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of London, Northampton Square, London EC1V OHB, United Kingdom

Abstract

The dynamic stiffness method for free vibration of beams and frameworks is developed using a
higher order shear deformation theory. Starting with the displacement field, the potential and kinetic
energies of the beam in flexural vibration, are first formulated. Then, Hamilton's principle is applied to
derive the governing differential equations and associated natural boundary conditions. Next, the
differential equations are solved to obtain the expressions for flexural displacement, bending rotation
and the first derivative of the flexural displacement. The expressions for the shear force, bending
moment and the higher-order moment are obtained from the natural boundary conditions resulting from
the Hamiltonian formulation. Finally, the force vector comprising the amplitudes of the shear force,
bending moment and the higher-order moment is related to the amplitudes of the displacement vector
comprising the flexural displacement, bending rotation and the first derivative of the flexural
displacement through the frequency-dependent dynamic stiffness matrix. The dynamic stiffness matrix
for axial motion which is uncoupled from the flexural motion is now implemented to the dynamic
stiffness matrix in flexural motion to analyse individual beams and frameworks for their free vibration
characteristics by applying the Wittrick-Williams algorithm. Illustrative examples are given, and

significant conclusions are drawn.
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1. Introduction

The earliest beam theory that we know of, was developed in the eighteenth century by Euler and
Bernoulli [1, 2]. The theory envisioned by them was an enormous leap in imagination which has
endured the test of time remarkably well, and is still being used satisfactorily, even to this day. The
theory, known as the Bernoulli-Euler or Euler-Bernoulli beam theory, was further improved about a
century later by Lord Rayleigh [3] who included the effect of the rotatory inertia of the beam cross-
section which improved the accuracy of results, and this was demonstrated by Searle [4]. This relatively
unknown Rayleigh-beam theory was overshadowed by the theory developed by Timoshenko and
Ehrenfest in the earlier part of the twentieth century [5, 6] when they considered both the effects of
rotatory inertia and shear deformation and advanced the Bernoulli-Euler beam theory significantly. The
rest is essentially an impactful history which is a continuing account of the applications and
developments of the Timoshenko-Ehrenfest beam theory. It is no exaggeration that the Timoshenko-
Ehrenfest beam theory has featured in literally thousands of papers in the literature. However, it is well-
known that one of the critical assumptions associated with the Timoshenko-Ehrenfest beam theory is
that the theory relies on uniform shear stress distribution through the thickness of the beam cross-
section, which does not satisfy the zero shear stress condition on the outer surface of the beam, but
nevertheless, the theory takes some partial account of the non-uniform shear stress distribution on an
ad-doc basis, by introducing a shear correction factor (also called shape factor). Based on this idea of
using the Timoshenko-Ehrenfest beam theory using a rather fictitious shear correction factor [7],
numerous publications on the free vibration behaviour of Timoshenko-Ehrenfest beams can be found
in the literature. A small sample of the literature, showing significant applications of Timoshenko-
Ehrenfest beam theory, can be found in [8-26] in chronological order. A literature survey also shows
that there are many investigators who have been seemingly uncomfortable with the Timoshenko-
Ehrenfest beam theory because of the assumption of unform shear stress distribution through the cross-
section and the subsequent introduction of a somewhat arbitrary shear correction factor on an ad hoc,
and perhaps on an improvised basis to rectify the anomaly of non-zero shear stress condition on the
outer surface of the beam. They challenged the shear correction factor assumption. Therefore, the search
for refined beam theories which dispense with the so-called shear correction or shape factor, continued
relentlessly since the emergence of Timoshenko-Ehrenfest beam theory. Notable contributors in this
endeavour include Levinson [27], Heyliger and Reddy [28], Kosmatka [29], Huang et al. [30], Nolde
etal. [31], Xie et al. [32], Simsek and Kocaturk [33], amongst others, who have used higher order shear
deformation theories based on the mathematical theory of elasticity. Carrera et al. [34] made an
objective assessment of several refined beam theories including the first author, Carrera’s own theory,
called the Carrera Unified Formulation (CUF). The authors of [34] drew many useful conclusions,
evaluating each theory on its intrinsic merit, and highlighting each theory’s suitability, advantages and

disadvantages in different applications. However, the literature on the application of the dynamic



stiffness method in conjunction with higher order shear deformation theory for free vibration analysis
of beam is scarce, with only a couple of research papers appears to have been published in the open
literature [35, 36]. The purpose of this paper is to redress this imbalance by developing a new dynamic
stiffness theory for beams by using higher order shear deformation theory (HSDT) and extending the
earlier research significantly. Some of the errors in the published literature are also rectified. One of the
main contributions made in this paper is the application of higher order shear deformation theory for
beams to free vibration analysis of frameworks. This is against the background that earlier research was
predominantly confined to individual beams rather than frameworks. It should be noted that in recent
years, the developments of advanced beam theories have taken numerous turns, particularly when
dealing with composite, functionally graded, cracked, micro and nano beams [37-45].

