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We present two variants of a multi-agent reinforcement
learning algorithm based on evolutionary game
theoretic considerations. The intentional simplicity
of one variant enables us to rigorously prove
results on its relationship to a system of ordinary
differential equations of replicator-mutator dynamics
type, allowing us to present proofs on the algorithm’s
convergence conditions in various settings via its ODE
counterpart, including in stable and zero-sum games.
The more complicated variant enables comparisons to
Q-learning based algorithms. We further compare both
variants experimentally to WoLF-PHC and frequency-
adjusted Q-learning on a range of settings, illustrating
cases of increasing dimensionality where our variants
preserve convergence in contrast to more complicated
algorithms. The availability of analytic results provides
a degree of transferability of results as compared
to a focus on specific game classes or a purely
empirical case studies, illustrating the general utility
of a dynamical systems perspective on multi-agent
reinforcement learning when addressing questions of
convergence and reliable generalisation.
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1. Introduction2

Reinforcement learning algorithms have been employed in a wide range of problem settings3

with great success, e.g., [1], and for the single-agent case the conditions for convergence of, e.g.,4

Q-learning have been clarified, [2]. However, for multi-agent reinforcement learning (MARL),5

questions of convergence are still very much open. Even simple two-player settings, e.g. the Rock-6

Paper-Scissors (RPS) game, can exhibit chaotic behaviour under simple dynamics, [3], and make7

a rigorous a priori analysis challenging. For more complicated algorithms, an analysis beyond8

experimental evaluation is often hardly possible. However, more general analyses are highly9

informative of why algorithms behave in a certain way and theoretical guarantees for at least the10

simplest of settings are highly desirable in order to assess how reliably MARL algorithms will11

generalise to similar settings.12

In particular, as MARL algorithms often lead to stochastic discrete-time dynamic systems,13

insights from the fields of learning dynamics in games and of evolutionary game theory (EGT) have14

been particularly relevant. EGT approaches and specifically the established replicator dynamics15

(RD) have informed a number of constructions or analyses of learning algorithms in multi-agent16

settings, e.g., [4,5]. The potential of EGT to inform learning algorithms is illustrated, as a particularly17

prominent example, by the fact that the WoLF-PHC learning algorithm, [6], keeps track of the past18

average policy. In light of RD, this is particularly useful, as the time-average policy in RD converges19

to a Nash equilibrium under self-play in zero-sum games, e.g, [7, prop. 3.6, p. 92], providing an20

intuition for how WoLF-PHC can learn Nash equilibria in self-play in a number of settings.21
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Contribution22

In the spirit of further contributing to understanding the relation between MARL systems and23

the rich results on evolutionary game dynamics, and building on the relation between RD and a24

simple form of reinforcement learning, called Cross learning [8,9], we present and analyse two25

variants of a reinforcement learning algorithm: Mutation-bias learning with direct policy updates26

(MBL-DPU)—a least complexity modification of Cross learning—and mutation-bias learning with27

logistic choice (MBL-LC), which more closely aligns with the softmax policy in reinforcement28

learning. Our analysis explicitly takes into account the full stochasticity of the problem, and proves29

rigorously that MBL-DPU can be approximated by a mutation-perturbed replicator dynamics30

(RMD) which we had specified and analysed previously in [10], a non-linear continuous-time31

deterministic dynamics whose stability properties can still be studied analytically to a certain32

degree.33

Although in general, Lyapunov stability and other properties of a continuous-time dynamics34

do not always transfer to a corresponding discretized dynamics—a prominent example is the35

RPS game, [7]—we show that asymptotic stability in the continuous dynamics does imply the36

convergence of the MARL algorithm, in spite of non-vanishing discrete step-size and stochasticity.37

Our focus on RMD allows us to avoid a well-known fundamental limitation of the regular multi-38

population RD, which cannot have asymptotically stable interior equilibria, e.g. [11, lemma 1].39

Hence, simple Cross learning is fundamentally unable to learn interior equilibria and will quickly40

deviate from RD in cases of merely neutral stability, such as in RPS games. In contrast to RD41

and Cross learning, we had proved that RMD allows interior equilibria to be asymptotically42

stable, [10], enabling the proposed MBL algorithm to overcome this fundamental limitation and43

approach interior Nash equilibria arbitrarily closely. Hence, with RMD admitting asymptotically44

stable interior equilibria, we can show that the MBL processes revisit arbitrary neighbourhoods45

of such equilibria infinitely often almost surely even in the case of finite step-size, particularly in46

zero-sum games. In contrast to more complicated algorithms, the rigorous link we prove between47

the stochastic MBL trajectories and the deterministic RMD allows a general analytic approach to48

the question of transient dynamics as well as to the question of asymptotic convergence of MBL to49

an ε-equilibrium in a given class of games or any particular given game a priori, be it zero-sum50

or not. In particular, this directly addresses questions of last-iterate convergence, in contrast to51

convergence of the time-average of iterates. Importantly, our results allow to understand when52

convergence should or should not be expected, irrespective of parameter choices, by studying the53

properties of RMD in the setting of interest, since the behaviour of MBL follows directly due to54

our analysis. We demonstrate this by proving that MBL-DPU converges in zero-sum games and55

more generally in stable games as a direct result of the convergence of RMD in such games. To56

our knowledge, MBL is among the simplest uncoupled algorithms—in the sense of [6,12]—that57

can learn or approximate interior equilibria and among the few such for which a more general58

rigorous dynamic system analysis—beyond very restricted game classes—is available.59

Furthermore, our analysis of MBL fully takes into account that individual game outcomes and60

payoffs are results of stochastic choices and does not rely on assuming the knowledge of expected61

outcomes. That the transition from expected outcomes to actual sampled outcomes is not trivial62

is demonstrated by the treatment in [13] and by the comparisons we present in the experimental63

settings where intuitively well-behaved algorithms clearly demonstrate the very limited validity64

of such intuitions. In light of the current centrality of algorithms that rely on samples or batches of65

samples in real-life applications, this underscores the necessity of comprehensive rigorous analyses66

not hinging on intuition in order to establish their reliability.67

The rest of this paper proceeds as follows: After relating our results to the literature, we state68

the necessary evolutionary game theoretic preliminaries. We then introduce the two MBL variants,69

MBL-DPU and MBL-LC, which demonstrates an alternative approach to include the mutation70

perturbation term closer to Q-learning inspired approaches, and state the propositions on the71

relation of MBL-DPU to RMD and apply these to prove the convergence properties of MBL-DPU72

in stable games resulting from RMD. Although intuitively appealing, MBL-LC does not allow a73
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similar treatment and its main purpose lies in charting the relation to more standard Q-learning74

related algorithms. We then illustrate the theoretical results with numerical experiments in a75

range of two-player games, as well as a three-player game, and compare the behaviours of the76

two MBL variants to those of frequency-adjusted Q-learning (FAQ), [14], and Win-or-Learn-Fast77

Policy-Hill-Climbing (WoLF-PHC), [6], highlighting the points where the behaviours of all but78

MBL-DPU start deteriorating and underscoring the utility of a mathematically rigorous link to79

dynamic system analysis in the study of MARL algorithms.180

Related results81

An overview over a larger class of stochastic reinforcement learning rules is provided in [16], with82

a focus on their relations to systems of RD type, which forms the base dynamics, incurring the83

difficulties mentioned earlier. As an extension, systems of RD type with additional perturbations84

have been related to learning rules, including such with entropy related perturbation terms, [17],85

and exponential learning based on a logit model, [18]. Some analyses focus specifically on Q-86

learning based algorithms. For instance, [19] considers the stability and convergence properties of87

Q-learning in the two-player setting; however, the Q-values enter as expectations, not as random88

variables, and therefore the effects of stochasticity are not fully considered—a crucial factor in a89

rigorous analysis. A similar approach is pursued by the frequency-adjusted Q-learning algorithm90

(FAQ) in [20] with a correction given in [14]. However, both strands hinge on assumptions which91

have not been proved, and therefore no rigorous analyses are provided. Nonetheless, we choose92

FAQ-learning as a comparison, as [14] claims it to be linked to an ODE system similar to RMD93

and as it is a sufficiently simple uncoupled algorithm very close to Q-learning, making it a natural94

candidate for comparison. As a second candidate for comparison, we choose WoLF-PHC, [6],95

since its variant WoLF-IGA is linked to a dynamic systems perspective and WoLF-PHC, too, is an96

uncoupled and relatively simple algorithm, close to Q-learning. Although its theoretical analysis is97

more thorough than for FAQ-learning, only the two-player two-action analysis of the WoLF-IGA98

variant is available. Both algorithms have demonstrated that they are able to learn Nash equilibria99

in simple settings under self-play, where simpler algorithms such as pure Policy-Hill-Climbing100

would fail.101

A separate and quite rigorous approach to MARL convergence analysis is pursued via multiple102

timescales algorithms, where Q-value estimates are learned from payoff samples more quickly103

than policy changes occur, [13]. Here, the convergence analysis relates to smoothed best-response104

dynamics. However, the timescale separation results in a fundamentally more complicated105

approach and more complicated algorithms, including the additional requirement to keep track of106

timescales and ensure a sufficient separation. For the case of ε-greedy multi-agent Q-learning under107

stochastic payoffs, convergence conditions are given in [21]. However, this algorithm operates on108

joint actions, which requires agents to be able to observe the actions chosen by all agents, and is109

therefore not uncoupled in the sense of [6].110

Probably closest to our approach, [22–24] take RMD and our analysis in [10] as their departure111

point to formulate various MARL algorithms, albeit with a considerably different focus. There,112

the analysis is tightly bound to zero-sum games and stable games respectively. In particular,113

this restricts the analysis to settings where the Nash equilibrium set is convex, e.g., [25, theorem114

