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Abstract 

The light-rise of the electro-oculogram is believed to originate from a substance released from the 

rods after dark adaptation. The identity of this 'elusive' light-rise substance has not been demonstrated 

and therefore a new perspective on the light-rise is presented. The light-rise is caused by the 

depolarization of the basolateral membrane of the retinal pigment epithelium has become clearer in 

the last decade with the identification of calcium as the intracellular secondary messenger and the role 

of bestrophin as a regulator of intracellular stores of calcium and controlling the cytosolic calcium 

levels through L-type calcium channels. The light-rise depends upon a change from darkness to light 

which triggers the intracellular cascade resulting in the depolarization of the basolateral membrane. 

The same intracellular signalling molecules- notably calcium and inositol tri-phosphate (IP3) are 

strongly implicated in this cascade. Recent studies have now led to a clearer understanding of the 

roles and functions of the ion channels and their contribution to the light-rise with IP3 regulating the 

release of calcium for intracellular stores. Given that calcium and IP3 are also regulators of 

phagocytosis, and that the initiation of rod outer segment phagocytosis is initiated with light-onset, it 

may be that the light-rise is generated in response to this physiological event. Therefore, the putative 

light-rise substance may not be released by the rods but follows directly from IP3 release from the 

RPE's phospholipid membrane following the onset of light and the initiation of phagocytosis- The 

light rise substance, could be considered to be light itself. 

Background 

The standing potential of the eye is generated by the trans-epithelial potential across the 

retinal pigment epithelium (RPE) 
1
. The standing potential changes with retinal illumination 

with a fall to a dark-trough following the offset of illumination and a light-rise following re-

illumination 
2
. The ratio of the dark-trough to the light-rise is used clinically to assess RPE 

function and is known as the Arden ratio 
3
.  A reduction in the Arden ratio is associated with 

conditions affecting the RPE such as, Best’s maculopathy 
4
, chloroquine retinopathy 

5
 and 

more recently vigabatrin therapy 
6
. The RPE is vital for visual function 

7
 and the EOG 
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remains the sole clinical test that is able to assess its integrity, and therefore an understanding 

of the mechanism of the light-rise and may provide additional clinical uses for the EOG.  

The original model for the origins of the light-rise is that a ‘light-rise’ substance is released 

by the rods that binds to an unknown receptor on the RPE which initiates a second messenger 

cascade within the RPE and which finally results in an increased basolateral chloride 

conductance 
8
 that depolarizes the RPE and increases the recorded standing potential of the 

eyes. For review see Arden and Constable (2006) 
9
.,  Candidates for the light-rise substance 

have been proposed such as dopamine 
10

 and epinephrine 
11

. Purinergic signalling remains a 

possible mechanism for the light-rise with RPE cells being capable of secreting ATP through 

CFTR and vesicles across the apical membrane 
12

 with the degraded purines capable of 

elevating intracellular calcium
 13

. ATP has been shown to be secreted across the apical 

membrane of human induced pluripotent stem cell lines 
14

 and thus ATP or its degraded 

products remains a potential candidate as a light-rise substance. However, light would need to 

be implicated in increasing the secretion of ATP. The lack of a clearly demonstrated ‘light-

rise’ substance that is released from the rods to initiate the slow potential changes across the 

RPE suggests that there may be an alternative mechanism for the light-rise. 

There is now strong evidence that the second messenger involved in the generation of the 

light-rise is calcium. Individuals with cystic fibrosis show normal amplitudes in the light-rise 

which negates involvement of cyclic AMP as second messenger 
15

. In addition the inhibition 

of L-type Calcium current with nifedipine alters the amplitude of the light-rise in man 
16

. In 

addition to studies in man, the identification of L-type calcium channels in the RPE of rat 
17

 

and cultured human RPE cells 
18

 that display similar Current-Voltage curve to the light-rise 
19

 

implies that these channels are responsible for the slow influx of calcium as the basolateral 

membrane depolarises. The calcium activated chloride channel (CCLA) that opens in 
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response to a rise in cytosolic calcium has, until recently been presumed to be bestrophin 
20

 

owing to clinical findings in individuals carrying mutations in bestrophin 1 (BEST1). 

However, not all individuals with BEST1 mutations display reduced light-rises 
21-23

.  

