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Abstract 

  The dynamic stiffness method for free vibration of beams and frameworks is developed using a 

higher order shear deformation theory. Starting with the displacement field, the potential and kinetic 

energies of the beam in flexural vibration, are first formulated. Then, Hamilton’s principle is applied to 

derive the governing differential equations and associated natural boundary conditions. Next, the 

differential equations are solved to obtain the expressions for flexural displacement, bending rotation 

and the first derivative of the flexural displacement. The expressions for the shear force, bending 

moment and the higher-order moment are obtained from the natural boundary conditions resulting from 

the Hamiltonian formulation. Finally, the force vector comprising the amplitudes of the shear force, 

bending moment and the higher-order moment is related to the amplitudes of the displacement vector 

comprising the flexural displacement, bending rotation and the first derivative of the flexural 

displacement through the frequency-dependent dynamic stiffness matrix. The dynamic stiffness matrix 

for axial motion which is uncoupled from the flexural motion is now implemented to the dynamic 

stiffness matrix in flexural motion to analyse individual beams and frameworks for their free vibration 

characteristics by applying the Wittrick-Williams algorithm. Illustrative examples are given, and 

significant conclusions are drawn.  
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1. Introduction 

  The earliest beam theory that we know of, was developed in the eighteenth century by Euler and 

Bernoulli [1, 2]. The theory envisioned by them was an enormous leap in imagination which has 

endured the test of time remarkably well, and is still being used satisfactorily, even to this day. The 

theory, known as the Bernoulli-Euler or Euler-Bernoulli beam theory, was further improved about a 

century later by Lord Rayleigh [3] who included the effect of the rotatory inertia of the beam cross-

section which improved the accuracy of results, and this was demonstrated by Searle [4]. This relatively 

unknown Rayleigh-beam theory was overshadowed by the theory developed by Timoshenko and 

Ehrenfest in the earlier part of the twentieth century [5, 6] when they considered both the effects of 

rotatory inertia and shear deformation and advanced the Bernoulli-Euler beam theory significantly. The 

rest is essentially an impactful history which is a continuing account of the applications and 

developments of the Timoshenko-Ehrenfest beam theory. It is no exaggeration that the Timoshenko-

Ehrenfest beam theory has featured in literally thousands of papers in the literature. However, it is well-

known that one of the critical assumptions associated with the Timoshenko-Ehrenfest beam theory is 

that the theory relies on uniform shear stress distribution through the thickness of the beam cross-

section, which does not satisfy the zero shear stress condition on the outer surface of the beam, but 

nevertheless, the theory takes some partial account of the non-uniform shear stress distribution on an 

ad-doc basis, by introducing a shear correction factor (also called shape factor). Based on this idea of 

using the Timoshenko-Ehrenfest beam theory using a rather fictitious shear correction factor [7], 

numerous publications on the free vibration behaviour of Timoshenko-Ehrenfest beams can be found 

in the literature. A small sample of the literature, showing significant applications of Timoshenko-

Ehrenfest beam theory, can be found in [8-26] in chronological order. A literature survey also shows 

that there are many investigators who have been seemingly uncomfortable with the Timoshenko-

Ehrenfest beam theory because of the assumption of unform shear stress distribution through the cross-

section and the subsequent introduction of a somewhat arbitrary shear correction factor on an ad hoc, 

and perhaps on an improvised basis to rectify the anomaly of non-zero shear stress condition on the 

outer surface of the beam. They challenged the shear correction factor assumption. Therefore, the search 

for refined beam theories which dispense with the so-called shear correction or shape factor, continued 

relentlessly since the emergence of Timoshenko-Ehrenfest beam theory. Notable contributors in this 

endeavour include Levinson [27], Heyliger and Reddy [28], Kosmatka [29], Huang et al. [30], Nolde 

et al. [31], Xie et al. [32], Simsek and Kocaturk [33], amongst others, who have used higher order shear 

deformation theories based on the mathematical theory of elasticity. Carrera et al. [34] made an 

objective assessment of several refined beam theories including the first author, Carrera’s own theory, 

called the Carrera Unified Formulation (CUF). The authors of [34] drew many useful conclusions, 

evaluating each theory on its intrinsic merit, and highlighting each theory’s suitability, advantages and 

disadvantages in different applications. However, the literature on the application of the dynamic 
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stiffness method in conjunction with higher order shear deformation theory for free vibration analysis 

of beam is scarce, with only a couple of research papers appears to have been published in the open 

literature [35, 36]. The purpose of this paper is to redress this imbalance by developing a new dynamic 

stiffness theory for beams by using higher order shear deformation theory (HSDT) and extending the 

earlier research significantly. Some of the errors in the published literature are also rectified. One of the 

main contributions made in this paper is the application of higher order shear deformation theory for 

beams to free vibration analysis of frameworks. This is against the background that earlier research was 

predominantly confined to individual beams rather than frameworks. It should be noted that in recent 

years, the developments of advanced beam theories have taken numerous turns, particularly when 

dealing with composite, functionally graded, cracked, micro and nano beams [37-45]. 

As stated by many of the above investigators, one of the great advantages of using a higher order 

shear deformation theory in free vibration analysis of beams or frameworks is that it dispenses with the 

so-called shear correction factor generally adopted in the Timoshenko-Ehrenfest beam formulation to 

account for the non-uniform shear stress distribution through the thickness of the beam cross-section. 

