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Abstract—Identifying the type of network traffic has several
advantages, such as detecting and preventing applications that
violate an organization’s security policy or improving Quality
of Service (QoS) and Quality of Experience (QoE) through
traffic engineering. To enhance QoS support for Internet Service
Providers (ISPs), a fine-grained classification scheme for network
traffic is proposed in this paper. Statistical analysis and the
throughput patterns of FTP, video conferencing, and video
streaming traffic reveal that using new statistical features can
be more effective at distinguishing the Internet traffic, especially
from a QoS perspective, compared to the features commonly
used in the literature, even for encrypted traffic. Machine
Learning algorithms for classifying the low-latency traffic are
trained using combinations of statistical features such as novel
trend identification. Experiments are conducted to evaluate the
proposed method using large-scale real network traffic data.
Results show that our network can classify the single type of
traffic with accuracy of over 97%, and identify the low-latency
traffic in the traffic mix with accuracy of 87%.

Index Terms—Network traffic classification, k-NN, SVM, Ma-
chine Learning, Feature selection, Internet traffic mix, Statistical
features, QoS, Low-Latency

I. INTRODUCTION

Internet traffic classification is a rapidly growing field,
offering opportunities for intelligent management of network
resources in the presence of the increasing volume of traffic re-
quiring low-latency delivery. According to Ericsson’s forecast
[1], video content is predicted to account for 80% of data usage
by 2028. It is also estimated that 5 billion people will have 5G
subscriptions by then. This simultaneous increase in the mobile
network complexity and the performance expectations of the
video applications creates challenges for network management
and for ensuring QoS for multimedia services. Accurately
identifying and categorizing network traffic is crucial for ISPs,
mobile operators and regulators to address these challenges
and optimally allocate network resources based on QoS re-
quirements.

ISPs classify network traffic using a data-driven approach by
extracting relevant features from traffic flows and using these
features to identify the source application [2]. This is achieved
through the use of modern Network Traffic Classification
(NTC) methods that utilize advanced technologies such as
Machine Learning (ML) and Artificial Intelligence (AI). The
success of these NTC methods is dependent on the selection
and use of representative features for discrimination, as well
as the design of the feature extraction methods. These factors

play a crucial role in the overall performance and effectiveness
of the NTC approach.

The research presented in this paper focuses on classi-
fying Internet traffic into categories based on their latency
requirements: low-latency applications like video conferencing
and others like video streaming and file transfer that have
more flexible latency requirements. This is motivated by
the expectation that accurate real-time identification of the
presence of low-latency traffic will enable better understanding
of the necessary QoS levels and application of smart network
resource management solutions, ultimately improving the end-
user’s Quality of Experience (QoE). This paper introduces a
low-latency Internet traffic classification scheme that utilizes
machine learning algorithms trained with novel trend-related
features. This scheme employs statistical analysis and data
mining techniques to identify the most discriminating QoS-
related features in the acquired Internet traffic data and applies
the class. Our approach aims to identify low-latency traffic
with a high level of granularity while preserving user privacy
by avoiding access to packet payload content. Additionally,
the method has minimal storage requirements, enabling near
real-time classification.

Our main contributions are:

• The use of novel statistical features based on throughput
trend to identify traffic patterns,

• Identification of low-latency application traffic,
• Development of a novel low-storage, near-real-time clas-

sification system using ML algorithms.

The experimental results show that this approach has an
accuracy rate of over 97% for identifying single traffic types,
including those requiring low-latency. In mixed traffic sce-
narios, it demonstrates an accuracy rate of up to 87% for
identifying low-latency application traffics.

II. RELATED WORK

Recently, studies on the Internet traffic classification have
addressed three issues: characterization types, such as VoIP,
file transfers, and video identification of Internet applications
(YouTube, Netflix, Skype), and user actions within applica-
tions (YouTube video resolution).

Three approaches exist for solving Internet traffic classifi-
cation issues:



• Payload-based (DPI) [3], which is prone to privacy in-
vasion and high computational costs, and challenges in
dealing with encrypted traffic.