2.3.5], and therefore only a single connected Nash equilibrium component exists. It is clear that115

this precludes any settings with multiple isolated equilibria, clearly a large class of games with116

generally high relevance. Importantly, our results on the relation between MBL and RMD are not117

limited to a comparably specific game class and our results allow a convenient transfer of results118

on evolutionary games for different classes of games. Furthermore, the authors assume expected119

payoffs with at most some very limited noise. As mentioned earlier and as demonstrated in the120

experiments, this generally imposes significant limitations on the validity in sample-based settings.121

Furthermore, we are careful to provide a rigorously proven relation between our discrete dynamics122

and its continuous-time counterpart. That this transition indeed requires special attention is aptly123

1Portions of this manuscript are derived from one of the authors’ unpublished PhD dissertation [15].
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demonstrated for the replicator dynamics and its various discrete-time counterparts by [26]. Similar124

considerations apply to approaches pursued in [27–29], where analysis relies on either zero-sum or125

stable settings and expected payoffs, not taking into account the stochasticity fully. It is overall126

clear that approaches operating on different levels of generality will yield differing perspectives127

even with similar reference dynamics in mind.128

We do not take into account proximal policy optimization (PPO) algorithms, [30], for our129

comparison, since they require an agent to construct an approximation of the actual target function130

and solve a constrained optimisation problem at each learning step with a suitable sampling131

strategy in-between learning and to keep track of a potentially large number of estimates. This132

results in a much more complicated algorithm than analysed here and convergence analysis even in133

the single-agent setting is challenging, e.g., [28]. We are not aware of a rigorous MARL convergence134

analysis in non-cooperative games, although experimental results in this direction exist, e.g., [31]135

for n-player RPS games with convergence only in very limited cases, or [32] extending PPO to136

WoLF-PPO in experimental studies of Matching Pennies and two-player RPS.137

2. Preliminaries138

As our analysis of multi-agent learning is formulated in the setting of (evolutionary) game theory,139

we give short definitions of the main concepts employed and refer the reader to the standard140

literature for further details, e.g., [7,33].141

Finite normal-form games. A normal-form game is a tuple pP,A, rq, where P “ t1, . . . , Nu142

represents the set of players, A “ ˆiPPAi where Ai “ t1, . . . , niu is the set of pure strategies of143

each player i,2 and r “ priqiPP is a family of functions with ri :A Ñ R mapping the pure strategy144

profiles in A to the payoffs of player i. For each player i P P , we assume that the player chooses145

a pure strategy from Ai according to some probability distribution xi over Ai, i.e., according to146

some tuple pxihqhPAi
P Di :“ tξ P RAi

ě0 :
ř

hPAi
ξh “ 1u. We call such an xi the mixed strategy of147

player i.3 We will call mixed strategies simply strategies, where there is no danger of confusion.148

Nash equilibrium. We call a strategy profile x˚ :“ px˚
i qiPP P D :“ ˆiPPDi a Nash equilibrium if149

for all players i P P and all mixed strategies xi P Diztx˚
i u, we have150

Erripaq|x˚
s ě Erripaq|pxi, x

˚
´iqs (2.1)

where pxi, x
˚
´iq P D denotes the mixed strategy profile for which pxi, x

˚
´iqih “ xih (@h P Ai) and151

pxi, x
˚
´iqjh “ x˚

jh (@j P P ztiu, h P Aj). The equilibrium is called a strict Nash equilibrium if the152

inequality is strict for all i P P . The well-known intuition of this concept is that no player has an153

incentive to deviate from the Nash equilibrium strategy given that all other players play the Nash154

equilibrium strategy profile, since for each player i P P , x˚
i is a best-response to x˚. Equivalently, no155

pure strategy has a higher payoff than the Nash equilibrium strategy:156

@i P P, h P Ai : Erripaq|x˚
s ě Erripaq|x˚, ai “ hs . (2.2)

As a useful relaxation of this concept, we call a strategy profile px̃iqiPP P D an ε-equilibrium if157

Dε ą 0 @i P P, h P Ai : Erripaq|x̃s ě Erripaq|x̃, ai “ hs ´ ε , (2.3)

i.e. every pure strategy is by at most ε better than px̃iqiPP , and for all players i P P , px̃iqiPP is an158

ε-best-response to x̃.159

2A is usually denoted S in the game theory literature, and players are conceived as populations of pure strategies in the EGT
literature. In the simplest case, pure strategies correspond to actions in the reinforcement learning literature. We use the terms
‘player’ and ‘agent’ synonymously.
3This would be referred to as a policy in the reinforcement learning literature.
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Repeated games, learning and rationality. Given a finite normal-form game, we consider an160

infinitely repeated game to be a repetition of the normal-form game for each round t P N. In161

particular, assuming that in each round t the players choose a pure strategy profile aptq P A162

according to the mixed strategy profile xptq “ pxiptqqiPP , the pure strategy profiles constitute a163

stochastic process taptqutPN. In turn, an algorithm which adapts the mixed strategy profile in164

each round t, defines a potentially stochastic process txptqutPN. It is this resulting process and its165

properties which are the focus of our convergence analysis. Following the definition given by [6],166

we call such a process rational, if a player i’s mixed strategy txiptqutPN converges to a best-response167

whenever all other players’ strategies converge to a stationary policy. We call a process ε-rational if it168

converges to an ε-best-response. It is clear that in the case of stationary policies for all other players,169

the focal player faces a Markov decision process and the best-response strategy maximises the170

player’s average expected payoff. In the simplest case, where players cannot observe other players’171

actions and have no memory, as considered here, the usual state space and the state-dependency172

of policies disappear.173

Replicator-mutator dynamics. We consider the multi-population replicator-mutator dynamics174

we formulated in [10], which is a special case of general replicator-mutator dynamics, e.g., [34]:175

For all i P P , let Mi ą 0 be a mutation parameter, ci P Di
˝ (denoting the interior of Di) some fixed176

parameter and fi :D Ñ RAi a continuously differentiable fitness function. Then the replicator-177

mutator dynamics is given for i P P , h P Ai by178

9xihptq “ xihptq
`

fihpxptqq ´
ÿ

kPAi

xikptqfikpxptqq
˘

` Mipcih ´ xihptqq . (RMD)

In case that Mi “ 0 for all i P P , RMD reduces to the standard multi-population replicator dynamics179

(RD). One possible (and usual) conceptualisation of the fitness fih of a pure strategy h P Ai is180

to assume that it is the expected payoff of playing h, given all other players’ strategies, or more181

concretely, given a strategy profile x P D let the fitness fih satisfy fihpxq “ Erripaq|x, ai “ hs. It is182

clear that all fitness functions are continuously differentiable in this case.183

Remark. The equilibria of RMD, also called mutation equilibria, in general are not Nash equilibria184

of the underlying game. Instead, they are ε-equilibria, where ε depends on pMiqiPP , [10].185

3. Mutation-bias learning186

We can now introduce the stochastic learning rules and specify their relation to RMD. We provide187

two variants of MBL: one, based on direct policy updates (MBL-DPU, alg. 1)–where the policy188

update corresponds to Cross learning, [9], with a mutation bias as a perturbation term; the other,189

based on logistic choice (MBL-LC, alg. 2)–where the policy corresponds to logistic choice based on190

action-value estimates which are updated with a mutation bias perturbation.191

Algorithm 1 (MBL-DPU) MBL with direct policy update for generic player i P P

1: Initialise: Choose learning rate θ, mutation parameters Mi ą 0 and ci P Di
˝, initial xi P Di.

2: for all times t do
3: Select strategy ai P Ai with probabilities Prpai “ hq “ xih (@h P Ai).
4: Observe payoff ri resulting from strategy profile pajqjPP .

5: For all h P Ai, set: xih Ð

#

xih ` θp1 ´ xihqri ` θMi pcih ´ xihq if h “ ai,

xih ´ θxihri ` θMi pcih ´ xihq otherwise.
6: end for

MBL with direct policy update (MBL-DPU). MBL-DPU, alg. 1, is the simpler of the two variants192

with a direct policy update and no estimation of Q-values. It is an additive linear perturbation193
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of Cross learning with perturbation term θMi pcih ´ xihq, line 5, and becomes identical to Cross194

learning, [8,9], for Mi “ 0 (@i P P ). In this sense it can be said to be a least complexity modification195

of Cross learning, since only few elementary computations are required in addition to simple Cross196

learning. We note that the assumption in Cross learning, that the payoffs ri be restricted to r0, 1s is197

not necessary. It suffices that payoffs are non-negative and bounded. In this case, θ has to be chosen198

small enough to ensure well-definition of MBL-DPU. Note that this assumption is not restrictive199

for finite games, as boundedness is trivially satisfied for finite games and non-negativity can be200

ensured by adding a constant Ci to all payoffs ri, affecting neither the Nash equilibria nor the201

dynamics in the deterministic limit—a straightforward property of RD and RMD.202

Algorithm 2 (MBL-LC) MBL with logistic choice for generic player i P P

1: Initialise: Choose learning rate θ, Mi ą 0 and ci P Di
˝, Qi P RAi . Choose β ą 0, τ ą 0.

2: for all times t do
3: For all h P Ai, set: xih Ð eτQih

ř

kPAi
eτQik

.

4: Select strategy ai P Ai with probabilities Prpai “ hq “ xih (@h P Ai).
5: Observe payoff ri resulting from strategy profile pajqjPP .

