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1. Introduction

Reinforcement learning algorithms have been employed in a wide range of problem settings
with great success, e.g., [1], and for the single-agent case the conditions for convergence of, e.g.,
Q-learning have been clarified, [2]. However, for multi-agent reinforcement learning (MARL),
questions of convergence are still very much open. Even simple two-player settings, e.g. the Rock-
Paper-Scissors (RPS) game, can exhibit chaotic behaviour under simple dynamics, [3], and make
a rigorous a priori analysis challenging. For more complicated algorithms, an analysis beyond
experimental evaluation is often hardly possible. However, more general analyses are highly
informative of why algorithms behave in a certain way and theoretical guarantees for at least the
simplest of settings are highly desirable in order to assess how reliably MARL algorithms will
generalise to similar settings.

In particular, as MARL algorithms often lead to stochastic discrete-time dynamic systems,
insights from the fields of learning dynamics in games and of evolutionary game theory (EGT) have
been particularly relevant. EGT approaches and specifically the established replicator dynamics
(RD) have informed a number of constructions or analyses of learning algorithms in multi-agent
settings, e.g., [4,5]. The potential of EGT to inform learning algorithms is illustrated, as a particularly
prominent example, by the fact that the WoLF-PHC learning algorithm, [6], keeps track of the past
average policy. In light of RD, this is particularly useful, as the time-average policy in RD converges
to a Nash equilibrium under self-play in zero-sum games, e.g, [7, prop. 3.6, p. 92], providing an
intuition for how WoLF-PHC can learn Nash equilibria in self-play in a number of settings.
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Contribution

In the spirit of further contributing to understanding the relation between MARL systems and
the rich results on evolutionary game dynamics, and building on the relation between RD and a
simple form of reinforcement learning, called Cross learning [8,9], we present and analyse two
variants of a reinforcement learning algorithm: Mutation-bias learning with direct policy updates
(MBL-DPU)—a least complexity modification of Cross learning—and mutation-bias learning with
logistic choice (MBL-LC), which more closely aligns with the softmax policy in reinforcement
learning. Our analysis explicitly takes into account the full stochasticity of the problem, and proves
rigorously that MBL-DPU can be approximated by a mutation-perturbed replicator dynamics
(RMD) which we had specified and analysed previously in [10], a non-linear continuous-time
deterministic dynamics whose stability properties can still be studied analytically to a certain
degree.

Although in general, Lyapunov stability and other properties of a continuous-time dynamics
do not always transfer to a corresponding discretized dynamics—a prominent example is the
RPS game, [7]—we show that asymptotic stability in the continuous dynamics does imply the
convergence of the MARL algorithm, in spite of non-vanishing discrete step-size and stochasticity.
Our focus on RMD allows us to avoid a well-known fundamental limitation of the regular multi-
population RD, which cannot have asymptotically stable interior equilibria, e.g. [11, lemma 1].
Hence, simple Cross learning is fundamentally unable to learn interior equilibria and will quickly
deviate from RD in cases of merely neutral stability, such as in RPS games. In contrast to RD
and Cross learning, we had proved that RMD allows interior equilibria to be asymptotically
stable, [10], enabling the proposed MBL algorithm to overcome this fundamental limitation and
approach interior Nash equilibria arbitrarily closely. Hence, with RMD admitting asymptotically
stable interior equilibria, we can show that the MBL processes revisit arbitrary neighbourhoods
of such equilibria infinitely often almost surely even in the case of finite step-size, particularly in
zero-sum games. In contrast to more complicated algorithms, the rigorous link we prove between
the stochastic MBL trajectories and the deterministic RMD allows a general analytic approach to
the question of transient dynamics as well as to the question of asymptotic convergence of MBL to
an e-equilibrium in a given class of games or any particular given game a priori, be it zero-sum
or not. In particular, this directly addresses questions of last-iterate convergence, in contrast to
convergence of the time-average of iterates. Importantly, our results allow to understand when
convergence should or should not be expected, irrespective of parameter choices, by studying the
properties of RMD in the setting of interest, since the behaviour of MBL follows directly due to
our analysis. We demonstrate this by proving that MBL-DPU converges in zero-sum games and
more generally in stable games as a direct result of the convergence of RMD in such games. To
our knowledge, MBL is among the simplest uncoupled algorithms—in the sense of [6,12]—that
can learn or approximate interior equilibria and among the few such for which a more general
rigorous dynamic system analysis—beyond very restricted game classes—is available.

Furthermore, our analysis of MBL fully takes into account that individual game outcomes and
payoffs are results of stochastic choices and does not rely on assuming the knowledge of expected
outcomes. That the transition from expected outcomes to actual sampled outcomes is not trivial
is demonstrated by the treatment in [13] and by the comparisons we present in the experimental
settings where intuitively well-behaved algorithms clearly demonstrate the very limited validity
of such intuitions. In light of the current centrality of algorithms that rely on samples or batches of
samples in real-life applications, this underscores the necessity of comprehensive rigorous analyses
not hinging on intuition in order to establish their reliability.

The rest of this paper proceeds as follows: After relating our results to the literature, we state
the necessary evolutionary game theoretic preliminaries. We then introduce the two MBL variants,
MBL-DPU and MBL-LC, which demonstrates an alternative approach to include the mutation
perturbation term closer to Q-learning inspired approaches, and state the propositions on the
relation of MBL-DPU to RMD and apply these to prove the convergence properties of MBL-DPU
in stable games resulting from RMD. Although intuitively appealing, MBL-LC does not allow a
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similar treatment and its main purpose lies in charting the relation to more standard Q-learning
related algorithms. We then illustrate the theoretical results with numerical experiments in a
range of two-player games, as well as a three-player game, and compare the behaviours of the
two MBL variants to those of frequency-adjusted Q-learning (FAQ), [14], and Win-or-Learn-Fast
Policy-Hill-Climbing (WoLF-PHC), [6], highlighting the points where the behaviours of all but
MBL-DPU start deteriorating and underscoring the utility of a mathematically rigorous link to
dynamic system analysis in the study of MARL algorithms.!

Related results

An overview over a larger class of stochastic reinforcement learning rules is provided in [16], with
a focus on their relations to systems of RD type, which forms the base dynamics, incurring the
difficulties mentioned earlier. As an extension, systems of RD type with additional perturbations
have been related to learning rules, including such with entropy related perturbation terms, [17],
and exponential learning based on a logit model, [18]. Some analyses focus specifically on Q-
learning based algorithms. For instance, [19] considers the stability and convergence properties of
Q-learning in the two-player setting; however, the Q-values enter as expectations, not as random
variables, and therefore the effects of stochasticity are not fully considered—a crucial factor in a
rigorous analysis. A similar approach is pursued by the frequency-adjusted Q-learning algorithm
(FAQ) in [20] with a correction given in [14]. However, both strands hinge on assumptions which
have not been proved, and therefore no rigorous analyses are provided. Nonetheless, we choose
FAQ-learning as a comparison, as [14] claims it to be linked to an ODE system similar to RMD
and as it is a sufficiently simple uncoupled algorithm very close to Q-learning, making it a natural
candidate for comparison. As a second candidate for comparison, we choose WoLF-PHC, [6],
since its variant WoLF-IGA is linked to a dynamic systems perspective and WoLF-PHC, too, is an
uncoupled and relatively simple algorithm, close to Q-learning. Although its theoretical analysis is
more thorough than for FAQ-learning, only the two-player two-action analysis of the WoLF-IGA
variant is available. Both algorithms have demonstrated that they are able to learn Nash equilibria
in simple settings under self-play, where simpler algorithms such as pure Policy-Hill-Climbing
would fail.

A separate and quite rigorous approach to MARL convergence analysis is pursued via multiple
timescales algorithms, where Q-value estimates are learned from payoff samples more quickly
than policy changes occur, [13]. Here, the convergence analysis relates to smoothed best-response
dynamics. However, the timescale separation results in a fundamentally more complicated
approach and more complicated algorithms, including the additional requirement to keep track of
timescales and ensure a sufficient separation. For the case of e-greedy multi-agent Q-learning under
stochastic payoffs, convergence conditions are given in [21]. However, this algorithm operates on
joint actions, which requires agents to be able to observe the actions chosen by all agents, and is
therefore not uncoupled in the sense of [6].

Probably closest to our approach, [22-24] take RMD and our analysis in [10] as their departure
point to formulate various MARL algorithms, albeit with a considerably different focus. There,
the analysis is tightly bound to zero-sum games and stable games respectively. In particular,
this restricts the analysis to settings where the Nash equilibrium set is convex, e.g., [25, theorem
2.3.5], and therefore only a single connected Nash equilibrium component exists. It is clear that
this precludes any settings with multiple isolated equilibria, clearly a large class of games with
generally high relevance. Importantly, our results on the relation between MBL and RMD are not
limited to a comparably specific game class and our results allow a convenient transfer of results
on evolutionary games for different classes of games. Furthermore, the authors assume expected
payoffs with at most some very limited noise. As mentioned earlier and as demonstrated in the
experiments, this generally imposes significant limitations on the validity in sample-based settings.
Furthermore, we are careful to provide a rigorously proven relation between our discrete dynamics
and its continuous-time counterpart. That this transition indeed requires special attention is aptly

!Portions of this manuscript are derived from one of the authors’ unpublished PhD dissertation [15].
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demonstrated for the replicator dynamics and its various discrete-time counterparts by [26]. Similar
considerations apply to approaches pursued in [27-29], where analysis relies on either zero-sum or
stable settings and expected payoffs, not taking into account the stochasticity fully. It is overall
clear that approaches operating on different levels of generality will yield differing perspectives
even with similar reference dynamics in mind.

