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Abstract
ltlf reactive synthesis under environment specifications, which concerns the automated generation
of strategies enforcing logical specifications, has emerged as a powerful technique for developing
autonomous AI systems. It shares many similarities with Fully Observable Nondeterministic
(fond) planning. In particular, nondeterministic domains can be expressed as ltlf environment
specifications. However, this is not needed since nondeterministic domains can be transformed
into deterministic finite-state automata (dfa) to be used directly in the synthesis process. In this
paper, we present a practical symbolic technique for translating domains expressed in Planning
Domain Definition Language (pddl) into dfas. The technique allows for the integration of the
planning domain, reduced to dfa in a symbolic form, into current symbolic ltlf synthesis tools.
We implemented our technique in a new tool, pddl2dfa, and applied it to solve fond planning
by using state-of-the-art reactive synthesis techniques in a tool called syft4fond. Our empirical
results confirm the effectiveness of our approach.
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1 Introduction

In recent years there has been a growing interest in applying Formal Methods techniques to
Artificial Intelligence in order to develop autonomous AI systems that can operate effectively
in dynamic and complex environments.

These techniques include reactive synthesis, which concerns the automated generation of
winning strategies that enforce requirements given in the form of logical specifications [16, 34].
Specifically, we consider reactive synthesis for specifications in Linear Temporal Logic on
Finite Traces (ltlf ) [26, 27], which maintains the syntax of ltl [35], the formalism typically
used to express complex dynamic properties in Formal Methods [8], but it is interpreted on
finite traces.

A key aspect shared by all synthesis work in AI is the need for a model of the environment
in which the agent acts. In fully observable nondeterministic (fond) planning [18, 17], such
a model is given as a state-based domain that specifies, in each state, how the environment
enacts the (possibly nondeterministic) effects of agent actions. In its most common form,
fond planning involves computing a strong plan that guarantees reaching one of the goal
states independently of the nondeterminism in the domain, thus sharing many similarities
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with ltlf reactive synthesis [27, 15]. Specifically, a fond domain represented with functions
and sets can be expressed as an ltlf environment specification and transformed into a
deterministic finite-state automaton (dfa) that accepts the traces consistent with the domain
specification [25, 1, 6, 23]. It follows that fond planning can be reduced to synthesizing a
winning strategy over a dfa game [25, 23], as ltlf reactive synthesis [27].

In practice, fond domains are often specified in a compact language like the Planning
Domain Definition Language (pddl) [31], which has been extensively used in planning
competitions1. However, while how to transform a fond domain into dfa is well-known
in theory, how to effectively transform pddl into dfa in practice is still open to further
investigation.

In this paper, we present an effective technique for transforming pddl into a symbolic dfa
with transitions and final states represented as Boolean functions encoded by using Binary
Decision Diagrams (bdds) [13]. This technique allows for the integration of fond domains into
symbolic ltlf synthesis tools, which are known for their scalability and efficiency [39, 10, 9, 37].
The construction process involves representing the nondeterminism in the domain through
suitable agent actions and environment reactions. Once this representation is established,
the symbolic dfa of the domain can be efficiently constructed by manipulating bdds. Our
technique has the notable property that, while worst-case exponential in the size of the input
domain, it is often polynomial due to its concise representation of the nondeterminism in the
domain through a compact set of environment reactions.

We implemented our method in a new tool, pddl2dfa, and applied it to devise a
reduction of fond planning into reactive synthesis (optimal wrt complexity of fond planning,
i.e., exptime-complete [17]) in a tool called syft4fond. We applied this construction to
various case studies, including the classic blocks world, blocks world extended, an elevator
system, and two navigation environments. Our empirical results show the performance of
our approach in these different cases. Specifically, our technique successfully constructs the
dfa for a considerable number of instances and solves the synthesis problem for a reasonable
number of them, showing the practical feasibility of reducing planning to synthesis.

Our approach takes a step towards integrating planning and synthesis more closely and
serves as a promising starting point for future research.

2 Preliminaries

Notations. A trace over an alphabet of symbols Σ is a finite or infinite sequence of elements
from Σ. The empty trace is denoted λ. Traces are indexed starting at zero, and we write
π = π0π1 · · · . For a finite trace π, let lst(π) denote the index of the last element of π, i.e.,
lst(π) = |π| − 1.