6: For h “ ai, set: Qih Ð Qih ` min
!

β
xih

, 1
)

θ
´

ri ` Mi
cih
xih

¯

.

7: end for

MBL with logistic choice (MBL-LC). Clearly, the simple perturbation in MBL-DPU can be203

combined with a wide class of transformations on the payoffs without affecting the additive204

character of the perturbation. A somewhat more involved possibility to combine the mutation-like205

perturbation with a policy update is based on a Boltzmann distribution or multinomial logistic206

choice, as frequently encountered in Q-learning. In MBL-LC, alg. 2, the perturbation affects the207

action-value updates instead of the policy. Hence, this version resembles the perturbation term of208

FAQ-learning [14,19], and allows for a closer comparison. In particular, restricting the adjustment209

in line 6 by applying a minimum is parallel to FAQ-learning. Rewriting the perturbation along210

the lines presented as a heuristic rather than as a rigorous proof in [14,19] would suggest that211

MBL-LC results in RMD in the deterministic limit, which is far from clear as will become clear212

in the experimental section. One can see that the logistic choice policy can still be expressed as a213

policy update with modified payoffs:214

xih Ð

#

xih ` p1 ´ xihqr̃i if h “ ai,

xih ´ xihr̃i otherwise,
with r̃i “

xiai
peτ∆Qiai ´ 1q

xiai
peτ∆Qiai ´ 1q ` 1

, (3.1)

where Q denotes an action-value function and ∆Qiai
denotes the update of the action-value of the215

chosen action ai. From this it is clear that an intermediate approach could be using the simpler216

MBL-DPU combined with unperturbed Q-learning, which is equivalent to transforming payoffs217

accordingly.218

Convergence of MBL-DPU219

We address the question of convergence in two steps. First, we determine whether the stochastic220

process induced by the learning algorithm can be approximated by a deterministic dynamics.221

Second, we transfer the convergence properties of the deterministic dynamics to the stochastic222

process. For MBL-DPU we have the following convergence result (proved in appendix A):223

Proposition 3.1. For every time T ă 8, the family of stochastic processes tpXθ
ihptqqi,hutPN0

induced by224

MBL-DPU converges to RMD in the sense that for all ε ą 0:225

sup
x0PD

Prp}Xθ
pnθq ´ Φpx0, T q} ą εq Ñ 0 as θ Ñ 0, (3.2)
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where nθθ Ñ T for θ Ñ 0, x0 is a.s. the initial state of the stochastic processes, i.e. Xθ
p0q “ x0 a.s., and226

Φpx0, ¨q is the unique solution of RMD with Φpx0, 0q “ x0.227

Remark. As discussed in [8,35], proposition 3.1 on its own does not yield an analysis of the228

asymptotic behaviour of the stochastic process. However, if a mutation equilibrium xM of RMD229

is asymptotically stable and x0 lies in the basin of attraction of xM , then we have Φpx0, T q Ñ xM230

as T Ñ 8. Hence, with the asymptotic stability of xM , we have that for T large enough, Φpx0, T q231

is arbitrarily close to xM and together with proposition 3.1, any neighbourhood of xM will be232

reached by the learning process tXθ
ptqutě0 with an arbitrary degree of certainty after finitely233

many steps for suitable choice of θ. Although this does not imply that the process must remain234

in this neighbourhood afterwards, it will revisit the neighbourhood with arbitrary probability235

depending on θ.236

Attracting mutation limits. In [10] we showed that every game has at least one connected Nash237

equilibrium component that is approximated by mutation equilibria irrespective of the choice of238

the mutation parameter c, as M Ñ 0, called a mutation limit. Furthermore, it was shown that for239

the game of Matching Pennies the Nash equilibrium is approximated by asymptotically stable240

mutation equilibria, warranting the name attracting mutation limit for such Nash equilibria. This241

implies the following consequence (proved in appendix A):242

Proposition 3.2. If a unique Nash equilibrium x˚
P D˝ is an attracting mutation limit and U a243

neighbourhood of x˚, then for every mutation parameter c P D˝ there are M ą 0, θ ą 0 such that the244

stochastic process tpXθ
ptqqutPN0

induced by MBL-DPU visits U at a finite time a.s., i.e., with probability 1245

there is S P N0 with Xθ
pSq P U . In fact, tpXθ

ptqqutPN0
a.s. visits U infinitely often.246

With the relation between MBL-DPU and RMD spelled out clearly, analysing the behaviour247

of MBL-DPU in various game classes becomes a matter of inspecting RMD. This convenience248

manifests itself in the clarity with which the proof of the following proposition on the convergence249

of MBL-DPU in stable games can be formulated (see appendix A):250

Proposition 3.3. Let f P C1
pD,RA1ˆ...ˆAnq be a continuously differentiable fitness function, such that251

f is a stable game in the sense of [36, definition 3.3.1], i.e.:252

@x, y P D : py ´ xq
T

pfpyq ´ fpxqq ď 0 (3.3)

Then the Nash equilibrium for f is an attracting mutation limit and, for every open neighbourhood U of the253

Nash equilibrium, there are c P D˝, M ą 0 and θ ą 0 such that the stochastic process tXθ
pnquně0 induced254

by MBL-DPU visits U infinitely often almost surely.255

With zero-sum games being a subclass of stable games, this implies that MBL-DPU approximates256

Nash equilibria in zero-sum games to any desired precision. In contrast to MBL-DPU, we do not257

have a proof of an analogous result for MBL-LC, yet. In [14,19] it is assumed that FAQ-learning,258

a similar logistic choice learning rule based on Q-learning, converges to a perturbation of the259

replicator dynamics, although no proof is given. Although it seems plausible for MBL-LC to behave260

similarly to MBL-DPU, the experimental results indicate that MBL-LC is likely more sensitive to261

the choice of learning rate than MBL-DPU, since the logistic choice can cause a stronger variance of262

the strategy at each learning step, as indicated in the more detailed results for MBL-LC in appendix263

B. The larger variance in the learning step is also the reason why our proof strategy for MBL-DPU264

cannot be translated to MBL-LC in a trivial manner.265

Perturbation creates a trade-off between accuracy and speed. We note that neither MBL-DPU266

nor MBL-LC converge to a Nash equilibrium but only to an ε-equilibrium and in particular, that267

both stay away from the boundary of D. For MBL-DPU this is clear from the fact that the equilibria268
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of RMD are not Nash equilibria and that the boundary of D is repelling. For MBL-LC this is also due269

to the exploration parameter τ . For the latter, it is further the case that τ cannot be let to approach270

8 as this collides with the θ Ñ 0 limit and makes the time derivative of the policy unbounded.271

This results in a highly increased variance in the stochastic process, preventing effective learning of272

equilibria. This particular aspect applies also to other logistic choice based algorithms, particularly273

FAQ. However, if MBL-LC and FAQ indeed converge to the corresponding ODE systems, then274

these include τ as a simple scaling parameter. Since constant positive rescalings do not change275

the trajectories, the systems can be rescaled by 1{τ in such a way that τ effectively regulates the276

perturbation’s strength relative to the replicator dynamics. In the case of RMD, 1{τ can be absorbed277

by the mutation strength M . Thus an increase of τ has the same effect as a decrease of M which278

results in all mutation equilibria moving closer to a Nash equilibrium, as desired. A reduction in279

the perturbation strength also results in a longer time to approach equilibria and this creates a280

trade-off between accuracy and speed for both MBL-LC and MBL-DPU.281

4. Experimental results282

We illustrate the theoretical results and in particular some cases where the importance of rigorous283

analysis becomes clear and the intuition about apparently well-behaved algorithms starts to become284

unreliable in a number of experimental settings: the Prisoner’s Dilemma (PD), Matching Pennies285

(MP), Rock-Paper-Scissors (RPS) with 3, 5 and 9 available strategies, and the three-player Matching286

Pennies (3MP) games. We compare MBL-DPU and MBL-LC to FAQ, [14], and WoLF-PHC, [6]. For287

details on the games’ payoffs and further experiments, cf. appendix B.288

Prisoner’s Dilemma (PD). PD is an example of a game with a strict Nash equilibrium at a vertex289

of the joint strategy space D. It is known that strict Nash equilibria are asymptotically stable290

under RD, e.g., [7]. In this case, plain Cross learning would also converge to the Nash equilibrium.291

We had shown previously that RMD does not destabilise asymptotically stable equilibria of292

RD [10, lemma 4.8]. Hence, the mutation equilibrium resulting from the mutation perturbation293

remains asymptotically stable and, with our result, MBL-DPU also learns an approximation of294

the Nash equilibrium. In this sense, PD is the least challenging setting in terms of the ease with295

which the Nash equilibrium can be learned. The setting serves mainly to illustrate the fact that the296

learned equilibria of MBL-DPU and MBL-LC in fact lie away from the boundary Nash equilibrium,297

in particular since mutation pushes the trajectories away from the boundary of D, in contrast to298

the other two algorithms. With decreasing mutation strength M , both algorithms are able to better299

approach the Nash equilibrium, as would be expected from RMD. This case also illustrates that the300

more elementary MBL-DPU converges more slowly than either of MBL-LC, FAQ, or WoLF-PHC.301

For more details and figures on this benign case, we refer the reader to appendix B(a).302

Zero-sum games—Matching Pennies (MP). As a second, structurally different case, we consider303

zero-sum games which have interior Nash equilibria. For the games considered here it is304

straightforward to check that the eigenvalues of the Jacobian of RMD in the neighbourhood of the305

