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Abstract

In this thesis, we focus on the goodness-of-fit (GoF) testing problem. Although

there are a number of classical GoF tests proposed in the literature, there is no

‘best’ test that suits all purposes and possesses all the desirable properties. In this

thesis, we investigate in detail the properties of two of these classical tests, namely

the Kolmogorov-Smirnov and the Kuiper tests, and provide efficient and exact nu-

merical methods to compute their p-values. As known, the latter tests are ordinal

and that affects their power especially in the tails. Furthermore, we propose a new

H test based on the Hausdorff distance that depends on both the ordinate and

abscissa coordinates. As a result of that and of the fact that it is location invari-

ant but scale dependent, we are able to show that its power can be optimized by

appropriately selecting the scale coefficient. We illustrate the enhanced power of

the H test in numerous numerical examples both in the one-sample univariate and

in the two-sample multivariate settings. More precisely, we show that the H test

outperforms classical alternatives like Kolmogorov-Smirnov (KS), Cramer-von Mises

(CvM) and Anderson-Darling (AD) in terms of power in the univariate case, and

also the Ball Divergence, Maximum Mean Discrepancy, Cross Match, the Nearest

Neighbor, and some other tests in the bivariate case. Last but not least, we in-

vestigate the theoretical properties of the H test and its p-values both for finite

samples and asymptotically. We further provide useful results that allow the nu-

merical evaluation of the H test, its p-values, exact Bahadur slope and asymptotic

power.



Chapter 1

Introduction

This thesis focuses on the goodness-of-fit testing problems. Goodness-of-fit testing

is about checking whether a pre-specified hypothetical distribution fits a random

sample, or whether two random samples come from a common but unspecified dis-

tribution. It is a fundamental statistical task underpinning model validation and

data comparisons that are widely used in any area of research and project develop-

ment where big volumes (samples) of data on one or more variables of interest are

collected and analyzed.

There are many goodness-of-fit test statistics in the literature among which the

classical Kolmogorov-Smirnov (KS), the Kuiper, the Cramer von Mises (CvM), the

Anderson-Darling (AD) and the Wasserstein (W) test more recently considered in

del Barrio et al. (1999) and del Barrio et al. (2000). The latter tests have gained great

popularity and have been widely applied in almost any field where data is collected

and analysed such as, astronomy (McQuillan et al., 2013), social sciences (Salman

et al., 2015), pattern recognition (Alzubaidi and Kalita, 2016), machine learning

(Gretton et al., 2012) etc., to name only a few. More recently, researchers have

started to consider the goodness-of-fit test statistic in multi-dimensional, including

the run tests based on the minimal spanning tree due to Friedman and Rafsky

(1979), and on the shortest Hamiltonian path proposed by Biswas et al. (2014), the

Wasserstein test (Hundrieser et al., 2024), the Ball divergence test (Pan et al., 2018),

the Maximum Mean Discrepancy test (Gretton et al., 2012), the Cross Match test

(Rosenbaum, 2005) and the Schilling-Henze Nearest Neighbor test (c.f. Schilling,

1986; Henze, 1988).

Although many tests are being proposed, there is no universally recognized
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‘best’ tests that suits all purposes and possesses all the desirable properties. The

use of a particular statistic is usually a trade-off between power and computational

feasibility. For example, the widely used KS test, based on the supremum distance,

is readily understood graphically, is easy to evaluate, and is distribution-free when

the null is continuous. However, it is less sensitive in the tails and generally has

lower power (see e.g. Mason and Schuenemeyer, 1983; Feigelson and Babu, 2020),

making it less efficient for tail comparisons, which are particularly important in ex-

treme value applications. The AD and CvM tests, based on the L2-distance, are also

distribution-free and have high power in many cases but have not been introduced for

discrete or mixed null distributions. The W test, based on the L2-Wasserstein dis-

tance, also has high power in many settings but is not distribution-free and becomes

computationally demanding, especially in higher dimensions where its evaluation

can be heavy without entropic regularization (see Cuturi, 2013). Graph-based mul-

tivariate tests, such as run statistics, face similar challenges, as their evaluation can

be non-deterministic polynomial time (NP) problems.

Moreover, as noted by Janssen (2000), no single test can pay equal attention

to an infinite number of orthogonal alternatives, meaning there is no universally

powerful test.

The lack of universally powerful tests and the limitations of existing goodness-

of-fit tests motivatives further research. In this thesis, we investigate the properties

of two of the existing tests, i.e. the Kolmogorov-Smirnov and the Kuiper tests and

propose a new test that is based on the Hausdorff distance.

In Chapter 2, we show that the difference between the critical values of the per-

mutation KS test and the KS test defined in terms of the ecdfs of the two samples

is asymptotically negligible which therefore applies to the difference between their

p-values. We use this result to develop a numerically efficient recurrence method

for computing p-values of the two sample KS test. A similar method but for the

unweighted KS test has been independently considered by Nikiforov (1994), Hilton

et al. (1994), and Schröer and Trenkler (1995), but without any theoretical justifi-

cation. We have completed and generalized the work of these authors as follows: 1)

we provide the missing theoretical justification of why such a recurrence approach

is valid; 2) we allow flexible choices of the weight function of the KS test, leading
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to better power; 3) we extend the method to compute p-values of the two sample

Kuiper test, thus covering the case of data with ties; 4) we show how the recurrence

can be adjusted in the spirit of Viehmann (2021), leading to better accuracy. We also

derive a closed-form expression for the asymptotic distribution of the two-sample KS

test, assuming jumps in the null distribution and illustrate its efficiency in comput-

ing p-values.We also give an extensive overview of the existing statistical software,

computing KS and Kuiper p-values and compare it with the performance of our

proposed methods, implemented in the R functions KS2sample and Kuiper2sample.

The latter can be useful for researchers from various fields, who analyze data, and

perform distributional hypothesis testing, applying KS and Kuiper p-values.

In Chapter 3, we consider the Hausdorff metric and its use in measuring the

distance between an empirical and a theoretical cumulative distribution function

(cdf). We propose a corresponding one-sample Hausdorff goodness-of-fit test statis-

tic, the H test, give its geometric interpretation, and a method to evaluate it. We

show that its exact and asymptotic p-values can be expressed correspondingly as

rectangle probability and as double boundary crossing probability with respect to a

Brownian bridge. Efficient numerical methods for computing the p-values, the exact

Bahadur slope, and asymptotic power of the H test are also provided.

We also show that the p-values of the H test are not invariant under scale

transformation. Investigating theoretically this scale dependence, we find that by

appropriately selecting the scale coefficient, the power of the H test can be controlled

and optimized. This is an important feature which other tests such as Kolmogorov-

Smirnov (KS), Cramer von Mises (CvM) and the Anderson-Darling (AD) do not

possess. In particular, based on synthetic and real data examples, we demonstrate

that when testing goodness-of-fit in the tail, the power and tail sensitivity of the

scale-tuned H test is higher than the power of the KS, CvM and AD tests. All these

properties make the H test a competitive alternative to existing goodness-of-fit tests.

As an extension of Chapter 3, in Chapter 4, we explore the use of the Hausdorff

metric between possibly multivariate empirical cumulative distribution functions

with the purpose of testing for goodness-of-fit. As in the one-sample case, the clas-
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sical tests such as KS, CvM, and AD have appealing properties in the univariate

setting but lose efficiency for tail differences. Existing multivariate tests, including

Wasserstein- and run-based methods, can achieve high power but are computation-

ally demanding. Since no hypothesized null distribution is available, extending the

existing approach in Chapter 3 to the two-sample multivariate setting is challenging.

We address these challenges as follows. We introduce an explicit and computable

representation of the two-sample Hausdorff (H) statistic with a geometric interpre-

tation as the edge of the largest hypercube that can be inscribed between the two

ecdfs. We propose a permutation version of H and establish its asymptotic equiva-

lences in terms of power and type I error, under the null and (fixed or contiguous)

alternative. Based on this, we develop a method to compute the exact and asymp-

totic p-values of the H statistic. In view of the scale dependence of H, we propose

a rule for selecting the scale coefficient, so as to optimize its power. Last but not

least, we give some useful properties of H including its Lipschitz continuity, qual-

itative robustness and connections to the Lévy-Prokhorov metric and the KS test.

We demonstrate based on numerical examples that the scale-tuned Hausdorff test

outperforms the major competitors in terms of power in the univariate and bivariate

cases.

1.1 Publications arising from this thesis

Chapter 2: On the Efficient Exact Calculation of p-values of the Two-sample

Kolmogorov-Smirnov and Kuiper Tests.

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). Efficient

Exact Calculation of p-values of the Two-sample Kolmogorov-Smirnov and Kuiper

Tests. submitted.

Chapter 3: On a New One-sample Goodness-of-fit Test based on the Hausdorff

Metric.

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a One

Sample Goodness-of-Fit Test Based on the Hausdorff Metric. submitted.
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Chapter 4: On a New Two-sample Multivariate Goodness-of-fit Test based on the

Hausdorff Metric.

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a Two-

sample Multivariate Goodness-of-fit Test based on the Hausdorff Metric. near sub-

mission.



Chapter 2

On the Efficient Exact Calculation of

p-values of the Two-sample

Kolmogorov-Smirnov and Kuiper Tests

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). Efficient

Exact Calculation of p-values of the Two-sample Kolmogorov-Smirnov and Kuiper

Tests. submitted.

Abstract

We show that the difference between the critical values of the permutation KS test

and the KS test defined in terms of the ecdfs of the two samples is asymptotically

negligible which therefore applies to the difference between their p-values. We use

this result to develop a numerically efficient recurrence method for computing p-

values of the two sample KS test. A similar method but for the unweighted KS test

has been independently considered by Nikiforov (1994), Hilton et al. (1994), and

Schröer and Trenkler (1995), but without any theoretical justification.

We have completed and generalized the work of these authors as follows: 1)

we provide the missing theoretical justification of why such a recurrence approach

is valid; 2) we allow flexible choices of the weight function of the KS test, leading

to better power; 3) we extend the method to compute p-values of the two sample

Kuiper test, thus covering the case of data with ties; 4) we show how the recurrence

can be adjusted in the spirit of Viehmann (2021), leading to better accuracy.

We also derive a closed-form expression for the asymptotic distribution of the
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two-sample KS test, assuming jumps in the null distribution and illustrate its effi-

ciency in computing p-values.

We finally give an extensive overview of the existing statistical software, com-

puting KS and Kuiper p-values and compare it with the performance of our proposed

methods, implemented in the R functions KS2sample and Kuiper2sample. The lat-

ter can be useful for researchers from various fields, who analyze data, and perform

distributional hypothesis testing, applying KS and Kuiper p-values.

2.1 Introduction
In almost any area of research and project development such as, economics, natural

sciences, industry, engineering, insurance, banking and finance, big volumes (sam-

ples) of data on one or more variables of interest are collected and analyzed. Such

tasks fall within the rapidly growing field of data science (also big data statistics),

which underpins the development and application of machine learning methods (see

e.g., Gretton et al., 2012). In all these areas, it is often necessary to test whether

the data samples, usually analyzed by pairs, come from an (unspecified) common

probability distribution. There are various goodness-of-fit tests (see e.g. Meintanis

et al., 2024; Borrajo et al., 2024) that are used for the purpose, among which two

widely used are the one and two sample Kolmogorov-Smirnov (KS) tests (see e.g.

Dimitrova et al., 2020; Moscovich, 2023; Nikiforov, 1994; Viehmann, 2021), and the

Kuiper test (Paltani, 2004).

The two-sample KS test is defined as the maximum of the absolute value of the

difference between the empirical distribution functions of the two samples. Since

this maximum tends to be achieved around the center of the distribution, the KS

test is more sensitive there, which is considered as one of its limitations. At the same

time the KS-test is simple and intuitive and is therefore one of the most popular

goodness-of-fit tests applied in numerous fields, e.g., in astronomy, (see Feigelson and

Babu, 2020), internet behaviour analysis, (Mousavi et al., 2022), physics, (Arsioli

and Dedin, 2020), hydrology, (Zhang et al., 2022), to name only a few.

The two sample Kuiper test represents an extension of the KS test that is

equally sensitive both in the center and the tails of the underlying distribution.

This stems from its definition as the sum of the absolute values of the most positive

and most negative differences between the empirical distribution functions of the
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two samples. In addition, the Kuiper test is also better suited for goodness-of-fit

testing with seasonal and circular data. As a consequence, the Kuiper test has

also gained significant popularity and is being widely used, as evidenced by the

numerous references in the literature, see e.g., applications in finance, (Yung et al.,

2008), genetics, (Dudbridge, 2006), neural-networks, (Mouli et al., 2019), astronomy

(Lin et al., 2022), brain-machine interface (Chhatbar and Francis, 2013), the geology

of earthquakes (Kossobokov and Panza, 2020), and many others.

All these examples represent just a small selection from the very large volume of

applications, confirming the importance of providing efficient means for computing

the two-sample KS and Kuiper tests and their p-values. The p-value is defined as

the probability that the (KS or Kuiper) test statistic is greater than or equal to a

specified fixed value.

Our three major goals in this chapter are: 1) to present efficient numerical

methods for computing exact p-values of the two-sample (one-sided or two-sided)

KS test and the two-sample Kuiper test, when sample sizes are finite; 2) to give

a closed form formula for the asymptotic distribution of the two sample KS test,

as the two sample sizes go to infinity, for the case of ties in the observations; 3)

to investigate the numerical performance of both asymptotic and finite sample size

methods and compare the latter with other existing statistical software. For the

purpose we implement our finite sample size methods in the R functions, KS2sample

and Kuiper2sample, and give an extensive overview of the existing implementations,

which we believe will be helpful for the practitioners using these goodness-of-fit tests.

Computing acurate p-values is crucial in testing the null hypothesis that samples

have a common (but unknown) underlying distribution. When the underlying dis-

tributions are continuous, Hodges (1958), Kim (1969) and Kim and Jennrich (1973)

have given recurrence formulas to compute the exact unweighted KS p-values. Maag

and Stephens (1968) and Hirakawa (1973) give formulas to compute the exact Kuiper

p-values when sample sizes are equal. Their formulas are valid, since both the KS and

Kuiper tests are distribution-free for continuous underlying distributions. However,

in the case when the samples come from two arbitrary distributions, computing their

p-values are not directly possible since the distribution of the two-sample KS/Kuiper

test is unknown. In order to overcome this difficulty, we consider an alternative for-
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mulation of the KS/Kuiper test, referred to as the permutation KS/Kuiper test.

The latter is defined over the space of all possible pairs of samples, randomly drawn

without replacement from the pooled sample.

We should point out that when the underlying distributions are non-continuous,

Nikiforov (1994), Hilton et al. (1994), and Schröer and Trenkler (1995) have inde-

pendently given similar formulas to compute the KS p-values conditioned on the

sample realization. However, Hilton et al. (1994) has noted the computational diffi-

culty in recovering the unconditional p-values from the conditional p-values. Schröer

and Trenkler (1995) treated the conditional p-values as unconditional and referred

vaguely to the ”principle of randomization tests”. While it is valid in view of The-

orem 3.2 of Hoeffding (1952) when the null hypothesis holds, the principle is not

necessarily valid in a more general case, as pointed out by Chung and Romano

(2013).

In order to fill the existing gaps, we summarize our contributions in this chapter

as follows. First, in Section 2.2.2, we prove Theorem 2.1 which shows that the

difference between the critical values of the permutation KS test and the KS test

defined in terms of the ecdfs of the two samples is asymptotically negligible for

arbitrary underlying distributions of the two samples, which therefore applies to the

difference between their p-values. This fundamental result provides the theoretical

background in support of the recurrence method for computing p-values provided

by formula (2.2.11) and its further enhancement given in formula (2.2.12).

We provide a formal description of the major steps of the method stemming

from formula (2.2.11), with proofs and enlightening examples, given in Section 2.2.2

and Appendix 2.A, that are missing in the chapters of the above-mentioned authors.

We have generalized the latter algorithm to allow for an arbitrary weight function

(see Proposition 2.2 for the corresponding p-value). Such flexibility is important

since, as known, the choice of weight function significantly affects the power of the

test (see Examples 2.18 and 2.19, Appendix 2.C and also Büning, 2001). We have

further enhanced the method, following Viehmann (2021), which leads to a slower

but more stable and accurate computation of the KS p-values, as also shown in

Section 4 and Appendix D. To match the tradeoff between speed and accuracy, we

have implemented both versions of the algorithm in the R function KS2sample.
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Second, in Section 2.2.3 we derive a closed form formula (c.f. (2.2.15), The-

orem 2.5) for the asymptotic distribution, of the two-sample Kolmogorov-Smirnov

test, which is valid for arbitrary samples, allowing ties in the observations. To the

best of our knowledge, the asymptotic distribution of the two-sample KS test has

not been investigated in the literature in the case of tied observations. Therefore,

formula (2.2.15) and Theorem 2.5 represent a novel contribution of theoretical and

numerical importance. We demonstrate (see Example 2.13 and Table 2.2) that

the asymptotic formula (2.2.15) is a numerically efficient alternative to the exact

method, for computing KS p-values when the sum of sample sizes exceeds 90,000.

Third, in Section 2.2.5, we show how the method based on the recurrence for-

mula (2.2.11) can be further generalized in order to compute exact Kuiper p-values

allowing arbitrary continuous, discrete or mixed observations in the sample. To the

best of our knowledge, the computation of exact Kuiper p-values has only been con-

sidered for the continuous case and equal sample sizes (Maag and Stephens, 1968;

Hirakawa, 1973). We have also enhanced the computation in the spirit of Viehmann

(2021), to improve its accuracy. To match the tradeoff between speed and accu-

racy, both of these versions of the algorithm for the KS and Kuiper p-values are

implemented in the two functions KS2sample and Kuiper2sample and are fully in-

vestigated and compared in Section 2.4.

Fourth, we present a power comparison between the Kuiper test and the KS

test with different weight functions. We show that the Kuiper test represents a more

powerful alternative in the case of discrete observations, that seems not to have been

previously investigated (see Appendix 2.C).

Lastly, we present a thorough review of the software that computes KS and

Kuiper p-values, which is motivated by several reasons. Firstly, the majority of

implementations of the KS and the Kuiper tests rely on approximate/resampling

(rather than exact) methods to compute p-values. Secondly, it appears that the

majority of the existing statistical software packages, (see Section 2.4 for a short

summary and further details) have limited capabilities and give only p-values for

the unweighted KS test, assuming single observations in the sample, not offering

sufficient flexibility in choosing the weight function, which ultimately affects the

power of the KS test (see Examples 2.18 and 2.19 in Appendix 2.C). Thirdly, al-
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though the Kuiper test is applicable for circular observations with ties, the existing

software for computing its p-values only work for the case of no ties, as pointed out

by Boulesteix and Strobl (2007) and also evidenced by our thorough comparison in

Section 2.4.2. However, goodness-of-fit testing on circular data with ties is also an

important task, as confirmed by Jammalamadaka et al. (2020), that needs to be

considered.

As mentioned, here we address all these deficiencies by developing the efficient

and numerically stable R functions KS2sample and Kuiper2sample. We include the

latter in the R package KSgeneral, previously developed by Dimitrova, Kaishev and

Tan (2020). The latter package allows for computing p-values of the one-sample KS

test for arbitrary continuous, discrete, or mixed null distribution. It has gained sig-

nificant popularity among researchers and practitioners across various disciplines.

This is evidenced by the large number of downloads of KSgeneral which exceeds

34,000 of present. The functions KS2sample and Kuiper2sample extend the ca-

pabilities of the KSgeneral to the two-sample goodness-of-fit testing with the KS

and Kuiper tests. We have also developed a Mathematica code that computes KS

and Kuiper p-values with arbitrary accuracy (albeit quite slow), and have used the

latter as true benchmark p-values in the software comparisons that we present in

Section 2.4 and Appendix 2.D. The results of the latter comparison are yet another

contribution of this chapter that we believe is worth highlighting.

The chapter is organized as follows. In Section 2.2, we briefly introduce the

weighted KS and Kuiper tests and describe the proposed methods for computing

their corresponding p-values. In Theorem 2.1, we give a theoretical justification of

the latter methods. In Section 2.2.3, we present formula (2.2.15) for the asymptotic

distribution of the two-sample KS test. In Section 2.3, we give two examples, the

first one illustrating the use of the R function Kuiper2sample on circular data with

ties, for computing Kuiper p-values, and the second one illustrating the numerical

performance of the asymptotic formula (2.2.15). Then in Section 2.4, we give a thor-

ough overview of the existing software implementations for computing two-sample

KS and Kuiper p-values and select some of them as benchmark implementations

with whom we further compare our KS2sample and Kuiper2sample functions in

terms of speed and accuracy. Finally, in Section 2.5, we summarize our findings. In
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Appendix 2.A, we give some auxiliary results and proofs of the propositions from

Section 2.2. In Appendix 2.B, we give some examples that illustrate the algorithms

behind the functions KS2sample and Kuiper2sample and their numerical implemen-

tation. In Appendix 2.C, we present power comparisons between the KS and the

Kuiper tests. Finally, Appendix 2.D contains numerical results that support the

comparisons and conclusions of Section 2.4.

2.2 The Two-sample KS and Kuiper Test

2.2.1 The Two-sample KS Test

The two-sample KS statistic is designed to test whether two samples come from

an unspecified common probability distribution. More precisely, let F (x) and G(x)

be two cumulative distribution functions, either continuous or discrete (or mixed).

Let Xm = (X1, ...,Xm) and Yn = (Y1, ...,Yn) be two mutually independent random

samples drawn correspondingly from these two (unknown) distributions. We want

to test the null hypothesis H0 : F (x) =G(x) for all x, either against the alternative

hypothesis H1 : F (x) ̸=G(x) for at least one x, which corresponds to the two-sided

test, or against H1 : F (x) > G(x) and H1 : F (x) < G(x) for at least one x, which

corresponds to the two one-sided tests. The two sample KS statistics that are used

to test these hypotheses are generally defined as:

∆m,n = sup
x∈R
|Fm(x)−Gn(x)|W (Em+n(x))

∆+
m,n = sup

x∈R
{Fm(x)−Gn(x)}W (Em+n(x))

∆−
m,n = sup

x∈R
{Gn(x)−Fm(x)}W (Em+n(x)),

(2.2.1)

where ∆m,n denotes the two-sided test, ∆+
m,n and ∆−

m,n denote the two one-sided

tests, Fm(x) and Gn(x) are the empirical (cumulative) distribution functions (edf) of

Xm and Yn, Em+n(x) is the edf of the pooled sample Zm+n := (X1, ...,Xm,Y1, ...Yn),

and W (t) is a non-negative weight function, defined on t ∈ [0,1].

The choice of weight function in (2.2.1) leads to different specifications of the

KS test statistic which, as noted in the introduction, influences its power. Following

are some examples of choices of W (t) for the two-sided KS test, ∆m,n in (2.2.1).

For instance, if W (t) ≡ 1, the latter test, denoted as ∆0
m,n and referred to as the
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unweighted KS test is given as:

∆0
m,n = sup

x
|Fm(x)−Gn(x)|. (2.2.2)

When W (t) = 1/[t(1− t)]1/2, the KS test, denoted as ∆1/2
m,n, and referred to as the

variance-stabilized weighted KS statistic (see Canner, 1975), is defined as:

∆1/2
m,n = sup

x

|Fm(x)−Gn(x)|√
Em+n(x)(1−Em+n(x))

, (2.2.3)

It is not difficult to see that the weight functions from (2.2.2) and (2.2.3) gen-

eralize to (see Finner and Gontscharuk, 2018):

W (t) = 1/[t(1− t)]ν , (2.2.4)

where 0≤ ν ≤ 1. The latter defines a family of weighted KS tests, ∆ν
m,n (0≤ ν ≤ 1),

which covers ∆0
m,n and ∆1/2

m,n, for the choices, ν = 0 and ν = 1/2.

It has been pointed out by Finner and Gontscharuk (2018) that when the sam-

ples are drawn from two normal distributions, correspondingly with different mean

and variance, the power of the statistic, ∆ν
m,n, ν ∈ [0,1], as a function of ν, is approx-

imately unimodal. The maximum power is achieved when ν ∈ [0.3,0.6]. When both

the distributions of null and alternative hypothesis are left skewed and heavy-tailed,

Büning (2001) suggested using the weight function W (t) = 1/[t(2− t)]1/2 which en-

sures higher power than the test ∆1/2
m,n (see also examples in Appendix 2.C).

2.2.2 Computing Exact P values of the KS Test

Let us note that since the distribution of ∆m,n is unknown when F and G are two

arbitrary distributions, computing its p-values is not directly possible. In order

to overcome this difficulty, we consider an alternative formulation of the KS test,

referred to as the permutation KS test. The latter is defined over the space of all

possible pairs C =
(m+n
m

)
of samples X̃m and Ỹn of sizes m and n randomly drawn

without replacement from the pooled sample Zm+n. We show in Theorem 2.1 that

the difference between the critical value of the permutation KS test and that of ∆m,n

is asymptotically negligible for arbitrary F and G, which therefore applies to the

difference between their p-values. This fundamental result provides the theoretical



2.2. The Two-sample KS and Kuiper Test 27

background in support of the recurrence method for computing p-values provided by

formula (2.2.11) and its further enhancement given in formula (2.2.12). Note that a

recurrence method similar to that given in formula (2.2.11) but for the unweighted

KS test has been independently considered by Nikiforov (1994), Hilton et al. (1994),

and Schröer and Trenkler (1995), but without theoretical justification.

We also show that the formula (2.2.11) can be further simplified to the recur-

rence formula (2.2.12), which leads to an algorithm recently considered by Viehmann

(2021). The latter is slower but more numerically stable and accurate, as demon-

strated in Section 2.4. We have implemented both formulas (2.2.11) and (2.2.12)

in the C++ functions ks2sample cpp, ks2sample c cpp, the R function KS2sample

and in Mathematica (Wolfram Research, Inc, 2024), which are more general than

Nikiforov’s Fortran 77 code, by allowing for arbitrary weight functions. It will be

instructive to briefly highlight the main steps of the algorithm we have implemented.

For a particular realization of the pooled sample Zm+n, let there be k distinct

values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n),

where k ≤ m+ n. Denote by mi the number of times ai appears in the pooled

sample, i = 1, . . . ,k. Given the pooled sample Zm+n, the p-value is then defined as

the conditional probability

P = P(Dm,n ≥ q|Zm+n) , (2.2.5)

where Dm,n is the permutation KS statistic, defined as in (2.2.1), for two samples

X̃m and Ỹn of sizes m and n, randomly drawn from Zm+n without replacement and

q ∈ [0,1]. To simplify notation, we will further omit the condition in (2.2.5) and

write P(Dm,n ≥ q).

Formally, given the pooled sample Zm+n, the permutation KS test Dm,n in

(2.2.5) is defined as

Dm,n(ω) = sup
x∈R
|Fm(x,ω)−Gn(x,ω)|W (Em+n(x)), (2.2.6)

where Dm,n is regarded as a mapping on the space Ω of all C =
(m+n
m

)
possible

pairs of empirical distribution functions (Fm(x,ω),Gn(x,ω)), ω ∈Ω. Each such pair

corresponds to a pair of X̃m and Ỹ n obtained by randomly drawing (without re-
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placement) from the pooled sample Zm+n, as follows. First, m observations are

drawn at random without replacement, forming the first sample X̃m, with corre-

sponding edf, Fm(x,ω). The remaining n observations are then assigned to the

second sample Ỹn, with corresponding edf Gn(x,ω). Resampling in this way will

result in the occurrence of all the C possible pairs of edfs Fm(x,ω) and Gn(x,ω),

ω ∈Ω. The pairs of edf’s may be coincident if there are ties in the data and each pair,

Fm(x,ω) and Gn(x,ω) occurs with probability 1/C (see Example 2.3). The above-

mentioned resampling procedure is a general permutation and randomization tests

construction (See Lehmann and Romano, 2005, Section 15.2). Alternatively, follow-

ing Section 3.8.1, van der Vaart and Wellner (2023), Fm(x,ω) and Gn(x,ω) can be

equivalently viewed as the ecdfs of the permutation samples X†
m = {ZR1 , . . . ,ZRm}

and Y †
n = {ZRm+1 , . . . ,ZRm+n}, where Rm+n = (R1,R2, . . . ,Rm+n) is independent

from the samples Xm and Yn and uniformly distributed on the set of permutations

of {1,2, . . . ,m+n}, i.e. every possible realization of Rm+n has probability 1/(m+n)!

(see (4.3.9) in Section 4.3.2).

Considering the conditional p-value P in (2.2.5) is important, since it allows us

to show that the difference between the critical levels of Dm,n and ∆m,n becomes

asymptotically negligible, which leads to the conditional p-value P converging to the

unconditional p-value P(∆m,n ≥ q) as shown in the following theorem.

Theorem 2.1. Assume that Xm and Yn come correspondingly from the distributions

F (x) and G(x). Denote by q†
m,n(p) the critical level of the statistic

√
mn
m+nDm,n, given

Zm+n, i.e.

q†
m,n(p) = inf{q : P

(√
mn

m+n
Dm,n ≥ q

)
≤ p|Zm+n}.

Denote by q∗
m,n(p) the critical value of

√
mn
m+n∆m,n when Xm and Yn come from the

distribution ηF + (1−η)G, η ∈ (0,1), i.e.

q∗
m,n(p) = inf{q : P

(√
mn

m+n
∆m,n ≥ q

)
≤ p}.

When the weighted function W in ∆m,n is bounded and uniformly continuous and

for a fixed p, we have

q†
m,n(p)− q∗

m,n(p) P→ 0,
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as m,n→∞ and m
m+n → η, where P→ stands for convergence in probability.

The normalizing factor
√

mn
m+n ensures that the convergence result is non-trivial,

since q†
m,n(p) does not converge to 0. When both F and G are continuous, the result

is less interesting, since both ∆m,n and Dm,n are distribution-free. However, it

is particularly important when both F and G are discontinuous cdfs and the null

hypothesis F =G may fail to hold.

Let us note that a result similar to Theorem 2.1 may not hold for an arbitrary

two-sample statistic and its corresponding permutation test. This is illustrated

by Example 5.3 of Chung and Romano (2013). Let us also note that a similar

asymptotic consistency result for the unweighted KS test is provided by van der

Vaart and Wellner (2023) using a different approach. Theorem 2.1 is more general

as it covers the weighted KS test and naturally leads to the numerical algorithm for

computing KS p-values that follows.

In order to compute the p-value P in (2.2.5), we alternatively express it as,

P = 1− N
C
, (2.2.7)

where, N is the number of pairs, Fm(x,ω) and Gn(x,ω), drawn from the pooled

sample Zm+n, for which Dm,n < q. So in order to compute the p-value, P , it suffices

to find N .

In order to find N , let us introduce the integer-valued grid R = {(i, j) : 0 ≤

i ≤m, 0 ≤ j ≤ n}. Define a trajectory on R as a point sequence {il, jl}m+n
l=0 that

satisfies the following conditions

1. (il+1, jl+1) = (il+ 1, jl) or (il+1, jl+1) = (il, jl+ 1) (0≤ l ≤m+n−1)

2. (i0, j0) = (0,0) and (im+n, jm+n) = (m,n)
(2.2.8)

A trajectory moves to the right from (il, jl) to (il + 1, jl) if zl, the l-th value in

Zm+n, is from the first sample and it moves up to (il, jl+1) otherwise. Let us note

that, a unique trajectory in R corresponds to each of the C pairs of edfs, Fm(x,ω)

and Gn(x,ω). As we show in Appendix 2.A, the number N is calculated using the

following proposition.
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Proposition 2.2. The number N , of pairs Fm(x,ω) and Gn(x,ω) for which Dm,n <

q, coincides with the number of trajectories that lie wholly in a subset, S of R, such

that,

S =R1∪R2∪ ...∪Rk, (2.2.9)

where Rl, l = 1, ...,k, is a set of points (i, j) ∈R, such that

min{i : d(i, j)< q,i+ j = Tl−1} ≤ i≤max{i : d(i, j)< q,i+ j = Tl},

min{j : d(i, j)< q,i+ j = Tl−1} ≤ j ≤max{j : d(i, j)< q,i+ j = Tl}
(2.2.10)

where Tl =m1 + ...+ml, T0 = 0 and d(i, j) is defined as shown in Table 2.1, depending

on the particular definition of the KS test, W (t) is the weight function defined in

(2.2.1).

Table 2.1: Value of d(i, j) depending on the KS test.

Unweighted Weighted
One-sided ±(i/m− j/n) ±(i/m− j/n)W ((i+ j)/(m+n))
Two-sided |i/m− j/n| |i/m− j/n|W ((i+ j)/(m+n))

Proposition 2.2 is a generalization of formula (5) in Nikiforov (1994). The latter

applies to the unweighted test, in which case S is determined only by the value of q.

In more general cases, i.e., for the weighted KS test with arbitrary weight function,

the subset S in (2.2.9) is determined not only by the value of q but also by the form

of d(i, j) which is specified by the corresponding KS test. Once S is determined, N

is obtainable by counting the total number of trajectories that lie in the subset S.

For a better understanding of the rationale behind the subset S, see Examples 2.3

and 2.4 and the proof of Proposition 2.2 provided in Appendix 2.A.

Following Proposition 2.2, the subset, S, defined in (2.2.9) is then used to

calculate the number, N , (c.f (2.2.7)), as follows. Denote by BS(i, j), the total

number of ways to move from point (0,0) to point (i, j) (1≤ i≤m,1≤ j ≤ n) while

staying strictly inside the region S. Since the number N coincides with BS(m,n),

i.e., BS(m,n) = N by definition, it suffices to find BS(m,n), in order to find the p-

value P = 1−N/C. For the purpose, BS(i, j) is computed for each point (i, j) ∈R,
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by the following recurrence formula

BS(i, j) = 1S(i, j)[BS(i, j−1) +BS(i−1, j)] for (i≥ 1, j ≥ 1), (2.2.11)

with starting values BS(0, j) = 1S(0, j) and BS(i,0) = 1S(i,0), where 1S(·) denotes

the indicator function. Following (2.2.11), an algorithm containing a loop with index

l is designed to simultaneously calculate all the values of BS(i, j) with i+ j = l+ 1,

using all the BS(i, j) with i+j = l. When implementing in C++ and R, appropriate

scaling is applied to ensure that BS(i, j) does not become too large, which may lead

to possible loss of accuracy and numerical stability. We provide Examples 2.3 and

2.4 illustrating this algorithm as follows.

Example 2.3. For simplicity, we illustrate the algorithm on the example of the

unweighted KS test given in (2.2.2), for the case, W (t) = 1. Given two samples,

X = {10,30,30} and Y = {30,40,40,50}, of sizes, m = 3 and n = 4, for which the

(observed) unweighted, two-sided KS statistic q = 0.75. The four ordered, distinct

values are (a1,a2,a3,a4) = (10,30,40,50) with number of repetitions m1 = 1,m2 =

3,m3 = 2,m4 = 1, in the pooled sample Z = (10,30,30,30,40,40,50), whose entries

can be labeled as 10(z1), 30(z2), 30(z3), 30(z4), 40(z5), 40(z6), and 50(z7).

Following the re-sampling scheme described above, the number, C of all pairs

of samples and their corresponding trajectories in R, that can be drawn from Z, is

C =
(7

3
)

= 35. It is not difficult to see that, only 11 out of the 35 pairs are distinct.

The pairs and the numbers, ri, i= 1, . . . ,11 of their repetitions are:

{{10,30,30},{30,40,40,50}}, r1 = 3,{{10,30,40},{30,30,40,50}}, r2 = 6,

{{10,30,50},{30,30,40,40}}, r3 = 3,{{10,40,40},{30,30,30,50}}, r4 = 1,

{{10,40,50},{30,30,30,40}}, r5 = 2,{{30,30,30},{10,40,40,50}}, r6 = 1,

{{30,30,40},{10,30,40,50}}, r7 = 6,{{30,30,50},{10,30,40,40}}, r8 = 3,

{{30,40,40},{10,30,30,50}}, r9 = 3,{{30,40,50},{10,30,30,40}}, r10 = 6,

{{40,40,50},{10,30,30,30}}, r11 = 1,
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where ∑11
i=1 ri = 35.

The set, S of all trajectories, for which Dm,n < q , obtained applying (2.2.9)

and (2.2.10), is illustrated in Fig 2.1 (a), together with the subsets Ri, i= 1,2,3,4.

(a) Region S (b) Subset R1 (c) Subset R2 (d) Subset R3 (e) Subset R4

Figure 2.1: Region S and its Component when D0
m,n < 0.75 with (M1,M2,M3,M4) =

(1,3,2,1).

As noted, a unique trajectory in R, corresponds to each of the 35

pairs of samples. To illustrate this, let us take the first distinct pair,

{{10,30,30},{30,40,40,50}}, repeated r1 = 3 times, for which Dm,n = 0.75 = q.

Using the labels Zi, i= 1, . . . ,7 of the observations in the pooled sample, these three

pairs are

{{10(z1),30(z2),30(z3)},{30(z4),40(z5),40(z6),50(z7)}},

{{10(z1),30(z2),30(z4)},{30(z3),40(z5),40(z6),50(z7)}},

{{10(z1),30(z4),30(z3)},{30(z2),40(z5),40(z6),50(z7)}}.

with trajectories,

{(0,0),(1,0),(2.0),(3,0),(3,1),(3,2),(3,3),(3,4)},

{(0,0),(1,0),(2,0),(2,1),(3,1),(3,2),(3,3),(3,4)},

{(0,0),(1,0),(1,1),(2,1),(3,1),(3,2),(3,3),(3,4)},

illustrated in Figure 2.2 (a),(b) and (c), respectively.

From (2.2.10), we have that, T1 = 1,T2 = 4,T3 = 6,T4 = 7 and one can di-

rectly check that (2.A.11) gives the value Dm,n = 0.75, which coincides with

the (observed) value q = 0.75, obtained from the edfs of the distinct pair
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(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

Figure 2.2: Possible trajectories in the grid R with ties (Example 2.3).

{{10,30,30},{30,40,40,50}}.

In this particular example, under the condition that D0
m,n < 0.75, (2.2.9) and

(2.2.10) settle the subset S in lattice R, the shape of which is shown in Figure 2.1a.

By further applying (2.2.11), it is not hard to find the fact that N , the number of

pairs of samples for which D0
m,n < 0.75, is equal to 30, which could also be found by

exhausting all the possible ways of draws.

We provide another example to illustrate Proposition 2.2.

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

Figure 2.3: Possible trajectories in grid R with ties (Example 2.4).

Example 2.4. Given two samples, X = {30,30,50} and Y = {10,30,40,40}, draw-

ing from the pooled sample Z in Example 2.3, for which the unweighted two-sided

KS statistic q = 1/3< 0.75. Applying the same approach as in Example 2.3, we find

that there are three possible corresponding trajectories, as shown in Figure 2.3. Fur-

thermore, the shape of S in Figure 2.1a shows that all 3 corresponding trajectories

are subsets of S.

Computing the p-value based on the recursion formula (2.2.11) can be further

optimized to improve accuracy and numerical stability, in the spirit of Viehmann

(2021). To achieve this, we alternatively define the number JS(i, j) as the proportion
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of the trajectories from (0,0) to (i, j) that do not fully stay inside of the subset S.