2.1 Linear Temporal Logic on finite traces (ltlf)
ltlf is a variant of ltl interpreted over finite traces [26] instead of infinite traces [35]. ltlf

has the same syntax as ltl. Given a set AP of atomic propositions (aka atoms), the ltlf

formulas over AP are generated by the following grammar:

φ ::= a | φ1 ∧ φ2 | ¬φ | ◦φ | φ1 U φ2

Where a ∈ AP . Here ◦ (Next) and U (Until) are temporal operators. We use standard
Boolean abbreviations such as ∨ (or), ⊃ (implies), true and false. Moreover, we define
the following abbreviations: •φ ≡ ¬◦¬φ (Weak Next), ♢φ ≡ true U φ (Eventually), and

1 See https://www.icaps-conference.org/competitions/.
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□φ ≡ ¬♢¬φ (Always). The size of φ, written |φ|, is the number of its subformulas. Formulas
are interpreted over finite traces π over the alphabet Σ = 2AP , i.e., the alphabet consisting
of the propositional interpretations of the atoms. Thus, for 0 ≤ i ≤ lst(π), πi ∈ 2AP is the
i-th interpretation of π. That an ltlf formula φ holds at instant i ≤ lst(π), written π, i |= φ,
is defined inductively:

π, i |= a iff a ∈ πi (for a ∈ AP );
π, i |= ¬φ iff π, i ̸|= φ;
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
π, i |= ◦φ iff i < lst(π) and π, i + 1 |= φ;
π, i |= φ1 U φ2 iff ∃j such that i ≤ j ≤ lst(π) and π, j |= φ2, and ∀k, i ≤ k < j we have
that π, k |= φ1.

We say that π satisfies φ, written π |= φ, if π, 0 |= φ.

2.2 Deterministic Finite Automata

A deterministic finite automaton (dfa) is a tuple A = (Σ, Q, q0, δ, F ), where: Σ is a finite
input alphabet; Q is a finite set of states; q0 ∈ Q is the initial state; δ : Q × Σ → Q is
the transition function; and F ⊆ Q is the set of final states. The size of A is |Q|. Given
a finite trace α = α0α1 . . . αn over Σ, we extend δ to be a function δ : Q × Σ∗ → Q as
follows: δ(q, λ) = q, and, if qn = δ(q, α0 . . . αn−1), then δ(q, α0 . . . αn) = δ(qn, αn). A trace
α is accepted by A if δ(q0, α) ∈ F . The language of A, written L(A), is the set of traces that
the automaton accepts.

▶ Theorem 1 ([26]). Given an ltlf formula φ, we can build a dfa of at most doubly-
exponential size in |φ| whose language is the set of traces satisfying φ.

2.3 ltlf Reactive Synthesis

ltlf reactive synthesis [27] concerns finding a strategy to satisfy an ltlf goal specification.
Goals are expressed as ltlf formulas over AP = X ∪ Y, where X and Y are disjoint sets of
variables. Intuitively, X (resp. Y) is under the environment’s (resp. agent’s) control. Traces
over Σ = 2X ∪Y will be denoted π = (X0 ∪ Y0)(X1 ∪ Y1) . . . where Xi ⊆ X and Yi ⊆ Y for
every i. Infinite traces of this form are also called plays.

An agent strategy is a function σ : (2X )∗ → 2Y mapping sequences of environment moves
to an agent move. The domain of σ includes the empty sequence λ as we assumed that
the agent moves first. A trace π is σ-consistent if Y0 = σ(λ) and Yj+1 = σ(X0 · · · Xj) for
every j ≥ 0. Let φ be an ltlf formula over X ∪ Y. An agent strategy σ is winning for (aka
enforces) φ if, for every play π that is σ-consistent, some finite prefix of π satisfies φ. ltlf

reactive synthesis is the problem of finding an agent strategy σ that enforces φ, if one exists,
and is 2exptime-complete in the size of φ [27].

In many AI applications the agent has some knowledge about how the environment works,
which it can exploit to enforce the goal [2]. This knowledge can be expressed by an ltlf

formula E over X ∪ Y, which we call environment specification. In the synthesis of winning
strategies, we can intuitively see E as restricting traces of interest to those satisfying E . In
this setting, synthesis amounts to computing a strategy that enforces the implication E ⊃ φ,
if one exists.

