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Abstract

Today, unmanned aerial vehicles (UAVs) are heavily dependent on Global Navigation
Satellite Systems (GNSSs) for positioning and navigation. However, GNSS signals are
vulnerable to jamming and spoofing attacks. This poses serious security risks, especially
for military operations and critical civilian missions. In order to solve this problem, an
image-based geolocation system has been developed that eliminates GNSS dependency.
The proposed system estimates the geographical location of the UAV by matching the
aerial images taken by the UAV with previously georeferenced high-resolution satellite
images. For this purpose, common visual features were determined between satellite
and UAV images and matching operations were carried out using methods based on the
homography matrix. Thanks to image processing, a significant relationship has been
established between the area where the UAV is located and the geographical coordinates,
and reliable positioning is ensured even in cases where GNSS signals cannot be used.
Within the scope of the study, traditional methods such as SIFT, AKAZE, and Multiple
Template Matching were compared with learning-based methods including SuperPoint,
SuperGlue, and LoFTR. The results showed that deep learning-based approaches can make
successful matches, especially at high altitudes.

Keywords: GPS-Free Positioning; LOFTR; SIFT; AKAZE; SuperPoint + SuperGlue;
NCC + Voting

1. Introduction

Today, unmanned aerial vehicles (UAVs) are actively involved in many areas such
as reconnaissance [1], surveillance [2], search and rescue [3] and border security. The
successful execution of such missions depends on the extremely precise determination of
the location of the UAV. In current applications, this need is generally met through Global
Navigation Satellite Systems (GNSSs); however, alternative positioning approaches such as
inertial navigation [4] , visual odometry [5], and image-based [6] geolocation have also been
investigated. Nevertheless, GNSS signals are susceptible to both natural environmental
obstacles and intentional interference due to their low transmission power. For example,
GPS spoofing attacks can cause the UAV to head to the wrong location, causing serious
mission losses [7]. On the other hand, jamming attacks can completely intercept the GNSS
signal, eliminating the vehicle’s ability to fly autonomously. The operational effects of
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such threats, especially in military operations and critical civilian missions, are extremely
serious. Therefore, the development of alternative positioning methods that will reduce or
completely eliminate the dependence on GNSS systems is of great strategic importance [8].
In fact, previous studies have highlighted that GNSS receivers face technical limitations in
indoor or obstructed environments [9], and recent works emphasize the growing role of
UWRB or multisource fusion methods to enhance robustness in such conditions [10,11].

In environments where GNSS signals lose their reliability, the ability of UAVs to
determine their positions based only on visual data has become an important field of
study that has attracted great attention from researchers in recent years [12-14]. In this
context, various approaches that combine different data sources or use deep learning-
based map querying methods have been proposed. For example, in some studies, location
estimation could be made without GNSS using only drone camera and IMU data; for
this purpose, visual-inertial odometry (VIO) and visual location recognition (VPR) were
evaluated together [15]. Early visual navigation systems demonstrated the feasibility of
autonomous UAV operation based on monocular camera data [16], and subsequent research
achieved autonomous flight in unknown indoor environments using visual perception
alone [17]. Similarly, systems that jointly optimize image retrieval and local matching
steps have been shown to be able to perform drone positioning over large areas in seconds
and with an accuracy of several meters [18]. Moreover, multimodal approaches that fuse
infrared and RGB cameras have been applied to UAV pose estimation with promising
results [19], while precision landing solutions using visual or IR marker patterns have also
been developed [20,21]. In parallel, lightweight IMU-based algorithms [22] and advanced
filtering techniques such as EKF and UKF have been employed to improve robustness in
localization and state estimation [23-25].

In real-world UAV operations, recent research has introduced real-time aerial image
registration techniques built upon traditional feature matching strategies [26]. At the
same time, several studies have turned their attention toward closing the gap between
classical detector—descriptor pipelines and modern dense learning-based matchers, aiming
to enhance both robustness and geometric consistency [27].

Although these studies provide valuable progress, most lack analyses grounded in ge-
ometric transformation models and seldom include systematic evaluations of homography-
based satellite—-drone alignment. These shortcomings make it difficult to evaluate the
consistency and practical applicability of the developed methods in real field conditions.

This study, on the other hand, aims to provide a comparative analysis on the accuracy
of direct homography conversion by testing satellite-drone image (representative) match-
ing, which is the basic building block of a positioning system that is not dependent on
GNSS, with both traditional and deep learning-based algorithms. Thus, by measuring the
performances of different methods in field applications, both explanatory and comparative
contributions are made to the visual positioning literature.

2. Materials and Methods

In this study, JPEG format images obtained from different altitudes were prepared
using Google Earth Pro (v7.3.6.10441) software to test the accuracy of image matching
algorithms. First, the representative drone image, supposedly obtained from an altitude
of 150 m, was exported at a resolution of 8192 x 4320 pixels (8 K Ultra High Definition) to
cover the target area. Then, this image was transferred to the working environment with
the help of QGIS 3.42.2 software and subjected to georeferencing.

Using the “Georeferencing Tool” in the QGIS software, the latitude and longitude
information of the four corner points of the image were obtained from the Google Earth
environment in DMS (Degree-Minute-Second) format. This data was converted to Decimal
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Degree format and introduced to the software. The Helmert transform [28] was preferred
as the transformation method, and the target coordinate reference system was determined
as EPSG:4326 (WGS 84). The Lanczos (6 x 6 Kernel) interpolation algorithm was used for
resampling. The georeferencing process results in a GeoTIFF-formatted image file that can
be used directly in spatial analyses, with each pixel in the image matched to real-world
coordinates, geographically accurately located.

A similar process was applied to a total of ten satellite images representing different
altitudes, starting at 500 m and increasing at intervals of 500 m up to 5000 m. These images
were also exported in JPEG format via the Google Earth Pro v7.3.6.10441 application
and georeferencing was performed using the same transformation parameters (Helmert
transform, EPSG:4326, Lanczos interpolation) for each. Thus, the comparability of the
performance of the matching algorithms on images with different resolutions is ensured.

