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Excess Verdicts Insurance
Ziwei Chen' ® and Pietro Millossovich'*

'Bayes Business School, City St George’s, University of London, London, UK
2DEAMS, Universita degli Studi di Trieste, Trieste, Italy

This article examines how excess verdicts affect the insurance industry and studies insurance contract design from the policy-
holder’s perspective, focusing on cases where court awards exceed policy limits. Excess verdicts refer to court decisions that grant
compensation higher than the maximum coverage stated in an insurance policy. They are increasingly common in severe liability
cases such as wrongful death claims and create both financial and legal risks for insurers and policyholders. These risks lead to
uncertainty in premiums, solvency management, and overall risk control within the insurance market. To address these issues, we
develop a mathematical framework that models excess verdicts by separating loss levels, legal outcomes, and contractual terms
that specify coverage beyond standard policy limits. The framework applies value-at-risk (VaR) and conditional value-at-risk
(CVaR) within a premium principle to capture the trade-off between risk exposure and cost in a manageable form. This approach
provides a structured way to study how insurers and policyholders can share risks more efficiently when facing large and unpre-
dictable legal awards. The results show that insurance contracts with multiple layers of indemnity can improve financial stability
and fairness by distributing losses across different levels of coverage. Layered contracts reduce legal disputes, support balanced
cost-sharing between insurers and policyholders, and give both sides clearer expectations about loss coverage. In practice, this
structure helps insurers maintain solvency under extreme outcomes while offering policyholders more certainty about compensa-
tion in severe claim situations. The study provides a quantitative basis for designing more stable and transparent insurance prod-
ucts that can handle the growing problem of excess verdicts in modern markets.

1. INTRODUCTION

Excess verdicts, also called “nuclear verdicts,” happen when a court awards damages far beyond an insurance policy’s limit.
For example, if a policy covers $1 million but the court awards $10 million, the extra $9 million is an excess verdict. These
large awards, common in serious injury or wrongful death cases, create financial strain for both insurers and policyholders.
Though they may seem similar to operational risks like system failures or internal mistakes, the two differ in cause and how
they are managed. Operational risks come from within the organization and are usually predictable through models and sce-
nario analysis (Power 2005; Amin 2016). Excess verdicts, however, arise from external legal actions and depend on unpredict-
able factors such as jury decisions and court interpretation. This makes them especially challenging in layered insurance,
where excess coverage only starts after the primary policy is used up. Unlike primary coverage, excess insurance often lacks
clear rules for handling large claims (Richmond 2000), and sometimes, settling below the primary limit shifts full liability to
the excess layer, increasing financial risk and solvency concerns (O’Connor 2003).

In recent years, various legal doctrines, social trends, and plaintiff strategies have driven both the frequency and size of
excess verdicts upward. The landmark 1977 case of Bates v. State Bar of Arizona raised awareness of litigation rights and
expanded noneconomic damages such as pain and suffering (Supreme Court Of The United States 1976; Sharma 2023), while
tort reform efforts have not succeeded in curbing these amounts (Heaton and Lucas 2000). Evolving tort doctrines, notably
those involving “bad faith” and “negligence,” have increased insurer exposure. “Bad faith” typically refers to fraudulent or dis-
honest conduct by the insurer (Epps and Chappell 1958), while “negligence” captures failures in reasonable claims handling.
Courts may find bad faith where insurer actions are objectively unreasonable (Gallogly 2006), often leading to elevated
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settlements and penalties (Asmat and Tennyson 2014). On the plaintiff side, strategies such as the reptile theory (Murray et al.
2020), which appeals to jurors’ concern for community safety (Silverman and Appel 2023), and the anchoring effect of high
initial damage demands (Chang et al. 2015) have contributed to rising award levels. Broader economic and social factors also
play a role; social inflation, where claims costs outpace general inflation, has placed additional pressure on settlements and
verdicts (Pain 2020). In some jurisdictions, courts have shown increasing willingness to impose insurer liability beyond policy
limits in cases involving severe harm or delayed settlements, and litigation involving bad faith claims continues to grow (see
Appendix Table D.1; Deng and Zanjani 2018). High litigation costs and uncertain outcomes frequently push parties to settle
early to avoid lengthy disputes, high legal fees, and delayed recovery (Shavell 1982; Cooter and Rubinfeld 1989).

To address the risks posed by excess verdicts, this study proposes a contract framework that makes excess coverage explicit
and easier to manage. We consider contracts where both the trigger and payment structure are agreed in advance, reducing dis-
putes and clarifying the responsibilities of each party. Inspired by parametric insurance designs (Broberg 2020) and the
trigger-based approach of Asimit et al. (2021), our framework introduces two sequential triggers. The first activates when the
court award exceeds the primary policy limit, and the second determines the excess payment based on both the total award and
the insurer’s conduct. We derive the optimal indemnity function by minimizing a combination of the policyholder’s capital
requirement and the premium, using risk measures such as value-at-risk (VaR) and conditional value-at-risk (CVaR) and a
general premium principle. The solution offers a simple and effective structure combining a fixed deductible with a cap tail-
ored to the risk environment. This contract design enhances pricing transparency, mitigates moral hazard by clarifying each
party’s obligations, and facilitates policyholders’ better understanding and comparison of coverage.

This contract design is part of a class of trigger-based indemnity contracts that operate in settings with multiple risks, where
coverage depends on externally defined events rather than realized losses. Such triggers appear in index-linked insurance, catas-
trophe bonds, and other risk-linked securities. For example, Miranda and Vedenov (2001) showed that index-linked insurance
can reduce weather-related crop losses and smooth income in developing countries. The foundations of optimal contract design
were set by Borch (1960) with the expected value principle for reinsurance and by Arrow (1963) with stop loss contracts for risk
averse insurers. Later work by Raviv (1979) on deductibles and coinsurance and by Young (1999) using Wang’s premium prin-
ciple extended these ideas. To measure risk more precisely, Cai and Tan (2007) introduced VaR and CVaR, and follow-up stud-
ies by Cai et al. (2008), Chi and Tan (2011, 2013), Asimit et al. (2013a, 2013b), and Cheung et al. (2015) found that layered
contracts remain optimal under these measures. Frees and Valdez (1998) used copulas to build multivariate risk models, while
Cummins et al. (2004) and Goodwin (1993) emphasized the importance of clear triggers in catastrophe and crop insurance. In
more complex situations, coverage may depend on multiple events occurring in sequence, as often happens with excess verdicts.

While the proposed contract structure addresses cost allocation, behavioral factors such as background risk also influence
risk preferences and insurance decisions. Gollier and Pratt (1996) introduced the concept of risk vulnerability, showing that
external risks can heighten aversion to independent risks. Eeckhoudt et al. (1996) demonstrated that background wealth
changes may increase risk aversion under certain conditions. Heaton and Lucas (2000) applied these ideas to portfolio deci-
sions, finding that labor and business income risks affect asset allocations. More recently, Strobl (2022) showed that healthcare
costs as background risk lead individuals to prefer safer investments, while low insurance literacy and reluctance to pay premi-
ums also matter. These behavioral effects alter optimal contract design. For example, Lu et al. (2018) showed that when back-
ground risk becomes large relative to insurable risk, deductible contracts become optimal, a result confirmed by Chi and Wei
(2018) under various correlation structures. Chi and Tan (2021) found that background risk reduces opportunities for inflated
claims by affecting incentive compatibility, and Hinck and Steinorth (2023) showed that risk vulnerability, and loss-dependent
background risk can increase insurance demand. This aligns with Hofmann et al. (2019), who found that limited liability and
background risk can explain demand for excess coverage under negative correlations.