TIME 2025
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2.4 dfa Games
A dfa game is a dfa G = (Σ, Q, q0, δ, F ) with input alphabet Σ = 2X ∪Y . The notions of
agent strategy and play defined above also apply to dfa games. A play is winning if it
contains a finite prefix that is accepted by the dfa. An agent strategy is winning if, for every
play π that is σ-consistent, π is winning. That is, the agent wins the game if it can force the
play to visit the set of final states at least once. The winning region is the set of states q ∈ Q

for which the agent has a winning strategy in the game G′, where G′ = (2X ∪Y , Q, q, δ, F ),
i.e., the same game as G, but with initial state q. Solving a dfa game is the problem of
computing the agent winning region and a winning strategy, if one exists. dfa games can
be solved in polynomial time by a backward-induction algorithm that performs a fixpoint
computation over the state space of the game [7]. Synthesis of an ltlf formula φ can be
reduced in doubly-exponential time to solve the dfa game Gφ corresponding to φ [27].

Solving ltlf synthesis reduces to solving a reachability game over the dfa corresponding
to the ltlf specification. The procedure for solving ltlf synthesis is detailed in Algorithm 1.

Algorithm 1 ltlf Synthesis.
Input: ltlf formula φ

Output: strategy σag realizing φ;

1: Compute the corresponding NFA Aφ;
2: Determinize Aφ into a dfa Bφ;
3: Solve the reachability game over Bφ.

2.5 Symbolic Synthesis
We consider the dfa representation described above as an explicit-state representation.
Instead, we are able to represent a dfa more compactly in a symbolic way by using a
logarithmic number of propositions to encode the state space [40]. Formally, the symbolic
representation of a dfa A = (2X ∪Y , Q, q0, δ, F ) is a tuple As = (X , Y, Z, Z0, η, f), where: Z
is a set of state variables such that |Z| = ⌈log |Q|⌉, and every state q ∈ Q corresponds to
an interpretation Z ∈ 2Z ; Z0 ∈ 2Z is the interpretation corresponding to the initial state
q0; η : 2Z × 2X × 2Y → 2Z is a Boolean function such that η(Z, X, Y ) = Z ′ if and only if Z

is the interpretation of a state q and Z ′ is the interpretation of the state δ(q, X ∪ Y ); and
f is a Boolean function over Z such that f(Z) = 1 if and only if Z is the interpretation
corresponding to a state q ∈ F . Note that the transition function η can be represented by an
indexed family consisting of a Boolean formula ηz for each state variable z ∈ Z, which when
evaluated over an assignment to Z ∪ X ∪ Y returns the next assignment to z.

A symbolic dfa game can be solved by performing a least fixpoint computation over two
Boolean formulas w over Z and t over Z ∪ Y which represent the winning region and winning
states with agent moves such that, regardless of how the environment behaves, the agent
reaches the final states, respectively [40]. Specifically, w and t are initialized as w0(Z) = f(Z)
and t0(Z, Y) = f(Z), since every final state is a winning state. Note that t0 is independent
of the propositions from Y, since once the play reaches the final states, the agent can do
whatever it wants. Then, ti+1 and wi+1 are constructed as follows:

ti+1(Z, Y ) = ti(Z, Y ) ∨ (¬wi(Z) ∧ ∀X.wi(η(X, Y, Z)))
wi+1(Z) = ∃Y.ti+1(Z, Y )
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The computation reaches a fixpoint when wi+1 ≡ wi. When the fixpoint is reached, no
more states will be added, and all winning states have been collected. By evaluating Z0 on
wi+1 we can determine if there exists a winning strategy. If that is the case, ti+1 can be
used to compute a uniform positional winning strategy through the mechanism of Boolean
synthesis [28].