The Google Earth data we use is not a raw satellite image, but has been compiled,
processed, and orthorectified from different sources such as Airbus (for high resolution)
and Landsat/Copernicus (for the base layer). One of the main providers of high-resolution
data that Google Earth uses is Airbus. This data partnership between the two companies is
also documented by Airbus’ establishment of its own satellite data distribution platform,
OneAtlas, on Google Cloud infrastructure [29].

The main purpose of georeferencing operations is to determine the deviation between
the location and the real world coordinates detected with the help of the matching algorithm
on the representative drone image. The actual drone position was predetermined with
the help of an external measurement system and used as reference data in the comparison
process. Accordingly, the drone’s position on the real world is defined as 39.969539 degrees
north latitude and 32.745036 degrees east longitude. The estimated coordinates obtained
during the image matching process were compared with the previously known reference
point. Thus, the position error was determined based on the distance between the estimated
position and the actual location, and the accuracy of the georeferencing process was
numerically evaluated using this error metric.

In this study, a method based on homography calculations was adopted along with a
deep learning-based matching algorithm. An image was obtained from satellite imagery
to simulate a drone perspective at an altitude of 150 m above the ground. All algorithms
were run on the A100 GPU through the PyTorch library (2.1.0) in the Google Colab Pro+
environment.

The range of “500-5000” m is not the actual orbits of satellites, but the “virtual altitudes”
used to simulate the different resolution levels of satellite images. The concept of assuming
that the UAV image is obtained by vertical shooting and that the image center represents the
projection of the UAV on the ground has been accepted. The “150” m altitude mentioned
for the drone represents an approximate typical civilian UAV operation.

2.1. Classical Feature Matching Algorithms

In this study, three different methods based on traditional image processing algorithms
are proposed to accurately determine the position of a representative drone image obtained
from low altitude on georeferenced satellite images representing different altitude levels.
The developed algorithms have three basic structures: feature-based matching (SIFT and
AKAZE), geometric validation (USAC_MAGSAC algorithm), and template-based multiple
matching (NCC + voting). Satellite and drone images in GeoTIFF format containing
geolocation information and high dynamic range were used as input data in all methods.



J. Imaging 2025, 11, 409

40f24

2.2. Preparation of Images and Pre-Processing Steps

The satellite and drone images used in the study are in raster format (GeoTIFF) with
.tif extension and geolocation information. These images were normalized in the first
stage and made processable. The normalization process was performed with the following
transformation, which allows the pixel density values to be scaled to the range of 0-255:

Inorm (x,y) = 255 - 1Y) = Iin (Ix,y) _II’T”'” (1)
max — imin
where I(x,y) is the raw pixel value in the image; I, and I;,4x refer to the minimum and
maximum pixel values, respectively.
The CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm [30]
was applied to increase local contrast on normalised images. Unlike classical histogram
equalisation, CLAHE increases local contrast by dividing the image into small regions and

limits noise in high-contrast regions [30].

2.3. Feature-Based Mapping Methods
2.3.1. SIFT (Scale-Invariant Feature Transform) Based Approach

The SIFT [31] algorithm detects keypoints in scale-space and generates descriptor
vectors for these points. In the first step of the algorithm, the scale space is created by
applying Gaussian filtering [31]:

1 2242

e 27 (2)

L(x,y,(T) = G(x/yza) * I(x,y) and G(x’yla) - 2702

L(x,y,0): Blurred image at scale parameter ¢ (scale-space representation);
G(x,y,0): 2D Gaussian kernel with standard deviation c;

I(x,y): Input (original) image;

*: Convolution operator (filtering).

Extreme points are selected from DoG (Difference of Gaussians) images. The de-
scriptor vectors for these points are 128-dimensional attributes derived from directional
histograms [31]. The obtained descriptors were matched with the FLANN (Fast Library for
Approximate Nearest Neighbors) algorithm [32] and the matching accuracy was increased
by the Lowe’s ratio test.

2.3.2. AKAZE (Accelerated-KAZE) Based Approach

The AKAZE [33] algorithm generates a multiscale representation using nonlinear
diffusion equations. The basic mathematical model is expressed by the following differential
equation:

oL

=V (xynvL) ®)

where c(x,y, ) is an edge-saver diffusion coefficient, which allows the high-frequency
components in the image to be protected. The MLDB (Modified Local Difference Binary)
method [33] is used in the production of descriptors.

2.4. Geometric Verification: Homography Matrix Calculation with USAC_MAGSAC

The matching points obtained by both methods were used to estimate {x; <> x'}
and homography matrix H. This transformation refers to the projective relationship in
2D space:

xi ~ H - x; (4)
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The estimation of the homograph matrix was performed by the USAC_MAGSAC
algorithm, which eliminated outliers [34].

2.5. Template-Based Mapping: Multiple NCC + Voting Approach

For situations where traditional matching methods may fail, a template-based method

has been proposed. Three different variants (rotated, scaled, histogram equalised) derived

from the drone image were searched separately in the satellite image. The NCC [35]

(Normalized Cross-Correlation) similarity metric for each template is calculated as follows:
Y [T ) — TII(x +i,y + ) — Lyl

VEATG ) = TRE I+ by + ) = Ty 2

where T shows the template obtained from the drone image. I represents satellite imagery.

(5)

NCC(x,y) =

The position with the highest correlation value is reflected as a vote on the voting map. The
region with the most votes is determined as the final prediction point [35].

2.6. Geographical Coordinate and Distance Calculation

The obtained forecast coordinates were transferred to the WGS84 reference system
with the help of affine conversion in the GeoTIFF file:

Lon
Lat

This affine transformation matrix is stored in the GeoTIFF file’s metadata and contains

X

= Affine- |y (6)
1

all the necessary parameters to convert pixel coordinates (x, y) into geographic coordinates
(e.g., Longitude, Latitude, or UTM). The matrix is generally composed of six parameters
that encode the following information:

*  The real-world coordinate of the image’s origin (top-left pixel at (0,0)).
e  The pixel size (scale or resolution) in the x and y directions.
e  The orientation (rotation) of the image.

For instance, consider a simple affine transformation that converts the pixel coordinates
(xp,yp) of an image to geographic coordinates (Xgeo, Ygeo). The transformation matrix can

be defined as follows:
_ [a b c} ;p
=, p
e f 1

¢ cand f are the X and Y coordinates of the top-left pixel, respectively.