Nash equilibrium only have negative real parts. Equivalently, one can check that the eigenvalues306

of the Jacobian of RD are purely imaginary in the neighbourhood of the Nash equilibrium and307

consider that RMD shifts the eigenvalues towards the negative half-plane, rendering the Nash308

equilibrium an attracting mutation limit. With propositions 3.1, 3.2 and 3.3, MBL-DPU is of course309

already guaranteed to converge in these cases. In fact, we observe convergence in the MP setting310

for MBL-DPU, MBL-LC, as well as our comparisons, FAQ-learning and WoLF-PHC, fig. 1. This311

setting illustrates that MBL-DPU overcomes the limitations of Cross learning at a minimal cost in312

increased complexity. Similar to the PD setting, MBL-DPU converges more slowly than the more313

complicated algorithms, MBL-LC, FAQ, or WoLF-PHC. With MP being a planar system and the314

Poincaré-Bendixson theorem, the complexity of the system is still relatively small.315
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Zero-sum games—Rock-Paper-Scissors (RPS). For the higher dimensional settings, i.e., RPS316

with 3, 5 and 9 strategies, we still observe convergence for MBL-DPU, fig. 2, as guaranteed by the317

Nash equilibrium being an attracting mutation limit. Naturally, the trajectories of the resulting318

4, 8 and 16 dimensional systems appear less intuitive in the 2D-projection. For MBL-LC, fig. 3,319

and FAQ, fig. 4, we observe convergence in the RPS-3 case, but both algorithms deteriorate in320

higher dimensions, MBL-LC for RPS-9, fig. 3c, and FAQ for RPS-5 and RPS-9, figs. 4b and 4c, with321

both showing the convergence region splitting up such that some trajectories stop approximating322

the Nash equilibrium. Similarly, while WoLF-PHC seems to approach the Nash equilibrium in323

RPS-3 and RPS-5, fig. 5, it loses the ability to learn the Nash equilibrium for RPS-9, fig. 5c, with324

trajectories seemingly getting stuck near the boundary of D.325

Three-player Matching Pennies. Beyond the two-player case, we compare MBL in a three-player326

Matching Pennies setting introduced in [37]. In short, the three players have a shared pure strategy327

space, i.e. A1 “ A2 “ A3, with two pure strategies, where player 1 wants to match player 2, player328

2 wants to match player 3, and player 3 wants not to match player 1. The unique Nash equilibrium329

lies at the center of D. All four algorithms fail to learn the Nash equilibrium, fig. 6 (MBL-LC not330

shown, cf. appendix B(c)). Instead, they seem to approach a seemingly stable periodic orbit.331

5. Discussion332

The experimental results illustrate the difficulties in relying on intuition and experimental results333

alone. WoLF-PHC, FAQ and MBL-LC all show quicker convergence in those cases where they334

actually do converge and they would seem the better choice than MBL-DPU. Not surprisingly,335

this is the case in PD, which has a strict Nash equilibrium, and in MP which is a planar system336

and cannot exhibit too complex behaviours. However, we see that behaviours start becoming337

less clear when we move to higher dimensions in the RPS variants. While all algorithms seem to338

approximate the Nash equilibrium in RPS-3, we see unexpected behaviour in RPS-5 for FAQ with339

a split up convergence region. In RPS-9 we see FAQ deteriorate further and MBL-LC now also fails340

to converge with a split in the convergence regions. WoLF-PHC now too fails to learn the Nash341

equilibrium, with trajectories stalling or getting stuck near the boundary. In RPS-9 no algorithm342

except for MBL-DPU–the simplest among the four, and the only one with a convergence proof343

available–manages to reliably approach the Nash equilibrium. This loss of convergence for the344

more complex algorithms is unexpected, since RPS-9 does not fundamentally differ from RPS-3 in345

the game structure and the failure to learn when moving from RPS-3 to RPS-9 would be hard to346

anticipate a priori. In contrast, with the theoretical results on MBL-DPU we have an indication of347

how well it will generalise to a structurally comparable but higher dimensional scenario.348

The failure of FAQ, WoLF-PHC and MBL-LC in RPS-9 does not imply that there are no349

parameter choices that could potentially restore the convergence of the respective algorithms. E.g.,350

tweaking the learning rates might restore convergence in these specific cases, without guaranteeing351

convergence in higher dimensional scenarios. However, the absence of analytical tools leaves352

the existence of such parameter values an open question. Even where such parameter choices353

exist the problem remains potentially intractable without an indication of where to look for them354

in the parameter space—even more so for algorithms with more parameters. Together with the355

unpredictability of failure to converge when moving from a low to a higher dimensional setting,356

this questions the reliability of algorithms that seem to make sense intuitively and look promising357

in some experiments but for which we lack fundamental results—particularly for even more358

complicated algorithms not considered here. In this situation, the utility of the mathematical359

guarantees available for MBL-DPU becomes obvious. Given a payoff structure, conditions for360

convergence can be checked by analysing the corresponding ODE system. In specific cases, this361

allows a very straightforward analysis of classes of settings, such as we have provided for stable362

games in proposition 3.3 by showing that RMD stabilises equilibria and therefore allows MBL-DPU363

to converge to neighbourhoods of the Nash equilibrium. We further understand where exactly364
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MBL-DPU is headed and that empirical non-convergence becomes less likely with smaller learning365

rates. This gives an indication of where to look for a suitable learning rate. More importantly, our366

results allow an approach that is not fundamentally restricted to any particular game class as long367

as RMD can be analysed. Finally, where MBL-DPU fails to converge, as in 3MP, just as the other368

algorithms, the ODE underpinning makes this expectable and understandable, since an analysis of369

the corresponding RMD system quickly shows that the Jacobian of the system has eigenvalues370

with positive real parts at the Nash equilibrium, making the equilibrium unstable for sufficiently371

small mutation strengths. Overall, the result on the general connection between MBL-DPU and372

RMD allows to further deduce–without requiring separate proofs–that MBL-DPU will converge373

wherever RD converges, since RMD converges wherever RD does, as clarified in [10], which e.g.374

includes potential games [36, theorem 7.1.6]. This demonstrates that such theoretical results enable375

us to understand when a given algorithm is not the best choice for a setting, instead of searching376

for parameter values that might or might not restore convergence, as we would be forced to do377

otherwise.378

It should be noted that we have left out any modifications to further improve MBL-DPU with379

the purpose of analysing the least complex variant with few parameters. In particular, as we380

had clarified in [10], the choice of the mutation parameters c and sufficiently small M does not381

qualitatively affect the behaviour of RMD and hence MBL-DPU and their relation to RD. This382

approach can be relaxed by varying either c or M , as we had also mentioned in [15]. The theoretical383

perspective makes it quite plausible that mutation strength can be chosen according to a reduction384

schedule, starting with high mutation and fast convergence and reducing mutation over time,385

increasing the accuracy with which the Nash equilibrium is approximated. Note further that386

the mutation strength is linked to a measure of the Nash condition not being satisfied, since the387

equilibria of RMD are ε-equilibria. Hence, every player can use the current violation of the Nash388

condition, i.e., its own distance from a current best-response, as a guide to adjust its mutation389

strength, e.g., by adjusting the mutation strength to be slightly lower than the current violation390

of the Nash condition. We conjecture that this would result in the system being driven towards a391

state that is not worse than the current state, as measured by the Nash condition, while keeping392

the convergence speed as high as possible. We would expect this to speed up convergence and393

improve the speed-accuracy trade-off, making MBL-DPU more attractive as a simple, predictable394

and theoretically founded MARL algorithm. Apart from such practical considerations, the current395

analysis still leaves open the questions of analysing MBL-DPU’s behaviour in non-zero-sum games396

without strict Nash equilibria and its behaviour in a wider range of n-player settings with more397

than two players. Additionally, a clarification of the convergence properties of MBL-LC would398

allow to determine, whether a smaller learning rate would recover convergence, since the logistic399

choice policy shows much larger variance than the direct policy update and might thus be more400

sensitive to the learning rate.401
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A. Proofs497

The proofs employ a result proved in [35, p. 118], which we state in the following and then proceed498

to prove propositions 3.1 and 3.2.499

(a) A theorem on learning with small steps500

The result from [35] we employ is phrased in the following terms: Let J Ă Rą0 be a parameter set501

with inf J “ 0 and N P N, such that for every θ P J , tXθ
nuně0 Ă Iθ Ă RN is a Markov process with502

stationary probabilities. We denote by ExrXθ
ns the expected value of Xθ

n given Xθ
0 “ x. Let further503

I be the minimal closed convex set with
Ť

θ Iθ Ă I . Define504

Hθ
n “ ∆Xθ

n{θ

and let wpx, θq, Spx, θq, spx, θq and rpx, θq for px, θq P I ˆ J be given as:505

wpx, θq “ ErHθ
n|Xθ

n “ xs P RN

Spx, θq “ ErpHθ
nq

2
|Xθ

n “ xs P RNˆN

spx, θq “ ErpHθ
n ´ wpx, θqq

2
|Xθ

n “ xs “ Spx, θq ´ w2
px, θq P RNˆN

rpx, θq “ Er}Hθ
n}

3
|Xθ

n “ xs P R .

where x2 “ xxT and }x} “
?
xT x for x P RN .506

We can now state theorem 8.1.1 from [35, p. 118] (omitting part (C)):507

Theorem A.1 (Norman). In the above situation, let the following conditions be satisfied:508

The family of sets pIθqθ satisfies509

@x P I : lim
θÑ0

inf
yPIθ

}x ´ y} “ 0 . (a.1)