• Port-based methods [4] are less effective due to increased
use of dynamic and default ports.

• Statistical and machine learning-based methods [4], using
time and size features and supervised learning algorithms
as classifiers.

This paper will focus on describing the most relevant works,
specifically those that use statistical and machine learning
methods.

There have been a variety of studies focused on the gener-
ation of features for network traffic analysis. Moore et al. [5]
created a list of 248 descriptors based on bidirectional flow.
Moore and Zuev [6] used a Naive Bayes Kernel estimator and
their own descriptors to classify network traffic. Fahad et al.
[7] evaluated 5 techniques for feature selection and proposed
an integrated approach, resulting in improved performance and
accuracy compared to other techniques [5].

Also, there have been numerous studies that have focused
on utilizing only flow-based features, such as time and size
related features, for network traffic analysis. Draper-Gil et al.
[8] used features like flow bytes per second and inter-arrival
time to classify Non-VPN and VPN traffic with 80% accuracy
using C4.5 and kNN classifiers. Zhang et al. [9] used 20 simple
flow-based features, modeling the correlation information in
traffic flows of the same app using bag of words technique.
Their new robust traffic classification scheme performed better
than other machine learning methods.

Recently, new approaches have emerged in payload-based
traffic classification. Wang et al. [10] used a neural network
and normalized byte sequences for packet payloads. They
improved classification results with 1-D Convolutional Neural
Networks (CNNs) on the ISCX VPN-nonVPN traffic dataset
[11]. Lotfollahi et al. [12] also used CNNs and auto-encoders
for the same dataset and got good results. Aceto et al. [13]
proposed a multimodal deep learning framework combining
payload and protocol fields for classifying mobile encrypted
traffic.

Payload-based methods have limitations in analyzing en-
crypted traffic such as VPN or Tor connections. Encrypted
traffic is often protected by strong encryption algorithms
with random initialization vectors, making it challenging for
payload inspection. While Wang et al. demonstrated success
in classifying VPN traffic using one-dimensional convolution
neural networks [10], the reasons for their success may be
more complex than the use of similar encryption methods and
keys. Therefore, while the weakness of payload inspection for
encrypted traffic highlights the need for alternative approaches,
the factors contributing to the success of more sophisticated
methods.

Recently, deep learning has been used in traffic classification
research. Lopez-Martin et al. [14] used a combination of RNN
and CNN to classify traffic based on 6 packet features and
achieved accuracy of over 95% using port info and 84%
without it. Chen et al. [15] transformed flow data into auto-

convolution representations and fed it into a neural network,
but relied on other info like target IP. Zhang et al. [16] pro-
posed an adaptive model update scheme. Iliyasu and Deng [17]
proposed a semi-supervised approach using a GAN, which
achieved high accuracy with few labeled samples, addressing
challenges in creating ground truth for encrypted datasets.

As previously discussed, prior studies have utilized various
combinations of classification techniques successfully, how-
ever, none of the works have focused on extracting throughput
based pattern recognition features from network traffic for the
purpose of performing NTC for applications that require low
latency. This is the unique aspect of our proposed work.

III. METHODOLOGY

The proposed method for network traffic classification aims
to efficiently identify low-latency requiring applications in
mixed traffic environments by utilizing novel trend recognition
features. The method consists of two primary stages: (1)
extraction of significant features from network traffic and (2)
classification using machine learning algorithms. The use of
this two-step process ensures a more accurate and efficient
identification of low-latency traffic, improving the overall
network performance.

The methodology and process involved will be further
explained in the following sections, including data collection,
feature selection, scaling for pattern recognition, and presen-
tation of experimental results.

A. Dataset

The data collection process was performed on a local WiFi
network, and the set of traffic traces comprised FTP, video
streaming, video conferencing, and mix of these. The traces
were collected over a 100 Mbps Internet connection, and the
throughput measurements of the active traffic in both direc-
tions was recorded and stored. In total, over 400,000 samples
of throughput values (more than 20 hours of applications
usage) were collected, with over 60,000 samples of each
traffic type. The traffic classes and their sample sizes used
for classification are shown in Table II.