A higher order shear deformation theory overcomes this limitation. With this pretext, it should be noted 

that when carrying out the free vibration analysis of structures, the dynamic stiffness method (DSM) 

which is called an “exact” method is a powerful alternative to the conventional finite element method 

(FEM) and other methods. Publications relating to the application of the dynamic stiffness method to 

solve the beam vibration problem very accurately, using HSDT are indeed scarce. Furthermore, most 

of the published literature deals with the free vibration behaviour of individual beams using higher order 

shear deformation theory, but an extension of the theory for applications to frameworks is an open area 

of research, apparently not undertaken by investigators earlier. This paper is intended to fill this gap in 

the literature by developing the dynamic stiffness matrix of a beam using HSDT and then applying it to 

individual beams as well as frameworks. Advantages of the DSM and its superior modelling capability 

over FEM and other methods when carrying out free vibration analysis of structures are well known, 

and there are some survey papers on the subject [46-49].  The DSM is essentially based on the exact 

solution of the governing differential equation of a structural element when it is undergoing free natural 

vibration. There are, however, many similarities between FEM and DSM. Both methods are based on 

the concept of shape functions and nodes of a structure. Notably, DSM uses the frequency-dependent 

exact shape functions obtained from the solution of the governing differential equation as opposed to 

the frequency-independent assumed or chosen shape functions used in FEM. The procedure to assemble 

properties of individual structural elements to form the overall matrix is essentially the same. However, 

there are some significant differences between FEM and DSM. For instance, when solving free 

vibration problems, the mass and stiffness matrices of individual elements are assembled separately in 

FEM to form the overall mass and stiffness matrices of the final structure. By contrast, in DSM, there 

is only one frequency-dependent matrix called the dynamic stiffness matrix containing both the mass 

and stiffness properties of the element, which is assembled to form the overall dynamic stiffness matrix 



4 
 

of the final structure. The other striking feature which distinguishes the two methods is the solution 

technique for the eigenvalue problem yielding the natural frequencies of a structure. FEM generally 

leads to a linear eigenvalue problem whereas the DSM leads to a non-linear eigenvalue problem 

generally solved using the Wittrick-Williams algorithm [50]. As all the assumptions made in DSM are 

within the limits of the governing differential equations, the results from DSM are usually designated 

as exact and they are independent of the number of elements used in the analysis. Thus, unlike FEM, 

further discretization of a structure in DSM is not needed unless there is a change in the geometry or 

material properties. For instance, a single structural element can be used in DSM to compute any 

number of natural frequencies of a beam or a plate to any desired accuracy, which of course, is 

impossible in FEM. Basically, DSM accounts for an infinite number of degrees of freedom of a freely 

vibrating structure whereas FEM being restricted to a selected number of degrees of freedom at the 

nodes, does not. For standard structures like beams and plates, DSM gives the same results as the 

classical theories based on governing differential equations. A secondary purpose of this paper is to 

assess the accuracy and reliability of existing methods in free vibration analysis of beams and 

frameworks, essentially by comparison with DSM. 

The paper is organised as follows. Following this section on Introduction, Section 2 provides the 

underlying theory of the paper with subsection 2.1 focusing on the derivation of the governing 

differential equation of the beam using higher order shear deformation theory. Starting from the choice 

of the displacement field, the potential and kinetic energies of the beam are formulated, and Hamilton’s 

principle is applied to derive the governing differential equations and associated natural boundary 

conditions, when the beam is undergoing free vibration. Following this, in subsection 2.2, the 

differential equations are solved in an exact sense to obtain the expressions for axial displacement, 

flexural displacement, bending rotation and the first derivative of the flexural displacement. The 

expressions for shear force, bending moment and the higher-order moment are obtained from the natural 

boundary conditions resulting from the Hamiltonian formulation. Then in subsection 2.3, the dynamic 

stiffness matrix is developed by relating the force vector comprising shear force, bending moment and 

the higher-order moment to the displacement vector comprising flexural displacement, bending rotation 

and the first derivative of the flexural displacement. In Section 3, the application aspects of the dynamic 

stiffness matrix are briefly covered, explaining how the dynamic stiffness matrix in axial motion can be 

incorporated into the derived dynamic stiffness matrix in flexural motion. The use of the transformation 

matrix is outlined to enable free vibration analysis of frameworks to be made. Also, the solution 

technique for the free vibration analysis is briefly described by referring to the Wittrick-Williams 

algorithm. Section 4 deals with numerical results and discussion and finally, conclusions are drawn in 

Section 5.  
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2. Theory 

  In a Cartesian coordinate system, Fig. 1 shows a rectangular cross-section beam of length L, width 

b and height or depth h, respectively so that the area A and the second moment of area I of the beam 

cross-section are respectively, bh and bh3/12. The flexural displacement is assumed to take place in the 

YZ plane with the Y-axis coinciding with the centroidal axis of the beam. If the Young’s modulus and 

the density of the beam material are E and , the flexural rigidity and the mass per unit length of the 

beam are EI and A, respectively. Based on these beam parameters, and using linear small deflection 

assumption, the governing differential equations of motion of the beam in free vibration using higher 

order shear deformation theory are derived as follows. 
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                                   Fig. 1 Beam coordinate system and notation 

 

2.1 Derivation of the Governing Differential Equations 
 

Referring to Fig. 1, the displacement field for the higher order shear deformation theory of the beam 

can be written as [27, 28, 35] 

𝑣 = 𝑧 [𝜃 −
4

3
(

𝑧

ℎ
)
2
(𝜃 + 𝑤′)]          (1) 

where v(y, z, t) and w(y, z, t) are the displacement of the beam centreline (or the neutral axis) in the Y 

and Z-directions, at a distance y from the origin, (y, z, t) is the bending rotation, i.e., rotation of a 

normal to the axis of the beam, and a prime represents partial differentiation with respect to y.  

Using Eq. (1), the normal strain , and the shearing strain , at a point (y, z) on the cross-section are 

given by 

𝜀 =
𝜕𝑣

𝜕𝑦
= 𝑧 {𝜃′ −

4

3
(

𝑧

ℎ
)
2
(𝜃′ + 𝑤′′)}          (2) 

𝛾 =
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
= (𝜃 + 𝑤′) (1 −

4𝑧2

ℎ2 )          (3) 

The potential or strain energy U of the beam can then be written as 

 

𝑈 =
1

2
∭ 𝜎𝜀𝑑𝑥𝑑𝑦𝑑𝑧 +

1

2
∭ 𝜏𝛾𝑑𝑥𝑑𝑦𝑑𝑧

𝑉𝑉
         (4) 
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Noting that  = E and  =G, the variation 𝛿𝑈 of the potential energy U of Eq. (4) becomes 

𝛿𝑈 = ∭ 𝐸𝜀𝛿𝜀𝑑𝑥𝑑𝑦𝑑𝑧 + ∭ 𝐺𝛾𝛿𝛾𝑑𝑥𝑑𝑦𝑑𝑧
𝑉𝑉

        (5) 

With the help of Eqs. (2) and (3), 𝛿𝜀 and 𝛿𝛾 can be written as  

𝛿𝜀 = 𝑧 {𝛿𝜃′ −
4𝑧2

3ℎ2
(𝛿𝜃′ + 𝛿𝑤′′)}          (6) 