There are functions w and s on I such that:510

sup
xPIθ

}wpx, θq ´ wpxq} P Opθq , (a.2)

sup
xPIθ

}spx, θq ´ spxq} Ñ 0 for θ Ñ 0 , (a.3)
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where O refers to the Bachmann–Landau notation.511

The function w is differentiable, i.e., there is a function w1 such that for all x P I :512

lim
yÑx

yPI

}wpyq ´ wpxq ´ w1
pxqpy ´ xq}

}y ´ x}
“ 0 . (b.1)

The function w1 is bounded:513

sup
xPI

}w1
pxq} ă 8 . (b.2)

The functions w1 and s satisfy the Lipschitz condition:514

sup
x,yPI,x‰y

}w1
pxq ´ w1

pyq}

}x ´ y}
ă 8 , (b.3)

sup
x,yPI,x‰y

}spxq ´ spyq}

}x ´ y}
ă 8 . (b.4)

The function r is bounded:515

sup
θPJ,xPIθ

rpx, θq ă 8 . (c)

Let further for θ P J and x P Iθ , µnpx, θq “ ExrXθ
ns and ωnpx, θq “ Exr}Xθ

n ´ µnpx, θq}
2
s.516

In this case, the following hold:517

(A) ωnpx, θq P Opθq uniformly in x P Iθ and nθ ď T for any T ă 8.518

(B) For any x P I , the differential equation519

f 1
ptq “ wpfptqq

has a unique solution fptq “ fpx, tq with fp0q “ x. For all t ě 0, we have fptq P I , and520

µnpx, θq ´ fpx, nθq P Opθq

uniformly in x P Iθ and nθ ď T .521

Remark A.2. We note that parts (A) and (B) imply that for all ε ą 0,522

sup
xPIθ

Prp}Xθ
n ´ fpx, T q} ą εq Ñ 0

for nθ Ñ T , θ Ñ 0, and given that Xθ
0 “ x almost certainly for all θ.523

(b) Convergence of MBL-DPU524

We restate the simple reinforcement-mutation rule of MBL-DPU in the setting layed out above,525

denoting the mixed strategies with an upper-case X to underscore that this is a random variable526

and denoting the dependence on a parameter θ, denoting the whole family of stochastic processes527

as tpXθ
ihpnqqiPP,hPAi

uně0. Let Rpxq “ pRihpxqqiPP,hPAi
be a random variable whose probability528

distribution depends smoothly on x P I with a discrete, non-negative support which is independent529

of x, and let Mi ă M for some upper bound M ă 8 and all i P P . For a player i P P and a chosen530

pure strategy h P Ai, the update rule then is given as follows:531

Xθ
ihpn ` 1q “ Xθ

ihpnq ` θ
´

p1 ´ Xθ
ihpnqqRihpXθ

pnqq

¯

` θMi

´

cih ´ Xθ
ihpnq

¯

Xθ
ikpn ` 1q “ Xθ

ikpnq ` θ
´

p´Xθ
ikpnqqRihpXθ

pnqq

¯

` θMi

´

cik ´ Xθ
ikpnq

¯

for k ‰ h .
(A 1)

We can now show proposition 3.1, i.e., that this rule indeed approximates RMD for θ Ñ 0 in the532

sense of remark A.2:533
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Proposition A.3. There is J such that the family of stochastic processes tpXθ
ihpnqqiPP,hPAi

uně0 given534

by (A 1) approximates the replicator-mutator dynamics for θ Ñ 0 in the sense of remark A.2 if Xθ
p0q P I535

for all θ P J .536

Proof. The proof proceeds by showing that tpXθ
ihpnqqiPP,hPAi

uně0 satisfies the conditions of537

theorem A.1. For a player i P P and a chosen strategy h P Ai we have:538

Hθ
ihpn ` 1q “ ∆Xθ

ihpn ` 1q{θ “ p1 ´ Xθ
ihpnqqRihpXθ

pnqq ` Mipcih ´ Xθ
ihpnqq

Hθ
ikpn ` 1q “ ∆Xθ

ikpn ` 1q{θ “ ´Xθ
ikpnqRihpXθ

pnqq ` Mipcik ´ Xθ
ikpnqq for k ‰ h

Note that in this case, Hθ
ihpn ` 1q is independent of θ if Xθ

pnq is given, which simplifies the539

analysis. Let us set fihpxq “ ErRihpXθ
pnqq|Xθ

pnq “ xs, where it is clear that there is no dependence540

on n. Note that f is smooth, being a composition of smooth functions.541

Condition (a.1): In our case, I is given as the polyhedron
Ś

i Di and Iθ “ I for all θ and thus542

condition (a.1) is satisfied. It remains to show that indeed tpXθ
ihpnqqiPP,hPAi

uně0 Ă I : Note that543

Rih is a discrete non-negative random variable and thus bounded by some C ă 8. For θ ă pC `544

Mq
´1, we have θMi ď 1. Assume that Xθ

ihpnq “ x P I , then for a player i P P and a chosen strategy545

h P Ai we have546

Xθ
ihpn ` 1q “ xih ` θ

`

p1 ´ xihqRihpn ` 1q ` Mipcih ´ xihq
˘

“ xihp1 ´ θMiq ` θp1 ´ xihqRihpn ` 1q ` θMicih ě 0

and for some other pure strategy k ‰ h, we have547

Xθ
ikpn ` 1q “ xik ` θ

`

p´xikqRihpn ` 1q ` Mipcik ´ xikq
˘

“ xik

´

1 ´ θ
`

Rihpn ` 1q ` Mi

˘

loooooooooooomoooooooooooon

ď1

¯

` θMicik ě 0 .

A simple calculation shows that
ř

k X
θ
ikpn ` 1q “ 1 if x P I . Thus we have that tpXθ

ihpnqqiPP,hPAi
uně0 Ă548

I if Xθ
p0q P I for all θ and we can choose J “ p0, pC ` Mq

´1
q.549

Conditions (a.2) & (a.3): Consider first the function w:550

wihpx, θq “ ErHθ
pnq|Xθ

pnq “ xs

“ xihp1 ´ xihqErRihpn ` 1q|Xθ
pnq “ xs ` xihMipcih ´ xihq

`
ÿ

k‰h

xikp´xihqErRikpn ` 1q|Xθ
pnq “ xs ` xikMipcih ´ xihq

“ xih

˜

fihpxq ´
ÿ

k

xikfikpxq

¸

` Mipcih ´ xihq

It is clear that w does not depend on θ and that condition (a.2) is trivially satisfied. Similarly, Spx, θq551

and spx, θq do not depend on θ and condition (a.3) is trivially satisfied.552

Conditions (b.1)–(b.4): Since the function f is smooth, so is w. In particular, we have that553

supxPI }w1
pxq} ă 8 because I is compact and w1 is continuously differentiable, from which follows554

that w1 satisfies the Lipschitz-condition (b.3) on I . Similarly, s is smooth and satisfies (b.4).555

Condition (c): Again, r does not depend on θ, and is smooth on I , which is compact. Thus it is556

bounded on I and condition (c) is satisfied.557

As a consequence, we can apply theorem A.1 to the family tXθ
pnquně0 and with remark A.2558

we have that for all ε ą 0,559

sup
xPI

Prp}Xθ
pnq ´ Φpx, T q} ą εq Ñ 0



16

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

for nθ Ñ T , θ Ñ 0, and given that Xθ
p0q “ x for all θ, where for all i P P and h P Ai, Φ is the unique560

solution of the differential equations561

9Φihpx, tq “ wihpΦpx, tqq

“ Φihptq
´

fihpΦpx, tqq ´
ÿ

k

Φikpx, tqfikpΦpx, tqq

¯

` Mipcih ´ Φihpx, tqq

with Φpx, 0q “ x.562

Proposition A.4. Let xM be an equilibrium of (RMD) and U an open neighbourhood of xM . If xM is563

globally asymptotically stable, then there is θ ą 0 such that the stochastic process tpXθ
ihpnqqiPP,hPAi

uně0564

defined in (A 1) visits U almost surely after finitely many steps.565

Proof. Let Φpx, ¨q :Rě0 Ñ D satisfy (RMD) with Φpx, 0q “ x for all x P D. Let further U 1
Ă U such566

that xM P U 1 and
Ť

xPU 1 Bδpxq Ă U for some δ ą 0, where Bδpxq denotes an open ball with radius567

δ around x. As xM is globally asymptotically stable, there is for each x P D a t1
ă 8 such that for568

all t ą t1: Φpx, tq P U 1.569

This is because there is a neighbourhood V Ă U 1 of xM such that @x0 P V, t ą 0 :Φpx0, tq P U 1
570

due to the Lyapunov stability of xM . Since xM is asymptotically stable, for every x there is a t ą 0571

such that Φpx, tq P V and hence the solution will remain in U 1 afterwards.572

Therefore, define τ :D Ñ R such that:573

τpxq “ inftT ą 0 : Φpx, T q P V u

Since the RHS of (RMD) is continuously differentiable by assumption, it is also Lipschitz574

continuous. Thus, Φ is continuous in the first argument and so is τ as the following argument575

shows:576

Let x P D and ε1 ą 0. Then there is t ą τpxq such that Φpx, sq P V for s P pτpxq, ts. Choose s P577

pτpxq, ts such that |τpxq ´ s| ă ε1. Then Φpx, sq P V and there is a neighbourhood Ux of x such that578

for all y P Ux, Φpy, sq P V . Hence τpyq ă s ă τpxq ` ε1.579

We also have τpyq ą τpxq ´ ε1 due to the following:580

Consider d :“ inft}Φpx, τpxq ´ ε1q ´ v} : v P V u ą 0. Note that the Lipschitz condition implies that581

there is L ą 0 such that for all t ą 0 and all y P D582

}Φpx, tq ´ Φpy, tq} ď }x ´ y}eLt

and for all t P r0, τpxq ´ ε1s,583

}Φpx, tq ´ Φpy, tq} ď }x ´ y}eLpτpxq´ε1q

and w.l.o.g. we can assume that @y P Ux, we have }x ´ y}eLpτpxq´ε1q
ă d

2 . Thus we have for all584

v P V585

0 ă d ď }Φpx, tq ´ v} “ }Φpx, tq ´ Φpy, tq ` Φpy, tq ´ v}

ď }Φpx, tq ´ Φpy, tq} ` }Φpy, tq ´ v}

ď }x ´ y}eLpτpxq´ε1q
` }Φpy, tq ´ v} ă

d

2
` }Φpy, tq ´ v}

and so for all y P Ux, we have inft}Φpy, tq ´ v} : v P V, t P r0, τpxq ´ ε1su ě d
2 ą 0 and thus τpyq ą586