As stated by many of the above investigators, one of the great advantages of using a higher order
shear deformation theory in free vibration analysis of beams or frameworks is that it dispenses with the
so-called shear correction factor generally adopted in the Timoshenko-Ehrenfest beam formulation to
account for the non-uniform shear stress distribution through the thickness of the beam cross-section.
A higher order shear deformation theory overcomes this limitation. With this pretext, it should be noted
that when carrying out the free vibration analysis of structures, the dynamic stiffness method (DSM)
which is called an “exact” method is a powerful alternative to the conventional finite element method
(FEM) and other methods. Publications relating to the application of the dynamic stiffness method to
solve the beam vibration problem very accurately, using HSDT are indeed scarce. Furthermore, most
of the published literature deals with the free vibration behaviour of individual beams using higher order
shear deformation theory, but an extension of the theory for applications to frameworks is an open area
of research, apparently not undertaken by investigators earlier. This paper is intended to fill this gap in
the literature by developing the dynamic stiffness matrix of a beam using HSDT and then applying it to
individual beams as well as frameworks. Advantages of the DSM and its superior modelling capability
over FEM and other methods when carrying out free vibration analysis of structures are well known,
and there are some survey papers on the subject [46-49]. The DSM is essentially based on the exact
solution of the governing differential equation of a structural element when it is undergoing free natural
vibration. There are, however, many similarities between FEM and DSM. Both methods are based on
the concept of shape functions and nodes of a structure. Notably, DSM uses the frequency-dependent
exact shape functions obtained from the solution of the governing differential equation as opposed to
the frequency-independent assumed or chosen shape functions used in FEM. The procedure to assemble
properties of individual structural elements to form the overall matrix is essentially the same. However,
there are some significant differences between FEM and DSM. For instance, when solving free
vibration problems, the mass and stiffness matrices of individual elements are assembled separately in
FEM to form the overall mass and stiffness matrices of the final structure. By contrast, in DSM, there
is only one frequency-dependent matrix called the dynamic stiffness matrix containing both the mass

and stiffness properties of the element, which is assembled to form the overall dynamic stiffness matrix
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of the final structure. The other striking feature which distinguishes the two methods is the solution
technique for the eigenvalue problem yielding the natural frequencies of a structure. FEM generally
leads to a linear eigenvalue problem whereas the DSM leads to a non-linear eigenvalue problem
generally solved using the Wittrick-Williams algorithm [50]. As all the assumptions made in DSM are
within the limits of the governing differential equations, the results from DSM are usually designated
as exact and they are independent of the number of elements used in the analysis. Thus, unlike FEM,
further discretization of a structure in DSM is not needed unless there is a change in the geometry or
material properties. For instance, a single structural element can be used in DSM to compute any
number of natural frequencies of a beam or a plate to any desired accuracy, which of course, is
impossible in FEM. Basically, DSM accounts for an infinite number of degrees of freedom of a freely
vibrating structure whereas FEM being restricted to a selected number of degrees of freedom at the
nodes, does not. For standard structures like beams and plates, DSM gives the same results as the
classical theories based on governing differential equations. A secondary purpose of this paper is to
assess the accuracy and reliability of existing methods in free vibration analysis of beams and
frameworks, essentially by comparison with DSM.

The paper is organised as follows. Following this section on Introduction, Section 2 provides the
underlying theory of the paper with subsection 2.1 focusing on the derivation of the governing
differential equation of the beam using higher order shear deformation theory. Starting from the choice
of the displacement field, the potential and kinetic energies of the beam are formulated, and Hamilton’s
principle is applied to derive the governing differential equations and associated natural boundary
conditions, when the beam is undergoing free vibration. Following this, in subsection 2.2, the
differential equations are solved in an exact sense to obtain the expressions for axial displacement,
flexural displacement, bending rotation and the first derivative of the flexural displacement. The
expressions for shear force, bending moment and the higher-order moment are obtained from the natural
boundary conditions resulting from the Hamiltonian formulation. Then in subsection 2.3, the dynamic
stiffness matrix is developed by relating the force vector comprising shear force, bending moment and
the higher-order moment to the displacement vector comprising flexural displacement, bending rotation
and the first derivative of the flexural displacement. In Section 3, the application aspects of the dynamic
stiffness matrix are briefly covered, explaining how the dynamic stiffness matrix in axial motion can be
incorporated into the derived dynamic stiffness matrix in flexural motion. The use of the transformation
matrix is outlined to enable free vibration analysis of frameworks to be made. Also, the solution
technique for the free vibration analysis is briefly described by referring to the Wittrick-Williams
algorithm. Section 4 deals with numerical results and discussion and finally, conclusions are drawn in

Section 5.