2.6 Fully Observable Non-Deterministic (fond) Planning
Following [23], we define a fond domain as a tuple D = (2F , s0, Act, React, α, β, δ), where:
F is a finite set of fluents, |F| is the size of D, and 2F is the state space; Act and React

are finite sets of agent actions and environment reactions, respectively; α : 2F → 2Act is a
function denoting agent action preconditions; β : 2F × Act → 2React is a function denoting
environment reaction preconditions; and δ : 2F × Act × React → 2F is the transition function
such that δ(s, a, r) is defined if and only if a ∈ α(s) and r ∈ β(s, a). We assume that planning
domains satisfy the properties of:

Existence of agent action: ∀s ∈ 2F .∃a ∈ α(s);
Existence of environment reaction: ∀s ∈ 2F .∀a ∈ α(s).∃r ∈ β(s, a);
Uniqueness of environment reaction:

∀s ∈ 2F .∀a ∈ α(s).∀r1, r2 ∈ β(s, a).δ(s, a, r1) = δ(s, a, r2) ⊃ r1 = r2.

With these properties, inspired by [22], we can capture classical fond domains [18, 29]
by explicitly introducing environment reactions corresponding to nondeterministic effects of
agent actions.

A state trace of D is a finite sequence τ = s0 · · · sn of states such that s0 is the initial
state of D and, for every i < n, there exists an agent action ai ∈ α(si) and an environment
reaction ri ∈ β(si, ai) such that si+1 = δ(si, ai, ri). A plan is a partial function κ : 2F → Act

such that, if κ(s) is defined, then κ(s) ∈ α(s). A plan terminates its execution in states where,
being a partial function, it specifies no action. A state trace τ = s0 · · · sn is κ-consistent if:
(i) s0 is the initial state of D; (ii) for every i < n, si+1 = δ(si, ai, ri) for ai = κ(si) and some
ri ∈ β(si, ai); and (iii) κ(sn) is undefined.

fond (strong) planning concerns finding a plan to satisfy a goal regardless of the
nondeterminism in the domain, called strong plan. A goal G is a conjunction of fluents
and negations of fluents. Given a goal G and a domain D, a plan κ is strong for G in
D if, for every state trace τ = s0, · · · , sn that is κ-consistent, sn |= G. Formally, fond
planning is the problem of finding a strong plan for G in D, if one exists. fond planning is
exptime-complete in the size of D [17].

In this paper, we always assume that we have fond domains expressed in pddl [31],
i.e., the fluents defining the states of the domain are predicates over objects. We write
predicate/k to specify that k objects participate in the predicate relation. Predicates,
actions, and action preconditions are specified in first-order syntax in a domain.pddl file,
whereas the initial state, goal, and objects, are usually specified in a separate problem.pddl
file.

3 pddl to Symbolic dfa

In this paper, we present a technique for transforming pddl into symbolic dfa. A naive
approach is to translate pddl into ltlf [2] and build its corresponding symbolic dfa. However,
this approach is limited by the doubly-exponential blow-up resulting from transforming ltlf

formulas in dfas [26]. Instead, our technique ensures only a single-exponential blowup in the
number of fluents.

TIME 2025
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Our transformation is based on representing the nondeterminism in the domain with agent
actions and environment reactions, as described in Section 2. Once such a representation
is established, the symbolic dfa of the domain can be easily built by constructing suitable
Boolean formulas.

The core idea to represent the nondeterminism in the domain with agent actions and
environment reactions is as follows. For every state of the domain s ∈ 2F and possible
nondeterministic effect s1, · · · , sn of an agent action a ∈ α(s) (specified in its oneof clause),
we introduce an environment reaction r1, · · · , rn such that, for every i < n, we have
δ(s, a, ri) = si and ri ∈ β(s, a). That is, ri represents the i-th nondeterministic effect
of applying action a in s. Applying this construction to every state s ∈ 2F and agent
action a ∈ Act generates a planning domain D = (2F , s0, Act, React, α, β, δ) as detailed in
Algorithm 2

Algorithm 2 Pddl2ActsAndReacts(domain.pddl, problem.pddl).