Then the p-value P is directly expressed as P = JS(m,n). In addition, it is not

difficult to see that JS(i, j) = 1−BS(i, j)/
(i+j
i

)
. Hence, one can further rewrite

(2.2.11) as the recursion formula:

JS(i, j) = 1 +1S(i, j)[ i

i+ j
JS(i−1, j) + i

i+ j
JS(i, j−1)−1] for (i≥ 1, j ≥ 1)

(2.2.12)

with starting values JS(0, j) = 1−1S(0, j) and JS(i,0) = 1−1S(i,0). To implement

(2.2.12), an algorithm containing a loop with index l is designed to compute JS(i, j)

with i+j = l+1. Note that each step of the algorithm would only involve computing

the weighted averages of floating numbers between 0 and 1, hence there is no loss of

accuracy in each step, which ensures the accuracy of P .

2.2.3 The Asymptotic Distribution of Dm,n

It is well known that when samples are assumed from continuous distributions with

cdf F and G, ∆m,n is distribution-free under the null hypothesis. When m,n→∞

and m/(m+n)→ λ ∈ (0,1), the asymptotic distribution of the unweighted ∆0
m,n

(also D0
m,n) coincides with the famous Kolmogorov distribution,

P
{√

nm

n+m
∆0
m,n ≤ x

}
= 1−2

∞∑
k=1

(−1)k−1e−2k2x2 (2.2.13)

When the underlying null distributions F = G are purely discrete, Eplett (1982)

shows that, the unweighted ∆0
m,n weekly converge to a Gaussian process. While

this result is theoretically useful, it is less appealing for numerical purposes, since

in reality, we do not have any knowledge of F or G and whether F =G. Therefore,

the distribution of ∆0
m,n is unobservable. The general case when F and G may be

continuous, discrete or mixed and F ̸=G seems not to have been considered jointly

in the literature, and our goal here will be to fill in this gap and provide a closed-form

expression for the asymptotic distribution of the unweighted permutation test D0
m,n.

The proof of our formula given in Theorem 2.5 is based on several results. First, we

recall the results of van der Vaart and Wellner (2023), who show that the two-sample

and one-sample KS tests converge to a Brownian bridge. Second, based on the latter

convergence, we show that the explicit formula of Dimitrova et al. (2020) for the
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asymptotic distribution of the unweighted one-sample KS test, assuming arbitrary

null distribution, applies also to the two-sample case (see Theorem 2.5 and its proof

in Appendix 2.A).

Let us assume that m/(m+ n) → η ∈ (0,1) when m,n → ∞. Denote by

E(x) = ηF (x) + (1− η)G(x). By Theorem 2.1, when Xm and Yn come from F

and G, the pooled sample Zm+n = (X1, . . . ,Xm,Y1, . . . ,Yn) in the unweighted KS

test Dm,n behaves as if it directly comes from the pooled distribution E.1 Clearly,

any assumption on the jump structure of F and G is valid for the jump structure of

E. Therefore, we can assume that, E has a jump structure and shape, as defined in

Dimitrova et al. (2020) for F in the one-sample case. More precisely, assume that E

has finite number of jumps Λ, occurring at points xl, l= 1, . . . ,Λ, with E(xl−) = f2l−1

and E(xl) = f2l. And we distinguish between increasing segments, i.e. f2l−2 < f2l−1,

and flat segments, i.e. f2l−2 = f2l−1. Additionally, we set f0 = 0 and f2Λ+1 ≡ 1 to

complete the sequence.

Denote by ν1,ν2, . . . the number of increasing segments appearing consecutively,

and by ω1,ω2, . . . the number of flat segments appearing consecutively. Without loss

of generality, we assume there are p groups of increasing segments and flat segments,

i.e. Λ = ν1 +ω1 + · · ·+νp+ωp, which allows all the jumps xl to appear in the following

order

{x1, . . . ,xν1 ,xν1+1, . . .xν1+ω1 ,xν1+ω1+1, . . . ,xν1+ω1+ν2 ,xν1+ω1+ν2+1, . . . ,

xν1+ω1+ν2+ω2 , . . . ,xν1+ω1+···+ωp−1+1, . . . ,xν1+ω1+···+ωp−1+νp ,

xν1+ω1+···+ωp−1+νp+1, . . .xν1+ω1+···+ωp−1+νp+ωp}

(2.2.14)

where ω1 ≥ 0, ν1 ≥ 0, ω1 +ν1 > 0; νl > 0, l = 2, . . . ,p, ωl > 0, l = 2, . . . ,p−1; ωp ≥ 0.

Based the above framework, we now give the asymptotic distribution as follows:

Theorem 2.5. Given the realization of Xm and Yn coming from F and G re-

spectively, denote by Φ(x) the limiting distribution of P(
√

nm
n+mD

0
m,n ≤ x) when

m,n → ∞ with m/(m+ n) → η ∈ (0,1) and W (·) ≡ 1. If the joint distribution

E(x) = ηF (x) + (1−η)G(x) has a structure of jumps as in (2.2.14), under the null

1This consideration relies on Theorem 2.1, and it fails to hold in a more general case. See more
discussion in Chung and Romano (2013).



2.2. The Two-sample KS and Kuiper Test 36

hypothesis, when f2Λ = f2Λ+1,

Φ(x) =
∞∑

j1=−∞
· · ·

∞∑
jp=−∞

(
(−1)j1+···+jp

)
c

∫ x

−x
· · ·
∫ x

−x
eψdz1 · · ·dz2vp+wp−1, (2.2.15)

where

c=
p∏
i=1

( νi∏
l=1

(f2(vi−1+wi−1+l)−1−f2(vi−1+wi−1+l)−2)−1/2

(f2(vi−1+wi−1+l)−f2(vi−1+wi−1+l)−1)−1/2
)

×
(
ωi∏
l=1

(
f2(vi+wi−1+l)−f2(vi+wi−1+l)−1

)−1/2
)

(2π)− 2vp+wp−1
2 ,

(2.2.16)

and

ψ =− 1
2

p∑
i=1

{ νi∑
l=1

[(z2(vi−1+l)+wi−1− z2(vi−1+l)+wi−1−1)2

f2(vi−1+wi−1+l)−f2(vi−1+wi−1+l)−1

+
(z2(vi−1+l)+wi−1−1− (−1)j(vi−1+l)z2(vi−1+l)+wi−1−2−2xj(vi−1+l))2

f2(vi−1+wi−1+l)−1−f2(vi−1+wi−1+l)−2

]

+
ωi∑
l=1

[ (z2vi+wi−1+l− z2vi+wi−1+l−1)2

f2(vi+wi−1+l)−f2(vi+wi−1+l)−1

]}
,

(2.2.17)

with ν0 = ω0 = 0;ν0 = w0 = 0;vi = ∑i
k=1 νk;wi = ∑i

k=1ωk,vp +wp = Λ, and z0 =

z2vp+wp = 0.

Furthermore, when f2Λ < f2Λ+1 and that vp+wp = Λ, one only need to substitute c′

for c and ψ′ for ψ in (2.2.15) to compute Φ(x), where

c′ = c(f2Λ+1−f2Λ)−1/2(2π)−1/2 and ψ′ = ψ+
(−(−1)jvp+1z2vp+wp−2xjvp+1)2

f2Λ+1−f2Λ
(2.2.18)

Corollary 2.6. When E(x) is purely discrete with jumps Λ, the limiting distribution

Φ(x) in (2.2.15) becomes:

Φ(x) = (2π)− Λ−1
2

Λ∏
l=1

(f2l−f2l−1)− 1
2

∫ x

−x
· · ·
∫ x

−x
exp

−1
2

 Λ∑
l=1

(zl− zl−1)2

f2l−f2l−1

dz1 · · ·dzΛ−1.

(2.2.19)

Note that in view of Theorem 2.1, (2.2.19) also applies to the limiting distribu-

tion of ∆0
m,n, it is a closed-form explicit alternative to the result of Eplett (1982),
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who only states convergence to a Gaussian process.

Remark 2.7. Let us note that, as long as Λ = o((m+n)− 1
2 ), the jump structure

fl, l = 1, . . . ,2Λ, of E can be directly estimated from the pooled sample Zm+n as

the corresponding frequency, so Theorem 2.5 and Corollary 2.6 can be applied to

compute p-values of Dm,n, for large m and n. This is illustrated in Example 2.13,

Section 2.3. In addition, for a fixed x, since ∂
∂fi

Φ(x) are bounded and the estimators

f̂l converge to fl at the rate Op((m+n)− 1
2 ) for l = 1, . . . ,2Λ, the error |Φ(x)− Φ̂(x)|

introduced by estimation is also of order Op((m+n)− 1
2 ), where Φ̂(x) is computed

by (2.2.15) based on f̂l, l = 1, . . . ,2Λ.

2.2.4 The Two-sample Kuiper Test

The (unweighted) two sample Kuiper statistic (Kuiper, 1960) can also be used to

test the null hypothesis H0 :F (x) =G(x) for all x, against the alternative hypothesis

H1 : F (x) ̸=G(x) for at least one x. It is defined as

ςm,n = sup
x∈R

[Fm(x)−Gn(x)]− inf
x∈R

[Fm(x)−Gn(x)], (2.2.20)

and can be alternatively expressed as

ςm,n ≡∆0+
m,n+ ∆0−

m,n, (2.2.21)

where ∆0+
m,n and ∆0−

m,n are the one-sided two-sample KS tests defined in (2.2.1). As

shown by Kuiper (1960), the Kuiper statistic is invariant to cyclic transformations,

in particular, invariant under all shifts and parametrizations on the circle (as shown

in Example 2.12). It makes the Kuiper test ideal for examining pairs of circular and

seasonal data. Furthermore, this property guarantees that the Kuiper test is equally

sensitive across the entire support of the distribution, i.e., as sensitive in the tails as

around the median (Press et al., 2007). The property of uniform sensitivity is also

supported by various numerical studies, which have pointed out that, the Kuiper

test has equal or higher power than the two-sample Kolmogorov-Smirnov, Cramer-

Von mises and Anderson-Darling tests in some cases, for instance, when the first

sample comes from a Normal distribution and the second sample comes from the

scale shifted first distribution (Foutz and Birch, 1982), when the first sample from a

Normal and the second from a mixture of normal (Dowd 2020 and Wy lomańska et al.
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2020). Lemeshko et al. (2014) have also shown that in testing simple hypotheses,

the Kuiper and Watson goodness-of-fit tests have an advantage in power over the

Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling tests.

2.2.5 Computing Exact P values of the Kuiper Test

As highlighted in (2.2.21), the Kuiper test is closely related to the two-sample KS

test. Hence, to calculate the p-value of the (unweighted) two-sample Kuiper test,

we need to extend the recursion formulas (2.2.11) and (2.2.12) for computing the

p-value of the KS test. Note that this step is also a generalization of the approaches

by Maag and Stephens (1968) and Hirakawa (1973), which only apply to equally

large data samples without ties. In this section, we will briefly introduce the main

procedure behind the proposed method.

For a particular realization of an ordered pooled sample Zm+n, similarly as in

(2.2.5), the p-value for the permutation Kuiper test is defined as the probability

P ′ = P(Vm,n ≥ q|Zm+n) , (2.2.22)

where Vm,n is the permutation Kuiper statistic, defined as in (2.2.20), on the space

Ω, for two samples X̃m and Ỹn of sizes m and n, randomly drawn from Zm+n

without replacement, and q ∈ [0,2].

Once again, the p-value of the permutation Kuiper test is asymptotically consis-

tent with that of the Kuiper test, since we can also establish the result of consistency

between the critical values of the Kuiper and its permutation statistics, similar to

Theorem 2.1.

Theorem 2.8. Theorem 2.1 remains valid if one correspondingly substitute ∆m,n

and Dm,n with ςm,n and Vm,n.

Following the same logic as in (2.2.7), the p-value in (2.2.22) can be expressed

as P ′ = 1− N ′

C , where N ′ is the number of pairs, Fm(x,ω) and Gn(x,ω), drawn from

the pooled sample Zm+n, for which Vm,n < q. And in order to compute the p-value,

P ′, it suffices to find N ′, which is given in the following proposition.

Proposition 2.9. The number N ′, of pairs Fm(x,ω) and Gn(x,ω) for which Vm,n <
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q is calculated as:

N ′ =


⌈qr⌉∑
i=1

N( ir ,
⌈qr⌉−i+1

r )−
⌈qr⌉−1∑
i=1

N( ir ,
⌈qr⌉−i
r ) q > 1/r

N(1
r ,

1
r ) q ≤ 1/r

(2.2.23)

where r= lcm(m,n) is the least common multiple of m and n, N(a,b) represents the

total number of pairs Fm(x,ω) and Gn(x,ω), drawn from the pooled sample Zm+n,

for which D0+
m,n < a and D0−

m,n < b, D0+
m,n and D0−

m,n are the one-sided unweighted KS

tests, defined on the space Ω, and a and b take values {0, 1
r ,

2
r , . . . ,1}. In particular,

N(a,b) coincides with the number of trajectories that lie wholly in a subset, S(a,b)

of R, defined as

S(a,b) =R1(a,b)∪R2(a,b)∪ ...∪Rk(a,b), (2.2.24)

where Rl(a,b), l = 1, ...,k, is a set of points (i, j) ∈R, such that

min{i : (i/m− j/n)< a,i+ j = Tl−1} ≤ i≤max{i : (j/n− i/m)< b,i+ j = Tl},

min{j : (j/n− i/m)< b,i+ j = Tl−1} ≤ j ≤max{j : (i/m− j/n)< a,i+ j = Tl}

(2.2.25)

Remark 2.10. When 1< q < 2, the alternative for calculating the number N ′ is

N ′ =
r+1∑

i=⌈qr⌉−r
N( i

r
,
⌈qr⌉− i+ 1

r
)−

r∑
i=⌈qr⌉−r

N( i
r
,
⌈qr⌉− i

r
), (2.2.26)

which is a simplification of (2.2.23), and therefore leads to a more efficient calculation

of the p-value when q > 1.

Therefore, to obtain N ′, which is then used for computing the p-value P ′ =

1−N ′/C for the Kuiper test, we could compute the numbers N(a,b) in (2.2.23)

via the number BS(m,n) in (2.2.11) substituting S with S(a,b). The algorithm

is designed to have two separate loops. In the first loop, for a fixed index i, the

values N( ir ,
⌈qr⌉−i+1

r ) and N( ir ,
⌈qr⌉−i
r ) are computed. In the second loop, N ′ is then

computed applying the first line of (2.2.23). In the C++ and R implementation,

appropriate scaling is applied to these two loops, which leads to a loss of accuracy

as in the case of KS test.
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As in the case of the KS test, we further optimize the accuracy of the algorithm,

following the idea of Viehmann (2021). To do so, we define P (a,b) as the probability

of D0+
m,n < a and D0−

m,n < b, i.e., P (a,b) = 1−N(a,b)/C. Then, (2.2.23) could be

rewritten as a formula of the p-value P ′

P ′ =


⌈qr⌉∑
i=1

P ( ir ,
⌈qr⌉−i+1

r )−
⌈qr⌉−1∑
i=1

P ( ir ,
⌈qr⌉−i
r ) q > 1/r

P (1
r ,

1
r ) q ≤ 1/r

(2.2.27)

Note that each value P (a,b) in (2.2.27) can be directly computed from (2.2.12)

using the number JS(m,n), substituting the set S with S(a,b), defined in (2.2.24).

Therefore, the algorithm contains one loop with respect to one index i, for computing

P ( ir ,
⌈qr⌉−i+1

r ) and P ( ir ,
⌈qr⌉−i
r ).

Remark 2.11. Further generalizations to the weighted two-sample Kuiper tests are

computational intensive, since D0+
m,n and D0−

m,n may not be the integer multiples of

1/r, which is the condition required for deriving (2.2.23) from (2.A.15).

We have implemented our more general approach in the C++ function

kuiper2sample cpp, kuiper2sample c cpp, the R function Kuiper2sample and in

Mathematica, that applies to arbitrary data samples, possibly with ties.

2.3 Numerical Implementation and Examples
As mentioned in Sections 2.2.2 and 2.2.5, we have implemented the proposed ef-

ficient and exact calculation of p-values in C++, R and Mathematica (Wolfram

Research, Inc, 2024). The Mathematica implementation, following (2.2.11) and

(2.2.23), allows for computing the KS and Kuiper p-values with arbitrary preci-

sion, but at a relatively high computational cost (see Appendix 2.D), especially

when sample sizes are very large. We use the latter p-values as the true val-

ues for comparison purposes. We have implemented (2.2.12) and (2.2.11) cor-

respondingly in the C++ functions ks2sample cpp and ks2sample c cpp, and

(2.2.27) and (2.2.23) correspondingly in the functions kuiper2sample cpp and

kuiper2sample c cpp. The R function KS2sample wraps the C++ functions

ks2sample cpp and ks2sample c cpp , whereas the R function Kuiper2sample

wraps the C++ functions kuiper2sample cpp and kuiper2sample c cpp. We il-

lustrate the use of KS2sample and Kuiper2sample in Appendix 2.B.
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As illustrated in Section 2.4 and Appendix 2.D, the R functions KS2sample

and Kuiper2sample yield p-values with high precision and very small run times,

compared with other implementations in the main-stream statistical software,

which makes these functions preferable for practical use. For example, the func-

tion ks2sample cpp computes KS p-values following (2.2.12) with at least 14 but

typically 16–17 correct digits for sample sizes m+ n ≤ 100,000. The function

kuiper2sample cpp provides Kuiper p-values with at least 7 and up to 14 correct

digits (see Section 2.4).

As we highlighted, the Kuiper test is also applicable for testing circular data,

which is illustrated in the following example.

Example 2.12. Assume we have two discrete samples sample3 and sample4 ob-

served on a circle, containing angular observations in degrees or radians. The

sample3 and sample4 contain 120 and 149 observations respectively, with all the

observations equal to one of four angles, as shown in Figure 2.4.

O Number of Observations in sample3
Number of Observations in sample4

30 49

30
50

30
40 30

10

x

y

Figure 2.4: The position of observations in sample3 and sample4.

The sample3 and sample4 contain the observations 0, π
2 , 7π

6 , 7π
4 , which are

measured from the axis Ox anticlockwise, with multiplicities 30, 30, 30, 30 for

sample3 and 49, 50, 40, 10 for sample4. To test whether the circular data from

sample3 and sample4 come from the same distribution, one needs to use the function

Kuiper2sample. Hence, the following code should be used:

R> sample3 <- c(rep(0,30),rep(pi/2,30),rep(7*pi/6,30),rep(7*pi/4,30))

R> sample4 <- c(rep(0,49),rep(pi/2,50),rep(7*pi/6,40),rep(7*pi/4,10))

R> Kuiper2sample(x = sample, y = sample4)
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Two-sample Kuiper Test With Ties

data: sample3 and sample4

v = 0.18289, p-value = 0.00611

alternative hypothesis: two-sided

Note that the result from the Kuiper test does not depend on the choice of

coordinate system. For example, if we choose a different axis, e.g., axis Oy, and

record the observed angles clockwise, the result will be the same, as illustrated by

the following code.

R> sample3b <- c(rep(0,30),rep(pi/2,30),rep(3*pi/4,30),rep(4*pi/3,30))

R> sample4b <- c(rep(0,50),rep(pi/2,49),rep(3*pi/4,10),rep(4*pi/3,40))

R> Kuiper2sample(x = sample3b, y = sample4b)

Two-sample Kuiper Test With Ties

data: sample3b and sample4b

v = 0.18289, p-value = 0.00611

alternative hypothesis: two-sided

In the next example, we provide a comparative study of the asymptotic p-value in

(2.2.15) and the exact p-value when the data samples contain ties.

Example 2.13. Let us assume that we have a realization of the order statistic Zm+n

as follows:

z1 = z2 = · · ·= z1/2(m+n) <z1/2(m+n)+1 < · · ·<z4/5(m+n) = z4/5(m+n)+1 = · · ·=−zm+n

(2.3.1)

Such a sample Zm+n may come from, e.g. an excess of loss reinsurance contract,

with retention level M and limiting level L, see e.g. Example 3.1 in Dimitrova

et al. (2020). In order to apply (2.2.15) to compute the asymptotic p-value, one has

to extract the jump structure of E from (2.3.1), which yields Λ = 2, f̂0 = f̂1 = 0,

f̂2 = 0.5, f̂3 = 0.8, f̂4 = f̂5 = 1, ω1 = ω2 = 1, ν1 = 1 and v0 = 0, v1 = 0, v2 = 1, w0 = 0,

w1 = 1, w2 = 1. Note that the change of the sample sizes m and n does not affect the
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inferred jump structure of E. According to (2.2.15), the corresponding asymptotic

distribution of the KS test is

Φ̂(x) = [
3∏
l=1

(fl+1−fl)]−
1
2

∞∑
j=−∞

(−1)j
2π

∫ x

−x

∫ x

−x
eψdz1z2, (2.3.2)

where

ψ =−1
2[ z2

1
f̂2− f̂1

+ z2
2

f̂4− f̂3
+ z2− (−1)jz1−2jx

f̂3− f̂2
].

To compare the asymptotic p-value with the exact p-value, we need to imple-

ment 1− Φ̂(x) in (2.3.2) and compare with P{Dm,n ≥ x
√

n+m
nm } for different combi-

nations of m and n. In this example, these p-values are computed using Mathematica

and R function KS2sample respectively, for x= 1. The results are presented in Table

2.2. It is clear that when m+n increases, regardless of the value of η, the exact

p-values numerically converge to the asymptotic p-value. Their relative error is less

than 1% when m+ n ≥ 40,000. Comparing the run times and accuracy, we see

that using the asymptotic formula leads to significant efficiency gains already for

m+n≥ 90,000.

2.4 Comparison with Existing Statistical Software

The purpose of this section is to compare the numerical performance of the methods

for computing KS and Kuiper p-values presented in Section 2.2 and implemented

in the R functions KS2sample and Kuiper2sample. In Sections 2.4.1 and 2.4.2, we

first summarize the existing implementations of the two-sample KS and Kuiper tests

in the mainstream statistical software. We discuss their functionalities and select

some representative implementations of the two-sample KS and Kuiper tests which

we then compare with our R functions. In order to assess the accuracy, we use

our Mathematica implementations of KS and Kuiper tests to compute the true p-

values and estimate the relative error for all competing implementations. For speed

comparison, we also provide the corresponding CPU run times on a machine with a

3.00GHz Core i7-9700 processor with 32GB RAM, running Windows 10.

2.4.1 Comparison of Different Implementations for the KS Test

This section summarizes the existing software and packages that implement the

two-sample KS test and demonstrates the advantages of our R function KS2sample.
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η m+n q Exact Asympt. Rel.err(%)
0.2 2,500 0.05 0.171417114 (0.00) 0.174525238 1.78

10,000 0.025 0.172856075 (0.01) (1) 0.96
40,000 0.0125 0.173661725 (0.17) 0.49
90,000 0.008333 0.173943119 (0.90) 0.33

250,000 0.005 0.174172870 (7.13) 0.20
1,000,000 0.0025 0.174347892 (114) 0.10

0.3 2,500 0.043644 0.167449717 (0.00) 0.174525238 4.05
10,000 0.021822 0.171025013 (0.02) (1) 2.01
40,000 0.010911 0.172937728 (0.24) 0.91
90,000 0.007274 0.173593027 (1.20) 0.53

250,000 0.004364 0.173813623 (9.49) 0.41
1,000,000 0.002182 0.174214245 (266) 0.18

0.4 2,500 0.040825 0.168216436 (0.00) 0.174525238 3.61
10,000 0.020412 0.172763135 (0.02) (1) 1.01
40,000 0.010206 0.173546483 (0.27) 0.56
90,000 0.006804 0.173817964 (1.36) 0.41

250,000 0.004082 0.174038893 (11.1) 0.28
1,000,000 0.002041 0.174206779 (186) 0.18

Table 2.2: Exact p-values P{Dm,n ≥ q} when q =
√

n+m
nm and m

m+n = η obtained from
KS2sample and asymptotic p-values 1− Φ̂(1) computed by implementing (2.3.2)
in Mathematica. Numbers in () are relative run times to the Mathematica im-
plementation of (2.3.2).

To the best of our knowledge, the majority of the existing implementations of

the KS test have at least one of the following limitations: ties in the sample are

ignored; approximate or resampling methods rather than exact methods are used

to compute p-values; no flexibility with respects to the choice of weight function is

allowed. The first limitation usually results in a higher p-value when the pooled

sample has ties, therefore making the test too conservative when the data samples

are discrete or mixed. The second limitation results in loss of accuracy. The third

limitation appears in all the alternative implementations that we have discussed, and

it affects the power of the KS test as evidenced by the examples in Appendix 2.C.

First, we summarize the implementations of computing p-values for the weighted

KS test. We find that the R function ks in the package WRS (Wilcox and

Schönbrodt, 2022, see also Wilcox 2012) provides an exact p-value for the KS test

with the Anderson-Darling weight, as defined in (2.2.1). Other than that, the R

package Ecume (de Bezieux, 2024) implements a different weighted KS test, i.e.,

gives weights on the tested samples separately, rather than on the edf of the pooled
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sample W (Em+n(x)) as defined in (2.2.1).

Secondly, we focus on the methods to compute p-values for the unweighted KS

test, used in alternative software implementations. In order to classify the latter,

we introduce four descriptors taking values 1, 2, 3, 4 (as shown in Table 2.3) based

on two criteria: whether ties are, or are not allowed, and whether the result is an

exact or approximate p-value.

Table 2.3: Descriptors for the unweighted KS test.

No Ties Allow Ties
Non-exact 1 (Approximation) 3 (Resampling)
Exact 2 4

The result of this classification is as follows.

1 HypothesisTests.jl (Lin et al., 2019) in Julia (Bezanson et al., 2024), Excel package

Real Statistics Resource Pack (Zaiontz, 2024, see function KS2TEST)

2 S-PLUS (TIBCO Software Inc., 2010, see function ks.gof), Python package SciPy

(Virtanen et al., 2020, see function scipy.stats.ks 2samp)

1,2 SAS (SAS Institute Inc., 2023) procedure PROC NPAR1WAY, Stata (Stata-

Corp, 2023, see function ksmirnov), package NSM3 (Schneider et al., 2023,

see function pKolSmirn), package dgof (Arnold and Emerson, 2022, see

function ks.test), Mathematica (Wolfram Research, Inc, 2024, see function

KolmogorovSmirnovTest)

3 R package twosamples (Dowd, 2023, see function ks test)

1,3 SPSS (IBM Corp, 2022), R package Ecume (de Bezieux, 2024, see function

ks test)

1,2,3 Project Apache Commons Math (Apache Software Foundation, 2024, see

package KolmogorovSmirnovTest) in Java (Oracle Corporation, 2024)

4 MAPLE (Waterloo Maple Inc., 2024) package KSNstat (Brown, 2011), StatsDirect

(StatsDirect Ltd., 2024), StatXact (Cytel Inc., 2019), R package WRS (function

ks)

1,2,3,4 R package stats (R Core Team, 2024, see functions ks.test or psmirnov)
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For example, SPSS KS implementation is classified by 1,3, meaning it pro-

vides two ways of computing p-values, one based on an asymptotic formula (hence

descriptor 1), and the other one based on resampling (hence descriptor 3). The

characteristics of the different methods that lead to their classification are discussed

next.

Firstly, approximate calculations (descriptor 1) are mainly based on the asymp-

totic formula proposed by Smirnov (1933) (only Stata also uses normal approxima-

tion) which assumes that samples are drawn from a continuous distribution, thus it

naturally fails to calculate the correct p-value when there are ties. Even if the data

samples are continuous, the calculated p-values by the approximation methods are

accurate only when both sample sizes are sufficiently large, and usually have non-

negligible errors compared to the true p-value when samples are small. Secondly,

resampling-based implementations (descriptor 3) compute p-values by simulating

the values of KS statistics for pairs of samples that are randomly splitted from the

pooled sample. Hence this method allows the pooled sample to have ties. (This does

not apply to the resampling implementations in R packages stats, NSM3 and dgof,

though they provide calculation options for resampling estimations, they neither are

available for data with ties nor give p-value with large biases). However, the perfor-

mance of the resampling method depends on the number of bootstrapping iterations.

If the latter number increases, the accuracy also increases as does the computational

cost. In practice, (as we have also shown in Table 2.4), the implementations under

the category of descriptor 3 are neither more accurate nor are they more efficient,

compared with implementions using the exact methods, falling under the category

of descriptors 2 and 4.

Hence, the most suitable choice for computing the p-value of the unweighted KS

test narrows down to implementations with descriptor 4, i.e., the exact methods al-

lowing data samples containing ties. These implementations rely on one of the three

methods: Nikiforov (1994, KSNstat in MAPLE and StatsDirect), Hilton et al. (1994,

StatXact) and Schröer and Trenkler (1995, R function ks in the package WRS and

the function psmirnov in the package stats). We have found that Nikiforov (1994),

Hilton et al. (1994), and Schröer and Trenkler (1995) have independently arrived

at a similar algorithm for computing KS test p-values, based on the recurrence for-
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mula (2.2.11) for finding the number of trajectories that lie in the specific subset of

integer-valued grid R (see Section 2.2.2).

To summarize, in order to calculate the exact p-value of the two-sided un-

weighted two-sample KS test, the R functions ks from the package WRS and

psmirnov from the package stats, can be applied for arbitrary data samples that may

come from a continuous, discrete or mixed distribution. Furthermore, psmirnov also

incorporates both (2.2.11) and (2.2.12) for the unweighted KS test, where (2.2.12)

ensures higher accuracy. As for the weighted KS test, only the R function ks calcu-

lates the exact p-value, only for the Anderson-Darling weight and only for samples

from a continuous distribution.

Next, we demonstrate the advantages of our R function KS2sample compared

with the implementations listed above. For this purpose, we compare KS2sample

with the function ks test from the package twosamples, a representative of resam-

pling estimation (descriptor 3), the functions ks and psmirnov, representing exact

p-value calculation (descriptor 4). We use the data samples from Example 2.17, in

order to compare the speed and accuracy of computing the required p-value, using

the functions listed in Table 2.4, where Mathematica stands for our Mathematica

implementation.

Unweighted Anderson-Darling weight
Mathematica (2.0317) 2.39402603196511×10−7 (2.0530) 6.49544137675074×10−7

KS2sample (0.0084) 2.39402603196511×10−7 (0.0144) 6.49544137675074×10−7

psmirnov (0.0612) 2.39402603196511×10−7 (-) -
KS2sample.c (0.0032) 2.39402605184402×10−7 (0.0053) 6.49544139141867×10−7

psmirnov.c (0.0487) 2.39402604962358×10−7 (-) -
ks (-) NaN (-) NaN

twosamples (978.41) 1.0 ×10−6 (-) -

Table 2.4: The calculated p-values for unweighted and weighted KS tests in Example 2.17
using different implementations, with CPU run times shown in paratheses in
seconds, for computing 10 times the p-value. Number of bootstrapping itera-
tions = 106 in the package twosamples.

Recall that both KS2sample and psmirnov include two methods, a direct com-

putation of the p-value P defined in (2.2.5), using (2.2.12) and an indirect one

computing the complementary p-value 1−P as in (2.2.7), using (2.2.11). For the

latter method, we label both functions with ”.c” and give the corresponding p-value

P . The same labelling is also used in Appendix 2.D.

Based on the results in Table 2.4, we can see that the unweighted p-values pro-
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duced by KS2sample and psmirnov using (2.2.12), have 17 correct digits compared

with the true p-value from Mathematica, and the p-values from both functions using

(2.2.11), have 8 correct digits compared with the true p-value. Although it is claimed

by the authors of the package WRS that the function ks is suitable for computing

KS p-values with no weight or Anderson-Darling weight, it does not work for sample

sizes m+n > 2500, as seen from Table 2.4, where m+n = 2700. We have further

tested the function ks, and have found out that when n+m< 2500, it is thousands

of times slower than KS2sample and hundreds of times slower than psmirnov in

terms of CPU time. In the package twosamples, the calculation is very slow (106

times slower than KS2sample) and produces a p-value with a large error. For the

above reasons, the function ks and the package twosamples are not included in our

further comparisons.

Therefore, in the sequel, we systematically compare the run time and the ac-

curacy of the functions KS2sample and psmirnov for the unweighted KS test and

continuous samples, i.e no ties. Since both KS2sample and psmirnov implement the

same recurrence formulas (2.2.11) and (2.2.12), their run times are not substantially

different regardless of whether there are ties or no ties in the samples. As for m

and n, we choose m+n = 100 and 500, to cover the case of small sample sizes,

2,500 and 10,000 for medium sample sizes and 50,000 and 100,000 for large sample

sizes. We choose the ratio of the smaller sample size to the sum of sample sizes,

η := m
m+n = 0.2, 0.3, 0.4, 0.5, to cover correspondingly the cases of severely unbal-

anced (η = 0.2), unbalanced (η = 0.3), relatively balanced (η = 0.4) and perfectly

balanced (η = 0.5) sample sizes. For each combination of sample sizes m and n, the

functions KS2sample and psmirnov are used to calculate p-values P as defined in

(2.2.5), for some given values of q, with mi ≡ 1, i= 1, . . . ,m+n. The relative errors

and the CPU times (for 100 repeated evaluations) are summarized in Table 2.6,

which is given in Appendix 2.D.

The R functions KS2sample and psmirnov with implementation (2.2.12) typ-

ically provide 16–17 correct digits. In contrast, psmirnov with implementation

(2.2.11) fails to provide valid values when n+m≥ 10000, whereas KS2sample with

implementation (2.2.11) still provides p-values with an acceptable relative error.

However, Table 2.6 shows that the relative run time of psmirnov to KS2sample
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grows as m+n increases, despite the fact that the same recursive formulas (2.2.11)

and (2.2.12) are implemented in both functions. This can be explained by their

different computation complexity. Compared with KS2sample, psmirnov needs to

compute the number B in (2.2.11) or J in (2.2.12) for all points on the set R which

leads to a computation complexity O(n2), whereas KS2sample only computes B and

J for points in S, leading to complexity O(n3/2).

In conclusion, we show in Table 2.4 that the R function KS2sample is very

fast and accurate for both the unweighted and weighted KS tests. The only viable

alternative proves to be the function psmirnov in the package stats. In the thor-

ough comparison of the functions KS2sample and psmirnov, we have shown that

KS2sample provides equal or higher accuracy than psmirnov. However, psmirnov

has a higher computational complexity and is 1.8–900 times slower than the proposed

KS2sample for m+n≤ 100,000.

2.4.2 Comparison of Different Implementations for the Kuiper Test

The purpose of this section is to demonstrate the numerical performance of the

proposed R function Kuiper2sample and compare it with other existing software

and packages that implement the two-sample Kuiper test.

First, we summarize all the existing implementations that compute p-values of

the two-sample Kuiper test. These include the Python package Kuiper (Archibald,

2015), the STATA package CIRCSTAT (Cox, 1998), the Mathematica function

KuiperTest, the SAS procedure PROC NPAR1WAY, the Java software Advanced-

Miner (Algolytics Technologies, 2022, see the function Kuipertest therein), the R

package Kuiper.2samp (Ruan, 2018, see the function kuiper.2samp therein) and

the package twosamples (see the function kuiper test therein). Among all these

software, the function kuiper test from the R package twosamples is the only one

that uses the resampling method to calculate p-values, while all the rest use the

asymptotic method.

These two types of methods are similar to the asymptotic and resampling meth-

ods for computing the KS p-values, corresponding to the descriptors 1 and 3 in

Section 2.4.1. The asymptotic implementation provides high accuracy only for large

samples with no ties. When samples contain ties, the calculated p-value is larger

than the true value, which makes the Kuiper test too conservative. As for the re-



2.4. Comparison with Existing Statistical Software 50

sampling method, its accuracy and speed are only determined by the number of

bootstrapping iterations and are not affected by whether the samples have ties or

not. However, as we have previously shown in Table 2.4 for the KS test, the re-

sampling method is slow and inaccurate, hence will not be included in our further

comparisons.

We compare our R function Kuiper2sample with the R function kuiper.2samp

from the package Kuiper.2samp. The latter is a representative of the implementa-

tions using the asymptotic method. We provide the corresponding run times and

relative errors to the true p-values from our Mathematica implementation for the

Kuiper test, as we have done in Section 2.4.1.

Similarly as in Section 2.4.1, we choose the sample sizes m and n such that m+n

= 100, 500, 2,500, 10,000, 50,000 and 100,000 and the ratio of the smaller sample size

to the sum η := m
m+n = 0.2, 0.3, 0.4, 0.5, thus covering all the possible combinations of

data balancing and sample sizes. Recall that Kuiper2sample includes two methods,

a direct computation of the p-value P ′, defined in (2.2.22), using (2.2.27) and an

indirect one computing the complementary p-value 1−P ′, using (2.2.23). For the

latter method, we label both functions with ”.c” and summarize the corresponding

relative errors and CPU times for 5 repeated evaluations of the p-values in Table 2.7,

which is presented in Appendix 2.D.

In Table 2.7, we show that when m+ n ≤ 100000, Kuiper2sample provides

significantly more accurate results than kuiper.2samp. More preciously, for

Kuiper2sample, the relative error is typically less than 6× 10−5 and rarely up to

2× 10−4 for implementation (2.2.23), and is less than 2× 10−8 for implementa-

tion (2.2.27). Implementation (2.2.23) is 1.3–2.6 times faster than implementation

(2.2.27). The run time of both methods in Kuiper2sample grows as sample sizes

m+n increase, whereas the time of kuiper.2samp stays constant as it is asymptotic.

As discussed in Section 2.2.5, the first loop to calculate N ′ in (2.2.23) and the

loop to calculate P ′ in (2.2.27) have lengths related to the size of the least common

multiple of m and n, r= lcm(m,n). In both loops, given an index i, the computation

is with complexity O(n3/2). Hence the total complexity is O(n3/2r). Therefore, for

two pairs of samples with similar sample sizes, m close to m′ and n close to n′,

but with very different least common multiples r and r′, the running times may be
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substantially different. An example of this is shown in Table 2.5. When n = m,

i.e., the least common multiple is small (r =m), the execution time is low even for

large samples, however when n=m+1, i.e., they are relatively prime (r =mn), the

execution time is very high. When m is fixed and n ≈m, the execution time ratio

for two cases is approximately the ratio between the two least common multiples.

Thus for example, when m= 3000, one should expect that the run time for n=m+1

and that for n=m+2 is approximately 3000 and 1500 times slower than the speed

when n=m respectively. Therefore, for an efficient p-values computation with large

samples, it is ideal to have a high greatest common divisor of sample sizes.

Table 2.5: p-value of Kuiper test and the CPU time to compute 100 times using
Kuiper2sample when n=m, m+1 and m+2 and the observed value of statistic
q = 1.5

√
m+n
mn .

CPU time Calculated p.value
m n=m n=m+ 1 n=m+ 2 n=m n=m+ 1 n=m+ 2
30 0.00 0.07 0.04 0.102592 0.083416 0.105218
50 0.00 0.27 0.15 0.084878 0.115417 0.112476

150 0.04 5.32 2.70 0.155176 0.137201 0.137160
300 0.17 50.77 25.56 0.154374 0.142191 0.148842
500 0.42 207.11 103.71 0.152341 0.155741 0.154288

1500 3.12 4624.70 2328.81 0.158969 0.165930 0.163623
2000 5.28 10647.56 5359.13 0.169913 0.164047 0.165726
3000 11.55 34454.99 17353.53 0.164606 0.169488 0.167627

However in reality, a restriction on sample sizes is impractical. Thus for a user,

an alternative solution to avoid heavy computations for arbitrary m and n is to

approximate p-value by calculating p-values for close sample sizes of m′ ≈m,n′ ≈ n

but with large greatest common divisor. The validation of this approximation is

shown in Table 2.5, where p-values for n=m, m+ 1 and m+ 2 are compared. The

differences between these p-values decrease as m increases and become negligible for

large sample sizes.