2. Theory

In a Cartesian coordinate system, Fig. 1 shows a rectangular cross-section beam of length L, width
b and height or depth /4, respectively so that the area 4 and the second moment of area / of the beam
cross-section are respectively, bk and bh*/12. The flexural displacement is assumed to take place in the
YZ plane with the Y-axis coinciding with the centroidal axis of the beam. If the Young’s modulus and
the density of the beam material are £ and p, the flexural rigidity and the mass per unit length of the
beam are EI and pA, respectively. Based on these beam parameters, and using linear small deflection
assumption, the governing differential equations of motion of the beam in free vibration using higher

order shear deformation theory are derived as follows.

z .
/@h )
| b
//9‘):_-_- PR L A 'T?/
|

e

e
P!

L !

Fig. 1 Beam coordinate system and notation

2.1 Derivation of the Governing Differential Equations

Referring to Fig. 1, the displacement field for the higher order shear deformation theory of the beam
can be written as [27, 28, 35]

2
= _*(z '
v-z[@ 2 () (9+w)] (1)
where W(y, z, f) and w(y, z, ) are the displacement of the beam centreline (or the neutral axis) in the ¥
and Z-directions, at a distance y from the origin, &y, z, f) is the bending rotation, i.e., rotation of a

normal to the axis of the beam, and a prime represents partial differentiation with respect to y.

Using Eq. (1), the normal strain &, and the shearing strain y, at a point (y, z) on the cross-section are

given by
o ;o a(z\? ., "
s=£=z{9 —2E) @ +w )} @)
_ov | dw p _4z%
y—a—z+5—(9+w)(1 =) 3)

The potential or strain energy U of the beam can then be written as

1 1
U= JIf, oedxdydz + > JIf, tvdxdydz )



Noting that o= E¢ and 7=GY, the variation §U of the potential energy U of Eq. (4) becomes

8U = [ff, Eededxdydz + [ff, GySydxdydz (5)

With the help of Eqs. (2) and (3), 8¢ and §y can be written as

Se = 2{89’ - " (56" + 5w")} (6)
2

5y = (60 + 6w (1-3%) 7)

Substituting Egs. (6) and (7) into Eq. (5) and noting that the triple integral reduces to a single integral
along the length coordinate when integrated over the uniform rectangular area of cross-section of the

beam, we obtain

SU = EI f; [9'59' (6" +W'")80" +0'(80" + 6w")} + - (8" + w'")(86' + 6w”)] dy +

= GA [y(6 +w") (86 + sw")dy (8)
The kinetic energy T of the beam shown in Fig. 1 is given by [28]
T = % [f, p(¥? +w?) dxdydz 9)

where an over dot denotes partial differentiation with respect to time ¢.

From Eq. (1), the partial time derivative of v, i.e., the ¥ term of Eq. (9) is given by

b=2{0— (0 +w")) (10)

Substituting Eq. (10) into Eq. (9) and noting that its triple integral reduces to a single integral along
the length coordinate for a uniform beam such as the one shown in Fig. 1 of rectangular cross-section

with area 4, we obtain

T——pAf Ww2dy + = prOT.Se dy Ifo 1059‘” dy + = plf —w “dy (11)

The variation of the kinetic energy 8T is thus given by

oT = pAf w6wdy+p1f —959dy— If —95wdy pr 2 W'86 dy +

0 105

pl fo S W'ew'dy (12)
Hamilton’s principle states
5 fff(T —V)dt=0 (13)
or,
J;28Tde — [;*8Vde = 0 (14)

where #; and #, are the time interval of the dynamic trajectory, and J'is the usual variational operator.
The governing differential equations of motion of the beam in free vibration are now derived by
substituting o7 and oV from Egs. (12) and (8) into Eq. (14) and then using the & operator and next
integrating by parts and finally collecting terms. In an earlier publication, the entire procedure to
generate the governing differential equations of motion and natural boundary conditions for bar or beam

type structures using Hamilton’s principle, was automated by Banerjee et al. [51] through the
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application of symbolic computation. In this way, the governing differential equations of the beam and
the natural boundary conditions giving expressions for the shear force (s), bending moment (m) and
higher order moment (), using higher order shear deformation theory are obtained as follows.

Governing Differential Equations:

_ . 1 . 16 qr 1 " 16 m o, 8 nm, 8 r_
pAW + 21pIW —105p19 21EIW * 7oz EI0"" + s GAw" + = GAG' =0 (15)
68 . 16 .., 68 y 16 m_ 8 8 .