Require: pddl description of planning domain as domain.pddl and problem.pddl
Ensure: A nondeterministic planning domain D = (2F , s0, Act, React, α, β, δ)

1: Let F be the set of fluents in domain.pddl and problem.pddl
2: Let s0 be the initial state from problem.pddl
3: Let Act and α be actions and preconditions from domain.pddl and problem.pddl
4: for s ∈ 2F :
5: for a ∈ Act:
6: if a ∈ α(s):
7: Let {s1, · · · , sn} be the successor states of s specified in a’s oneof clause
8: Update: React = React ∪ {r1, · · · , rn}
9: Define: δ(s, a, ri) = si and ri ∈ β(s, a) for every i

10: Return D = (2F , s0, Act, React, α, β, δ)

▶ Example 2. Consider a robotic agent that operates in a blocksworld environment where
it can pick up/drop blocks from/in top of other blocks as well as pick up/drop blocks from/on
the table. The domain defines the predicates emptyhand/0, holding/1, on-table/1, on/2,
clear/1 to specify that the agent holds no block, the agent holds a block, a block is on the
table, a block is on top of another block, and a block can be picked, respectively.

Assume that there exist two blocks, yellow and green, and that in the initial state green
is on the table, yellow is on top of green, and the agent holds no block. Consider the agent
actions pick-up and put-on-block defined as follows.

1 (: action pick-up
2 : parameters (?b1 ?b2 - block)
3 : precondition (and
4 (not (= ?b1 ?b2))
5 ( emptyhand )
6 (clear ?b1)
7 (on ?b1 ?b2))
8 : effect (oneof
9 (and

10 ( holding ?b1)
11 (clear ?b2)
12 (not ( emptyhand ))
13 (not (clear ?b1))
14 (not (on ?b1 ?b2 )))
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15 (and
16 (clear ?b2)
17 ( on-table ?b1)
18 (not (on ?b1 ?b2 )))))
19
20 (: action put-on-block
21 : parameters (?b1 ?b2 - block)
22 : precondition (and
23 ( holding ?b1)
24 (clear ?b2))
25 : effect (oneof
26 (and
27 (on ?b1 ?b2)
28 ( emptyhand )
29 (clear ?b1)
30 (not ( holding ?b1))
31 (not (clear ?b2 )))
32 (and
33 ( on-table ?b1)
34 ( emptyhand )
35 (clear ?b1)
36 (not ( holding ?b1 )))))

Intuitively, action pick-up specifies that whenever the agent tries to pick up a block, either
it succeeds, or it does not and the block falls on the table. Similarly for action put-on-block.
We can capture the nondeterministic effects of actions pick-up and put-on-block with two
reactions succeed and fail. A fragment of the planning domain resulting from applying
Algorithm 2 to the pddl description above is shown in Figure 1.

Figure 1 Fragment of the domain resulting from applying Algorithm 2 to the pddl description
in Example 2.

▶ Remark 3. Algorithm 2 returns a domain D = (2F , s0, Act, React, α, β, δ) with fluents,
initial state, agent actions, and action preconditions as in its pddl description. The number
of environment reactions is at most single-exponential in the number of fluents |F|. To
see this, observe that there may exist an action a ∈ Act that, from some state s ∈ 2F of

TIME 2025
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the domain, nondeterministically leads to every other state s′ ∈ 2F , thus generating an
environment reaction for each such successor state. However, in practice the number of
reactions is often several orders of magnitude less than 2F , since the possible nondeterministic
effects in oneof clauses of agent actions are usually very few.

Once the nondeterminism in the domain is represented through deterministic action-
reaction pairs (a, r), we can construct the symbolic dfa of the domain. To do this, we
characterize each pair (a, r) in terms of its add-list add(a, r) and delete-list del(a, r), which
are the sets of fluents added and deleted by (a, r), respectively. Formally, a fluent f is in
add(a, r) (resp. del(a, r)) iff for every s ∈ 2F , if a ∈ α(s) and f ̸∈ s (resp. f ∈ s), then
f ∈ δ(s, a, r) (resp. f ̸∈ δ(s, a, r)). The add- and delete-lists of action-reaction pairs can
be extracted immediately from the pddl description of the domain. Specifically, fluents
appearing without (resp. with) not in the oneof clause of an action a are in the add-list
(resp. delete-list) of the corresponding action-reaction pair (a, r).