We do not take into account proximal policy optimization (PPO) algorithms, [30], for our
comparison, since they require an agent to construct an approximation of the actual target function
and solve a constrained optimisation problem at each learning step with a suitable sampling
strategy in-between learning and to keep track of a potentially large number of estimates. This
results in a much more complicated algorithm than analysed here and convergence analysis even in
the single-agent setting is challenging, e.g., [28]. We are not aware of a rigorous MARL convergence
analysis in non-cooperative games, although experimental results in this direction exist, e.g., [31]
for n-player RPS games with convergence only in very limited cases, or [32] extending PPO to
WOLF-PPO in experimental studies of Matching Pennies and two-player RPS.

2. Preliminaries

As our analysis of multi-agent learning is formulated in the setting of (evolutionary) game theory,
we give short definitions of the main concepts employed and refer the reader to the standard
literature for further details, e.g., [7,33].

Finite normal-form games. A normal-form game is a tuple (P, A,r), where P ={1,..., N}
represents the set of players, A = x,cpA; where A; = {1,...,n;} is the set of pure strategies of
each player i,2 and 7 = (r;);cp is a family of functions with r; : A — R mapping the pure strategy
profiles in A to the payoffs of player ¢. For each player i € P, we assume that the player chooses
a pure strategy from A; according to some probability distribution z; over A;, i.e., according to
some tuple (z;,)nea, €D; :={&€ RQB : 2nea, &n =1}. We call such an z; the mixed strategy of
player i.> We will call mixed strategies simply strategies, where there is no danger of confusion.

Nash equilibrium. We call a strategy profile 2* := (2} );cp € D := x ;e pD; a Nash equilibrium if
for all players i € P and all mixed strategies z; € D;\{z}}, we have

E[ri(a)|z™] = E[ri(a)|(zi,2%;)] 21

where (z;,z*,) € D denotes the mixed strategy profile for which (z;,z* ;) = x4, (Vh e A;) and
(i, 2%;)jn =), (Vj € P\{i},he A;). The equilibrium is called a strict Nash equilibrium if the
inequality is strict for all ¢ € P. The well-known intuition of this concept is that no player has an
incentive to deviate from the Nash equilibrium strategy given that all other players play the Nash
equilibrium strategy profile, since for each player i e P, l‘;k is a best-response to x*. Equivalently, no
pure strategy has a higher payoff than the Nash equilibrium strategy:

Vie P,he A;: Elri(a)|z*] = E[r;(a)|z™, a; = h] . (2.2)
As a useful relaxation of this concept, we call a strategy profile (Z;);cp € D an e-equilibrium if
Je>0Vie P,he A;: E[r;i(a)|Z] = E[ri(a)|Z,a; =h] — ¢, (2.3)

i.e. every pure strategy is by at most ¢ better than (Z;);c p, and for all players i € P, (Z;);ep is an
e-best-response to T.

2 A is usually denoted S in the game theory literature, and players are conceived as populations of pure strategies in the EGT
literature. In the simplest case, pure strategies correspond to actions in the reinforcement learning literature. We use the terms

‘player’ and ‘agent’ synonymously.

This would be referred to as a policy in the reinforcement learning literature.

10000000 V 908 H 001d Bds/euinol/BioBuiysiandAisioosiekos



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

Repeated games, learning and rationality. Given a finite normal-form game, we consider an
infinitely repeated game to be a repetition of the normal-form game for each round teN. In
particular, assuming that in each round ¢ the players choose a pure strategy profile a(t) € A
according to the mixed strategy profile z(t) = (x;(t));e p, the pure strategy profiles constitute a
stochastic process {a(t)};en. In turn, an algorithm which adapts the mixed strategy profile in
each round ¢, defines a potentially stochastic process {x(t)}en. It is this resulting process and its
properties which are the focus of our convergence analysis. Following the definition given by [6],
we call such a process rational, if a player i’s mixed strategy {z;(t) };cn converges to a best-response
whenever all other players’ strategies converge to a stationary policy. We call a process e-rational if it
converges to an e-best-response. It is clear that in the case of stationary policies for all other players,
the focal player faces a Markov decision process and the best-response strategy maximises the
player’s average expected payoff. In the simplest case, where players cannot observe other players’
actions and have no memory, as considered here, the usual state space and the state-dependency
of policies disappear.

Replicator-mutator dynamics. We consider the multi-population replicator-mutator dynamics
we formulated in [10], which is a special case of general replicator-mutator dynamics, e.g., [34]:
Forallie P, let M; > 0 be a mutation parameter, ¢; € D;° (denoting the interior of D;) some fixed
parameter and f; : D — R“i a continuously differentiable fitness function. Then the replicator-
mutator dynamics is given for i € P, he€ A; by

i, (8) = 2in (8) (fin (@) — . @i () fir(@(t)) + Mi(cin — zin (1)) - (RMD)
keA;
In case that M; = 0 for all ¢ € P, RMD reduces to the standard multi-population replicator dynamics
(RD). One possible (and usual) conceptualisation of the fitness f;;, of a pure strategy he A; is
to assume that it is the expected payoff of playing h, given all other players’ strategies, or more
concretely, given a strategy profile x € D let the fitness f;j, satisfy f;j, () = E[r;(a)|z,a; = h]. Itis
clear that all fitness functions are continuously differentiable in this case.

Remark. The equilibria of RMD, also called mutation equilibria, in general are not Nash equilibria
of the underlying game. Instead, they are e-equilibria, where € depends on (M;);cp, [10].

3. Mutation-bias learning

We can now introduce the stochastic learning rules and specify their relation to RMD. We provide
two variants of MBL: one, based on direct policy updates (MBL-DPU, alg. 1)-where the policy
update corresponds to Cross learning, [9], with a mutation bias as a perturbation term; the other,
based on logistic choice (MBL-LC, alg. 2)-where the policy corresponds to logistic choice based on
action-value estimates which are updated with a mutation bias perturbation.

Algorithm 1 (MBL-DPU) MBL with direct policy update for generic player i € P

1: Inijtialise: Choose learning rate §, mutation parameters M; > 0 and ¢; € D;°, initial z; € D;.
2: for all times ¢ do

3:  Select strategy a; € A; with probabilities Pr(a; = h) = z;;, (Vhe A;).

4:  Observe payoff r; resulting from strategy profile (a;) e p-

zip + 01 — 2ip)ri + OM; (cip — 24)  ifh=ay,

Tin — Oxipri + OM; (cip — x4n) otherwise.

@

Forall he A;, set: x;p, «— {

6: end for

MBL with direct policy update (MBL-DPU). MBL-DPU, alg. 1, is the simpler of the two variants
with a direct policy update and no estimation of )-values. It is an additive linear perturbation

10000000 V 908 H 001d Bds/euinol/BioBuiysiandAisioosiekos



194

195

196

197

198

199

200

202

203

204

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

223

224

225

of Cross learning with perturbation term 0M; (¢;;, — x;3,), line 5, and becomes identical to Cross
learning, [8,9], for M; = 0 (Vi € P). In this sense it can be said to be a least complexity modification
of Cross learning, since only few elementary computations are required in addition to simple Cross
learning. We note that the assumption in Cross learning, that the payoffs r; be restricted to [0, 1] is
not necessary. It suffices that payoffs are non-negative and bounded. In this case, 6 has to be chosen
small enough to ensure well-definition of MBL-DPU. Note that this assumption is not restrictive
for finite games, as boundedness is trivially satisfied for finite games and non-negativity can be
ensured by adding a constant C; to all payoffs r;, affecting neither the Nash equilibria nor the
dynamics in the deterministic limit—a straightforward property of RD and RMD.

Algorithm 2 (MBL-LC) MBL with logistic choice for generic player i € P

1: Initialise: Choose learning rate 6, M; > 0 and ¢; € D;°, Q; € R4, Choose B5>0,7>0.
2: for all times ¢t do

3: Forallhe A;,set: ;5 «— e in

ZkeAi eT ik

4:  Select strategy a; € A; with probabilities Pr(a; = h) = x;, (Vhe A;).
5:  Observe payoff r; resulting from strategy profile (a;) cp.

6: For h=a;, set: QiheQih—kmin{i 1}0<ri+Micﬂ).

7

Zin’ Zih

. end for

MBL with logistic choice (MBL-LC). Clearly, the simple perturbation in MBL-DPU can be
combined with a wide class of transformations on the payoffs without affecting the additive
character of the perturbation. A somewhat more involved possibility to combine the mutation-like
perturbation with a policy update is based on a Boltzmann distribution or multinomial logistic
choice, as frequently encountered in Q-learning. In MBL-LC, alg. 2, the perturbation affects the
action-value updates instead of the policy. Hence, this version resembles the perturbation term of
FAQ-learning [14,19], and allows for a closer comparison. In particular, restricting the adjustment
in line 6 by applying a minimum is parallel to FAQ-learning. Rewriting the perturbation along
the lines presented as a heuristic rather than as a rigorous proof in [14,19] would suggest that
MBL-LC results in RMD in the deterministic limit, which is far from clear as will become clear
in the experimental section. One can see that the logistic choice policy can still be expressed as a
policy update with modified payoffs:

with 7 = , 3.1)
Tip — TipTi otherwise, ’ Tia, (eTAQiai —1)+1

Tip — {xih + (A —ap)f ifh=ay, @ig, (€7 AP0 — 1)
2

where @) denotes an action-value function and AQ;,, denotes the update of the action-value of the
chosen action a;. From this it is clear that an intermediate approach could be using the simpler
MBL-DPU combined with unperturbed Q-learning, which is equivalent to transforming payoffs
accordingly.