X geo
Ygea

where

¢ gand e represent the resolution of a pixel in the x and y directions (e.g., meters/pixel).
*  bandd are the rotation parameters (typically zero for north-aligned images).

The distance between these coordinates and the known GPS location of the drone is
calculated by the following formula based on the Vincenty model [36]:
d = a - arccos[sin ¢ sin ¢y + cos ¢ cos ¢y cos(A1 — Az)] (7)

These values were used as the basic metric for numerically assessing match
accuracy [36].
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2.7. LoFTR: Detector-Free Local Feature Matching with Transformers, Super Point and Super Glue

In this study, the satellite and drone images were uploaded in gray scale format
using the OpenCV library, and the drone image was rescaled to a fixed pixel size of
1024 x 1024. The satellite image is divided into parts (tile) so that each of them is 1024 x 1024
pixels in size. During the scanning process, each window was shifted by a 512-pixel step,
thus providing 50% overlap, improving match performance and smoothing the transition
between windows. For visualisation purposes, grid lines in purple have been added to
the satellite image, with dimensions of only 512 x 512. Actual matching operations were
performed on windows with 1024 x 1024 pixels each. The matching operations were carried
out with the LoFTR model [37,38] in the Kornia feature module, which utilized the outdoor
version pretrained on the MegaDepth dataset.

The LoFTR (Local Feature TRansformer) network consists of 4 basic parts, as shown
in (Figure 1). It has been developed to establish dense and accurate correspondences
between two images. This architecture can operate without the need for explicit keypoint
detection. First, a CNN is used, in which coarse features at 1/8 resolution capture the
general structural context, and fine features at 1/2 resolution preserve detailed local textures.
These multi-layer feature maps obtained from the CNN module are fed into the Local
Feature Transform module. The self-attention layers in this section reinforce coherence by
modeling the connections within the images themselves. Cross-attention layers, on the
other hand, learn the relationships between the features of two different images and align
these images in a common latent space.

1. Local Feature CNN

""""""""""""""" g 12

e J,!i """""

—~ : 5
e g 1 | doaute | [~ -{z6)- i
| ; - Vi PEIER] s softmax | B \
J b g - |i N xNy 7 expectation

4. Coarse-to-Fine Module

w X w

S cropping on F Mj‘ = {(;5!)}
1 Iy
_____________________ . for every coarse prediction (1,7) € M.
2. Coarse-Level Local Feature Transform 3. Matching Module
LoFTR Module \
2} By B
L Self-Attention Layer ||Cross-Attention Layer ° ’i (/8)°H ‘H’ -
e . R 2T 3 e
v S| i | wew | |5 E
g el | &
a . (S| a
- } isesrt D M E =
<ot - P =
: ‘."QI | § 0l 4 He ; .
positional X N confidence matrix
encoding X

Figure 1. Overall architecture of the LoOFTR (Local Feature TRansformer) network [37]. The frame-
work consists of four main stages: (1) Local Feature CNN for extracting coarse and fine feature
maps (EA, EB: fine-level future map; FA, FB: coarse-level future map; I A, IB: image pair); (2) Coarse-
Level Local Feature Transform using self and cross-attention layers (F{;‘, Iﬁg : transformed feature);
(3) Differentiable Matching Module that generates a confidence matrix for coarse correspondences;
(4) Coarse-to-Fine refinement to obtain sub-pixel-accurate feature matches.

After the alignment process, in which the representation is obtained at the contextual
level, the module called the Differentiable Matching Module comes into play and calculates
the similarities between the feature pairs and creates a confidence matrix. This matrix
predicts which feature is most likely to match with each feature in the opposite image. The
final part of the architecture is the Coarse-to-Fine improvement. It enables more precise
updating of rough matches with the help of high-resolution feature maps. After calculating
local similarities, it may be possible to achieve sub-pixel accuracy in final matches by
using the softmax-based expectation method. LoFTR is an integrated architecture that
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combines convolutional encoding, attention-based alignment, differentiable matching, and
coarse-to-fine hierarchical optimization steps [37].

The backbone of LoFTR (Figure 2) uses the ResNet-FPN (Residual Network with
Feature Pyramid Network) structure, which is a much more modern, deep and complex
architecture compared to SuperPoint. The basis of this architecture is the ResNet body,
which is built on “residual blocks”. The “skip connections” within these blocks allow the
network to go much deeper, preventing issues such as gradient disappearance encountered
during training and ensuring a more stable learning process. Once the image passes
through this deep ResNet body, the second and most critical part of the architecture,
the Feature Pyramid Network (FPN), comes into play. FPN retrieves feature maps of
different scales obtained from different depths of ResNet (e.g., layerl, layer2, layer3). It
combines semantically rich but low-resolution information from the deepest layer with
positionally sensitive information from the shallower layers by carrying upward Interpolate
(magnification) operations. This merging process produces two separate multi-scale and
contextually rich feature maps, which are presented as input to the Transformer layers of
LoFTR, accommodating both coarse (coarse features) and fine (fine features) details.

= . = -

[ — — — o S — e o T O c— i e

-— = o ms - = - et
-

Figure 2. The LoFTR backbone architecture: a ResNet-FPN structure that extracts multi-scale feature
maps by combining deep semantic and shallow positional information before feeding them into the

transformer layers.

Z In addition to the LoFTR model, the same satellite and drone image dataset was also
processed using the jointly applied SuperPoint [39] and SuperGlue [40] models to perform
a comparative matching and localisation analysis.

The SuperPoint network [39] was used as a pretrained feature detector and descrip-
tor in this study. The model was initially trained on the Synthetic Shapes dataset in a
self-supervised manner through the MagicPoint stage, and subsequently fine-tuned on
the MS-COCO dataset, while its performance was validated on the HPatches dataset.
The SuperGlue network [40] was used in its pretrained outdoor version, trained on the
MegaDepth dataset to perform feature correspondence matching between keypoints de-
tected by SuperPoint using a graph neural network architecture.