τpxq ´ ε1. So τ is continuous on D. Let then T :“ supxPD τpxq ă 8. Note that for all x P D we have587

that for all t ą T , Φpx, tq P U 1 and BδpΦpx, tqq Ă U .588

Let further η ą 0. Then with proposition A.3, there are θ ą 0, nθ P N such that for all x P D,589

PrpXθ
pnθq P BδpΦpx, T qq Ă U |Xθ

p0q “ xq ą η

and so590

PrpXθ
pnθq P Uq ą η.
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From here it is easy to see that the first hit time of U for tXθ
ptqutPN0

is almost surely finite, i.e.,591

the earliest time t for which Xθ
ptq P U : Let Zpkq :“ Xθ

pknθq for k P N0 and let S be the first hit592

time of U for tZpkqukPN0
, such that S is a random variable with values in N0 Y t8u. Clearly the593

first hit time of U for tXθ
ptqutPN0

is smaller than for tZpkqukPN0
.594

We have that for all z P D and all k P N:595

PrpZk`1 P BδpΦpz, T qq Ă U |Zk “ zq ą η

and hence596

PrpZk`1 P Uq ą η.

Then we have for S,597

PrpS ď k ` 1q “ PrpS ď kq ` p1 ´ PrpS ď kqqPrpZk`1 P Uq ą PrpS ď kqp1 ´ ηq ` η

and a quick induction argument yields:598

PrpS ď k ` 1q ą 1 ´ p1 ´ ηq
k`

1 ´ p1 ´ ηqPrpS “ 0q
˘

The probability of a finite hitting time is then:599

PrpS P N0q “ lim
kÑ8

PrpS ď k ` 1q ě 1 ´ lim
kÑ8

p1 ´ ηq
k

p1 ´ p1 ´ ηqPrpS “ 0qq “ 1

In particular, the hitting time of U for tXθ
ptqutPN0

is finite almost surely.600

The previous proposition A.4 together with the consideration that an attracting mutation limit601

is approximated by asymptotically stable mutation equilibria and the immediately following602

corollary show proposition 3.2:603

Corollary A.5. If xM is a globally asymptotically stable equilibrium of (RMD) and U an open604

neighbourhood of xM , then there is θ ą 0 such that the stochastic process tXθ
pnquně0 defined in (A 1)605

visits U infinitely often almost surely.606

Proof. Consider for any finite t1
P N0 the probability that tXθ

pnquně0 will not visit U afterwards.607

This is clearly the same as the probability that the process tZθ
pnquně0 induced by (A 1) and starting608

in Xθ
pt1

q, i.e., Zθ
p0q “ Xθ

pt1
q almost surely, will not visit U at all. The previous proposition A.4609

shows that this probability is 0, which concludes the proof.610

MBL-DPU in stable games611

The following proposition shows that, in the class of stable games, the Nash equilibrium is612

an attracting mutation limit in the sense of [10, definition 4.7], i.e. that it is approximated by613

asymptotically stable equilibria of (RMD), regardless of the choice of mutation parameters for614

diminishing mutation. From this, the convergence of MDL-DPU follows directly with our main615

result on MBL-DPU and (RMD) as stated in the subsequent corollary.616

Proposition A.6. Let f P C1
pD,RA1ˆ...ˆAnq be a continuously differentiable fitness function (or617

equivalently a payoff function), such that f is a stable population game in the sense of [36, definition618

3.3.1], i.e.619

@x, y P D : py ´ xq
T

pfpyq ´ fpxqq ď 0 (A 2)

Then the Nash equilibrium for f is an attracting mutation limit.620

Proof. We need to consider that the Nash equilibrium need not be unique. However, it is a convex621

set for stable population games, as is known from the variational inequality corresponding to the622

stability definition, e.g. [25, theorem 2.3.5]. In particular, the Nash equilibrium is a single connected623

component in this case, and with [10, prop. 4.3] it is a mutation limit, and hence approximated by624
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equilibria of (RMD). It remains to show that these equilibria are asymptotically stable. Note that625

we can rewrite (RMD) as follows:626

9xihptq “ xihptq
`

fihpxptqq ´
ÿ

kPAi

xikptqfikpxptqq
˘

` Mipcih ´ xihptqq

“ xihptq

¨

˝fihpxptqq ` Mi
cih

xihptq
´

ÿ

kPAi

xikptq

ˆ

fikpxptqq ` Mi
cik

xikptq

˙

˛

‚

With mihpxq “ Mi
cih
xih

, this is the replicator dynamics for the population game f ` m. Asymptotic627

stability then follows from (A 2) holding for f ` m as a strict inequality, whenever x ‰ y for628

x, y P D˝:629

py ´ xq
T

pfpyq ` mpyq ´ fpxq ´ mpxqq “ py ´ xq
T

pfpyq ´ fpxqq
loooooooooooooomoooooooooooooon

ď0

`py ´ xq
T

pmpyq ´ mpxqq

ďpy ´ xq
T

pmpyq ´ mpxqq “
ÿ

i,h

Miyih
cih
yih

´
ÿ

i,h

Miyih
cih
xih

´
ÿ

i,h

Mixih
cih
yih

`
ÿ

i,h

Mixih
cih
xih

ďpy ´ xq
T

pmpyq ´ mpxqq “
ÿ

iPP

Mi

ÿ

hPAi

cih

looomooon

“1

´
ÿ

i,h

Miyih
cih
xih

´
ÿ

i,h

Mixih
cih
yih

`
ÿ

iPP

Mi

ÿ

hPAi

cih

looomooon

“1

ďpy ´ xq
T

pmpyq ´ mpxqq “
ÿ

iPP

Mi

˜

2 ´
ÿ

hPAi

cih

ˆ

yih
xih

`
xih
yih

˙

looooooomooooooon

ŋ2 for x‰y

¸

ă
ÿ

iPP

Mi

¨

˝2 ´ 2
ÿ

hPAi

cih

˛

‚“ 0

With this, f ` m is a strictly stable game in the sense of [36, theorem 7.2.4] which states that its630

equilibrium is unique and globally asymptotically stable. This holds independently of the specific631

choice of c P D˝ and strictly positive pMiqiPP , which concludes the proof.632

The following corollary then proves proposition 3.3:633

Corollary A.7. Let f P C1
pD,RA1ˆ...ˆAnq be a stable game in the sense of proposition A.6. Then for634

every open neighbourhood U of the Nash equilibrium (set), there is θ ą 0 such that the stochastic process635

tXθ
pnquně0 defined in (A 1) visits U infinitely often almost surely.636

Proof. The claim directly follows from the Nash equilibrium being an attracting mutation limit637

according to proposition A.6 and thus being approximated by a sequence of globally asymptotically638

stable equilibria of (RMD). Applying corollary A.5 concludes the proof.639

B. Specification of experiments and further results640

This section provides the specification details for the experimental results of section 4 and further641

results for a broader range of parameter values. It is structured as follows: Each game setting is642

introduced with its payoff structure together with further results and a short description of the643

results, in the order of Prisoner’s Dilemma (B(a)), Matching Pennies (i), RPS-n games (ii), and644

three-player Matching Pennies (B(c)). For the two-player settings, the payoff values are given as645

matrices R1 and R2, giving the payoffs for players one and two respectively, such that if player646

one chooses the i-th pure strategy from A1 and player two chooses the j-th pure strategy from A2,647

then the payoffs are given as r1pi, jq “ rR1sij and r2pi, jq “ rR2sij respectively. The experiments648

were run on a small cluster of multi-kernel CPUs, but we have checked that they can easily be run649

on personal hardware.650
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(a) Prisoner’s Dilemma651

The experimental results for the Prisoner’s Dilemma are based on the following payoff structure:652

R1 “

˜

1 5

0 3

¸

R2 “

˜

1 0

5 3

¸

This version has a strict unique Nash equilibrium x˚ at:653

x˚
1 “

´

1 0
¯T

x˚
2 “

´

1 0
¯T

MBL-DPU and MBL-LC. The experimental results (figures 7, 8) illustrate the behaviour of654

MBL-DPU and its convergence for different mutation strengths M . In accordance with intuition,655

convergence is quick for high mutation strength at the price of the mutation equilibrium being656

further away from the Nash equilibrium. For lower values of M , we have that the mutation657

equilibrium moves closer to the Nash equilibrium while convergence becomes slower. In658

comparison, MBL-LC (figures 9, 10) behaves similarly while converging much more quickly.659