Natural Boundary Conditions:

1 lu_ﬁ II_E /_i i "_i e !
Shear Force: s = ZEIW o EIf = GAw = GAO + 105p149 2ijIW a7
. 16 i 68 ,
Bending Moment: m = 1—05EIW - 1—05E19 (18)
Higher Order Moment: m = %EIH’ - 2—11E1W” (19)

Note that in Eq. (18) of [35], there is a sign error in that the last term within the parenthesis should
be — %AI p?w* instead of + %AI p%w*. Also, the expressions for bending moment M and higher
order moment M}, in Egs. (22) and (23) of [35] should be interchanged. It should be also noted that if

the nonlinear terms of [28] are dropped, the governing differential equations and the natural boundary

conditions given by Eqgs. (15)-(19) above, agree with those given in [28] except that there are some

typographical errors in [28] as follows. In the fourth term of Eq. (5) in [28], — %E [ should be — %E I

2
and in the essential boundary conditions for w in Eq. (7), the term — 2—11E 1 ZTVZV should be — 2—11 El ZT‘Z

and the minus sign in front of p/ should be a plus sign.
2.2 Solution of the governing differential equation
For harmonic oscillation with circular or angular frequency @ rad/s, w(y, ) and &y, ¢) of Egs. (15)-
(19) can be expressed as
w(y,t) = W(y)e'™; 0(y,t) = 0(y)e'* (20)
where W(y) and ©(y) are the amplitudes of flexural displacement and bending rotation, respectively.
Substituting Eq. (20) into Egs. (15) and (16) and introducing the non-dimensional length parameter

& where &= x/L, give the following two ordinary differential equations

(=5 EID* = (5= plw?L? = = GAL?) D? + pAw? L} W + S EILD® + (2= plw? +

105 105
8 3 _
1—SGA)L D}@_o @1
_ 16 3_ (16 272, 8 2 68 2, (68 2 _ 8 Na
{ 8 EID (wsplw L2 + = GAL )D}W n {mSEILD + (105p1w 15c;A)L }@ -
(22)
where
d
= (23)



Equations (21) and (22) in which the shear modulus (or the modulus of rigidity) G for isotropic

material can be replaced by v being the Poisson’s ratio, and then they can be combined into a

2(1+v)’

6™ order ordinary differential equation which is identically satisfied by both W and @ as follows.

(D® + C,D* + C,D? + C3)H =0 (24)
with

H=Wor® (25)
where

C; = 2b%r*(1 +v) — 35}/{r?(1 +v)} (26)

C, = b?{b*r*(1 +v) — 85v — 120}/(1 +v) (27)

C3 = 5b%{7 — 17b*r*(1 + v)}/{r?(1 + v)} (28)
with

b2=$; r2=— (29)

The solution of the differential equation (Eq. (24)) can be sought in the form

H = e* (30)

Substituting Eq. (30) into Eq. (24) yields the auxiliary (or characteristic) equation as

A4+ CAY+C22+C3=0 (31)

The sixth order polynomial equation above can be expressed as a cubic equation to give

ud+ Ciu? +Cou+C3=0 (32)
where

p=+Va (33)

The three roots u (and hence the six roots 1) can now be determined using standard root finding
procedures [52].
Thus, the solutions for # and © (which are both denoted by H, see Eq. (25)) can be written as

W =30, 4; ¢ (34)
0 =3°,B et (35)
where 4; j=1; 2; . . . ; 6) are the six roots of Eq. (31) and 4; and B; are two different sets of six constants.

By substituting Egs. (34) and (35) into Eq. (21) and using Eq. (29), it can be shown that the constants

A; and B; are related as follows.

B; = (a;/L)4; (36)
where
_ 5(1+v)r2/1‘}+{5b2r4(1+v)—28)}/1?—105(1+v)b2r2 37
J 16(1+v)r2A3+{16(1+v)b2r*+28}1; (37)
Using Eq. (34), the first derivative W' of the flexural displacement is given by
W' =E51 44, e (38)



Now, with the help of Egs. (17)-(19), and substituting Eq. (29), the expression for the amplitudes

of shear force S, bending moment M, and higher order moment M are now given by

S =%, fA;eMt (39)
M =35, 9;4;eM¢ (40)
M =3%_,—hiA;e* (41)
where
3 _ 56  _ep2..2]_ 2 [ 56 2.2
fi= 105L3 [SA {2(1+v)r2 Sb7r } 16a;4; {2(1+ )r2 +16b%r }af] (42)
gj = 105L2 (1627 — 68a;4;) (43)
hj = 105L2 (527 — 16a;4;) (44)

2.3 Dynamic stiffness matrix formulation

By relating the amplitudes of forces and moments given by Egs. (39)-(41) to the amplitudes of
displacements and rotations given by Egs. (34), (35) and (38), the dynamic stiffness matrix is now
formulated. This is achieved by applying the boundary or end conditions of the beam.

Referring to Fig. 2, the boundary or end conditions for displacements and rotations are

Atend 1, y=0 (&0): W=W,, ®=0, and W' = W (45)
Atend 2, y=L (&1): W=W>, @=0,and W' = W, (46
W] WZ
0, o,
w; W,
$=0 g=1

Fig. 2. Boundary or end conditions for displacements and rotations

Substituting Egs. (45) and (46) into Egs. (34), (35) and (38) gives the following matrix relationship

1 1 1 1 1 1
17 - e . O
W, L L L L L L Aq
0, Mok A Ak A |4
Wl’ L L L L L L As
W = eﬂ-l eﬂ-z 823 824 eAS elﬁ A (47)
2 4
@2 ale’ll aze’12 a3e’13 a4e’14 aseAS a_'ﬁe)L6 AS
W/ L L L L L L
Sr2- /119’11 /129’12 /13e)“3 /14e’14 /15e’15 /16e’16 6
- L L L L L L
or,
8§ =QA (48)

where 0 is the displacement vector, A is the constant vector and Q is the square 6x6 matrix in Eq. (47).