2.5 Conclusion

In this work, we have considered an alternative formulation of the two sample KS

test, defined over the space of all possible pairs of samples, randomly drawn without

replacement from the pooled sample. We term this permutation KS test and show

in Theorem 2.1 that the difference between the critical values of the permutation KS
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test and the KS test defied in terms of the ecdfs of the two samples is asymptotically

negligible which therefore applies to the difference between their p-values. We use

this result to develop a numerically efficient recurrence method for computing p-

values of the two sample KS test. A similar method but for the unweighted KS test

has been independently considered by Nikiforov (1994), Hilton et al. (1994), and

Schröer and Trenkler (1995), but without any theoretical justification.

In this work, we have provided its thorough theretical justification, given by

Theorem 2.1 its formal description (see Sections 2.2.1 and 2.2.2) and related proofs

(see Appendix 2.A) that are missing from works of these authors (see e.g. Nikiforov

(1994)), followed by some enlightening examples. We have generalized Nikiforov’s

method to accommodate arbitrary weight functions. In Sections 2.2.2 and 2.2.5, we

have extended this method to compute exact p-values of the Kuiper test, for contin-

uous, discrete or mixed observations in the samples. To the best of our knowledge,

computation of exact Kuiper p-values has only been considered for the continuous

case and equal sample sizes (Maag and Stephens, 1968; Hirakawa, 1973). Follow-

ing Viehmann (2021), we have further enhanced the algorithm in order to improve

the accuracy of computing KS and Kuiper p-values. We have implemented the two

versions of the latter algorithm in the corresponding R functions KS2sample and

Kuiper2sample, and also using Mathematica. We illustrate the application of these

functions and the corresponding R code in Section 2.3.

In Section 2.2.3 we have derived a closed form formula (c.f. (2.2.15), Theorem

2.5) for the asymptotic distribution, of the two-sample Kolmogorov-Smirnov test,

Dm,n, as m
m+n → η ∈ (0,1) and m→∞, which is valid for arbitrary samples, allowing

ties in the observations. To the best of our knowledge, the asymptotic distribution

of the two-sample KS test has not been investigated in the literature in the case of

tied observations. Therefore, formula (2.2.15) and Theorem 2.5 represent a novel

contribution of theoretical and numerical importance. We have demonstrated (see

Example 2.13 and Table 2.2) that the asymptotic formula (2.2.15) is a numerically

efficient alternative to the exact method, for computing KS p-values when m+n≥

90,000.

Our next goal in this chapter has been to provide a thorough review of the

properties of the major statistical software packages that compute p-values of the
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two-sample KS and Kuiper tests (see Section 2.4). This review shows that among

the nineteen software implementations, only the function psmirnov provides p-

values with the same accuracy (up to 17 correct digits) as our proposed R function

KS2sample, but at a higher computation cost (see Table 2.4 and Table 2.6, Ap-

pendix 2.D). For the Kuiper test, Kuiper2sample is the only function that provides

exact p-values with at least 8 correct digits (see Table 2.7, Appendix 2.D).

Finally, we have also investigated the power, as a function of the ratio η = m
m+n ,

of the KS test for different weight functions, and of the Kuiper test. As can be

seen from Examples 2.18 and 2.19, Appendix 2.C, selecting the appropriate weight

function can significantly improve the power of the KS test for various combinations

of the sample sizes m and n (η = m
m+n), that are often determined before the obser-

vations are collected. As can also be seen in Figure 6, the power of the Kuiper test,

in the case of samples of discrete observations, is significantly higher than that of the

KS test, regardless of the choice of weight function. This highlights the relevance

of using the Kuiper test as an alternative to the KS test, and therefore of using the

function Kuiper2sample to compute its p-values.



Appendix for Chapter 2

2.A Proofs for Chapter 2
In order to prove Theorem 2.1, let us first give the following lemmas.

Lemma 2.14. Denote by µE the probability measure of a distribution with cdf E(x).

Let FW be a class of functions FW = {W (E(t))1(−∞,t](·) : t ∈ R}. If W is bounded

and uniformly continuous, given the samples Xm and Yn that come from F and G

respectively, we have

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
D+
m,n ≤ x) = P( sup

f∈FW

∫
fdBE ≤ x), (2.A.1)

where BE is a tight brownian bridge with respect to the measure µE.

Proof. Denote by µEm+n the empirical measure of the sample Zm+n, i.e. µEm+n =
1

m+n
∑m+n
l=1 δZl

, where δx is the Dirac measure. For any set A⊂ R,

δx(A) = 1A(x).

Denote by µ̃Fm the empirical measure of the sample X̃m, µ̃Gn the empirical measure

of the sample Ỹn, where X̃m and Ỹn are drawn at random from the pooled sample

Zm,n. Let us note that

sup
f∈F

∫
fd(µ̃Fm− µ̃Gn) =D0+

m,n, (2.A.2)

where F = {1(−∞,t](·) : t ∈ R}, and D0+
m,n is the unweighted one-sided KS test. Fur-

thermore, the class F has a square integrable envelope function 1R(·), under the

measures µF and µG, i.e.
∫
12
RdµF =

∫
12
RdµG = 1<∞. By applying Theorem 3.8.2

of van der Vaart and Wellner (2023), given the samples Xm and Yn come from F
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and G respectively, we have

√
nm

n+m
(µ̃Fm− µ̃Gn) w→ BE ,

on the class F almost surely, where w→ stands for weak convergence. By the Port-

manteau theorem (see e.g. Theorem 1.3.4 in van der Vaart and Wellner, 2023), it

follows that

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
D0+
m,n ≤ x) = P(sup

f∈F

∫
fdBE ≤ x). (2.A.3)

In addition, the limiting distribution in (2.A.3) is continuous with respect to x.

In a more general case

sup
f∈FW

∫
fd(µ̃Fm− µ̃Gn) = sup

x∈R
[F̃m(x)− G̃n(x)]W (E(x)). (2.A.4)

Since W is bounded, i.e. C = sup0<t<1W (t) <∞, the class FW has a square inte-

grable envelope function C1R(·), under the measures µF and µG, i.e.
∫
C212

RdµF =∫
C212

RdµG = C2 <∞. Again, by applying the Portmanteau theorem and Theorem

3.8.2 in van der Vaart and Wellner (2023), we have

lim
m,n→∞, m

m+n
→η

P(
√

mn

m+n
sup
f∈FW

∫
fd(µ̃Fm− µ̃Gn)≤ x) = P( sup

f∈FW

∫
fdBE ≤ x),

(2.A.5)

Since the probability in (2.A.3) is continuous with respect to x, the probability in

(2.A.5) is also continuous when W is continuous. Furthermore, we have

√
mn

m+n
| sup
f∈FW

∫
fd(µ̃Fm− µ̃Gn)−D+

m,n|

≤
√

mn

m+n
sup
x∈R

[
|F̃m(x)− G̃n(x)||W (Em+n(x))−W (E(x))|

]
≤
[√

mn

m+n
sup
x∈R
|F̃m(x)− G̃n(x)|

]
sup
x∈R
|W (Em+n(x))−W (E(x))|

By the Glivenko–Cantelli theorem with respect to Fm and Gn, we know that

supx∈R |Fm(x)−F (x)| → 0 and supx∈R |Gn(x)−G(x)| → 0 almost surely. Therefore

when m
m+n → η, supx∈R |Em+n(x)−E(x)| → 0 almost surely. Since W is uniformly
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continuous

sup
x∈R
|W (Em+n(x))−W (E(x))| → 0 (2.A.6)

almost surely. In addition, (2.A.3) implies that
√

mn
m+n supx∈R |F̃m(x)− G̃n(x)| =

Op(1), therefore

√
mn

m+n
| sup
f∈FW

∫
fd(µ̃Fm− µ̃Gn)−D+

m,n|
P→ 0,

as m,n→∞ and m
m+n → η. By the Portmanteau theorem and the continuity in

(2.A.5) with respect to x, we also have that

P(
√

mn

m+n
sup
f∈FW

∫
fd(µ̃Fm− µ̃Gn)≤ x)−P(

√
mn

m+n
D+
m,n ≤ x) P→ 0 (2.A.7)

The proof is completed by combining (2.A.5) and (2.A.7).

Lemma 2.15. When both Xm and Yn come from the pooled distribution E, if W

is bounded and uniformly continuous

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
∆+
m,n ≤ x) = P( sup

f∈FW

∫
fdBE ≤ x), (2.A.8)

Proof. It is well known that

√
m[µFm−µE ] w→ BE (2.A.9)

on the class F = {1(−∞,t](·) : t ∈ R}, where µFm denotes the empirical measure of

Xm. Due to the independence of Xm and Yn, we have

√
mn

m+n
[µFm−µGn ] w→

√
1−ηBE +√ηB′

E (2.A.10)

where BE and B′
E are two independent tight Brownian bridges with respect to the

measure E. Hence

√
mn

m+n
∆0+
m,n =

√
mn

m+n
sup
f∈F

∫
fd(µFm−µGn) d→ sup

f∈F

∫
fd(

√
1−ηBE +√ηB′

E).
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Combining the independence of BE and B′
E , we have

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
∆0+
m,n ≤ x) = P(sup

f∈F

∫
fdBE ≤ x).

Similarly as in the proof of Lemma 2.14, (2.A.5) and (2.A.7) also holds when sub-

stituting µ̃Fm− µ̃Gn and D+
m,n with µFm−µGn and ∆+

m,n. Thus (2.A.8) holds.

Proof of Theorem 2.1. Due to the Portmanteau theorem and the continuity in

(2.A.5), one only needs to show that

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
∆m,n ≤ x) = P( sup

f∈FW

|
∫
fdBE | ≤ x)

when both Xm and Yn are from the same distribution E and the conditional prob-

ability

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
Dm,n ≤ x) = P( sup

f∈FW

|
∫
fdBE | ≤ x)

given that Xm and Yn come from the F and G respectively. Since

∆m,n = max{∆+
m,n,∆−

m,n} and Dm,n = max{D+
m,n,D

−
m,n},

the proof is completed by combining Lemmas 2.14 and 2.15 and the continuous

mapping theorem.

In order to prove Proposition 2.2, let us first introduce the following lemma.

Lemma 2.16. For a pair of edfs Fm(x,ω) and Gn(x,ω), ω ∈ Ω and their corre-

sponding trajectory {(il, jl)}m+n
l=0 , the value of the KS statistic Dm,n = supx⟨Fm(x)−

Gn(x)⟩W (Em+n(x)), calculated based on the pair Fm(x,ω) and Gn(x,ω) can be al-

ternatively calculated as

Dm,n = max
1≤l≤k

d(iTl
, jTl

), (2.A.11)

where d(i, j) = ⟨i/m− j/n⟩W ((i+ j)/(m+n)), and the bracket expression ⟨·⟩ takes

either | · |, (·) or −(·) depending on the definition of the KS test in (2.2.1) and

Table 2.1 in Section 2.2.2.

Proof. In the ordered, pooled sample (z1 ≤ z2 ≤ . . .≤ zm+n), according to the defini-

tion of ml and Tl, zTl
< z1+Tl

is always true when l < k. Hence, (zTl
≥ zi) =⇒ (Tl ≥ i)
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for 1≤ l ≤ k (it is also true for l = k since Tk =m+n). Therefore, the definition of

a trajectory in (2.2.8) implies that iTl
=

m∑
t=1

1Xt≤x(zTl
) and jTl

=
n∑
t=1

1Yt≤x(zTl
).

Therefore, for Tl−1 < r ≤ Tl (1≤ l ≤ k), zr = zTl
, the following condition holds:

iTl
=

m∑
t=1

1Xt≤x(zr) jTl
=

n∑
t=1

1Yt≤x(zr)

Following the definition of Fm and Gn, we have iTl
/m = Fm(zr), jTl

/m = Gn(zr)

and (iTl
+ jTl

)/(m+n) = Em+n(zr). Hence, these relations imply that

d(iTl
, jTl

) =Dm,n(zr) Tl−1 < r ≤ Tl, 1≤ l ≤ k, (2.A.12)

where Dm,n(x) = ⟨Fm(x)−Gn(x)⟩W (Em+n(x)). We further notice that Dm,n(x) is

a step function with all its jumps occurring at values of zr (1 ≤ r ≤m+n). Hence

the statement of the lemma now follows by taking the maximum on both sides of

(2.A.12), with respect to r (1≤ r ≤m+n).

Equality, (2.A.12) in Lemma 2.16 explains the meaning of d(il, jl) for a fixed

l, which is the difference of two edfs at the point Zl. Furthermore, it shows that

the value of the KS statistic Dm,n corresponding to a trajectory only depends on

the d(i, j) for i+ j = T1, . . . ,Tk, rather than on all the values of d(i, j). Now we

are in a position to prove Proposition 2.2. The core of the proof is to show that

the constraint on a trajectory to lie wholly in S is equivalent to the constraint on

the value of KS statistic Dm,n < q, for the pair of samples to which the trajectory

corresponds.

Proof of Proposition 2.2. From definition (2.2.8) it follows that, there is a one-to-

one correspondence between a trajectory and its related pair Fm(x,ω) and Gn(x,ω).

Hence, to prove the proposition, we only need to prove its equivalent statement:

For a trajectory {(il, jl)}m+n
l=0 , the corresponding KS statistic Dm,n < q ⇐⇒

{(il, jl)}m+n
l=0 ⊂ S.

Sufficiency:Assume {(il, jl)}m+n
l=0 ⊂ S, then from the definition of S, d(iTk

, jTk
)<

q for 1≤ k ≤K. Based on Lemma 2.16, the latter implies Dm,n < q.

Necessity: (Proof by contradiction) Let us assume that there exists a trajectory

with Dm,n < q and (il0 , jl0) /∈ S for some l0. If l0 = Tk0 , for some 1 ≤ k0 ≤ K =⇒



2.A. Proofs for Chapter 2 59

d(iTk
, jTk

) ≥ q, leading to a contradiction to Lemma 2.16. Therefore, l0 ̸= Tk, for

any 1 ≤ k ≤ K. Then there must exist 1 ≤ k1 ≤ K, such that Tk1−1 < l0 < Tk1 .

Without loss of generality, let us assume either il0 < Imin = min{i : d(i, j)< q,i+j =

Tk−1} or il0 > Imax = max{i : d(i, j) < q,i+ j = Tk} is true. If the former is true,

iTk1−1 ≤ il0 < Imin =⇒ d(iTk1−1 , jTk1−1)≥ q, and if the latter is true, iTk
≥ il0 > Imax

=⇒ d(iTk1
, jTk1

)≥ q, both leading to a contradiction. The same logic applies to jl0 ,

i.e., either j < min{j : d(i, j) < q,i+ j = Tk−1} or j > max{j : d(i, j) < q,i+ j = Tk}

leading again to a contradiction.

Proof of Theorem 2.5. On one hand, from (2.A.9), we have

P(sup
f∈F
|
∫
fdBE | ≤ x) = lim

m→∞
P(
√
msup

t
|Fm(t)−E(t)| ≤ x). (2.A.13)

when Xm comes from the distribution E. On the other hand, by (2.A.3) and

continuous mapping theorem

lim
m,n→∞, m

m+n
→η

P(
√

nm

n+m
D0
m,n ≤ x) = P(sup

f∈F
|
∫
fdBE | ≤ x). (2.A.14)

given Xm and Yn coming from the distribution F and G respectively. The proof is

completed by combining (2.A.13), (2.A.14) and Propositions 2.3 and 2.4 in Dimitrova

et al. (2020).

Proof of Theorem 2.8. Due to the Portmanteau theorem and the continuity in

(2.A.5), we only need to show that for a fixed x, when m,n→∞, m
m+n → η, the

probability

P(
√

nm

n+m
ςm,n ≤ x)

when both Xm and Yn are from the same distribution E would converge to the same

limit as

P(
√

nm

n+m
Vm,n ≤ x)

given Xm and Yn coming from the F and G respectively. Since Vm,n = D0+
m,n +

D0−
m,n and (2.2.21), this can be shown by combining Lemmas 2.14 and 2.15 and the

continuous mapping theorem. Therefore, the statement follows.

Proof of Proposition 2.9. Equality (2.2.21) can be rewritten as Vm,n =D0+
m,n+D0−

m,n
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in the space Ω. Denote by Neq(a,b), the total number of pairs Fm(x,ω) and Gn(x,ω)

for which D0+
m,n = a and D0−

m,n = b. Notice that D0+
m,n and D0−

m,n can only take integer

values multiples of 1/r, therefore for natural numbers i, j ≤ 2r, we have

N ′ =
∑

i+j<qr
Neq(

i

r
,
j

r
)

Neq(
i

r
,
j

r
) =N( i+ 1

r
,
j+ 1
r

)−N( i+ 1
r
,
j

r
)−N( i

r
,
j+ 1
r

) +N( i
r
,
j

r
)

Neq(
i

r
,0) =Neq(0,

j

r
) = 0

(2.A.15)

Equation (2.A.15) then yields (2.2.23). The proof of (2.2.25) can be obtained by

similarly as proving Proposition 2.2.

2.B Examples on the Use of R coding for Computing

the p-value of the KS Test
This section provides the related code to illustrate the use of R functions KS2sample

and Kuiper2sample.

Example 2.17. Assume we are given two samples of sizes, m = 1,200, n = 1,500,

each having the same four distinct observations 1, 2, 3 and 4. The table shows the

sample-1 300 300 300 300
sample-2 500 400 100 500

number of times each distinct observation is repeated in each of the samples, thus

there are 4 distinct observations repeated correspondingly mi times in the pooled

sample, i.e., m1 = 800, m2 = 700, m3 = 400 and m4 = 800.

To calculate the p-value of the unweighted two-sided two-sample KS test based

on sample1 and sample2, one can use the function KS2sample as follows:

R> sample1 <- c(rep(1,300), rep(2,300), rep(3,300), rep(4,300))

R> sample2 <- c(rep(1,500), rep(2,400), rep(3,100), rep(4,500))

R> KS2sample(x = sample1, y = sample2)

Unweighted Two-sample Kolmogorov-Smirnov Test With Ties

data: sample1 and sample2
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d = 0.1, p-value = 2.394e-07

alternative hypothesis: two-sided

For these two samples from Example 2.17, one could also use Kuiper2sample

to compute the observed Kuiper test statistic, Vm,n = v and its p-value.

R> Kuiper2sample(x = sample1, y = sample2)

Two-sample Kuiper Test With Ties

data: sample1 and sample2

v = 0.18333, p-value < 2.2e-16

alternative hypothesis: two-sided

To use the one-sided weighted KS ∆+
m,n with Anderson-Darling weight and test

against the alternative that the unknown underlying distribution of sample1, F (x),

is greater than that of sample2, G(x), for at least one x, one needs to specify the

weight and the alternative, as follows.

R> KS2sample(x = sample1, y = sample2, alternative = "greater",

R>+ weight = 0.5)

Weighted Two-sample Kolmogorov-Smirnov Test (v=0.5) With

Ties

data: sample1 and sample2

d = 0.1825, p-value = 3.41e-06

alternative hypothesis: greater

Alternatively, the p-value can also be obtained by the function KS2sample Rcpp

with an appropriate specification of w vec and the observed value of the KS statistic,

Dm,n = d obtained above.

R> Emn <- 1:(2700-1)/2700

R> w_vec2 <- 1/sqrt(Emn*(1-Emn))

R> d <- 0.182499098772108
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R> KS2sample_Rcpp(1200,1500,kind = 2, M = M1,

+ q = d, w_vec = w_vec2, tol = tol1)

[1] 3.409892e-06

To test whether sample1 and sample2 are from the same distribution using

the weighted KS statistic with weight function W (t) = 1/[t(2− t)]1/2 (suggested in

Büning, 2001), one first needs to define the weight function in R and assign it to the

argument weight in KS2sample, as follows:

R> f <- function(t) 1 / sqrt( t * (2 - t) )

R> KS2sample(x = sample1, y = sample2, weight = f)

User Defined Weighted Two-sample Kolmogorov-Smirnov Test With Ties

data: sample1 and sample2

d = 0.11729, p-value = 2.503e-06

alternative hypothesis: two-sided

The above code illustrates the use of KS2sample on the samples sample1 and

sample2 from Example 2.17 but with different weight specification. In 2.C, we

further show that the choice of weight function may affect and in some cases im-

prove the power of the KS test, which is desirable in practice. For further discussion

on the choice and role of the weight function, see e.g., Büning (2001), Finner and

Gontscharuk (2018).

Next, we illustrate the use of Kuiper2sample to compute the observed Kuiper

test statistic, Vm,n = v and its p-value based on the samples from Example 2.17.

R> Kuiper2sample(x = sample1, y = sample2)

Two-sample Kuiper Test With Ties

data: sample1 and sample2

v = 0.18333, p-value < 2.2e-16

alternative hypothesis: two-sided
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2. C P o w e r C o m p a ri s o n s f o r t h e K S a n d K ui p e r T e s t s

H er e w e pr o vi d e a bri ef c o m p ar ati v e st u d y o n t h e st ati sti c al p o w er of t h e K S a n d

K ui p er t e st s.

T h e st ati sti c al p o w er of a t e st i s t h e pr o b a bilit y of c orr e ctl y r ej e cti n g t h e f al s e

n ull h y p ot h e si s w h e n t h e alt er n ati v e h y p ot h e si s i s s p e ci fi e d. I n or d er t o s h o w h o w

t h e w ei g ht f u n cti o n a ff e ct s t h e K S t e st, w e c h o o s e K S st ati sti c wit h t hr e e di ff er e nt

w ei g ht s, t h e u n w ei g ht e d D 0
m, n , t h e A n d er s o n- D arli n g w ei g ht e d D

1 / 2
m, n a n d t h e K S

st ati sti c wit h W (t) = 1 / [t( 2 − t)] 1 / 2 ( s u g g e st e d b y B ü ni n g, 2 0 0 1, s e e al s o S e cti o n

2. 2). T h e fir st t w o st ati sti c s ar e wi d el y k n o w n a n d a p pli e d i n t h e lit er at ur e, a n d t h e

l a st i s r el ati v el y l e s s k n o w n. T h e n w e d e si g n t w o c a s e s u n d er w hi c h t h e p o w er of

t h e s e t hr e e K S t e st st ati sti c s a n d t h e K ui p er t e st st ati sti c ar e c o m p ar e d.

T o a v oi d c h a n g e s i n t h e w ei g ht W (E m + n (x )) ( c.f. ( 2. 2. 1)) a s s a m pl e si z e s

c h a n g e, w e fi x t h e s u m of s a m pl e si z e s m + n = 5 0 0 a n d c h a n g e t h e v al u e of η = m
m + n .

T h e p o w er of t h e st ati sti c c a n b e e x pr e s s e d a s a f u n cti o n of η , w hi c h o nl y f o c u s e s o n

t h e e ff e ct of c h a n g e s i n t h e s a m pl e si z e s r ati o ( s e e i n Fi n n er a n d G o nt s c h ar u k, 2 0 1 8).

F or f u rt h er i n v e sti g ati o n of t h e e ff e ct of c h a n g e s i n t h e s a m pl e si z e s, o n e c o ul d fi x

t h e v al u e of η a n d e x pr e s s t h e p o w er a s a f u n cti o n of m + n .
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0. 1 0

0. 2 5 0. 5 0 0. 7 5
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w
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T y p e of St ati sti c

K S wit h A n d er s o n − D arli n g W ei g ht D m , n
1 2

K S wit h B u ni n g W ei g ht

K S wit h n o W ei g ht D m , n
0

K ui p er wit h n o W ei g ht V m , n

Fi g u r e 2. 5: P o w er c o m p ari s o n s f or s a m pl e s fr o m G E V di stri b uti o n s w h e n m + n = 5 0 0 of
t h e ( w ei g ht e d) K S t e st s a n d K ui p er t e st.

E x a m pl e 2. 1 8. L et t h e t w o s a m pl e s c o m e fr o m t w o G e n er ali z e d E xtr e m e V al u e

( G E V) di stri b uti o n s wit h di ff er e nt p ar a m et er s. M or e pr e ci o u sl y, t h e fir st s a m pl e

of si z e m i s dr a w n fr o m a G E V di stri b uti o n wit h c u m ul ati v e di stri b uti o n f u n cti o n

F 1 (x ) = e x p( − ( 1 + 0 .3 x ) 1 0 / 3 )1 { 0 .3 x > − 1 } (x ), a n d t h e s e c o n d s a m pl e of si z e n i s dr a w n

fr o m F 2 (x ) = e x p( − ( 1 + 0 .4 x ) 5 / 2 )1 { 0 .4 x > − 1 } (x ), w h er e 1 A (x ) d e n ot e s t h e i n di c at or
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f u n cti o n, w hi c h t a k e s v al u e 1 if x ∈ A a n d t a k e s v al u e 0 ot h er wi s e. I n or d er t o

e sti m at e t h e p o w er, f or e a c h v al u e of η , c al c ul ati o n s ar e r e p e at e d 1 05 ti m e s. A s

s h o w n i n Fi g ur e 2. 5, t h e p o w er of D
1 / 2
m, n i s hi g h er t h a n t h e p o w er of D 0

m, n a cr o s s

all v al u e s of η . T h e K S st ati sti c wit h w ei g ht f u n cti o n s u g g e st e d b y B ü ni n g h a s t h e

hi g h e st p o w er w h e n η < 0 .4, a n d h a s l o w er p o w er w h e n η > 0 .6.

E x a m pl e 2. 1 9. L et t h e t w o s a m pl e s c o m e fr o m t w o n e g ati v e bi n o mi al di stri b uti o n s.

M or e pr e ci s el y, t h e fir st s a m pl e i s dr a w n fr o m N B( 6, 0. 7 5), a n d t h e s e c o n d s a m pl e i s

dr a w n fr o m N B( 1 8, 0. 9). H e n c e, t h e s e t w o di stri b uti o n s h a v e t h e s a m e m e a n. T h e

p o w er i s e sti m at e d a n d s h o w n i n Fi g ur e 2. 6. I n t hi s c a s e, t h e K S t e st wit h B ü ni n g

w ei g ht h a s hi g h er p o w er t h a n t h e u n w ei g ht e d K S st ati sti c a cr o s s all v al u e s of η ,

w h er e a s D
1 / 2
m, n h a s t h e hi g h e st p o w er o nl y f or 0 .1 < η < 0 .5. M or e o v er, w e s h o w t h at

t h e K ui p er t e st h a s p o w er hi g h er t h a n t h e K S st ati sti c wit h B ü ni n g w ei g ht f o r all

η , a n d t h at t h e p o w er of t h e s e t w o t e st s ar e hi g h er t h a n t h at of t h e u n w ei g ht e d K S

t e st, f or all η .
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K ui p er wit h n o W ei g ht V m , n

Fi g u r e 2. 6: P o w er c o m p ari s o n s f or s a m pl e s fr o m N e g ati v e Bi n o mi al Di stri b uti o n s of t h e
( w ei g ht e d) K S t e st s a n d K ui p er t e st w h e n m + n = 5 0 0.

E x a m pl e s 2. 1 8 a n d 2. 1 9 d e m o n str at e t h e i m p ort a n c e of all o wi n g f or m or e fl e x-

i bilit y i n c h o o si n g t h e w ei g ht f u n cti o n, si n c e a s d e m o n str at e d, t h e K S st ati sti c wit h

di ff er e nt w ei g ht s m a y h a v e di ff er e nt p o w er p erf or m a n c e. I m pl e m e nti n g t h e K ui p er

t e st i s al s o i m p ort a nt si n c e, a s d e m o n str at e d it s p o w er i s oft e n s u p eri or t o t h e K S

t e st.
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Chapter 3

On a One Sample Goodness-of-Fit

Test Based on the Hausdorff Metric

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a One

Sample Goodness-of-Fit Test Based on the Hausdorff Metric. submitted.

Abstract
We consider the Hausdorff metric and its use in measuring the distance between

an empirical and a theoretical cumulative distribution function (cdf). We propose a

corresponding one-sample Hausdorff goodness-of-fit test statistic, the H test, give its

geometric interpretation, and a method to evaluate it. We show that its exact and

asymptotic distributions can be expressed correspondingly as rectangle probability

and as double boundary crossing probability with respect to a Brownian bridge.

Efficient numerical methods for computing the distributions, the exact Bahadur

slope, and asymptotic power of the H test are also provided.

We also show that the p-values of the H test are not invariant under scale

transformation. Investigating theoretically this scale dependence, we find that by

appropriately selecting the scale coefficient, the power of the H test can be controlled

and optimized. This is an important feature which other tests such as Kolmogorov-

Smirnov (KS), Cramer von Mises (CvM) and the Anderson-Darling (AD) do not

possess. In particular, based on synthetic and real data examples, we demonstrate

that when testing goodness-of-fit in the tail, the power and tail sensitivity of the

scale-tuned H test is higher than the power of the KS, CvM and AD tests. All these

properties make the H test a competitive alternative to existing goodness-of-fit tests.
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3.1 Introduction

Consider the classical, one-sample goodness-of-fit problem of whether a random

sample comes from a pre-specified hypothetical (null) distribution. There are many

goodness-of-fit test statistics in the literature among which the classical Kolmogorov-

Smirnov (KS), the Kuiper, the Cramer von Mises (CvM), the Anderson-Darling

(AD) and the Wasserstein (W) test more recently considered in del Barrio et al.

(1999) and del Barrio et al. (2000). The latter tests have gained great popularity

and have been widely applied in almost any field where data is collected and analysed

such as, astronomy (McQuillan et al., 2013), social sciences (Salman et al., 2015),

pattern recognition (Alzubaidi and Kalita, 2016), machine learning (Gretton et al.,

2012) etc., to name only a few.

These and other existing tests have different properties and there is no ”best”

test that suits all purposes and posesses all the best properties. For example, the very

popular KS test, based on the supremum distance, is readily understood graphically,

is easy to evaluate and is distribution-free when the null is continuous. Furthermore,

recently Dimitrova et al. (2020) provided efficient means of computing the KS p-

values assuming arbitrary continuous, discrete, or mixed null distribution, which

makes the KS test applicable beyond just the continuous case. At the same time,

the KS statistic is less sensitive in the tails, and has in general lower power (see e.g.

Mason and Schuenemeyer, 1983; Feigelson and Babu, 2020). This makes the KS

test less efficient, especially for comparing tails, which is very important in extreme

value applications and related inference.

The AD and CvM tests, based on the L2-distance, are also distribution-free

and have high power but have not been introduced for discrete or mixed null dis-

tributions. The W test, based on the L2-Wasserstein distance, also has high power

but is difficult to evaluate numerically and is not distribution free, which hinders its

practical use.

As noted, each test is defined using a particular metric to measure the distance

between the underlying cumulative distribution functions. The definition of the

distance metric determines the properties of the test, in particular the evaluation of

the test, its distributions and power. All these considerations lead to the conclusion

that there is still scope for applying alternative distance metrics, leading to the
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construction of new test statistics and the need to investigate their related properties.

The aim of this chapter is to explore how the Hausdorff metric, introduced by

Hausdorff (1914) to measure the distance between sets, can be applied to measure the

distance between (empirical) cumulative distribution functions on the real line, with

the purpose of introducing a corresponding Hausdorff goodness-of-fit test statistic.

The Hausdorff distance has been considered by Sendov and Beer (2012) within the

context of approximation theory, and in machine learning by Huttenlocher et al.

(1993), Li et al. (2017), Karimi and Salcudean (2020), Zhao et al. (2021), to name

only a few of the papers in this stream of literature.

To the best of our knowledge, the Hausdorff metric has not been previously con-

sidered to measure the distance between cdfs, with the only exceptions of Rachev

(1984) and Bloch and Atif (2016). While Rachev (1984) shows that the Levy and

Hausdorff distances between two cdfs are expressed in a similar way (cf. Theorem

1 therein), Bloch and Atif (2016) give an equivalent expression by exploiting the

link between the Hausdorff distance and morphological dilation (cf. expression (11)

therein). However, the latter expression is in general terms, leaving open the ques-

tion of how to efficiently compute the Hausdorff distance between two cumulative

distribution functions.

Here, we provide an answer to this question. Secondly, we use the Hausdorff

distance to construct a corresponding Hausdorff goodness-of-fit test statistic, develop

an efficient method to calculate its distributions and investigate some of its most

important properties. It will be convenient to refer to the latter statistic as the H

(test) statistic.

Let us note that while the H test is invariant to location shifting, it is not in-

variant under scale transformation, in contrast to other tests which are both location

and scale invariant (cf. KS, AD, etc.). We show that the lack of scale invariance

has some desirable effects on the H test. More precisely, we demonstrate that by

appropriately selecting the scale parameter it is possible to tune the H statistic in

such a way that its power is maximized. This makes the newly proposed Hausdorff

test a powerful competitor to other tests when comparing tails of distributions, in

the context of probability theory and statistical inference for extreme values.

Our major contributions can be summarized as follows. First, in Lemma 3.6
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we show that the general definition of the Hausdorff distance simplifies significantly

when applied to cumulative distribution functions. Based on this and on Lemmas

3.8 and 3.9, we provide an efficient method to compute it. The pseudocode of the

method is described in Algorithm 1. We also establish some useful inequalities be-

tween the Hausdorff and Kolmogorov-Smirnov distances and their corresponding

distributions (see Theorem 3.11 and Corollary 3.12). The known equivalence be-

tween the Hausdorff and Lévy metrics is recalled and used to establish some useful

results with respect to the Hausdorff distance.

Second, we propose to use the Hausdorff distance as a goodness-of-fit measure

and, by applying a suitable coordinate transformation, we show in Theorem 3.17

that the H statistic can be expressed alternatively as the supremum of an abso-

lute difference, resembling the form of the Kolmogorov-Smirnov statistic. Using

this form, in Theorem 3.19 we are able to express, the exact distribution of the H

statistic as a Steck (1971) rectangle probability which can be efficiently computed

(with complexity O(n2 logn)) using the exact KS-FFT based method proposed by

Dimitrova, Kaishev and Tan (2020). In Theorem 3.21 we give the asymptotic dis-

tribution expressed as a double boundary non-crossing probability with respect to

a Brownian bridge. Closed form expressions for the asymptotic distributions in the

special cases of exponential and uniform nulls are obtained in Corollary 3.22 and

Theorem 3.23. The latter establishes a direct connection between the H test and

the KS test and their distributions.

Third, we take advantage of the scale dependence of the H statistic. By spec-

ifying its confidence band, we show in Proposition 3.27 that its power admits a

representation as a double boundary non-crossing probability, where the boundaries

and the band between them depend on the scale parameter. Therefore, based on

Theorem 3.29 and Corollaries 3.30 and 3.31, we show that under the assumption

of concavity/convexity of the null or its right/left tails, the power can be locally

controlled, making H body or right/left tail sensitive by appropriately selecting the

scale parameter. In particular Theorem 3.29 suggests that if the null has a concave

right tail, and if it deviates from the true therein, the H test would become more

right-tail sensitive as the scale parameter decreases. Since most commonly used null

distributions such as Exponential, Normal, Pareto, Lognormal, Gamma, etc, have
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concave right tails, in this case an optimal power of the Hn(σ) test is achieved by

appropriately selecting a value of the scale parameter. In (3.3.11) we propose such

an optimal choice which solely depends on the null distribution and is motivated by

the geometric interpretation of the transformed H statistic, provided by Proposi-

tion 3.34. Proposition 3.35 shows that the choice (3.3.11) is invariant under further

rescaling thus ensuring that the issue of scale dependence of the proposed H test is

eliminated.

Last but not least, we provide some insights on the asymptotic power of the

proposed H test. In Theorem 3.41, we give a computable expression for the exact

Bahadur slope of H and use it to evaluate the Bahadur efficiency of H, relative to

the efficiency of the KS test, based on an example where the alternative is a spliced

distribution. The results, summarized in Table 3.2, show that asymptotically the

Hausdorff test is more efficient than the KS test when the null and alternative differ

in the tail. In Theorem 3.39, we provide an expression of the asymptotic power of

the H test under an appropriate contiguous alternative.

To emphasize the practical importance of the proposed H test, we provide

simulated examples and a real data example which demonstrate that for finite sample

sizes the H test has higher power than the KS, CvM and AD tests when samples

deviate from the null distribution in the tail. The real data example, involving

Lloyd’s aviation insurance losses, also illustrates the higher tail sensitivity of the H

test compared to the classical KS, CvM and AD tests. As can be seen from Table

3.4, H is the only test that rejects the null hypothesis, capturing the tail discrepancy

between the null distribution and the sample, indicated by the corresponding QQ

plot in Fig 3.12.

This chapter is organized as follows. In Section 3.2, we recall the general def-

inition of the Hausdorff metric and introduce the H goodness-of-fit statistic. We

further provide methods to compute the H statistic and its exact and asymptotic

distributions. Connections between the H and KS tests and their distributions are

also established. In Section 3.3, we show that the sensitivity of the H test can be

controlled locally by varying the scale parameter and propose a rule to select it so

that the power is optimized in the area (e.g. body or left/right tail) where it is of

interest to test the deviation between the null and the sample. In Section 3.4, we
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give some results on the asymptotic power of the Hausdorff and KS statistics apply-

ing the Bahadur exact slope and efficiency. In Section 3.5, we provide simulated and

real-data examples to demonstrate the advantage of the proposed H test in extreme

value goodness-of-fit testing. In Section 3.6, we provide a summary and discussion

of our findings.

Further numerical examples are given in Appendix 3.B. The proofs of all the

results that appear in the chapter are given in Appendix 3.A.

3.2 The Hausdorff Goodness-of-fit Test Statistic
Given a random sample Xn = {X1, . . . ,Xn}, where Xi, i= 1, . . . ,n, are i.i.d. copies of

the random variable, X, defined on the probability space (Ω,F ,P), with (unknown)

cumulative distribution function F0(x). We want to test the null hypothesis, H0,

that the sample Xn comes from a pre-specified (null) distribution, with distribution

function F (x), i.e., H0 : F0(x) = F (x), for all x ∈ R, against the alternative, ρ∞ :

F0(x) ̸= F (x), for at least one x. For convenience, we assume F (x) is continuous,

however, most of our results are either directly applicable for the case of F with

jumps, or applicable with slight adjustments. Denote by Fn(x), x∈R, the empirical

cumulative distribution function, (ecdf), corresponding to the sample Xn, i.e.

Fn(x) = 1
n

n∑
i=1

1(Xi ≤ x), (3.2.1)

where 1(·) is the indicator function. In the sequel, it will be convenient to inter-

changeably use the notation Fn(x)≡ Fn(x,ω)≡ Fn, where ω ∈Ω explicitly indicates

that the empirical cdf depends on the random sample Xn(ω).

3.2.1 Background on the Hausdorff Metric

In order to introduce our test statistic based on the Hausdorff metric, we need to

recall the following definition of a distance measure between two points, A and B,

on the plane, R2.