B. Features

After collecting samples of the different Internet traffic, we
first extracted different features from them. Table I demon-
strates the new dataset after feature extraction. In total we
have 12 features and 5 of them are novel trend-based features.
We used these features training the ML algorithms. The
description of the features are given in Table III. While
calculating average throughput ratio over time, 3sec chosen
as representative number.

C. Slope (Trend)

Experiments analyzing traffic patterns revealed the impor-
tance of the changing throughput. To address this, a new
feature was developed using the slope of a linear function
to determine the trend in the rate. The slope is calculated
as the ratio of the vertical change between two points to the



Fig. 1: Throughput of FTP traffic and demonstration of trend calculation

New Dataset with Features

D U DU
(A)

DA3
(B)

UA3
(C)

RAD3
(D)

RAU3
(E) Rank of A Rank of B Rank of C Rank of D Rank of E

50350000 622020 74,92 38,318 0,45896 1,02230 1,02214 9 9 8 8 8
40970000 379980 107,82 37,482 0,44901 1,0060 1,00809 9 9 8 6 6
30120000 602670 49,97 37,256 0,44541 0,99404 1,027 8 9 8 5 8

TABLE I: Dataset v2

Traffic Line Application Total Samples
VoIP Skype, Zoom, MS Teams 62177
Video Streaming YouTube, Netflix, Prime 68987
File Transfer FTPS, Torrent, Steam 72366
Mix Traffic All 214987

TABLE II: Traffic lines, applications and sample sizes

ID The Features

D Throughput in downstream
U Throughput in upstream
DU D to U ratio
DA3 The average throughput in downstream over 3 sec
UA3 The average throughput in upstream over 3 sec
RAD3 Throughput rate (slope) in downstream
RAU3 Throughput rate (slope) in upstream

TABLE III: Features

horizontal change between the same two points. In figure 1,
the pattern of FTP traffic is shown on the left, and on the right,
the slope is calculated for the time interval 97-100. This new
feature provides a way to determine the overall trend of the
throughput rate - a slope greater than 0 indicates an increase,
while a slope lower than 0 indicates a decrease. This feature
was applied to various types of internet traffic, both single
and mixed, in order to generalize traffic patterns and provide
a comprehensive understanding of the data and also used to
create new feature sets III for training the ML algorithms.

D. Scaling

In this research, we developed a custom scaling method
optimized for the network. By analyzing individual traffic
patterns, feature values were scaled between 0 and 19. 20

Number RDU RDA3 RUA3 RRAD3 RRAU3
0 <=0,5 <=0,5 <=0,0058 <=0,029 <=0,029
1 0,9 0,75 0,0116 0,058 0,058
. . . . . .

18 200 30 0,3 1,5 1,5
19 >=300 >=40 >=0,4 >=3.93 >=3.93

TABLE IV: Scaling the features. RDU is rank of DU

Traffic Mixes
1 FTP, 1 Video Streaming

1 FTP, 1 Video Conferencing
1 Video Conferencing, 1 Video Streaming

1 FTP, 2 Video Streaming
1 FTP, 3 Video Streaming

1 Video Conferencing, 2 Video Streaming
1 FTP, 1 Video Conferencing, 1 Video Streaming

TABLE V: Traffic Mixes

levels have been chosen to demonstrate the operation, this
will be improved in the future. Table IV displays our scaling
system, with feature names represented by rank(R) of DU,
DA3, UA3, RAD3, and RAU3. The first column assigns
specific ranges to each feature. Ranges calculated by analysing
the patterns of each traffic types. This rule applies to all
features, and the table constructed according to that.

E. Traffic Types

In this study, we examined different traffic types, including
FTP, video streaming, video conferencing, and a combination.
FTP traffic is characterised by increasing throughput over
time, although this may be limited by the maximum network
capacity in practice. Video streaming utilises network capacity
for buffering, resulting in a very volatile throughput, while



video conferencing demands constant use of a few Mbps of
network capacity.