The rest of this article is organized as follows. Section 2 discusses key issues in optimal insurance contracts and presents
our model. Section 3 explores excess verdict modeling within our framework. Section 4 presents numerical simulations that
support the model. Finally, Section 5 summarizes our findings and suggests directions for future research. Additional details
are in Appendix A, with full proofs in Appendix B.

2. OPTIMAL INSURANCE WITH MULTIPLE INDEMNITY ENVIRONMENTS

The concept of excess verdict insurance can be represented with four distinct and mutually exclusive environments, each of
which depends on the progress of the legal proceedings and the conduct of the insurer. The first situation is where there is no
loss. The second scenario corresponds to the case in which the damages awarded remain within the prescribed insurance limit.
In the third scenario, the damages awarded exceed the limit specified in the insurance policy. However, the subsequent litiga-
tion does not reveal any bad faith or misconduct on the part of the insurer. The last scenario describes a situation where, after



EXCESS VERDICTS INSURANCE 3

the compensation awarded exceeds the insurance limit, a further lawsuit also reveals bad faith from the insurer. This categor-
ization, pertinent to excess verdict insurance, motivates the study of the broader conceptual framework of “multiple indemnity
environments,” a notion rigorously examined through the lens of Pareto optimal risk-sharing in the work by Asimit et al.
(2021). In the following sections, we state and solve an optimal insurance problem where the indemnity function depends on
the prevailing environment. This discussion encompasses the problem’s definition, optimization using VaR and CVaR, and
further analysis through the proportional hazard transform.

2.1. Problem Definition

Let (Q, F,P) be a probability space on which all random variables are defined. We consider a one-period economy where a
primary risk holder is endowed with a nonnegative loss X that is payable at a fixed future time 7 > 0. We denote by E the
expectation under P.

The primary risk holder, or (insurance) buyer, intends to share the loss at time 7 with another party, or (insurance) seller,
and accepts to pay a premium at time 0. Both parties agree to achieve optimality in terms of their risk positions by choosing
appropriate amounts of indemnity and premium. However, unlike classical risk-sharing problems, this article considers a set-
ting such that the indemnity level depends upon an external factor, which cannot be influenced by either party, yet can be pre-
cisely observed at time 7.

To this end, let Y be the trigger characterizing the exogenous environment so that the sample space (Q is partitioned into
K + 1 disjoint events {w €eQ:Y(w) = k}, for k =0,1,...,K, all with positive probability. Moreover, if ¥ =0 then X = 0,
implying that under the environment ¥ = 0 there is no loss. For each remaining environment k = 1, ..., K, the loss is risky, in
the sense that P(X > 0|Y = k) > 0. Thus, we explicitly assume that the random variables X and Y are not independent.

If the realized environment is nonrisky, that is, ¥ = 0, no indemnity transfer is required. Moreover, if the prevailing envi-
ronment is ¥ = k, for some k = 1, ..., K, the buyer will transfer the amount 7 (X) to the seller at time 7 and retain the amount
Ri(X) = X — I(X), where I; : [0,00) — R is called an indemnity function and Ry : [0,00) — R is called a retention function.
Note that both parties have to agree at time 0 on a profile of indemnity functions I = (Iy, ..., I¢) since the exogenous environ-
ment is not revealed until time 7.

A profile of indemnity functions is admissible if it belongs to the set

Z ={1:0<IL<Id, Ry=1d-1I, I} and R, are non-decreasing for all k =1,...,K},

where Id denotes the identity function. Hence, under each environment, the indemnity is at most the loss, and misrepresenta-
tion of the loss is disincentivized, precluding ex post moral hazard from both parties, as suggested by Huberman et al.
(1983). Note that the functions /; and R; are 1-Lipschitz continuous. We refer to a tuple I € 7 as a contract.

For each contract I € Z, we let Ry(X) = Y&, Ri(X)1{y—py and Iy(X) = SE Ii(X) 1 {y—t}. The realized risk position of
the buyer is given by

B(I) =Ry(X)+ (1+ p)P,(Iy(X)), 2.1)

where 1, is the indicator function of an event A C Q. On the right-hand side of Equation (2.1), the first component is the
loss retained by the buyer, which depends on the prevailing environment. The second term is the seller’s premium, calcu-
lated with Wang’s (risk-adjusted) premium principle P, and inflated by the explicit safety load p > 0. For any loss Z > 0,
Py(Z) is defined as

Py(Z) = L 8(82(2))dz, 2.2)

where g : [0,1] — [0,1] is a distortion function, that is, a nondecreasing concave function with g(0) =0, g(1) = 1, and Sz
is the survival function of Z.

Let ¢ denote the buyer’s risk measure, designed to rank their risk preferences at time t = 0. Formally, ¢ is a real function
defined on a linear space of losses containing the constants. We assume ¢ to be translation invariant and monotone, therefore
ensuring consistency in the evaluation of risk positions with respect to capital injections. With this in mind, the buyer’s risk
position at ¢t = 0 corresponding to Equation (2.1) can be expressed as

Ro(I) = ¢(B(I)) = ¢(Ry (X)) + (1 4 p)Py(Iy(X)), (2.3)
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2.2. Optimality with VaR and CVaR Preferences

In this section, we assume that the risk preferences ¢ of the buyer are represented by either VaR or CVaR. Then ¢ = VaR
or ¢ = CVaR.

Recall that for a loss Z, the VaR at level o € (0, 1) is

VaR,(Z) =inf{zeR:P(Z>z) <1—-ua}.

The solvency probability « is associated with the buyer’s risk tolerance level.
The conditional VaR at level « € (0, 1) is

1
CVaR,(Z2) = 1= ozj VaR,(Z) ds.

The CVaR is alternatively called the expected shortfall and has gained practitioners’ interest since the introduction of Basel
III regulations; see McNeil et al. (2015) for further discussion.

The buyer seeks to minimize his/her risk position at time ¢ = 0, given by Equation (2.3), over all admissible indemnity pro-
files. The buyer’s minimization problem is then given by

min R, (). 2.4)

Consider now the following subset of admissible indemnity profiles

7* ={I€Z:for each k =1,...,K, there exist my € [0,ess sup(X)],
and ny € [my,ess sup(X)], such that [(x) = (x —my), — (x—m), }.

where (x), = max{x,0} and ess sup(X) denotes the essential supremum of X. Each profile I=(I,..1x) € T" represents
a layer-type contract that provides indemnity for losses between a deductible m; and an upper limit ng, specific to each
environment k.

The buyer may wish to restrict attention to the subclass Z*, reducing the infinite-dimensional optimization problem (2.4) to
a finite-dimensional one. In general, such a restriction may lead to suboptimal solutions. However, the next result shows that,
under specific risk preferences, this restriction is without loss of generality.

