 
intermediate in Panel B, and lowest in Panel C, is consistently 
preserved.

3.5   |   Sensitivity to Flexibility-Related Costs

Next, we assess the sensitivity of our results to the degree of 
project flexibility. A project is considered more flexible when 
the costs associated with switching between the active and sus-
pended states are lower. Similarly, lower fixed costs enhance 
flexibility by reducing the magnitude of negative cash flows in-
curred during suspension.

As a preliminary illustration, Figure  1 displays the optimal 
boundaries of the flexible project under the IGBM model for 
values of s10 ∈ [0,0.15]. For simplicity, we assume that restarting 
production is as costly as suspending it, that is, s01 = s10. It is well 

known that under costless reversibility, production is suspended 
(resumed) as soon as earnings become negative (positive), im-
plying xs = xr = v. Conversely, higher switching costs lower 
(raise) the suspension (resumption) threshold, thereby widening 
the gap between the two boundaries. This mechanism of hyster-
esis is discussed in detail in Dixit (1989) and Dias et al. (2015). 
We observe that greater variance in the price process amplifies 
the hysteresis effect. As expected, the decline in the suspension 
threshold is accompanied by a moderate increase in the aban-
donment barrier.

In contrast, the decision of when to suspend or restart produc-
tion is largely insensitive to changes in the project's fixed costs. 
In fact, the amount f  is paid regardless of whether production is 
active. As shown in Figure 2, an increase in f , which effectively 
reduces earnings, leads to a higher abandonment threshold for 
both the flexible and the rigid project.

The reasons for these behaviours are purely economic and can 
therefore be considered qualitatively valid across all the price 

TABLE 7    |    The table reports the expected time to abandonment of the project 
(

�xa , �xa

)

, the percentage of time spent in the pre-abandonment state 
relative to a 30-year horizon 

(

%𝜏x>xa , %𝜏x>xa

)

, and the percentage of time spent in the active or suspended state before abandonment 
(

%�act, %�sus
)

.

Panel A: IGBM parameter values � = 0.30, � = 0.15

Model �xa (years) 𝝉x>xa (%) �xa (years) 𝝉x>xa (%) �act (%) �sus (%)

IGBM 0.64925 2.164 0.64925 2.164 100 0

CIR 0.37887 1.263 0.37887 1.263 100 0

GBM 5.07987 16.933 5.07987 16.933 100 0

CEV(� = − 0.5) 3.73901 12.463 3.73901 12.463 100 0

CEV(� = 0) 0.09609 0.320 0.09609 0.320 100 0

CEV(� = 0.5) 1.08167 3.606 1.08167 3.606 100 0

Panel B: IGBM parameter values � = 0.15, � = 0.20

Model �xa (years) 𝝉x>xa (%) �xa (years) 𝝉x>xa (%) �act (%) �sus (%)

IGBM 4.18030 13.934 4.18030 13.934 100 0

CIR 3.37894 11.263 3.37894 11.263 100 0

GBM 6.02549 20.085 6.23044 20.768 95.406 4.594

CEV(� = − 0.5) 4.57443 15.248 4.57601 15.253 100 0

CEV(� = 0) 6.02678 20.089 6.23037 20.768 95.381 4.619

CEV(� = 0.5) 3.51263 11.709 3.51263 11.709 100 0

Panel C: IGBM parameter values � = 0.07, � = 0.30

Model �xa (years) 𝝉x>xa (%) �xa (years) 𝝉x>xa (%) �act (%) �sus (%)

IGBM 8.80221 29.341 11.73235 39.108 64 36

CIR 6.41350 21.378 7.02868 23.429 88 12

GBM 7.19449 23.982 8.76210 29.207 69.686 30.314

CEV(� = − 0.5) 6.09465 20.315 6.78857 22.629 93 7

CEV(� = 0) 4.94099 16.470 5.28362 17.612 88.783 11.217

CEV(� = 0.5) 6.98382 23.279 8.29358 27.645 71 29

Note: Values are computed numerically via Monte Carlo simulation, using x0 = 2.00, 100,000 trajectories, a 30-year horizon, and 250 time steps per year.
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models under examination. Nevertheless, the quantitative sensi-
tivity of each model to changes in the parameters s10 and f  may 
differ. To assess this, we compute the variation in each bound-
ary in response to three equidistant changes in the levels of s10 
and f .

The results, reported in Tables 8 and 9, indicate that the option 
exercise boundaries are, on average, more sensitive to changes 
in s10 and f  under the IGBM and CIR models. This suggests 
that the operating strategy of the project is comparatively more 
influenced by changes in the degree of flexibility under these 

dynamics. However, this effect is less pronounced in the pres-
ence of moderate market volatility.