Convergence of MBL-DPU

We address the question of convergence in two steps. First, we determine whether the stochastic
process induced by the learning algorithm can be approximated by a deterministic dynamics.
Second, we transfer the convergence properties of the deterministic dynamics to the stochastic
process. For MBL-DPU we have the following convergence result (proved in appendix A):

Proposition 3.1. For every time T' < oo, the family of stochastic processes {(X fh(t))i, h}teN, induced by
MBL-DPU converges to RMD in the sense that for all € > 0:

sup Pr(| X% (ng) — B(z0, T)| >2) >0 as 00, (3.2)

QIQED

H
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where ngd — T for § — 0, g is a.s. the initial state of the stochastic processes, i.e. XG(O) =x0 a.s., and
D(zo, -) is the unique solution of RMD with $(z¢,0) = xo.

Remark. As discussed in [8,35], proposition 3.1 on its own does not yield an analysis of the
asymptotic behaviour of the stochastic process. However, if a mutation equilibrium 2™ of RMD
is asymptotically stable and g lies in the basin of attraction of 2, then we have (g, T') — =M
as T — . Hence, with the asymptotic stability of 2, we have that for T large enough, &(xo, T')
is arbitrarily close to +M and together with proposition 3.1, any neighbourhood of M will be
reached by the learning process {X 9(t)}4>0 with an arbitrary degree of certainty after finitely
many steps for suitable choice of §. Although this does not imply that the process must remain
in this neighbourhood afterwards, it will revisit the neighbourhood with arbitrary probability
depending on 6.

Attracting mutation limits. In [10] we showed that every game has at least one connected Nash
equilibrium component that is approximated by mutation equilibria irrespective of the choice of
the mutation parameter ¢, as M — 0, called a mutation limit. Furthermore, it was shown that for
the game of Matching Pennies the Nash equilibrium is approximated by asymptotically stable
mutation equilibria, warranting the name attracting mutation limit for such Nash equilibria. This
implies the following consequence (proved in appendix A):

Proposition 3.2. If a unique Nash equilibrium x* € D° is an attracting mutation limit and U a
neighbourhood of =*, then for every mutation parameter c€ D° there are M >0, 6 > 0 such that the
stochastic process {(X?(t))}sen, induced by MBL-DPU visits U at a finite time a.s., i.e., with probability 1
there is S € No with X°(S) e U. In fact, {(Xe(t))}teNO a.s. visits U infinitely often.

With the relation between MBL-DPU and RMD spelled out clearly, analysing the behaviour
of MBL-DPU in various game classes becomes a matter of inspecting RMD. This convenience
manifests itself in the clarity with which the proof of the following proposition on the convergence
of MBL-DPU in stable games can be formulated (see appendix A):

Proposition 3.3. Let f € C1 (D, RA1**An) be a continuously differentiable fitness function, such that
f is a stable game in the sense of [36, definition 3.3.1], i.e.:

Va,yeD: (y— )" (fly) — f(z)) <0 (33)

Then the Nash equilibrium for f is an attracting mutation limit and, for every open neighbourhood U of the
Nash equilibrium, there are c€ D°, M > 0 and 6 > 0 such that the stochastic process { X% (n)} 0 induced
by MBL-DPU visits U infinitely often almost surely.

With zero-sum games being a subclass of stable games, this implies that MBL-DPU approximates
Nash equilibria in zero-sum games to any desired precision. In contrast to MBL-DPU, we do not
have a proof of an analogous result for MBL-LC, yet. In [14,19] it is assumed that FAQ-learning,
a similar logistic choice learning rule based on Q-learning, converges to a perturbation of the
replicator dynamics, although no proof is given. Although it seems plausible for MBL-LC to behave
similarly to MBL-DPU, the experimental results indicate that MBL-LC is likely more sensitive to
the choice of learning rate than MBL-DPU, since the logistic choice can cause a stronger variance of
the strategy at each learning step, as indicated in the more detailed results for MBL-LC in appendix
B. The larger variance in the learning step is also the reason why our proof strategy for MBL-DPU
cannot be translated to MBL-LC in a trivial manner.

Perturbation creates a trade-off between accuracy and speed. We note that neither MBL-DPU
nor MBL-LC converge to a Nash equilibrium but only to an e-equilibrium and in particular, that
both stay away from the boundary of D. For MBL-DPU this is clear from the fact that the equilibria
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of RMD are not Nash equilibria and that the boundary of D is repelling. For MBL-LC this is also due
to the exploration parameter 7. For the latter, it is further the case that 7 cannot be let to approach

oo as this collides with the # — 0 limit and makes the time derivative of the policy unbounded.

This results in a highly increased variance in the stochastic process, preventing effective learning of
equilibria. This particular aspect applies also to other logistic choice based algorithms, particularly
FAQ. However, if MBL-LC and FAQ indeed converge to the corresponding ODE systems, then
these include 7 as a simple scaling parameter. Since constant positive rescalings do not change
the trajectories, the systems can be rescaled by 1/7 in such a way that 7 effectively regulates the
perturbation’s strength relative to the replicator dynamics. In the case of RMD, 1/7 can be absorbed
by the mutation strength M. Thus an increase of 7 has the same effect as a decrease of M which
results in all mutation equilibria moving closer to a Nash equilibrium, as desired. A reduction in
the perturbation strength also results in a longer time to approach equilibria and this creates a
trade-off between accuracy and speed for both MBL-LC and MBL-DPU.

4. Experimental results

We illustrate the theoretical results and in particular some cases where the importance of rigorous
analysis becomes clear and the intuition about apparently well-behaved algorithms starts to become
unreliable in a number of experimental settings: the Prisoner’s Dilemma (PD), Matching Pennies
(MP), Rock-Paper-Scissors (RPS) with 3, 5 and 9 available strategies, and the three-player Matching
Pennies (3MP) games. We compare MBL-DPU and MBL-LC to FAQ, [14], and WoLF-PHC, [6]. For
details on the games’ payoffs and further experiments, cf. appendix B.

Prisoner’s Dilemma (PD). PD is an example of a game with a strict Nash equilibrium at a vertex
of the joint strategy space D. It is known that strict Nash equilibria are asymptotically stable
under RD, e.g., [7]. In this case, plain Cross learning would also converge to the Nash equilibrium.
We had shown previously that RMD does not destabilise asymptotically stable equilibria of
RD [10, lemma 4.8]. Hence, the mutation equilibrium resulting from the mutation perturbation
remains asymptotically stable and, with our result, MBL-DPU also learns an approximation of
the Nash equilibrium. In this sense, PD is the least challenging setting in terms of the ease with
which the Nash equilibrium can be learned. The setting serves mainly to illustrate the fact that the
learned equilibria of MBL-DPU and MBL-LC in fact lie away from the boundary Nash equilibrium,
in particular since mutation pushes the trajectories away from the boundary of D, in contrast to
the other two algorithms. With decreasing mutation strength A, both algorithms are able to better
approach the Nash equilibrium, as would be expected from RMD. This case also illustrates that the
more elementary MBL-DPU converges more slowly than either of MBL-LC, FAQ, or WoLF-PHC.
For more details and figures on this benign case, we refer the reader to appendix B(a).

Zero-sum games—Matching Pennies (MP). As a second, structurally different case, we consider
zero-sum games which have interior Nash equilibria. For the games considered here it is
straightforward to check that the eigenvalues of the Jacobian of RMD in the neighbourhood of the
Nash equilibrium only have negative real parts. Equivalently, one can check that the eigenvalues
of the Jacobian of RD are purely imaginary in the neighbourhood of the Nash equilibrium and
consider that RMD shifts the eigenvalues towards the negative half-plane, rendering the Nash
equilibrium an attracting mutation limit. With propositions 3.1, 3.2 and 3.3, MBL-DPU is of course
already guaranteed to converge in these cases. In fact, we observe convergence in the MP setting
for MBL-DPU, MBL-LC, as well as our comparisons, FAQ-learning and WoLF-PHC, fig. 1. This
setting illustrates that MBL-DPU overcomes the limitations of Cross learning at a minimal cost in
increased complexity. Similar to the PD setting, MBL-DPU converges more slowly than the more
complicated algorithms, MBL-LC, FAQ, or WoLF-PHC. With MP being a planar system and the
Poincaré-Bendixson theorem, the complexity of the system is still relatively small.
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Zero-sum games—Rock-Paper-Scissors (RPS). For the higher dimensional settings, i.e., RPS
with 3, 5 and 9 strategies, we still observe convergence for MBL-DPU, fig. 2, as guaranteed by the
Nash equilibrium being an attracting mutation limit. Naturally, the trajectories of the resulting
4, 8 and 16 dimensional systems appear less intuitive in the 2D-projection. For MBL-LC, fig. 3,
and FAQ, fig. 4, we observe convergence in the RPS-3 case, but both algorithms deteriorate in
higher dimensions, MBL-LC for RPS-9, fig. 3c, and FAQ for RPS-5 and RPS-9, figs. 4b and 4c, with
both showing the convergence region splitting up such that some trajectories stop approximating
the Nash equilibrium. Similarly, while WoLF-PHC seems to approach the Nash equilibrium in
RPS-3 and RPS-5, fig. 5, it loses the ability to learn the Nash equilibrium for RPS-9, fig. 5¢c, with
trajectories seemingly getting stuck near the boundary of D.