𝛿𝛾 = (𝛿𝜃 + 𝛿𝑤′) (1 −
4𝑧2

ℎ2 )           (7) 

Substituting Eqs. (6) and (7) into Eq. (5) and noting that the triple integral reduces to a single integral 

along the length coordinate when integrated over the uniform rectangular area of cross-section of the 

beam, we obtain 

𝛿𝑈 = 𝐸𝐼 ∫ [𝜃′𝛿𝜃′ −
1

5
{(𝜃′ + 𝑤′′)𝛿𝜃′ + 𝜃′(𝛿𝜃′ + 𝛿𝑤′′)} +

1

21
(𝜃′ + 𝑤′′)(𝛿𝜃′ + 𝛿𝑤′′)] 𝑑𝑦 +

𝐿

0

8

15
𝐺𝐴∫ (𝜃 + 𝑤′)

𝐿

0
(𝛿𝜃 + 𝛿𝑤′)𝑑𝑦          (8) 

The kinetic energy T of the beam shown in Fig. 1 is given by [28] 

𝑇 =
1

2
∭ 𝜌(𝑣̇2 + 𝑤̇2)

𝑉
𝑑𝑥𝑑𝑦𝑑𝑧          (9) 

where an over dot denotes partial differentiation with respect to time t. 

From Eq. (1), the partial time derivative of v, i.e., the 𝑣̇ term of Eq. (9) is given by 

𝑣̇ = 𝑧 {𝜃̇ −
4𝑧2

3ℎ2 (𝜃̇ + 𝑤̇′)}                     (10) 

Substituting Eq. (10) into Eq. (9) and noting that its triple integral reduces to a single integral along 

the length coordinate for a uniform beam such as the one shown in Fig. 1 of rectangular cross-section 

with area A, we obtain  

𝑇 =
1

2
𝜌𝐴∫ 𝑤̇2𝑑𝑦 +

1

2

𝐿

0
𝜌𝐼 ∫

68

105

𝐿

0
𝜃̇2𝑑𝑦 −

1

2
𝜌𝐼 ∫

32

105

𝐿

0
𝜃̇𝑤̇′𝑑𝑦 +

1

2
𝜌𝐼 ∫

1

21

𝐿

0
𝑤̇′2𝑑𝑦              (11) 

The variation of the kinetic energy 𝛿𝑇 is thus given by 

𝛿𝑇 = 𝜌𝐴∫ 𝑤̇𝛿𝑤̇
𝐿

0
𝑑𝑦 + 𝜌𝐼 ∫

68

105
𝜃̇

𝐿

0
𝛿𝜃̇𝑑𝑦 − 𝜌𝐼 ∫

16

105

𝐿

0

̇
𝜃̇𝛿𝑤̇′𝑑𝑦 − 𝜌𝐼 ∫

16

105
𝑤̇′𝛿𝜃̇

𝐿

0
𝑑𝑦 +

𝜌𝐼 ∫
1

21

𝐿

0
𝑤̇′𝛿𝑤̇′𝑑𝑦          (12) 

Hamilton’s principle states 

 𝛿 ∫ (𝑇 − 𝑉)
𝑡2

𝑡1
𝑑𝑡 = 0           (13) 

or, 

∫ 𝛿𝑇𝑑𝑡 − ∫ 𝛿𝑉𝑑𝑡 = 0
𝑡2

𝑡1

𝑡2

𝑡1
         (14) 

where t1 and t2 are the time interval of the dynamic trajectory, and  is the usual variational operator.  

The governing differential equations of motion of the beam in free vibration are now derived by 

substituting T and V from Eqs. (12) and (8) into Eq. (14) and then using the  operator and next 

integrating by parts and finally collecting terms. In an earlier publication, the entire procedure to 

generate the governing differential equations of motion and natural boundary conditions for bar or beam 

type structures using Hamilton’s principle, was automated by Banerjee et al. [51] through the 
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application of symbolic computation. In this way, the governing differential equations of the beam and 

the natural boundary conditions giving expressions for the shear force (s), bending moment (m) and 

higher order moment (𝑚̅), using higher order shear deformation theory are obtained as follows. 

Governing Differential Equations: 

−𝜌𝐴𝑤̈ +
1

21
𝜌𝐼𝑤̈′′ −

16

105
𝜌𝐼𝜃̈′ −

1

21
𝐸𝐼𝑤′′′′ +

16

105
𝐸𝐼𝜃′′′ +

8

15
𝐺𝐴𝑤′′ +

8

15
𝐺𝐴𝜃′ = 0  (15) 

−
68

105
𝜌𝐼𝜃̈ +

16

105
𝜌𝐼𝑤̈′ +

68

105
𝐸𝐼𝜃′′ −

16

105
𝐸𝐼𝑤′′′ −

8

15
𝐺𝐴𝜃 −

8

15
𝐺𝐴𝑤′ = 0   (16) 

Natural Boundary Conditions: 

Shear Force: 𝑠 =
1

21
𝐸𝐼𝑤′′′ −

16

105
𝐸𝐼𝜃′′ −

8

15
𝐺𝐴𝑤′ −

8

15
𝐺𝐴𝜃 +

16

105
𝜌𝐼𝜃̈ −

1

21
𝜌𝐼𝑤̈′  (17) 

Bending Moment: 𝑚 =
16

105
𝐸𝐼𝑤′′ −

68

105
𝐸𝐼𝜃′      (18) 

Higher Order Moment: 𝑚̅ =
16

105
𝐸𝐼𝜃′ −

1

21
𝐸𝐼𝑤′′      (19) 

Note that in Eq. (18) of [35], there is a sign error in that the last term within the parenthesis should 

be −
68

105
𝐴𝐼𝜌2𝜔4 instead of +

68

105
𝐴𝐼𝜌2𝜔4. Also, the expressions for bending moment M and higher 

order moment Mh in Eqs. (22) and (23) of [35] should be interchanged. It should be also noted that if 

the nonlinear terms of [28] are dropped, the governing differential equations and the natural boundary 

conditions given by Eqs. (15)-(19) above, agree with those given in [28] except that there are some 

typographical errors in [28] as follows. In the fourth term of Eq. (5) in [28], −
16

105
𝐸𝐼 should be −

1

5
𝐸𝐼 

and in the essential boundary conditions for w in Eq. (7), the term −
1

21
𝐸𝐼

𝜕2𝑤

𝜕𝑥2  should be −
1

21
𝐸𝐼

𝜕3𝑤

𝜕𝑥3  

and the minus sign in front of I should be a plus sign. 