Theorem 2.2.1.  Let ¢ = VaR, or ¢ = CVaR,. For any p > 0 and any indemnity profile I € Z, there exists a layer-type
profile I € T* such that R,(I) < R,(I). Furthermore, I can be chosen so that the deductible levels are the same across
environments.

The proof of Theorem 2.2.1 is provided in Appendix B.l1 for the case ¢ = VaR,, and in Appendix B.2 for the
case ¢ = CVaR,.

Remark 2.2.1.  Theorem 2.2.1 establishes that for widely used risk measures such as VaR and CVaR, the class of layer-
type indemnity profiles T is sufficient to attain optimality. That is, any admissible indemnity profile is dominated by one in
T*. This structural insight allows one to replace the infinite-dimensional space of feasible contracts with a finite-dimensional
subset parametrized by the deductible and upper limit in each environment.

Theorem 2.2.1 also shows, as a by-product, that the deductible my. can be taken to be the same in each environment, that is,
my = --- = mg. This means that there is no particular benefit in having an environment-specific cutoff level above which
losses are transferred to the seller. The left tails of the conditional loss distribution jointly concur in determining a unique
optimal deductible level. As the buyer is concerned mostly with large losses, it is, however, essential to have the freedom of
setting upper limits contingent on the prevailing scenario. Note that the inclusion of a deductible in the optimal insurance con-
tract is consistent with the existing related literature, see for instance, Arrow (1974) and Ghossoub (2017).

Theorem 2.2.1 also has practical value. It justifies restricting the search for an optimal indemnity to the subclass T* when
performing numerical optimization. Although the objective function R, is generally nonconvex, the reduced dimensionality of
the feasible set makes computational approaches tractable. We illustrate this in Section 4.

The following result strengthens Theorem 2.2.1 by establishing that a strict improvement can be achieved whenever the
initial indemnity profile is not of layer type. In particular, if the minimum of Equation (2.4) exists, it is attained in Z*, and
optimal contracts may be selected from the class of layer-type profiles.
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Corollary 2.2.1.  Let ¢ = VaR, or ¢ = CVaR,, and supposel € 17 -1 *. If the support of X is an interval in every environ-
ment, then there exists a layer-type profile I € T* such that R,(I) < R,(I).

Appendix B.3 provides a proof of Corollary 2.2.1 for ¢ = VaR, based on the argument in Theorem 2.2.1 from Appendix
B.1. The case ¢ = CVaR, follows by the same reasoning, using the results in Appendix B.2. Details of the proof are omitted
for brevity.

Following from the structural result of Theorem 2.2.1 that the optimal contract can be chosen to be of a layer type, we now
examine the conditions that characterize the optimal deductible and upper limits. We restrict ourselves, for the sake of simpli-
city, to the case of CVaR, risk preferences and of expected value premium principle.

Proposition 2.2.1.  Let ¢ = CVaR,, and g(x) = x, x € [0, 1] in Equation (2.2). The optimal indemnity profile I* € T* is
characterized by a deductible m* > 0 and upper limits n; > m* fork =1, ..., K.

i. (No insurance) If p > 7%, then m* = n for all k.

-

ii. IfP(X>0)> lip’ then m* > 0 or n; = m* = 0 for at least one k.

Remark 2.2.2.  Case (i) implies that if the loading rate is excessively high (insurance too expensive), or the solvency prob-
ability is not too high (lenient capital requirement), then the buyer will react by retaining all the risk in every environment.

Case (ii) holds when the (unconditional) probability of no loss is limited. In this situation, the optimal contract features
either a positive deductible or at least one environment with no insurance. Note that this case holds whenever X > 0 almost
surely (this requires both P(Y = 0) = 0 and X > O|Y = k almost surely in every environment).

2.3. Pareto Optimal Contracts

The problem considered in Equation (2.3) focuses on minimizing the buyer’s risk, accounting for the premium determined
by the seller. We show in this section that the solution of Equation (2.3) can be framed as a Pareto optimal contract. The proof
is omitted, as similar arguments are developed in the Pareto insurance literature, for example, in Ghossoub et al. (2022).

A contract is a pair C = (I, ) € Z x R, where n denotes the premium paid by the buyer. The buyer’s risk position at time
t = 0 is given by

®(C) := ¢(Ry(X) + ), (2.5)
where ¢ is as before. The seller evaluates their risk exposure using a distortion risk measure
We(C) = Py(c(ly(X)) — m), (2.6)

where g is a distortion function, see Equation (2.2), and c: [0, + 00) — [0, + c0) is an increasing and convex cost
function.

A contract C = (I, n) € T x R is Pareto optimal if it cannot be strictly improved by another contract, when the targets of
the buyer and seller are given by @ and ¥, respectively. It can be shown that a contract is Pareto optimal if and only if it sol-
ves, for some 4 > 0, the constrained optimization problem

Jnin_ ®(C) subject to ¥y (C) = A. 2.7)

This formulation seeks to minimize the buyer’s risk in Equation (2.5) subject to a fixed level of seller exposure in Equation
(2.6), where A reflects the seller’s required profit or surplus. In particular, when c¢(x) = (1 + p)x and 1 = 0, that is, the seller is
exactly compensated for their risk exposure, the constraint in Equation (2.7) reduces to © = (1 + p)P,(Iy(X)) and the Pareto
optimization problem in Equation (2.7) reduces to the buyer’s problem in Equation (2.3).

2.4. Optimality with the Proportional Hazard Transform

In this section, we consider a modification of the premium principle employed in Equation (2.1). Specifically, we allow for
the distortion function used to calculate the premium to be dependent on the prevailing risk environment, which can therefore
be assessed assuming a different degree of risk aversion. Of particular interest is the case of proportional hazard (PH) trans-
Sform (see Wang (1995)), which features a power distortion function with the power coefficient depending on the prevailing
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environment and featuring a scenario-specific buyer’s risk aversion. Thus, for any given indemnity profile I € Z, the realized
risk position of the buyer can be expressed as

K

B(I) = Ry(X) + > Py, (I(X) 1 {y_s) (2.8)
k=1

where the second term on the right-hand side is the seller’s risk-adjusted premium. Analogously, with respect to Equation
(2.8), the buyer’s risk position at = 0 is articulated as

K

@(B(I) = ¢(Ry(X)) + Y Py, (L(X) 1 y—s)) 2.9)
k=1

The main theorem in Section 2.2 still works if the objective function in Equation (2.4) is replaced by Equation (2.9). The
proof is omitted as it is similar to that in the main Theorem (2.2.1). The Pareto interpretation of the optimal buyer’s indemnity
seen in Section 2.3 can also be extended to this setting with a suitable modification of the seller’s distortion risk measure.

3. EXCESS VERDICTS

This section builds on the theoretical framework in Section 2 by applying it to the problem of excess verdicts. We aim to
model how these outcomes arise by examining the joint decisions made by insurance buyers and sellers, particularly in the
presence of gaps between court awarded damages and policy coverage. The focus is on identifying the main triggering factors
and understanding how external conditions influence these outcomes, particularly in legal systems where insurance contracts
may fall short in covering unexpected losses.

Suppose a loss, denoted by X, occurs due to an external event, such as injury or property damage. Let L be the loss amount
that triggers the policy limit. When X < L, the loss is handled according to the contract terms, with both buyer and seller shar-
ing the cost. When X > L, the amount above L is generally the buyer’s responsibility.