In addition to single traffic flows, we also examined the
combination of several traffic types to identify the presence of
low-latency traffic among them. Table V shows the combina-
tion of traffic mixes that we analyzed.

F. Machine Learning Algorithms

In this paper we employed five machine learning algorithms:
k-NN, SVM, Random Forest and C4.5 for traffic classification
and k-Means for clustering. These algorithms have a proven
track record of effectively handling complex data.

IV. CLASSIFICATION RESULTS AND ANALYSIS

In this section, we present the results of our classification
model and analyze its performance. We begin by analyzing the
impact of different features on the model’s performance. We
then report the classification accuracy of the model and com-
pare it to the performance of other models or baselines. Finally,
we provide a detailed analysis of the model’s performance,
including any insights into its strengths and weaknesses, as
well as any potential areas for improvement.

A. Selection of Features

In this section, we evaluate the performance of the feature(s)
with different ML algorithms. We used all the combinations
of features during the evaluation process and results are shown
in Table VI. Each row represents a different combination of
features and the columns represent the accuracy scores of the
different algorithms on those features.

Feature(s) Acc
(k-NN)

Acc
(SVM)

Acc
(k-Means)

Acc
(C4.5)

Acc
(RF)

1 (RDU) 83,13 83,58 79,76 78,54 81,21
2 (RDA3) 81,7 82,55 77,6 77,4 79,71
3 (RUA3) 79,46 68,76 74,12 66,13 69,65
4 (RRAD3) 49,31 52,51 48,43 49,23 51,12
5 (RRAU3) 50,09 51,71 50,02 49,62 48,60
1,2 91,23 90,85 87,76 86,43 88,92
4,5 52,9 53,15 50,98 50,78 51,03
1,2,3 94,91 93,7 90,13 89,76 90,11
1,2,3,4 95,71 95,03 93,45 93,78 93,98
1,2,3,4,5 96,47 95,9 94,1 94,21 94,38

TABLE VI: Impact of the features

To evaluate the impact of the features for classifying single
traffic type, we started using one feature at a time. We observed
that feature 1 (RDU) is a powerful discriminator, as it enables
algorithms to classify individual traffics with an accuracy of
around 83.5%. Similarly, features 2 and 3 also stood out as
powerful features. On the other hand, features 4 and 5, which
capture the slope between intervals, act as more supportive
trend features. Their power can be seen when classifying traffic
in a mix.

When using features 1, 2, and 3 together, kNN and SVM
achieved an accuracy of 94.91% and 93.7% respectively when
classifying individual traffics. Among all the ML algorithms,
kNN performed the best in most cases. This is likely due to
its ability to effectively classify data based on similarity to its

nearest neighbors. However, feature number 1 was found to
be crucial for kNN and its removal resulted in a significant
decrease in accuracy.

Finally, the algorithms were trained using 4 and 5 features
together. When using 4 features, kNN achieved the highest
accuracy of 95.71%, while k-means achieved the lowest ac-
curacy of 93.45%. Similarly, when using all 5 features, kNN
again achieved the highest accuracy of 96.47% while k-means
achieved the lowest accuracy of 94.1%.

B. Tuning the Machine Learning Algorithms

For the kNN machine learning algorithm, we first utilized
the 10-fold cross validation method to determine the optimal
sample for the training set. After evaluating the performance
of the algorithm across 10 distinct training sets, we identified
the best set with a default value of k = 5. Subsequently,
we conducted a hyper-parameter tuning procedure to examine
the performance of the algorithm for different values of k.
As a result of our analysis, we determined that the optimal
value for k was 7. This value was used to achieve the
highest classification accuracy on the test dataset. Similar
tuning procedures are applied for SVM, k-means, C4.5 and
RF algorithms.