2.2 Solution of the governing differential equation 

For harmonic oscillation with circular or angular frequency  rad/s, w(y, t) and (y, t) of Eqs. (15)-

(19) can be expressed as 

𝑤(𝑦, 𝑡) = 𝑊(𝑦)𝑒𝑖𝜔𝑡;     𝜃(𝑦, 𝑡) = Θ(𝑦)𝑒𝑖𝜔𝑡       (20) 

where W(y) and (y) are the amplitudes of flexural displacement and bending rotation, respectively. 

Substituting Eq. (20) into Eqs. (15) and (16) and introducing the non-dimensional length parameter 

  where  = x/L, give the following two ordinary differential equations 

{−
1

21
𝐸𝐼𝐷4 − (

1

21
𝜌𝐼𝜔2𝐿2 −

8

15
𝐺𝐴𝐿2)𝐷2 + 𝜌𝐴𝜔2𝐿4}𝑊 + {

16

105
𝐸𝐼𝐿𝐷3 + (

16

105
𝜌𝐼𝜔2 +

8

15
𝐺𝐴)𝐿3𝐷}Θ = 0          (21) 

{−
16

105
𝐸𝐼𝐷3 − (

16

105
𝜌𝐼𝜔2𝐿2 +

8

15
𝐺𝐴𝐿2)𝐷}𝑊 + {

68

105
𝐸𝐼𝐿𝐷2 + (

68

105
𝜌𝐼𝜔2 −

8

15
𝐺𝐴)𝐿3}Θ = 0

            (22) 

where 

𝐷 =
𝑑

𝑑𝜉
           (23) 
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Equations (21) and (22) in which the shear modulus (or the modulus of rigidity) G for isotropic 

material can be replaced by 
𝐸

2(1+𝜈)
 ,  being the Poisson’s ratio, and then they can be combined into a 

6th order ordinary differential equation which is identically satisfied by both W and Θ as follows. 

(𝐷6 + 𝐶1𝐷
4 + 𝐶2𝐷

2 + 𝐶3)𝐻 = 0        (24) 

with 

H = W or Θ            (25) 

where 

𝐶1 = {2𝑏2𝑟4(1 + 𝜈) − 35}/{𝑟2(1 + 𝜈)}       (26) 

𝐶2 = 𝑏2{𝑏2𝑟4(1 + 𝜈) − 85𝜈 − 120}/(1 + 𝜈)      (27) 

𝐶3 = 5𝑏2{7 − 17𝑏2𝑟4(1 + 𝜈)}/{𝑟2(1 + 𝜈)}      (28) 

with 

𝑏2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
;      𝑟2 =

𝐼

𝐴𝐿2         (29) 

The solution of the differential equation (Eq. (24)) can be sought in the form 

𝐻 = 𝑒𝜆𝜉           (30) 

Substituting Eq. (30) into Eq. (24) yields the auxiliary (or characteristic) equation as 

𝜆6 + 𝐶1𝜆
4 + 𝐶2𝜆

2 + 𝐶3 = 0         (31) 

The sixth order polynomial equation above can be expressed as a cubic equation to give 

𝜇3 + 𝐶1𝜇
2 + 𝐶2𝜇 + 𝐶3 = 0         (32) 

where 

𝜇 = ±√𝜆           (33) 

The three roots  (and hence the six roots ) can now be determined using standard root finding 

procedures [52]. 

Thus, the solutions for W and Θ (which are both denoted by H, see Eq. (25)) can be written as 

𝑊 = ∑ 𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉          (34) 

Θ = ∑ 𝐵𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉          (35) 

where 𝜆𝑗 (j= 1; 2; . . . ; 6) are the six roots of Eq. (31) and Aj and Bj are two different sets of six constants. 

By substituting Eqs. (34) and (35) into Eq. (21) and using Eq. (29), it can be shown that the constants 

Aj and Bj are related as follows. 

𝐵𝑗 = (𝛼𝑗/𝐿)𝐴𝑗          (36) 

where 

𝛼𝑗 =
5(1+𝜈)𝑟2𝜆𝑗

4+{5𝑏2𝑟4(1+𝜈)−28)}𝜆𝑗
2−105(1+𝜈)𝑏2𝑟2

16(1+𝜈)𝑟2𝜆𝑗
3+{16(1+𝜈)𝑏2𝑟4+28}𝜆𝑗

      (37) 

Using Eq. (34), the first derivative 𝑊′ of the flexural displacement is given by 

𝑊′ = ∑ 𝜆𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉         (38) 
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Now, with the help of Eqs. (17)-(19), and substituting Eq. (29), the expression for the amplitudes 

of shear force S, bending moment M, and higher order moment 𝑀̅ are now given by 

𝑆 = ∑ 𝑓𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉          (39) 

𝑀 = ∑ 𝑔𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉         (40) 

𝑀̅ = ∑ −ℎ𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉          (41) 

where  

𝑓𝑗 =
𝐸𝐼

105𝐿3 [5𝜆𝑗
3 − 𝜆𝑗 {

56

2(1+𝜈)𝑟2 − 5𝑏2𝑟2} − 16𝛼𝑗𝜆𝑗
2 − {

56

2(1+𝜈)𝑟2 + 16𝑏2𝑟2}𝛼𝑗]  (42) 

𝑔𝑗 =
𝐸𝐼

105𝐿2 (16𝜆𝑗
2 − 68𝛼𝑗𝜆𝑗)        (43) 

ℎ𝑗 =
𝐸𝐼

105𝐿2 (5𝜆𝑗
2 − 16𝛼𝑗𝜆𝑗)         (44) 

2.3 Dynamic stiffness matrix formulation 

By relating the amplitudes of forces and moments given by Eqs. (39)-(41) to the amplitudes of 

displacements and rotations given by Eqs. (34), (35) and (38), the dynamic stiffness matrix is now 

formulated. This is achieved by applying the boundary or end conditions of the beam. 