Three-player Matching Pennies. Beyond the two-player case, we compare MBL in a three-player
Matching Pennies setting introduced in [37]. In short, the three players have a shared pure strategy
space, i.e. A; = Ag = A3, with two pure strategies, where player 1 wants to match player 2, player
2 wants to match player 3, and player 3 wants not to match player 1. The unique Nash equilibrium
lies at the center of D. All four algorithms fail to learn the Nash equilibrium, fig. 6 (MBL-LC not
shown, cf. appendix B(c)). Instead, they seem to approach a seemingly stable periodic orbit.

5. Discussion

The experimental results illustrate the difficulties in relying on intuition and experimental results
alone. WoLF-PHC, FAQ and MBL-LC all show quicker convergence in those cases where they
actually do converge and they would seem the better choice than MBL-DPU. Not surprisingly,
this is the case in PD, which has a strict Nash equilibrium, and in MP which is a planar system
and cannot exhibit too complex behaviours. However, we see that behaviours start becoming
less clear when we move to higher dimensions in the RPS variants. While all algorithms seem to
approximate the Nash equilibrium in RPS-3, we see unexpected behaviour in RPS-5 for FAQ with
a split up convergence region. In RPS-9 we see FAQ deteriorate further and MBL-LC now also fails
to converge with a split in the convergence regions. WoLF-PHC now too fails to learn the Nash
equilibrium, with trajectories stalling or getting stuck near the boundary. In RPS-9 no algorithm
except for MBL-DPU-the simplest among the four, and the only one with a convergence proof
available-manages to reliably approach the Nash equilibrium. This loss of convergence for the
more complex algorithms is unexpected, since RPS-9 does not fundamentally differ from RPS-3 in
the game structure and the failure to learn when moving from RPS-3 to RPS-9 would be hard to
anticipate a priori. In contrast, with the theoretical results on MBL-DPU we have an indication of
how well it will generalise to a structurally comparable but higher dimensional scenario.

The failure of FAQ, WoLF-PHC and MBL-LC in RPS-9 does not imply that there are no
parameter choices that could potentially restore the convergence of the respective algorithms. E.g.,
tweaking the learning rates might restore convergence in these specific cases, without guaranteeing
convergence in higher dimensional scenarios. However, the absence of analytical tools leaves
the existence of such parameter values an open question. Even where such parameter choices
exist the problem remains potentially intractable without an indication of where to look for them
in the parameter space—even more so for algorithms with more parameters. Together with the
unpredictability of failure to converge when moving from a low to a higher dimensional setting,
this questions the reliability of algorithms that seem to make sense intuitively and look promising
in some experiments but for which we lack fundamental results—particularly for even more
complicated algorithms not considered here. In this situation, the utility of the mathematical
guarantees available for MBL-DPU becomes obvious. Given a payoff structure, conditions for
convergence can be checked by analysing the corresponding ODE system. In specific cases, this
allows a very straightforward analysis of classes of settings, such as we have provided for stable
games in proposition 3.3 by showing that RMD stabilises equilibria and therefore allows MBL-DPU
to converge to neighbourhoods of the Nash equilibrium. We further understand where exactly
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MBL-DPU is headed and that empirical non-convergence becomes less likely with smaller learning
rates. This gives an indication of where to look for a suitable learning rate. More importantly, our
results allow an approach that is not fundamentally restricted to any particular game class as long
as RMD can be analysed. Finally, where MBL-DPU fails to converge, as in 3MP, just as the other
algorithms, the ODE underpinning makes this expectable and understandable, since an analysis of
the corresponding RMD system quickly shows that the Jacobian of the system has eigenvalues
with positive real parts at the Nash equilibrium, making the equilibrium unstable for sufficiently
small mutation strengths. Overall, the result on the general connection between MBL-DPU and
RMD allows to further deduce-without requiring separate proofs-that MBL-DPU will converge
wherever RD converges, since RMD converges wherever RD does, as clarified in [10], which e.g.
includes potential games [36, theorem 7.1.6]. This demonstrates that such theoretical results enable
us to understand when a given algorithm is not the best choice for a setting, instead of searching
for parameter values that might or might not restore convergence, as we would be forced to do
otherwise.

It should be noted that we have left out any modifications to further improve MBL-DPU with
the purpose of analysing the least complex variant with few parameters. In particular, as we
had clarified in [10], the choice of the mutation parameters c and sufficiently small M does not
qualitatively affect the behaviour of RMD and hence MBL-DPU and their relation to RD. This
approach can be relaxed by varying either c or M, as we had also mentioned in [15]. The theoretical
perspective makes it quite plausible that mutation strength can be chosen according to a reduction
schedule, starting with high mutation and fast convergence and reducing mutation over time,
increasing the accuracy with which the Nash equilibrium is approximated. Note further that
the mutation strength is linked to a measure of the Nash condition not being satisfied, since the
equilibria of RMD are e-equilibria. Hence, every player can use the current violation of the Nash
condition, i.e., its own distance from a current best-response, as a guide to adjust its mutation
strength, e.g., by adjusting the mutation strength to be slightly lower than the current violation
of the Nash condition. We conjecture that this would result in the system being driven towards a
state that is not worse than the current state, as measured by the Nash condition, while keeping
the convergence speed as high as possible. We would expect this to speed up convergence and
improve the speed-accuracy trade-off, making MBL-DPU more attractive as a simple, predictable
and theoretically founded MARL algorithm. Apart from such practical considerations, the current
analysis still leaves open the questions of analysing MBL-DPU’s behaviour in non-zero-sum games
without strict Nash equilibria and its behaviour in a wider range of n-player settings with more
than two players. Additionally, a clarification of the convergence properties of MBL-LC would
allow to determine, whether a smaller learning rate would recover convergence, since the logistic
choice policy shows much larger variance than the direct policy update and might thus be more
sensitive to the learning rate.

Acknowledgements. Insert acknowledgment text here.
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Proofs

The proofs employ a result proved in [35, p. 118], which we state in the following and then proceed
to prove propositions 3.1 and 3.2.

(a) A theorem on learning with small steps

The result from [35] we employ is phrased in the following terms: Let J — R be a parameter set
with inf J =0 and N €N, such that for every § € J, (X050 < Iy < RY is a Markov process with
stationary probabilities. We denote by E[X ] the expected value of X{ given X§ = z. Let further
I be the minimal closed convex set with | J, Iy < I. Define

HS = AX8 )0

and let w(z,0), S(x,0), s(z,0) and r(z, 0) for (x,0) € I x J be given as:
w(z,0) = E[H| X, = 2] eRY
S(x,0) =E[(HS)?| X5 = 2] e RN
s(z,0) =E[(H? — w(z,0))?| X% = 2] = S(x,0) — w?(x,0) e RN
r(x,0) =E[|Hy|*| X = 2] e R.

where 2 = 227 and |z = V2T for z e RV,

We can now state theorem 8.1.1 from [35, p. 118] (omitting part (C)):

Theorem A.1 (Norman). In the above situation, let the following conditions be satisfied:
The family of sets (Ig)g satisfies

Veel :lim inf |z —y|=0. 1
vel: i inf lz =yl (a.1)
There are functions w and s on I such that:
sup [lw(z, 0) — w(z)| € OF), (a.2)
w€19
sup [s(z,0) — s(z)| -0 for 6 -0, (@.3)

zely
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where O refers to the Bachmann—Landau notation.
The function w is differentiable, i.e., there is a function w' such that for all x € I:

|w(y) — w(x) —w'(@)(y — )|

lim =0. (b.1)
o vl
The function w' is bounded:
sup |w'(z)] < . (b.2)
zel
The functions w’ and s satisfy the Lipschitz condition:
’ o
wp W@ =@ 03
z,yel,x#y [z —yl
sup ”S(l‘) — S(y)H <. (b4)
xz,yel,x#y |z —yl
The function r is bounded:
sup 7r(z,0) <. (c)

OeJ,xely
Let further for 0 € J and x € Iy, jun (z,0) = Bz [X0] and wn (z,0) = Bz [| X8 — pn(z, 0)]?].
In this case, the following hold:

(A) wn(z,8)e O(9) uniformly in x € Iy and n < T for any T < co.
(B) For any x € I, the differential equation

F1#&) =w(f(1))
has a unique solution f(t) = f(x,t) with f(0) = x. For all t > 0, we have f(t) € I, and

uniformly in x € Ig and nf <T.

Remark A.2. We note that parts (A) and (B) imply that for all e > 0,

sup Pr(|X;, — f(z,T)| >2) -0

JZEI@

for nd — T, 0 — 0, and given that Xg = z almost certainly for all 6.