As in Section 2, let Y be a variable that represents how the legal process unfolds, especially in relation to excess verdicts
and the seller’s conduct. The flowchart in Figure C.1 helps illustrate the different cases: ¥ = 0 means no loss; ¥ = 1 means a
legal claim is made, but the awarded damages stay within the insurance limit (X < L), so excess verdict does not exist; ¥ = 2
means X > L, so there is excess verdict, but no finding of bad faith by the seller; and ¥ = 3 means there is both an excess ver-
dict and a court decision that the seller acted in bad faith. Clearly, in both cases ¥ = 2 and Y = 3, the loss exceeds the policy
limit.

Note that we do not consider the possibility of bankruptcy or solvency constraints for either the buyer or seller. Also, the
legal process works in two steps: first, whether there is an excess verdict, and second, whether the seller is found to have acted
in bad faith. In Sections 3.1 and 3.2, we look at contracts with and without provisions that depend on the legal outcome and
compare their effects.

3.1. Contract Without Environment Contingent Provisions

Let I be the indemnity function and define the retention as R(X) = X — I(X). We consider a contract that does not include
any special rules for how to handle excess verdicts. The contract terms apply in scenarios ¥ =1 and ¥ = 2. In case ¥ = 2,
where the loss exceeds the policy limit (X > L), the seller pays only up to the limit, so 1 X) = 1 (L). The buyer then covers the
rest, with total liability equal to R(X) = R(L) 4 (X — L).

In case Y = 3, when the loss exceeds L, the court will decide how to split the payment between the buyer and the seller,
which may require a lengthy legal process. Let I°(X) be the seller’s payment as decided by the court, and R°(X) = X —1°(X)
be the buyer’s share. These court-ordered amounts differ from the original contract terms. Also, the longer the legal process,
the greater is the financial and emotional stress faced by the plaintiff. Therefore, the loss X in case Y = 3 tends to be larger
than in cases Y =1 or Y =2, and the seller’s actual obligation iC(X) is usually much higher than the agreed indem-
nity 1(X) = I(L).
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3.2. Contract With Environment Contingent Provisions

Now consider a contract that includes special terms for handling excess verdicts, especially when bad faith by the seller is
confirmed after the verdict. The goal of such a provision is to reduce the uncertainty and length of legal disputes related to
excess losses.

For cases Y = 1 and Y = 2, the contract works similarly to the one in Section 3.1, with indemnity functions /;, I, and reten-
tion functions Ry, R;. In case Y = 2, where X > L, the buyer pays the excess: R,(X) = Ry(L) + (X — L). In the excess verdict
case Y = 3, where the seller’s bad faith is found and X > L, the contract uses a new indemnity rule I3 and retention Rj3 that
were agreed in advance. Including these provisions affects how losses are handled in all three cases (Y = 1,2, 3), and the limit
L may be different from that in Section 3.1.

Based on the results in Section 2.2, the optimal contract in each case will share a common deductible m and have an upper
limit n; for each scenario i = 1,2, 3. In normal situations (¥ = 1 or ¥ = 2), the indemnity can follow a common structure, but
with different ranges of X. The limit L used in these cases corresponds to n; = ny. When Y = 3, the seller agrees to pay for all
losses up to a higher limit L = n3, where L > L. Then the seller’s indemnity is given by I3(X) = X — R3(L) if X < L, and
I;(X) = L —Rs(L) if X > L. The buyer’s retention is R3(X) = R3(L) when X <L, and R3(X) = R3(L) + (X — L) when
X > L. Table 1 shows how the buyer and seller payments differ depending on whether the contract includes these
environment-contingent provisions.

4. NUMERICAL OPTIMIZATION ANALYSIS
In this section, we provide some numerical examples, focusing on the role played by risk aversion.

4.1. Model Parameters Setting

We consider three risk environments, each representing a different legal outcome. In each case, the loss (in thousands of
monetary units) follows a Type II Pareto distribution. Table 2 summarizes the scenario probabilities and distribution parame-
ters. The expected loss and standard deviation increase across the scenarios, with the third environment representing the high-
est and most uncertain losses, such as those from excess verdicts.

TABLE 1
Payments of the Buyer and Seller in the Contract with/without Environment Contingent Provisions across
Different Environments

Environment Party Without provisions With provisions
Y=1 Buyer R(X) Ri(X)
Seller (x)y I (X)
Yy=2 Buyer {Q(X) = (L)+(X-1L) R(X)=R(L)+(X-1L)
Seller I X)=1(L) L(X)=5h(L)
Y =3 Buyer R'(X) Ry(L)+(X-L), i
Seller 1°(X) L(X)=X-Ry(L)-(X-L),
TABLE 2
Risk Environment Parameters and Their Statistical Properties
Risk environment P(Y = k) A o E[X|Y = k| SDIX|Y = k]
Y=1 60% 40 5 10 12.91
Y=2 30% 200 3 100 173.21
Y=3 10% 1,500 2.5 1,000 2236.07
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Risk-adjusted Premium (Log Scale) as a function of
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FIGURE 1. Risk-Adjusted Premium P, (X), on a Log-Scale, with g(z) = z# for Different Value of § and Environment.

We use CVaRysy, as the risk measure and apply the PH transformation (introduced in Section 2.4) to adjust risk premiums
in the presence of heavy-tailed losses. Figure 1 shows how the premium for full insurance changes with the distortion param-
eter f§ in the function g(z) = z’. Lower values of  make the distortion more concave, leading to higher premiums.

4.2. Results Analysis

This section presents numerical results for the optimal contracts described in Section 2, and in particular Section 2.4.
According to Theorem 2.2.1, these contracts can be chosen to feature a common deductible m = m; = my = m3 and
environment-specific limits ny, ny, n3. We exploit the finite-dimensional nature of the problem to find the optimal contract by
minimizing, using standard numerical optimization tools, the objective function over the parameters m, ny, n, n3. We analyze
the interplay between the distortion parameters f,, ,, /3 and the policyholder coverage preferences across different risk
scenarios.

We use as baseline values for the distortion coefficients f; = 0.65, , = 0.55, and 3 = 0.45, so that the risk aversion and
the loading increase with the riskiness of the scenario. Tables 3, 4, and 5, respectively, show the loss quantiles, conditional on
each environment, corresponding to the deductible m and the limits ny, ny, n3, as each of the distortion coefficients is separately
stressed. These values show the chance of not exceeding the deductible (the loss is fully paid by the buyer) and of exceeding
the scenario-specific limit (the coverage is exhausted).

When f3, increases, the risk aversion in scenario k decreases, making insurance cheaper and leading to more generous cover-
age, that is, lower deductible and higher upper limit. However, changes in f5, mostly affect coverage in scenario k and have
limited impact on the limits in the other scenarios. In scenario k, the limit rises quickly with /3, and eventually full insurance
is offered above the deductible, similar to classic optimal insurance results. This pattern also appears in the high-risk case ¥ = 3,
although the pricing rule must embody a much-limited distortion before full insurance is attained.