The role of bestrophin has been difficult to fully explain until recently – for review see 

Strauss and Rosenthal (2005) 
24

. Bestrophin is now seen as a regulator of intracellular 

calcium stores rather than a calcium activated chloride channel 
25

. Earlier findings in rat 

models where mutant bestrophin was overexpressed did not reduce the light-rise as expected 

and led to doubts over bestrophin being the generator of the light rise 
26

. Further confusion 

arose with increases in the amplitude of the light-rise demonstrated in mouse models of 

Best’s disease 
27

.  A Calcium dependent chloride channel has been demonstrated in cultured 

canine RPE cells 
28

 and is also expressed in chick RPE 
29

. The Calcium activated chloride 

channel TMEM16A (ANO1) of the anoctamin family is widely expressed in epithelia where 

they regulate cell volume, apoptosis and proliferation 
30

. Knockout mice demonstrate 

decreased chloride secretion in in multiple secretory epithelia
 31

 and TMEM16A is expressed 

in mouse and human ocular epithelia 
32

. Best1 and TMEM16A function as a micro domain in 

renal and lung epithelia and it is plausible that TMEM16A is the calcium activated chloride 

channel in the RPE that regulates cell volume whilst bestrophin regulates intracellular 

calcium stores. The main recent findings about the nature of bestrophin-1 are that the protein, 

is not expressed in the basolateral membrane as previously thought 
20

 but is associated with 

the endoplasmic reticulum where it regulates store operated calcium entry 
33

. The key recent 

findings are that bestrophin-1 co-localises with Stim-1 a protein found in the endoplasmic 

reticulum and whose role is to sense the levels of calcium stores. When stores are low Stim-1 

may increase cytoplasmic concentrations of calcium for re-uptake into the endoplasmic 

reticulum through plasma membrane calcium channels such as Orai 
34,35

 via a physical 

interaction 
36

. The finding that bestrophin-1 co-localises with Stim-1 and regulates store 
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operated calcium entry provides an elegant resolution to the confusion surrounding the role of 

bestrophin-1 in the RPE and the findings of normal light-rises in some individuals with Best’s 

disease. Gomez et al (2013) were able to demonstrate that in the RPE bestrophin-1 regulates 

the majority of calcium entry to the cytosol following depletion of endoplasmic reticulum 

stores. The increase in intracellular calcium is through a direct interaction between the C-

terminus of the L-type calcium channels in the plasma membranes and bestrophin-1 in the 

endoplasmic reticulum. In addition bestrophin-1 acts as a chloride channel by conducting 

chloride ions as the counter-ion into the endoplasmic reticulum to facilitate the re-uptake of 

calcium through the endoplasmic reticulum Ca-ATPase pump. The RPE cells also express the 

Stim-1/Orai channels that contribute less to the overall replenishment of cytosolic calcium 

following depletion of the stores 
30,31

.  

Whilst the mechanism of the light-rise at the basolateral membrane of the RPE has become 

clearer – the existence of the light-rise substance that would initiate a release of stored 

calcium remains elusive. Furthermore, the explanation for the ‘dark-trough’ following the 

offset of light during the EOG has not been fully explained. One physiological process 

associated with the transition from dark to light is the initiation of phagocytosis that is 

increased by IP3 
37

 and turned off by calcium 
38

. Based upon the recent findings by Strauss’s 

group the light-rise would follow a rise in IP3 which releases calcium from the endoplasmic 

reticulum. The transient fall in calcium stores would be sensed by bestrophin-1 that 

physically interacts with the L-type calcium channel in the RPE’s basolateral membrane 

which allows a slow entry of calcium to the cytoplasm where it gates activates a calcium 

gated chloride channel to depolarise the membrane and initiate the light-rise phase. The 

chloride conductance must now be presumed to be carried by CCLA channels in the RPE. In 

darkness there are still dark –damped oscillations 
3
 and these may be the result of baseline 
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fluctuations in store and cytoplasmic free calcium regulated by Stim-1/Orai channel’s within 

the RPE.  