(b) Convergence of MBL-DPU

We restate the simple reinforcement-mutation rule of MBL-DPU in the setting layed out above,
denoting the mixed strategies with an upper-case X to underscore that this is a random variable
and denoting the dependence on a parameter 6, denoting the whole family of stochastic processes
as {(th (n))iep,heA, tn>0- Let R(x) = (R;n(x))iep,nea, be a random variable whose probability
distribution depends smoothly on x € I with a discrete, non-negative support which is independent
of z, and let M; < M for some upper bound M < o0 and all i € P. For a player i € P and a chosen
pure strategy h € A;, the update rule then is given as follows:

X0+ 1) = X[y (n) + 0 (1= X[ () Rin (X" () ) + OM; (c3, — X0, ()
9 9 0 0 0 (A1)
Xfp(n+1) = Xfp(n) + 0 (= X[ () Rin(X° (0))) + OM; (cip — Xfp(n)) fork #h.
We can now show proposition 3.1, i.e., that this rule indeed approximates RMD for § — 0 in the
sense of remark A.2:
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Proposition A.3. There is J such that the family of stochastic processes {(X fh(n))iE P.he A, Jn>0 §iven
by (A 1) approximates the replicator-mutator dynamics for @ — 0 in the sense of remark A.2 if X?(0) e I
forallfe J.

Proof. The proof proceeds by showing that {(th(n))iE P,heA; Jnz0 satisfies the conditions of
theorem A.1. For a player i € P and a chosen strategy h e A; we have:

Hfy(n+1)= AXJ,(n +1)/0 = (1 — X[, (n)) Rin(X? (n)) + M (cin, — Xip(n))

Hfp(n+1) = AX{(n +1)/0 = X3 () Rip (X? (n)) + My(cip — X (n)) fork#h

Note that in this case, H (n + 1) is independent of 0 if X?(n) is given, which simplifies the
analysis. Let us set fi () = E[R;n (X7 (n))| X% (n) = 2], where itis clear that there is no dependence
on n. Note that f is smooth, being a composition of smooth functions.

Condition (a.1): In our case, I is given as the polyhedron X, D; and Iy = I for all § and thus
condition (a.1) is satisfied. It remains to show that indeed {(X fh(n))ie P,heA; Jn=0 C I: Note that
R;}, is a discrete non-negative random variable and thus bounded by some C' < co. For 6 < (C +
M)~t, we have §M; < 1. Assume that X fh (n) =x €I, then for a player ¢ € P and a chosen strategy
he A; we have

X5+ 1) =2+ 0((1 — zn) Rin,(n + 1) + Mi(cin — 1))

=x;5(1 —OM;) + 0(1 —z;5)Rip(n+ 1) + OM;c;p, =0
and for some other pure strategy k # h, we have
)
Xip(n+1) =z + 0((—zi) Rin (n + 1) + M;(cip — 241))

=Tk (1 — O(Rm(n +1)+ Mz)> + O0M;c;, =0.

<1

A simple calculation shows that ), ka (n + 1) =1ifz € I. Thus we have that {(th(n))iep,heAi Inz0C

I'if X%(0) €I for all 6 and we can choose J = (0, (C' + M)~ 1).
Conditions (a.2) & (a.3): Consider first the function w:

wip, (x,0) = E[H’ (n)| X (n) = 2]
= 2in(1 = 2)E[Rin(n + 1)| X% (n) = 2] + 230 M;(cin, — zin)

+ 3 wi(—zin)E[Rip (n + 1)|X° (n) = 2] + w4 My (cin — w1
kzh

=i (fz’h(x) - xikfz’k(x)) + M;(cin — @in)
k

It is clear that w does not depend on 6 and that condition (a.2) is trivially satisfied. Similarly, S(z, )
and s(z, §) do not depend on 6 and condition (a.3) is trivially satisfied.

Conditions (b.1)—(b.4): Since the function f is smooth, so is w. In particular, we have that
sup,e; |w'(z)| < oo because I is compact and w’ is continuously differentiable, from which follows
that w’ satisfies the Lipschitz-condition (b.3) on I. Similarly, s is smooth and satisfies (b.4).

Condition (c): Again, r does not depend on 6, and is smooth on I, which is compact. Thus it is
bounded on I and condition (c) is satisfied.

As a consequence, we can apply theorem A.1 to the family {X?(n)},>0 and with remark A.2
we have that for all e > 0,

sup Pr(| X% (n) — &(z,T)| > ) >0

zel
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for n — T, 6 — 0, and given that X 4 (0) = z for all §, where for all i € P and h € A;, @ is the unique
solution of the differential equations

Dip(z,1) = wip, (P(z, 1))

= @i () (fin(@(x,1) = Y Pir (2, ) f (B(2.1)) ) + Milein = Pin(a, 1))
k
with @(z,0) = z. -

Proposition A.4. Let 2™ be an equilibrium of (RMD) and U an open neighbourhood of ™. If 2™ is
globally asymptotically stable, then there is 0 > 0 such that the stochastic process {(X0, (n))ie PheA; Jn=0

defined in (A 1) visits U almost surely after finitely many steps.

Proof. Let ®(z,-) : Rso — D satisfy (RMD) with &(x,0) = z for all x € D. Let further U’ = U such
that ™ € U’ and | J, . Bs(x) € U for some § > 0, where Bj(x) denotes an open ball with radius
§ around z. As 2™ is globally asymptotically stable, there is for each € D a t' < oo such that for
all t > t': &(x,t) e U’.

This is because there is a neighbourhood V < U’ of M such that V2 e V,t >0 di(:vo, t)eU’
due to the Lyapunov stability of 2. Since 2 is asymptotically stable, for every x there is a ¢t > 0
such that &(x, t) € V and hence the solution will remain in U’ afterwards.

Therefore, define 7: D — R such that:

7(z) =inf{T >0: &(z,T)eV}

Since the RHS of (RMD) is continuously differentiable by assumption, it is also Lipschitz
continuous. Thus, ¢ is continuous in the first argument and so is 7 as the following argument
shows:

Let z€ D and &1 > 0. Then there is ¢ > 7(z) such that &(z, s) e V for s € (7(x), t]. Choose s e
(7(z),t] such that |7(z) — s| <e1. Then @(x, s) € V and there is a neighbourhood U, of x such that
forall y e Uz, (y,s) € V.Hence 7(y) < s < 7(z) + €1.

We also have 7(y) > 7(z) — €1 due to the following:

Consider d := inf{||®(z, 7(xz) — 1) — v| : ve V} > 0. Note that the Lipschitz condition implies that
there is L > 0 such that for all ¢ > 0 and all y e D

|9(z, t) — Dy, t)] < | — yle"*
and forall t € [0, 7(x) — £1],
|®(2,t) — Dy, 1)] < |z — yle" 7@

and w.l.o.g. we can assume that Vy € U, we have |z — yllet(T@)=e) o %. Thus we have for all
veV

0<d<|[®(z,t) —v| =[(z,t) — P(y, 1) + D(y, 1) — v
<oz, t) — 2y, )| + [D(y, t) — v

<l =yl 4 iy, 1) o] < L 4 |0(5,1) — o

and so for all y € U, we have inf{|®(y,t) —v||:veV,te[0,7(z) —e1]} = % >0 and thus 7(y) >
T(z) — 1. So 7 is continuous on D. Let then T' := sup,.p 7(z) < c0. Note that for all z € D we have
that for all ¢ > T, &(x,t) € U’ and Bs(®(x,t)) < U.

Let further n > 0. Then with proposition A.3, there are 6 > 0, ng € N such that for all z € D,

Pr(X%(ng) € Bs(®(x, T)) c U|X%(0) =2) > n

and so
Pr(X%(ng)eU) >n.
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From here it is easy to see that the first hit time of U for {X 0 () }en, is almost surely finite, i.e.,
the earliest time ¢ for which X% (t) € U: Let Z(k) := X% (knyg) for k€ Ny and let S be the first hit
time of U for {Z(k)}ken,, such that S is a random variable with values in Ny u {c0}. Clearly the
first hit time of U for {Xe(t)}teNo is smaller than for {Z(k)} xen, -

We have that for all ze D and all ke N:

Pr(Zy 1€ Bs(®(2, 1)) cU|Zp =2) >n
and hence
Pr(Zgi1€U) >n.
Then we have for S,
Pr(S<k+1)=Pr(S<k)+ (1 —-Pr(S<k))Pr(Zx;1€U)>Pr(S<k)(1—n)+n
and a quick induction argument yields:
Pr(S<k+1)>1—(1—n)"(1—(1—7n) Pr(S=0))
The probability of a finite hitting time is then:

Pr(SeNo) = lim Pr(S<k+1)>1— lim (1 - n*(1— (1 -5 Pr(S=0)) =1

In particular, the hitting time of U for {X Q(t)}teNo is finite almost surely. O

The previous proposition A.4 together with the consideration that an attracting mutation limit
is approximated by asymptotically stable mutation equilibria and the immediately following
corollary show proposition 3.2:

Corollary A.5. If 2™ is a globally asymptotically stable equilibrium of (RMD) and U an open
neighbourhood of x™, then there is 6 > 0 such that the stochastic process {X %(n)}nso0 defined in (A1)
visits U infinitely often almost surely.

Proof. Consider for any finite ¢’ € Ny the probability that {X %(n)}n=0 will not visit U afterwards.
This is clearly the same as the probability that the process { Z? (n)},,>0 induced by (A 1) and starting
in X% ('), 1e., 2%(0) = X%(t') almost surely, will not visit U at all. The previous proposition A.4
shows that this probability is 0, which concludes the proof. O

MBL-DPU in stable games

The following proposition shows that, in the class of stable games, the Nash equilibrium is
an attracting mutation limit in the sense of [10, definition 4.7], i.e. that it is approximated by
asymptotically stable equilibria of (RMD), regardless of the choice of mutation parameters for
diminishing mutation. From this, the convergence of MDL-DPU follows directly with our main
result on MBL-DPU and (RMD) as stated in the subsequent corollary.