The SuperPoint architecture is a fully convolutional neural network that detects
interest points and generates local feature descriptors corresponding to these points from
an input image. While traditional methods perform these two operations in separate stages,
SuperPoint unifies them within a single framework, allowing for real-time and consistent
feature extraction. As illustrated in (Figure 3), the detected keypoints are repeatable across
different imaging conditions and correspond to distinctive regions in the scene, while the
learned descriptors encode their local structural information. Thus, reliable geometric
correspondences can be established between image pairs.

As shown in (Figure 4), the SuperGlue architecture takes as input the keypoints and
descriptors extracted by SuperPoint and consists of two key components: a Graph Neural
Network (GNN) based on the attention mechanism and an Optimal Matching Layer. In
the first stage, the GNN processes the keypoints and their visual descriptors through a
positional encoder; it then alternately applies self-attention and cross-attention operations
to integrate contextual information within the images themselves and between the two
images. Through this structure, SuperGlue can reason about geometric relationships and
eliminate ambiguities between visually similar regions. The Optimal Matching Layer in
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the second stage generates a similarity score matrix and computes a differentiable optimal
transport solution using the Sinkhorn algorithm. As a result of this process, a soft and
partial matching between keypoints is obtained. Thanks to this approach, SuperGlue can
successfully learn reliable matches while filtering out unsuitable correspondences and
performs much better than traditional heuristic-based matchers.

Point

Image Pair SuperPoint Network Correspondence

]
il &
et

Interest Points.

- @@@

Descriptors

Figure 3. Structural overview of the SuperPoint network: the architecture in which keypoint de-
tection and descriptor extraction processes are jointly performed within a unified convolutional
framework [39].

Attentional Graph Neural Network Optimal Matching Layer
re‘;ﬁgg Attentional Aggregation matching Sinkhorn Algorithm
- e descriptors ) partial
dA visual descriptor Self Cross fA score matrix =5 assignment
j:] ¢ —l — normalization, r
position
pz Keypoint g _ ..
— ij z
Encoder J = [ |
L f':B dustbi Lz
ustbin N+
—'/ score z 1

Figure 4. Structural overview of the SuperGlue architecture: a graph neural network-based match-
ing framework that integrates attention mechanisms and optimal transport to establish reliable
correspondences between image pairs [40].

The backbone of SuperPoint (Figure 5) is a classic Convolutional Neural Network
(CNN) design inspired by VGG architecture, which stands out for its effectiveness and
simplicity. This architecture has a single main body, called a “shared encoder”, which
basically consists of consecutive Conv -> ReLU -> MaxPool blocks. As the input image
traverses this linear path, its resolution is halved in each MaxPool layer, and as the layers
deepen, more complex features are learned. At the end of this encoder, the structure is
divided into two different task-specific “heads”: The first of these, the Detector Head,
produces a probability map (raw scores) that indicates which pixels of the image are
most likely to be the keypoint. The second branch, the Descriptor Head, creates a high-
dimensional mathematical vector (raw descriptors) map that summarizes what these key
points and the surrounding pixels look like.

vy —_ﬂ—_ﬂ—_—_—ﬂ—_ﬂ—_—'q’—u—_

Figure 5. The architecture of the SuperPoint backbone: a VGG-inspired convolutional encoder
composed of sequential Conv—ReL.U-MaxPool blocks that downsample the input and include a
detector head for keypoint probability mapping and a descriptor head for feature extraction.



J. Imaging 2025, 11, 409

9 of 24

The representative drone image extracted from satellite imagery was compared with
each satellite tile. This process was carried out separately on 10 satellite images obtained
at different resolution levels (from 500 m to 5000 m). Thus, the matching performance
at different altitudes is made comparable. For each tile, the homography matrix was
calculated with the RANSAC [41] algorithm over the matching points obtained through
the model predictions, and the number of correctly matched (inlier) points was determined.
According to the matching successes obtained, the tile with the highest number of inliers
was selected and the local coordinates of this region were transferred to the global satellite
coordinate system to obtain the best homography matrix (Hpes;).

The four corner points of the drone image [(0,0), (1024, 0), (1024, 1024), (0, 1024)] were
projected onto the satellite image via this homograph matrix. Thus, the reflection of the
drone image on the satellite image and the area it covers are clearly defined. In addition,
different match points were projected with this homography matrix and the difference
between the actual position and the calculated position of each match was measured. If this
difference is less than 5 pixels, the match is classified as “inlier”; otherwise, it is classified
as “outlier”. For visual presentation purposes, the projection area of the drone image on
the satellite is drawn with a yellow rectangle. Correct matches are shown in red, points
that are out of tolerance but remain in the homography area are shown in blue, and all
potential matches outside the homograph are shown in green. The tile with the highest
inlier rate is highlighted by a bright blue frame. All these markups are visualized in high
resolution using the matplotlib library. A scaling matrix (S) representing the conversion
between the original dimensions of the drone image and its rescaled version at a resolution
of 1024 x 1024 was calculated, multiplied by Hp,q; to obtain the full homography matrix
(Hgyun)- This exact homography was used to project the coordinate (w,/2, hy/2), which is
the center point of the drone image, onto the satellite image. The position of this center point
on the satellite image, which was obtained as a result of the projection, was determined in
pixels. Then, this pixel position was translated into the world coordinate system using the
affine transform information in the GeoTIFF file. The reference position information of the
drone image was optionally taken from the GeoTIFF file or entered manually by the user in
DMS (degrees-minutes-seconds) format. Finally, the geographical distance between these
two locations was calculated on the basis of the WGS84 reference system and the spatial
accuracy of the system was evaluated based on this distance difference.

3. Results
3.1. SIFT

In this section, the results of SIFT-based matching operations performed on satellite im-
ages with different resolution levels are presented together with visual analysis. The results
obtained were evaluated in order to reveal the performance of the system quantitatively
and qualitatively at each altitude level.