Definition 3.1. The function ρ(A,B) is a distance measure between two points

A,B ∈ R2 iff it satisfies the following conditions:

1. ρ(A,B)≥ 0, for every pair of points A and B.

2. ρ(A,B) = 0, iff the two points A and B coincide.
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3. Symmetry: ρ(A,B) = ρ(B,A).

4. Triangle inequality: ρ(A,B) +ρ(B,C)≥ ρ(A,C).

Example 3.2. Examples of such a distance measure are given by the following

functions:

ρ∞(A,B) = max{|xA−xB|, |yA−yB|} (3.2.2)

ρ1(A,B) = |xA−xB|+ |yA−yB| (3.2.3)

ρ2(A,B) =
√

(xA−xB)2 + (yA−yB)2, (3.2.4)

where xA,xB and yA,yB are correspondingly, the x and y coordinates of the points

A and B.

It can be directly verified that, all functions, hi, i = 1,2,3, in Example 3.2,

satisfy conditions 1-4 of Definition 3.1. Their geometric interpretations are given in

Figure 3.1.

Figure 3.1: All points, A, located at unit distance from B(0,0), with respect to ρi(A,B),
i =∞,1,2, defined in Example 3.2, form correspondingly: a) a square; b) a
rombus and c) a circumference.

In what follows, it will be conveneint to work with definition, ρ∞, which is

illustrated in panel a) of Figure 3.1, where the point A can be any point on the

square with sides 2, and center, the point, B. In other words, the set of all points,

{A : ρ∞(A,B) = 1}, coincides with the contour of the square, which therefore can be

viewed as the circumference with respect to ρ∞, with radius 1 and center, the point

B.

We are now in a position to recall the definition of the Hausdorff distance

between sets. For the purpose, assume, ρ(A,B) is an arbitrary measure of distance

between two points A and B, on R2. Let also A and B be two arbitrary sets on the
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plane, R2, bounded with respect to ρ. We can now define the Hausdorff distance as

follows.

Definition 3.3. The Hausdorff distance, Hρ(A,B) between the sets A and B is

defined as

Hρ(A,B) = max
{

sup
A∈A

inf
B∈B

ρ(A,B), sup
B∈B

inf
A∈A

ρ(A,B)
}
. (3.2.5)

For a proof that Hρ(A,B) is a distance metric, we refer to Sendov and Beer

(2012).

3.2.2 Properties of the Hausdorff Metric Applied to Cumulative

Distribution Functions

In order to apply the Hausdorff metric Hρ(A,B) to measure the distance between the

distribution functions, F (x) and Fn(x), x ∈ R, we need to appropriately define the

sets A and B from Definition 3.3. We replace them with the planar curve (i.e., set)

analogues, F c and F cn, of the (right-continuous) cdfs, F (x) and Fn(x), completed by

vertical segments, corresponding to the jumps at their points of discontinuity. Thus,

for the planar curve F cn(ω), which is a closed and connected subset in R2, we have

F cn(ω) = {(x,y) : Fn(x−,ω)≤ y ≤ Fn(x,ω),∀ x ∈ R}. (3.2.6)

A more general definition of the planar curve is given in (4.2.6) of Chapter 4.

Note that, if F (x) is continuous, its corresponding planar curve F c, defined as

in (3.2.6), coincides with its graph, gr(F ) = {(x,F (x)) : x∈R}, which is a closed and

connected set in R2. Therefore, for simplicity and symmetry, we use the notation

F c for the planar curve of the null distribution F .

Remark 3.4. When the underlying distribution is discrete or mixed, i.e., when

F (x) has jumps, its corresponding planar curve, F c, is defined as in (3.2.6), so as to

fill in the missing parts at the jumps.

In order to test the null hypothesis H0, introduced in Section 3.2, we propose to

use the Hausdorff distance, Hρ(F c,F cn), between the planar curves F c and F cn, that

correspond to the cdfs, F and Fn. Let us note that, Hρ(F c,F cn), is a well defined

goodness-of-fit test statistic, for an arbitrary choice of the distance, ρ, in particular,

for ρ = ρi, i =∞,1,2, as in Example 3.2. To the best of our knowledge, using
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Hρ(F c,F cn), to test the null hypothesis, H0, has not been previously considered,

under any choice of ρ = ρi, i =∞,1,2. The Hausdorff distance under ρ2 has been

considered by Popov (1999) but with respect to arbitrary functions.

As a measure of the distance from a point, on the curve, F c to any point on

F cn, we have chosen the metric ρ∞ defined in (3.2.2), i.e. we take ρ = ρ∞. This is

motivated by the following reasons. Firstly, since, F cn is a staircase curve, and since

the metric Hρ∞ is the side of the largest square inscribed between the curves F c

and F cn, (see Lemma 3.8), inscribing squares is more natural and computationally

appealing than inscribing other shapes, e.g. rombuses or circles as in Fig 3.1. Sec-

ondly, the choice, ρ= ρ∞, ensures that the Hausdorff metric Hρ∞ coincides with the

Lévy metric, cf (3.2.14). The latter is yet another metric used to measure the dis-

tance between two probability distribution functions. It has some useful properties,

which we consider later in this section. Lastly, if ρ = ρ∞, the Hausdorff distance

between the graphs, gr(F ) and gr(Fn), of the cdfs F and Fn, and between their

corresponding planar curves coincide, as we show in the following lemma. These

geometric conveniences lead to an efficient method of computing it (c.f Algorithm

1) and elegant theoretical results, given in Section 3.2. For brevity, we will drop the

subscript ρ∞ from Hρ∞(F c,F cn) and write H(F c,F cn).

Lemma 3.5. We have, H(gr(F ),gr(Fn)) =H(F c,F cn).

Since there is a one-to-one correspondence between the functions F and Fn and

their graphs, from Lemma 3.5 it follows that, H(F,Fn) and H(F c,F cn) are equivalent,

so one can view H as a functional, i.e.,

H(F,Fn) = max
{

sup
y

inf
x

max(|x−y|, |F (x)−Fn(y)|) ,

sup
x

inf
y

max(|x−y|, |F (x)−Fn(y)|)
}
.

(3.2.7)

We will refer to the Hausdorff distance between Fn and F as the proposed H test

statistic denoted by H(F c,F cn).

The following lemma is important since it shows that the general expression

(3.2.5) for the Hausdorff distance simplifies significantly when applied to measuring

the distance between cdfs.
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Lemma 3.6. The Hausdorff distance

H(F c,F cn) = sup
A∈F c

n

inf
B∈F c

ρ∞(A,B) = sup
B∈F c

inf
A∈F c

n

ρ∞(A,B).

where ρ∞ = max{|xA−xB|, |yA−yB|}.

As we argued in the introduction, (and demonstrate in the sequel), the test

statistic H(F c,F cn) has some nice properties that make it a competitive alternative

to exisitng tests, such as Kolmogorov-Smirnov, Anderson-Darling, Wasserstein, etc.

The H test is more flexible and in general, captures differences between the cdfs Fn
and F , better than purely ordinal tests, such as KS, CvM and AD tests. This is

because, H(F c,F cn) depends on both the x and y coordinates of the curves F cn and

F c, as can be seen from the definition of the distance metric ρ∞, given in Example

3.2-(2). This is in contrast to, e.g. the Kolmogorov-Smirnov statistic which depends

only on the y-axis, by definition.

Remark 3.7. In general, for other specifications of ρ, e.g., for ρ= ρ1,ρ2 defined in

(3) and (4) of Example 3.2, the statistic Hρ(F c,F cn), also depends on both the x and

y coordinates of the curves F cn and F c, therefore is also better suited to capture the

differences between them, than the purely ordinal tests.

In order to express the Hausdorff test statistic H(F c,F cn), and formulate some

important results, we need to introduce the following notation.

Let, {x1, . . . ,xn} denote a realization of the random sample Xn = {X1, . . . ,Xn},

such that x1 < x2 < · · · < xn. The empirical cdf Fn(x) and its planar counterpart,

F cn with vertexes, A1,A2, . . . ,A2n, having coordinates

A2i =
(
xi,Fn(xi)

)
; A2i−1 =

(
xi,Fn(xi−1)

)
i= 1,2, . . . ,n, (3.2.8)

where Fn(x0) ≡ 0, for some x0 < x1. Both, Fn(x) and F cn are illustrated in Figure

3.2, for the case, n= 3.

Let F c divide the plane into two open sets, denoted by UF c and LF c , and

correspondingly referred to as the (strict) epigraph and hypograph of F c. Simliarly,

F cn divides R2 plane into UF c
n

and LF c
n
. We are now in a position to formulate some

important lemmas, starting with Lemma 3.8, which establishes a relation between
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Figure 3.2: Fn is function whereas F c
n is planar curve

the Hausdorff distance and a square that can be fitted between the curves, F cn and

F c. In particular, the side of the maximal such square is the Hausdorff distance

H(F c,F cn).

Lemma 3.8. If a square S(P,d) = {P1 ∈ R2 : ρ∞(P1,P ) ≤ d/2}, with side d and

center at the point P , can be inserted between the curves F c and F cn, so that S(P,d)

does not overlap with the sets UF c ∩UF c
n

and LF c ∩LF c
n
, then for the Hausdorff

distance, we have

H(F c,F cn)≥ d. (3.2.9)

Furthermore,

H(F c,F cn) = sup{d}, (3.2.10)

where the supremum is taken over all

S(P,d) : S(P,d)∩{(UF c
n
∩UF c)∪ (LF c

n
∩LF c)}= ∅, (3.2.11)

or equivalently, over all

S(P,d) : S(P,d)⊂ G, (3.2.12)

where G = R2/{(UF c ∩UF c
n
)∪(LF c ∩LF c

n
)}, is the area between the two planar curves

F c and F cn.

Lemma 3.8 is important as it provides a geometric interpretation of the distance,

H(F c,F cn), and gives insight on how to numerically compute H(F c,F cn), and link it to

the Lévy metric. The latter is used to measure the distance between two probability

distribution functions. For any two arbitrary cdfs F (x) and G(x), the Lévy metric



3.2. The Hausdorff Goodness-of-fit Test Statistic 81

is defined as (see e.g. Zolotarev, 2011)

ρLevy(F,G) = inf{ϵ : F (x− ϵ)− ϵ≤G(x)≤ F (x+ ϵ) + ϵ}. (3.2.13)

It is important to note that both H and the Lévy metric, ρLevy have a coincident

geometric interpretation as the side of the largest square inscribed between the

corresponding planar curves, as shown in Lemma 3.8, for H and as illustrated by

Zolotarev (2011), for ρLevy. Therefore, the Hausdorff metric H and the Lévy metric,

coincide, i.e.

H(F c,Gc) = ρLevy(F,G), (3.2.14)

where Gc is the planar curve of G(x). This fact has also been highlighted in Theorem

1∗ of Rachev (1984). Therefore, the properties of the Lévy metric are also valid

for the metric H, as summarized by the Lemma 3.46, which is a restatement of

properties (2) (6) and (7), summarized in Zolotarev (2011) with respect to the

Lévy metric. For further upper bounds with respect to the Lévy metric, we refer

to Zolotarev (1971). We should highlight that Alexander (1974) has proposed the

goodness-of-fit statistic based on the Lévy metric, however, the Alexander (1974)’s

statistic shares the same property as KS. For more discussion, we refer to Remark

3.24.

We can now address the question of how to compute H(F c,F cn), by specifying

result (3.2.10), of Lemma 3.8. Denote by, Bloc = [({A2i−1}ni=1 ∩LF c)∪ ({A2i}ni=1 ∩

UF c)}] = {B1,B2, . . . ,Bν}, the part of the vertices of the curve F cn that are locally

farthest from F c. The following proposition gives an explicit expression for the

Hausdorff distance, based on which we develop numerical methods to compute the

value of the statistic H(F c,F cn).

Lemma 3.9. Let, Ll, l= 1,2, . . . ,ν be parallel straight lines, correspondingly passing

through each of the vertices, Bl, l = 1,2, . . . ,ν, in such a way that they cross the x-

axis, at an angle of 3π/4. Denote by El, l = 1,2, . . . ,ν the points of intersection

of the lines, Ll with the planar curve F c and consider the distances ρ∞(Bl,El),

l = 1,2, . . . ,ν. Then we have

H(F c,F cn) = max{ρ∞(Bl,El), l = 1, . . . ,ν}. (3.2.15)
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Figure 3.3: Illustration of the lines Ll, and the points Bl and El, l= 1,2,3,4, from Lemma
3.9.

Lemma 3.9 is geometrically illustrated in Fig. 3.3. Equation (3.2.15) is essential

for computing the value of H(F c,F cn). In particular, when F is continuous, the

computation is straightforward, as illustrated in Algorithm 1. Denote by xBl
and

yBl
, the x and y coordinates of the points Bl, l = 1, . . . ,ν, respectively. Then it is

easy to find all the crossing points, El = (x∗
l ,F (x∗

l )) of the straight line Ll = {(x,y) :

x+y = xBl
+yBl

} with the curve F c, where x∗
l , l = 1, . . . ,ν are the unique solutions

of the equations in line 5. The latter uniqueness is guaranteed by the continuity of

F (x). The value of H(F c,F cn) is then found via the maximization in line 6.
Algorithm 1: Computing the value of H(F c,F cn)

Data: F,x1, . . . ,xn

Result: y =H(F c,F cn)

1 Bloc←{(xi, i−1
n ) : F (xi)≥ i−1

n }∪{(xi,
i
n) : F (xi)< i

n} ;

2 ν← |Bloc|;

3 y← 0;

4 for l = 1; l ≤ ν; l = l+ 1 do

5 x∗
l ← the solution of x+F (x) = xBl

+yBl
;

6 y←max(y, |x∗
l −xBl

|) ;

7 end

Remark 3.10. Lemma 3.9 is also true for distribution functions F (x) with jumps.

However, in the latter case, equation x+F (x) = xBl
+yBl

may not have a solution.

since the line Ll may cross F (x) at some of the jump discontinuities. Therefore,

to find the points El, l = 1, . . . ,ν, one may need to accordingly adjust line 5 in

Algorithm 1.

Next, based on Lemma 3.9 we state Theorem 3.11, which is central since it gives
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a connection between H(F c,F cn) and the one sample Kolmogorov-Smirnov statistic,

Dn defined as

Dn = ρD(F,Fn) := sup
−∞<x<+∞

|Fn(x)−F (x)|. (3.2.16)

Theorem 3.11. For any distribution F (x), we have

H(F c,F cn(ω))≤ ρD(F,Fn(ω)) (3.2.17)

for every ω ∈ Ω.

Let us note that the following corollary with respect to the cdfs of H and KS is

a direct consequence of Theorem 3.11.

Corollary 3.12. For any q ∈ [0,1], P(H(F c,F cn)> q)≤ P(Dn > q).

3.2.3 The Exact and Asymptotic Distributions of the One-sample

Hausdorff Statistic H

In this section, we provide means for efficient computation of exact and asymptotic

distributions of the statistic H. Our approach is based on performing an appropri-

ate transformation of the planar curves F c and F cn into a new coordinate system.

We show that, by applying the transformation, the value of the statistic H can

be expressed alternatively in the form of the supremum of an absolute difference,

analogous to the form of the Kolmogorov-Smirnov statistic. Using this form, we

are able to express the exact cdf as a rectangle probability which can be efficiently

computed via the exact KS-FFT based method proposed by Dimitrova, Kaishev and

Tan (2020). We further extend the latter expression and obtain the asymptotic cdf.

Before introducing the new coordinate system, it would be useful to provide

some auxiliary properties of the largest square, S(P0,d0), with side, d0 = H(F c,

F cn), which can be fitted in G, i.e. S(P0,d0) ⊂ G, see Figure 3.4. It is easy to see

that the upper-left and lower-right vertices of the square S(P0,d0), lie on either of

the curves F c and F cn. This is formally stated by the following lemma.

Lemma 3.13. Denote by d0 = H(F c,F cn), and if ∃ P0 = (x0,y0) ∈ R2 such that

S(P0,d0)⊂ G, then the upper-left and lower-right vertices of S(P0,d0) lie on one of
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Figure 3.4: Left panel: Illustration of Lemma 3.13 - the upper-left and lower-right vertices
of S(P0,d0) lie on the curves F c or F c

n; Right panel: Illustration of the class
{Sλ}

the curves, F c,F cn, i.e.,

(x0−d0/2,y0 +d0/2),(x0 +d0/2,y0−d0/2) ∈ F c∪F cn

Hence, to find the largest square, one only needs to search within the class of

squares, whose upper-left and lower-right vertices lie on the curves F c and F cn, which

we denote as Sλ. Specifically, each element Sλ ∈ Sλ indexed by λ, is the square with

line {(x,y) : x+y= λ} passing through its center, and satisfying Sλ ⊂G, Sλ∩F c ̸= ∅,

Sλ∩F cn ̸= ∅, as illustrated in the right panel of Figure 3.4. Formally, we have

Lemma 3.14. Denote by Pλ = (xλ,yλ) the center of the square Sλ and by dλ the

length of its side. Then

H(F c,F cn) = sup
λ
dλ,

where λ is the index for the line {(x,y) : x+y = λ} passing through the center of Sλ,

i.e. λ= xλ+yλ.

The statement of Lemma 3.14 is equivalent to (2.2) in Rachev (1981), formulated

with respect to the Lévy metric. For the sake of consistency, in Appendix 3.A we

give its proof for the Hausdorff metric.

Remark 3.15. Lemmas 3.13 and 3.14, are also true for arbitrary right continuous

nondecreasing functions F ′ and G′, as substitutes of F and Fn, respectively.

Lemma 3.14 is a further generalization of Lemma 3.9, which is needed to express

the Hausdorff metric as an appropriate supremum under the transformed coordinate

system.
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Now, let us introduce an operator to transform the coordinates of points in the

plane. Denote by T : R2→ R2 a 2-dimensional coordinate transformation operator

such that, for any point P = (x,y), T (P ) = (x+ y,y). It is easy to verify that

the operator T is a bijection and its inverse operator is then T−1(u,v) = (u− v,v).

For an arbitrary subset A in the plane xOy, denote by T (A) = {T (P ) : P ∈ A}

its corresponding image set on the plane uOv. Before formally introducing the

alternative expression of H(F c,F cn) under T , we give the following descriptions for

the image sets of some important subsets.

Example 3.16. (i). For any square S(P,d) in the plane xOy, the corresponding

image set T (S(P,d0)) is a parallelogram with both its base and height equal to d0

and one of the diagonals vertical, as shown in Figure 3.5.

Figure 3.5: Graphical illustration of S(P,d0) and T (S(P,d0))

(ii). Let F , be a continuous cdf. Let the function K have the following form

K(u) = F (η−1(u)), (3.2.18)

where η−1(u) is the inverse function of η(x) = x+F (x), x ∈ R. Then the graph of

the parametric equation v =K(u) coincides with the image set of the planar curve

F c, i.e. T (F c) = {(u,v) : v =K(u), for every real u}.1

(iii). Similarly as in (ii), denote by v = Kn(u) the parametric equation corre-

sponding to the curve T (F cn) on the plane uOv. Then Kn is a continuous piecewise

1In fact, (ii) is valid for any continuous non-decreasing function F .
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Figure 3.6: Illustration of F c
n and T (F c

n) for {x1,x2,x3}

linear function with vertices T (Ai) i= 1,2, . . . ,n, that has the following form:

Kn(u) =
n∑
i=1

{[
u−

(
X(i) +Fn(X(i−1))

)]
1
(
u ∈

[
X(i) +Fn(X(i−1)),X(i)Fn(X(i))

])}
+

+ 1
n

n∑
i=1

1(Xi+Fn(Xi)≤ u) ,

(3.2.19)

where X(i), i= 1, . . . ,n are the order statistics of the sample Xn and Fn(X(0))≡ 0.

This is also graphically illustrated in Figure 3.6.

Then the Hausdorff distance H(F c,F cn) given by (3.2.15) is alternatively ex-

pressed as follows.

Theorem 3.17. The one-sample Hausdorff statistic H(F c,F cn) is expressed as

H(F c,F cn) = sup
t
|Kn(t)−K(t)|, (3.2.20)

where K(t),Kn(t) are defined in (3.2.18) and (3.2.19), respectively. Furthermore,

the supremum is achieved either at the point t=X(i) + i−1
n or at t=X(i) + i

n .

Note that the points (X(i) + i−1
n ,Kn(X(i) + i−1

n )) and (X(i) + i
n ,Kn(X(i) + i

n)),

i = 1, . . . ,n, coincide correspondingly with the points T (A2i−1) and T (A2i), i =

1, . . . ,n. Furthermore, obtaining values η(X(i) + i−1
n ) or η(X(i) + i

n), is equivalent to

sequentially solving equations x+F (x) =X(i) + i−1
n or x+F (x) =X(i) + i

n . There-

fore, computing (3.2.20) is equivalent to computing (3.2.15), using Algorithm 1.

Remark 3.18. Theorem 3.17 is also true when F is discontinuous, with K in

(3.2.18) and Kn in (3.2.19) accordingly adjusted so as to determine the parametric

equations of T (F c) and T (F cn).
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The representation in (3.2.20) allows us to express the cdf as a rectangle proba-

bility with respect to the uniform order statistics, following Lemma A.1 in Dimitrova,

Kaishev and Tan (2020). The expression is provided in the following theorem.

Theorem 3.19. When the null cdf F (x) is continuous, the complementary cdf of

the one-sample Hausdorff statistic P(H(F c,F cn) > q), q ∈ [0,1] can be expressed in

terms of the rectangle probability with respect to the order statistics U(i), i = 1 . . . ,n

of n independent and identically distributed uniform (0,1) random variables Ui, i=

1, . . .n, as

P(H(F c,F cn)> q) = 1−P(ai ≤ U(i) ≤ bi,1≤ i≤ n), (3.2.21)

where
ai = F (F−1( i

n
− q)− q),

bi = F (F−1( i−1
n

+ q) + q),
(3.2.22)

and where F−1(y) = +∞ for y ≥ 1, F−1(y) = −∞ for y ≤ 0, F (+∞) = 1 and

F (−∞) = 0.

Expression (3.2.21) can be computed applying the procedure exact-KS-FFT

proposed by Dimitrova, Kaishev and Tan (2020) with computational complexity

O(n2 log(n)).

Remark 3.20. When F (x) is discrete or mixed, the exact cdf P(H(F cn,F c)> q) can

be expressed similarly as in (3.2.21), with some further adjustments to the values of

ai and bi.

It should be noted that the cdf P(H(F c,F cn) ≤ q) q ∈ [0,1] in Theorem 3.19

depends on the null cdf F , since H(F c,F cn) depends on the y and x coordinates.

In fact, for any cdf F and q ∈ (0,1), the sequence P(H(F cn,F c) > q), n→∞ con-

verges to 0, as suggested by Corollary 3.12, noting that the KS cdf P(Dn > q)

converges to 0. Therefore, it is meaningful to consider the asymptotic distribution

lim
n→∞

P(
√
nH(F cn,F c)> λ) which is done in the following theorem.

Theorem 3.21. Let B0(t), t ∈ [0,1] be a Brownian bridge with B0(0) = B0(1) = 0,

E[B0(t)] = 0, E[B0(t)B0(s)] = s(1− t) for 0 < s < t < 1. If the null cdf F (x) has a

bounded continuous derivative f(x), the asymptotic distribution of the one-sample
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Hausdorff statistic can be expressed as a double-boundary non-crossing probability

with respect to the process B0(t). More precisely,

lim
n→∞

P(
√
nH(F cn,F c)> x)

= 1−P
(
−x(1 +f(F−1(t)))≤ B0(t)≤ x(1 +f(F−1(t))),∀ 0≤ t≤ 1

)
.

(3.2.23)

For a particular choice of the null distribution F (x), the analytical expression

(3.2.23) can be specified as shown by the following corollary.

Corollary 3.22. If the null distribution F (x) is exponential, i.e. F ∼Exp(α), then

the asymptotic distribution can be expressed as

lim
n→∞

P(
√
nH(F cn,F c)> x)

= 1−P(−x(1 +α(1− t))≤ B0(t)≤ x(1 +α(1− t))),∀ 0≤ t≤ 1)

= 2
∞∑
k=1

(−1)k−1e−2(1+α)k2x2

(3.2.24)

Furthermore, the following theorem establishes an explicit connection between

the Kolmogorov-Smirnov and the Hausdorff test statistics and their corresponding

(asymptotic) cdfs.

Theorem 3.23. If the null distribution F (x) is uniform, i.e. F ∼ U(a,a+ b), then

H(F c,F cn) = b

1 + b
Dn, (3.2.25)

and for the cdfs we have

P(Dn > q) = P(H(F c,F cn)> qb

1 + b
). (3.2.26)

Moreover,

lim
n→∞

P(
√
nH(F c,F cn)≤ x) = 1−2

∞∑
k=1

(−1)k−1e−2 (1+b)2

b2 k2x2
. (3.2.27)

Theorem 3.23 demonstrates the connection between the KS and the Hausdorff

statistics and gives the asymptotic distribution of the latter when the null is uniform.

Another relation between the H and the KS statistics is established in Theorem
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3.36, which indicates that the KS statistic can be viewed as the limit of the scaled

H statistic, when the scale parameter goes to infinity.

Remark 3.24. Alexander (1974) has noted the distribution dependence of the Lévy

metric in the context of goodness-of-fit testing. Therefore he proposed to use statistic

based on Lévy metric to test whether {F (X1), . . . ,F (Xn)} comes from the uniform

distribution U [0,1]. However, in view of Theorem 3.23, it is not difficult to show

that the p-value of Alexander (1974)’s Lévy statistic, will always coincide with that

of the KS test as long as the null distribution is continuous.

Let us note that the boundaries in Theorem 3.21 are general and depend on the

form of the null distribution. Explicit expressions for the probability that the Brow-

nian bridge B0(t) stays within the corridor between two piecewise linear boundaries

have been obtained by Novikov et al. (1999) and Pötzelberger and Wang (2001).

Note also that an arbitrary null cdf F (x) can be approximated using exponential

splines F̂ (x) ∈ C1(R) that consist of pieces of exponentials ai + bie
kix, i = 1, . . . ,κ,

smoothly joint together at some points called knots, where ai, bi and ki are param-

eters. It is not difficult to show that such an exponential spline approximation of

F would result in piecewise linear boundaries in (3.2.23), and therefore (3.2.23) can

be used to compute the asymptotic distributions of the H test for an arbitrary null

distribution F , approximated by F̂ (x).

3.3 On the Scale Dependence of the H test
It is well known that the majority of the goodness-of-fit tests such as the KS, CvM

and AD, and their p-values are location and scale invariant, and this to a great

extent motivates their popularity in practice. However, it is not difficult to show

that while the proposed H test is location invariant, it is not scale invariant. As a

result of this, a major difficulty that arises when one tries to apply the statistic H is

that its p-value and hence its power is not invariant to a scale transformation σX,

for some constant σ > 0. This is illustrated in Figure 3.7, where it can be seen that

the statistical power of H(F c,F cn) is significantly affected by the choice of the scale

coefficient σ. Since power is estimated based on the p-value, Figure 3.7 implies that

the p-value of H also changes as σ changes.

To formally illustrate this scale dependence, consider a particular realization
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Figure 3.7: Statistical power of AD, CvM, H and KS tests under different scales σ when
the sample is from N(3/σ,0.22

3σ2 ) and the null distribution is N(3/σ,0.22

σ2 )

of the random sample, Xn(ω) = {x1, . . . ,xn}. Let q̂ = H(F c,F cn(ω)) denote the

observed value of the H-statistic, with p-value p = P(H(F c,F cn) > q̂). Assume

now, that we would like to change the scale and work with the re-scaled sample

σXn = {σX1, . . . ,σXn} with empirical cdf Fn,σ and re-scaled hypothetical cdf Fσ(x),

i.e.

Fσ(x) = F (x/σ), Fn,σ(x) = Fn(x/σ)≡ 1
n

n∑
i=1

1(σXi ≤ x), (3.3.1)

where σ is appropriately chosen. For example, say {x1, . . . ,xn} are heights of a

sample of n individuals, expressed in meters and we want to work with the same

sample of observations but expressed in centimeters, in which case σ = 100. For

the same realization, the observed sample would be σXn(ω) = (σx1, . . . ,σxn), with

empirical cdf Fn,σ(ω) = 1
n

∑n
i=11(σxi ≤ x), observed statistic q̂′ and corresponding

p-value p̃= P(H(F cσ,F cn,σ)> q̂′), where F cσ and F cn,σ denote the corresponding planar

curves of Fσ and Fn,σ, defined as in (3.2.6). Under the two different scales, the

p-values p and p̃ may not coincide.

3.3.1 On the Scale Dependent H Statistic Hn(σ) and Its Related

Power

Our aim in this section is to show how the scale dependence property of H can be

exploited to optimize its power and therefore eliminate its dependence on σ. To

address this aim, we will view the scale coefficient σ > 0 as a hyperparameter and

consider the family of (scaled) Hausdorff statistics

Hn(σ) =H(F cσ,F cn,σ),
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where F cσ and F cn,σ are defined by (3.3.1) and (3.2.6). Given σ > 0, denote by Ln,σ

the complementary cdf of the statistic Hn(σ) under the null hypothesis, i.e.

Ln,σ(q) = P(Hn(σ)> q), q ∈ [0,1].

Because the power is directly related to the p-value, we will consider the p-value

corresponding to a realization Hn(σ,ω) and define it as a random variable (see

Sidak et al., 1999, Chapter 8.3.1, for a similar definition), which we denote as Pn(σ),

i.e.

Pn(σ)≡ Pn(σ,ω) = Ln,σ(Hn(σ,ω)) = P(Hn(σ)>Hn(σ,ω)),ω ∈ Ω. (3.3.2)

Given a realization σXn(ω) = (σx1, . . . ,σxn), we obtain a specific realization of the

p-value Pn(σ,ω). If the sample does not come from the null distribution, we should

expect Pn(σ,ω) to be small. The null hypothesis is rejected if the p-value is less than

the specified significance level p, i.e., if Pn(σ)≤ p and the power of the H test, can

be expressed as

πn(σ) = P(H0|H1) = P(Pn(σ)≤ p|H1) σ > 0. (3.3.3)

Our aim is to characterize how σ affects the power πn(σ). To do so, we use

the confidence band approach, previously considered by Mason and Schuenemeyer

(1983). For a fixed significance level p and scale parameter σ, the confidence band

of the statistic Hn(σ) is defined as the area between two boundaries F̃+(·;σ,p) and

F̃−(·;σ,p), such that the following events are equivalent

{Pn(σ)> p}= {F̃−(x;σ,p)≤ Fn(x)≤ F̃+(x;σ,p) for all x}, (3.3.4)

where Fn(x) is the empirical cdf defined in the original scale. Note that the events

on both sides of (3.3.4) depend on σ under the alternative H1, which is the case we

are interested in, to investigate the power πn(σ).

Remark 3.25. Let us note that in fact under the null H0, the probabilities of the
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events in (3.3.4) no longer depend on σ, i.e.

P(Pn(σ)> p) = P(F̃−(x;σ,p)≤ Fn(x)≤ F̃+(x;σ,p) for all x) = 1−p, (3.3.5)

which follows from the uniformity of Pn(σ).

The following proposition establishes that the boundaries F̃+(·;σ,p) and

F̃−(·;σ,p) exist and can be found explicitly.

Proposition 3.26. Given a significance level p and fixed σ > 0, denote by q∗
σ the

(1−p)-th quantile of the statistic Hn(σ) under the null, i.e.

q∗
σ ≡ q∗(n,σ,p) = L−1

n,σ(p). (3.3.6)

Then
F̃−(x;σ,p) = F (x− q

∗
σ

σ
)− q∗

σ,

F̃+(x;σ,p) = F (x+ q∗
σ

σ
) + q∗

σ.

(3.3.7)

Note that the boundaries F̃−(x;σ,p) and F̃+(x;σ,p) in (3.3.7) hold, regard-

less of whether Fn is under the null or not and that the confidence band

(F̃−(x;σ,p), F̃+(x;σ,p)) depends on the null distribution F and on the scale param-

eter σ. The following proposition shows that the power, πn(σ), coincides with the

probability of Fn(x) exiting the band (F̃−(x;σ,p), F̃+(x;σ,p)), under the alternative.

Proposition 3.27. For a fixed σ > 0, we have

πn(σ) = 1−P(F̃−(x;σ,p)≤ Fn(x)≤ F̃+(x;σ,p) for all x|H1). (3.3.8)

Proposition 3.27 suggests that the width and shape of the band, (F̃−(x;σ,p), F̃+(x;σ,p)),

directly affect the power of the statistic Hn(σ), which therefore can be controled

by appropriately selecting the scale parameter, σ. In Theorem 3.29, we further

characterize the confidence band of Hn(σ) as a function of σ, for a class of null

distributions F . Before this, it will be useful to introduce the following auxiliary

lemma.
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Lemma 3.28. For any F , p > 0 and σ1 > σ2 > 0, the following inequalities holds

q∗
σ2 < q∗

σ1 <
σ1
σ2
q∗
σ2 , (3.3.9)

where q∗
σ2 and q∗

σ1 are defined as in (3.3.6).

Theorem 3.29. Let ι(x,σ) := F̃+(x;σ,p)− F̃−(x;σ,p), denote the width of the con-

fidence band, for a fixed x. If there exists x0 such that ∀ x > x0 the null cdf F (x)

is concave, then for any σ1 > σ2 > 0, there always exists x1 > x0 ∈ R, such that for

any x > x1, ι(x,σ1)> ι(x,σ2).

Corollary 3.30. If there exists x0 such that the null distribution F (x) is convex for

every x < x0, for any σ1 > σ2 > 0, there always exists x1 < x0 ∈R, such that for any

x < x1, ι(x,σ1)> ι(x,σ2).

Corollary 3.31. If there exists x0, such that F (x) is convex for x < x0 and F (x)

is concave for x > x0 (i.e. F is S-shaped), for any σ1 > σ2 > 0, there always exists

x1 > x2 ∈ R, such that for any x ∈ (−∞,x2)∪ (x1,+∞), ι(x,σ1)> ι(x,σ2).

To conclude, Theorem 3.29 suggests that, if F (x) has a concave right tail, a

smaller σ will result in a narrower confidence band at the right tail, which is illus-

trated in Example 3.32. Therefore, if the null F deviates from the true distribution

F0 mostly in the right tail, then for a fixed significance level p, Fn(x,ω) would exit

the band at the right tail with higher probability. This would make Hn(σ) right-tail

sensitive, i.e. Hn(σ) would have higher power when the null and the true distribu-

tions tend to differ more in the right tail. To summarize, all these considerations

apply to the most commonly used null distributions such as Exponential, Normal,

Pareto, Lognormal, Gamma, etc, in which case we achieve an optimal power of the

Hn(σ) test by appropriately selecting a small σ. Similarly, following Corollary 3.30,

if F has a convex left tail, a smaller σ will make Hn(σ) left tail sensitive, i.e. it would

have higher power when the null and the true distributions tend to differ more in

the left tail. And following Corollary 3.31 if F is S-shaped, a smaller σ will make

Hn(σ) left and right tail sensitive. The case of large σ, is covered in Section 3.3.3.

Example 3.32. Let the null distribution F ∼ Exp(1). For p = 0.5, the implied

confidence bands (F̃−(x;σ,p), F̃+(x;σ,p)) for different fixed σ, computed based on

Proposition 3.26 are shown in Figure 3.8.
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Figure 3.8: Confidence band of Hn(σ) for different σ when the null is Exp(1) with p= 0.5
and n= 50 or when the null is LN(0,0.252) with p= 0.2 and n= 50

As can be seen from Figure 3.8, when σ is small, the confidence band is narrower

at the right tail (as can be seen from the rightmost panel for σ = 0.025), whereas

when σ is large, the confidence band is narrower at the left tail (as can be seen from

the leftmost panel for σ = 40).

Alternatively, if F is S-shaped, as assumed in Corollary 3.31, a small σ would

imply narrower band both at the left and right tails. We illustrate this in Example

3.33 where we choose F to be lognormal.

Example 3.33. Let the null distribution F be Lognormal with location parameter

0 and shape parameter 0.252, i.e. F ∼ LN(0,0.252). The corresponding confidence

bands for different choices of the scale parameter σ are shown in Figure 3.8. As can

be seen from the rightmost panel for σ = 0.143, small σ values lead to bands that

are narrow both at the left and right tails. As can be seen from the leftmost panel

for σ = 40, large σ values lead to a narrower band in the body. The middle panel for

σ = 1 suggests that by appropriately selecting σ, one can achieve a more uniformly

sized band across the entire support of F . Therefore, the statistic Hn(σ) would have

greater power for smaller σ when the alternative and the null cdfs differ either at

the left or right tails. And when σ is large, Hn(σ) would be more sensitive in the

body, i.e. would have greater power if the alternative and the null distributions are

expected to differ more in the body.

In conclusion, the sensitivity of Hn(σ) can be controlled locally over the
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support of F by appropriately selecting the scale parameter σ, i.e. accordingly

rescaling the sample σXn. In other words, one can select σ so that the band

(F̃−(x;σ,p), F̃+(x;σ,p)) becomes narrower at the area (left and/or right tail or the

body) where the null and the true distributions are expected to differ most.

3.3.2 Optimal σ Selection

While Theorem 3.29 and Corollaries 3.30 and 3.31 shed some light on how to change

σ, so as to control the bandwidth locally, these results do not suggest a rule for

choosing the scale parameter σ, that can be applied in practice. In what follows,

we provide such a rule based on insights stemming from these results and some

empirical and geometric considerations. One such key insight comes from the ability

to decrease σ, and narrow down the confidence band around the tails where F0 and

F are expected to differ most. This motivates us to consider the difference in the

left/right tails of Fn (which comes from F0) and F . Another insight is that the rule

for selecting σ should only depend on F and should eliminate the scale dependence

of the proposed H statistic.

In order to follow upon these insights, recall Lemma 3.8 which states that the

H statistic H(F c,F cn) coincides with the (vertical) side of the largest square that can

be inscribed between F c and F cn. Therefore, the σ scaled H statistic Hn(σ) should

also coincide with the (vertical) side of the largest square that can be inscribed

between the scaled cdfs F cσ and F cn,σ. Therefore, the value of Hn(σ) will equivalently

be found as the vertical side of the largest rectangle among all rectangles with

ratio of sides equal to σ, inscribed between F c and F cn, as illustrated in Figure 3.9.

These considerations are formally summarized in the following proposition, which is

a straightforward restatement of Lemma 3.8 under rescaling with respect to x and

is therefore given without proof.

Figure 3.9: Hn(σ) coincides with the vertical side of the colored rectangles for σ < 1 (left
panel) and σ > 1 (right panel) in the original scale
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Figure 3.10: The selection of σ for right-tail sensitive statistic following (3.3.11) for F with
concave right-tail

Proposition 3.34. For σ > 0, if a rectangle S(P,d;σ) = {(x,y) ∈ R2 : |x−xP | ≤

d/(2σ), |y− yP | ≤ d/2}, with vertical side d, horizontal side d/σ and center at the

point P , can be inserted between the curves F c and F cn, so that S(P,d;σ)⊂ G , then

Hn(σ)≥ d. Furthermore,

Hn(σ) = sup{d : S(P,d;σ)⊂ G}, (3.3.10)

where G denotes the area between the two planar curves F c and F cn, which has been

formally defined in Lemma 3.8.