We give in Algorithm 3 a technique to transform a fond domain with a goal into a
symbolic dfa. Algorithm 3 constructs a symbolic dfa with a state variable for each fluent and
two error state variables, AgErr and EnvErr, denoting that the agent and the environment
violated the domain specification, respectively, and whose initial state is that of the domain
(Line 1). The alphabet of the symbolic dfa is partitioned into actions and reactions, which
are under the control of the agent and the environment, respectively (Line 2). For every
state variable corresponding to a fluent, Algorithm 3 constructs its transition function as
specified in Line 3. Intuitively, the transition function ηf of fluent f specifies that in the
next time step f holds if and only if either:
1. f was true in the previous time step and was not deleted by an action-reaction pair (a, r)

such that f ∈ del(a, r); or
2. f was added by some action reaction pair (a, r) such that f ∈ add(a, r).

Algorithm 3 constructs the transition functions of AgErr and EnvErr in Lines 4 and 5.
Intuitively, the transition function ηAgErr of AgErr specifies that in the next time step the
agent reaches the error state if and only if either:
1. The agent was in its error state in the previous time step, written AgErr; or
2. The agent violated the mutual exclusion axiom for its actions, which states that, at each

time step, the agent must execute one and only one action, written ¬AgMutex(Y);
3. The agent violated an action precondition, written ¬AgPre(Z, Y).

The transition function of EnvErr is constructed similarly.
Taking the agent’s point of view, Algorithm 3 constructs the final states of the dfa so

that a trace is accepted if the agent does not reach its error state and either the environment
reaches its error state or the goal is reached (Line 6).

The size of the symbolic dfa constructed by Algorithm 3, i.e., the number of its state
variables, is polynomial in the size of the domain. Each line can be executed in polynomial
time in the size of the domain. As a result, Algorithm 3 runs in polynomial time in the size
of the input domain.

Together, Algorithms 2 and 3 form our technique for transforming pddl into symbolic
dfa. While worst-case exponential in the size of the input domain, our transformation
is often polynomial due to its compact representation of nondeterministic effects of agent
actions with suitable environment reactions.

4 Reduction of fond Planning to Synthesis

As an application to demonstrate the effectiveness of our pddl to dfa transformation
technique, we show how to use it to solve fond planning problems.
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Algorithm 3 DomainToDfa(D, G).

Require: A fond domain D = (2F , s0, Act, React, α, β, δ) with goal G

Ensure: A symbolic dfa As = (Z, X , Y, Z0, η, f)
1: Define Z = F ∪ {AgErr, EnvErr}
2: Define initial state Z0 = s0
3: Define Y = Act

4: Define X = React

5: for each f ∈ F :

ηf (Z, X , Y) =

f ∧ ¬
∨

(a,r)|f∈del(a,r)

(a ∧ r)

 ∨
∨

(a,r)|f∈add(a,r)

(a ∧ r)

6: Define agent error transition:

ηAgErr(Z, X , Y) = AgErr ∨ ¬AgMutex(Y) ∨ ¬AgPre(Z, Y)

where:

AgMutex(Y) =
( ∨

a∈Act

a

)
∧

 ∧
a,a′∈Act,a̸=a′

a ⊃ ¬a′


AgPre(Z, Y) =

∧
a∈Act

a ⊃
∨

s∈2F ,a∈α(s)

s


7: Define environment error transition:

ηEnvErr(Z, X , Y) = EnvErr ∨ ¬EnvMutex(X ) ∨ ¬EnvPre(Z, Y, X )

where:

EnvMutex(X ) =
( ∨

r∈React

r

)
∧

 ∧
r,r′∈React,r ̸=r′

r ⊃ ¬r′


EnvPre(Z, Y, X ) =

∧
r∈React

r ⊃
∨

(s,a)∈(2F ×Act),r∈β(s,a)

(s ∧ a)


8: Define accepting condition:

f(Z) = ¬AgErr ∧ (EnvErr ∨ G)

9: Return As = (X , Y, Z, Z0, η, f)

Let D and G be a fond domain and goal in pddl. Construct its symbolic dfa As by
using Algorithms 2 and 3. Solve the symbolic dfa game over As, assigning actions and
reactions to agent and environment, respectively.

▶ Theorem 4. Let D and G be a fond domain and goal in pddl and As their dfa. There
is a strong plan for G in D iff there is a winning strategy in As.