As a result of the matching carried out at this altitude, the number of matching points
appears to be high and their distribution to be regular. In particular, the intensified matches
along the structural boundaries indicate that the position of the drone is predicted quite
accurately in the satellite image as a result of homographic transformation. The location
difference is about 0.36 m, ensuring a match rate of over 96%. This situation reveals that
the system can give successful results at low altitudes (Figure 6a,b).
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G
Figure 6. Matching regions on the satellite image obtained from an altitude of (a) 500 m, (c) 1000 m,
(e) 1500 m, (g) 2000 m, (i) 2500 m. The position of the drone on the satellite image of (b) 500 m,
(d) 1000 m, (f) 1500 m, (h) 2000 m, (j) 2500 m (with the SIFT algorithm).

At the resolution level of 1000 m, the consistency in the structural regions was main-
tained, although the number of matching points decreased. The match rate obtained is
92%, and the position estimate was realized with an error of approximately 1.13 m. The
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area determined on the satellite image is close to the drone location and remains within a
meaningful frame (Figure 6¢,d).

Some dilution was observed in pairings. Although the placement of the drone image
on the satellite still makes sense, there have been slight deviations in the margins. Matching
accuracy is calculated as 81%. The position error is just over 1 m. Although this value
remains within the operability limits of the system, it indicates that the sensitivity is
decreasing (Figure 6e,f).

At this level, the number of matching points has dropped markedly. In the visual data,
it is observed that the match lines become irregular and some structures do not contribute
enough to the matches. The total match rate is at the level of 61%. The location difference
was determined as 2.67 m. This result indicates that the system has started to lose sensitivity
(Figure 6g,h).

The accuracy rate obtained as a result of the matching at 2500 m decreased to 41%. It
is noteworthy that the matching lines in the images are both small in number and show
a random distribution in some regions. The difference between the predicted position
and the actual position is about 8.10 m, indicating that the system is beginning to lose its
reliability at this level of resolution (Figure 6i,j).

At this altitude, the matching performance is considerably reduced. The lines in the
images are weak and inconsistent. The match rate obtained was 21%, and the position error
was up to 5.81 m. The visual layout contains a significant deviation. This suggests that
match-based positioning loses its precision at high altitudes (Figure 7a,b).

Matching at this level of resolution shows that the number and consistency of matches
decreases even more. An accuracy of 21% reveals that the system is not able to adequately
maintain the matching structure. Although the position difference of 1.89 m seems low
in absolute terms, the clutter in the visual representation suggests that this result may be

unstable (Figure 7c,d).

Figure 7. Cont.
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®
Figure 7. Matching regions on the satellite image obtained from an altitude of (a) 3000 m, (c) 3500 m,
(e) 4000 m. The position of the drone on the satellite image of (b) 3000 m, (d) 3500 m, (f) 4000 m (with
the SIFT algorithm).

At aresolution of 4000 m, the matching performance of the system is seriously reduced.
The match rate obtained is 11%. The lines in the images are sparse and irregular. It is
observed that the position of the drone is estimated with an error of about 3.37 m. At this
level, the reliability of the system in locating is low (Figure 7e,f).

At this level of resolution (4500 m), the number of matches is limited to only a few
points. An accuracy of 4.67% reveals that the match has moved away from the structural
foundation. The difference between the predicted drone position and the actual location is
about 1969 m. As of this level, it does not seem possible for the system to make match-based
location estimation.

Results obtained at the highest resolution level (5000 m) indicate that the system is
no longer operable. An accuracy rate of 17% and a position error of 3041.82 m prove that
matches have become largely meaningless. The matching lines in the visuals are quite
messy and detached from the structural context.

3.2. AKAZE

In this section, the results of AKAZE-based matching performed on satellite images
with different resolution levels are presented together with visual analysis. The outputs
obtained were examined in order to evaluate the performance of the system at each altitude
level both quantitatively and qualitatively. Accordingly, the accuracy of the matches ob-
tained, especially at low and medium altitudes, was considered together with the positional
consistency between the detected area and the actual drone position.

As a result of the matching performed at an altitude of 500 m, it is seen that the
AKAZE algorithm performs very successfully. In visual analysis, the matching lines are
concentrated at the apparent structure boundaries, and it is clearly observed that the
matching area overlaps with the details in the drone image. The area marked in the satellite
image covers an area quite close to the actual midpoint of the drone. The geographical
difference calculated according to the log record is only 0.36 m, which shows that the
system can operate with millimeter accuracy. In this context, it can be said that the AKAZE
algorithm provides reliable matches in high-resolution satellite images (Figure 8a,b).

The matching results obtained at an altitude of 1000 m are also generally successful.
The matching lines in the image are mapped to their counterparts on the satellite in a way
that is consistent with the structural features in the drone image. The region determined on
the satellite is similar to the actual location of the drone image. Looking at the numerical
values, the distance between the detected area after the match and the actual drone location
was calculated as 1.13 m. This value is still within an acceptable accuracy range for an
altitude of 1000 m and shows that the algorithm can work effectively at medium resolution
(Figure 8c,d).
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(d)
Figure 8. Matching regions on the satellite image obtained from an altitude of (a) 500 m, (c) 1000 m.
The position of the drone on the satellite image of (b) 500 m, (d) 1000 m (with the AKAZE algorithm).

When the performance of the AKAZE algorithm at altitudes of 1500 m and above was
examined, it was observed that there was a significant decrease in matching accuracy. At
1500 m, the distance between the detected area and the actual location increased to 372.61 m,
while at 2000 m this difference increased to 1142.48 m. Similarly, position deviations of
846.69 m occurred at 2500 m, 1259.52 m at 3000 m and 1823.84 m at 3500 m. At even higher
altitudes, these deviations reached critical levels. At 4000 m, the error exceeded 13 km and
reached 13,284.31 m; at 4500 m, it was 1901.03 m; and at 5000 m, it was 2327.25 m. These
results make it clear that as the resolution decreases, the matching success of the AKAZE
algorithm drops dramatically and is unable to produce reliable results at high altitude
levels. Therefore, this method should only be considered as a valid matching strategy for
high-resolution satellite images.

3.3. Multi-Template Matching

In this section, the results of the matching operations performed with the Multi-
Template Based Normalized Cross-Correlation (Multi-Template NCC) and voting method
performed on satellite images with different resolution levels are included. The findings
were analyzed in order to evaluate the performance of the system at each altitude level
both quantitatively and qualitatively. In this context, the positional harmony between the
drone image and the matching zones determined on the satellite image was both visually
examined and interpreted by supporting the calculated distance values.