In summary, the alternative geometric interpretation of Hn(σ) following from

Proposition 3.34 is that it coincides with the vertical side of the largest rectangle

S(P,d;σ) with a ratio of vertical to horizontal sides equal to σ, which can be inscribed

in G, i.e. in the area between F c and F cn. This is illustrated in Figure 3.9 for different

choices of σ.

On the one hand, when σ becomes smaller, the vertical side d of the largest

S(P,d;σ) decreases and the horizontal side d/σ increases, i.e. it becomes flatter.

Therefore, with σ decreasing, it is less likely that the largest S(P,d;σ), i.e. Hn(σ)

(cf. (3.3.10)) would occur in the body of G, and more likely it would appear in its

tail area (see the left panel in Figure 3.9). On the other hand, as we established,

when σ becomes smaller, the confidence band narrows down along the right tail

and Hn(σ) becomes more right-tail sensitive. So σ should be chosen so that its

corresponding largest S(P,d;σ) has a small vertical side and a large horizontal side

and appears in the right tail with its top-left vertex coinciding with the right-most

vertex of the staircase F cn. Unfortunately, this is not formally achievable, since

the largest S(P,d;σ) depends on the random F cn. Instead, we consider a rectangle
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defined solely by the null F c that can be viewed as an approximation to the largest

S(P,d;σ).

One way to construct such a rectangle and therefore choose σ, is to take its

vertical side equal to ψ1−ψ2, where ψ1 ̸=ψ2 ∈ (0,1) are chosen close to each other and

close to one, ensuring that the vertical side is small and that the rectangle will appear

in the right tail. It is natural to take its horizontal side equal to F−1(ψ1)−F−1(ψ2)

in order to take into account the shape of the right tail of F (see light blue rectangle

in Figure 3.10). This leads to the following choice of σ

σ∗ = ψ1−ψ2
F−1(ψ1)−F−1(ψ2) , (3.3.11)

which can be interpreted as the reciprocal of the quantile density function evaluated

at ψ1 ≈ ψ2. The latter plays an important role in exploratory data analysis, extreme

value theory, reliability and survival analysis (see Soni et al., 2012).

Alternatively, the values of ψ1 and ψ2 can be chosen close to zero, or around

0.5, depending on whether a left-tail-sensitive or body-sensitive H-statistic Hn(σ)

is required. Appropriate choices of ψ1 and ψ2 are summarized in Table 3.1.2 In

Appendix 3.B, we provide numerical evidence that selecting σ according to (3.3.11),

applying Table 3.1 optimizes the power of Hn(σ).

Table 3.1: Suggested choice of ψ1,ψ2 in (3.3.11)

Fitting ψ1 ψ2
Left tail 0.05 0.01

Body 0.7 or 0.6 0.4 or 0.3
Right tail 0.99 0.95

Let us note once again that selecting σ according to (3.3.11) requires only the

knowledge of the null distribution and therefore can be done prior to testing the

goodness-of-fit. The Type I error can be expressed as

P(H0|H0) = P(Pn(σ)≤ p|H0) = p,

where the last equality follows from (3.3.5) and indicates that the Type I error

is a constant and does not depend on σ. However, this is not the case if σ is
2In case when the null distribution F is S-shaped, choosing according to either left tail sensitive

or right tail sensitive would result in both tail sensitive.
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estimated based on the sample, e.g., σ is estimated by the sample range or its

standard deviation, in which case the Type I error may increase.

Often in practice, the sample data may be rescaled for different reasons e.g.,

using different scale coefficients, and presented in different units. It is not difficult

to see that under the choice (3.3.11), Hn(σ∗) and its p-value Pn(σ∗) will be invari-

ant with respect to the units used to present the data, as stated in the following

proposition.

Proposition 3.35. Let σ∗ be computed from (3.3.11) under the initial scale of

the null F (x) and the sample Xn. Let F (x) and Xn be rescaled using a scale

coefficient σ0, in which case they become F (x/σ0) and σ0Xn respectively. Then the

corresponding rescaled σ∗ given by (3.3.11) becomes

σ∗
0 = ψ1−ψ2

σ0[F−1(ψ1)−F−1(ψ2)] ,

and the null and the sample rescaled with σ∗
0 can be seen to be invariant with respect

to σ0, i.e. F (x/(σ0σ
∗
0)) = F (x/σ∗) and σ0(σ∗

0Xn) = σ∗Xn, and so will be Hn(σ∗)

and Pn(σ∗).

To conclude, Proposition 3.35 states that the proposed rule of selecting σ using

(3.3.11) eliminates the scale dependence of Hn(σ), and leads to the invariance of the

p-value Pn(σ) under affine transformations of the data.

3.3.3 Limiting Results for Hn(σ) as a function of σ

Another important implication of introducing variability with respect to the scale

parameter σ is that as we show in Theorem 3.36 the KS statistic is the limit of the

Hausdorff statistic Hn(σ) when σ→∞. This result suggests that, the p-value and

power of the Hausdorff test converge correspondingly to the p-value and power of

the KS test when σ→∞, as stated in Corollary 3.37.

Theorem 3.36. For any distribution F (x), we have

lim
σ→∞

Hn(σ,ω) = ρD(Fn(ω),F ) (3.3.12)

for every ω ∈ Ω.
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Corollary 3.37. Denote by Pn(∞) and πn(∞) the p-value and the power of the KS

test (which is Hn(∞)), for any fixed alternative H1. Then we have

Pn(∞) = lim
σ→∞

Pn(σ), πn(∞) = lim
σ→∞

πn(σ).

Let us note that all the results in Section 3.3.1 hold for σ=∞. As demonstrated,

when σ increases, Hn(σ) becomes more sensitive either in the left tail as in Example

3.32, or in the body as in Example 3.33 or in the right tail (e.g. if F is purely

convex). Since the KS test is the limit of Hn(σ) as σ→∞, its power is bounded

from above by the power of the KS test, if the null deviates from the true at either

of these areas.

Theorem 3.38. For any distribution F (x), we have

lim
σ↓0

1
σ
Hn(σ,ω) = sup

0<t<1
|F−1
n (t,ω)−F−1(t)| (3.3.13)

for every ω ∈ Ω, where F−1
n is the inverse of Fn. If F has unbounded support, the

limit in (3.3.13) diverges.

As a consequence of Theorem 3.38, if the null F has unbounded support, 1
σ q

∗
σ→

∞ as σ ↓ 0, where q∗
σ is defined in (3.3.6). Therefore, for the boundaries (3.3.7), we

have limσ↓0 F̃−(x;σ,p)≡ q∗
σ and limσ↓0 F̃+(x;σ,p)≡ 1− q∗

σ.

3.4 Asymptotic Power
In Section 3.3, we showed that when the sample size n is finite, the power of the

proposed H statistic can be optimized by appropriately selecting the scale parameter

σ (according to (3.3.11)), so that it significantly exceeds the power of the major

classical tests, including the KS test, as also demonstrated in Section 3.5.

In this section, we go a step further and provide some asymptotic results for

the power, πn(σ) of the H test, when n→∞, expressing it as a boundary crossing

probability and utilizing the concept of exact Bahadur slope and Bahadur efficiency.

The importance of these results are illustrated in Example 3.43, where we show that

the proposed H statistic is better suited to test tail differences than the KS statistic

not only when n is finite, but also asymptotically when n→∞. The importance of

studying the asymptotic power of goodness-of-fit tests has been highlighted in the
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seminal work by Janssen (2000).

Let us assume that a sequence of i.i.d. random variables {X1, . . . ,Xn, . . .} come

from an unknown true distribution F0. For our asymptotic considerations we will

keep the null hypothesis H0 : F0 = F , but will make the alternative more specific,

i.e. H1: F0(x) =G(x;n), where G(x;n) is indexed by n. Here, we will be interested

in the behaviour of πn(σ) and πn(∞) as n approaches infinity. To characterise these

asymptotic powers, we could take two approaches. First is to consider describing

the speed of convergence of the p-values Pn(σ) and Pn(∞) for a fixed alternative,

i.e. G(x;n) ≡ G(x), n = 1,2, . . ., leading to the study of the Bahadur efficiency of

Hn(σ). The concept of the Bahadur relative efficiency is illustrated in Example 3.43,

Section 3.4.2.

Second is to choose an appropriate contiguous alternative, resulting in the study

of the asymptotic power πn(σ) and πn(∞), n→∞. Note that the second approach

cannot be applied if a fixed alternative is chosen, since both πn(σ) and πn(∞) would

converge to 1. Theorem 3.39 gives a representation of the asymptotic power of the

H test as the boundary crossing probability of a shifted Brownian bridge.

3.4.1 Asymptotic Power under A Contiguous Alternative

As mentioned, in order to study the asymptotic behavior of πn(σ) and πn(∞),

n→∞, we require a contiguous alternative, i.e. we assume that the alternative

G(x;n) converges to the null at the rate 1√
n

. Therefore, we assume that G(x;n) has

the inverse

G−1(t;n) = F−1(t) + 1√
n
δ(t), t ∈ [0,1), (3.4.1)

where δ(t) is a bounded continuous function defined on (0,1), characterizing how the

alternative differs from the null F . Since we are interested in the limiting behaviour

of πn(σ), the required δ(t) ensures G(x;n) are cdfs for sufficiently large n. It is well

known (see Milbrodt and Strasser, 1990) that the asymptotic power of the KS test

πn(∞) is related to the shifted Brownian bridge. This result can be generalized to

the asymptotic power πn(σ) of the Hausdorff statistic, as shown in the following

theorem.

Theorem 3.39. Consider the null hypothesis H0 : F0 = F with density f , and as-

sume that the sequence {X1, . . . ,Xn, . . .} comes from G(x;n) with inverse defined as
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in (3.4.1). For fixed σ > 0 and signficance level p, the asymptotic power of the scaled

Hausdorff statistic Hn(σ) can be expressed as

lim
n→∞

πn(σ) = P(γσ(t)≤ B0(t)− ζ(t)≤ γσ(t),∀ 0≤ t≤ 1), (3.4.2)

where B0(t) is a Brownian Bridge defined as in Theorem 3.21,

ζ(t) = δ(t)f(F−1(t)), γσ(t) = λp(σ)(1 + 1
σ
f(F−1(t))),

and where λp(σ) is the quantile of the asymptotic distribution of Hn(σ), i.e. it is

the solution of

p= P
(
|B0(t)| ≤ λp(σ)

(
1 + 1

σ
f(F−1(t))

)
,∀ 0≤ t≤ 1

)
.

Corollary 3.40. The asymptotic power of the KS statistic is

lim
n→∞

πn(∞) = P(|B0(t)− ζ(t)| ≤ λp(∞),∀ 0≤ t≤ 1),

where λp(∞) is the quantile of the asymptotic distribution of the KS statistic, which

is also the solution of p= P(|B0(t)| ≤ λp(∞),∀ 0≤ t≤ 1).

Similar result for the KS statistic is also obtained in Milbrodt and Strasser

(1990).

3.4.2 The Bahadur Relative Efficiency

The p-value of many well-known goodness-of-fit statistics among which KS, CvM,

and AD converge to zero exponentially, i.e. O(e−cn) when the null is H0 : F0(x) =

F (x) and the sample {X1, . . . ,Xn} comes from a fixed alternative with cdf G(x;n)≡

G(x). Therefore, Bahadur (1971) introduced the Bahadur exact slope c as a char-

acterization for the speed of the exponential convergence. Let us note that the

existence of the slope c implies an exponential rate of convergence. We adopt the

definition from Bahadur (1971) and introduce the corresponding Bahadur exact

slope of Hn(σ) as

c(σ) =− lim
n→∞

2n−1 logPn(σ) a.s., (3.4.3)
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which can be interpreted as the speed of exponential convergence of the p-value

Pn(σ). For consistency, denote c(∞) = limσ→∞ c(σ) the Bahadur exact slope of the

KS statistic. As known from the literature (see e.g. Abrahamson, 1967), the exact

slope c(∞) of the KS test exists. Furthermore, as shown in Theorem 3.41, the limit

in (3.4.3) exists for any σ > 0 and therefore c(σ) is well defined.

It is worth pointing out that for any goodness-of-fit statistic the corresponding

exact slope depends on the choice of the null F and the alternative G and is bounded

from above by 2ρKL(G,F ), where ρKL denotes the Kullback–Leibler information

measure, defined as

ρKL(G,F ) =
∫ +∞

−∞
g(x) log g(x)

f(x)dx, (3.4.4)

where f(x) and g(x) are the density functions of F (x) and G(x). Thus, c(σ) ≤

2ρKL(G,F ). Furthermore, this bound is attained by a class of statistics with certain

regularity conditions (see e.g. Nikitin, 1995). The quantity

c(σ)
2ρKL

≤ 1 (3.4.5)

is also referred to in the literature as the absolute Bahadur efficiency.

Given the sequence {X1, . . . ,Xn, . . .} and the null distribution F (x), under the

alternative hypothesis G(x), let N(σi,p), be the smallest sample size required for

the null to be rejected using the Hn(σi) statistic for fixed σi, i= 1,2 at a significance

level p. Then we consider,

lim
p→0

N(σ1,p)
N(σ2,p)

= c(σ2)
c(σ1) a.s., (3.4.6)

which is known as the Bahadur relative efficiency (see Bahadur, 1971, page 27

therein). As noted by Bahadur, comparing the exact slopes of two goodness-of-

fit statistics leads to comparing their relative efficiencies. Therefore, in order to

compare the powers of the KS and Hn(σ) statistics, we need to estimate their cor-

responding exact slopes c(∞) and c(σ). While c(∞) is known for the assumed F

and G (see e.g. Abrahamson 1967), estimating the exact slope c(σ) can be done by

applying the following theorem.

Theorem 3.41. Under the alternative ρ∞ :F0 =G, the exact slope defined in (3.4.3)
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exists, and can be expressed as c(σ) = 1
2fσ(H(Fσ,Gσ)), where Fσ and Gσ denote the

null and the alternative scaled by σ,

fσ(x) = inf
0<t<1

min{r(t,x+F (F−1(t) + x

σ
)− t), r(1− t,x−F (F−1(t)− x

σ
) + t)},

(3.4.7)

and where

r(x,y) =


(x+y) log(x+y

x ) + (1−x−y) log(1−x−y
1−x ), 0< x < 1−y

+∞, 1−y ≤ x < 1;

Corollary 3.42. When the null distribution F is continuous, for sufficiently small

x, fσ(x) can be represented as

fσ(x) = x2

 inf
0<t<1

(
1 + 1

σf(F−1(t)
)2

t(1− t)

+O(x3). (3.4.8)

In the following example, we illustrate how the Bahadur relative efficiency can

be used to compare the asymptotic powers of the KS and the scaled Hn(σ) tests for

σ = σ∗ selected according to (3.3.11) and assuming that the alternative differs from

the null only in the tail, which is achieved by an appropriate splicing construction

for the alternative.

Example 3.43 (A Splicing Construction of G). We take the alternative G to be a

spliced distribution with support [x,∞) and density g(x), that coincides with the

null F (with density f) up to a splicing point x < C <∞, after which it coincides

with a distribution G0(x;θ,α) (with density g0(x;θ,α)) depending on shape and

scale parameters θ, α. The density g(x) can then be expressed as

g(x) =


ϕ1g1(x), x≤ x≤ C

ϕ2g2(x), x > C

, (3.4.9)

where ϕ1,ϕ2 > 0 are the splicing weights, satisfying ϕ1 +ϕ2 = 1, g1(x) and g2(x) are

proper probability density functions defined on [x,C] and [C,∞) respectively. We

also require the following conditions to be met.

1) C = F−1(ϕ1),
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2) g(x) = f(x), for x ∈ [0,C].

3) g(x) = g0(x;θ,α) for x > C and as a consequence G0(C;θ,α) = ϕ1, where α

and θ are appropriately chosen.

It is not difficult to verify that conditions 1) - 3) ensure that g1(x) = f(x)/ϕ1

and g2(x) = g0(x;θ,α)/ϕ2 intergrate to one, and that the alternative G has the body

of the null F and the tail of G0. In order to illustrate the construction, we take F

to be exponential F ∼ Exp(1), ϕ1 = 0.8, x = 0, C = − log(0.2) which follows from

condition 1), and represent the tail by G0(x;θ,α)≡G0(x/α;θ,1) defined by θ and α.

Clearly, if one fixes α, the value of θ is uniquely determined from G0(C;θ,α) = ϕ1

of condition 3). Therefore, G is fully controlled by the choice of α. To determine α,

we also require G to be as close to F as possible, in terms of the Kullback–Leibler

information measure ρKL(G,F ), (c.f (3.4.4)) which is specified in the next condition.

4) (a) If infα ρKL(G,F ) ̸= 0, we choose α∗ = arg infα ρKL(G,F ).

(b) If infα ρKL(G,F ) = 0, then we choose α∗ such that ρKL(G,F ) = 0.001.

When the latter equality does not ensure that α∗ is unique, we further

require that F (x)≤G(x) for x > C to guarantee its uniqueness.

In summary, given the class G0, we are able to find unique α∗ and θ∗ that

characterizeG so that conditions 1) - 4) are met. In Table 3.2 we present the Bahadur

absolute efficiencies c(σ∗)
2ρKL

, c(∞)
2ρKL

, for the H and the KS tests and the Bahadur relative

efficiency c(σ∗)
c(∞) , for the H versus the KS test, for different tails G0 of G. For all tail

distributions G0, infα ρKL = 0. These efficiencies are eveluated following (3.4.5) and

(3.4.6), where c(·) and ρKL are computed based on Theorem 3.41 and Eq. (3.4.4).

As can be seen from the last column of Table 3.2, under the different choices for the

tail part G0 of G, the Hn(σ∗) test is between 6 and 267 times more efficient than

the KS test, in the sense of the Bahadur relative efficiency. The scale parameter

σ∗ in Hn(σ∗) is chosen according to (3.3.11) with (ψ1,ψ2) = (0.99,0.95) (cf. Table

3.1) and F ∼ Exp(1). According to (3.4.6), when p→ 0, the sample size N(σ∗,p)

required to reject the null using Hn(σ∗) is asymptotically between 6 and 267 times

less than the sample size N(∞,p) required using the KS, if the null and alternative

differ in the tail. In other words, for a given sufficiently large sample size n, the

power of Hn(σ∗) is much higher than the power of KS.
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Table 3.2: Absolute and Relative Bahadur Efficiency of the KS test and the scaled Hn(σ)
test with σ = σ∗ following (3.3.11) with ψ1 = 0.99 and ψ2 = 0.95 for different
tail specifications G0 of the alternative.

G0(x;θ,α) ρKL θ∗ α∗ c(σ∗)
2ρKL

c(∞)
2ρKL

c(σ∗)
c(∞)

Lognormal tail Φ( ln(x)−α
θ ) 0.0024 -0.1314 0.7216 0.013 0.0004 32.39

Gumbel tail e−e−(x−θ)/α 0.00011 0.1887 0.9472 0.035 0.0018 19.84
Fréchet tail e−(x/α)θ 0.0150 2.9353 0.9655 1.32e-3 4.9e-6 267.4

Weibull tail ∗ (1− e−(x/α)θ )1(x≥ 0) 0.0010 0.9321 0.9659 0.158 0.0220 7.17
Pareto tail ∗ (1− ( α

x+α)θ)1(x≥ 0) 0.0010 21.114 20.319 0.118 0.0117 10.1
Gamma tail ∗ ∫ x

0
1

Γ(θ)αθ t
θ−1e−t/αdt 0.0010 0.8528 1.1592 0.142 0.0228 6.25

It would also have been interesting to compare the asymptotic power of the H

test with that of other classical tests, e.g., the CvM and AD tests, using the Ba-

hadur relative efficiency, (3.4.6). Although expressions for their exact slopes, needed

in (3.4.6), have been obtained by Nikitin (1995), they are difficult to compute nu-

merically for given F and G. For this reason, we have not included such comparisons

in Table 3.2.

3.5 Numerical Studies on the Use of Hn(σ) for Fitting

Tails

We showed in Sections 3.3 and 3.4, (see Proposition 3.27, Theorems 3.29, 3.41 and

Table 3.2) that as σ decreases, Hn(σ) becomes more sensitive in capturing tail

deviations. This is illustrated and supported, based on the simulated Example 3.44

of Sections 3.5.1 and the real data Example 3.45 in Section 3.5.2. Example 3.44

shows that when the null and alternative differ in the right tail, the power of the

scaled Hn(σ∗) test with σ∗ selected according to (3.3.11), is significantly higher

than that of other classical goodness-of-fit tests. In Example 3.45, we first specify

the null cdf F as a spliced distribution from the Mixed Erlang-Pareto (ME-P) family

considered by Reynkens et al. (2017) as a global, body and tail fitting model. We

then fit the latter to an appropriately selected subset of a Lloyd’s aviation loss data

set and then use the remaining subset to test the null H0 : F0 = F , applying the KS,

CvM, AD and Hn(σ∗) tests. By analyzing the PP and QQ plots of Fig 3.12 and

the goodness-of-fit testing results summarized in Table 3.4, we show that, among all

tests, the Hn(σ∗) test is better suited for detecting the tail difference between the

sample and the null.
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3.5.1 Simulated Example

This section provides a simulated example to illustrate the power of Hn(σ) when the

null and alternative differ in the tail following the results of Section 3.3. We show

that if the sample comes from a distribution whose tail differs from that of the null,

Hn(σ∗) has a higher power than KS, CvM and AD, when σ∗ is chosen according to

(3.3.11).

Example 3.44. We apply the splicing construction as in Example 3.43, where the

alternative G has a density g(x) defined by (3.4.9), satisfying conditions 1)-3). In

other words, G coincides with F in the body and has the tail of G0. We assume that

both F and G0 come from the family of (unshifted) Fréchet distributions, which are

characterized by scale and shape parameters α and θ. More precisely, the cdf of a

Fréchet distribution Φ(x;α,θ) is given as

Φ(x;α,θ) =


exp

(
− (1 + θx

α )− 1
θ

)
x >−α

θ

0 x≤−α
θ

. (3.5.1)

In order to compute and compare the powers of Hn(σ), KS, CvM and AD,

we take F ∼ Φ(x;0.3,0.3), x = −1, C = (− log0.8)−0.3− 1, F (C) = ϕ1 = 0.8, and

G0 ∼ Φ(x;θ0,α0). As in Example 3.43, condition 3) ensures the uniqueness of α0 for

a fixed shape parameter θ0. Therefore, the choice of θ0 fully determines the shape

of G. In this example, we are interested in comparing numerically the powers of

KS, CvM and AD with that of the Hn(σ) statistic, under different tail alternatives

from the Fréchet family (3.5.1). For this reason, we choose θ0 = 0.3 + ∆, where

∆ = 0.2,0.4,0.6, . . . ,3.2 reflects the tail difference between F and G. As shown in

the left panel of Figure 3.11, with ∆ increasing, the difference between G and F in

the tail also increases.

Then a sample Xn with n= 50 is simulated from G(x), and the powers of KS,

Cramér–von Mises (CvM), Anderson-Darling (AD) and Hn(σ∗) tests are estimated

by their corresponding frequencies of rejection of the null H0 : F0 = F at significance

level p= 0.05. To compute the p-value of CvM and AD tests, we use the R package

goftest (Faraway, Marsaglia, Marsaglia and Baddeley, 2021). To compute the p-

value of KS and the Hn(σ∗) tests, we use the exact-KS-FFT procedure from the R
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Figure 3.11: Left Panel: the null (solid) F (x) ∼ Φ(x;0.3,0.3) and the alternative G
with tail G0(x)∼ Φ(θ0,α0), where the splicing point C = (− log0.8)−0.3−1,
F (C) = ϕ1 = 0.8 and θ0 = 0.3 + ∆ for ∆ = 0.4 (dashed), 0.8 (dotdash), 1.2
(dotted); Right Panel: the powers of AD, CvM, Hn(σ∗) and KS tests, as
functions of ∆.

package KSgeneral (Dimitrova et al., 2020) to implement (3.2.21) in Theorem 3.19.

Since we are interested in fitting the right tail, we choose σ = σ∗ defined in (3.3.11)

with ψ1 = 0.99, ψ2 = 0.95 (cf. Table 3.1). The right panel of Figure 3.11 shows the

powers of the Hn(σ∗), KS, CvM and AD tests, as functions of ∆.

As can be seen, the power of the proposed H statistic is significantly higher

than the powers of the classical tests, AD, CvM, and KS. This illustrates very well

the advantage of the H statistic in examining tail differences. This is also supported

by the result of Example 3.43, which shows that the relative efficiency of H to KS

is significantly higher.

3.5.2 Real Data Example

For this example, we use real data from a Llody’s syndicate. The dataset comprises

1,743 aviation insurance losses which have occurred within the period from 2014 to

2019. In aviation insurance, financial losses tend to exhibit a heavy right tail with

low frequency but high severity insurance claims, as is the case with our dataset

(see the right panel of Figure 3.13). Accurately modeling the tail behavior of such

losses, i.e. quantifying the likelihood and magnitude of high-consequence events, is

critical for robust risk assessment.

Our purpose is to demonstrate the advantage of applying the proposed Hn(σ)

statistic for testing tail difference compared to the KS, AD and CvM statistics. Note

that in goodness-of-fit testing, the null cdf, F must be fully specified a priori, with

no parameters estimated based on the tested sample. To ensure this, we randomly
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divide the dataset into two groups, Groups A and B, based on whether the loss

occurred on an odd-numbered (Group A) or even-numbered (Group B) day of the

month. This splitting criterion is random, as the loss date is independent of the

loss amount. We then use Group A to fit the null cdf, F belonging to a class of

distributions and subsequently test whether Group B comes from this fitted null.

To further demonstrate the randomness of the split, we present summary statistics

Table 3.3: Summary statistics for the aviation data Group A (odd) and Group B (even)
losses that have occurred correspondingly on the odd or even days of the month

# Obs. Mean St.Dev. Min Q1 Q2 Q3 Max
Group A (Odd) 930 1,030,282 4,363,370 0.5 6,257 25,000 209,618 63,615,000
Group B (Even) 813 923,381 5,201,619 19.3 5,589 26,180 210,712 116,936,064

Total 1,743 980,420 4,771,612 0.5 5,771 25,304 210,349 116,936,064

of Groups A and B in Table 3.3. As shown, the summary statistics for both groups

are very similar, indicating that the two samples are similar in distribution. There-

fore, we expect that any differences identified by the goodness-of-fit test will not be

attributable to differences between the groups, but rather to deviations from the

fitted null. Details of how this is implemented are summarized as follows.

Example 3.45. We first asume that the null is a Mixed-Erlang and Pareto (ME-P)

spliced distribution which we fit to the aviation losses dataset. The latter spliced

distribution has been suggested by Reynkens et al. (2017), as a model that can

successfully capture small to medium losses in the body and large losses in the tail,

referring to this as a ”global fit” strategy. A ME-P spliced distribution is defined by

the following density

fME−P (x) =


ϕ1

fME(x;α,r,θ)
FME(C1;α,r,θ) 0≤ x < C1

ϕ2fP (x;θp,C1,∞) x≥ C1

, (3.5.2)

where ϕ1 and ϕ2 are the splicing weights with ϕ1,ϕ2 > 0 and ϕ1 + ϕ2 = 1, C1 is

the splicing point, fME and FME are the density and cdf of the Mixed Erlang

distribution, and fP is the density of the truncated Pareto distribution. The latter
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density functions are defined as

fME(x;β,r,α) =
M∑
j=1

βj
exp(−x/α)xrj−1

αrj (rj−1)! , x > 0,

fP (x;θp,C1,C2) = θpC
θp

1

xθp+1
(
1− (C1

C2
)θp

) , C1 ≤ x < C2,

where M is the number of Erlang distributions used for the mixture, r= (r1, . . . , rM )

are their shape parameters, satisfying r1 < r2 < · · · < rM , ri = 1,2,3, . . ., α is their

common scale parameter and β = (β1, . . . ,βM ) are the mixing weights, i.e. βi > 0

i= 1, . . . ,M , and∑M
i=1βi = 1. For the truncated Pareto distribution fP (x;θp,C1,C2),

it is required that 0 < C1 < C2, θp > 0, where C2 is allowed to take infinity. In the

ME-P spliced distribution, we let C2 =∞. Given a data sample and a chosen splicing

point C1, Reynkens et al. (2017) estimate r, β, α and θp via maximum likelihood,

and use the Bayesian Information Criterion (BIC) to select the parameter M , which

discourages over-fitting. Estimation of the latter parameter can be performed using

the R package ReIns (Albrecher et al., 2017), which we also use in this Example.

Then we apply the procedure mentioned above to fit the ME-P spliced distri-

bution (3.5.2) to the data in Group A and consider it as our null F . Note that

the estimated M will depend on the choice of the splicing points C1. Therefore, we

further estimate the pair C1 and M corresponding to the minimum BIC. All the

estimated parameters are shown in Table 3.4.

Table 3.4: Parameters of the ME-P null fitted to Group A data for C1 equal to the 64.95%
data quantile and the results of the goodness-of-fit testing based on Group B
data

Estimated Parameters of the ME-P null for Group A Goodness of fit for Group B
Splicing Point C1 = 91,464.41 Statistics p-values Values

(ϕ1,ϕ2) = (0.6495, 0.3505) KS 0.3711 0.0321
Mixed Erlang (Body) β = (0.8325797,0.1674203) CvM 0.3581 0.1609

(M = 2) r = (1,6) AD 0.2443 1.2643
α= 10605.33 Hn(σ∗) 0.001837 0.0116Pareto Tail θp = 0.4968537 with ψ = (0.99,0.95)

Then we use the KS, AD, CvM, and the proposed Hn(σ) statistics to test

whether the estimated ME-P null F fits well the data in Group B, i.e. to test the

null H0 : F0 = F . Since our focus is testing the goodness-of-fit in the tail, we select

the scale parameter σ for Hn(σ), following (3.3.11) with ψ = (ψ1,ψ2) = (0.99,0.95)
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Figure 3.12: The PP and QQ plots for the ME-P distribution in Table 3.4

(cf. Table 3.1), based on the fitted ME-P null distribution F , which yields σ∗ =

3.541102× 10−10. The values of these statistics and their p-values are summarized

in Table 3.4.

As can be seen from Table 3.4, for a significance level p = 0.05, the null H0 is

rejected applying the Hn(σ∗) test, whereas it is not rejected by the KS, CvM, and

AD tests. This suggests that the null F does not fit well the right tail of the Group

B data. This is also illustrated by the QQ plot in the right panel of Figure 3.12. As

can be seen, there is a perfect alignment with the 45-degree diagonal on the PP plot

in the left panel, whereas the QQ plot clearly indicates a significant tail deviation.

Let us note once again that among all competing tests, the scaled Hausdorff test

Hn(σ∗) is the only one that captures this deviation.

In order to remedy this tail discrepancy, we further enhance the ME-P null

distribution by introducing a second splicing point C2 and consider a Mixed-Erlang,

Pareto and Pareto (ME-P-P) spliced distribution, with density

fME−P−P (x) =


ϕ1

fME(x;α,r,θ)
FME(C1;α,r,θ) 0< x < C1

ϕ2fP (x;θp1 ,C1,C2) C1 < x < C2

ϕ3fP (x;θp2 ,C2,∞) x > C2

, (3.5.3)

where ϕ1,ϕ2,ϕ3 > 0, ϕ1 +ϕ2 +ϕ3 = 1. In this setting, the choice C1 is the same as

in the ME-P null distribution. To select C2, we use the mean excess plot criterion

instead and thus select C2 to be the 99-percentile of the data in Group A. Given
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C1 and C2, the same procedure as for the ME-P null has been used to estimate the

parameters α,r,ϕ,θ,θp1 and θp2 in (3.5.3), and the results are summarizes in Table

3.5.

Table 3.5: Parameters of the ME-P-P null fitted to Group A data for C1 and C2 equal to
the 64.95% and 99% data quantiles and the results of the goodness-of-fit testing
based on Group B data

Estimated Parameters of the ME-P-P null for Group A Goodness of fit for Group B
Splicing Point C1 = 91,464.41, C2 = 25,142,116.72 Statistics p-values Values

(ϕ1,ϕ2,ϕ3) = (0.6494, 0.3398, 0.0108) KS 0.1655 0.0391
Mixed Erlang β = (0.8325797, 0.1674203) CvM 0.3380 0.1685

(M = 2) r = (1, 6) AD 0.2522 1.2417
α= 10605.33 Hn(σ∗) 0.1767 0.0057Pareto Tails θp1 = 0.3738528 with ψ = (0.99,0.95)
θp2 = 4.0654859

The scale parameter σ has been estimated as σ∗ = 1.943354× 10−9 using

(3.3.11), based on the fitted ME-P-P null distribution. As for the initial ME-P

null, we again apply the KS, CvM, AD and Hn(σ) tests and the corresponding re-

sults are summarized in Table 3.5. As can be seen, at a significance level p = 0.05,

the null is not rejected by all statistics, indicating a good fit. This is also confirmed

by analyzing the PP and QQ plots, shown in Figure 3.13.

Figure 3.13: The PP and QQ plots for the ME-P-P distribution in Table 3.5

Finally, we slightly modified the ME-P-P null by changing C1 to be the 90%

quantile of the data in Group A. In addition to the KS, CvM, AD tests, we then

considered two versions of the Hn(σ) test, Hn(σ∗
1), tuned for the tail with σ∗

1 =

1.869573× 10−9 and Hn(σ∗
2), tuned for the body with σ∗

2 = 5.382781× 10−6. Both

σ∗
1 and σ∗

2 have been obtained following (3.3.11) with ψ1 = (0.99,0.95) and ψ2 =
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(0.6,0.4) selected from Table 3.1 accordingly. We have repeatede the same estimation

and test steps as before, and the results are summarized in Table 3.6 and illustrated

in Figure 3.14.

Table 3.6: Parameters of the C1 updated ME-P-P null fitted to Group A data for C1 and
C2 equal to the 90% and 99% data quantiles and the results of the goodness-
of-fit testing based on Group B data

Estimated Parameters of the ME-P-P null for Group A Goodness of fit for Group B
Splicing Point C1 = 1,404,102, C2 = 25,142,117 Statistics p-values Values

(ϕ1,ϕ2,ϕ3) = (0.9, 0.0892, 0.0108) KS < 2×10−16 0.2249
Mixed Erlang β = (0.8717319, 0.1282681) CvM < 2×10−16 11.981

(M = 2) r = (1, 13) AD 7.38×10−7 82.262
α= 50624.60 Hn(σ∗

1) 0.4876 0.0040Pareto Tails θp1 = 0.5236715 with ψ = (0.99,0.95)
θp2 = 4.0654859 Hn(σ∗

2) 1.94×10−7 0.0783with ψ = (0.6,0.4)

As can be seen from Figure 3.14, the updated ME-P-P null fits the body poorly

(as seen from the PP plot), but fits the right tail quite well (as seen from the QQ

plot). The results from the goodness-of-fit testing summarized in Table 3.6 show

that, the null is rejected by the KS, CvM, AD and the body sensitive Hn(σ∗
2) but

it is not rejected by the right-tail sensitive Hn(σ∗
1), which is coherent with Figure

3.14.

In conclusion, with this final example, we demonstrate that under one and the

same null distribution, it is possible to tune σ for different testing purposes, i.e.

targeting differences expected either in the body or in the tail.

Figure 3.14: The PP and QQ plots for the C1 updated ME-P-P distribution in Table 3.6



3.6. Discussion 113

3.6 Discussion
We have proposed to use the Hausdorff metric to measure the distance between two

(empirical) distribution functions and to view this metric as a goodness-of-fit test

statistic, referred to as the H test. In Section 3.2, we have explored the properties of

the H test and provided efficient algorithms to compute it and its exact/asymptotic

p-value. The latter algorithms are very numerically efficient, which makes the H

test particularly suitable for goodness-of-fit testing in data-rich environments such

as machine learning, where large data samples are often collected.

We have shown in Section 3.3, that the H test can be tuned to become tail

sensitive if certain convexity/concavity conditions with respect to the underlying

null distribution are met, and we have also provided the corresponding tuning rules.

These conditions are commonly met in data-scarce applications such as extreme

value theory applied to finance and insurance, environmental science, cybersecurity,

operations research, and many others. In such applications, observations are rare,

as each of them is a large loss occurring with small (tail) probability, and the null

distribution is often taken to be one of the common heavy-tailed distributions, or a

related spliced construction. As illustrated in Section 3.5, the required convexity/-

concavity conditions are met for such choices of the null distribution.

As illustrated in Sections 3.4 and 3.5, the power of the H test is improved for

different tail alternatives, and the sample size required to reject the null i.e. to

validate the model is smaller, as evidenced by its Bahadur efficiency, compared to

other classical tests. These properties make the H test a more appropriate goodness-

of-fit test alternative in such extreme value applications.



Appendix for Chapter 3

3.A Proofs for Chapter 3
Before we present some important results, it would be useful to give some auxiliary

results and properties first.

As stated by (3.2.14), the Hausdorff metric H and the Lévy metric ρLevy co-

incide, which is also evidenced by their coincidental geometric interpretation as the

side of the largest square inscribed between the corresponding planar curves. This

fact has also been highlighted in Theorem 1∗ of Rachev (1984). Therefore, the prop-

erties of the Lévy metric are also valid for the metric H, as summarized by the

Lemma 3.46, which is a restatement of properties (2) (6) and (7), summarized in

Zolotarev (2011) with respect to the Lévy metric.

Lemma 3.46. Suppose, F and G are nondecreasing, right-continuous functions.

Denote by F−1(x) = inf{t : F (t) ≥ x} and G−1(x) = inf{t : G(t) ≥ x}, the inverse

functions of F (x) and G(x), and denote by F−1c and G−1c, their corresponding

planar curves. We have

H(F c,Gc) =H(F−1c,G−1c), (3.A.1a)

H2(F c,Gc)≤
∫ +∞

−∞
|F (x)−G(x)|dx, (3.A.1b)

H(F c,Gc)≤ sup
x∈R
|F (x)−G(x)| ≤H(F c,Gc) +h(H(F c,Gc)) (3.A.1c)

where h(x) = min{sup
t
|F (x+ t)−F (t)|,sup

t
|G(x+ t)−G(t)|}.

Let us note that the Hausdorff metric is defined with respect to two compact

subset. Therefore, for the one-sample goodness-of-fit test, in the following, we give

the localization consideration, which will be used in later proofs.
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Lemma 3.47. For M > 0, denote set AM = [−M,M ]× [0,1]. Then

H(F c,F cn) = lim
M→∞

H(F c∩AM ,F cn∩AM ),

H(gr(F ),gr(Fn)) = lim
M→∞

H(gr(F )∩AM ,gr(Fn)∩AM ).
(3.A.2)

Proof. Since lim
x→−∞

F (x) = 0, lim
x→+∞

F (x) = 1, ∀ ε > 0, there exists M > 0, such that

F (x)< ε for any x <−M and F (x)> 1−ε for any x >M,

Fn(x) = 0 for any x <−M and Fn(x) = 1 for any x >M

Let us define the function F̂ as

F̂ (x) =


F (x) |x| ≤M

0 x <−M

1 x >M

.

Then, ∀ x ∈ [−M,M ], (x,F (x)) ∈ F c∩ F̂ c, which implies,

inf
B∈F c

ρ∞((x, F̂ (x)),B) = 0 and inf
A∈F̂ c

ρ∞((x,F (x)),A) = 0.