Referring to Fig. 2, the boundary or end conditions for displacements and rotations are 

At end 1, y=0 (=0): W=W1, =1 and 𝑊′ = 𝑊1
′      (45) 

At end 2, y=L (=1): W=W2, =2 and 𝑊′ = 𝑊2
′      (46 

 

                                                               

 

 

 

𝑊2
′  𝑊1

′  

W1 W2 

1 
2 

 = 0  = 1 

 

Fig. 2. Boundary or end conditions for displacements and rotations 

 

Substituting Eqs. (45) and (46) into Eqs. (34), (35) and (38) gives the following matrix relationship 

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1
𝛼1

𝐿
𝜆1

𝐿

𝑒𝜆1

𝛼1𝑒𝜆1

𝐿

𝜆1𝑒𝜆1

𝐿
  

1
𝛼2

𝐿
𝜆2

𝐿

𝑒𝜆2

𝛼2𝑒𝜆2

𝐿

𝜆2𝑒𝜆2

𝐿
  

1
𝛼3

𝐿
𝜆3

𝐿

𝑒𝜆3

𝛼3𝑒𝜆3

𝐿

𝜆3𝑒𝜆3

𝐿
  

1
𝛼4

𝐿
𝜆4

𝐿

𝑒𝜆4

𝛼4𝑒𝜆4

𝐿

𝜆4𝑒𝜆4

𝐿
  

1
𝛼5

𝐿
𝜆5

𝐿

𝑒𝜆5

𝛼5𝑒𝜆5

𝐿

𝜆5𝑒𝜆5

𝐿
  

1
𝛼6

𝐿
𝜆6

𝐿

𝑒𝜆6

𝛼6𝑒𝜆6

𝐿

𝜆6𝑒𝜆6

𝐿
  ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

      (47) 

or, 

𝛅 = 𝐐𝐀           (48) 

where  is the displacement vector, A is the constant vector and Q is the square 6x6 matrix in Eq. (47). 
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Now, referring to Fig. 3, the boundary or end conditions for shear forces, and moments are 

At end 1, y=0 (=0): S=S1, M=M1 and 𝑀̅ = 𝑀̅1       (49) 

At end 2, y=L (=1): S=-S2, M=-M2 and 𝑀̅ = −𝑀̅2      (50) 

        S1                                                   S2 

   1                                                                   2 

         1                                                      M2 

 

 

𝑀̅2 𝑀̅1 

 = 0  = 1 

 

Fig. 3. Boundary or end conditions for forces and moments  

Substituting Eqs. (49) and (50) into Eqs. (39)-(41) gives the following matrix relationship 

[
 
 
 
 
 
𝑆1

M1

𝑀̅1

𝑆2

M2

𝑀̅2]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑓1
𝑔1

−ℎ1

−𝑓1𝑒
𝜆1

−𝑔1𝑒
𝜆1

ℎ1𝑒
𝜆1

𝑓2
𝑔2

−ℎ2

−𝑓2𝑒
𝜆2

−𝑔2𝑒
𝜆2

 ℎ2𝑒
𝜆2

𝑓3
𝑔3

−ℎ3

−𝑓3𝑒
𝜆3

−𝑔3𝑒
𝜆3

 ℎ3𝑒
𝜆3

𝑓4
𝑔4

−ℎ4

−𝑓4𝑒
𝜆4

−𝑔4𝑒
𝜆4

 ℎ4𝑒
𝜆4

𝑓5
𝑔5

−ℎ5

−𝑓5𝑒
𝜆5

−𝑔5𝑒
𝜆5

 ℎ5𝑒
𝜆5

𝑓6
𝑔6

−ℎ6

−𝑓6𝑒
𝜆6

−𝑔6𝑒
𝜆6

 ℎ6𝑒
𝜆6 ]

 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

     (51) 

or, 

𝐟 = 𝐑𝐀            (52) 

The constant vector, A can now be eliminated from Eqs. (48) and (52) to give 

𝐟 = 𝐑𝐐−1𝛅 = 𝐊𝛅          (53) 

where  

𝐊 = 𝐑𝐐−1           (54) 

is the required dynamic stiffness matrix. 

Thus, the force-displacement relationship at the nodes of a beam using higher order shear 

deformation theory is given by 

[
 
 
 
 
 
𝑆1

𝑀1

𝑀̅1

𝑆2

𝑀2

𝑀̅2]
 
 
 
 
 

=

[
 
 
 
 
 
𝑘11

𝑘12

𝑘13

𝑘14

𝑘15

𝑘16

𝑘12

𝑘22

𝑘23

𝑘24

𝑘25

𝑘26

𝑘13

𝑘23

𝑘33

𝑘34

𝑘35

𝑘36

𝑘14

𝑘24

𝑘34

𝑘44

𝑘45

𝑘46

𝑘15

𝑘25

𝑘35

𝑘45

𝑘55

𝑘56

𝑘16

𝑘26

𝑘36

𝑘46

𝑘56

𝑘66]
 
 
 
 
 

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

= [
𝐤𝟏𝟏 𝐤𝟏𝟐

𝐤𝟐𝟏 𝐤𝟐𝟐
]

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

     (55) 

where k11, k12, k21 and k22 are each 3×3 submatrices and k21 is the transpose of k12. 

When computing the dynamic stiffness matrix K of (54), it should be noted that the roots  and  of 

Eqs. (31) and (32) can be complex and therefore, the elements of matrices Q and R of Eqs. (48) and 

(52) can also be complex. Therefore, the matrix inversion and multiplication steps of Eq. (54) must be 

carried out using complex arithmetic. The resulting dynamic stiffness matrix K will, of course, be 

symmetric and real, with imaginary parts of each element being zero. Now the dynamic stiffness matrix 
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in axial or longitudinal motion which is readily available in the literature [53, 54, 55] and is uncoupled 

from flexural motion, can be incorporated into the dynamic stiffness matrix K in flexural motion derived 

above so that the free vibration analysis of frames can be carried out. The force-displacement 

relationship using the dynamic stiffness matrix of a beam element in axial or longitudinal vibration with 

the amplitudes of axial forces and displacements at nodes 1 and 2, being F1, F2 and V1, V2, respectively, 

is given by [53, 54, 55] 