Now, referring to Fig. 3, the boundary or end conditions for shear forces, and moments are

Atend 1, y=0 (£&-0): $=S), M=M; and M = M,
Atend 2, y=L (&1): §=-S,, M=-M, and M = —M,
S] Sj:-
4

il [ (1}

Sk
(¢

M,
£=0 o=1

Fig. 3. Boundary or end conditions for forces and moments

Substituting Egs. (49) and (50) into Egs. (39)-(41) gives the following matrix relationship

'S [ A f2 f3 fa fs fe 1A,
M; 91 92 93 94 9s Ye A,
Ml _hl —hz _h3 —h4 —hs _h6 A3
s, |~ —fiet —fretz —fre?s —fiet —frets —fiets Ay
M| |—giet1—g,e*2—gseti—g,et—gse’s—gee’s || As
IM,1 [ hje*r hj,e?2 hge?s hyets hge?s hgels | lAsj
or,
f =RA

The constant vector, A can now be eliminated from Egs. (48) and (52) to give

f =RQ 186 = K8
where
K=RQ!

is the required dynamic stiffness matrix.

(49)
(50)

(1)

(52)

(53)

(34)

Thus, the force-displacement relationship at the nodes of a beam using higher order shear

deformation theory is given by

(517 [kiikizkiskiakiskie][Wh) [ W11
1‘:11 kiz2kzzkazkoakaskoe || ©1 0,
M, _ kiskaskssksaksskse ||WH _ [k11 k12] wy
S2 kiskoaksakaaksskse || W2 ka1 Kl (W:
M, kiskasksskasksskse || ©2 0
M1 Lkigkagksekacksekesd LW; LW,

where ki1, K12, k21 and Ka» are each 3x3 submatrices and ka; is the transpose of kia.

(35)

When computing the dynamic stiffness matrix K of (54), it should be noted that the roots A and x of

Egs. (31) and (32) can be complex and therefore, the elements of matrices Q and R of Egs. (48) and

(52) can also be complex. Therefore, the matrix inversion and multiplication steps of Eq. (54) must be

carried out using complex arithmetic. The resulting dynamic stiffness matrix K will, of course, be

symmetric and real, with imaginary parts of each element being zero. Now the dynamic stiffness matrix
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in axial or longitudinal motion which is readily available in the literature [53, 54, 55] and is uncoupled
from flexural motion, can be incorporated into the dynamic stiffness matrix K in flexural motion derived
above so that the free vibration analysis of frames can be carried out. The force-displacement
relationship using the dynamic stiffness matrix of a beam element in axial or longitudinal vibration with
the amplitudes of axial forces and displacements at nodes 1 and 2, being F, F> and Vi, V>, respectively,

is given by [53, 54, 55]

A=l alll 69
where
alz%ﬁcotﬂ; azz—i—Aﬁcosecﬁ 57)
with

i — oL 24
p=oL 2 (59)

The dynamic stiffness matrix in axial motion given by Eq. (56) when incorporated into the dynamic

stiffness matrix in flexural motion given by Eq. (55), leads to

(P11 [aq, 0 0 0 0 0 077V1] V1
S1 0 ki1kizkq3 0 kiakiskie Wy Wy
Alll 0 kizkazkas 0 koakoskse || ©1 0,
My | _| 0 kaskaskss 0 kaaksskse || W | _ [Kll K12] wy (59)
F, €20 0 0% 0 0 0 ||V, Ko1 Kaz2l| Va2
S, 0 kigkogkss O kygkaskae || Wo W,
M, 0 kiskoskss O kasksskss || ©2 0,
M,] L 0 kikackse 0 kagksekee LW, ] (W3]
where
a; 0 0 0 e, 0 00 a; 0 0 0
K.. = 0 k11ki2ks3 ) _ 0 k1akiskie Ko = 0 kaakaskae (60)
7 0 kygkookas|” 712 7 | Okyskaskae | 722 7 | 0 kysksskse
0 ky3ka3kss 0 k3skszskse 0 kagksekes

and K5 can be obtained by taking the transpose of Ki».

3. Application of the theory

The dynamic stiffness matrix developed above, can now be used to compute the natural frequencies
and mode shapes of either a single beam or an assembly of beams, e.g., a framework. However, to apply
the theory to a framework, the dynamic stiffness matrix of Egs. (59) and (60), developed for an
individual beam element in its local coordinates must be transformed into global (or datum) coordinates.