∀ |x|>M , it is also easy to verify that

inf
B∈F c

ρ∞((x, F̂ (x)),B)< ε and inf
A∈F̂ c

ρ∞((x,F (x)),A)< ε

Hence, H(F c, F̂ c)< ε. In addition, since F̂ (x) = Fn(x) for |x|>M , we have

sup
A∈F c∩AM

inf
B∈F c

n∩AM

ρ∞(A,B) = sup
A∈F̂ c

inf
B∈F c

n

ρ∞(A,B)

sup
A∈gr(F )∩AM

inf
B∈gr(Fn)∩AM

ρ∞(A,B) = sup
A∈F̂ c

inf
B∈gr(Fn)

ρ∞(A,B)

Similarly, we can also show that

sup
B∈F c

n∩AM

inf
A∈F c∩AM

ρ∞(A,B) = sup
B∈F c

n

inf
A∈F̂ c

ρ∞(A,B)

sup
B∈gr(Fn)∩AM

inf
A∈gr(F )∩AM

ρ∞(A,B) = sup
B∈gr(Fn)

inf
A∈F̂ c

ρ∞(A,B)
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Hence, we can show that

H(F c∩AM ,F cn∩AM ) =H(F̂ c,F cn)

H(gr(F )∩AM ,gr(Fn)∩AM ) =H(F̂ c,gr(Fn))

Therefore, the triangle inequality implies that

|H(F c,F cn)−H(F c∩AM ,F cn∩AM )|

≤|H(F c, F̂ c) +H(F̂ c,F cn)−H(F c∩AM ,F cn∩AM )|< ε

|H(F c,gr(Fn))−H(F c∩AM ,gr(Fn)∩AM )| ≤H(F c, F̂ c)< ε

Thus, the lemma follows due to the arbitrariness of ε.

Lemma 3.47 can be extended to the planar curves of any distribution functions,

but not to two arbitrary closed sets. Note that in a more general case, i.e. when the

sets A and B are closed, and for an arbitrary sequence of compact sets A1,A2,A3, . . .

such that Al→A as l= 1,2,3, . . . with respect to the hit-or-miss topology, H(Al,B)

does not necessarily converge to H(A,B). Formally, the hit-or-miss topology is

defined through the convergence criterion:

Al→A if and only if A= ∪l∩iAl+i = ∩l∪iAl+i.

This topology is defined on the collection of all closed subsets. The latter topology

restricted on the collection of all the compact subsets is coarser than the myope

topology, which is induced by the Hausdorff metric (cf. Matheron, 1974).

Furthermore, for arbitrary functions F and G, if M1 >M2 > 0, it is not neces-

sarily true that

H
(
F c∩ ([−M1,M1]×R) ,Gc∩ ([−M1,M1]×R)

)
>

H
(
F c∩ ([−M2,M2]×R),Gc∩ ([−M2,M2]×R)

)
.

See Section 2.3 in Sendov and Beer (2012) for a counter-example.

Lemma 3.48. For any A ∈ R2 and any distribution function F , infB∈F c ρ∞(A,B)

is always attainable. Furthermore, if infB∈F c ρ∞(A,B) > 0, let B0 be the crossing

point of F c with the line passing through A and crossing the axis Ox at an angle
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3π/4, then ρ∞(A,B0) = infB∈F c ρ∞(A,B).

Proof. It is easy to prove that infB∈F c ρ∞(A,B) is attainable, since the set F c ∩

S(A, infB∈F c ρ∞(A,B) + ε) is nonempty and compact for arbitrary ε, where

S(A, inf
B∈F c

ρ∞(A,B) + ε)

is the square with side infB∈F c ρ∞(A,B) + ε and center at the point A.

The proof of ρ∞(A,B0) = infB∈F c ρ∞(A,B) is trivial, thus will be omitted.

Proof of Lemma 3.5. Given the planar curve Fn, there exists M0 > 0, such that

F cn/AM0 = gr(Fn)/AM0 . Note that the set F cn∩AM0 is compact, and that according

to Lemma 3.48, ∃A0 = (x0,y0) ∈ F cn∩AM0 and B0 = (xB0 ,yB0) ∈ F c such that,

H(F cn∩AM0 ,F
c∩AM ) = inf

B∈F c
ρ∞(A0,B) = ρ∞(A0,B0). (3.A.3)

Furthermore, a line passing point A0 and B0 should cross the axis Ox at an angle

of 3
4π.

Hence, according to Lemma 3.47, to prove Lemma 3.5, it suffices to show that

H(F cn∩AM0 ,F
c∩AM ) =H(gr(Fn)∩AM0 ,gr(F )∩AM0). (3.A.4)

In what follows, we will prove (3.A.4) by contradiction.

If (3.A.4) does not hold, then one must have that,

∀A ∈ gr(Fn)∩AM0 , inf
B∈F c

ρ∞(A,B)<H(F cn∩AM0 ,F
c∩AM ). (3.A.5)

Thus, there should exist A0 = (x0,y0) ∈ F cn/gr(Fn), i.e. Fn(x0−) < y0 < Fn(x0),

where gr(Fn) is the closure of gr(Fn). In other words, the point A0 should fall

within one of the internal jump segments of F cn. Denote by A1 = (x0,Fn(x0−)), A2 =

(x0,Fn(x0)). According to Lemma 3.48, there exist B1 = (xB1 ,yB1),B2 = (xB2 ,yB2)∈

F c such that

inf
B∈F c

ρ∞(A1,B) = ρ∞(A1,B1) and inf
B∈F c

ρ∞(A2,B) = ρ∞(A2,B2),

and that both the lines passing through the points, A1,B1 and A2,B2 cross the axis
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Ox at an angle 3
4π. Therefore, we have |xB1 −x0| = ρ∞(A1,B1) and |xB2 −x0| =

ρ∞(A2,B2).

Since F is monotonic one should have xB1 ≤ xB0 ≤ xB2 . Hence at least one of

the |xB1−x0|= ρ∞(A1,B1) and |xB2−x0|= ρ∞(A2,B2) is not less than |xB−x0|=

ρ∞(A0,B0). This implies

sup
A∈gr(Fn)∩AM0

inf
B∈F c

ρ∞(A,B)≥ ρ∞(A0,B0) =H(F cn∩AM0 ,F
c∩AM ),

which contradicts with (3.A.5). Therefore, (3.A.4) holds. Similarly, we can also

show that

sup
A∈F c

inf
B∈gr(F )∩AM0

ρ∞(A,B) =H(F cn∩AM0 ,F
c∩AM ).

Thus, the lemma holds.

Proof of Lemma 3.6. Following Definition 3.3, we have

H(F c,F cn) = max
[

sup
A∈F c

n

inf
B∈F c

ρ∞(A,B), sup
B∈F c

inf
A∈F c

n

ρ∞(A,B)
]
.

From Lemma 3.47, it is clear that sets F c and F cn are locally compact. Thus, there

exists A∗ ∈ F c, and B∗ ∈ F cn, such that

ρ∞(A∗,B∗) = inf
B∈F c

n

ρ∞(A∗,B) = sup
A∈F c

inf
B∈F c

n

ρ∞(A∗,B).

Furthermore, according to Lemma 3.48, the line passing through the points A∗,B∗

crosses the axis Ox at an angle 3π/4. Therefore ρ∞(A∗,B∗) = infA∈F c ρ∞(A,B∗).

Thus,

sup
A∈F c

inf
B∈F c

n

ρ∞(A,B) = ρ∞(A∗,B∗)≤ sup
B∈F c

n

inf
A∈F c

ρ∞(A,B).

By symmetry, we can also show that sup
B∈F c

n

inf
A∈F c

ρ∞(A,B∗) ≤ sup
A∈F c

inf
B∈F c

n

ρ∞(A,B).

This completes the proof of the lemma.

Lemma 3.6 allows us to consider only one of the two sup-inf forms in Defini-

tion 3.3 for the distance H(F c,F cn). Therefore it is very useful in deriving all the

proofs and developing the numerical algorithms for evaluating the H test and its

distributions.
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Proof of Lemma 3.8. Given the sets A and B, denote by A⊕B their Minkowski sum,

i.e. A⊕B = {P1 +P2 : P1 ∈ A,P2 ∈ B}. Denote by O = (0,0). Then an alternative

expression of the Hausdorff distance is (cf. Sendov and Beer, 2012)

H(F c,F cn) = inf{ϵ : F c ⊂ S(O,2ϵ)⊕F cn,F cn ⊂ S(O,2ϵ)⊕F c}. (3.A.6)

For simplicity, denote d0 =H(F c,F cn)<∞. Then ∀ ε > 0, we have

F c ⊂ S(O,2(d0 +ε))⊕F cn, F cn ⊂ S(O,2(d0 +ε))⊕F c. (3.A.7)

Note that both R2/(S(O,2(d0 + ε))⊕ F cn) and R2/(S(O,2(d0 + ε))⊕ F c) are the

unions of two disjoint but connected open sets. These open sets can be viewed

as an epigraph and a hypograph of a certain (interval-valued) function. For simplic-

ity, denote by UF c(ε) and UF c
n
(ε) the epigraphs of the sets/functions S(O,2ε)⊕F c

and S(O,2ε)⊕F cn respectively, i.e.

UF c(ε) = {(x,y) : ∀ (x,z) ∈ S(O,2ε)⊕F c, y > z},

UF c
n
(ε) = {(x,y) : ∀ (x,z) ∈ S(O,2ε)⊕F cn, y > z}.

Denote by LF c(ε) and LF c
n
(ε) their corresponding hypographs. Clearly

R2/(S(O,2ε)⊕F c) = UF c(ε)∪LF c(ε),

R2/(S(O,2ε)⊕F cn) = UF c
n
(ε)∪LF c

n
(ε).

Furthermore, from (3.A.7), we have

UF c(d0 +ε)⊂ UF c , LF c(d0 +ε)⊂ LF c
n
, UF c

n
(d0 +ε)⊂ UF c

n
, LF c

n
(d0 +ε)⊂ LF c

n
.

Hence
[
(UF c

n
(d0 +ε)∩UF c(d0 +ε))∪ (LF c

n
(d0 +ε)∩LF c(d0 +ε))

]
⊂
[
(UF c

n
∩UF c)∪ (LF c

n
∩LF c)

]
.

(3.A.8)
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Therefore, with respect to the complementary sets of both sides of (3.A.8), we have

R2/

{
(UF c

n
∩UF c)∪ (LF c

n
∩LF c)

}
= G ⊂

R2/

{
(UF c

n
(d0 +ε)∩UF c(d0 +ε))∪ (LF c

n
(d0 +ε)∩LF c(d0 +ε))

}
= (S(O,2(d0 +ε))⊕F cn)∩ (S(O,2(d0 +ε))⊕F cn).

Thus, if S(P,d) ⊂ G then d < d0 + ε. Inequality (3.2.9) follows by the arbitrariness

of ε.

Then according to Lemmas 3.47 and 3.48, there exist points A1 ∈F c andB1 ∈F cn
such that

ρ∞(A1,B1) = inf
A∈F c

ρ∞(A,B1) = d0,

and the line passing through the points A1 and B1 crosses the axis Ox at an angle

3π/4. Clearly, B1 ∈ S(A1,2d0) and A1 ∈ S(B1,2d0). From (3.A.6), for any ϵ > 0, it is

easy to show that S(A1,2d0−2ϵ)∩S(B1,2d0−2ϵ) = S(A1+B1
2 ,d0−ϵ)⊂G. Hence, we

have d0−ϵ≤ sup{d : S(P,d)⊂G}≤ d0. Equality (3.2.10) follows by the arbitrariness

of ϵ.

Proof of Lemma 3.9. To show that the supremum can be taken only with respect

to the vertices of F cn, following (3.A.4), it suffices to show that the supremum of

inf
B∈F c

ρ∞(A,B)

with respect to A∈ F cn cannot be achieved on the interior of the horizontal segments

between the vertices A2i−1 and A2i, i = 1,2, . . . ,n. This proof is similar to proving

(3.A.4) in Lemma 3.5, so will be omitted. Therefore we have

H(F c,F cn) = max
B∈{Ai}2n

i=1
inf
A∈F c

ρ∞(B,A). (3.A.9)

Since the maximum in (3.A.9) cannot be achieved at the vertices that are locally

closest to F c (cf. Fig. 3.3), (3.A.9) can be rewritten as

H(F c,F cn) = max
B∈Bloc

inf
A∈F c

ρ∞(B,A).
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By applying Lemma 3.48, we have that for every Bl ∈ Bloc, infA∈F c ρ∞(Bl,A) =

ρ∞(Bl,El). Therefore, (3.2.15) follows.

Proof of Theorem 3.11. Consider vertical straight lines L′
l perpendicular to the axis

Ox, that pass through each of the vertices Bl, l = 1,2, . . . ,ν. Denote by Ql, l =

1,2, . . . ,ν the points of intersection of the lines L′
l with the planar curve F c. Then

it is easy to verify that

ρD(F,Fn) = max{ρ∞(Bl,Ql), l = 1,2, . . . ,ν}. (3.A.10)

Denote by xQl
and yQl

, the x and y coordinates of the points Qi, l = 1, . . . ,ν.

If Bl ∈ UF c , then we have xBl
= xQl

< xEl
, Therefore, since F (x) is nondecreas-

ing, yQl
≤ yEl

< yBl
and ρ∞(Bl,Ql) = yBl

−yQl
≥ yBl

−yEl
= ρ∞(Bl,El).

If Bl ∈ LF c , xEl
< xBl

= xQl
. For the same reason, yBl

< yEl
≤ yQl

and

ρ∞(Bl,Ql) = yQl
−yBl

≥ yEl
−yBl

= ρ∞(Bl,El).

In summary, ρ∞(Bl,Ql) ≥ ρ∞(Bl,El), l = 1,2, . . . ,ν and result (3.2.17) follows

from (3.2.15) and (3.A.10).

Remark 3.49. It should be pointed out that, the result of Theorem 3.11 coincides

with the first inequality in (3.A.1c) (see Lemma 3.46).

Proof of Lemma 3.13. The proof of Lemma 3.13 can be directly obtained by Lemma

3.48, thus will be omitted.

Proof of Lemma 3.14. (Proof by contradiction) Suppose maxλ dλ < H(F c,F cn). It

implies that there exist a point P2 = (x′
2,y

′
2) ∈ R2 and a constant d2 ∈ R , such that

maxλ dλ < d2 <H(F c,F cn) and S(P2,d2)⊂ G.

Let λ0 = x′
2 + y′

2, it is not difficult to verify that the point Pλ0 = (xλ0 ,yλ0)

which is the center of the square Sλ0 , P2, (x′
2−d2/2,y′

2 +d2/2) and the point (xλ0−

dλ0/2,yλ0 + dλ0/2) are on the line x+ y = λ0. Furthermore, we have that (xλ0 −

dλ0/2,yλ0 +dλ0/2)∈F c∪F cn. And since S(P2,d2)⊂G, one must have (x′
2−d2/2,y′

2 +

d2/2) ∈ S(Pλ0 ,dλ0). By applying the same logic, (x′
2 +d2/2,y′

2−d2/2) ∈R(Pλ0 ,dλ0).

Hence, d2 ≤ dλ0 . However, this contradicts with supλ dλ < d2, which completes the

proof of Lemma 3.14.

The statement of Lemma 3.14 is equivalent to (2.2) in Rachev (1981), formulated
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with respect to the Lévy metric. Lemma 3.14 is a further generalization of Lemma

3.9, which is needed to express the Hausdorff metric as an appropriate supremum

under the transformed coordinate system, see Section 3.2.3. Before proving Theorem

3.17, it will be useful to recall Example 3.16 (i), (iii) and the corresponding graphical

illustrations of the image sets of S(P,d) and F cn given in Figure 3.5.

Remark 3.50. Lemmas 3.13 and 3.14, are also true for arbitrary right continuous

nondecreasing functions F ′ and G′, as substitutes of F and Fn, respectively.

Proof of Theorem 3.17. For any real number λ, consider the image set of Sλ in the

uOv plane, it is easy to see that T (Sλ) is a parallelogram with both its base and

height equal to λ (cf. Example 3.16 and Figure 3.5). According to the definition of

Sλ, T (Sλ)∩T (F c) and T (Sλ)∩T (F cn) are non empty. In addition, denote by Oλ and

Rλ correspondingly the upper-left and lower-right vertices of the square Sλ. Clearly,

Oλ,Rλ ∈ F c∪F cn. Then it is not difficult to observe that

ρ∞(Oλ,Rλ) = dλ = |K(λ)−Kn(λ)|. (3.A.11)

Equality (3.2.20) now follows by taking the supremum on both sides of the last

equality in (3.A.11) and applying Lemma 3.14. The fact that the supremum in

(3.2.20) is achieved either at the point t=X(i) + i−1
n or at t=X(i) + i

n follows from

(3.A.9) (see the proof of Lemma 3.9). This completes the proof of Theorem 3.17.

 

Figure 3.15: Illustration of the equivalence of P(K(t)− q ≤Kn(t) ≤K(t) + q, for all t) to

P
(
K−1( i

n −q)−
i
n ≤X(i) ≤K−1( i−1

n +q)− i−1
n , for 1≤ i≤ n

)
(cf. Proof of

Theorem 3.19), for n= 3.
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Proof of Theorem 3.19. We have

P(H(F c,F cn)> q) = P( sup
−∞<t<+∞

|Kn(t)−K(t)|> q)

=1−P( sup
−∞<t<+∞

|Kn(t)−K(t)| ≤ q)

=1−P(|Kn(t)−K(t)| ≤ q, for all t)

=1−P(K(t)− q ≤Kn(t)≤K(t) + q, for all t)

=1−P
(
K(X(i) + i−1

n
)− q ≤Kn(X(i) + i−1

n
) and

Kn(X(i) + i

n
)≤K(X(i) + i

n
) + q, for 1≤ i≤ n

)
=1−P

(
K(X(i) + i−1

n
)≤ i−1

n
+ q

and i

n
− q ≤K(X(i) + i

n
), for 1≤ i≤ n

)
=1−P

(
K−1( i

n
− q)− i

n
≤X(i) ≤K−1( i−1

n
+ q)− i−1

n
, for 1≤ i≤ n

)

=1−P
(
F

(
K−1( i

n
− q)− i

n

)
≤ U(i) ≤ F

(
K−1( i−1

n
+ q)− i−1

n

)
, for 1≤ i≤ n

)

The equivalence of P(K(t)− q ≤Kn(t)≤K(t)+ q, for all t) to P
(
K−1( in − q)−

i
n ≤X(i) ≤K−1( i−1

n +q)− i−1
n , for 1≤ i≤ n

)
is also graphically illustrated in Figure

3.15. Then, from the definition of K(x), we have that K−1(x) = x+F−1(x). Hence,

F

(
K−1( i

n
− q)− i

n

)
= F (F−1( i

n
− q)− q),

F

(
K−1( i−1

n
+ q)− i

n

)
= F (F−1( i−1

n
+ q) + q).

Proof of Theorem 3.21. Following equality (5) in Dimitrova et al. (2020), one can

re-express (3.2.21) as

P(
√
nH(F cn,F c)≥ x) = 1−P(gn(t)≤ ηn(t)≤ hn(t),∀ 0≤ t≤ 1) , (3.A.12)

where the process ηn(t) =∑n
i=11{Ui≤ t}, t∈ [0,1] and the upper and lower boundary
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functions hn(t), gn(t) are defined as

hn(t) =
n∑
i=1

1(ai,n < t), gn(t) =
n∑
i=1

1(bi,n ≤ t), (3.A.13)

and
ai,n = F (F−1( i

n
−xn−1/2)−xn−1/2),

bi,n = F (F−1( i−1
n

+xn−1/2) +xn−1/2),

with x= qn1/2. For simplicity, we denote the inverse function of 1√
n
hn(t) as αn(u),

u ∈ [0,
√
n]. Then from the definition of hn(t) in (3.A.13) for αn(u), we have

αn(u) = a[
√
nu],n = F (F−1( [

√
nu]
n
−xn−1/2)−xn−1/2), (3.A.14)

where [·] denotes the integer part and u ∈ [0,
√
n]. Let y = 1√

n
hn(t)−

√
nt. Since

αn(u) is the inverse function of 1√
n
hn(t), we have

t= αn(u), u= y+
√
nt,

and for large n, (3.A.14) can accordingly be re-written as

t= F (F−1(n−1/2(y−x) + t)−xn−1/2),

or equivalently as

y =
√
n[F (F−1(t) +xn−1/2)− t] +x. (3.A.15)

When n→∞, by the definition of the derivative, the right-hand side of (3.A.15)

converges to x(1 +f(F−1(t))). Hence, for a fixed t, we have

( 1√
n
hn(t)−

√
nt

)
→ x

(
1 +f

(
F−1(t)

))
,( 1√

n
gn(t)−

√
nt

)
→−x

(
1 +f(F−1(t))

)
.

(3.A.16)

Since f is bounded, one can show that (3.A.16) are uniformly convergent.

For simplicity, denote by Xn(t) =
√
n( 1

nηn(t)− t). Then by the Donsker’s

theorem, there exists a Brownian bridge B0(t), t ∈ [0,1] with B0(0) = B0(0) = 0,
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E[B0(t)] = 0, E[B0(t)B0(s)] = s(1− t) for 0< s < t < 1, such that

Xn(t) w−→ B0(t),

on the space L∞[0,1], where L∞[0,1] is the collection of functions defined on [0,1]

that are essentially bounded and w−→ stands for weak convergence. We can then

rewrite (3.A.12) as

P(
√
nH(F cn,F c)≥ x)

=1−P
( 1√

n
gn(t)−

√
nt≤Xn(t)≤ 1√

n
hn(t)−

√
nt,∀ 0≤ t≤ 1

)
.

(3.A.17)

Denote by

An = {z(t) ∈ L∞[0,1] : 1√
n
gn(t)−

√
nt≤ z(t)≤ 1√

n
hn(t)−

√
nt,∀ 0≤ t≤ 1},

A= {z(t) ∈ L∞[0,1] :−x(1 +f(F−1(t)))≤ z(t)≤ x(1 +f(F−1(t))),∀ 0≤ t≤ 1},

which represent subsets of L∞[0,1]. In view of (3.A.17), to estabilish (3.2.23), it

suffices to show that

lim
n→∞

P(Xn(t) ∈ An) = P(B0(t) ∈ A). (3.A.18)

In order to prove (3.A.18), for any ε > 0, let us define

Aε =
{
z(t) : inf

t∈[0,1]

[
z(t) +x(1 +f(F−1(t)))

]
≥ ε

and inf
t∈[0,1]

[
x(1 +f(F−1(t)))− z(t)

]
≥ ε

}
,

A−ε =
{
z(t) : inf

t∈[0,1]

[
z(t) +x(1 +f(F−1(t)))

]
>−ε

and inf
t∈[0,1]

[
x(1 +f(F−1(t)))− z(t)

]
>−ε

}
.

The set Aε is closed in L∞[0,1], whereas the set A−ε is a Borel set with closure

A−ε =
{
z(t) : inf

t∈[0,1]

[
z(t) +x(1 +f(F−1(t)))

]
≥−ε

and inf
t∈[0,1]

[
x(1 +f(F−1(t)))− z(t)

]
≥−ε

}
.
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Furthermore, due to the uniform convergence in (3.A.16), ∀ ε > 0, there exists N

such that,

∀ n >N, Aε ⊂An ⊂A−ε. (3.A.19)

Since Aε is closed, for any ε > 0,

∂Aε ⊂
{
z(t) : inf

t∈[0,1]

[
z(t) +x(1 +f(F−1(t)))

]
= ε

}
∪{

inf
t∈[0,1]

[
x(1 +f(F−1(t)))− z(t)

]
= ε

}
,

∂A−ε ⊂
{
z(t) : inf

t∈[0,1]

[
z(t) +x(1 +f(F−1(t)))

]
=−ε

}
∪{

inf
t∈[0,1]

[
x(1 +f(F−1(t)))− z(t)

]
=−ε

}
,

where ∂Aε and ∂A−ε denote the boundary of Aε and A−ε. By the property of the

Brownian bridge,

P(B0(t) ∈ ∂Aε) = P(B0(t) ∈ ∂A−ε) = 0.

Therefore, by the Portmanteau theorem (cf. Theorem 1.3.4 in van der Vaart

and Wellner, 2023), we have

lim
n→∞

P(Xn(t) ∈ Aε) = P(B0(t) ∈Aε) and

lim
n→∞

P(Xn(t) ∈ A−ε) = P(B0(t) ∈ A−ε)
(3.A.20)

holds for any ε > 0. By (3.A.19), ∀ ε > 0, there exists N ,

∀ n >N, P(Xn(t) ∈ Aε)≤ P(Xn(t) ∈ An)≤ P(Xn(t) ∈ A−ε).

We take the limit with respect to n and have

P(B0(t) ∈ Aε)≤ liminf
n→∞

P(Xn(t) ∈ An)

≤ limsup
n→∞

P(Xn(t) ∈ An)≤ P(B0(t) ∈ A−ε).
(3.A.21)

Note that when ε ↓ 0, Aε ↑ Ao, and A−ε ↓ A, where Ao is the interior of A, i.e.

Ao = {z(t) ∈ L∞[0,1] :−x(1 +f(F−1(t)))< z(t)< x(1 +f(F−1(t))),∀ 0≤ t≤ 1}.
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Similarly, we can show that P(B0(t)∈Ao) = P(B0(t)∈A). Thus, by the arbitrariness

of ε in (3.A.21),

P(B0(t) ∈ A) = sup
ε>0

P(B0(t) ∈ Aε)≤ liminf
n→∞

P(Xn(t) ∈ An)

≤ limsup
n→∞

P(Xn(t) ∈ An)≤ inf
ε>0

P(B0(t) ∈ A−ε) = P(B0(t) ∈ A),

which yields (3.A.18). This completes the proof of (3.2.23) and therefore Theorem

3.21.

Proof of Corollary 3.22. Since F ∼Exp(α), f(F−1(t)) = α(1− t) for 0≤ t≤ 1. Note

that these boundaries are linear, to obtain the result, we apply Theorem 4.2 of

Anderson (1960), which states that

P(−γ(t)≤ B0(t)≤ γ(t),∀ 0≤ t≤ 1) = 1−2
∞∑
k=1

(−1)k−1e−2δ(δ+β)k2
(3.A.22)

where γ(t) = δ+βt, noting that the bounds ±x(1 +α(1− t)) in (3.2.24) are in the

form of ±γ(t), with δ = x(1 +α), β =−xα.

Proof of Theorem 3.23. Let us recall the alternative expressions of H(F cn(ω),F c) in

(3.2.15) and Dn(ω) in (3.A.10). Equalities (3.2.25) and (3.2.26) directly follow from

the fact that ρ∞(Bl,Ql) = b
1+bρ∞(Bl,El) for every l= 1, . . . ,ν, when F ∼U(a,a+b).

Equality (3.2.27) follows from (3.A.22), replacing γ(t)≡ 1+b
b x.

Proof of Proposition 3.26. Let us first note that the following two events are equiv-

alent, i.e.

{Pn(σ)> p}= {Fσ(x− q∗
σ)− q∗

σ ≤ Fn,σ(x)≤ Fσ(x+ q∗
σ) + q∗

σ for all x}, (3.A.23)

where Fσ and Fn,σ are defined in (3.3.1). The equivalence stems from {Pn(σ) >

p} = {Hn(σ) < q∗
σ} and Theorem 3.17. Then to obtain (3.3.7), we need to apply

the inverted scale 1/σ to the cdfs Fn,σ(x,ω), Fσ(x− q∗
σ)− q∗

σ and Fσ(x+ q∗
σ) + q∗

σ in

(3.A.23) so that they transform back to the original scale. Hence, Fn,σ(x,ω) becomes

Fn(x,ω), and the latter boundaries then become Fσ(σx− q∗
σ)− q∗

σ = F̃−(x;σ,p) and

Fσ(σx+ q∗
σ) + q∗

σ = F̃+(x;σ,p).

Proof of Proposition 3.27. Equation (3.3.8) follows from (3.3.3) and (3.3.4).
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Proof of Lemma 3.28. Let us prove the second inequality in (4.4.4), i.e. q∗
σ2
σ2

>
q∗

σ1
σ1

for σ1 > σ2. We show this holds by contradiction.

Suppose that q∗
σ2
σ2
≤ q∗

σ1
σ1

. According to Proposition 3.34, when Hn(σ1) > q∗
σ1 ,

there exists P0, such that S(P0, q
∗
σ1 ;σ1) ⊂ G. Since q∗

σ2
σ2
≤ q∗

σ1
σ1

, it is easy to see that

S(P0, q
∗
σ2 ;σ2) ⊊ S(P0, q

∗
σ1 ;σ1)⊂ G. The latter implies Hn(σ2)> q∗

σ2 . Hence, we have

{ω :Hn(σ1,ω)> q∗
σ1}⊊ {ω :Hn(σ2,ω)> q∗

σ2}. (3.A.24)

Taking probabilites on both sides of (3.A.24), we have

P{ω :Hn(σ1,ω)> q∗
σ1}< P{ω :Hn(σ2,ω)> q∗

σ2}. (3.A.25)

Noting the definition of q∗(σ) in (3.3.6), we have P(Pn(σi)> p) = P{ω :Hn(σi,ω)>

q∗
σi
} under the null for i= 1,2. Therefore (3.A.25) can be rewritten as

P(Pn(σ1)> p)< P(Pn(σ2)> p). (3.A.26)

However, under the null hypothesis, (3.3.5) must hold, which contradicts with

(3.A.26). One arrives at a similar contradiction in the case when q∗
σ1 ≤ q

∗
σ2 . This

completes the proof of Lemma 3.28.

Proof of Theorem 3.29. ι(x,σ) =F (x+ q∗
σ
σ )−F (x− q∗

σ
σ )+2q∗

σ. For σ1 >σ2, inequality

(4.4.4) suggests q∗
σ1− q

∗
σ2 > 0, q∗

σ2
σ2

>
q∗

σ1
σ1

. Thus,

ι(x,σ1)− ι(x,σ2) =F (x+
q∗
σ1

σ1
)−F (x+

q∗
σ2

σ2
)+

F (x−
q∗
σ2

σ2
)−F (x−

q∗
σ1

σ1
)︸ ︷︷ ︸

part a

+2(q∗
σ1− q

∗
σ2)︸ ︷︷ ︸

part b

(3.A.27)

For simplicity, denote part a in (3.A.27) as j(x). Clearly j(x)< 0 for any x∈R with

j(x)→ 0 as q→+∞. Note that part b is always positive, thus it only remains to show

that there exists ε> 0, such that j(x) is monotonically increasing for every x>x0 +ε.

The latter is valid, since the concavity of F ensures that both F (x+ q∗
σ1
σ1

)−F (x+ q∗
σ2
σ2

)

and F (x− q∗
σ2
σ2

)−F (x− q∗
σ1
σ1

) are increasing for every x > x0 + q∗
σ2
σ2

, which completes

the proof.
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Proof of Theorem 3.36. For every ω ∈ Ω, (3.A.1c) suggests that

Hn(σ,ω)≤ ρD(Fσ,Fn,σ(ω))≤Hn(σ,ω) +hσ(Hn(σ,ω)) (3.A.28)

where hσ(x) = min{sup
t
|Fσ(x+ t)−Fσ(t)|,sup

t
|Fn,σ(x+ t)−Fn,σ(t)|}. For any x ∈

[0,1], it is not difficult to show that

lim
σ→∞

hσ(x) = 0.

Based on the definition of ρD, it is not difficult to see that for any σ > 0,

ρD(Fσ,Fn,σ(ω)) = ρD(Fn(ω),F ). The result follows by taking the limit inferior on

both sides of the first inequality in (3.A.28) and taking the limit superior on both

sides of the second inequality in (3.A.28).

Equation (3.3.12) of Theorem 3.36 has also been obtained by Rachev (1984)

(see (2.2) therein).

Proof of Theorem 3.38. Equation (3.3.13) can be directly obtained from (3.2.14)

and (2.3) of Rachev (1984), which is established with respect to the scaled Lévy

metric.

Proof of Theorem 3.39. Based on (3.3.8), when the sample comes from the alterna-

tive G(x;n), we have

πn(σ) = 1−P(F̃−(x;σ,p)≤ Fn(x)≤ F̃+(x;σ,p) for all x)

= 1−P((F̃−(G−1(t);σ,p))≤ 1
n
ηn(t)≤ F̃+(G−1(t);σ,p) for all 0< t < 1)

= 1−P(
√
n(F̃−(G−1(t);σ,p))−

√
nt

≤
√
n( 1
n
ηn(t)− t)≤

√
nF̃+(G−1(t);σ,p)−

√
nt, for all 0< t < 1),

(3.A.29)

where ηn(t) is the process defined in (3.A.12). Substituting (3.3.7) and (3.4.1) in

(3.A.29), we have

πn(σ) = 1−P
(√

n[F (F−1(t) + 1√
n
δ(t)− q

∗
σ

σ
)− q∗

σ− t]≤
√
n( 1
n
ηn(t)− t)

≤
√
n[F (F−1(t) + 1√

n
δ(t) + q∗

σ

σ
) + q∗

σ− t], for all 0< t < 1
) (3.A.30)
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On the one hand, since δ(t) is continuous and bounded, we have

√
n

[
F (F−1(t) + 1√

n
δ(t)− q

∗
σ

σ
)−F (F−1(t)− q

∗
σ

σ
)
]

√
n

[
F (F−1(t) + 1√

n
δ(t) + q∗

σ

σ
)−F (F−1(t) + q∗

σ

σ
)
]→ δ(t)f(F−1(t)) = ζ(t),

√
n( 1
n
ηn(t)− t) w→ B0(t) on L∞[0,1],

(3.A.31)

where the former convergences are uniform. On the other hand, from (3.3.6),

(3.A.16), and the convergence in Theorem 3.21, we have

√
n

[
F (F−1(t)± q

∗
σ

σ
)− t± q∗

σ

]
→±λp(σ)(1 + 1

σ
f(F−1(t))) =±γσ(t), (3.A.32)

uniformly. The required convergence relation (3.4.2) follows by substituting (3.A.31)

and (3.A.32) in (3.A.30) and following the reasoning as in the proof of Theorem

3.21.

Proof of Corollary 3.40. The result follows from Corollary 3.37, which states that

the power πn(∞) of the KS statistic is the limit of the power πn(σ) of Hn(σ) as

σ→∞.

Proof of Theorem 3.41. According to Theorem 7.2 in Bahadur (1971), in order to

prove Theorem 3.41, we only need to prove that

H(Fσ,Gσ) = lim
n→∞

Hn(σ) a.s.,

−fσ(q) = lim
n→∞

n−1 log(1−Ln,σ(q)) a.s.
(3.A.33)

under the null hypothesis G.

To prove the first equation in (3.A.33), based on the triangular inequality, we

obtain

H(Fσ,Gσ)−H(Gσ,Fn,σ)≤Hn(σ)≤H(Fσ,Gσ) +H(Gσ,Fn,σ). (3.A.34)

Since

0≤H(Gσ,Fn,σ)≤ ρD(Gσ,Fn,σ),

ρD(Gσ,Fn,σ)→ 0 a.s., under the alternative. The first equality in (3.A.33) follows
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by taking n→∞ in (3.A.34).

In order to prove the second equality in (3.A.33), we apply Theorem 1 in Abra-

hamson (1967), then it is not difficult to show that

P{Hn(σ)> q} ≥ P{En(t)− t≥ F (F−1(t) + q

σ
) + q− t},

P{Hn(σ)> q} ≥ P{En(t)− t≤ F (F−1(t)− q

σ
)− q− t},

(3.A.35)

where En is the empirical cdf of the sample U1, . . . ,Un of n i.i.d uniform (0,1) random

variables.

Given a fixed t, we have,

lim
n→∞

1
n

logP(En(t)− t≥ F (F−1(t) + q

σ
) + q− t) =−r(t,q+F (F−1(t) + q

σ
)− t),

lim
n→∞

1
n

logP(En(t)− t≤ F (F−1(t)− q

σ
)− q− t) =−r(1− t,q−F (F−1(t)− q

σ
) + t),

(3.A.36)

which are obtained by substituting ϵ in (3.7a) and (3.7b) in Abrahamson (1967)

with q+F (F−1(t)+ q
σ )− t and q−F (F−1(t)− q

σ )+ t respectively. Based on (3.A.35)

and (3.A.36), we have

liminf
n→∞

1
n

logP(Hn(σ)> q)

≥ sup
0<t<1

max{−r(t,q+F (F−1(t) + q

σ
)− t),−r(1− t,q−F (F−1(t)− q

σ
) + t)}=−fσ(q).

(3.A.37)

On the other hand,

{Hn(σ)> q} ⊂
⋃

0<t<1
{En(t)− t≥ F (F−1(t) + q

σ
) + q− t}

∪
⋃

0<t<1
{En(t)− t≤ F (F−1(t)− q

σ
)− q− t}.

(3.A.38)

For any positive integer N , since En(t)− t ≤ En( i
N )− i−1

N when i−1
N ≤ t ≤

i
N , we

have ⋃
0<t<1

{En(t)− t≥ F (F−1(t) + q

σ
) + q− t}

⊂
N⋃
i=1

⋃
t∈[ i−1

N
, i

N
]

{En(t)− t≥ F (F−1(t) + q

σ
) + q− t}

=
N⋃
i=1
{En( i

N
)− i

N
≥ F (F−1( i

N
) + q

σ
) + q− i+ 1

N
}.

(3.A.39)
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Therefore, for a sufficiently large N , taking probability on both sides of (3.A.39),

we have

P
{ ⋃

0<t<1
{En(t)− t≥ F (F−1(t) + q

σ
) + q− t}

}

≤
N∑
i=1

P{En( i
N

)− i

N
≥ F (F−1( i

N
) + q

σ
) + q− i+ 1

N
}

≤
N∑
i=1

exp{−nr( i
N
,q+F (F−1( i

N
) + q

σ
)− i+ 1

N
)}

≤N sup
0<t<1

exp{−nr(t,q+F (F−1(t) + q

σ
)− t− 1

N
)}.

(3.A.40)

Then, from (3.A.38), (3.A.40) and an inequality similar to (3.A.40) with respect to⋃
0<t<1

{En(t)− t≤ F (F−1(t)− q
σ )− q− t}, it follows that

P(Hn(σ)> q)≤ 2N sup
0<t<1

max{exp{−nr(t,q+F (F−1(t) + q

σ
)− t− 1

N
)},

exp{−nr(1− t,q−F (F−1(t) + q

σ
) + t− 1

N
)}}.

(3.A.41)

Taking first 1
n log and then limsup as n→∞ on both sides of (3.A.41), we obtain

limsup
n→∞

1
n

logP(Hn(σ)> q)≤

− inf
0<t<1

min{r(t,q+F (F−1(t) + q

σ
)− t− 1

N
), r(1− t,q−F (F−1(t)− q

σ
) + t− 1

N
)}.

(3.A.42)

Due to the arbitrariness of N in (3.A.42), one can choose N =∞. Therefore the

right hand side of (3.A.42) becomes equal to −fσ(q) as defined in (3.4.7), and from

(3.A.42) we have

limsup
n→∞

1
n

logP(Hn(σ)> q)≤−fσ(q). (3.A.43)

The required second equality in (3.A.33) follows by combining (3.A.37) and (3.A.43).