TIME 2025
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This synthesis technique is exponential in the size of the pddl domain and therefore
optimal wrt the computational complexity of fond planning. However, we also observe that
synthesis on dfa games is based on basic backward search algorithms. While we do not
introduce sophisticated optimization techniques, we show that we can include them in our
synthesis algorithm.

Specifically, we show how to include a simple form of invariants, i.e., properties of
states of the domain that must remain unchanged during the execution of every sequence
of actions [12]. Invariants can be used to prune the search space by eliminating actions or
states that violate these unchanging properties.

We consider mutual exclusion invariants specifying that, at every state, no more than
one fluent or negation of fluent l in a set I can be true. Such invariants can be captured
as a Boolean formula i(Z) over the state variables of the symbolic dfa constructed in
Algorithm 3 as:

i(Z) =
∧
l∈I

(l ⊃
∧

l′∈I.l ̸=l′

¬l′)

To include invariants in backward search, we rewrite the fixpoint computation in Section 2.
Specifically, w and t are now initialized as w0(Z) = f(Z) ∧ i(Z) and t0(Z, Y) = f(Z) ∧ i(Z),
since every goal state must satisfy the invariant. Then, ti+1 and wi+1 are constructed as
follows:

ti+1(Z, Y) = ti(Z, Y) ∨ (¬wi(Z) ∧ ∀X .wi(η(X , Y, Z)))

wi+1(Z) = (∃Y.ti+1(Z, Y)) ∧ i(Z)

That is, only states satisfying the invariant are added to the winning region.
▶ Remark 5. An approach alternative to ours is to reduce fond planning to ltlf synthesis
of the formula E ⊃ φ, where E and φ describe the domain and the agent goal, respectively [2].
The ltlf formula is transformed in dfa in doubly-exponential time (Theorem 1) and a
strong plan is obtained by solving the corresponding dfa game. However, this approach is
limited by the doubly-exponential blowup resulting from transforming the ltlf formula in
dfa.

5 Evaluation

We implemented Algorithms 2 and 3 in a tool called pddl2dfa. For parsing, grounding,
and computing invariants for the input pddl domain, we based on the tool prp [32]. We
code Boolean functions representing transitions and final states of symbolic dfas by Binary
Decision Diagrams (bdds) [13] with the bdd library cudd 3.0.0 [36]. The size of a bdd is
the number of its nodes. pddl2dfa also implements the transformation from pddl to ltlf

(see Remark 5), in which case the dfas of ltlf formulas are constructed with lydia [21],
which is among the best performing tools publicly available for ltlf -to-dfa conversion.

We applied the transformation in pddl2dfa to implement the reduction of fond planning
to synthesis (ref. Section 4) in a tool called syft4fond2. For solving symbolic dfa games,
we use the symbolic synthesis framework in [40] at the base of state-of-the-art ltlf synthesis
tools [11, 37]. We compute winning strategies for dfa games through Boolean synthesis [28].

2 pddl2dfa and syft4fond at https://github.com/GianmarcoDIAG/syft4fond

https://github.com/GianmarcoDIAG/syft4fond
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Setup. Experiments were run on a laptop running 64-bit Ubuntu 22.04, 3.6 GHz CPU, and
12 GB of memory. Timeout was 1000 secs.

5.1 Benchmark
We performed experiments on a suite of 170 classical fond planning benchmarks divided in five
classes: blocks world (50 instance), extended blocks world (50 instances), triangle-tire world
(40 instances), rectangle-tire world (15 instances), and elevators (15 instances). In blocks
world instances, the agent manipulates blocks with actions that can nondeterministically
succeed or fail. In extended blocks world instances, the agent can also move towers of
two blocks, with similar nondeterministic success or failure in actions. In triangle-tire and
rectangle-tire instances, the agent navigates a grid environment, dealing with nondeterministic
success or failure when moving. Elevator instances involve managing elevators to collect
coins across multiple floors. For each class, the instances grow by increasing the problem
size, which depends on their parameters.

5.2 Empirical Results
We performed experiments to evaluate the efficiency of our technique for translating pddl
into symbolic dfa and the practical feasibility of reducing fond planning to synthesis.

We evaluated the performance of pddl2dfa in transforming pddl to ltlf and ltlf to
symbolic dfa. When employing this transformation, pddl2dfa was unable to construct the
symbolic dfa of the pddl domain in the considered benchmarks, except in very few cases.
The bottleneck was transforming ltlf into dfa, which requires doubly-exponential time in
the size of the ltlf formula [26].