An intuition for this is provided when considering that MBL-DPU can be viewed as a linear660

approximation to MBL-LC for small τ .661

FAQ-learning. For FAQ-learning (figures 11, 12), the role of τ corresponds to that of M´1 in MBL.662

We have that, similarly to both MBL variants, with increasing values of τ (i.e., decreasing values of663

M ), the dynamics approaches a region that lies closer to the Nash equilibrium. The intuition here664

is provided by the fact that the deterministic limit of FAQ is claimed to be a replicator dynamics665

with a perturbative term whose effect depends on τ and which pulls the system towards the centre666

of D. Furthermore, convergence is the slower the weaker the perturbative term is, much like in the667

two MBL variants. In contrast to the MBL variants, FAQ-learning defaults to the usual Q-learning668

when xih ď β. This effectively neutralises the repelling dynamics at the boundary of D, which669

would otherwise result in very large (unbounded) changes in the Q-values for very low values of670

xih. Note that MBL-LC has xih occurring in the denominator twice and hence retains the repelling671

effect at the boundary of D.672

WoLF-PHC. In contrast to the other algorithms, WoLF-PHC (figure 13) follows a chosen direction673

for some time until it is replaced by a new direction, which results in a discrete sequence of674

directions and non-smooth trajectories. Convergence to the Nash equilibrium occurs much675

faster than for the other algorithms in the case of PD. However, strict Nash equilibria are also676

asymptotically stable in RD and thus PD is a base case which illustrates the different behaviours677

in a clear-cut situation, as opposed to more challenging and ambiguous situations without strict678

Nash equilibria.679
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(a) MBL-DPU with M´1
“ 20.

(b) MBL-LC with M´1
“ τ “ 20.

(c) FAQ with τ “ 20.

(d) WoLF-PHC with initial
learning rate 10´1 for Q, win
learning rate 1{2 ¨ 10´4.

Figure 1: Self-play on the MP
game; for 10 different initial
conditions. Each subfigure
shows the ten trajectories in
the projection onto the first
components of the players’
strategies, in this case the
‘defect’ strategy, with the first
player on the horizontal axis
and the second on the vertical
axis. Points coloured yellow
correspond to earlier points
in time, changing over orange
and violet to black for later
points in time. The position of
the game’s Nash equilibrium
is marked with a blue cross in
the projection plane.



21

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(a) MBL-DPU on RPS-3. (b) MBL-DPU on RPS-5.

(c) MBL-DPU on RPS-9.

Figure 2: Self-play of MBL-DPU on RPS-3, RPS-5 and RPS-9 games, with M´1
“ 20.
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(a) MBL-LC on RPS-3. (b) MBL-LC on RPS-5.

(c) MBL-LC on RPS-9.

Figure 3: Self-play of MBL-LC on RPS-3, RPS-5 and RPS-9 games, with M´1
“ τ “ 20.
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(a) FAQ on RPS-3. (b) FAQ on RPS-5.

(c) FAQ on RPS-9.

Figure 4: Self-play of FAQ-learning on RPS-3, RPS-5 and RPS-9 games, with τ “ 20.
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(a) WoLF-PHC on RPS-3. (b) WoLF-PHC on RPS-5.

(c) WoLF-PHC on RPS-9.

Figure 5: Self-play of WoLF-PHC-learning on RPS-3, RPS-5 and RPS-9 games, with initial learning
rate 10´1 for Q, win learning rate 1{2 ¨ 10´4.
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(a) MBL-DPU. (b) FAQ.

(c) WoLF-PHC.

Figure 6: Self-play on 3MP by (a) MBL-DPU with M´1
“ 20, (b) FAQ with τ “ 20, and (c) WoLF-

PHC with initial learning rate 10´1 for Q, win learning rate 1{2 ¨ 10´4.
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(a) τ “ 1, M “ 1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 7: MBL-DPU in self-play on the PD game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 10´4; for 10 different initial conditions. In each subfigure, the upper
graph shows the ten trajectories in the projection on the first components of the players’ strategies,
in this case the ‘defect’ strategy, with the first player given on the horizontal axis and the second
player on the vertical axis. Points coloured yellow correspond to earlier points in time, changing
over orange and violet to black for later points in time. The position of the game’s Nash equilibrium
is marked with a blue cross in the projection plane. The lower graph shows the standard deviation
of all components of the players’ strategies for each point in time over the past 5000 time steps, for
each of the ten initial conditions, coloured red and blue for the two players. Time is given on the
horizontal axis. The standard deviation is computed with the usual Euclidean metric.
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 8: MBL-DPU in self-play on the PD game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 9: MBL-LC in self-play on the PD game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 10: MBL-LC in self-play on the PD game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 11: FAQ in self-play on the PD game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 12: FAQ in self-play on the PD game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 13: WoLF-PHC in self-play on the PD game with different learning schedules; for 10 different
initialisations. Subgraph (a) has a high convergence speed such that only disconnected points can
be seen. (See figure 7 for a detailed explanation of the graphs.)

(b) Zero-sum games680

For two-player zero-sum games, we have preliminary results showing that the Nash equilibrium681

is an attracting mutation limit. While RD (and Cross learning) would not converge to interior682

equilibria (with Cross learning eventually approaching the boundary), RMD converges to the683

mutation equilibrium for every choice of mutation probabilities, c P D˝ and M ą 0, and so does684

MBL-DPU. Stability is induced by the perturbative terms and their varying strengths have two685

effects which have to be weighed against each other. We demonstrate the general idea in the simple686

situation of the Matching Pennies (MP) game. Further, we illustrate the changing behaviour when687

we grow the strategy space by considering different versions of the Rock-Paper-Scissors game,688

RPS-n, with n “ 3, 5, 9, where n denotes the number of strategies available to each player.689

(i) Matching Pennies690

The experimental results for the Matching Pennies game are based on the following payoff691

structure:692

R1 “

˜

1 ´23{10

´4{10 1

¸

R2 “

˜

´23{10 1

1 ´4{10

¸

Nash equilibrium x˚ at:693

x˚
1 “

´

14{47 33{47
¯T

x˚
2 “

´

33{47 14{47
¯T
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The MP game is a particularly simple case of a zero-sum game and hence provides an694

informative perspective on the basic characteristics of the different algorithms. In general, we695

see that the location of the mutation equilibrium depends on the mutation strength M , while696

convergence is slower for lower values of M creating a trade-off between these.697

MBL-DPU and MBL-LC. Comparing MBL-DPU and MBL-LC, we see again that the LC-variant698

(figures 16, 17) approaches the mutation equilibrium more quickly than the DPU-variant (figures699

14, 15). However, we see that the DPU-variant exhibits a much smaller variance, more precisely700

standard deviation, in the vicinity of the mutation equilibrium due to its slower change, with701

both variants roughly differing by a factor between 5 and 10 (for M “ 40´1). This illustrates the702

stronger effect that single larger payoffs have on the LC-variant, producing a larger variance near703

the mutation equilibrium.704

FAQ-learning. For FAQ-learning (figures 18, 19) we see a similar behaviour as MBL-LC, however705

with a smaller variance near the equilibrium for weaker perturbation (figure 19). As with the MBL706

variants, FAQ exhibits slower convergence for weaker perturbation with larger variance near its707

(apparently asymptotically stable) equilibrium. However, we also observe that with FAQ, solutions708

can get trapped near the boundary (note the trapped solution in the upper left corner in figure 19),709

which we do not observe for the MBL variants and have proved not to be the case for MBL-DPU.710

WoLF-PHC. Similar to the other algorithms, WoLF-PHC (figure 20) follows spiral-like trajectories711

towards a region close to the Nash equilibrium. It also shows a lower variance near the (apparently712

asymptotically stable) equilibrium. However, WoLF-PHC employs a learning rate schedule which713

reduces the learning rate over time and thus reduces variance.4 One should note that WoLF-PHC714

is considerably more complicated as it relies on a reliable way to estimate action-values as well715

as a long-term population average. It is clear that a player would require more resources for716

implementing WoLF-PHC than for the other algorithms.717

4It would be possible to evaluate WoLF-PHC with a fixed learning rate or use a reduction schedule for the other algorithms.
However, the former would be a deviation from the canonical formulation of WoLF-PHC while the latter would not be based
on a principled approach. Hence, this heterogeneous situation is an appropriate base scenario.
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(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 14: MBL-DPU in self-play on the MP game with different values for τ (1, 10, 20) or M

(1, 10´1, 20´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 15: MBL-DPU in self-play on the MP game with different values for τ (30, 35, 40) or M

(30´1, 35´1, 40´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 16: MBL-LC in self-play on the MP game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 17: MBL-LC in self-play on the MP game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 18: FAQ in self-play on the MP game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 19: FAQ in self-play on the MP game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 20: WoLF-PHC in self-play on the MP game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)



36

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(ii) Zero-sum games with larger action spaces718

The experimental results for the RPS-n games are based on the following payoff structures.719

RPS-3.

R1 “

¨

˚

˝

0 ´2 3

2 0 ´2

´1 2 0

˛

‹

‚

R2 “ ´R1

Nash equilibrium x˚ at:720

x˚
1 “

´

2{7 11{35 2{5
¯T

x˚
2 “

´

2{5 11{35 2{7
¯T

RPS-5.