The coverage structure depends strongly on the scenario. The common deductible is high enough that, in the low-risk case
Y = 1, insurance only starts to pay for large losses, but almost all losses beyond that are covered. In contrast, in the high-risk
case Y = 3, very extreme losses are not covered unless the buyer has low risk aversion in that scenario.
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TABLE 3
CDF at the Deductible and Survival Function at the Upper Limit, Conditional on Each Scenario, for Different Values of f3,
Risk environment Y, Risk environment Y, Risk environment Y3
B Fx(m) Sx(m) Fx(m) Sx(n2) Fx(m) Sx(n3)
0.45 93.13% 0.72% 32.80% 0.43% 4.57% 4.31%
0.55 89.44% 0.21% 27.58% 0.43% 3.69% 4.31%
0.65 85.40% 0.03% 23.60% 0.43% 3.06% 4.31%
0.75 81.19% 0.00% 20.48% 0.43% 2.60% 4.31%
0.85 76.93% 0.00% 17.95% 0.43% 2.24% 4.31%
0.95 72.711% 0.00% 15.87% 0.43% 1.95% 4.31%
TABLE 4
CDF at the Deductible and Survival Function at the Upper Limit, Conditional on Each Scenario, for Different Values of f3,
Risk environment Y, Risk environment Y, Risk environment Y3
B, Fx(m) Sx(n1) Fx(m) Sx(n2) Fx(m) Sx(n3)
0.45 90.69% 0.032% 29.12% 1.44% 3.94% 4.31%
0.55 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%
0.65 79.93% 0.032% 19.67% 0.06% 2.48% 4.31%
0.75 74.51% 0.032% 16.72% 0.00% 2.07% 4.31%
0.85 69.28% 0.00% 14.41% 0.00% 1.75% 4.31%
0.95 64.32% 0.00% 12.57% 0.00% 1.51% 4.31%
TABLE 5
CDF at the Deductible and Survival Function at the Upper Limit, Conditional on Each Scenario, for Different Values of f;
Risk environment Y; Risk environment Y, Risk environment Y3
Bs Fx(m) Sx(n1) Fx(m) Sx(n2) Fx(m) Sx(n3)
0.45 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%
0.55 78.72% 0.032% 18.95% 0.43% 2.38% 1.28%
0.65 72.53% 0.00% 15.80% 0.43% 1.94% 0.19%
0.75 67.09% 0.00% 13.56% 0.43% 1.64% 0.006%
0.85 62.45% 0.00% 11.94% 0.43% 1.43% 0.00002%
0.95 58.57% 0.00% 10.73% 0.43% 1.27% 0.00%

5. CONCLUSIONS AND FUTURE RESEARCH
In this article, we study the optimal insurance problem from the buyer’s perspective in multiple indemnity environments,

with a focus on the legal and financial effects of excess verdicts. Our model examines risk sharing between policyholders and
insurers, especially when legal judgments lead to damages far beyond policy limits. The occurrence of excess verdicts, where
court-mandated payments exceed the policyholder’s coverage, shows the practical importance of our framework. Our analysis
demonstrates that the optimal contract structure is a layered indemnity for each risk environment while keeping consistent
deductibles across all environments. By using risk measures such as VaR and CVaR, we simplify complex optimization prob-
lems and improve the efficiency of numerical optimization and decision-making. This approach may improve risk sharing
among parties and provide a practical framework for managing excess liability in real-world insurance cases.

While VaR and CVaR are widely used in the insurance industry, future research may consider alternative risk measures to
gain further insight into risk sharing in different indemnity settings. A possible line of future research may explore whether
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Theorem 2.2.1 holds true under a wide class of risk measures, including VaR and CVaR. In addition, evaluating the enforce-
ability of anticipatory clauses across jurisdictions could enhance the legal strength of the excess verdict model. Empirical stud-
ies using real-world insurance data, particularly in cases involving excess verdicts, are important for validating our theoretical
framework. These topics offer promising directions for future work.
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APPENDIX A. ANCILLARY RESULTS

A.1. Left and Right Continuous Inverses
Given the role of left and right continuous inverse functions in the proof of the main result of this article, Theorem
2.2.1, we provide in this section their definitions and some of their properties.

Definition A.1. Let f : R — R be a real function. The right-continuous inverse of f is given by
) =inf{x e R : f(x) >y}, y € R.
The left-continuous inverse of f : R — R is given by
iy = inf{x e R:f(x) >y}, yeR.

In this definition, we use the convention that inf() = +oo.
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The next result summarizes key properties of right-continuous functions and their right-continuous inverses. For detailed
discussions and proofs related to left- and right-continuous inverses, see Embrechts and Hofert (2013).

Proposition A.1.1. Let f : R — R be a real-valued function. Then, for a given y € R, the following properties hold:

a. f717(y) = —cc if and only if f(x) >y for all x € R ; further, f~'*(y) = +oc if and only if f(x) <y for all x € R.
b. Assume f is right-continuous and f~'*(y) < oo, then f(f~'(y)) >y ; further, if f is continuous, then f(f~'*(y)) = y.

c. x> f~'(y) implies that f(x) >y, and the reverse implication holds if f is left-continuous; further, f(x) <y implies that
x < f~1(y), and the reverse implication holds if f is left-continuous.

d. Let f be nondecreasing and right-continuous. Then f~'(y) < x if and only if f(x) >y, for any (x,y) € R?.

APPENDIX B. PROOFS OF THE MAIN RESULTS

We now present the proof of our main results. For clarification, we focus on using Wang’s premium principle. Although
our provided numerical optimization is based on the risk-adjusted premium of the PH transform, the proof approaches are
similar. Therefore, we do not provide a separate proof for the PH transform method.

Since our proof relies on some properties related to stochastic ordering, we recall the formal definition of stop-loss order
and apply some related results; see Denuit et al. (2006), Rolski et al. (1999) and Shaked and Shanthikumar (2007).

B.1. Proof of Theorem 2.2.1 with VaR Preferences
Fix I € 7 and let R, = Id — I;.. Define

b := VaR,(Ry). (B.1)

For each k=1,...,K, let R;'" denote the right-continuous inverse of R; and note that Ry(R;'" (b)) = b provided
R (b) < 4003 see Proposition A.1.1b. In this case, it holds b < R;'"(b) since Ry + I = Id. The same inequality holds if
R;'"(b) = +00. Consequently, define m; = b, ny = R;'"(b) and I by

i 0 if 0<x<b,
L(x) = (x=b), — (x=R;'" (b)), = x—b if b<x<R'"(b), (B.2)
R;'T(b) = b if R'(b) < x.

Note that the deductible m; = b is independent of the environment. It follows that
X if 0<x<b,

if b<x<R;'""(b), (B.3)
x=R"(b)+b  if RTT(D) < x.

=
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It is understood that in Equations (B.2) and (B.3), only the first two cases apply when R,:H(b) = +400. The first step is
to demonstrate that

{R(X) > b} = {Re(X) > b} forany k=1,..,K. (B.4)

According to Proposition A.1.1a, if R;'"(b) = +oo then Ri(x) < b for all x. But it is seen from Equation (B.3) that the
latter is equivalent to R;(x) < b for all x. Therefore, we only need to consider the case when R (b) < 400. Suppose
Ri(x) > b. According to Proposition A.l.lc, we deduce that x > R;'"(b) and from Equation (B.3), we obtain Ry(x) > b.