The dark trough 

When the EOG is recorded in darkness a series of dark oscillations occur 
3
 with the first large 

trough used as the reference point for the magnitude of the light-rise. The underlying 

mechanism of the dark-trough has not been fully investigated. However, the nature of the 

dark oscillations that are similar to the damped oscillations seen when the EOG is recorded 

following light onset suggest that these dark oscillations may also be related to calcium 

signalling. Store operated calcium entry is regulated by bestrophin/L-type Ca
2+ 

channels 

which provide the majority of store operated calcium entry control and Stim1/Orai 

interactions which play a smaller part in calcium re-uptake 
33

. In order for the standing 

potential to fall, there would need to be either a hyperpolarization of the basal membrane or a 

depolarization of the apical membrane 
39

. Given the slow nature of the dark oscillations with 

the minima reached at ~10 minutes, it would be unlikely that the changes in intracellular 

potassium activity that are related to the fast oscillations of the EOG would be responsible 

owing to their faster time course 
40

. Linking the dark oscillations to shedding and 

phagocytosis of cone outer segments may not be likely as in the Rhesus monkey, cone 

phagosomes are maximal at 5 hours after darkness 
41

.  

The slow nature of the dark oscillations may also be a result of decrease in IP3 generation 

following the off-set of light and a decrease in CCLA channel conductance resulting in a 

hyperpolarization of the basolateral membrane and a fall in the transepithelial potential after 

~10 minutes. The rise from the dark trough minima and subsequent oscillations may be the 

result of smaller Stim1/Orai channel regulation of calcium uptake into the cytoplasm calcium 

stores although the origins of the dark oscillations will require further study. Their 
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importance is that the trans-epithelial potential of the RPE generates the standing potential 

and the trans epithelial potential is dependent upon the tight junction resistance 
42

. Therefore, 

if the resistance of the RPE barrier were low then the standing potential at the onset of 

darkness may also be low or the relative ratio from the initial standing potential at the start of 

the EOG to the dark-trough minima may be reduced and a possible additional clinical 

measure to compare with the dark-trough to light-rise ratio. 

The light-rise and rod phagocytosis 

The shedding and subsequent phagocytosis of rod outer segments at light by the RPE involves many 

signalling pathways that are still being refined around the recognition, engulfment and final 

degradation of the phagolysosome. For review see Kevany & Palczewski (2010) 
43

. The entrainment 

of rod outer segment shedding to the circadian rhythm and initiated by light-onset has been 

demonstrated across species 
44,45

. Important recognition and binding receptors and ligands have been 

identified that enable phagocytosis of shed rod outer segments. The αvβ5 vitronectin receptor 
46

 and 

the scavenger CD36 receptor 
47,48

 are involved in outer segment binding to the RPE. One retinal 

ligand for αvβ5 has been shown to be milk fat globule-EGF-factor 8 (MFG-E8): in mice lacking 

functional MFG-E8 the ability to phagocytose outer segments is lost the daily rhythm of up regulation 

and phosphorylation of Mertk as well as reduced retinal adhesion 
49

. Mertk was shown to be necessary 

for ingestion but not binding of rod outer segments in the RCS rat model of retinal dystrophy, 

although the RCS rat could ingest micro-beads 
50-52

. Thus Mertk is an RPE receptor that is required 

for the specific ingestion of rod outer segments. There is evidence that Gas6 and Protein S are the 

important ligands between Mertk and the rod outer segments that enables ingestion 
53

. The 

internalisation of the outer segment requires phosphorylation of Mertk and the mobilisation of focal 

adhesion kinases to the apical membrane of the RPE cell which enables engulfment of the outer 

segments 
54,55

. A second pathway that relies upon αvβ5 and MFG-E8 binding for F-actin redistribution 

to form the phagocytic cup is mediated by small GTP binding protein Rac1 
54

.    
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The generation of IP3 from light alone has been shown in isolated frog RPE cells using 

radiolabeled inositol 
56

. The authors were to demonstrate that following one hour of dark 

adaption and 30 minutes of light the amount of recovered free inositol plus inositol 

phosphates increased by 86%. However, [
3
H]inositol-labelled IP3 had the highest increase 

with a 5.5 fold increase within the RPE cells. Therefore, light can induce poly-

phosphoinositide turnover and would provide a pathway in which IP3 increased in RPE cells 

following light-onset and the release of intracellular calcium stores and the steps leading to 

the light-rise without the need for a light-rise substance being released directly from the 

photoreceptors. See figure 1 from Rodriguez De’Turco et al (1992). In addition, the process 

of phagocytosis also results in an increase in IP3 by the hydrolysis of phosphatidylinositol 

bisphosphate following challenge with outer segments or polystyrene balls in cultured rat 

RPE cells but not in cultures of RCS rat where Mertk signalling is disrupted 
52,57

. The 

potential light-rise substance may not originate from the rods but from the process of light 

driven production of IP3 from the phospholipid membrane and or the generation of IP3 to 

phosphorylate Mertk which is required for internalisation of the shed outer segments.  
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Figure 1 Showing an increase in IP3 production in frog RPE cells following 24 hours light 

then either 1 hour of dark adaption and thirty minutes light (open circles) or 30 minutes of 

continued darkness (closed circles). IP3 had the largest increase (5x) following light-onset. 