3.6   |   Effect on Project Value

We conclude our analysis by examining how the value of the 
project changes under alternative price models relative to the 
IGBM benchmark. Table  10 shows that, in terms of direc-
tion, the CIR model systematically underestimates the project 
value, whereas other processes tend to overestimate it. Most 

FIGURE 1    |    Panel (a) displays the suspension and resumption boundaries, xs and xr, as functions of the suspension cost s10. In Panel (b), the same is 
shown for the abandonment boundary xa. Low (dash-dotted lines), intermediate (dashed lines), and high (solid lines) volatility scenarios correspond 
to the parameter pairs (�, �) = (0.30,0.15), (�, �) = (0.15,0.20), and (�, �) = (0.07,0.30), respectively. The cost to restart production is assumed equal to 
the cost of suspension, that is, s01 = s10. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2    |    The figure displays the abandonment boundaries of the rigid project (a) and the flexible project (b) as functions of the fixed cost f . 
Low (dash-dotted lines), intermediate (dashed lines), and high (solid lines) volatility scenarios correspond to the parameter pairs (�, �) = (0.30,0.15), 
(�, �) = (0.15,0.20), and (�, �) = (0.07,0.30), respectively.
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importantly, the magnitude of the error appears to increase 
monotonically with market volatility when the CIR or CEV 
model with positive � is considered. The latter, in particular, 
yields a comparatively unreliable estimate of project value in 
the high-variance scenario. For the CEV and GBM models, the 
largest discrepancies arise in the intermediate-volatility case. 
Notably, the CEV(� = 0) model offers the most robust estimates 

across extreme variance scenarios, accommodating both low 
and high volatility effectively.

It is interesting to observe that these results are nearly opposite 
to those obtained for the project's strategic behaviour. This high-
lights the importance of clearly identifying the modelling objec-
tive—whether the focus is on valuation or on determining the 

TABLE 9    |    The table shows the variations in the optimal option boundaries attributable to changes in the fixed cost of the project, f .

Panel A: IGBM parameter values � = 0.15, � = 0.20

f 0.03740 0.11210 0.15000 0.03740 0.11210 0.15000

Δf (i − 1, i) Δf
(

0, imax
)

Model xa xa xa xa

IGBM 2.72516 5.18051 2.45069 2.72516 5.18051 2.45069 10.69474 10.69474

CIR 3.15427 6.19868 2.84836 3.15427 6.19868 2.84836 12.66881 12.66881

GBM 1.78993 3.48016 1.72154 2.91156 5.20563 2.31237 7.14571 10.77233

CEV(� = − 0.5) 13.67659 8.01367 2.45705 16.74570 −33.42168 61.85193 8.46294 8.46294

CEV(� = 0) 1.78993 3.48016 1.72154 2.91156 5.20563 2.31237 7.14571 10.77233

CEV(� = 0.5) 1.54700 3.03750 1.48661 1.54700 3.03750 1.48661 6.18696 6.18696

Panel B: IGBM parameter values � = 0.07, � = 0.30

f 0.03740 0.11210 0.15000 0.03740 0.11210 0.15000

Δf (i − 1, i) Δf
(

0, imax
)

Model xa xa

IGBM 2.58969 5.00339 2.40093 9.09482 14.55516 5.76519 10.30899 32.17872

CIR 3.47684 6.95151 3.22888 9.64529 15.62389 5.85537 14.24345 34.19936

GBM 1.78167 3.49472 1.71348 4.02777 7.22604 3.21931 7.14361 15.13583

CEV(� = − 0.5) 32.08100 5.90730 2.77681 16.74570 −33.42168 61.85193 9.31622 18.49531

CEV(� = 0) 1.78098 3.49476 1.71347 3.21738 5.73899 2.57007 7.14292 11.94602

CEV(� = 0.5) 1.37001 2.65260 1.29626 2.87468 5.20078 2.34471 5.40783 10.76252

Note: For each boundary, marginal variations are denoted by Δf (i − 1, i), with the starting point at f = 0. Cumulative variations Δf (0,0.15) are reported in the last three 
columns. All values are expressed in percentage terms.

TABLE 10    |    This table shows the variation in the value of an active project when computed under alternative price processes, as compared to the 
IGBM benchmark.