The results obtained at this altitude level (500 m) reveal that the visual match was
carried out extremely accurately. The region marked on the satellite image after pairing
largely coincides with the area covered by the drone image. The matching lines between the
images are symmetrically distributed, and the positioned yellow box successfully captured
the drone view. Numerically, the distance between the actual position and the predicted
satellite position was calculated to be only 0.43 m. This indicates that the system operates
with a fairly high accuracy at low altitude (Figure 9a).

The results obtained at an altitude of 1000 m show a very small deviation compared
to 500 m. The visual matching lines still stretch neatly, and the drone region is accurately
positioned on the satellite image. The estimated midpoint is located quite close to the
center of the visual field, and with a numerical deviation of 2.84 m, it is understood that
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the system maintains its sensitivity. This supports the stable operation of the method up to
the level of 1000 m (Figure 9b).

At this level, the matching accuracy is still sufficient. The obtained satellite coordinates
largely coincide with the region corresponding to the drone image. The match lines are
homogeneously distributed in the image, and the voting contribution of the templates
is prominent. The calculated distance value is 1.69 m, which shows slight differences
compared to previous altitudes. This suggests that the matching algorithm also works

effectively at mid-range resolutions (Figure 9c).

Figure 9. Matching regions on the satellite image obtained from an altitude of (a) 500 m, (b) 1000 m,
(c) 1500 m, (d) 2000 m, (e) 2500 m. (f) 3000 m, (g) 3500 m, (h) 4000 m, (i) 4500 m (with the Multi-
Template Matching algorithm).

In the match made at an altitude of 2000 m, the visual integrity was not disturbed, and
the drone area determined by voting was successfully marked on the satellite image. Under
the influence of the multi-template approach, different variations contributed to the match
lines, and the prediction point largely coincided with the target region. The calculated
distance value is 1.80 m, resulting in a low deviation, similar to previous altitudes. In this
context, it can be said that the system shows high stability at resolutions up to 2000 m
(Figure 9d).

At this altitude, a partial deviation in system performance was observed. Visual
matching lines still establish a consistent relationship between the drone and satellite
regions, but are spread over a wider area than at previous altitudes. It is noticeable that
the yellow box does not coincide with the center and remains on the outer borders. The
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distance value was calculated as 11.77 m, which indicates a margin of error approaching
the tolerance limit for the system (Figure 9e).

At this altitude level, the overall matching success of the system exhibits a stability
close to previous levels. In the image, the matching lines show a homogeneous distribution
in terms of density, and a significant overlap is observed between the drone image and
the satellite region. The yellow frame comprehensively surrounds the target area, with the
matching lines clustered pointwise in the center. The numerically obtained distance value
of 5.62 m provides an acceptable error rate for medium resolution satellite data (Figure 9f).

As a result of the pairing at 3500 m, there was a noticeable deviation between the
predicted zone and the actual drone position. In the image, the matching lines are spread
over a wide area and the intensity is significantly reduced. The yellow box is positioned
slightly deviated from the satellite area corresponding to the drone image. The distance
value was calculated as 11.26 m, which indicates that the system can produce less accurate
results at this altitude. Nevertheless, the overall structure has been preserved, and the
estimated area remains in close proximity to the drone (Figure 9g).

Contrary to expectations, the results observed at this altitude showed a positive turn.
The lines in the visual matches are prominently centered, despite the high-resolution
satellite image. The box marked on the satellite is located very close to the area where the
drone image corresponds, and the visual integrity is preserved. The measured distance
value was reduced to a low level of 3.56 m. This result shows that at an altitude of 4000 m,
the matching success has rebounded and the stability has increased (Figure %h).

When 4500 m was reached, a slight deterioration in the overall performance of the
system was observed. Although the yellow box marked on the satellite is located close to
the position of the drone, there is a slight irregularity in the matching lines and a decrease
in density. This shows that the visual similarity is reduced and the decision process of the
matching algorithm becomes more complex. However, the calculated distance value of
3.29 m reveals that the system still provides an acceptable level of accuracy for this altitude
(Figure 9i).

When the results of the system at the highest altitude are examined, it is noticed
that the visual matching success is significantly reduced. The matching lines are widely
distributed and centralization is reduced. The yellow box on the satellite image has moved
away from the area of the drone image where it should be. The measured distance value
was recorded as 21.69 m, the highest deviation among all tested levels. This indicates that
methodological limitations become more pronounced at high altitude levels and indicate
that the sensitivity of the system decreases after this limit.

3.4. Deep Learning-Based Feature Matching Algorithms
3.4.1. LoFTR

In the following figures, matching operations were carried out between satellite images
obtained at different altitudes and representative drone images using the LoFTR algorithm.
As a result of each match, the midpoint of the drone image projected onto the satellite was
determined with the help of a homography matrix and this point was converted into a
real-world coordinate system using the transformation information in the GeoTIFF file.
This location information obtained by the system was then compared with the reference
point manually entered by the user.

The real-world coordinates of the representative drone image, which are fixed in
all images, are defined as latitude (Y) = 39.969539 and longitude (X) = 32.745036. The
geographical distance of the projection center to this fixed reference point obtained as a
result of each match was calculated in meters and thus the positional accuracy performance
of the system was evaluated quantitatively.
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As a result of this matching, the projection center of the representative drone im-
age on the satellite was determined at approximately (32.745033, 39.969543) and it was
calculated that there was only a 0.56 m difference between it and the actual center. Out
of 4407 matching points, 4239 were classified as inlier, thus achieving a high matching
accuracy of 96.2% (Figure 10a).

(e)
Figure 10. Matching regions on the satellite image obtained from an altitude of (a) 500 m, (b) 1000 m,
(c) 1500 m, (d) 2000 m, (e) 2500 m (with LoFTR algorithm).

Z In the analysis performed at 1000 m, the center point of the projection was calculated
as (32.745037, 39.969559) and the distance of this position from the reference center was
measured as 2.20 m. The number of matches is quite high: 8252 out of 8319 points were
considered correct matches, resulting in an extremely strong inlier performance of 99.2%
(Figure 10b).