Figure 4 shows the local (YZ) and global (Y Z) coordinate systems of a beam element with the local
Y-axis making an angle ¢ with the global Y-axis (measured positive anticlockwise). The transformation
matrix T to transform the submatrices K, Ki», K»; and K of Egs. (59) and (60) from local coordinates

to global (or datum coordinates) is given by [54, 55]
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cos¢p singp 0 0

_|—sing cos¢p 0 O
T= 0 0 1 0 (61)
0 o 0 1

The transformed stiffness matrices K;, K;, and K5, in global coordinates are [54, 55]
Ky, = TTK,,T; Ky, = TTK, T; Ky = TTK,, T (62)

where the upper suffix of T denotes a transpose and K,; is KJ,.

Fig. 4. Local and global coordinate system of a beam element

The transformed stiffness matrices K;;, Ky, K,; and K,, can now be used to form the overall
dynamic stiffness matrix of a frame in the global or datum coordinate system.

Once the overall global dynamic stiffness matrix K of a frame is formed, the Wittrick-Williams
algorithm [46-50] can be used as a solution technique to compute the natural frequencies and the
subsequent recovery of the mode shapes of the frame. The Wittrick-Williams algorithm has widespread
coverage in the literature with literally hundreds of papers published on the subject, see for example
[46-50]. In many ways, the dynamic stiffness method and the Wittrick-Williams algorithm are
permanently entangled with each other, as evident from the literature. The working principle of the
algorithm is essentially based on two factors which govern the solution technique. These factors known
as (1) the sign-count s{Kp} and (ii) the j, count, and their use are briefly explained below.

If o denotes the circular (or angular) frequency of a vibrating structure, then according to the
Wittrick-Williams algorithm, j, the number of natural frequencies passed, as @ is increased from zero
to @, is given by

J=Jjot s{Kb} (63)
where Kp, the overall dynamic stiffness matrix of the final structure whose elements all depend on ,
is evaluated at o= @"; s{Kbp}, the sign count, is the number of negative elements on the leading
diagonal of Kp?®, Kp”is the upper triangular matrix obtained by applying the usual form of Gauss
elimination to Kp , and jo is the number of natural frequencies of the structure still lying between @ =0
and w =" when the displacement components to which Kp corresponds are all zeros. (Note that the
structure can still have natural frequencies when all its nodes are clamped, because exact member
equations allow each individual member to displace between nodes with an infinite number of degrees

of freedom, and hence an infinite number of natural frequencies between nodes.) Thus

Jo=2. Jn (64)
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where j,, is the number of natural frequencies between @ = 0 and @ =@" for a component member with
its ends fully clamped, while the summation extends over all members of the structure. The clamped-
clamped natural frequencies of an individual member are given by the determinant of its dynamic
stiffness matrix given by Eq. (59). Thus, with the knowledge of Egs. (63) and (64), it is possible to
ascertain how many natural frequencies of a structure lie below an arbitrarily chosen trial frequency.
This simple feature of the algorithm (coupled with the fact that successive trial frequencies can be
chosen to bracket a natural frequency) can be used to converge upon any required natural frequency to

any desired accuracy.

4. Results and discussion

The theory developed above is now applied for free vibration analysis of five illustrative examples
of different types. The first illustrative example is taken from Carrera et al [34] which is that of a
cantilever beam with solid rectangular cross-section. The authors of [34] have used Carrera Unified
Formulation (CUF), Timoshenko-Ehrenfest and Bernoulli-Euler beam theories and a 3D finite element
analysis and made comparative assessments of results. Notably CUF has the unique feature to account
for the cross-sectional deformation of the beam, i.e., the deformation in the XZ-plane of Fig. 1. The
CUF formulation achieves this by choosing the allowable displacement field as a combination of
functions of x and z of the beam cross-section as well as functions of y in the lengthwise direction (see
Fig. 1 and [34]). The width (b) and depth or height (/) of the beam cross-section are 1m and 0.1m,
respectively and the length L of the beam is 10m, as given in [34]. The material properties of the beam
are that of aluminum with Young’s modulus £ = 69 MPa, density p = 2700 kg/m* and Poisson’s ratio
v=0.33 [34]. The first four natural frequencies f; (i = 1, 2, 3 and 4) in Hz of the cantilever beam were
computed using the present theory and the results are shown in Table 1 alongside the results reported
in [34]. The results from the present theory are in excellent agreement with the CUF theory,
Timoshenko-Ehrenfest theory and 3D finite element results, the discrepancy being less than 1.5%. Note
that the results for the Timoshenko-Ehrenfest beam theory shown in Table 1 were computed using the
exact frequency dependent mass and stiffness matrices derived by the current author in a recently
published paper [53] as well by using the published program of [55]. It should also be noted that unlike
the 1°, 2" and 4™ natural frequencies which correspond to in-plane free vibration of the beam in the
YZ-plane (see Fig. 1), the 3™ natural frequency corresponds to an out of plane natural frequency for
which the free vibratory motion takes place in the XY-plane (see Fig. 1). The mode shapes for the first
four natural frequencies using the higher order shear deformation theory developed in this paper are
illustrated in Fig. 5, showing flexural displacement /¥, bending rotation ® and the first derivative of the
flexural displacement W' in each mode. From the mode shapes, it may be noted that the bending rotation
O and the first derivative of the flexural displacement W' in each of the four mode shapes are almost

equal and opposite of each other, which leads to the assertion that the shearing strain in these modes is