Conversely, suppose Rj(x) > b. From Equation (B.3) it follows that x > R,:”(b) and Proposition A.l.lc implies that
Ri(x) > b. Therefore, Equation (B.4) holds.



EXCESS VERDICTS INSURANCE 13

In the second step, we aim to prove that I;(x) < I(x) for all x, from which

I(X) <I(X) forany k=1,..,K. (B.5)

We proceed by cases on the value of x, exploiting the form of I;(x) in Equation (B.2). For 0 < x < b, we have I;(x) =
0 < I(x). For b < x < R;'"(b), we find I;(x) = x — b. Therefore, I;(x) < Ix(x) if and only if Ry(x) <b. If R'"(b) =
+00, this follows from Proposition A.1.1a. If instead R; ' (b) < +oc, then Ry(x) < Ry(R;'"(b)) = b by Proposition A.1.1b.
Finally, assume R;'*(b) < x, so that R;'"(b) < +oo and we have I;(x) = R;'*(b) — b. Therefore, I;(x) < Ii(x) if and only
if Re(x) <x—R;'"(b)+b. By the I-Lipschitz-continuity of Ry, we have 0 < Ry(x) — Ry(R;' (b)) < x—R;'*(b), from
which the conclusion follows since Ry(R;'" (b)) = b by Proposition A.1.1b. Thus, Equation (B.5) is obtained.

Letting Ry(X) = Y5, Ri(X) 1y}, the third step is to demonstrate

VaR,(Ry(X)) = VaR,(Ry(X)). (B.6)

From Equation (B.5), we have Ry(X) > Ry(X) for all k = 1,...,K, which implies VaR,(Ry(X)) > VaR,(Ry(X)) by sto-
chastic dominance. From Equation (B.4) we get P(Ry(X) > b) = P(R;(X) > b) for k = 1,..., K. Consequently, we deduce
P(Ry(X) > b) = P(Ry(X) > b) < 1 —a, since, by definition, » = VaR,(Ry(X)). By Proposition A.1.1d, it follows that
VaRa(INQy(X)) < VaR,(Ry(X)). Therefore, Equation (B.6) holds.

Let Iy(X) =S5 |1 k(X)L {y—x, and the last step establishes the inequality

P(Iy) < Py(Iy). (B.7)

Recall that I;(X) < I(X) for all k = 1,...,K, which implies that Iy(X) < Iy(X). Equation (B.7) follows as the distortion
premium principle P, with stochastic dominance. From this, P,(Iy(X)) < P,(Iy(X)) follows and Equation (B.7) holds,
which completes the last step.

Finally, Equation (B.6), together with Equation (B.7) shows that, for any p > 0,

R(I) = VaR,(Ry) + (14 p)P,(Iy) < VaR,(Ry) + (1 + p)P,(Iy) = R(I).

B.2. Proof of Theorem 2.2.1 with CVaR Preferences
Fix I € 7 and define b as in the Appendix B.1. For k = 1, ..., K, define my = b, and n; should be a value which satisfies
ng > R,:”(b). Further, define I by

) 0 if 0<x<b,
L(x)=(x=b)y—(x—m), =g x=b if b<x<m, (B.8)
n—b if np <x,
and
R R X if 0<x<b,
Riy(x)=1d(x)—Ix(x) =< b if b<x<ny, (B.9)

x—ng+b if n <x.
In the initial step, we confirm that there exists an n; > R;'"(b) for which
E[(Re(X) —b)+] =E[(R(X) —b),] holds for every k=1,...K. (B.10)
According to Proposition A.1.1a, if ny = R;'*(b) = +o0, then Ri(x) < b for all x, and also R;(x) < b for all x from

Equation (B.9). Consequently, both sides of Equation (B.10) equate to zero. Given this, we restrict our attention only to the
case R (b) < +o0.
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For x < R;”(b), it follows from Proposition A.l.lc that Ri(x) < b, and from Equation (B.9), this leads to kk(x) <b,
which further means that

E [(iek(x) - b)+1{X§Rk_H(b)}] =K [(Rk(X) - b)+1{X§Rk_1+<b>}] =0. (B.11)

For x > R;'"(b), using the 1-Lipschitz-continuity of Ry, it follows that 0 < Ry(x) — Ry(R;'" (b)) < x — R;'*(b), and
then by Proposition A.1.1b, we have Ri(x) <x—R;'T(b)+b for all x> R;'"(b). If we consider the case Ri(x) =
x— R (b) + b for all x> R;'"(b), which can be visualized in Figure 2, then we can choose ny = R;'*(b) exactly, so
Ri(x) =x—R;'"(b) +b holds for x >n, =R;'"(b) from Equation (B.9), which implies that Rk(X)]l{X>R;1+(b)} =
INQk(X)]l{X>R;1+(b)}. This means E[(kk(X) - b)+]l{x>R;'+(b)}] = E[(Rk(X) - b)+1{x>R;'+(h)} , which can be combined with
Equation (B.11) to obtain that Equation (B.10) holds. If we consider the case Ry(cy) < ¢k —R,:H(b) + b for some c; >
R,:”(b), which can be visualized in Figure 3, then we can have R;H(b) < ¢ — Ri(ck) + b. Furthermore, we can suppose
there exists a n; > R,:”(b) such that Ri(cx) = cx — nx + b holds, which implies that n; = ¢ — Ri(cx) + b < ¢ since ¢ >
R;”(b) implies Ri(ci) > b from Proposition A.1.1c. Besides, we also have Ry(ci) = ¢ — nx + b from Equation (B.9) since
cx > ng, 0 Ri(cy) = Ri(cx) means that for x > R;'*(b), Ri(x) and Ry(x) can always intersect at a point with x = ¢; >
R;'"(b), and then there exist a m > R;'F(b) satisfying my = cx — Ri(cx) + b such that, for x € (R7'"(b),ci], Ri(x) <
Ri(x) < x = R;'""(b) + b is established, which further yields that

E{Rk(x)]l {R;,+<b)<xgck}} > E{ie (x)1 {R;wh)dgq}] (B.12)
Also, for x > ¢, the inequalities Ry(x) < Ry(x) < x — R;'"(b) + b are held, which further yields that
E[Re(X)1 (xo0] < E [iek(x)]l{mk}] (B.13)

Then we can define a function as f(c¢;) = E[Rk(X)]l{X>R;I+<b)}:| - ]EI:Rk(X)]l{X>R;1+(b>}:| for ¢ > Ry (b). If ¢ T +o00,
then ny, . T cx — Ri(ck) + b, and we can further obtain that 0 < E {i?k(X)ﬂ{XNk}} - ]E[Rk(X)]l{X>Ck}] — 0, then combined
with the inequality from Equation (B.12), this further means that

fler) =E [Rk(X>H{R;”(b)<X§ck}} -E {Rk<x)]l{R;”(b)<X§ck}} <0 (B.14)

I~f cx | R;'(b) then m | R;'T(b), and we can further deduce that O<E Rk(X>1{R;”(b)<X§ck}:| -
E|Ri(X)1 (R (b)<x<a} | — 0; then combining this with the inequality from Equation (B.13) further implies that

fle) =E [iek(x)ﬂ{mk}} —E[Re(X)Ljoey] > 0. (B.15)