[
𝐹1

𝐹2
] =

𝐸𝐴

𝐿
[
𝑎1 𝑎2

𝑎2 𝑎1
] [

𝑉1

𝑉2
]          (56) 

where 

𝑎1 =
𝐸𝐴

𝐿
𝜇̅ cot 𝜇;̅  𝑎2 = −

𝐸𝐴

𝐿
𝜇̅ cosec 𝜇̅         (57) 

with  

𝜇̅ = 𝜔𝐿√
𝜌𝐴

𝐸𝐴
           (58) 

The dynamic stiffness matrix in axial motion given by Eq. (56) when incorporated into the dynamic 

stiffness matrix in flexural motion given by Eq. (55), leads to 

[
 
 
 
 
 
 
 
 
𝐹1

𝑆1

𝑀1

𝑀̅1

𝐹2

𝑆2

𝑀2

𝑀̅2]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝑎1

0
0
0
𝑒1

0
0
0

0
 𝑘11

𝑘12

𝑘13

0
𝑘14

𝑘15

 𝑘16

0
𝑘12

𝑘22

𝑘23

0
𝑘24

𝑘25

𝑘26

0
𝑘13

𝑘23

𝑘33

0
𝑘34

𝑘35

𝑘36

𝑒1

0
0
0
𝑎1

0
0
0

0
𝑘14

𝑘24

𝑘34

0
𝑘44

𝑘45

𝑘46

0
𝑘15

𝑘25

𝑘35

0
𝑘45

𝑘55

𝑘56

0
𝑘16

𝑘26

𝑘36

0
𝑘46

𝑘56

𝑘66]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑉1

𝑊1

Θ1

𝑊1
′

𝑉2

𝑊2

Θ2

𝑊2
1]
 
 
 
 
 
 
 
 

= [
𝐊11 𝐊12

𝐊21 𝐊22
]

[
 
 
 
 
 
 
 
 
𝑉1

𝑊1

Θ1

𝑊1
′

𝑉2

𝑊2

Θ2

𝑊2
1]
 
 
 
 
 
 
 
 

     (59) 

where 

𝐊11 = [

𝑎1

0
0
0

0
𝑘11

𝑘12

𝑘13

0
𝑘12

𝑘22

𝑘23

0
𝑘13

𝑘23

𝑘33

] ; 𝐊12 = [

𝑒1

0
0
0

0
𝑘14

𝑘15

𝑘34

0
𝑘15

𝑘25

𝑘35

0
𝑘16

𝑘26

𝑘36

] ; 𝐊22 = [

𝑎1

0
0
0

0
𝑘44

𝑘45

𝑘46

0
𝑘45

𝑘55

𝑘56

0
𝑘46

𝑘56

𝑘66

]    (60) 

and K21 can be obtained by taking the transpose of K12. 

 

3. Application of the theory 

The dynamic stiffness matrix developed above, can now be used to compute the natural frequencies 

and mode shapes of either a single beam or an assembly of beams, e.g., a framework. However, to apply 

the theory to a framework, the dynamic stiffness matrix of Eqs. (59) and (60), developed for an 

individual beam element in its local coordinates must be transformed into global (or datum) coordinates. 

Figure 4 shows the local (YZ) and global (𝑌̅𝑍̅) coordinate systems of a beam element with the local 

Y-axis making an angle 𝜙 with the global 𝑌̅-axis (measured positive anticlockwise). The transformation 

matrix T to transform the submatrices K11, K12, K21 and K22 of Eqs. (59) and (60) from local coordinates 

to global (or datum coordinates) is given by [54, 55] 
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𝐓 = [

   cos𝜙  
− sin𝜙

0
0

  sin𝜙  
  cos𝜙

0
0

  

0
0
1
0

     0
     0

     
0
1

]         (61) 

The transformed stiffness matrices 𝐊̅11, 𝐊̅12 and 𝐊̅22, in global coordinates are [54, 55] 

 

𝐊̅11 = 𝐓T𝐊11𝐓; 𝐊̅12 = 𝐓T𝐊12𝐓; 𝐊̅22 = 𝐓T𝐊22𝐓       (62) 

 

where the upper suffix of T denotes a transpose and 𝐊̅21 is 𝐊̅12
T . 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
Fig. 4. Local and global coordinate system of a beam element 9 
 10 

𝜙 
0 

𝑌 

𝑍 

𝑍̅ 

𝑌̅ 

 
 The transformed stiffness matrices 𝐊̅11, 𝐊̅12 𝐊̅21 and 𝐊̅22 can now be used to form the overall 

dynamic stiffness matrix of a frame in the global or datum coordinate system. 

Once the overall global dynamic stiffness matrix 𝐊̅ of a frame is formed, the Wittrick-Williams 

algorithm [46-50] can be used as a solution technique to compute the natural frequencies and the 

subsequent recovery of the mode shapes of the frame. The Wittrick-Williams algorithm has widespread 

coverage in the literature with literally hundreds of papers published on the subject, see for example 

[46-50]. In many ways, the dynamic stiffness method and the Wittrick-Williams algorithm are 

permanently entangled with each other, as evident from the literature. The working principle of the 

algorithm is essentially based on two factors which govern the solution technique. These factors known 

as (i) the sign-count s{KD} and (ii) the j0 count, and their use are briefly explained below.  

If  denotes the circular (or angular) frequency of a vibrating structure, then according to the 

Wittrick-Williams algorithm, j, the number of natural frequencies passed, as  is increased from zero 

to , is given by 

j = j0 + s{KD}                                 (63) 

where KD, the overall dynamic stiffness matrix of the final structure whose elements all depend on  

is evaluated at  =   s{KD}, the sign count, is the number of negative elements on the leading 

diagonal of KD
  KD

 is the upper triangular matrix obtained by applying the usual form of Gauss 

elimination to KD , and j0 is the number of natural frequencies of the structure still lying between   = 0 

and  = when the displacement components to which KD corresponds are all zeros. (Note that the 

structure can still have natural frequencies when all its nodes are clamped, because exact member 

equations allow each individual member to displace between nodes with an infinite number of degrees 

of freedom, and hence an infinite number of natural frequencies between nodes.) Thus 

   mjj =0                                 (64) 
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where jm is the number of natural frequencies between   = 0 and  = for a component member with 

its ends fully clamped, while the summation extends over all members of the structure. The clamped-

clamped natural frequencies of an individual member are given by the determinant of its dynamic 

stiffness matrix given by Eq. (59). Thus, with the knowledge of Eqs. (63) and (64), it is possible to 

ascertain how many natural frequencies of a structure lie below an arbitrarily chosen trial frequency. 