C. Classification Reports for Individual Traffics

Figure 2 demonstrates the performance results of the the
different algorithms, trained with 5 features, classifying the
three individual traffic type. Through the analysis of the
results, although all algorithms achieved over 94% accuracy
of classifying File Transfer, Video Streaming and Video Con-
ferencing traffic, kNN performs 2% better than k-means, c4.5
and RF algorithms.On the other hand, identifying file transfers
using SVM has a little higher accuracy score than kNN, but
given this is the only area where SVM outperforms kNN, we
will only use kNN for the remaining tasks.

As we have decided to proceed with the kNN algorithm,
we test another performance metric for our network. In the
following experiment, we compared some of the well-known
scaling methods for features to our own. We evaluated our
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Fig. 2: Accuracy results of classifying single traffics
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Fig. 3: Classifying single traffics with different scaling meth-
ods

network using five distinct scaling techniques, including the
proposed one, absolute max, min-max, normalization, and
standardization. Figure 3 demonstrates that our method out-
performs other scaling methods by more than 2% for abs max.
and 14% for normalization method. This is primarily due to
the fact that we manually analyzed the patterns of individual
traffic when developing our novel scaling system. Therefore,
our method is superior to the alternatives.

In the following figure 4, we compare the accuracy results
of our solution to several published proposals. We provided
an expanded explanation of these proposals in section II.
While each proposal has its own strengths and weaknesses, our
network performed slightly better than those shown in Figure
4. In proposal [8], they tested their network’s classification
of encrypted traffic, resulting in an 89% accuracy rate. In
contrast, proposals [15] and [14] use deep learning tools to
classify traffic, achieving accuracy of more than 97%.

In the next experiment, we successfully attempted to classify
not only individual traffic types, but also the exact traffic

Proposed [8] [9] [15] [14]
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Fig. 4: Classification accuracy comparison of different ap-
proaches for single traffics
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Fig. 5: Accuracy results of identifying exact traffic mixes
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mixes. Our results demonstrate the potential for identifying
exact traffic mixes, despite the complexity of the task. To the
best of our knowledge, our study is the first to address the
exact traffic classification in traffic mixes. Figure 5 shows that
we achieved an accuracy of around 84% in identifying the
1FTP+3VS traffic mixes. Furthermore, when multiple connec-
tions were made simultaneously, our network demonstrated
its ability to identify the traffic mixes with a high degree of
accuracy. The results of this experiment are further supported
by the findings in the confusion matrix shown in Figure 6. The
results highlight the promising performance of our network in
classifying complex traffic mixes, with individual traffic types
being classified with over 97% accuracy. This experiment
demonstrates the potential for future research in this field and
the promising outcomes that can be achieved with continued
efforts.

In the final experiment, instead of identifying the exact
content of a traffic mix, we decided to determine whether there
is any low-latency application traffic in the traffic mix or not.
Results of the experiments are shown in Figure 7. Overall, the
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performance of this classification are much better compared
to previous experiment. We obtained between 78% to 88%
of accuracy when identifying low-latency application traffic
in the traffic mix. Also, in Figure 8, we demonstrated the
confusion matrix of this classification. We categorized video
conferencing as a low-latency-requiring traffic type. This is
due to the fact that video conferencing applications require
a constant connection with low latency to maintain a high
QoE. Our approach achieved an accuracy rate of 87.27%
in predicting the mixed 1VS+1VC as low-latency-requiring
traffic. Despite the intricate patterns present in FTP traffic,
our method still showed favorable prediction outcomes.

V. CONCLUSION AND FUTURE WORK

This paper presents a fine-grained classification scheme for
network traffic to enhance QoS support for ISPs and Internet
providers. By analyzing the throughput patterns of FTP, video
conferencing, and video streaming traffic, it was found that
new statistical features are more effective at distinguishing

Internet traffic than commonly used features in the literature.
Machine Learning algorithms were trained using combinations
of these features to classify low-latency requiring applications.
Results of experiments using large-scale real network traffic
data show that the proposed method achieved high accuracy in
classifying single traffic and identifying low-latency requiring
traffic in the traffic mix. This method can be used by ISPs and
Internet providers to improve QoS and QoE through traffic
engineering, as well as detect and prevent applications that
violate an organization’s security policy.
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