3.B Power of the Scaled Hausdorff Statistic for Differ-

ent σ

In Section 3.3, we have analysed theoretically how the choice of scale parameter σ

affects the power πn(σ) of the Hn(σ) statistic. In this section, we verify numerically
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Table 3.7: The Parameters of the Heavy-tailed G in Example 3.51

C F (C) = ϕ1 Tail G0(x) (α,θ)
log2 0.5 Pareto 1− ( α

x+α)θ ( log2
21/3−1 ,3)

log5 0.8 Lognormal LN(α,θ) (log5−1.2Φ−1(0.8),1.22)
log5 0.8 Weibull 1− e−(x/α)θ ((log5)1/2,2)
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Figure 3.16: Left panel: F ∼ Exp(1) (solid) and G (dashed) is spliced with C = log2,
F (C) = ϕ1 = 0.5 and a Pareto tail G0(x) = 1− ( α

x+α )θ where θ = 3 and α =
log2

21/3−1 ; Right Panel: the powers of the Hn(σ), KS, CvM and AD tests as a
function of σ, with σ∗ defined in (3.3.11) with ψ = (0.99,0.95) and indicated
by the dashed vertical darkred lines.

these theoretical considerations, by applying the splicing construction for the alter-

native G(x) as in Example 3.43. The density g(x) of G(x) is defined as in (3.4.9) and

is assumed to satisfy conditions 1)-3) of Example 3.43. In other words, G coincides

with F in the body and has the tail of a preselected distribution G0.

Example 3.51 (Light-tail Null vs Heavy-tail Sample). We take F ∼ Exp(1), x =

0, and G to be a spliced distribution with body G(x) = F (x), x ∈ [x,C] and tail

G(x) =G0(x), x>C, where G0 is taken to be Pareto, Lognormal, and Weibull, with

splicing point C and weight ϕ1 specified in Table 3.7, satisfying condition 1)-3) in

Example 3.43, where Φ−1 denotes the quantile function of standard Normal. The

shapes of the null F and the alternative G from Table 3.7 are illustrated graphically

in the left panels of Figures 3.16, 3.17 and 3.18.

The right panels of Figures 3.16, 3.17 and 3.18 illustrate the power πn(σ) of

Hn(σ), compared with the powers of KS, AD and CvM, for different sample sizes

n =50, 100 and 300 and different choices of the scale parameter σ, ranging from

10−5 to 1. As can be seen, the p-values (and therefore the powers) of KS, AD and
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Figure 3.17: Left panel: F ∼ Exp(1) (solid) and G (dashed) with C = log5, F (C) =
ϕ1 = 0.8 and a Lognormal tail G0 ∼ LN(α,θ) where θ = 1.22 and α =
log5− 1.2Φ−1(0.8); Right Panel: the powers of the Hn(σ), KS, CvM and
AD tests as a function of σ, with σ∗ defined in (3.3.11) with ψ = (0.99,0.95)
shown by the dashed vertical darkred lines.
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Figure 3.18: Left panel: F ∼ Exp(1) (solid) and G (dashed) is spliced with C = log5,
F (C) = ϕ1 = 0.8 and a Weibull tail G0(x) = 1− e−(x/α)θ where θ =2 and
α= (log5)1/2; Right Panel: the powers of the Hn(σ), KS, CvM and AD tests
as a function of σ, with σ∗ defined in (3.3.11) with ψ = (0.99,0.95) shown by
the dashed vertical darkred lines.

CvM are invariant to σ. The ”optimal” value σ∗ = 0.99−0.95
ln0.05−ln0.01 suggested by the

rule (3.3.11) with ψ = (0.99,0.95) is indicated by dashed vertical darkred line in

the right panel of Figure 3.16. As shown, when the null F is light-tailed and the

alternative G is heavy-tailed, the dashed red line corresponding to σ∗ approximates

reasonably well the local maxima of πn(σ), which are also global maxima in the case

of Pareto and Lognormal tail (see the right panels of Figures 3.16 and 3.17). In the

case of Weibull tail, the global maximum of πn(σ) is achieved at σ→ 0, which is

degenerate and makes no practical sense, since transforming the scale with a very
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Table 3.8: The Parameters of Heavy-tailed F and Light-tailed G in Example 3.52

Null F Alternative G
CDF x (α,θ) C F (C) = ϕ1

Pareto F (x) = 1− αθ

(x+α)θ 0 (2,2.5) 0.8853998 0.6
Lognormal LN(α,θ) 0 (0,1.22) 2.745451 0.8
Weibull F (x) = 1− e−(x/α)θ 0 (1,0.5) 2.590290 0.8

small σ zeroises the entire sample σXn.

Example 3.51 validates numerically the theoretical results of Section 3.3. We

have also shown that by choosing σ = σ∗ following (3.3.11), the power of Hn(σ∗)

becomes significantly higher than the powers of AD, CvM and KS (as seen from

Figures 3.16, 3.17 and 3.18).

In Example 3.52, we investigate the power πn(σ) of Hn(σ) as a function of σ

when F is heavy-tailed and G is light-tailed. More precisely, we assume that F is a

heavy-tailed distribution and G is a spliced distribution as in Example 3.43 with a

body coincident with F and a light exponential tail. For the heavy-tailed null dis-

tribution F , we consider three cases, Pareto, Weibull, and Lognormal, summarized

in Example 3.52 with parameters in Table 3.8.

Example 3.52 (Heavy-tail Null vs Light-tail Sample). The null cdfs are taken to

be Pareto Weibull, or Lognormal, and the alternative G to be a spliced distribution

with body G(x) = F (x), x∈ [x,C] and tail G(x) =G0(x), x>C, G0 ∼Exp(αe) with

αe =− log(1−ϕ1)/C so that condition 3) of Example 3.43 is met. The parameters

of the null F and values of splicing point C and weight ϕ1 are summarized in Table

3.8.

The shapes of F and G from Table 3.8 are illustrated in the left panels of Figures

3.19, 3.20 and 3.21 where in the right panels, we illustrate the powers of KS, AD,

CvM and Hn(σ), for sample sizes n = 50, 100 and 300 and different choices of σ,

ranging from 10−5 to 1. In the latter right pannes, the corresponding ”optimal”

value σ∗ are indicated by the dashed vertical darkred lines. As can be seen, σ∗ is

reasonably close to the local maximum of Hn(σ), where the approximation improves

when the sample size n increases.
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Figure 3.19: Left panel: F (x) (solid) is Pareto with α = 2 and θ = 2.5 and G (dashed) is
spliced with C = 0.8853998, F (C) = ϕ1 = 0.6 and an Exponential tail G0 ∼
Exp(αe) where αe =− log(1−ϕ1)/C; Right Panel: the powers of the Hn(σ),
KS, CvM and AD tests as a function of σ, with σ∗ defined in (3.3.11) with
ψ = (0.99,0.95) shown by the dashed vertical darkred lines.
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Figure 3.20: Left panel: F ∼LN(α,θ) (solid) to be Lognormal with α= 0 and θ= 1.22 and
G (dashed) is spliced with the splicing point C = 2.745451, F (C) = ϕ1 = 0.8
and an Exponential tail G0 ∼ Exp(αe) where αe = − log(1−ϕ1)/C; Right
Panel: the powers of the Hn(σ), KS, CvM and AD tests as a function of σ,
with σ∗ defined in (3.3.11) with ψ= (0.99,0.95) shown by the dashed vertical
darkred lines.
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Figure 3.21: Left panel: F (x) = 1−e−(x/α)θ (solid) to be Weibull distribution with α= 1
and θ = 0.5 and G (dashed) is spliced with the splicing point C = 2.59029,
F (C) = ϕ1 = 0.8 and an Exponential tail G0 ∼Exp(αe) where αe =− log(1−
ϕ1)/C; Right Panel: the powers of the Hn(σ), KS, CvM and AD tests as a
function of σ, with σ∗ defined in (3.3.11) with ψ = (0.99,0.95) shown by the
dashed vertical darkred lines.



Chapter 4

On a Two-sample Multivariate

Goodness-of-fit Test based on the

Hausdorff Metric

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a Two-

sample Multivariate Goodness-of-fit Test based on the Hausdorff Metric. near sub-

mission.

Abstract

We introduce a two-sample goodness-of-fit test based on the Hausdorff distance

between possibly multivariate empirical cumulative distribution functions (ecdfs).

Classical tests such as Kolmogorov–Smirnov (KS), Cramér–von Mises (CvM), and

Anderson–Darling (AD) have appealing properties in the univariate setting but lose

efficiency for tail differences. Existing multivariate tests, including Wasserstein and

run-based tests, can achieve high power but are computationally demanding. Since

no hypothesized null distribution is available, extending the existing approach in

Chapter 3 to the two-sample multivariate setting is challenging. We address these

challenges as follows. We introduce an explicit and computable representation of

the two-sample Hausdorff (H) statistic with a geometric interpretation as the edge

of the largest hypercube that can be inscribed between the two ecdfs. We propose

a permutation version of H and establish its asymptotic equivalences in terms of

power and type I error, under the null and (fixed or contiguous) alternative. Based

on this, we develop a method to compute the exact and asymptotic p-values of the
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H statistic.

We address these challenges as follows. We introduce an explicit and com-

putable representation of the two-sample Hausdorff (H) statistic with a geometric

interpretation as the edge of the largest hypercube that can be inscribed between

the two ecdfs. We propose a permutation version of H and establish its asymptotic

equivalences in terms of power and type I error, under the null and (fixed or con-

tiguous) alternative. Based on this, we develop a method to compute the exact and

asymptotic p-values of the H statistic. In view of the scale dependence of H, we

propose a rule for selecting the scale coefficient, so as to optimize its power. Last

but not least, we give some useful properties of H including its Lipschitz continuity,

qualitative robustness and connections to the Lévy-Prokhorov metric and the KS

test. We demonstrate based on numerical examples that the scale-tuned Hausdorff

test outperforms the major competitors in terms of power in the univariate and

bivariate cases.

4.1 Introduction
Consider the two-sample goodness-of-fit problem of whether two random samples

come from one and the same unknown multivariate distribution. The classical

goodness-of-fit tests in the case when the two samples are drawn from univariate

distributions, include the Kolmogorov-Smirnov (KS), the Kuiper, the Cramer von

Mises (CvM), and the Anderson-Darling (AD), introduced correspondingly, by Kol-

mogorov (1933), Smirnov (1939), Kuiper (1960), Cramér (1928), Von Mises (1931)

and Anderson and Darling (1952). The latter tests have gained significant popu-

larity and have been widely applied in almost any field where data is collected and

analysed, such as, astronomy (McQuillan et al., 2013), social sciences (Salman et al.,

2015), pattern recognition (Alzubaidi and Kalita, 2016), machine learning (Gretton

et al., 2012) etc., to name only a few. These tests are based on distances between

empirical distribution functions, which are easy to compute in the univariate case.

Due to their popularity, some of these tests are further extended to the multivariate

case by e.g. Peacock (1983), Kim et al. (2020).

In the multivariate case, alternative definitions of distances between the samples

and related goodness-of-fit statistics have also been considered, including the run

tests based on the minimal spanning tree due to Friedman and Rafsky (1979), and on
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the shortest Hamiltonian path proposed by Biswas et al. (2014), the Wasserstein test

(Hundrieser et al., 2024), the Ball divergence test (Pan et al., 2018), the Maximum

Mean Discrepancy test (Gretton et al., 2012), the Cross Match test (Rosenbaum,

2005) and the Schilling-Henze Nearest Neighbor test (cf. Schilling, 1986; Henze,

1988).

These and other existing two-sample tests with different properties are a popular

tool for classification and unsupervised learning. However, there is no ’best’, test

that suits all purposes and possesses all the best properties. For example, the very

popular KS test, based on the supremum distance, is readily understood graphically,

is easy to evaluate, and is distribution-free in the univariate case, when the null is

continuous. Furthermore, recently, Dimitrova et al. (2020) provided efficient means

of computing the KS p-values assuming arbitrary, continuous, discrete, or mixed

null distribution, which makes the KS test applicable beyond just the continuous

case. At the same time, the KS statistic, is less sensitive in the tails, and has in

general lower power (see e.g. Mason and Schuenemeyer, 1983; Feigelson and Babu,

2020). This makes the KS test less efficient, especially for comparing tails, which is

very important in extreme value applications and related inference. The Wasserstein

test and the run tests in the multidimensional setting also have high power but are

difficult to evaluate numerically. The evaluation of the latter run statistics may be a

non-deterministic polynomial time (NP) problem, which hinders their practical use.

The definition of the distance between the two samples determines the proper-

ties of the test, in particular the evaluation of the test, its p-values and power. All

these considerations lead to the conclusion that there is still scope for using alter-

native distance metrics, leading to the construction of new test statistics, and the

need to investigate their related properties.

The aim of this chapter is to explore how the Hausdorff metric, introduced

by Hausdorff (1914), to measure the distance between sets, can be applied to

measure the distance between multivariate empirical cumulative distribution func-

tions (ecdfs), with the purpose of introducing a corresponding two-sample Hausdorff

goodness-of-fit test statistic. The Hausdorff distance has been considered by Beer

(1984); Sendov and Beer (2012), within the context of approximation theory, and

more recently in machine learning, by Chavent (2004), Li et al. (2017), Karimi and
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Salcudean (2020), Zhao et al. (2021), to name only a few of the papers in this stream

of literature. In Chapter 3, we have proposed to apply the Hausdorff (H) distance in

the context of one-sample univariate goodness-of-fit testing. By investigating theo-

retically the scale dependence of the H test and its p-values, we have shown that its

power can be controlled and optimized by appropriately selecting the scale. As they

note, knowledge of the hypothesized null distribution is central in implementing the

latter power optimization. As demonstrated, this leads to the H test significantly

outperforming the classical KS, CvM and AD tests in terms of statistical power.

Efficient numerical methods to compute the Hausdorff metric, the exact and asymp-

totic p-values and the asymptotic power and Bahadur efficiency of the related H-test

have also been provided.

However, extending these results to the two-sample case is not straightforward

since, no null distribution is hypothesized, in contrast to the one-sample case. Fur-

thermore, the methods to compute the one-sample Hausdorff statistic and its p-

values assume continuity of the null distribution, which is not defined in the two-

sample case, where H measures the distance between two empirical cdfs. Evaluating

numerically a distance measure between possibly multivariate ecdfs represents yet

another challenge by itself.

In this paper, we address all these challenges. Our major contributions can

be summarized as follows. First, we introduce the two-sample Hausdorff (H) test

as the distance between two possibly multivariate empirical cdfs. In Theorem 4.5

we show that the H test can be interpreted geometrically as the edge of the max-

imum hypercube that can be inscribed between the two ecdfs. Based on Theorem

4.5, we prove Lemma 4.15, which gives an explicit and computationally appealing

expression of the two-sample multivariate H test. Theorem 4.5 and Lemma 4.15

are generalizations of Lemmas 3.8 and 3.9 derived in Section 3.2 for the case of

one-sample drawn from a univariate distribution. In Section 4.3.1 and Appendix

4.A, we give methods to compute the H statistic when the two samples come from

univariate and bivariate distributions.

Second, we develop a method to compute the p-value of the H test by intro-

ducing an appropriate permutation H test in (4.3.10). This is necessary since the

p-value of the permutation H test is based on the observable pooled sample, in
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contrast to the p-value of the H test, which depends on the unknown null. This

is further justified by relation (4.3.11), Theorems 4.24 and 4.25, where we show

that the discrepancy between the p-values of the H test and its permutation version

(4.3.10) is asymptotically negligible under the null, or under fixed and contiguous

alternatives. Then in Theorem 4.26, we show that the univariate permutation H

test controls the type I error under the null, and also yields the same power as the

original test under the fixed and contiguous alternative. In addition, in Theorem

4.28, we also give an expression for the asymptotic p-value of the H statistic.

Third, in Section 4.4, we address the problem of scale dependence of the H

test, its p-values and power, and provide a rule to select the scale so as to optimize

the power. Rule (3.3.11) proposed in Section 3.3.2 for the one-sample statistic

is not directly applicable, since no distributional assumptions are made in two-

sample goodness of fit testing. Alternatively, based on the permutation H test,

we propose the rule (4.4.6) and its multivariate generalization (4.4.9) to tune the

two-sample statistic H in the spirit of (3.3.11). We further show that rule (4.4.6)

is asymptotically equivalent to the one-sample rule (3.3.11). When samples deviate

from each other in the right tail, we demonstrate by numerical example that in

the univariate case, the power of scale-tuned H test is higher than that of the KS,

CvM, and AD tests, and is very close to the power of the Wasserstein test when

sample sizes are moderately large (see Figure 4.8). In the bivariate case, we show

by numerical comparison that the power of the H test is higher than that of other

multidimensional tests and is significantly higher than the power of the KS test

generalized by Peacock (1983) (see Table 4.1). In Theorem 4.36, we also give an

expression of the exact Bahadur slope of the H test.

Last but not least, we provide some useful properties of the H statistic. In

Theorem 4.6, we establish its Lipschitz continuity as a point function of the sample

observations which we combine with Theorem 4.25 to establish the qualitative ro-

bustness of H. In Proposition 4.9, we show that H can be viewed as a degenerate

Lévy-Prokhorov metric. Theorem 4.19 establishes how the two-sample univariate H

test is related to the two sample KS test.

This paper is organized as follows. In Section 4.2, we recall the general definition

of the Hausdorff metric and the empirical cdf in the multivariate case, and propose
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the Hausdorff statistic to be the distance between empirical cdfs. We further provide

some useful properties of the H statistic among which its connection to the KS

statistic and the Lévy-Prokhorov distance. In Section 4.3, we give detailed methods

to compute the H statistic and its p-values in the one- and two-dimensional cases. In

Section 4.4, we show how the p-values of the H test depend on the scale and provide

a rule to select the scale so as to optimize its power. The latter rule is illustrated

by numerical examples. Finally, in Section 4.6, we summarize our findings.

In Appendix 4.A, we give a detailed method to compute the H statistic in the

bivariate case. In Appendix 4.B, we provide an expression of the H p-values as a

boundary crossing problem. The proofs of all the results that appear in the paper

are given in Appendix 4.C. In Appendix 4.D, we compare the numerical efficiency

of the two methods in Section 4.3.1.

4.2 The Hausdorff Goodness-of-fit Test Statistic

Let two samples Xm = {X1, . . . ,Xm} and Yn = {Y1, . . . ,Yn} be defined on the prob-

ability space (Ω,F ,P), where Xi and Yj , i= 1, . . . ,m, j = 1, . . . ,n are i.i.d. copies of

the k-dimensional random vectors X and Y , i.e.

Xi = (X(1)
i , . . . ,X

(k)
i ), Yj = (Y (1)

j , . . . ,Y
(k)
j ).

Denote by F (x) and G(x) the (unknown) cdfs of the the random vectors X and

Y respectively. We assume that F (x) and G(x) as arbitrary distribution functions,

i.e. repeated observations are allowed in the two samples. We want to test the null

hypothesis H0 : F (x) =G(x), for all x∈Rk, against the alternative H1 : F (x) ̸=G(x)

for at least one x∈Rk. We are interested in applying the Hausdorff metric to measure

the distance between two empirical distribution functions for goodness-of-fit testing.

4.2.1 Empirical Distribution Funtions

When X and Y are univariate random variables, i.e. k = 1, denote by Fm(x),

Gn(x) and En+m(x) (x ∈ R) the empirical cumulative distribution functions

(ecdfs) corresponding to the samples Xm,Yn and the pooled sample Zm+n =



4.2. The Hausdorff Goodness-of-fit Test Statistic 144

{X1, . . . ,Xm,Y1, . . . ,Yn}= {Z1, . . . ,Zm+n}, i.e.

Fm(x) = 1
m

m∑
j=1

1(Xj ≤ x), Gn(x) = 1
n

n∑
j=1

1(Yj ≤ x), Em+n(x) = 1
m+n

m+n∑
j=1

1(Zj ≤ x),

(4.2.1)

where x ∈ R and 1(·) is the indicator function.

When X and Y are multivarite, i.e. k ≥ 2, it is well known that the ecdfs of

samples have multiple alternative definitions, (see e.g. Langrené and Warin, 2021).

Hence to define the latter, we need to first introduce the component-wise order ⪯

on Rk. For any x1,x2 ∈ Rk, we say x1 ⪯ x2, if and only if x(i)
1 ≤ x

(i)
2 , i = 1, . . . ,k,

where x(i)
1 and x(i)

2 are the i-th components of x1 and x2. Given the component-wise

order, the corresponding empirical distribution functions of Xm and Yn is

Fm(x) = 1
m

m∑
j=1

1(Xj ⪯ x), Gn = 1
n

n∑
j=1

1(Yj ⪯ x) x ∈ Rk. (4.2.2)

However, one can have 2k− 1 alternative component-wise order definitions on Rk,

which we denote as ⪯i (i = 2, . . . ,2k). For example, when k = 2, the alternative

component-wise order definitions are

x1 ⪯2 x2 if and only if x(1)
1 ≤ x

(1)
2 and x

(2)
1 ≥ x

(2)
2 ,

x1 ⪯3 x2 if and only if x(1)
1 ≥ x

(1)
2 and x

(2)
1 ≤ x

(2)
2 ,

x1 ⪯4 x2 if and only if x(1)
1 ≥ x

(1)
2 and x

(2)
1 ≥ x

(2)
2 .

(4.2.3)

We will denote by Fm,i(x) the empirical cdf defined by the i-th component-wise

order ⪯i. Clearly ⪯1≡⪯, therefore Fm ≡ Fm,1 and Gn ≡Gn,1.

In the sequel, it will be convenient to interchangeably use the notation Fm(x)≡

Fm(x,ω)≡ Fm, Gn(x)≡Gn(x,ω)≡Gn and Em+n(x)≡ Em+n(x,ω)≡ Em+n, where

ω ∈ Ω explicitly indicates that the ecdfs are random realizations underpinned by

correspondingly the random samples Xm(ω), Yn(ω) and Zm+n(ω).

4.2.2 Background on the Hausdorff Metric

In Chapter 3, we have considered the Hausdorff metric and its use to measure the

distance between a continuous cdf and an empirical cdf in the one-sample one-

dimensional case. In this section, we will extend the definitions of the Hausdorff

metric and statistic in Section 3.2.1 to the two-sample multi-dimensional case. For
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the purpose, we recall the Definition 3.1, which defines a distance measure between

two points in Rk+1.

Definition 4.1. Let A,B ∈ Rk+1 with coordinates xA,xB ∈ Rk, zA,zB ∈ R, i.e.

A= (xA,zA)T , B = (xB,zB)T , where ·T denotes transposition. The function ρ(A,B)

is a distance measure between two points A,B ∈ Rk+1 iff it satisfies the conditions

(1)-(4) in Definition 3.1, i.e.:

1. ρ(A,B)≥ 0, for every pair of points A and B.

2. ρ(A,B) = 0, iff A=B.

3. Symmetry: ρ(A,B) = ρ(B,A).

4. Triangle inequality: ρ(A,B) +ρ(B,C)≥ ρ(A,C), C ∈ Rk+1.

For example, we could easily verify that the Chebyshev and Euclidean distances,

defined by
ρ∞(A,B) = max

1≤i≤k+1
|w(i)
A −w

(i)
B |,

ρ2(A,B) =

√√√√k+1∑
i=1

(w(i)
A −w

(i)
B )2,

(4.2.4)

respectively, satisfy Definition 4.1, where w(i)
A and w

(i)
B are the i-th components of

points A and B respectively. Given an arbitrary measure ρ(A,B) of distance between

two points in Rk+1, the Definition 3.3 of the Hausdorff distance can be generalized

as follows.

Definition 4.2. Let A and B be two arbitrary sets in Rk+1. The Hausdorff distance,

Hρ(A,B) between the sets A and B is defined as

Hρ(A,B) = max[sup
A∈A

inf
B∈B

ρ(A,B), sup
B∈B

inf
A∈A

ρ(A,B)]. (4.2.5)

In order to apply the Hausdorff metric Hρ(A,B) to measure the distance be-

tween two ecdfs, Fm(x,ω),Gn(x,ω), x ∈ R, we need to appropriately define the sets

A and B from Definition 4.2, replacing them with the corresponding planar curve

(set) analogs of Fm(x,ω) and Gn(x,ω).
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The latter planar curve analogues F cm(ω) and Gcn(ω) in the univariate case, i.e.

for k = 1 are defined as

F cm(ω) = {(x,z) : Fm(x−,ω)≤ z ≤ Fm(x+,ω)}

Gcn(ω) = {(x,z) :Gn(x−,ω)≤ z ≤Gn(x+,ω)},
(4.2.6)

where F (x−) and F (x+) are the left and right limits at the point x ∈ R. When

k > 1, we need to adequately define Fm(x−), Fm(x+), Gn(x−) and Gn(x+) for

x ∈Rk (k > 1). This task has been considered by Popov (1999), who refers to these

limits as lower and upper Baire functions. For example, the Baire functions of the

ecdfs Fm,i, are
Fm,i(x−) = liminf

t→x
Fm,i(t),

Fm,i(x+) = limsup
t→x

Fm,i(t).
(4.2.7)

Similar definitions for Gn,i are also adopted. Note that the planar curves F cm and

Gcn defined by (4.2.6) and (4.2.7) are the minimum closed and connected sets in

Rk+1 containing the graphs of the functions Fm(x,ω) and Gn(x,ω) (cf. Lemma 2

in Popov, 1999). The latter graphs are gr(Fm(x,ω)) = {(x,Fm(x,ω)),∀x ∈ R}, and

gr(Gn(x,ω)) = {(x,Gn(x,ω)),∀x ∈ R}, respectively, which are unclosed and uncon-

nected sets. These graphs and their corresponding planar curves are illustrated for

the case k = 1. For this purpose, we introduce the following notation. Denote by

(x1, . . . ,xυ) and (y1, . . . ,yν) the corresponding distinct values x1 < x2 < · · ·< xυ and

y1 < y2 < · · · < yν of the observations (X1, . . . ,Xm) and (Y1, . . . ,Yn), where each xi

and yj is repeated ri and ej times, respectively, with ∑υ
i=1 ri =m and ∑ν

j=1 ej = n.

Clearly, for the ecdfs Fm and Gn, we have

Fm(x1) = r1
m

;Fm(x2) = r1 + r2
m

,. . . ,Fm(xυ) = r1 + · · ·+ rυ
m

Gn(y1) = e1
n

;Gn(y2) = e1 + e2
n

, . . . ,Gn(yν) = e1 + · · ·+ eν
n

.

Clearly, the planar curves F cm and Gcn that correspond to the cdfs Fm and

Gn represent piecewise linear curves, with horizontal and vertical linear segments

forming steps. In order to define the latter staircases, we will introduce the nota-

tion, x1 = a1, x2−x1 = a2, . . . , xυ−xυ−1 = aυ and b0 = 0, ri
m = bi, i = 1, . . . ,υ and

c0 = a1, c1 = y1− c0, y2− y1 = c2, . . . yν − yν−1 = cν , d0 = 0, ej

m = dj , j = 1, . . . ,ν



4.2. The Hausdorff Goodness-of-fit Test Statistic 147

and aυ+1 = ∑ν
j=0 cj −

∑υ
j=1 aj . Without loss of generality, assume a1 < c1. Let

F cm have vertices A1,A2, . . . ,A2υ,A2υ+1, with coordinates on a positively orientated

orthogonal, Cartesian coordinate system xOz in R2, given as

A2l =
( l∑
j=1

aj ,
l∑

j=1
bj

)
l = 1,2, . . . ,υ; A2l+1 =

( l+1∑
j=1

aj ,
l∑

j=0
bj

)
l = 0,1, . . . ,υ. (4.2.8)

Similarly, let Gcn have vertices B0,B1, . . . ,B2ν with coordinates

B2l =
( l∑
j=0

cj ,
l∑

j=0
dj

)
l = 0,1, . . . ,ν; B2l+1 =

( l+1∑
j=0

cj ,
l∑

j=0
dj

)
l = 0,1, . . . ,ν−1.

(4.2.9)

The stepwise curves F cm and Gcn, may have arbitrary numbers of vertices 2υ+1

and 2ν+ 1, they have a common initial vertex A1(a1,0) = B0(a1,0) and a common

final vertex A2υ+1 =B2ν . The latter condition is equivalent to assuming that

υ+1∑
j=2

aj =
ν∑
j=1

cj and
υ∑
j=1

bj =
ν∑
j=1

dj .

Therefore, both F cm and Gcn are contained within a rectangle. They may cross

each other or some of their segments may overlap and to reflect upon this, we will

say that the two curves are in a general position. The ecdfs Fm(x) and Gn(x) and

their counterparts F cm, Gcn that are stepwise curves in R2 are illustrated in Figure

4.1.

Figure 4.1: Graphs of Fm, Gn and planar curves F c
m and Gc

n for υ = 3 and ν = 2.

Let us also note that F cm in Figure 4.1 divides the plane R2 into two open sets,

the (strict) epigraph and hypograph of F cm denoted in the general Rk+1 case k ≥ 1,

correspondingly by UF c
m

and LF c
m

.

Given the two unknown cdfs F (x) and G(x), x∈Rk behind the random samples
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Xm and Yn, in order to test the null hypothesis H0 : F (x) =G(x) for all x, against

the alternative H1 : F (x) ̸=G(x). for at least one x, we propose to use the Hausdorff

distance Hρ(F cm,Gcn) between the planar curves F cm and Gcn that correspond to the

ecdfs, Fm and Gn. We specify ρ to be the Chebyshev distance ρ∞ defined in (4.2.4),

i.e. we take ρ = ρ∞. The rationale behind this choice can be similarly justfied as

in Section 3.2.2 and is two-fold. First, as we show in Theorem 4.5, Hρ∞(F cm,Gcn)

coincides with the edge of the largest hypercube that can be fitted between the

planar curves F cm and Gcn in Rk+1 that represent staircases in Rk+1. This motivates

geometrically the choice ρ = ρ∞ which also leads to more efficient evaluation of

Hρ∞(F cm,Gcn), illustrated in Section 4.3 (see Lemmas 4.23 and 4.39 therein). Second,

the choice ρ= ρ∞ allows us to establish a potentially fruitful connection between the

Hausdorff and the Lévy–Prokhorov metrics given by Proposition 4.9. For brevity,

we will drop the subscript ρ∞ from Hρ∞(F cm,Gcn), write H(F cm,Gcn) and also use the

shorter notation Hm,n. In what follows, we will refer to the latter Hausdorff distance

as the (two-sample) Hausdorff test statistic, or simply the H test. As we noted in the

introduction, the two-sample case considered here is fundamentally different from

the one-sample H test, because both of the ecdfs F cm and Gcn stem from unknown

underlying distributions, in contrast to the one-sample case, where an explicit null

cdf is hypothesized.

4.2.3 Properties of the Hm,n Statistic: the Multivariate Case

In this section, we will establish some general properties of the proposed statistic

H(F cm,Gcn) in the multivariate case, i.e., when F cm and Gcn are planar curves in

Rk+1, k ≥ 1. Let us note that the sup-inf in (4.2.5) is always achievable for two

compact sets, therefore the Hausdorff metric is always well-defined. However, the

sets F cm and Gcn are not bounded, nor is their symmetric difference F cm△Gcn :=

(F cm−Gcn)∪ (Gcn−F cm) when k ≥ 2, where the sup-inf in (4.2.5) can be achieved. In

order to mitigate this problem, we alternatively consider two functions F̂m and Ĝn

that truncate Fm and Gn, with corresponding planar curves F̂ cm and Ĝcn, such that

their symmetric difference F̂ cm△Ĝcn is bounded.

Lemma 4.3. For M > 0,x∈Rk, let us define two functions F̂m(x;M) and Ĝn(x;M)
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truncating Fm and Gn as follows

F̂m(x;M) = 1(x⪯M · I)Fm(x) + [1−1(x⪯M · I)],

Ĝn(x;M) = 1(x⪯M · I)Gn(x) + [1−1(x⪯M · I)],

where I = (1, . . . ,1)T ∈ Rk. There always exists M0 > 0, such that ∀M >M0,

Hm,n =H(F̂ cm(M), Ĝcn(M)), (4.2.10)

where F̂ cm(M) and Ĝcn(M) are the planar curves of F̂m(x;M) and Ĝn(x;M) respec-

tively.

Therefore, to compute Hm,n, we can instead compute H(F̂ cm(M), Ĝcn(M)), for

a suitably large choice of M . Since the symmetric difference F̂ cm(M)∆Ĝcn(M) is

always bounded, Lemma 4.3 provides a convenient framework for us to consider

further properties of Hm,n and generalize results in Section 3.2.2. We will start with

generalizing Lemmas 3.6 and 3.8.

Lemma 4.4. The Hausdorff distance

Hm,n = max
[

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B), sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B)
]

= sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) = sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B)

Lemma 4.4 is important as it significantly simplifies the evaluation of Hm,n
requiring only one sup-inf form (instead of two). Next we formulate Theorem 4.5,

which states that the Hausdorff distance with respect to the metric ρ∞ can be

expressed as the edge of the maximum hypercube that can be fitted between the

curves, F cm and Gcn.

Theorem 4.5. Denote by S(Q,d) = {P ∈Rk+1 : ρ∞(P,Q)≤ d/2} the hypercube with

edge d and center at the point Q. If the hypercube S(Q,d) can be inserted between

the curves F cm and Gcn, so that it does not overlap with the sets UF c
m
∩UGc

n
and

LF c
m
∩LGc

n
, then for the Hausdorff distance, we have

H(F cm,Gcn)≥ d. (4.2.11)
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Furthermore,

H(F cm,Gcn) = sup{d : S(Q,d)∩ [(UF c
m
∩UGc

n
)∪ (LF c

m
∩LGc

n
)] = ∅} (4.2.12)

or alternatively

H(F cm,Gcn) = sup{d : S(Q,d)⊂ G}, (4.2.13)

where G =Rk+1\{[(UF c
m
∩UGc

n
)∪(LF c

m
∩LGc

n
)]} is the area between two planar curves

F cm and Gcn.

Theorem 4.5 is an important result, as it gives a geometric interpretation of the

distance H(F cm,Gcn), which links it to the Lévy-Prokhorov metric (cf. Proposition

4.9), and also provides effcient means for computing H(F cm,Gcn) (cf. Lemma 4.15).

In addition, based on the latter geometric interpretation, it is not difficult to see

that all the observations (X1, . . . ,Xm) and (Y1, . . . ,Yn) directly influence H(F cm,Gcn),

in contrast to the run/rank tests (such as KS, CvM and AD), which depend solely

on the relative ordering of (X1, . . . ,Xm) and (Y1, . . . ,Yn). Furthermore, H(F cm,Gcn)

is Lipschitz continuous as a point function of the observations, as stated in the

following theorem.

Theorem 4.6. Let X̌m = {X̌1, . . . , X̌m} and Y̌n = {Y̌1, . . . , Y̌n} be two arbitrary ran-

dom samples in Rk with corresponding empirical cdfs F̌m and Ǧn and planar curves

F̌ cm and Ǧcn. We have

|H(F cm,Gcn)−H(F̌ cm, Ǧcn)| ≤ 4max
{

max
1≤i≤m

ρ∗
∞(Xi, X̌i), max

1≤j≤n
ρ∗

∞(Yj , Y̌j)
}
, (4.2.14)

where ρ∗
1 is the metric defined by ρ∞ (cf. (4.2.4)) restricted on Rk.

One consequence of Theorem 4.6 gives a key advantage of the H(F cm,Gcn) test

over other rank/run tests, which is its robustness to small perturbations in the

sample values. The latter guarantees that the goodness-of-fit testing result under

Hm,n are stable when samples are noise-contaminated, which may be due to many

unavoidable practical reasons, such as measurement errors, rounding errors, and

privacy protection (see Avella-Medina, 2021). For example, the noise induced by

rounding errors, which typically leads to ties appearing in the data, can substantially

inflate the type I error when applying a rank statistic (see e.g. Schröer and Trenkler,
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1995). The robustness of Hm,n with respect to small perturbations is illustrated in

the following simple example.

Example 4.7. Let Xm and Yn have realizations Xm = {0,0.5,1} and Yn =

{0,0.5,1}. Let X̌m = {0,0.4999,1} and Y̌n = {0,0.5001,1} be noise-contaminated

samples of Xm and Yn. Clearly, the values of the H and KS statistics with respect

to the original samples Xm and Yn are Hm,n = 0 and Dm,n = 0, whereas the values

with respect to X̌m and Y̌n are Ȟm,n = 0.0002 and Ďm,n = 1
3 . The latter values are

graphically illustrated in Figure 4.2, where the cdfs of X̌m and Y̌n coincide except at

the middle observation. As can be seen, Ȟm,n = 0.0002 is the side of the maximum

square that can be fitted between F̌ cm and Ǧcn (cf. Theorem 4.5).

Figure 4.2: The effect of a small perturbation in the samples as in Example 4.7, on Hm,n

and Dm,n; Ďm,n = 1/3 – the dotted line, against the robust Ȟm,n = 0.0002 -
the side of the shaded rectangle which is much closer to Hm,n =Dm,n = 0.

In Theorem 4.25 of Section 4.3.2, we further establish the robustness of the

p-values of Hm,n, referred to as the qualitative robustness.

Next, we establish a connection between the Hausdorff and the Lévy-Prokhorov

metrics. For the purpose, let us recall the definition of the Lévy-Prokhorov metric,

which measures the distance between two probability measures.

Definition 4.8 (Lévy-Prokhorov metric). For any subset A ⊂ Rk, its ε-neighbor

(with respect to the metric ρ∞) is defined as

Aε = {y ∈ Rk : ∃ x ∈ A,ρ∞(x,y)< ε}

Denote by B the collection of all Borel sets of Rk, by µ1 and µ2 two probability mea-

sures defined on (Rk,B). Then the Lévy-Prokhorov metric, measuring the distance
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between µ1 and µ2, is defined as

ρLP (µ1,µ2)≡ ρLP (µ1,µ2;B) = inf{ε > 0 :

µ1(A)≤ µ2(Aε) + ε, and µ2(A)≤ µ1(Aε) + ε, ∀A ∈B}
(4.2.15)

The following proposition expresses the Hausdorff metric in the form of a Lévy-

Prokhorov metric. A Hausdorff expression of the Lévy-Prokhorov metric is given in

Rachev (1981).

Proposition 4.9. Denote by µXm and µYn the empirical measures with respect to

the samples Xm and Yn, i.e. µXm = 1
m+n

∑m
l=1 δXl

and µYn = 1
m+n

∑n
l=1 δYl

, where

δx is the Dirac measure, i.e. for any set A⊂ Rk,

δx(A) = 1A(x),

where 1A(·) is the indicator of the set A. Denote by Bi =
{{
x ∈ Rk : x⪯i y

}
: y ∈ Rk

}
,

then the Hausdorff statistic can also be expressed as

H(F cm,i,Gcn,i) = ρLP (µXm ,µYn ;Bi) = inf{ε > 0 : µXm(A)≤ µYn(Aε) + ε,

and µYn(A)≤ µXm(Aε) + ε, ∀A ∈Bi}.
(4.2.16)

Note that since each class Bi for 1 ≤ i ≤ 2k generates the sigma algebra B,

therefore Bi ⊂B, and it is clear that the Hausdorff metric H(F cm,i,Gcn,i) is therefore

a degenerate form of the Lévy-Prokhorov metric ρLP (µXm ,µYn), which also results

in Corollary 4.10.