This simple feature of the algorithm (coupled with the fact that successive trial frequencies can be 

chosen to bracket a natural frequency) can be used to converge upon any required natural frequency to 

any desired accuracy.  

 

4. Results and discussion 
 

The theory developed above is now applied for free vibration analysis of five illustrative examples 

of different types. The first illustrative example is taken from Carrera et al [34] which is that of a 

cantilever beam with solid rectangular cross-section. The authors of [34] have used Carrera Unified 

Formulation (CUF), Timoshenko-Ehrenfest and Bernoulli-Euler beam theories and a 3D finite element 

analysis and made comparative assessments of results.  Notably CUF has the unique feature to account 

for the cross-sectional deformation of the beam, i.e., the deformation in the XZ-plane of Fig. 1. The 

CUF formulation achieves this by choosing the allowable displacement field as a combination of 

functions of x and z of the beam cross-section as well as functions of y in the lengthwise direction (see 

Fig. 1 and [34]). The width (b) and depth or height (h) of the beam cross-section are 1m and 0.1m, 

respectively and the length L of the beam is 10m, as given in [34]. The material properties of the beam 

are that of aluminum with Young’s modulus E = 69 MPa, density  = 2700 kg/m3 and Poisson’s ratio 

 =0.33 [34]. The first four natural frequencies fi (i = 1, 2 , 3 and 4) in Hz of the cantilever beam were 

computed using the present theory and the results are shown in Table 1 alongside the results reported 

in [34]. The results from the present theory are in excellent agreement with the CUF theory, 

Timoshenko-Ehrenfest theory and 3D finite element results, the discrepancy being less than 1.5%. Note 

that the results for the Timoshenko-Ehrenfest beam theory shown in Table 1 were computed using the 

exact frequency dependent mass and stiffness matrices derived by the current author in a recently 

published paper [53] as well by using the published program of [55]. It should also be noted that unlike 

the 1st, 2nd and 4th natural frequencies which correspond to in-plane free vibration of the beam in the 

YZ-plane (see Fig. 1), the 3rd natural frequency corresponds to an out of plane natural frequency for 

which the free vibratory motion takes place in the XY-plane (see Fig. 1). The mode shapes for the first 

four natural frequencies using the higher order shear deformation theory developed in this paper are 

illustrated in Fig. 5, showing flexural displacement W, bending rotation  and the first derivative of the 

flexural displacement 𝑊′ in each mode. From the mode shapes, it may be noted that the bending rotation 

 and the first derivative of the flexural displacement 𝑊′ in each of the four mode shapes are almost 

equal and opposite of each other, which leads to the assertion that the shearing strain in these modes is 
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almost zero which is in accord with Eq. (3). This is to be expected for a beam [34] of this type which 

has a slender ratio (defined as the length over the radius of gyration of the beam cross-section, i.e., in 

the usual notation 𝐿/√𝐼/𝐴 ) approaching 350, for which the shearing strain is not expected to have any 

major effect. 

Table 1 Natural frequencies of a cantilever beam 

 

Frequency 

No (i) 

Natural frequency fi (Hz) 

Present TEBT [53] CUF [34] 3D FEM [34] 

1 0.8165 0.8165 0.8255 0.8325 

2 5.1148 5.1151 5.1702 5.2142 

3 8.1014 8.1090 8.1443 8.0181 

4 14.310 14.3156 14.4193 14.5998 

 

Table 2 Natural frequencies of a simply-supported beam 

 

Frequency 

No (i) 
Natural frequency i (rad/s) 

Present TEBT [24, 53, 55] BEBT [24] 

1 6916.02 6838.83 (1.12%) 7368.07 (6.54%) 

2 23949.7 23190.8 (3.17%) 29472.2 (23.1%) 

3 40622.3 43443.5 (6.94%) 66312.7 (63.2%) 

4 45734.9 64939.2 (42.0%) 117889.1 (158%) 

 

 

Fig.5 Mode shapes of a cantilever beam using present theory 

W;                     ;                     𝑊′ 

 

The second illustrative example is that of a Timoshenko-Ehrenfest beam reported by Chen et al. [24] 

and Banerjee [53]. The beam material properties are Young’s modulus E = 210 GPa, density  = 7850 

kg/m3 and Poisson’s ratio  =1/3. The shear modulus G was calculated by relating it to E through the 

0 0.25 0.5 0.75 1

0

0

0

0

f1 = 0.8165 Hz

f2 = 5.1148 Hz

f3 = 8.1014 Hz

f4 = 14.310 Hz
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Poisson’s ratio  to give G = 3E/8 [24]. The beam is of rectangular cross-section with width b = 0.02m, 

depth or height h = 0.08m and it has a length L = 0.4m. The shear correction factor (also known as shape 

factor) was set to k = 2/3 as used in [24, 53] when computing the results by using the Timoshenko-

Ehrenfest beam theory [53, 55]. The Bernoulli-Euler beam theory (BEBT) results were obtained using 

the published program of Williams and Howson [54]. This example was chosen because unlike the 

previous example in which the beam had a slenderness ratio of around 350, this example beam, by 

contrast, has a slenderness ratio of around 17. Thus, there are significant differences between the two 

examples so that the results can be compared and contrasted to demonstrate the correctness and accuracy 

of the theory. Table 2 shows the results for the first four in-plane natural frequencies of the beam with 

simple-supported (S-S) boundary conditions, using the present HSDT theory, Bernoulli-Euler beam 

theory (BEBT) [54] and the Timoshenko-Ehrenfest beam theory (TEBT) [24, 53, 55]. The percentage 

differences in results for the first four natural frequencies using the Timoshenko-Ehrenfest beam theory 

(TEBT) and the Bernoulli-Euler Beam theory (BEBT) as opposed to the present HSDT theory are 

shown in the parentheses of columns 3 and 4 of the table. For the four natural frequencies quoted, the 

TEBT results deviate by 1.12%, 3,17%, 6.94% and 42%, respectively whereas for the BEBT results the 

deviations are by 6.54%, 23.1%, 63.2% and 158%, respectively. Clearly the differences are much larger 

compared to the previous example due mainly to the low slenderness of the beam.  