Scenario � = 0.30, � = 0.15 � = 0.15, � = 0.20 � = 0.07, � = 0.30

Model 𝚫Vr
1
(x) 𝚫V

f

1
(x) 𝚫Vr

1
(x) 𝚫V

f

1
(x) 𝚫Vr

1
(x) 𝚫V

f

1
(x)

IGBM 10.01708 10.01708 10.58344 10.58344 13.80811 13.99732

CIR −0.12128 −0.12128 −2.07846 −2.07846 −15.61073 −17.23415

GBM 33.93756 33.93756 37.30910 36.82929 31.38040 31.16004

CEV(� = − 0.5) 23.84919 23.84919 23.93548 23.93547 15.45188 13.73292

CEV(� = 0) −0.17028 −0.17028 37.30910 36.82929 2.14315 0.45043

CEV(� = 0.5) 6.19184 6.19184 21.09373 21.09373 50.18965 51.46859

Note: The current price level is x0 = 2.00 across all models and scenarios. The value of the active project under IGBM is reported in the first row and is expressed in 
monetary terms, while the variations are expressed in percentage terms.
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optimal strategy—when developing a real options framework. 
We do not observe any substantial differences between the re-
sponses from the rigid and flexible projects.

4   |   Conclusions

An increasing body of literature has questioned the reliance on 
geometric Brownian motion in real options models, highlight-
ing the importance of mean reversion and its substantial influ-
ence on investment probabilities.

In this work, we analyse four price processes and introduce a 
comparative framework for evaluating production projects with 
multiple embedded options, namely, suspension, resumption, 
and abandonment. We show that the price process specifica-
tion significantly affects the project dynamics, although simpler 
models can remain effective under certain conditions with min-
imal strategic impact. A key contribution of our study, compared 
to the existing literature, lies in the use of a benchmark model. 
By calibrating the parameters of all alternative price processes 
to this benchmark, we ensure a meaningful comparison. We in-
vestigate the strategic implications for the operating policies of 
both flexible and rigid projects, focusing on three core aspects 
relevant to long-term projects: determining optimal switching 
price levels (ex-ante analysis), evaluating the probability of exer-
cising real options in the short term, and analysing the timing of 
managerial decisions (ex-post analysis).

Our results show that in intermediate environments, where the 
effects of mean reversion and variance tend to offset each other, 
the use of models other than the benchmark has only a limited 
impact on project strategy. While this may lead to a suboptimal 
ex ante strategy, the ex post consequences remain minor, with 
only modest deviations in short- and long-term managerial ac-
tions. This suggests that simpler models, if properly calibrated, 
can be adopted without substantial loss of accuracy. However, in 
extreme settings characterised by either high volatility or strong 
mean reversion, this conclusion no longer holds. In particular, 
approximating strongly mean-reverting processes with models 
that omit this feature is inadvisable. This is mostly evident in 
commodity—especially energy—markets, which consistently 
exhibit pronounced volatility, mean-reverting behaviour, and 
stylized features such as seasonality and price spikes.

A central takeaway is the striking variation between models' 
performance in project valuation and their implications for stra-
tegic behaviour. For instance, while the CIR model systemati-
cally underestimates project value as market volatility increases, 
the CEV(� = 0) model delivers more robust estimates across 
volatility scenarios. Interestingly, these valuation patterns are 
markedly different from those observed in optimal exercise 
strategies across models. This discrepancy underscores the need 
to define the modelling objective clearly—whether the priority is 
accurate valuation or optimal strategic decision-making—when 
constructing real options frameworks. Notably, these insights 
apply consistently to both rigid and flexible project settings.

In an environment increasingly shaped by geopolitical, climatic, 
and health-related shocks, managerial flexibility, effectively 
captured through real options, becomes particularly valuable. 

Future research could extend our framework by applying it to 
specific international contexts. Moreover, while our analysis 
assumes a perpetual project duration, short-term decisions may 
be better addressed through reinforcement learning, which pro-
vides computable and interpretable estimates of both option val-
ues and optimal exercise strategies.
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Endnotes

	1	For decision-makers to make optimal choices, both the utility and the 
marginal utility of remaining in the continuation region, evaluated at 
the optimal stopping point, must equal those of switching to one of 
the alternatives. These requirements give rise to boundary conditions 
known as the value-matching and smooth-pasting conditions. More de-
tails can be found in Dixit and Pindyck (1994, 130–132).
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Appendix A

Derivations

In what follows, we outline the derivation of the project's value function 
presented in Section 2.3. Additionally, we demonstrate how to apply the 
value-matching and smooth-pasting conditions, following Dixit and 
Pindyck (1994).

General Solution of Homogeneous Equation

We adopt a standard approach that transforms our equations into a form 
with a known solution, specifically, the confluent differential equation, 
whose solution is expressed in terms of hypergeometric functions of the 
first and second kind (see, e.g., Tsekrekos 2010).