Table 1 Coverage achieved by pddl2dfa (constructed dfas/instances in benchmark), and domain
size (|F|), number of actions (|Act|), size of largest fluent bdd (Max{F} bdd), size of smallest fluent
bdd (Min{F} bdd), size of agent error bdd (AgErr bdd), and size of environment error bdd (EnvErr
bdd) in the largest solved instance.

Bench. Coverage |F| |Act| Max{F} bdd Min{F} bdd AgErr bdd EnvErr bdd

Blocks 31/50 1055 1953 514 14 6549 109
BlocksExt 19/50 379 12654 5085 277 156509 562
Triangle 30/40 2881 4709 1305 17 40247 740

Rect. 10/15 53 52249 5432 2077 66261 1783
Elev. 15/15 66 105 42 10 511 41

Total 105/170 – – – – – –

We evaluated the performance of pddl2dfa in transforming pddl to symbolic dfa with
Algorithms 2 and 3. Table 1 shows that pddl2dfa constructed the dfa for a considerable
number of benchmarks. Notably, pddl2dfa was able to construct the dfa of triangle-tire
domains with side 61. The bottleneck of the dfa construction was computing the agent
error bdd. Indeed, Table 1 shows that the size of the agent error bdd in the hardest solved
instances is orders of magnitude larger than that of the other bdds, including that of the
largest fluent bdd. The reason is that constructing the bdd of the agent error requires
iterating over all actions of the domain. Instead, constructing the bdds of the fluents requires
only considering actions containing that fluent in their add- and delete-lists. Constructing
the environment error bdd requires iterating over all environment reactions, but these are
often several orders of magnitude less than fluents and agent actions (see Remark 3). As

TIME 2025
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a result, the number of actions is the parameter that affects most the performance of the
dfa construction. The size of the pddl domain, i.e., its fluents, has less impact than the
number of agent actions on the dfa construction performance. Overall, this is a good result
and shows the effectiveness of our construction.

Table 2 Coverage achieved by syft4fond (solved instances/instances in benchmark), and domain
size (|F|), number of actions (|Act|), size of largest fluent bdd (Max{F} bdd), size of smallest fluent
bdd (Min{F} bdd), size of agent error bdd (AgErr bdd), and size of environment error bdd (EnvErr
bdd) in the largest solved instance.

Bench. Coverage |F| |Act| Max{F} bdd Min{F} bdd AgErr bdd EnvErr bdd

Blocks 6/50 55 78 46 10 403 29
BlocksExt 3/50 19 81 33 8 327 32
Triangle 9/40 298 467 169 12 2119 111

Rect. 8/15 25 15481 2272 1057 74757 884
Elev. 7/15 44 68 28 10 281 28

Total 33/170 - - - - - -

We evaluated the performance of syft4fond in reducing fond planning to synthesis.
Table 2 shows that syft4fond is able to solve a reasonable number of instances. Indeed,
syft4fond was able to solve triangle-tire planning instances with side 19, though based on
plain backward search. The bottleneck of the synthesis was constructing the bdds of the
agent winning moves and region during the fixpoint computation, which are mostly affected
by the size of the agent error bdd. In general, we consider this result adequate to show the
practical feasibility of reducing fond planning to synthesis.

6 Conclusion

In this paper, we have presented an effective method for translating pddl into symbolic
dfa. We implemented our method in a new tool, pddl2dfa, and applied it to solving
planning problems through reduction to synthesis in the tool syft4fond. Testing these
tools on various case studies demonstrated the practicality and performance of our approach.
Indeed, we demonstrated that our method successfully constructs dfas for considerably large
domains and solves a practical number of planning instances, performing significantly better
than straightforward approaches based on translating pddl in ltlf . Our work makes a step
towards integrating planning and synthesis more closely. Future research can build on this
foundation, aiming to integrate fond domains into advanced synthesis techniques developed
for temporally extended goals [27, 19], structured environment specifications [20, 9, 30, 3],
multiple goal specifications [14, 38], and for handling goal unrealizability [4, 5, 24, 23].
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