The third illustrative example is taken from a recently published paper [45] which deals with the 

free vibration analysis of cracked beams by applying the finite element method based on the Reddy 

beam theory [28] which in fact is the higher order shear deformation theory used in this paper. This 

example is chosen because the paper [45] uses the same displacement field as that of the present paper 

to describe the normal and shear stress and strain distributions of the beam but relies on the finite 

element method as opposed to the dynamic stiffness method of the present paper. Of course, both 

methods dispense with the so-called shear correction factor, generally employed in the Timoshenko-

Ehrenfest beam theory [5-16]. Although the authors of [45] focused their attention on cracked beams, 

they, nevertheless, presented results for the degenerate case for the intact beam, i.e. when the crack was 

absent. The results for the first four natural frequencies for clamped-simply supported boundary 

condition of the beam using the present theory are shown in Table 3 together with the results reported 

in [45]. To be consistent with the results given in [45], the non-dimensional frequency parameter 𝜆̅𝑖 (i 

=1, 2, 3, 4) is used, where 

𝜆̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

4
        (65) 

 

Results using the Bernoulli-Euler and Timoshenko-Ehrenfest beam theories (BEBT and TEBT) were 

obtained using the published programs of [54] and [55], which are also shown in Table 3 in non-

dimensional form. As can be seen, the results from the present theory are in close agreement with those 

of [45] which applied finite element method but used higher order shear deformation theory based on 
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the same displacement field as the present paper. However, the results from the Timoshenko-Ehrenfest 

beam theory (TEBT) differed from the present theory by 1.5%, 2.7%, 3.6% and 4.2% in the first four 

natural frequencies, respectively whereas the corresponding differences using the Bernoulli-Euler beam 

theory (BEBT) are 7.1%, 16.2%, 26.1% and 35.8%, respectively. As expected, the BEBT which ignores 

the effects of shear deformation, gives relatively large errors in the natural frequencies.  

 

Table 3 Natural frequencies of a clamped-simply supported beam 

 

Frequency 

No (i) Non-dimensional natural frequency 𝜆̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

4
 

Present Ref [45] TEBT [55] BEBT [54]  

1 3.6662 3.6710 3.6124 3.9266 

2 6.0814 6.0957 5.9185 7.0686 

3 8.0990 8.1237 7.8108 10.210 

4 9.8313 9.8662 9.4176 13.352 

 

The next example is that of a portal frame shown in Fig. 6. This problem was investigated earlier by 

Banerjee [56] and Doyle [57], in a very different context. Each beam member of the portal frame of 

Fig. 6 is considered here to be solid rectangular cross-section of width (breadth) 0.0374m and depth 

(thickness) 0.210m. The length L is set to 5m. The material properties used are that of steel with Young’s 

modulus E=200 GPa, and density  = 7500 kg/m3 so that the axial or extensional and flexural rigidities 

and the mass per unit length are worked out to be EA=1.5708×109 N, EI=5.7727×106 Nm2, and A= 

58.905 kg/m, respectively. The Poisson’s ratio is taken to be 1/3. The first six natural frequencies of the 

portal frame are shown in Table 4 using the present theory as well as the Timoshenko-Ehrenfest [53] 

and Bernoulli-Euler [54] beam theories. The results using the present theory are close to those of the 

Timoshenko-Ehrenfest theory, but the Bernoulli-Euler theory caused a small difference with maximum 

discrepancy of around 2% in the sixth natural frequency. This is expected because the slenderness ratio 

of each of the frame members is around 80. Doyle [57] quoted the fundamental frequency of the frame, 

which in current form is 2.649, close to the present theory. 

 

 

 

 

                      

L 

1.5L 

 
                                         Fig.6 A portal frame. 
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Table 4 Natural frequencies of portal frame of Fig. 6 

 

Frequency 

No (i) Non-dimensional natural frequency 𝜔̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼
 

Present TEBT [55] BEBT [56] 

1 2.6585 2.6585 2.6644 

2 6.7843 6.7842 6.8087 

3 16.840 16.839 16.949 

4 18.924 18.923 19.108 

5 25.301 25.299 25.606 

6 42.585 42.583 43.222 

 

The final example is a portal frame containing inclined members as shown in Fig. 7. The member 

properties and the length L are taken to be the same as those of the portal frame in the previous example. 

The first six natural frequencies of the portal frame computed using the present theory as well as by the 

Timoshenko-Ehrenfest and Bernoulli-Euler theories, are shown in Table 5. As was the case with the 

previous portal frame, the results from the present theory are in excellent agreement with those obtained 

from the Timoshenko-Ehrenfest beam theory (TEBT), but the Bernoulli-Euler beam theory (BEBT) 

yielded a small difference of around 3% in the sixth natural frequency. The small difference in the 

results is because each member of the portal frame of Fig. 6 has a slenderness ratio more than 80.  

 1 
 2 
 3 
 4 
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 6 
 7 
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 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
Fig.7 A portal frame with inclined members 18 

0.75L 0.75L 

450 450 
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Table 5. Natural frequencies of a portal frame of Fig. 7 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
 10 

Frequency 

No (i) Non-dimensional natural frequency 𝜔̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼
 

Present TEBT [55] BEBT [56] 

1 2.0734 2.0733 2.0768 

2 5.1463 5.1462 5.1603 

3 11.678 11.678 11.731 

4 14.704 14.703 14.803 

5 21.859 21.857 22.100 

6 22.863 22.862 23.082 

 
5. Conclusions 
 

Using higher order shear deformation theory, the dynamic stiffness method is developed for free 

vibration analysis of beams and frameworks. The unique feature of the dynamic stiffness method in 

which exact member theory resulting from the solution of the governing differential equations of motion 

is applied when developing the theory and subsequently obtaining the results. Comparative results for 

the natural frequencies using Timoshenko-Ehrenfest and Bernoulli-Euler theories are also presented. 

Representative mode shapes are illustrated. The accuracy and robustness of the theory are demonstrated 

by numerical results which showed excellent agreement with published results in the literature. The 

extension of the higher order shear deformation theory for free vibration analysis of frameworks using 

the dynamic stiffness method is entirely novel and is an important contribution to the literature.  
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