Let f , h,V  be twice differentiable functions of x. Consider the confluent 
differential equation

whose solution is known to be (see Abramowitz and Stegun 1972, eqs. 
(13.1.36) and (13.1.37))

where

is a confluent hypergeometric function of the first kind, and

is a confluent hypergeometric function of the second kind. Replacing 
(A.3) in (A.2) yields

with p = c1 + c2Γ(1 − �)∕Γ(1 + � − �) and q = c2Γ(� − 1)∕Γ(�).

The homogeneous parts of the ordinary differential equations obtained 
for IGBM, CIR, and CEV (� ≠ 0) are

These can be rewritten in the confluent form

Thus, Equations (A.8–A.10) conform to the confluent differential equa-
tion with appropriate choices of h:

Let f = 0, � = − A, and substitute the relevant expression for h into (A.1) 
to obtain, first, for IGBM

second, for CIR

third, for CEV (𝛽 > 0, � ≠ 0)

To match the forms (A.8–A.10) with (A.11–A.13), we equate the coeffi-
cients of V ′′, V ′ and V . This leads to systems of three equations for each 
model and the associated solutions. First, for IGBM

second, for CIR

third, for CEV

Equations (A.11–A.13) therefore have solutions of the form (A.4) for the 
corresponding parameter triplet 

{

�1, �1, �1
}

. The second solution set 
{

�2, �2, �2
}

 is related through

(A.1)
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+2f � +

�h�

h
−h� −
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We now focus on the CEV model with 𝛽 < 0 and � ≠ 0. The steps mirror 
those leading to (A.14), but we set f = h in (A.1). The resulting param-
eters in (A.4) become

We have so far assumed � ≠ 0. The special case � = 0 under the CEV 
model is straightforward. Following Davydov and Linetsky  (2001), 
Equation (A.7) reduces to a modified Bessel equation. Its two linearly 
independent solutions are x1∕2I�(z) and x1∕2K�(z), where I�(z),K�(z) are 
modified Bessel functions with

Using the relationship between modified Bessel and hypergeometric 
functions (cf. Lebedev 1972, eqs. (9.13.14) and (9.13.15)),

Combining these with (A.3), the general solution to (A.7) when � = 0 
can still be written in the form of (A.4):

where

Finally, the solution for the GBM model can be derived as a limit case of 
the IGBM. Consider

which is a GBM with drift − �. The corresponding ordinary differential 
equation

is thus a special case of (A.5) with � → 0 and � = − �. Consequently, its 
solution is of the form (A.4). Noting that

the GBM solution simplifies to

with

Particular Solution

When the project is in the suspended state, the instantaneous cash flow 
is − f , and thus the particular solution is

regardless of the underlying model.

We now determine �(x) for the active state. Since the cash flow function 
F(x) in (4) is linear in x, we consider a particular solution of the form 
y(x) = Ax + B. Then, y�(x) = A, y��(x) = 0. This implies that the second 
derivative term vanishes and only the drift term affects the form of y(x). 
Hence, the key discriminating factor is whether the underlying process 
is mean-reverting.

For mean-reverting processes,

Solving for A and B yields

thus the particular solution becomes

This expression is equivalent to Equation (15) in Bhattacharya (1978), 
assuming an infinite time horizon.

For non-mean-reverting processes,

Solving yields

and the particular solution is

Value-Matching Conditions: Flexible Firm

We begin with the suspension and resumption boundaries, imposing

which lead to

This is a linear system in p1 and 
(

p2 − q2
)

, which we write as Ax = b:

�2=1+�1−�1,

�2=2−�1,

�2=1−�1−�1.

�1=1, �2=0; �1= −
1−2�
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, �2= −
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2��
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Provided that A is non-singular, the unique solution is x = A−1b.

With p1 and 
(

p2 − q2
)

 known, we use the abandonment condition

to solve for q2 and p2:

from which

To extend this approach to any of the diffusion models considered, one 
simply modifies the entries of A, x, and b accordingly.

Smooth-Pasting Conditions: Flexible Firm

Smooth-pasting conditions are first used to jointly determine the sus-
pension and resumption boundaries xs and xr, and then to find the aban-
donment barrier xa iteratively.

The smooth-pasting conditions are

which become

Here, �j(x) is the derivative of Φ
(

�j, � j;
2��

�2x

)

x�j, and it is given as

This follows from the chain rule applied to the confluent hypergeomet-
ric function (cf. Lebedev 1972):

Solving the system in (A.17) gives the optimal boundaries xs and xr. 
Then, using these values, the abandonment threshold xa is determined 
from
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