13



almost zero which is in accord with Eq. (3). This is to be expected for a beam [34] of this type which

has a slender ratio (defined as the length over the radius of gyration of the beam cross-section, i.e., in
the usual notation L/./I/A ) approaching 350, for which the shearing strain is not expected to have any

major effect.

Table 1 Natural frequencies of a cantilever beam

Frequency Natural frequency fi (Hz)
No (i) Present | TEBT [53] | CUF [34] | 3D FEM [34]
1 0.8165 0.8165 0.8255 0.8325
2 5.1148 5.1151 5.1702 5.2142
3 8.1014 8.1090 8.1443 8.0181
4 14.310 14.3156 14.4193 14.5998

Table 2 Natural frequencies of a simply-supported beam

Frequency Natural frequency w; (rad/s)
No (i) Present | TEBT [24, 53, 55] BEBT [24]
1 6916.02 | 6838.83 (1.12%) 7368.07 (6.54%)
2 23949.7 | 23190.8 (3.17%) 29472.2 (23.1%)
3 40622.3 | 43443.5 (6.94%) 66312.7 (63.2%)
4 45734.9 | 64939.2 (42.0%) 117889.1 (158%)

£,=0.8165 Hz

T ¢ emmme ¢ e ¢ m— e em—

1
0 0.25

g 05

Fig.5 Mode shapes of a cantilever beam using present theory
w, ———-0; ——- =W

The second illustrative example is that of a Timoshenko-Ehrenfest beam reported by Chen et al. [24]
and Banerjee [53]. The beam material properties are Young’s modulus £ = 210 GPa, density p = 7850

kg/m? and Poisson’s ratio v=1/3. The shear modulus G was calculated by relating it to £ through the
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Poisson’s ratio vto give G = 3E/8 [24]. The beam is of rectangular cross-section with width 5 = 0.02m,
depth or height 2 = 0.08m and it has a length L = 0.4m. The shear correction factor (also known as shape
factor) was set to k = 2/3 as used in [24, 53] when computing the results by using the Timoshenko-
Ehrenfest beam theory [53, 55]. The Bernoulli-Euler beam theory (BEBT) results were obtained using
the published program of Williams and Howson [54]. This example was chosen because unlike the
previous example in which the beam had a slenderness ratio of around 350, this example beam, by
contrast, has a slenderness ratio of around 17. Thus, there are significant differences between the two
examples so that the results can be compared and contrasted to demonstrate the correctness and accuracy
of the theory. Table 2 shows the results for the first four in-plane natural frequencies of the beam with
simple-supported (S-S) boundary conditions, using the present HSDT theory, Bernoulli-Euler beam
theory (BEBT) [54] and the Timoshenko-Ehrenfest beam theory (TEBT) [24, 53, 55]. The percentage
differences in results for the first four natural frequencies using the Timoshenko-Ehrenfest beam theory
(TEBT) and the Bernoulli-Euler Beam theory (BEBT) as opposed to the present HSDT theory are
shown in the parentheses of columns 3 and 4 of the table. For the four natural frequencies quoted, the
TEBT results deviate by 1.12%, 3,17%, 6.94% and 42%, respectively whereas for the BEBT results the
deviations are by 6.54%, 23.1%, 63.2% and 158%, respectively. Clearly the differences are much larger
compared to the previous example due mainly to the low slenderness of the beam.

The third illustrative example is taken from a recently published paper [45] which deals with the
free vibration analysis of cracked beams by applying the finite element method based on the Reddy
beam theory [28] which in fact is the higher order shear deformation theory used in this paper. This
example is chosen because the paper [45] uses the same displacement field as that of the present paper
to describe the normal and shear stress and strain distributions of the beam but relies on the finite
element method as opposed to the dynamic stiffness method of the present paper. Of course, both
methods dispense with the so-called shear correction factor, generally employed in the Timoshenko-
Ehrenfest beam theory [5-16]. Although the authors of [45] focused their attention on cracked beams,
they, nevertheless, presented results for the degenerate case for the intact beam, i.e. when the crack was
absent. The results for the first four natural frequencies for clamped-simply supported boundary
condition of the beam using the present theory are shown in Table 3 together with the results reported
in [45]. To be consistent with the results given in [45], the non-dimensional frequency parameter 4; (i

=1, 2, 3, 4) is used, where
T 4 wszL4
7= (65)