Furthermore, we know that f(cx) is nondecreasing and continuous for c¢; > R;”(b), so from Equations (B.14) and

(B.15), it is evident that finding a suitable ¢y, > R;'"(b) to satisfy that Re(cx,) < c, — R; ' (b) + b, then for ny > Ry (b),
we can have that

flew) =E {ie (X)H{X>R;17(b>}} -E [Rk(x)ﬂ{bR;H(b)}} ~0. (B.16)
This further indicates that E |(Ry(X) — b)+]1{X>Rk”(b)}l =E|(Re(X) — b)+]l{X>Rk”(b)}1‘ since x > R;'7(b), Ri(x) > b

from Proposition A.1.1c and Rk(x) > b from Equation (B.9), which can be combined with Equation (B.11) to obtain that
Equation (B.10) holds.
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Plot of the functions Ry (z) and Ry(z)

il Ry ()

— - — - — Transition line

Function values

R (b)
o

FIGURE 2. Construction of Ry under the Conditions for CVaR Risk Preference: Ri(x) =x— R;'*(b) + b for x > R;'*(b). A Linear Ry is Chosen for
Graphical Convenience.

In our second step, we aim to demonstrate that

L(X)<qlx(X) for any k=1,...,K. (B.17)

which means that 7;(X) is smaller than ; (X) in stop-loss order based on Equation (B.10). We proceed by cases on the value of x.
For 0 <x< R,:”(b) < ng, by cross-referencing with our earlier derivations in Appendix B.l, we can confirm that

I;(x) < Ii(x) for all x < R;'"(b). Taking this a step further, define P(X) = ik(X)]l{XgR;”(b)} and O(X) = Ik(X):U.{XSR;H(b)}.

So for any realization of X, we have P(X) < Q(X), which further leads to P(X)<yzQ(X) from Theorem 3.2.1 in Rolski et al.

1999).

( For) x> R (b), define M(X) = jk(X)]l{x>R;'+(b)} and N(X) = L (X) 1 y. g1+ (s~ For the case Ry(x) = x — R (b) + b,

we have Ry(x) = Ry(x) for x > R;'*(b) from the first step, which mean that I;(x) = i(x) for x > R;'*(b) by using the

identity I = Id — Ry; this further leads to M(X) = N(X), and then we can get

Ii(X) = L(X)1 (X<r () T I(X)1 ey = PX) +M(X) = P(X) + N(X)
< O(X) + N(X) = (X)L x<por (b)) + Ie(X) T o)y e (X)

This implies that Equation (B.17) holds by applying Theorem 3.2.1 in Rolski et al. (1999). For the case Ri(x) <
x =R (b) + b, then focusing on x € (R;'"(b),cx], we have Ry(x) < Ri(x) from the first step, which guarantees that
Ii(x) 2 I(x). This further implies that 7¢(X) L (g-1+ () cx<q,y = (X)L g1+ (p)x<qy» Which can be Te(X) L yopore ) L ixza) =
Ik(X)l{X>R;1+(b)} Lix<¢- So for any realization of X, we have M(X) - 1x<,} > N(X) - 1{x<.,}- Then this means that

P(M(X) < 1,X < ;) < P(N(X) < 1.X < ¢x) (B.18)
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Plot of the functions Ry (x) and Ry (z)

————— Transition line  — R,
---------- Transition line x — n,

Function values

g, Nk, gy N,

b R (b) , ¢ .

FIGURE 3. Construction of R; under the Conditions for CVaR Risk Preference: Ry(x) < x — Ry (b) + b for x > R;'"(b). The Increase in ¢; Leads to an
Increase in the Lower Part of the Shaded Region, While the Upper Part of the Shaded Region Decreases, Which is Consistent with Our Proof. A Linear Ry is
Chosen for Graphical Convenience.

Then for x > ¢, Ri(x) < Ri(x) in the initial step can lead to I;(x) > I;(x). This further implies that L(X) L xsey >
ik(X)]l{X>ck}, which can be Ik(X)]l{X>Rk‘”(b)}l{X>Ck} 2?k(X)Jl{bR;n(b)}]l{x>ck}. So for any realization of X, N(X)-
Lixse) = M(X) - 1ixse, holds. Then this leads to

PINX) <t,X > c;) <PMX) <t,X > cx). (B.19)

Besides, from the definition of M and N, it is clear that M(x) = N(x) = 0 for x < R;'"(b). For x € (R;'"(b), cx], we
know that I;(x) € (R;'*(b) — b, n; — b] from Equation (B.8), which implies that M(x) € (R;'*(b) — b, ny — b]. Furthermore,
we have L(R;'"(b)) = R (b) — Ry(R;'(b) = R;'"(b) — b by using Proposition A.1.1b, and I(cy) = Ii(cx) = m — b
since Ri(cx) = Ry(cy) from the first step with the identity I, = Id — Ry, which implies that I (x) € (R;'*(b) — b, ny — b] for
x € (R (b),c;]. So we obtain that N(x) € (R;'"(b) — b,my — b] for x € (R;'*(b), ci]. For x > ¢, we have I;(x) =m — b
from Equation (B.8), which means that M(x) = n; —b. We also have that I;(x) > 7k(x) for x > ¢;, which means that
N(x) > ny — b for x > ¢;. Therefore, we can summarize M as

0 if x <R (),
M(x) =< € (R""(b) = by —b] if x € (R (b), e, (B.20)
n,—b if x> ¢,
and N as
0 if x <R;'"(b),
N(x) = ¢ € (R;""(b) —b,n = b] if x € (R7'(b), e, (B.21)

>m—b if x > ¢;.
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Now, for ¢+ < 0, we have Fyx)(t) = Fy(x)(t) = 0 from Equations (B.20) and (B.21). For ¢ € [0, — b), from Equations
(B.20) and (B.21), we know that for x > cx, N(x) > ny — b = M(x), this further leads to P(M(X) < £, X > ¢x) = P(N(X) <
t,X > ¢;) = 0. Therefore, we have

Fu)(t) = P(M(X) < 1,X < ) + P(M(X) < 1,X > ) = P(M(X) < £,X < &)

P(N( <
P(N(X) <t,X <) +P(N(X) <1,X > ¢r) = Fyx)(t).

The third inequality comes from Equation (B.18). For ¢ > m; —b, we have Fyx(t) =1 since M(x) <n—b from
Equation (B.20), and FN<X)(t) < 1 because from Equation (B.21), we have N > n; — b when x > ¢;. Consequently, Fy(r) <
Fy(t) for t > ng—b. So denoting o = n; — b, when ¢ <1y, we have the condition Fyx)(t) < Fy(x)(t), when t > 1,

Fyix)(t) < Fyx)(f). Besides, Equation (B.16) and the identity I =Id—R, give that E{Ik(x)ﬂ{x>R;1+<b)}:| =

E ik(X):ﬂ-{X>R;'+(b)}}’ which means that E[M(X)] = E[N(X)], and applying Theorem 3.2.4 in Rolski et al. (1999), we can
assert that M(X)<uN(X). Now, for any d > 0, we have

E[(fk(x) —d)J =E[(T(x) - d), Lix<ry (b)}} +E{(ik(x) d)+]l{X>R’”(b)}}
=E (ik(x ) (x<rtt ()} — d) J +E [(ik(x)ﬂ (R (b))~ d) J
= E[(P(X) - >]+E[<M<x - d),]
< E[(QX) -d),] +E[(N(X) - d),]
=FE (Ik (X) 1{X<R"+ —d +:| +E (Ik ]1{X>R"+(b 0~ d) +:|
=E (Ik(X) d) ]l{X<R"+(b)}} +E [(Ik(X) - d)+]l{X>R;'+(b)}}
=E (Ik(X) d),].