At this altitude, the position of the projection center was determined as (32.745037,
39.969543). The difference to the true center was only 0.51 m, and 4247 of the 4518 matches
were found to be inlier. This indicates that the system matches with 94.0% accuracy
(Figure 10c).

The matching point obtained from the satellite data coincided with the coordinate
(32.745010, 39.969601) and a deviation of 7.20 m occurred compared to the reference position.
Out of a total of 1460 matches, 1204 were evaluated as correct and an inlier rate of 82.5%
was obtained (Figure 10d).

This time, the projection center fell to (32.745049, 39.969479). A distance of 6.78 m
was calculated between this location and the actual center. However, the match quality
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dropped significantly, with only 441 out of 812 matches counted as correct matches. At this
altitude, the inlier rate decreased to 54.3% (Figure 10e).

The matched point was found at approximately (32.745049, 39.969517) and the distance
to the reference center was measured as 2.68 m. However, in total, only 177 correct matches
were obtained out of 547 matches, which corresponds to a low success rate of 32.4%
(Figure 11a).

(a) (b)

(e)
Figure 11. Matching regions on the satellite image obtained from an altitude of (a) 3000 m, (b) 3500 m,
(c) 4000 m, (d) 4500 m, (e) 5000 m (with LoFTR algorithm).

The projection point is located at the coordinate (32.745056, 39.969528). A deviation
of 2.08 m occurred between it and the true center, while only 79 of the 365 matches were
identified as inlier. Accordingly, the inlier rate decreased to 21.6% (Figure 11b).

In the matching made at this altitude, the projection point corresponded to the coordi-
nate (32.744949, 39.969559) and although a deviation of 7.73 m was detected between it and
the reference center, only 13 out of 319 matches were considered correct matches and the
inlier rate remained at 4.1%. For this reason, as a result of the homography obtained, it was
seen that the projected image area was far from representing the geometric structure of the
real drone image (Figure 11c).

The resulting projection center was located at (32.740955, 39.967247) and deviated from
the reference point at a considerable distance of 431.63 m. Out of a total of 369 matches,
only 13 were considered correct, resulting in a low success rate of 3.5%. Moreover, in this
match, the area of the drone image deviated from the expected rectangular form when
projected onto the satellite image (Figure 11d).
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In matching with the satellite image taken from the farthest altitude, the projection
midpoint was calculated at the coordinate (32.760643, 39.978264) and the difference between
it and the true center was a very serious deviation of 1648.04 m. Out of 328 matches, only 10
were classified as inlier, corresponding to an extremely low accuracy rate of 3.0%. However,
it was observed that the projected image area did not correspond to the original geometric
structure of the drone image (Figure 11e).

3.4.2. SuperPoint and SuperGlue

In the images below, satellite images taken from different altitudes and representative
drone images are matched using SuperPoint and SuperGlue algorithms. After each pairing,
the center point of the drone image was projected onto the satellite image by homography
transformation.

This position, which was obtained as a result of the projection, was compared with the
previously known reference point, and the accuracy of the system’s position estimation at
each altitude was evaluated numerically.

The resulting projection center was reduced to (32.745036, 39.969543) and the distance
to the actual reference point was measured as only 0.44 m. Out of a total of 2753 matches,
2364 were evaluated as inliers, resulting in a high match success rate of 85.9% (Figure 12a).

It was determined that there was a difference of 2.13 m between the projection center
calculated at the coordinate (32.745037, 39.969558) and the reference center. A high accuracy
was achieved at this altitude, and 1834 of 1874 matches were considered valid, reaching an
inlier rate of 97.9% (Figure 12b).

The distance between the point (32.745038, 39.969545) and the actual center obtained
as a result of the projection process is calculated as 0.67 m. Out of 1229 matches, 1209 were
considered correct matches, an impressive 98.4% of the time (Figure 12c).

At this altitude, the projection point was determined as (32.745005, 39.969598) and
the distance to the reference point was measured as 7.10 m. The match quality is again
quite high. Of the 690 matches, 674 were classified as inliers, with an accuracy of 97.7%
(Figure 12d).

The projection point formed on the satellite image is located at the coordinate
(32.745044, 39.969480) and is 6.54 m away from the actual center. In this matching, 442 out
of 447 matches were found to be valid and a very accurate result was obtained with an
inlier rate of 98.9% (Figure 12e).

The center point of the paired projection was calculated as (32.745044, 39.969521), and
the distance from the reference center was determined as 2.07 m. Of the 329 matches, 328
were deemed valid, recording an outstanding inlier rate of 99.7% (Figure 13a).

The projection obtained in this analysis fell on the point (32.745053, 39.969536) and
measured the distance from the true center as 1.45 m. Out of a total of 238 matches, 231
were classified as inliers, resulting in a matching accuracy of 97.1% (Figure 13b).

The projection center was determined at the coordinate (32.745045, 39.969584), and the
distance from this point to the actual reference position was calculated as 5.02 m. Of the
187 matches, 182 were evaluated as correct matches and 97.3% inlier success was achieved
(Figure 13c).

Corresponding to the projection center position (32.745005, 39.969560), determined
as a result of image matching, the distance between the reference center and the reference
center was found to be 3.52 m. In this matching, 147 out of 153 matches were accepted as
valid, resulting in an accuracy of 96.1% (Figure 13d).
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(e)
Figure 12. Matching regions on the satellite image obtained from an altitude of (a) 500 m, (b) 1000 m,
(c) 1500 m, (d) 2000 m, (e) 2500 m (with Superpoint and SuperGlue algorithm).

In the analysis performed at the highest altitude, the projection center was calculated
as (32.745062, 39.969488) and this point was determined to be 6.04 m from the center. Of
the 108 matches, 99 were marked as correct matches, and the system was able to show a
strong match accuracy with an inlier rate of 91.7% (Figure 13e).

(a) (b)

Figure 13. Cont.
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(c) (d)

(e)
Figure 13. Matching regions on the satellite image obtained from an altitude of (a) 3000 m, (b) 3500 m,
(c) 4000 m, (d) 4500 m, (e) 5000 m (with Superpoint and SuperGlue algorithm).