R1 “

¨

˚

˚

˚

˚

˚

˝

0 4 ´2 2 ´2

´4 0 2 ´1 1

2 ´4 0 4 ´1

´4 1 ´4 0 2

2 ´1 1 ´2 0

˛

‹

‹

‹

‹

‹

‚

R2 “ ´R1

Nash equilibrium x˚ at:721

x˚
1 “

´

11{61 510{2989 8{61 50{427 1198{2989
¯T

x˚
2 “

´

1{7 68{427 6{49 502{2989 174{427
¯T

RPS-9.

R1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 2 1 3 1 ´1 ´1 ´2 ´1

´1 0 1 3 1 1 ´1 ´2 ´1

´1 ´2 0 3 1 1 1 ´2 ´1

´2 ´4 ´2 0 2 2 2 4 ´2

´1 ´2 ´1 ´3 0 1 1 2 1

1 ´2 ´1 ´3 ´1 0 1 2 1

2 4 ´2 ´6 ´2 ´2 0 4 2

1 2 1 ´3 ´1 ´1 ´1 0 1

1 2 1 3 ´1 ´1 ´1 ´2 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

R2 “ ´R1

Nash equilibrium x˚ at:722

x˚
1 “

´

1{8 1{8 1{8 1{16 1{8 1{8 1{16 1{8 1{8
¯T

x˚
2 “

´

3{22 3{44 3{22 1{22 3{22 3{22 3{22 3{44 3{22
¯T

While MP is an informative illustration of the different behaviours, MP reduces to a planar723

dynamical system, which does not allow many complex behaviours, as exemplified by the Poincaré-724

Bendixson theorem, e.g., [38, theorem 7.16] holding for planar systems. Hence, higher-dimensional725

zero-sum games allow a further understanding of the differences between the algorithms and shed726

light on the effect of larger state spaces while preserving the neutral stability of interior equilibria.727

We consider here the Rock-Paper-Scissors game of different sizes (3, 5 and 9 actions).728

MBL-DPU and MBL-LC. In RPS-3, MBL-DPU (figures 21, 22) shows a similar behaviour to729

MP with a marked dependence of the behaviour of the variance on the value of M . In contrast,730

MBL-LC (figures 23, 24) shows a much quicker convergence, with the variance dropping after731
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similar numbers of episodes (around 105) for all values of M . As with MBL-DPU, the residual732

variance increases with weaker mutation. This is in accordance with the neutral stability of the733

Nash equilibrium, allowing for larger fluctuations.734

In RPS-5, both MBL variants (figures 28, 29 for MBL-DPU and figures 30, 31 for MBL-LC)735

show behaviours similar to their RPS-3 counterparts. In RPS-9, MBL-DPU (figures 35, 36) again736

shows similar behaviour, with slower convergence compared to its RPS-3 and RPS-5 counterparts.737

Interestingly, MBL-LC (figures 37, 38) seems to have two distinct regions to which trajectories738

evolve, suggesting a potentially stronger sensitivity to the choice of θ.739

FAQ-learning. Like for MP, we see a quicker convergence for FAQ in RPS-3 (figures 25, 26)740

compared to the MBL variants, but with trajectories similar to those of MBL-LC when considering741

low values of M , in which case the replicator dynamics makes a stronger contribution to the742

trajectories. Similar to MBL-LC, but already in RPS-5, FAQ shows two distinct regions to which743

trajectories evolve when perturbation is weak (figures 32, 33), whereas the former does not show744

such a split for RPS-5. In RPS-9, FAQ shows such a split for stronger perturbation levels already745

and shows even three distinct such regions for weaker perturbation (figures 39, 40).746

WoLF-PHC. For WoLF-PHC, we see a still quicker convergence in RPS-3 (figure 27) than for the747

other algorithms, similar to the MP case. However, the behaviour is much less clear in RPS-5 (figure748

34). Here, trajectories do not consistently approach a specific region. It is possible that the reduction749

schedules for the learning rates, which force each trajectory to converge, lead to trajectories stalling750

prematurely. This becomes even more pronounced in RPS-9 (figure 41), where WoLF-PHC seems751

to initially move away from the Nash equilibrium and to get stuck along the boundaries of D.752
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Figure 21: MBL-DPU in self-play on the RPS-3 game with different values for τ (1, 10, 20) or M
(1, 10´1, 20´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 22: MBL-DPU in self-play on the RPS-3 game with different values for τ (30, 35, 40) or
M (30´1, 35´1, 40´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 23: MBL-LC in self-play on the RPS-3 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 24: MBL-LC in self-play on the RPS-3 game with different values for τ (30, 35, 40) or M
(30´1, 35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 25: FAQ in self-play on the RPS-3 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 26: FAQ in self-play on the RPS-3 game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 27: WoLF-PHC in self-play on the RPS-3 game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 28: MBL-DPU in self-play on the RPS-5 game with different values for τ (1, 10, 20) or M
(1, 10´1, 20´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 29: MBL-DPU in self-play on the RPS-5 game with different values for τ (30, 35, 40) or
M (30´1, 35´1, 40´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 30: MBL-LC in self-play on the RPS-5 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 31: MBL-LC in self-play on the RPS-5 game with different values for τ (30, 35, 40) or M
(30´1, 35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 32: FAQ in self-play on the RPS-5 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 33: FAQ in self-play on the RPS-5 game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)



45

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 34: WoLF-PHC in self-play on the RPS-5 game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 35: MBL-DPU in self-play on the RPS-9 game with different values for τ (1, 10, 20) or M
(1, 10´1, 20´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 36: MBL-DPU in self-play on the RPS-9 game with different values for τ (30, 35, 40) or
M (30´1, 35´1, 40´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 37: MBL-LC in self-play on the RPS-9 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 38: MBL-LC in self-play on the RPS-9 game with different values for τ (30, 35, 40) or M
(30´1, 35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)

(a) τ “ 1, M “ 1´1 (b) τ “ 10, M “ 10´1 (c) τ “ 20, M “ 20´1

Figure 39: FAQ in self-play on the RPS-9 game with different values for τ (1, 10, 20) or M (1,
10´1, 20´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 30, M “ 30´1 (b) τ “ 35, M “ 35´1 (c) τ “ 40, M “ 40´1

Figure 40: FAQ in self-play on the RPS-9 game with different values for τ (30, 35, 40) or M (30´1,
35´1, 40´1) equivalently; θ “ 5 ¨ 10´3; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 41: WoLF-PHC in self-play on the RPS-9 game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)



49

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(c) Three-player Matching Pennies753

Further, we consider the behaviour of the MBL variants in comparison to FAQ learning and754

WoLF-PHC in a three-player Matching Pennies (3MP) game introduced in [37], with payoffs as755

given in table 1. The similarity to the standard MP game becomes clear when one considers that756

the payoff structure reflects the following idea: The first player wants to match the second player’s757

action. The second player wants to match the third player’s action. However, the third player does758

not want to match the first player’s action. The unique Nash equilibrium for 3MP is located at the759

centre of D. Note that, as initially proposed, 3MP is not a zero-sum game.760

H T
H p1, 1,´1q p´1,´1,´1q

T p´1, 1, 1q p1,´1, 1q

(a) Payoffs when the third player chooses
‘H’.

H T
H p1,´1, 1q p´1, 1, 1q

T p´1,´1,´1q p1, 1,´1q

(b) Payoffs when the third player chooses
‘T’.

Table 1: Payoff tuples for the three-player Matching Pennies (3MP) game with the first player’s
action determining the row, the second player’s action the column, and the third player’s action
the table.

In 3MP, both MBL variants (figures 42, 43) show apparently asymptotically stable periodic761

limit behaviours, which approach the boundary of D as mutation diminishes. We further see762

a very similar behaviour for FAQ (figure 44) with τ´1 showing an analogous effect to M763

in MBL, quite similar to the two-player settings. Likewise, WoLF-PHC (figure 45) exhibits764

apparently asymptotically stable trajectories, at least in the projection onto the first actions of765

the first two players. Again, WoLF-PHC shows a reduction of variance over time, presumably766

due to diminishing learning rates. In [6], the authors show that WoLF-PHC converges to the767

Nash equilibrium when δl{δw “ 3 (as opposed to δl{δw “ 2). Since there is no established ODE768

approximation of WoLF-PHC that we are aware of, the reasons for this remain unclear. One should769

also note that we have made sure that the Nash equilibrium is not located at the centre of D in the770

two-player games because the perturbation term in FAQ has its equilibrium there and convergence771

might easily have been coincidental. For 3MP, we have not made any such adaptations and some772

behaviours might change when the Nash equilibrium is moved away from the centre.773
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(a) τ “ 10, M “ 10´1 (b) τ “ 20, M “ 20´1 (c) τ “ 30, M “ 30´1

Figure 42: MBL-DPU in self-play on the 3MP game with different values for τ (10, 20, 30) or M
(10´1, 20´1, 30´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) τ “ 10, M “ 10´1 (b) τ “ 20, M “ 20´1 (c) τ “ 30, M “ 30´1

Figure 43: MBL-LC in self-play on the 3MP game with different values for τ (10, 20, 30) or M

(10´1, 20´1, 30´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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(a) τ “ 10, M “ 10´1 (b) τ “ 20, M “ 20´1 (c) τ “ 30, M “ 30´1

Figure 44: FAQ in self-play on the 3MP game with different values for τ (10, 20, 30) or M (10´1,
20´1, 30´1) equivalently; θ “ 10´4; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

(a) Initial learning rate 10´1

for Q. Win learning rate 10´2.

(b) Initial learning rate 10´1

for Q. Win learning rate 1{2 ¨

10´4.

(c) Initial learning rate 10´2

for Q. Win learning rate 1{2 ¨

10´4.

Figure 45: WoLF-PHC in self-play on the 3MP game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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