Proposition A.6. Let fe Cl(D,RA**An) be q continuously differentiable fitness function (or
equivalently a payoff function), such that f is a stable population game in the sense of [36, definition
3.3.1], ie.

Vo,yeD: (y — )" (fy) - f(z)) <0 (A2)

Then the Nash equilibrium for f is an attracting mutation limit.

Proof. We need to consider that the Nash equilibrium need not be unique. However, it is a convex
set for stable population games, as is known from the variational inequality corresponding to the
stability definition, e.g. [25, theorem 2.3.5]. In particular, the Nash equilibrium is a single connected
component in this case, and with [10, prop. 4.3] it is a mutation limit, and hence approximated by
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equilibria of (RMD). It remains to show that these equilibria are asymptotically stable. Note that
we can rewrite (RMD) as follows:

Ein () = 2in () (fin(@(t) = Y win() fir(@(®))) + Mi(cin — zin (t))

keA;

=2 (1) ( fin(z(t)) + M; xi;zt) = > (t) (fuc(:c(t)) + M; xk( ) >)

kEAi

With m;p, (z) = M; 7=, this is the replicator dynamics for the population game f + m. Asymptotic
stability then follows from (A 2) holding for f +m as a strict inequality, whenever x # y for
x,yeD:

(y—a)" (f(y) +my) = f(z) —m(2)) = (y — )" (f(y) = (@) +(y — )" (m(y) — m(x))

<0

o
<y —=)" (m(y) — m()) =2Miyihﬁ _Zszzh —ZM wip +ZM Tin Z
i,h ¢ i,h

Tih Yin
C
<@y - )" (m(y) =2 M Y Czh—ZM ZMxZ Sk NIM Y e
i€eP  heA; Yih  icp  hea,
=1 =1
; X
<(y—m)T(m(y)—m(x))= ZMi (2— Z Cih (;Jsﬂ zh)) ZM 2-2 Z Cih
ieP heA; ;h/_, ieP heA;
>2 for x#y

With this, f + m is a strictly stable game in the sense of [36, theorem 7.2.4] which states that its
equilibrium is unique and globally asymptotically stable. This holds independently of the specific
choice of ¢ € D° and strictly positive (M;);e p, which concludes the proof. O

The following corollary then proves proposition 3.3:

Corollary A.7. Let f € CH(D,RA > *An) be a stable game in the sense of proposition A.6. Then for
every open neighbourhood U of the Nash equilibrium (set), there is 8 > 0 such that the stochastic process
(X% (n)}n=0 defined in (A 1) visits U infinitely often almost surely.

Proof. The claim directly follows from the Nash equilibrium being an attracting mutation limit
according to proposition A.6 and thus being approximated by a sequence of globally asymptotically
stable equilibria of (RMD). Applying corollary A.5 concludes the proof. O

B. Specification of experiments and further results

This section provides the specification details for the experimental results of section 4 and further
results for a broader range of parameter values. It is structured as follows: Each game setting is
introduced with its payoff structure together with further results and a short description of the
results, in the order of Prisoner’s Dilemma (B(a)), Matching Pennies (i), RPS-n games (ii), and
three-player Matching Pennies (B(c)). For the two-player settings, the payoff values are given as
matrices R1 and Ry, giving the payoffs for players one and two respectively, such that if player
one chooses the i-th pure strategy from A; and player two chooses the j-th pure strategy from A,
then the payoffs are given as r1 (4, j) = [R1]i; and 72(4, j) = [R2];; respectively. The experiments
were run on a small cluster of multi-kernel CPUs, but we have checked that they can easily be run
on personal hardware.

e
©
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(a) Prisoner’s Dilemma

The experimental results for the Prisoner’s Dilemma are based on the following payoff structure:

1 5 1 0

This version has a strict unique Nash equilibrium z™* at:
T T
ot = (1 0) ok = (1 o)

MBL-DPU and MBL-LC. The experimental results (figures 7, 8) illustrate the behaviour of
MBL-DPU and its convergence for different mutation strengths M. In accordance with intuition,
convergence is quick for high mutation strength at the price of the mutation equilibrium being
further away from the Nash equilibrium. For lower values of M, we have that the mutation
equilibrium moves closer to the Nash equilibrium while convergence becomes slower. In
comparison, MBL-LC (figures 9, 10) behaves similarly while converging much more quickly.
An intuition for this is provided when considering that MBL-DPU can be viewed as a linear
approximation to MBL-LC for small 7.

FAQ-learning. For FAQ-learning (figures 11, 12), the role of 7 corresponds to that of M ! in MBL.
We have that, similarly to both MBL variants, with increasing values of 7 (i.e., decreasing values of
M), the dynamics approaches a region that lies closer to the Nash equilibrium. The intuition here
is provided by the fact that the deterministic limit of FAQ is claimed to be a replicator dynamics
with a perturbative term whose effect depends on 7 and which pulls the system towards the centre
of D. Furthermore, convergence is the slower the weaker the perturbative term is, much like in the
two MBL variants. In contrast to the MBL variants, FAQ-learning defaults to the usual Q-learning
when z;;, < . This effectively neutralises the repelling dynamics at the boundary of D, which
would otherwise result in very large (unbounded) changes in the Q-values for very low values of
x;p,- Note that MBL-LC has x;, occurring in the denominator twice and hence retains the repelling
effect at the boundary of D.

WoLF-PHC. In contrast to the other algorithms, WoLF-PHC (figure 13) follows a chosen direction
for some time until it is replaced by a new direction, which results in a discrete sequence of
directions and non-smooth trajectories. Convergence to the Nash equilibrium occurs much
faster than for the other algorithms in the case of PD. However, strict Nash equilibria are also
asymptotically stable in RD and thus PD is a base case which illustrates the different behaviours
in a clear-cut situation, as opposed to more challenging and ambiguous situations without strict
Nash equilibria.
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(c) FAQ with 7 = 20.
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(a) MBL-DPU on RPS-3.
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(b) MBL-DPU on RPS-5.
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(c) MBL-DPU on RPS-9.

Figure 2: Self-play of MBL-DPU on RPS-3, RPS-5 and RPS-9 games, with M ! = 20.

0000000 v 908 1 001 edsyfeunol/Bio-BulysiandAisioosiedos



Learning process (yellow to black) Learning process (yellow to black)
0 1.0
0.8 4 0.8
@
0.6 4 . 0.6

S
It

[}
0.4 4 ‘ 0.4 4
o

0.2 0.2 .

0.0 % T T T T 7 0.0 + T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
prla==0), A pr(a==0), A

pra==0), B
r(a

(a) MBL-LC on RPS-3. (b) MBL-LC on RPS-5.

Learning process (yellow to black)
01

0.8 9

0.6 q

0.4 4

prla==0), B

0.2 4

| w.

0.0 0.2 0.4 0.6 0.8 1.0
pr(a==0), A

(c) MBL-LC on RPS-9.

Figure 3: Self-play of MBL-LC on RPS-3, RPS-5 and RPS-9 games, with M ! = 7 = 20.
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(c) FAQ on RPS-9.

Figure 4: Self-play of FAQ-learning on RPS-3, RPS-5 and RPS-9 games, with 7 = 20.
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(c) WoLF-PHC on RPS-9.

Figure 5: Self-play of WoLF-PHC-learning on RPS-3, RPS-5 and RPS-9 games, with initial learning
rate 10™! for Q, win learning rate 1/2 - 1074
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Figure 6: Self-play on 3MP by (a) MBL-DPU with M —1 =20, (b) FAQ with 7 = 20, and (c) WoLF-

PHC with initial learning rate 10~ for @, win learning rate 1/2 - 10~
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Figure 7: MBL-DPU in self-play on the PD game with different values for 7 (1, 10, 20) or M (1,
1071, 2071) equivalently; # = 10~%; for 10 different initial conditions. In each subfigure, the upper
graph shows the ten trajectories in the projection on the first components of the players’ strategies,
in this case the ‘defect’ strategy, with the first player given on the horizontal axis and the second
player on the vertical axis. Points coloured yellow correspond to earlier points in time, changing
over orange and violet to black for later points in time. The position of the game’s Nash equilibrium
is marked with a blue cross in the projection plane. The lower graph shows the standard deviation
of all components of the players’ strategies for each point in time over the past 5000 time steps, for
each of the ten initial conditions, coloured red and blue for the two players. Time is given on the
horizontal axis. The standard deviation is computed with the usual Euclidean metric.
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Figure 8: MBL-DPU in self-play on the PD game with different values for 7 (30, 35, 40) or M (301,
3571, 40_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed

explanation of the graphs.)
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Figure 9: MBL-LC in self-play on the PD game with different values for 7 (1, 10, 20) or M (1,
1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 10: MBL-LC in self-play on the PD game with different values for 7 (30, 35, 40) or M (301,
3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed

explanation of the graphs.)
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Figure 11: FAQ in self-play on the PD game with different values for 7 (1, 10, 20) or M (1,
1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 12: FAQ in self-play on the PD game with different values for 7 (30, 35, 40) or M (3071,
3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 13: WoLF-PHC in self-play on the PD game with different learning schedules; for 10 different
initialisations. Subgraph (a) has a high convergence speed such that only disconnected points can
be seen. (See figure 7 for a detailed explanation of the graphs.)