Results using the Bernoulli-Euler and Timoshenko-Ehrenfest beam theories (BEBT and TEBT) were

obtained using the published programs of [54] and [55], which are also shown in Table 3 in non-
dimensional form. As can be seen, the results from the present theory are in close agreement with those

of [45] which applied finite element method but used higher order shear deformation theory based on
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the same displacement field as the present paper. However, the results from the Timoshenko-Ehrenfest
beam theory (TEBT) differed from the present theory by 1.5%, 2.7%, 3.6% and 4.2% in the first four
natural frequencies, respectively whereas the corresponding differences using the Bernoulli-Euler beam
theory (BEBT) are 7.1%, 16.2%, 26.1% and 35.8%, respectively. As expected, the BEBT which ignores

the effects of shear deformation, gives relatively large errors in the natural frequencies.

Table 3 Natural frequencies of a clamped-simply supported beam

Frequency . ) = 4|wZpAL*
No (i) Non-dimensional natural frequency 4; = / o

Present | Ref [45] TEBT [55] | BEBT [54]
1 3.6662 | 3.6710 3.6124 3.9266
2 6.0814 | 6.0957 5.9185 7.0686
3 8.0990 | 8.1237 7.8108 10.210
4 9.8313 | 9.8662 9.4176 13.352

The next example is that of a portal frame shown in Fig. 6. This problem was investigated earlier by
Banerjee [56] and Doyle [57], in a very different context. Each beam member of the portal frame of
Fig. 6 is considered here to be solid rectangular cross-section of width (breadth) 0.0374m and depth
(thickness) 0.210m. The length L is set to Sm. The material properties used are that of steel with Young’s
modulus £=200 GPa, and density p= 7500 kg/m? so that the axial or extensional and flexural rigidities
and the mass per unit length are worked out to be £4A=1.5708x10° N, EI=5.7727x10° Nm?, and pA=
58.905 kg/m, respectively. The Poisson’s ratio is taken to be 1/3. The first six natural frequencies of the
portal frame are shown in Table 4 using the present theory as well as the Timoshenko-Ehrenfest [53]
and Bernoulli-Euler [54] beam theories. The results using the present theory are close to those of the
Timoshenko-Ehrenfest theory, but the Bernoulli-Euler theory caused a small difference with maximum
discrepancy of around 2% in the sixth natural frequency. This is expected because the slenderness ratio
of each of the frame members is around 80. Doyle [57] quoted the fundamental frequency of the frame,

which in current form is 2.649, close to the present theory.

-

——aC
N

1.5L !

Fig.6 A portal frame.
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Table 4 Natural frequencies of portal frame of Fig. 6

Fric\?;l ?ir;cy Non-dimensional natural frequency w; = %
Present TEBT [55] BEBT [56]
1 2.6585 2.6585 2.6644
2 6.7843 6.7842 6.8087
3 16.840 16.839 16.949
4 18.924 18.923 19.108
5 25.301 25.299 25.606
6 42.585 42.583 43.222

The final example is a portal frame containing inclined members as shown in Fig. 7. The member
properties and the length L are taken to be the same as those of the portal frame in the previous example.
The first six natural frequencies of the portal frame computed using the present theory as well as by the
Timoshenko-Ehrenfest and Bernoulli-Euler theories, are shown in Table 5. As was the case with the
previous portal frame, the results from the present theory are in excellent agreement with those obtained
from the Timoshenko-Ehrenfest beam theory (TEBT), but the Bernoulli-Euler beam theory (BEBT)
yielded a small difference of around 3% in the sixth natural frequency. The small difference in the

results is because each member of the portal frame of Fig. 6 has a slenderness ratio more than 80.

Yuus
0.75L 0.75L |
1 | 1

Fig.7 A portal frame with inclined members
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Table 5. Natural frequencies of a portal frame of Fig. 7

Fr;?; ?ir;cy Non-dimensional natural frequency w; = wzg ;wl
Present TEBT [55] BEBT [56]
1 2.0734 2.0733 2.0768
2 5.1463 5.1462 5.1603
3 11.678 11.678 11.731
4 14.704 14.703 14.803
5 21.859 21.857 22.100
6 22.863 22.862 23.082

5. Conclusions

Using higher order shear deformation theory, the dynamic stiffness method is developed for free
vibration analysis of beams and frameworks. The unique feature of the dynamic stiffness method in
which exact member theory resulting from the solution of the governing differential equations of motion
is applied when developing the theory and subsequently obtaining the results. Comparative results for
the natural frequencies using Timoshenko-Ehrenfest and Bernoulli-Euler theories are also presented.
Representative mode shapes are illustrated. The accuracy and robustness of the theory are demonstrated
by numerical results which showed excellent agreement with published results in the literature. The
extension of the higher order shear deformation theory for free vibration analysis of frameworks using

the dynamic stiffness method is entirely novel and is an important contribution to the literature.
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