The justification for the fourth inequality is grounded in the established stop-loss orders P(X)<yQ(X) and
M(X)<gN(X), coupled with the application of Theorem 3.2.2 in Rolski et al. (1999). Besides, I;(x) < I(x) for all x <

R;'"(b) means E{ik(X)ﬂ{XSR;H(b)}} SE{I;((X)II{XSRZH@}}, and combined with the fact that E[ik(x)ﬂ{x>R;1+(b)}:| =

E Ik(X)]l{X>Rk-l+<b)}], we have for any d < O that

E [(jk(x) - d)+] =E[(X)-d] =E[I(X)] -d
- (E {jk(X)ﬂ{XSR;Pr(b)}] + E[jk(x)]l{X>R;H(b)}]> —d
< (E [Ik(X)ﬂ{XSRk—H(b)}} + E[Ik(X)]l{x>R;”(b)}]> —d

— E[(X)] - d = E[,,(X) - d]
E[(1(X) - d),]

Therefore, for all d € R, we have E [(ik(X) - d)+] < E[(It(X) —d),]. Then, by Theorem 3.2.2 in Rolski et al. (1999),
Equation (B.17) follows, which completes the second part of the proof.
The third step demonstrates that

CVaR,(Ry) = CVaR,(Ry). (B.22)

From Equation (B.17), we have R;(X)<gR((X) for all k = 1,...,K, which implies CVaR,(Ry(X )) > CVaR,(Ry(X)) by
stochastic dominance. Recalling Equation (B.10), we can deduce E [(Ry(X) —-b) 4 =E[(Ry(X) —b),]. Utilizing the dual
representation of CVaR by Rockafellar and Uryasev (2000), we have
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CVaR,(Ry(X)) = inf {t +ﬁm[(1ey(x) —1),] }

where the infimum is achieved at * = b, yielding CVaR,(Ry(X)) = b + (= E[(Ry(X) — b). |. Therefore, we have

E [(iey(x) - I)J }
E[(iey(x) —b)J

E[(Ry(X) - b).] = CVaR,(Ry(X)).

~ 1
CVaR, (Ry(X)) = inf,cp {t +1

<b-+
|

1-o

Thus, we establish Equation (B.22) and the third part of the proof is done.
In the final step, we aim to show that

Py(Iy) < Py(ly), (B.23)

Recall Equation (B.17), which further implies Iy(X)<qaly(X). Applying Theorem 1 in Wang (1996), we obtain
Py(Iy(X)) < Po(Iy(X)). Therefore, Equation (B.23) holds.
Thus, combining Equations (B.22) and (B.23) demonstrates that, for p > 0,

R(I) = CVaR,(Ry) + (14 p)P,(Iy) < CVaR,(Ry) + (1 4 p)P,(Iy) = R(I).

B.3. Proof of Corollary 2.2.1 with VaR Preferences

Let (Iy,....,I,)) € T —T*, and define I; as in Equation (B.8) for all k. Since (i, ...,I,,) is not of layer type, there exists at
least one index ko € {1, ...,m} such that P(I; (X) < I, (X)) > 0. Since P(Y = ko) > 0 and I;,(X) < I, (X) on a set of posi-
tive probability, it follows that P(Ty(X) < Iy(X)) > 0 and Iy(X) < Iy(X) almost surely. As a result, Iy(X) strictly dominates
Iy(X) in the usual stochastic dominance order. Since the function g is non-decreasing and strictly concave on (0, 1), we
obtain

P, (Iy(X)) < P, (Iy(X)). (B.24)
Combining Equations (B.6) and (B.24), we have for any p > 0,

Ro(I) = VaR, (Ry (X)) 4 (1 + p)P,(Iy(X)) < VaR,(Ry(X)) + (1 + p)P,(Iy(X)) = R,(I),

B.4. Proof of Proposition 2.2.1.

As established in Theorem 2.2.1, the optimal contract can be found within the class Z*. Under CVaR risk preferences and
the expected premium principle, and exploiting the dual representation of CVaR by Rockafellar and Uryasev (2000), the
optimal contract can be found by solving the problem

min <r + E[(Ry(X)—1) ]+ (1 + p)]E[Iy(X)]),

tym, {n} 1—«a
subject to m >0, ny > m for all k and r € R. The KKT first-order necessary conditions for an optimum (#*,m*, {n;})
require the existence of multipliers y;, for k =0, ..., K, such that
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P(RL(X) > 1) =1—u (B.25)
1 K
— T PRy (X) > X > m) + (1 + p)P(X > m”) = > = 1o (B.26)
k=1
1
— T PRUX) > 0 X > Y = k) + (1+ p)P(X > m, Y = k) = s, (B.27)
for k=1,..,K
pom* =0 and w(m*—nf)=0, for k=1,...K (B.28)

Proof of (i). Assume by contradiction that nj* > m* for at least one environment 1 < k < K, so that y; = 0, and Equation
(B.27) for environment j gives, after rearranging,

P(RY(X) > £'[X > m, Y = j) = (1 + p)(1 - o), (B.29)

a contradiction as (1 + p)(1 —a) > 1.

Proof of (ii). Assume by contradiction that m* = 0 < n; for all k. This requires that y;, = 0 for all k, so that Equation
(B.26) becomes

1
1—o

P(Ry(X) > t,X > 0)— (1 + p)P(X > 0) = y.

Noting that, from Equation (B.25), t* > 0, the latter equation can be simplified, again using Equation (B.25), into
1= (14 p)P(X >0)=py >0,

1

T A contradiction.

which rearranged gives P(X > 0) <
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APPENDIX C. FLOW CHARTS: COURT PROCESS

Event
Occurrence

No (" Risk Loss Yes

Occurs or Not?

No Loss - X=0

First Court
Proceedings?

Yes

Court Case

No Court Case

Excess Verdict
End Exists?

First Court First Court
Result - No Result - Excess
Excess Verdict Verdict
v
End of First
Damage Court Second Court
amount X within || Proceeding: X Proceedings
policy limit L is decided Start: Y=2 or
¢ Y=37
End of
Proceedings
Second Court Second Court
Result - No bad Result - Bad
faith from faith from
insurer’s side insurer’s side

) )

End of
Proceedings

Policy Includes
Risk Sharing
for X?

Jury/Judge Legal expenses
decides X split allocated, X
¢ split
predetermined
Large legal fees
and prolong i
legal X_PH =
proceedings f(X) and
¢ XL = x(X)
End of ¢
Proceedings End of
Proceedings

FIGURE C.1. Flowchart Illustrating the Stages of Legal Proceedings Concerning Insurance Claims and the Subsequent Apportionment of Liabilities Based
on the Loss Threshold and Seller Conduct.
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