(b) Zero-sum games

For two-player zero-sum games, we have preliminary results showing that the Nash equilibrium
is an attracting mutation limit. While RD (and Cross learning) would not converge to interior
equilibria (with Cross learning eventually approaching the boundary), RMD converges to the
mutation equilibrium for every choice of mutation probabilities, c € D° and M > 0, and so does
MBL-DPU. Stability is induced by the perturbative terms and their varying strengths have two
effects which have to be weighed against each other. We demonstrate the general idea in the simple
situation of the Matching Pennies (MP) game. Further, we illustrate the changing behaviour when
we grow the strategy space by considering different versions of the Rock-Paper-Scissors game,
RPS-n, with n = 3, 5,9, where n denotes the number of strategies available to each player.

(i) Matching Pennies

The experimental results for the Matching Pennies game are based on the following payoff

structure:
—23/10 Ro— —23/10 1
S | —4/10

1
R = (—4/10 1

Nash equilibrium z* at:

o = (14/47 33/47)T ok = (33/47 14/47)T
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The MP game is a particularly simple case of a zero-sum game and hence provides an
informative perspective on the basic characteristics of the different algorithms. In general, we
see that the location of the mutation equilibrium depends on the mutation strength A, while
convergence is slower for lower values of M creating a trade-off between these.

MBL-DPU and MBL-LC. Comparing MBL-DPU and MBL-LC, we see again that the LC-variant
(figures 16, 17) approaches the mutation equilibrium more quickly than the DPU-variant (figures
14, 15). However, we see that the DPU-variant exhibits a much smaller variance, more precisely
standard deviation, in the vicinity of the mutation equilibrium due to its slower change, with
both variants roughly differing by a factor between 5 and 10 (for M = 40~Y). This illustrates the
stronger effect that single larger payoffs have on the LC-variant, producing a larger variance near
the mutation equilibrium.

FAQ-learning. For FAQ-learning (figures 18, 19) we see a similar behaviour as MBL-LC, however
with a smaller variance near the equilibrium for weaker perturbation (figure 19). As with the MBL
variants, FAQ exhibits slower convergence for weaker perturbation with larger variance near its
(apparently asymptotically stable) equilibrium. However, we also observe that with FAQ, solutions
can get trapped near the boundary (note the trapped solution in the upper left corner in figure 19),
which we do not observe for the MBL variants and have proved not to be the case for MBL-DPU.

WoLF-PHC. Similar to the other algorithms, WoLF-PHC (figure 20) follows spiral-like trajectories
towards a region close to the Nash equilibrium. It also shows a lower variance near the (apparently
asymptotically stable) equilibrium. However, WoLF-PHC employs a learning rate schedule which
reduces the learning rate over time and thus reduces variance.* One should note that WoLF-PHC
is considerably more complicated as it relies on a reliable way to estimate action-values as well
as a long-term population average. It is clear that a player would require more resources for
implementing WoLF-PHC than for the other algorithms.

*It would be possible to evaluate WoLF-PHC with a fixed learning rate or use a reduction schedule for the other algorithms.
However, the former would be a deviation from the canonical formulation of WoLF-PHC while the latter would not be based
on a principled approach. Hence, this heterogeneous situation is an appropriate base scenario.
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Figure 14: MBL-DPU in self-play on the MP game with different values for 7 (1, 10, 20) or M
1, 1071, 2071) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed

explanation of the graphs.)
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Figure 15: MBL-DPU in self-play on the MP game with different values for 7 (30, 35, 40) or M
(30_1, 3571, 40_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

10000000 v 908 W 901 Bdsyfeumnol/BioBusiandAiaoosieAo;



Learning process (yellow to black) Learning process (yellow to black) Learning process (yellow to black)
0 5 1.0 1.0
0.8 0.8 0.8
@ @ @
- 0.6 O 0.6 0.6
G G G
I ] ]
! ! !
T 044 T 044 T 0.4+
& & &
0.2 0.2 0.2
0.0-‘ T T T T T 0.0-‘ T T T T T 0.0-‘ T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
pr(a==0), A pr(a==0), A pr(a==0), A
Rolling std (5000) of probabilities Rolling std (5000) of probabilities Rolling std (5000) of probabilities
0.204 A A A
B 020 B 0.20 | B
0.15 0154
4 P PRES
[ [ [
& & &
3 0.10 5 010 S 010
I I &
0.05 4 0.05 4 0,054
0.00 4 0.00 0.00 4
[ 200000 400000 600000 [ 200000 400000 600000 [ 200000 400000 600000
Ep. Ep. Ep.
—1 —1 —1
(@7 =30, M =30 (b) =35 M =35 (0 7=40, M =40

Figure 17: MBL-LC in self-play on the MP game with different values for 7 (30, 35, 40) or M (301,
3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 18: FAQ in self-play on the MP game with different values for = (1, 10, 20) or M (1,
1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 19: FAQ in self-play on the MP game with different values for 7 (30, 35, 40) or M (3071,

3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 20: WoLF-PHC in self-play on the MP game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)



718

719

720

721

722

723

725

726

727

728

729

730

731

(if) Zero-sum games with larger action spaces

The experimental results for the RPS-n games are based on the following payoff structures.

RPS-3.
0 -2 3
Ri=]| 2 0o -2 Ro=—R1
—1 2 0
Nash equilibrium z* at:
T T
o = (2/7 11/35 2/5) ok = (2/5 11/35 2/7)

RPS-5.
Ri=| 2 -4 0 4 -1 Ro=—Ry

Nash equilibrium z* at:
T
ol = (11/61 510/2089 8/61 50/427 1198/2989)

T
:c3§=(1/7 68/427 6/49 502/2989 174/427)

RPS-9.
o 2 1 3 1 -1 -1 -2 -1
-1 0 1 3 1 1 -1 -2 -1
-1 -2 3 01 1 1 -2 -1
—2 -4 -2 0 2 2 2 4 =2
Ri=|-1 -2 -1 -3 0 1 1 2 1 Ro=—R;
1 -2 -1 -3 -1 0 1 2 1
2 4 -2 6 -2 -2 0 4 2
1 2 1 -3 -1 -1 -1 0 1
1 2 1 3 -1 -1 -1 -2 0

Nash equilibrium z* at:
T
x’f:(l/s 1/8 1/8 1/16 1/8 1/8 1/16 1/8 1/8)

:p;‘=(3/22 3/44 3/22 1/22 3/22 3/22 3/22 3/44 3/22)T

While MP is an informative illustration of the different behaviours, MP reduces to a planar
dynamical system, which does not allow many complex behaviours, as exemplified by the Poincaré-
Bendixson theorem, e.g., [38, theorem 7.16] holding for planar systems. Hence, higher-dimensional
zero-sum games allow a further understanding of the differences between the algorithms and shed
light on the effect of larger state spaces while preserving the neutral stability of interior equilibria.
We consider here the Rock-Paper-Scissors game of different sizes (3, 5 and 9 actions).

MBL-DPU and MBL-LC. In RPS-3, MBL-DPU (figures 21, 22) shows a similar behaviour to
MP with a marked dependence of the behaviour of the variance on the value of M. In contrast,
MBL-LC (figures 23, 24) shows a much quicker convergence, with the variance dropping after

10000000 v 908 W 901 Bdsyfeumnol/BioBusiandAiaoosieAo;



733

734

735

736

738

739

740

741

743

744

745

746

748

749

750

751

similar numbers of episodes (around 10%) for all values of M. As with MBL-DPU, the residual
variance increases with weaker mutation. This is in accordance with the neutral stability of the
Nash equilibrium, allowing for larger fluctuations.

In RPS-5, both MBL variants (figures 28, 29 for MBL-DPU and figures 30, 31 for MBL-LC)
show behaviours similar to their RPS-3 counterparts. In RPS-9, MBL-DPU (figures 35, 36) again

shows similar behaviour, with slower convergence compared to its RPS-3 and RPS-5 counterparts.

Interestingly, MBL-LC (figures 37, 38) seems to have two distinct regions to which trajectories
evolve, suggesting a potentially stronger sensitivity to the choice of 6.

FAQ-learning. Like for MP, we see a quicker convergence for FAQ in RPS-3 (figures 25, 26)
compared to the MBL variants, but with trajectories similar to those of MBL-LC when considering
low values of M, in which case the replicator dynamics makes a stronger contribution to the
trajectories. Similar to MBL-LC, but already in RPS-5, FAQ shows two distinct regions to which
trajectories evolve when perturbation is weak (figures 32, 33), whereas the former does not show
such a split for RPS-5. In RPS-9, FAQ shows such a split for stronger perturbation levels already
and shows even three distinct such regions for weaker perturbation (figures 39, 40).