4. Discussion

In this study, the accuracy of position matches performed at different satellite image
resolutions was evaluated comparatively with both conventional and CNN-based methods.
The analyses quantitatively reveal the performance of each algorithm at different altitude
levels through position deviation (in meters) Table 1.

Table 1. Drone position deviation comparison (in meters) found relative to conventional and CNN-
based methods. Bold indicates the best data of each altitude.

Altitude (m) SIFT AKAZE NCC + Voting LoFTR SuperPoint + SG
500 0.36 0.36 0.43 0.56 0.44
1000 1.13 1.13 2.84 2.20 2.13
1500 1.07 372.61 1.69 0.51 0.67
2000 2.67 1142.48 1.80 7.20 7.10
2500 8.10 846.69 11.77 6.78 6.54
3000 5.81 1259.52 5.62 2.68 2.07
3500 1.89 1823.84 11.26 2.08 1.45
4000 3.37 13,284.31 3.56 7.73 5.02
4500 1969.00 1901.03 3.29 431.63 3.52
5000 3041.82 2327.25 21.69 1648.04 6.04

At low altitudes (500-1000 m) all methods showed high accuracy with a deviation
value of less than 3 m. At this level, the LoFTR and SIFT algorithms, in particular, stood
out with a deviation of less than 1 m. AKAZE and NCC+Voting methods showed similar
performance. This suggests that both traditional and learning-based approaches provide
sufficient match quality for images with a low resolution difference.

At medium altitudes (1500-3000 m), the differences between the methods are pro-
nounced. AKAZE showed serious distortions in this altitude range. For example, at 2000 m,
it lost its reliability with a deviation of 1142.48 m. On the other hand, the NCC + Voting
method has produced stable results by maintaining low deviation values with its structure
based on the principle of template diversity and majority vote. Learning-based approaches
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such as SuperPoint+SuperGlue and LOFTR have gained superiority over traditional meth-
ods, especially in the 2500-3000 m band, with deviation values below 10 m.

At high altitudes (3500-5000 m), it has been observed that deviations increase. AKAZE
and SIFT produced deflections of over 1000 m. This reveals that solubility differences and
artificial deformations adversely affect the success of traditional methods. At this point,
LOFTR outperformed all other methods with a deviation of 15.83 m at 5000 m, followed by
SuperPoint + SG in second place with a deviation of 25.18 m. The NCC + Voting method,
on the other hand, has largely maintained its low deviation and has offered a more robust
result than some traditional methods.

As a result, although traditional methods perform satisfactorily at low and medium
altitudes, it has been observed that deep learning-based algorithms (especially LOFTR)
give more stable and successful results as altitude increases. However, methods such as
NCC + Voting, which do not involve machine learning but incorporate diverse decision-
making, have also delivered remarkably stable performance at high altitudes. This analysis
reveals that the choice of method according to different operational altitudes should be
made carefully and that deep learning-based systems are more advantageous, especially
with high resolution differences.

This study, which carried out a simulation for real-time applications, is useful for
testing algorithms in an isolated environment, but does not reflect the challenges of real-
world sensor data (noise, atmospheric effects, etc.). The most important step for future
studies will be verification with real UAV and satellite data.

The scope of the study focuses on scale change, so factors such as rotation and illu-
mination were not tested. This prevents us from demonstrating the full capabilities of
algorithms like SIFT, but it is a necessary simplification to test our hypothesis.

The homography matrix is a geometrically simple model. However, this choice
was chosen in line with the long-term goal of the study: to develop a real-time and
embedded system (using Vitis AI on FPGA). Homography is considered suitable for
hardware acceleration and parallelization thanks to matrix operations, while more complex
models can bottleneck real-time performance.

Our system alone generates 2D (latitude/longitude) position, but this is not an in-
complete solution. It aims to easily obtain a full 3D position solution by combining the
altitude data to be obtained from the barometric altimeter sensor in a standard UAV with
the output of our system.

5. Conclusions

In this study, the matching processes performed between satellite images with different
resolution levels and drone-borne images were evaluated and various traditional and deep
learning-based methods were compared. The main objective is to determine the accuracy
of alternative positioning systems in scenarios where GPS signals cannot be used.

As a result of the analyses performed, it was determined that all methods can match
with high accuracy at low altitudes (500-1000 m). However, as the altitude increases, it has
been determined that traditional approaches lose performance. In particular, methods such
as AKAZE and SIFT have achieved serious deviation values at high altitudes (3500 m and
above). In contrast, learning-based methods such as SuperPoint+SuperGlue and LOFTR
were able to produce more stable and low-deviation results despite increasing resolution
differences and geometric aberrations.

In addition, it has been observed that hybrid and voting-based traditional algorithms,
such as the NCC+Voting method, are less affected by altitude changes and show a very
consistent performance by taking advantage of the variety of templates. This shows that
visual-based positioning systems can be effectively developed not only with methods
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based on deep learning, but also with classical approaches enriched with appropriate
pre-processing and decision mechanisms.

The results obtained revealed that both traditional and deep learning-supported
matching methods can be configured and used correctly in operational scenarios where GPS
signals are blocked or unreliable. In this context, it is considered that additional modules
such as multi-scale matching, depth estimation and geographic foresight integration can
further improve system performance in future studies.
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The following abbreviations are used in this manuscript:

SIFT Scale-Invariant Feature Transform

AKAZE Accelerated KAZE

NCC Normalized Cross-Correlation

SuperPoint  Self-Supervised Interest Point Detector and Descriptor
LoFTR Detector-Free Local Feature Matching with Transformers
UAV Unmanned Aerial Vehicle

RANSAC Random Sample Consensus

GNSS Global Navigation Satellite System

GPS Global Positioning System

MU Inertial measurement unit

VIO Visual-inertial odometry

VPR Visual location recognition

JPEG Joint Photographic Experts Group

DMS Degree-minute-second

CLAHE Contrast Limited Adaptive Histogram Equalization
DoG Difference of Gaussians

FLANN Fast Library for Approximate Nearest Neighbors
MLDB Modified Local Difference Binary

CNN Convolutional Neural Network
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