(Figure from Rodriguez De Turco et al (1992) reproduced courtesy of Springer. 

 

Rather than a substance being released from the rods following light-onset it is possible that 

the intimate contact between the RPE and outer retina is essential for the generation of the 

light-rise. The integrity of the phospholipid bilayer and the cellular components of 

phagocytosis and in individuals with detached retinas where the light-rise is absent, this may 

be due to a disruption to the integrity of the phospholipid bilayer and phagocytic ability. RPE 

cells after detachment undergo morphological changes within 24 hours in cat 
58

 and de-

differentiate 
59

 which may impact upon IP3 formation following light onset and the binding 

of outer segments to the RPE.   
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Revised Model of the Light-Rise 

The light-rise may not require the release of a light-rise substance from the rods but depend 

upon an intact apical membrane  that has PIP2 that can be metabolised to IP3 following 

illumination  may be sufficient. . The lack of a light-rise in individuals with a retinal 

detachment may be due to morphological changes in the RPE following the separation of the 

RPE from the outer retina. Liberation of IP3 from the RPE’s membrane is a precursor to the 

phosphorylation of Mertk and is absent in the RCS rat where Mertk is affected. 

Once IP3 is formed then  release of stored calcium from the endoplasmic reticulum via the 

IP3-receptor would increase intracellular calcium and open calcium gated chloride channels 

in the basolateral membrane resulting in depolarization and an increase in the trans-epithelial 

potential. The depletion of stored calcium from the endoplasmic reticulum results in 

bestrophin – previously thought to be the basolateral calcium gated chloride channel 

responsible for the light-rise; instead operating as a regulator of intracellular stored calcium. 

Bestrophin through physical interaction with the L-type Calcium channel facilitates entry of 

calcium to the cytosol, for re-uptake by endoplasmic reticulum Ca-ATPase to replenish 

stored calcium.  (See figure 2). 
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Figure 2 Possible mechanism for the light-rise based upon IP3 turnover following light-

onset. (1) Light generates IP3 from the phospholipid membrane with phosphatidylinositol 

bisphosphate (PIP2) as the pre-curser. (2) IP3 is the intracellular second messenger that 

regulates phagocytosis and mobilisation of intracellular calcium stores. (3) IP3 is required for 

phosphorylation of Mertk which is required for internalisation of shed outer segments (OS). 

(4) IP3 binds to the IP3-Receptor on the endoplasmic reticulum (ER) which releases calcium 

so that [Ca
2+

]in increases and in turn depletes stored calcium with the ER. (5) Calcium gates 

open a calcium gated chloride channel which is most likely TMEM16A; in the basolateral 

membrane of the RPE which increases basolateral chloride conductance and depolarizes the 

membrane. The L-type calcium channel’s conductance increases as the basolateral membrane 

depolarises. (6) The L-type channel is physically in contact with bestrophin which senses the 
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depletion of intracellular calcium stores and increases the L-type calcium channel’s 

conductance. (7) This store operated calcium entry role for bestrophin conducts chloride as 

the counter-ion to the calcium current to facilitate calcium entry into the ER and cytoplasm. 

(8) calcium stores are restored through active transport of calcium through the Ca-ATPase 

pump, with bestrophin conducting chloride ions into the ER as counter ion.  

 

 

The light-rise should be considered an RPE response, whether through light directly initiating 

the generation of IP3 from PIP2 and commencing the intracellular cascade resulting in 

basolateral depolarisation. If the ability of the RPE to regenerate PIP2 through ATP 

dependent lipid kinases then changes in the light-rise or fast oscillations may be evident 

owing to their dependence on apical inward rectifying potassium channels whose gating is 

regulated by PIP2 
60

. With clearer insights into the role of bestrophin at the basolateral 

interface of the RPE, and the involvement of PIP2 in gating potassium channels and also 

being the metabolic pre-curser to IP3 then the light-rise need not depend on an exocrine 

signal from the rods but be dependent on autocrine signalling from the RPE’s apical 

phospholipid membrane.  
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