WoLF-PHC. For WoLF-PHC, we see a still quicker convergence in RPS-3 (figure 27) than for the
other algorithms, similar to the MP case. However, the behaviour is much less clear in RPS-5 (figure
34). Here, trajectories do not consistently approach a specific region. It is possible that the reduction
schedules for the learning rates, which force each trajectory to converge, lead to trajectories stalling
prematurely. This becomes even more pronounced in RPS-9 (figure 41), where WoLF-PHC seems
to initially move away from the Nash equilibrium and to get stuck along the boundaries of D.
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Figure 21: MBL-DPU in self-play on the RPS-3 game with different values for 7 (1, 10, 20) or M
1, 1071, 2071) equivalently; 0 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 22: MBL-DPU in self-play on the RPS-3 game with different values for 7 (30, 35, 40) or
M (3071, 351 40*1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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Figure 23: MBL-LC in self-play on the RPS-3 game with different values for 7 (1, 10, 20) or M (1,
10_1, 20_1) equivalently; 0 =5 - 1073 ; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 24: MBL-LC in self-play on the RPS-3 game with different values for 7 (30, 35, 40) or M
(30_1, 35~ 1, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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Figure 25: FAQ in self-play on the RPS-3 game with different values for 7 (1, 10, 20) or M (1,
1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 26: FAQ in self-play on the RPS-3 game with different values for 7 (30, 35, 40) or M (301,
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3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 27: WoLF-PHC in self-play on the RPS-3 game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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Figure 28: MBL-DPU in self-play on the RPS-5 game with different values for 7 (1, 10, 20) or M
1, 1071, 20_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 29: MBL-DPU in self-play on the RPS-5 game with different values for 7 (30, 35, 40) or
M (3071, 351 40*1) equivalently; § = 10~%; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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Figure 30: MBL-LC in self-play on the RPS-5 game with different values for 7 (1, 10, 20) or M (1,
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1071, 20_1) equivalently; # =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 31: MBL-LC in self-play on the RPS-5 game with different values for 7 (30, 35, 40) or M
(3071, 3571 40*1) equivalently; 8 =5 - 1073; for 10 different initialisations. (See figure 7 for a

detailed explanation of the graphs.)

10000000 v 908 W 901 Bdsyfeumnol/BioBusiandAiaoosieAo;



Learning process (yellow to black)
1.0

0.8

@
06

pria==0

0.0 4

0.005

0.004 1

Std. probs
o
a
3
2

0.002 4
0.001 4

0.000
0 200000 400000 600000 800000
Ep.

0.0 0.2 0.4 0.6 0.8 1.0

pr(a==0), A

Rolling std (5000) of probabilities
0.006

A
B

@r=1,M=1""1

Figure 32: FAQ in self-play on the RPS-5 game with different values for 7 (1, 10, 20) or M (1,
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1071, 20_1) equivalently; # =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 33: FAQ in self-play on the RPS-5 game with different values for 7 (30, 35, 40) or M (3074,

std. probs

Learning process (yellow to black)

0.8 1

0.6 4

prla==0), B

SR =

0.0 4 . .
0.0 0.2 0.4

pr(a==0), A
Rolling std (5000) of probabilities

0.8

1.0

0.040 1

0.03541

0.030 1

0.025 4

0.020 1

0.015 1

0.0101

0.005 4

0.000 4

A
B

Ep.

o 200000 400000 600000 800000

(b)7=35 M=35"1

prla==0), B

Learning process (yellow to black)

0.8 1

0.6 4

0.4

0.2 4

0.0+,

ay

0.0

Rolling std (5000) of probabilities

02 04 06 08 10
pr(a==0), A

0.04 1

0.014

0.00 4

A
B

200000 400000 600000 800000
Ep.

(©)7=40, M =40~1!

351 40*1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 34: WoLF-PHC in self-play on the RPS-5 game with different learning schedules; for 10
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different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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Figure 35: MBL-DPU in self-play on the RPS-9 game with different values for 7 (1, 10, 20) or M
1, 1071, 20_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 36: MBL-DPU in self-play on the RPS-9 game with different values for 7 (30, 35, 40) or
M (30_1, 3571, 40_1) equivalently; § = 10~%; for 10 different initialisations. (See figure 7 for a
detailed explanation of the graphs.)
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Figure 37: MBL-LC in self-play on the RPS-9 game with different values for 7 (1, 10, 20) or M (1,
1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)

10000000 v 908 W 901 Bdsyfeumnol/BioBusiandAiaoosieAo;



Std. probs

Learning process (yellow to black)
o

0.8 4

o
o

pria==0), B
o
FS

0.0 T T T T T T
00 02 04 06 08 10
pria==0), A

Rolling std (5000) of probabilities

0.009 1 A
B

0.008

0.007 4

0.006 1

0.005 1

0.004 1

0.0034

0.002 4

00 02 04 06 08 1O
Ep. 1e6

(@ 7=30,M=30""1

Std. probs

Learning process (yellow to black)
o

0.8 4

o
o

pr(a==0), B
o
FS

0.0 o T T T T T
00 02 04 06 08 10
pria==0), A
Rolling std (5000) of probabilities
A
0.010 - s

0.008

o
=Y
S
&

0.004 4

0.002 o T T T T
00 02 04 06 08 10
Ep. 1e6

(b) 7=35 M =351

std. probs

Learning process (yellow to black)
o

0.8 1

pr(a==0), B

0.0 “r T T T T T
00 02 04 06 08 10
pria==0), A

Rolling std (5000) of probabilities

A
B

0.010

0.008

0.006

0.004 1

00 02 04 06 08 10O
Ep. 1e6

(©7=40, M =401

Figure 38: MBL-LC in self-play on the RPS-9 game with different values for 7 (30, 35, 40) or M
(30_1, 3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a

detailed explanation of the graphs.)
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Figure 39: FAQ in self-play on the RPS-9 game with different values for 7 (1, 10, 20) or M (1,

Learning process (yellow to black)
1.0 5

0.8 4

0.6 1

pr(a==0), B

0.4 4

0.2 4

0.0 5 T T T T T
0.0 02 04 0.6 0.8 10
pria==0), A

Rolling std (5000) of probabilities

A
B

0.0020

0.0015 4

0.0010 A

0.0005

0.0000

00 02 04 06 08 10
Ep. 1e6

@r=1,M=1""

std. probs

Learning process (yellow to black)

0.8

o
o

pr(a==0), B
o
S

0.2 4

e

0.0 4 T T T T T
00 02 04 06 08 10
prla==0), A
Rolling std (5000) of probabilities
0.0040 4 A
B

0.0035 1

0.0030

0.0025

0.0020 4

0.0015 4

0.0010

0.0005 1

0.0000 -, . . .
0.

02 04 06 08 10
Ep. 1e6

(b)7r=10,M =10""

std. probs

Learning process (yellow to black)

0.8 1

=4
o

pr(a==0), B
°
=

0.2
»e

0.0 4 T T T T T
00 02 04 06 08 10
pr(a==0), A

Rolling std (5000) of probabilities

A
B

0.007 4

0.006 4

0.005 4

0.004 1

0.003 4

0.002 4

0.001 4

0.000 4 - - T T
00 02 04 06 08 10
Ep. 1e6

(©7=20,M=20""1

1071, 2071) equivalently; =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed

explanation of the graphs.)
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Figure 40: FAQ in self-play on the RPS-9 game with different values for 7 (30, 35, 40) or M (3071,
3571, 40_1) equivalently; 6 =5 - 1073; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 41: WoLF-PHC in self-play on the RPS-9 game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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(c) Three-player Matching Pennies

Further, we consider the behaviour of the MBL variants in comparison to FAQ learning and
WOLF-PHC in a three-player Matching Pennies (3MP) game introduced in [37], with payoffs as
given in table 1. The similarity to the standard MP game becomes clear when one considers that
the payoff structure reflects the following idea: The first player wants to match the second player’s
action. The second player wants to match the third player’s action. However, the third player does
not want to match the first player’s action. The unique Nash equilibrium for 3MP is located at the
centre of D. Note that, as initially proposed, 3MP is not a zero-sum game.

| H T | H T
H (1717_1) (_1,_17_1) H (17_171) (_17171)
T (_17171) (17_171) T (_17_17_1) (1717_1)

(a) Payoffs when the third player chooses  (b) Payoffs when the third player chooses
H'. T

Table 1: Payoff tuples for the three-player Matching Pennies (3MP) game with the first player’s
action determining the row, the second player’s action the column, and the third player’s action
the table.

In 3MP, both MBL variants (figures 42, 43) show apparently asymptotically stable periodic
limit behaviours, which approach the boundary of D as mutation diminishes. We further see
a very similar behaviour for FAQ (figure 44) with 1 showing an analogous effect to M
in MBL, quite similar to the two-player settings. Likewise, WoLF-PHC (figure 45) exhibits
apparently asymptotically stable trajectories, at least in the projection onto the first actions of
the first two players. Again, WoLF-PHC shows a reduction of variance over time, presumably
due to diminishing learning rates. In [6], the authors show that WoLF-PHC converges to the
Nash equilibrium when 6;/0., = 3 (as opposed to d;/0. = 2). Since there is no established ODE
approximation of WoLF-PHC that we are aware of, the reasons for this remain unclear. One should
also note that we have made sure that the Nash equilibrium is not located at the centre of D in the
two-player games because the perturbation term in FAQ has its equilibrium there and convergence
might easily have been coincidental. For 3MP, we have not made any such adaptations and some
behaviours might change when the Nash equilibrium is moved away from the centre.
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Figure 42: MBL-DPU in self-play on the 3MP game with different values for 7 (10, 20, 30) or M
(10_1, 2071, 30_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 43: MBL-LC in self-play on the 3MP game with different values for = (10, 20, 30) or M
(1071, 2071, 30*1) equivalently; § = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 44: FAQ in self-play on the 3MP game with different values for 7 (10, 20, 30) or M (1071,
2071, 30_1) equivalently; 6 = 10~%; for 10 different initialisations. (See figure 7 for a detailed
explanation of the graphs.)
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Figure 45: WoLF-PHC in self-play on the 3MP game with different learning schedules; for 10
different initialisations. (See figure 7 for a detailed explanation of the graphs.)
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