Corollary 4.10. H(F cm,i,Gcn,i)≤ ρLP (µXm ,µYn).

The next example shows that the Hausdorff metric is a different metric from the

Lévy-Prokhorov metric, in other words, the equality sign does not hold in general.

Example 4.11. LetXm = {1}, Yn = {0,2}. One easily checks that H(F cm,Gcn) = 0.5,

whereas ρLP (µXm ,µYn) ≥ 1. Indeed, take A = {1}. Then for any ε < 1, Aε = [1−

ε,1+ε] which contains neither 0 nor 2, and therefore µYn(Aε) = 0. Thus µXm(A) =

1> µYn(Aε) + ε= ε for any ε < 1.

The Hausdorff statistic H(F cm,i,Gcn,i) depends on the component-wise order ⪯i.

Alternatively, we could also define the following statistic, which is independent of
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the choice of ⪯i, in analogy to the multivariate generalization of the KS test by

Peacock (1983),

H◦
m,n = max

1≤i≤2k
H(F cm,i,Gcn,i) = ρLP (µXm ,µYn ;∪Bi)

= inf{ε > 0 : µXm(A)≤ µYn(Aε) + ε, and

µYn(A)≤ µXm(Aε) + ε, ∀A ∈ ∪iBi}.

(4.2.17)

Let us note that, H◦
m,n is also a degenerate Lévy-Prokhorov distance since ∪iBi also

generates the sigma algebra B.

Remark 4.12. The link between the Hausdorff and Lévy-Prokhorov metrics es-

tablished in Proposition 4.9 is important since it offers a bridge to applying the

Hausdorff statistic Hm,n to the context of global sensitivity analysis and variable

importance measurement (see Borgonovo et al., 2025b, and discussions in Section

5.2).

Remark 4.13. In practice, given a pair of data samples in high dimension, instead

of directly testing for goodness-of-fit, one may first project the data into a lower

dimension and then perform the goodness-of-fit testing. If the dimension reduction

does not affect the scale of the data samples, it is not difficult to show that the Haus-

dorff distance computed with respect to the projected data (in the lower dimension)

is bounded from above by H(F cm,i∗ ,Gcn,i∗) with an appropriate specification of ⪯i∗

in the original high dimension. This statement is analogus to Corollary 4.10, since

the class Bj generated by the component-wise order ⪯j in the lower dimension is a

subset of the original class Bi∗ generated by ⪯i∗ .

Following the geometric interpretation given by Theorem 4.5, we give some

results on how to compute the proposed H statistic. For the purpose, let us introduce

some notation for the vertices of F cm and Gcn in the case k > 1, generalizing the

notation given in Section 4.2.2, for the case k = 1. Defining the vertices in the latter

case is trivial, since each vertex occurs at each point of jump discontinuity of Fm
and Gn. However, a direct extension to the case k > 1 does not work since Fm and

Gn may be discontinuous not only at points but also over entire segments in Rk.

Therefore, in order to define the vertices of Fm and Gn in the case k > 1, we need to

select the points in Rk at which Fm and Gn jump with respect to all its coordinates.
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We refer to the latter as points of omnidirectional jumps.

Definition 4.14. Denote by ei = (0, . . . ,0,1,0, . . . ,0) ∈Rk (1≤ i≤ k), the i-th stan-

dard basis vector in Rk, where 1 appears exactly in the i-th position. Then x is a

point of omnidirectional jump of Fm if and only if, for every i,

lim
t↓0

Fm(x+ tei) ̸= lim
t↑0

Fm(x+ tei). (4.2.18)

When k = 1, every jump of Fm is automatically an omnidirectional jump. De-

note by α1,α2, . . . ,αυ ∈ Rk and β1,β2, . . . ,βν ∈ Rk all the points of omnidirectional

jumps of Fm and Gn respectively. Without loss of generality, let us further assume

that both samples come from continuous distributions, i.e. there are no ties in the

samples Xm and Yn. In the latter case, we define the vertices A1, . . . ,A2υ of F cm as

A2i−1 = (αi,Fm(αi−))T ,A2i = (αi,Fm(αi+))T , i= 1,2, . . . ,υ, (4.2.19)

which are sufficient to give a computable expression of Hm,n, as shown in Lemma

4.15. A more detailed description of all the vertices of Gcn is given in Appendix 4.A.

The following lemma generalizes Proposition 3.9 and provides an explicit ex-

pression for the Hausdorff statistic Hm,n and numerical methods to compute it given

in Section 4.3.1 and Appendix 4.A.

Lemma 4.15. Let Ll, l = 1,2, . . . ,2ν be straight lines, correspondingly passing

through each of the vertices Al of Fm defined in (4.2.19) and parallel to the vec-

tor OE0,1 where E0 = (1, . . . ,1,−1)T ∈ Rk+1, i.e. each Ll is explicitly defined as

Ll = {P ∈ Rk+1 : P −Al = tE0, t ∈ R}. (4.2.20)

Denote by El, l = 1,2, . . . ,2υ the points of intersection of the lines, Ll with the

planar curve Gcn and consider the distances ρ∞(Al,El), l= 1,2, . . . ,2υ. Then for the

Hausdorff statistic, we have

Hm,n =H(F cm,Gcn) = max{ρ∞(Al,El), l = 1, . . . ,2υ}, (4.2.21)

1In this paper, the point O denotes the zero vector in Rk+1 and 0 denotes the zero vector in Rk.
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under the assumption that the domain G = Rk+1 \{[(UF c
m
∩UGc

n
)∪(LF c

m
∩LGc

n
)]} (cf.

Theorem 4.5) is bounded in Rk+1.

When k = 1, it can be seen that G in (4.2.21) is always bounded. When k > 1,

F cm and Gcn need to be truncated according to Lemma 4.3, appropriately selecting the

constant M , so that G(F̂ cm(M), Ĝcn(M)), the area between F̂ cm(M) and Ĝcn(M), be-

comes bounded. Furthermore, the vertices of each planar curve F̂ cm(M) and Ĝcn(M)

that are defined in Lemma 4.3 are composed of two distinct parts: (i) the origi-

nal vertices of F cm and Gcn, (ii) additional vertices in F̂ cm(M) and Ĝcn(M) generated

by the truncation of F cm and Gcn. Therefore in order to use (4.2.21) to compute

H(Fm,Gn), one needs to incorporate the second part of the vertices of F̂ cm(M). The

choice of M and the detailed adjustment of (4.2.21) are discussed in Appendix 4.A.

Let us note that (4.2.21) can also be applied to compute H◦
m,n defined in

(4.2.17). To see this, note that F cm,1 ≡ F cm, Gcm,1 ≡Gcn (cf. Section 4.2.1), and there-

fore Hm,n = H(F cm,Gcn) ≡ H(F cm,1,Gcn,1). To compute the remaining H(F cm,i,Gcn,i)

(2≤ i≤ 2k) in (4.2.17), one only needs to modify E0 in (4.2.20) as E0 = (ξi,−1)T ∈

Rk+1, where ξi ∈ {−1,1}k ⊂Rk, i.e. each component of ξi is either -1 or 1, and such

that ξi ≻i 0.

4.2.4 Further Properties of Hm,n in the Univariate Case

The purpose of this section is to give some further properties of the proposed statistic

Hm,n =H(F cm,Gcn) in the univariate case i.e., when F cm and Gcn are planar curves in

R2, i.e. when k = 1. In this case, its definition does not depend on the ordering ⪯

considered in Section 4.2.1, and it is easy to compare Hm,n with other tests such as

the KS statistic. An essential difference between the latter two is that Hm,n depends

on both coordinates of the planar curves F cm and Gcn, while the KS statistic depends

only on their vertical coordinates. As a consequence, as established in Section 4.4,

Hm,n has higher power than the KS statistic. As we also note in Remark 4.22, Hm,n
coincides with the Lévy metric.

The first property we introduce is a special case of Lemma 4.15, which further

simplifies the computation of Hm,n. For the purpose, we modify the planar curves

F cm and Gcn defined in R2 (see Fig. 4.1) so as to ensure that they only touch but not

cross each other. As we show in Lemma 4.17, such a modification does not affect

the value of Hm,n.
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Consider the subset of the vertices B1, . . . ,B2ν of Gcn which intersects with

UF c
m

, i.e. {B1, . . . ,B2ν} ∩ UF c
m

. Consider also the intersection {A1, . . . ,A2υ} ∩

LGc
n
. The modified planar curve F̃ cm, has vertices ({A1, . . . ,A2υ}\ ({A1, . . . ,A2υ})∩

LGc
n
)∪ ({B1, . . . ,B2ν}∩UF c

m
). Similarly, the modified planar curve G̃cn has vertices

{B1, . . . ,B2ν}\ ({B1, . . . ,B2ν}∩UF c
m

)∪ ({A1, . . . ,A2υ}∩LGc
n
). The latter sets of ver-

tices exclude the additional vertices at the crossing points of F cm and Gcn, where F̃ cm
and G̃cn touch. Therefore these additional vertices are irrelevant in the computation

of H(F cm,Gcm).

Remark 4.16. Let us note that if we modify F̃ cm and G̃cn applying the above mod-

ification rules, then it can be seen that ˜̃F cm and ˜̃Gcn coincide respectively with F̃ cm

and G̃cn.

Denote by, ã1 = a1, c̃0 = a1, ãi+1 and b̃i, i = 1, . . . , υ̃, and by, c̃j and d̃j , j =

1, . . . , ν̃, the sizes of the horizontal and vertical segments of correspondingly the

staircases F̃ cm and G̃cn. Their step sizes ãi, b̃i, c̃j and d̃j can be expressed in terms of

the step sizes a, b, c and d of F cm and Gcn for any particular pair of the cdfs Fm and

Gn that are in general position. This is described in Section 4.3.1. For the vertices

of F̃ cm and G̃cn, we have

Ã2l =
( l∑
j=1

ãj ,
l∑

j=1
b̃j

)
l = 1,2, . . . , υ̃; Ã2l+1 =

( l+1∑
j=1

ãj ,
l∑

j=0
b̃j

)
l = 0,1, . . . , υ̃,

B̃2l =
( l∑
j=0

c̃j ,
l∑

j=0
d̃j

)
l = 0,1, . . . , ν̃; B̃2l+1 =

( l+1∑
j=0

c̃j ,
l∑

j=0
d̃j

)
l = 0,1, . . . , ν̃−1.

(4.2.22)

The following lemma states that the Hausdorff distances between the planar

curves F cm and Gcn and their modified versions F̃ cm and G̃cn coincide.

Lemma 4.17. The Hausdorff metric Hm,n =H(F cm,Gcn) =H(F̃ cm, G̃cn).

Proof. The result follows since the domain G is not affected by the modification of

(F cm,Gcn) into (F̃ cm, G̃cn).

The following lemma is a special of Lemma 4.15 which further simplifies the

numerical evaluation of Hm,n.

Lemma 4.18. Let, Ll, l= 1,2, . . . , υ̃, be parallel straight lines, correspondingly pass-

ing through each of the vertices Ã2l, l = 1,2, . . . , υ̃, in such a way that they cross
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the horizontal axis, at an angle of 3π/4. Denote by Ẽ2l, l = 1,2, . . . , υ̃ the points

of intersection of the lines, Ll with the planar curve G̃cn and consider the distances

ρ∞(Ã2l, Ẽ2l), l = 1,2, . . . , υ̃. We have

Hm,n =H(F̃ cm, G̃cn) = max{ρ∞(Ã2l, Ẽ2l), l = 1, . . . , υ̃}. (4.2.23)

We also have

Hm,n =H(F̃ cm, G̃cn) = max{ρ∞(B̃2l−1, D̃2l−1),e= 1, . . . , ν̃)}, (4.2.24)

where D̃2l−1, l= 1, . . . , ν̃ are the points of intersection of the lines L′
l with the planar

curve F̃ cn, where the lines L′
l pass through the vertices B̃2l−1 and cross the horizontal

axis at an angle of 3π/4.

Let us note that the maximum in (4.2.23) is taken over only the even vertices

of F̃ cm in contrast to (4.2.21) in Lemma 4.15, where the corresponding maximum

is taken over all vertices of F cm. Therefore in many practical cases, depending on

the structure of the two samples Xm and Yn, i.e. of their planar curves F cm and

Gcn, the evaluation of Hm,n following (4.2.23) may be significantly more efficient

than if one applies (4.2.21) for k = 1. In fact, all the even vertices of F̃ cm are all

the locally concave vertices, which are also locally the farthest from G̃cn. Therefore,

the maximum in (4.2.21) can be taken over the vertices which are only locally the

farthest from Gcn, which we further illustrate in Appendix 4.A.2

Based on Lemmas 4.18 and Theorem 4.5, we develop an efficient method for

computing H(F cm,Gcn) and its p-values, which we present in Sections 4.3.1 and 4.3.2.

Next, we state Theorem 4.19, which is important as it gives a connection between

Hm,n and the two sample Kolmogorov-Smirnov statistic, Dm,n, defined as

Dm,n = ρD(Fm,Gn) := sup
−∞<x<+∞

|Fm(x)−Gn(x)|

Theorem 4.19. We have

H(F cm(ω),Gcn(ω))≤ ρD(Fm(ω),Gn(ω)) (4.2.25)
2A vertex A ∈ Gc

n is locally concave iff S(A,δ) ∩ LGc
n

is convex for some δ > 0, and is locally
convex iff S(A,δ) ∩ UGc

n
is convex for some δ > 0.
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for every ω ∈ Ω. Furthermore,

H(F cm(ω),Gcn(ω)) = ρD(Fm(ω),Gn(ω)) (4.2.26)

for every ω ∈ Ω, if

min
2≤i≤υ

(xi−xi−1)≥ 1 and min
2≤i≤ν

(yi−xi−1)≥ 1 (4.2.27)

Remark 4.20. It can be directly seen that conditions (4.2.27) is met by the class

of discrete integer valued distributions, such as Poisson, Negative Binomial, and

some other distributions. In the latter case following (4.2.27), the Hm,n and Dm,n
statistics coincide. However, there are important discrete distributions which do not

meet conditions (4.2.27) and Hm,n and Dm,n do not coincide. It is worth noting also

that when the random samples Xm and Yn are continuous, in general, Hm,n ̸=Dm,n.

As a consequence of Theorem 4.19, we can now formulate Corollary 4.21 which

states that the cdf of Dm,n is dominated by the cdf of Hm,n.

Corollary 4.21. For any q ∈ [0,1], we have

P(Dm,n ≤ q)≤ P(Hm,n ≤ q).

Remark 4.22. Let us note that following Proposition 4.9, the univariate Hm,n
statistic can be expressed as a degenerate Lévy-Prokhorov metric and therefore as

a Lévy metric (cf. (3.2.14)). Therefore relations (4.2.25) and (4.2.26) can also be

obtained from the property of the Lévy metric (cf. Lemma 3.46).

4.3 Evaluating Hm,n and its p-values
To test the null H0 using the Hausdorff statistic Hm,n = H(F cm,Gcn) in the general

case i.e., when F cm and Gcn are planar curves in Rk+1 for k ≥ 1, one needs numerical

methods to efficiently evaluate it and its p-values. Such methods are presented here

for the case k = 1 and 2.

4.3.1 Evaluating Hm,n when k = 1

In this section, we introduce two methods to evaluate Hm,n when k = 1, the pro-

jection and the transformation method. The latter is based on transforming the
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coordinate system, which is easy to understand geometrically but is more difficult

to generalize to higher dimensions, i.e. for k > 1. The projection method is slightly

more complex but can be generalized to the case k > 1, as we demonstrate in Ap-

pendix 4.A.

The projection method for computing the value of H(F cm,Gcn), for a fixed pair

F cm, and Gcn is based on Lemmas 4.17 and 4.18. From the latter lemmas, it follows

that

H(F cm,Gcn) =H(F̃ cm, G̃cn) = max{ρ∞(Ã2l, Ẽ2l), l = 1, . . . , υ̃} (4.3.1)

and therefore we can focus on finding H(F̃ cm, G̃cn) which is more convenient since,

F̃ cm with vertices,

{A1, . . . ,A2υ}/({A1, . . . ,A2υ}∩LGc
n
)∪ ({B1, . . . ,B2ν}∩UF c

m
) (4.3.2)

lies entirely in UG̃c
n
, i.e. F̃ cm ∈ UGc

n
, and Gcn with vertices

{B1, . . . ,B2ν}/({B1, . . . ,B2ν}∩UF c
m

)∪ ({A1, . . . ,A2υ}∩LGc
n
) (4.3.3)

lies entirely in LF̃ c
m

, i.e. G̃cn ∈ LF̃ c
m

. In other words, F̃ cm lies ”above” G̃cn, i.e. F̃ cm

and G̃cn may touch but not cross each other, in contrast to F cm and Gcn, which are

assumed in general position, i.e. may cross (see Figure 4.3). This property of F̃ cm
and G̃cn simplifies the numerical evalutation of Hm,n.

Thus, following (4.3.1), in order to find all the squares, S(Q,d) that fit and

touch F̃ cm and G̃cn, but do not stretch into either UF̃ c
m

or LG̃c
n
, pass bisections through

the vertices Ã2l, l = 1, . . . , υ̃ of the 90-degree angles, formed by the staircase curve

F̃ cm (See Figure 4.3), and find their points of intersection, Ẽ2l, l = 1, . . . , υ̃ with the

curve G̃cn. The point Ẽ2l, with coordinates (xẼ2l
,zẼ2l

) defines the side dl of the

square S(Q,dl), i.e. dl = xẼ2l
−xÃ2l

. Following Lemma 4.18, the Hausdorff distance

H(F cm,Gcn) is then equal to the max
1≤l≤υ̃

{dl}.

The latter maximum can be found applying Lemma 4.23 which requires pro-

jecting the vertices of F̃ cm and G̃cn onto the horizontal axis, as illustrated in Figures

4.3 and 4.4. The projection method for computing Hm,n can now be summarized as

follows.

Step 1. If ν̃ > υ̃, perform an appropriate change of the coordinate system, and
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Figure 4.3: The curves F̃ c
m and G̃c

n, and the Hausdorff distance between them
H(F̃ c

m, G̃
c
n) = max

1≤l≤9
dl

recompute the coordinates of all the vertices of F̃ cm and G̃cn, so that the latter change

positions, i.e., G̃cn takes position above F̃ cm. If ν̃ ≤ υ̃, proceed to Step 2. Therefore,

Step 1 ensures that the curve with smaller number of vertices is above the curve

with higher number of vertices.

Step 2. Project the vertices of F̃ cm with even indexes, i.e. the vertices

Ã2l
(∑l

i=1 ãi,
∑l
i=1 b̃i

)T
, l = 1, . . . , υ̃ onto the horizontal axis Ox, in direction of the

line x+z = 0 in the xOz coordinate system and denote these projections with λÃ2l
.

It is easy to see that,

λÃ2l
=

l∑
i=1

(
ãi+ b̃i

)
.

Step 3. Similarly as in Step 2, project all the vertices of G̃cn and denote their

projections on the abscissa Ox, by λB̃l
, l = 1,2, . . . ,2ν̃. Clearly,

λB̃2j
=

j∑
k=1

(
c̃k + d̃k

)
, for j = 1,2, . . . , ν̃ and

λB̃2j+1
=

j+1∑
k=1

c̃k +
j∑

k=1
d̃k, for j = 0,1,2, . . . , ν̃−1.

Step 4. Define the semi-open intervals (open from the left and closed from the

right) as:

∆j =
(
λB̃j−1

,λB̃j

]
, j = 1,2, . . . ,2ν̃. (4.3.4)
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Order all the points from the set


λB̃j

, j = 0,1,2, . . . ,2ν̃

λÃ2l
, l = 1,2, . . . , υ̃

 in a non-decreasing

order. Steps 2-4 are illustrated graphically in Figure 4.4.

Figure 4.4: Graphical illustration of Steps 2-4. Blue tick marks indicate the points λB̃i
,

i = 0,1,2, . . . ,2ν̃, red circles denote the points λÃ2l
, l = 1,2, . . . , υ̃, and λÃ1

≡
λB̃0
≡ a1.

Step 5. We will start the description of this step with some preliminaries. Let

us consider only the intervals, ∆i, defined as in (4.3.4), which contain at least one

point from the set of projections {λÃ2l
, l = 1,2, . . . , υ̃}. Order their corresponding

indexes in an increasing order and denote them by i1 < i2 < .. . < ir, where r is the

number of such intervals, 1≤ r ≤ 2ν. In the special case of Figure 4.4, r = 3, i1 = 3,

i2 = 10 and i3 = 11.

Consider the i-th such interval, ∆i, where i∈ {i1, i2, . . . , ir}. We will say that the

vertices, Ã2s, Ã2(s+1), Ã2(s+2), . . . , Ã2t, with consecutive even indexes, form a batch

of size t− s+ 1, if their projections, λÃ2s
,λÃ2(s+1)

,λÃ2(s+2)
, . . . ,λÃ2t

on the Ox axis,

belong to the interval ∆i =
(
λB̃i−1

,λB̃i

]
, for some i ∈ {i1, i2, . . . , ir}. We will call the

vertex, A2s, the initial (first) vertex of the batch and A2t, its final (last) vertex. We

will also call the point λB̃i
, the smallest upper bound of type G̃cn, of the projections

in the batch. One can easily see that, if Ã2s, Ã2(s+1), . . . , Ã2t is a batch with smallest

upper bound, λB̃i
, then the open interval

(
λÃ2s

,λÃ2t

)
does not contain any projec-

tion from the set, {λB̃j
, j = 1,2, . . . ,2ν̃}. In what follows, it will be convenient to use

the notation, Āi, for the batch of vertices, Ã2s, Ã2(s+1), . . . , Ã2t, whose projections

λÃ2s
,λÃ2(s+1)

, . . . ,λÃ2t
belong to the interval ∆i, i ∈ {i1, i2, . . . , ir}.

Since ρ∞(Ã2l, Ẽ2l) = infB∈G̃c
n
ρ∞(Ã2l,B), l= 1, . . . , υ̃, to compute the maximum

in (4.2.23) of Lemma 4.18, i.e. the Hausdorff distance Hm,n = H(F̃ cm, G̃cn), we can

compute

max
i∈{i1,...,ir}

max
A∈Āi

inf
B∈G̃c

n

ρ∞(A,B). (4.3.5)

The following lemma gives an explicit expression for the second maximum in (4.3.5)

and therefore for Hm,n.
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Lemma 4.23. For the distance, max
A∈Āi

inf
B∈G̃c

n

ρ∞ (A,B), we have

max
A∈Āi

inf
B∈G̃c

n

ρ∞ (A,B) = max
s≤j≤t

inf
B∈G̃c

n

ρ∞(Ã2j ,B)

=


t∑

k=1
b̃k−

p∑
k=1

d̃k = ρ∞
(
Ã2t, Ẽ2t

)
, if i is odd, i.e. i= 2p+ 1

p+1∑
k=1

c̃k−
s∑

k=2
ãk = ρ∞

(
Ã2s, Ẽ2s

)
, if i is even, i.e. i= 2(p+ 1)

(4.3.6)

for some fixed i∈ {i1, i2, . . . , ir}, m≤ n and p obtained from i= 2p+1 or i= 2(p+1).

The Hausdorff distance, Hm,n is obtained by taking the maximum in (4.3.5)

over all the r batches, Āil , l = 1,2, . . . , r. This is implemented sequentially applying

the following algorithm.

Denote by sq and tq, the indexes of, correspondingly the initial and final vertices,

Ã2sq and Ã2tq of the q-th batch, Āiq q = 1,2, . . . , r. Set, q = 1 and find s1, i1 and t1.

Clearly, Ã2 is the initial vertex of the first batch, i.e. Ã2 = Ã2×1, therefore s1 = 1.

Next, we find the index i = i1, of the smallest upper bound λB̃i
, i = 1,2, . . . ,2ν̃, of

the first batch Ā1. The index i1 is obtained by sequentially checking the inequalities

λÃ2
−λB̃1

= λÃ2s1
−λB̃1

> 0, λÃ2s1
−λB̃2

> 0,

. . . ,λÃ2s1
−λB̃i1−1

> 0, λÃ2s1
−λB̃i1

≤ 0,

starting with the index i = 1, until the index i = i1, for which λB̃i1
, becomes equal

to or exceeds λÃ2s1
, i.e., λÃ2s1

≤ λB̃i1
.

The index t1, is then obtained in a similar way, by sequentially checking the

inequalities

λB̃i1
−λÃ2

≥ 0, λB̃i1
−λÃ4

≥ 0, . . . ,λB̃i1
−λÃ2t1

≥ 0, λB̃i1
−λÃ2(t1+1)

< 0.

Applying Lemma 4.23, substitute the indexes, s = s1, i = i1 and t = t1, in

(4.3.6) and compute the distance, max
A∈Ā1

inf
B∈G̃c

n

ρ∞ (A,B), for the first batch. Set,

H
(
F̃ cm, G̃

c
n

)
= max
A∈Ā1

inf
B∈G̃c

n

ρ∞ (A,B).

For the second batch, Ā2, we can directly see that its first vertex is A2m1 =
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A2(n1+1). Therefore, the index i2 is found by sequentially verifying the inequalities

λÃ2s2
−λB̃i1+1

> 0, λÃ2m2
−λB̃i1+2

> 0, . . . ,

λÃ2s2
−λB̃i2−1

> 0, λÃ2s2
−λB̃i2

≤ 0,

starting with the index i = i1 + 1, until the index i = i2, for which λB̃i2
, becomes

equal to or exceeds λÃ2s2
, i.e., λÃ2s2

≤ λB̃i2
.

The index n2 is found, similarly as for the first batch, from the inequalities

λB̃i2
−λÃ2s2

≥ 0, λB̃i2
−λÃ2(s2+1)

≥ 0,

. . . ,λB̃i2
−λÃ2(t2−1)

≥ 0, λB̃i2
−λÃ2t2

< 0.

Substitute the indexes, s= s2, i= i2 and t= t2, in (4.3.6) and compute the distance,

max
A∈Ā2

inf
B∈G̃c

n

ρ∞ (A,B), for the second batch. If H
(
F̃ cm, G̃

c
n

)
< max

A∈Ā2
inf
B∈G̃c

n

ρ∞ (A,B)

then set

H
(
F̃ cm, G̃

c
n

)
= max
A∈Ā2

inf
B∈G̃c

n

ρ∞ (A,B) ,

else set q = q+1 and following the algorithm for the previous batches, compute the

distance max
A∈Āq

inf
B∈G̃c

n

H (A,B), for the q-th batch. Continue this process until reaching

the last, r-th batch Ār, for which Ã2tr = Ã2υ̃, i.e., tr = υ̃. Clearly, the required

Hausdorff distance between the curves F̃ cm and G̃cn is obtained in H
(
F̃ cm, G̃

c
n

)
. This

completes the description of the projection method.

Under the transformation method, the curves F cm and Gcn that are assumed in

general position are transformed into a new coordinate system rotating them by π
4

as shown in Figure 4.5. The Hausdorff distance is then computed with respect to

the rotated F cm and Gcn. In what follows, we will briefly introduce the idea behind

this transformation method.

Let us define Tr : R2→ R2 the rotation operator, such that for any (x,z) ∈ R2,

x′

z′

= Tr(x,y) =

1 −1

1 1


x
z

 , (4.3.7)

i.e. it rotate the xOz plane by π
4 to the x′Oz′ plane. Based on Theorem 4.5,

the Hausdorff distance is the side of the largest square fitted between F cm and Gcn,
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which has the largest diagonal. Therefore, one can compute H(F cm,Gcn) by looking

at the vertical largest difference of the rotated curves Tr(F cm) and Tr(Gcn), which

corresponds to the largest diagonal.

Applying the operator Tr, the curves F cm and Gcn are transformed into the func-

tions h1(x′) and h2(x′), which are piecewise linear with each segment having slope ±1

and corresponding vertices Tr(Ai), i= 1,2, . . . ,2υ and Tr(Bj), j = 1,2, . . . ,2ν. Denote

by z′ = h1(x′) and z′ = h2(x′) the parametric equations of the rotated curves Tr(F cm)

and Tr(Gcn), i.e. {(x′,h1(x′)) : x′ ∈ R}= Tr(F cm) and {(x′,h2(x′)) : x ∈ R}= Tr(Gcn).

Then the Hausdorff distance H(F cm,Gcn) is obtained as

H(F cm,Gcn) = sup
−∞<x′<+∞

1
2 |h1(x′)−h2(x′)|. (4.3.8)

Figure 4.5: Computing H(F c
m,G

c
n) applying the transformation method.

Following Lemma 4.15, it is not difficult to show that the supremum in (4.3.8) is

achieved over all xi, i= 1,2, . . . ,2υ, where xi is the abscissa with respect to x′Oz′ of

the transformed vertex Tr(Ai). Then to compute (4.3.8), one only needs to compute

h1(xi)−h2(xi) sequentially, where h1(xi) and h2(xi) are known by definition.

We have implemented both the projection and transformation methods in C++,

and their numerical efficiency is compared and discussed in Appendix 4.D. The

projection method is slightly more accurate, usually providing 16 correct digits but

is slower compared to the transformation method, which provides 14 correct digits

and is significantly faster, as shown in Table 4.2.

The projection method outlined above for the case k = 1 is generalized for the

case k = 2 in Appendix 4.A.

4.3.2 The p-values of Hm,n and its Permutation Version

The distribution of Hm,n is not easy to obtain since it depends on the underlying,

(unknown) distributions F and G. This hinders the computation of its p-value
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P(Hm,n > q), q ∈ (0,1), therefore its application in testing the null hypothesis H0.

In order to mitigate this difficulty, in (4.3.10) we introduce a permutation version

of the Hm,n test and show in Theorems 4.24 and 4.25 that its p-value conditional

on Zm+n approximates asymptotically the p-value of Hm,n. The p-values of the

permutation H test are easy to compute by applying Proposition 4.27 (cf. (4.3.14)).

Following Section 3.8 in van der Vaart and Wellner (2023), let the random

vector Rm+n = (R1,R2, . . . ,Rm+n) be independent from the samples Xm and Yn3

and uniformly distributed on the set of permutations of {1,2, . . . ,m+n}, i.e. every

possible realization ofRm+n has probability 1/(m+n)!. Given a realization of Zm+n,

define the permuted samples X†
m = {ZR1 , . . . ,ZRm} and Y †

n = {ZRm+1 , . . . ,ZRm+n}

with empirical cdfs

F †
m(x) = 1

m

m∑
i=1

1(ZRi ⪯ x), G†
n(x) = 1

n

m+n∑
i=m+1

1(ZRi ⪯ x). (4.3.9)

Then the corresponding permutation Hausdorff test, which we denote as H†
m,n, is

defined as

H†
m,n =H(F †c

m ,G
†c
n ), (4.3.10)

where F †c
m ,G

†c
n are the corresponding planar curves of F †

m and G†
n, with vertices A†

j,·

(j = 1, . . . ,υ†) and B†
j,· (j = 1, . . . ,ν†). Given the pooled sample, the p-value of the

permutation statistic H†
m,n is expressed as 1−P(H†

m,n ≤ q|Zm+n), q ∈ [0,1].

The essential reason to introduce the permutation statistic is the relationship

between the critical levels q∗
m,n(p) and qm,n(p) of the

√
mn
m+nH

†
m,n and

√
mn
m+nHm,n,

which are defined as

q†
m,n(p) = inf

{
q : P

(√
mn

m+n
H†
m,n ≤ q|Zm+n

)
≥ p

}
,

q∗
m,n(p) = inf

{
q : P

(√
mn

m+n
Hm,n ≤ q

)
≥ p

}
,

where the normalization
√

mn
m+n guarantees that q∗

m,n(p) is nondegenerate. If we

can show that under the null, the difference between the critical levels q∗
m,n(p) and

3Sometimes, Rm+n is considered to be defined on another probability space (Ω∗,F∗,P∗) and the
independence is considered as on the product space of (Ω,F ,P) and (Ω∗,F∗,P∗). The permutation
statistic is measured by P∗, which is also called outer probability in the literature.
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qm,n(p) is asymptotically negligible, i.e.

q†
m,n(p)− q∗

m,n(p) P→ 0, as n,m→∞, (4.3.11)

where P→ stands for convergence in probability, we should have that the difference

between the p-values of Hm,n and H†
m,n is also asymptotically negligible. In fact,

this will be the case under the null, since by applying Theorem 15.2.3 of Lehmann

and Romano (2005), one can show that under the null (4.3.11) holds universally

regardless of the choice of null and the dimension k.

However, this conclusion does not imply that the Hm,n and H†
m,n tests lead

to the same statistical inference when sample sizes are sufficiently large, since it is

also often the case that the null does not hold. For this reason, in Theorems 4.24

and 4.25, we present some asymptotic results under fixed or contiguous alternative,

assuming Hm,n is univariate, i.e. when k = 1.

Theorem 4.24. For a fixed significance level p, let q†
m,n(p) be the critical level

of the statistic
√

mn
m+nH

†
m,n, assuming that Xm and Yn come from the univariate

distributions F (x) and G(x) respectively. Let q∗
m,n(p) be the critical level of the

statistic
√

mn
m+nHm,n when the samples Xm and Yn come from one and the same

distribution ηF (x) + (1− η)G(x). If F (x) and G(x) have bounded densities, i.e.

F,G ∈ C1(R) and n
n+m → η, then (4.3.11) holds and the difference between the p-

values of Hm,n and H†
m,n is also asymptotically negligible.

Theorem 4.25. Let q†
m,n(p) and q∗

m,n(p) be defined as in Theorem 4.24. Define the

metric ρC1(F,G) = supx |F (x)−G(x)|+supx | ddxF (x)− d
dxG(x)|. Under a contiguous

alternative G(x;n)∈C1(R), i.e. if ρC1(F,G(·;n)) = o(1), then (4.3.11) holds and the

difference between the p-values of Hm,n and H†
m,n is also asymptotically negligible.

Theorems 4.24 and 4.25 show that the difference between q†
m,n and q∗

m,n is

asymptotically negligible under the alternative. It is worth noting that the relation

established in Theorem 4.25 describes the asymptotic behavior of the p-value of

Hm,n, and shows that the p-value of Hm,n does not change significantly under mild

perturbation of the null. This is an important property, which is also often referred

to as the qualitative robustness of a statistic (see Rieder 1982 and more recently

Liu and Briol 2024). Additionally, Theorems 4.24 and 4.25 suggest that the type I
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error and the power of the Hm,n and H†
m,n tests are asymptotically identical, as we

formally show in the next theorem.

Theorem 4.26. Assuming that F and G are defined in Rk (k ≥ 1), under the null

F =G, both the Hm,n test and its permutation version H†
m,n control the type I error,

i.e.

P
(√

mn

m+n
Hm,n > q†

m,n(p)
)
≤ p and P

(√
mn

m+n
Hm,n > q∗

m,n(p)
)
≤ p. (4.3.12)

Furthermore, when k = 1, under a fixed alternative G ̸= F ∈ C1(R) or a contiguous

alternative G(x;n) ∈ C1(R), i.e. ρC1(F,G(·;n)) = O(n−1/2), for the power of Hm,n
we have

P
(√

mn

m+n
Hm,n > q†

m,n(p)
)

= P
(√

mn

m+n
Hm,n > q∗

m,n(p)
)

+o(1), (4.3.13)

where the metric ρC1(F,G) = supx |F (x)−G(x)|+ supx | ddxF (x)− d
dxG(x)| and q∗

m,n

is the critical value when both Xm and Yn come from the null F .

Note that we have defined the vector Rm+n over all possible permutations of

{1, . . . ,m+n} and any further permutation among the first m or the last n ele-

ments of Rm+n does not change F †
m and G†

n. Therefore, any permutation can also

be equivalently considered as a split of the pooled sample Zm+n into X†
m and Y †

n .

Denote by Π(m+n) the set of all C =
(m+n
m

)
possible splits of Zm+n. One can alter-

natively consider Rm+n uniformly distributed on Π(m+n) with equal proabaility

1/C. Therefore, we have

Proposition 4.27. For the permutation H test, we have

P(H†
m,n > q|Zm+n) = 1

C

C∑
i=1

1{H†
m,n > q|Rm+n = πi(m+n),Zm+n}, (4.3.14)

where each πi(m+n) ∈Π(m+n), i= 1, . . . ,C represents a realization of Rm+n cor-

responding to a unique split of Zm+n.

Let us note that (4.3.14) is exact and computable, since given the permutation,

the event {H†
m,n ≤ q} in (4.3.14) can be expressed as the event of a trajectory G†c

n (or

F †c
m ) non-exiting two boundaries and can be explicitly evaluated. For more details,
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we refer to Appendix 4.B.

When n and m are small, all the possible realizations C, of Rm+n can be

generated at an affordable computational cost, which leads to the exact evaluation

of (4.3.14). For large n and m, the number C =
(m+n
m

)
is very large and exact

evaluation of (4.3.14) becomes prohibitively time consuming. To alleviate this, we

propose to use the Monte Carlo sampling of Rm+n to estimate the p-value, which is

implemented in the numerical studies in Section 4.4.

Alternatively, the p-value of Hm,n in the univariate case k = 1 for large sample

sizes m and n can be calculated based on the following asymptotic theorem.

Theorem 4.28. Let m
m+n → η ∈ (0,1) as m→∞. Assume that Xm and Yn come

from the univariate distributions F and G respectively with bounded densities. Given

the realization of Zm+n, when Rm+n is uniformly distributed over the permutations

of {1,2, . . . ,m+n}, we have

lim
m→∞

P
(√

mn

m+n
H†
m,n > x

∣∣∣∣Zm+n

)
= 1−P

(
|B0(t)| ≤ x

(
1 + e(E−1(t))

)
, ∀ 0≤ t≤ 1

)
,

(4.3.15)

where E(x) = ηF (x)+(1−η)G(x), with density e and inverse E−1 and B0(t) t∈ [0,1]

is a standard Brownian Bridge, i.e. a Gaussian process with B0(0) = B0(1) = 0,

E[B0(t)] = 0, E[B0(t)B0(s)] = s(1− t) for 0< s < t < 1.

In practice, the null distributions F and G are unknown. However, we could still

compute the asymptotic p-value in (4.3.15), since the e(E−1(t)) is also the reciprocal

of the quantile density function (i.e. the derivative of E−1), which can be estimated

from the realization of Zm+n. The latter estimation problem is also well studied,

see e.g. Soni et al. (2012) and Chesneau et al. (2016), to name only a few of the

references. The estimator δ̂(Ê(t)) can be directly substituted in (4.3.15) to obtain

the asymptotic p-value.

4.4 On the Scale Dependence of Hm,n
In this section, we investigate the statistical power of the two-sample H test Hm,n =

H(F cm,Gcn) in the univariate and bivariate cases, i.e., when F cm and Gcn are planar

curves in Rk+1, k = 1,2. While Hm,n is clearly location invariant, as shown in
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Chapter 3 for the one-sample case and in Example 4.29 for the two-sample case,

Hm,n and its power are not invariant under scale transformation (see Figure 4.6).

In this section, we explore how change of scale affects the power of the H test, and

further propose rules to adjust the scale so as to optimize the power.

We formally describe the scale dependence of the statistic Hm,n as follows.

For a given pair of samples, {X1, . . . ,Xm} and {Y1, . . . ,Yn} and a scaling constant

σ > 0, we apply Hm,n to test the null hypothesis H0 based on the scaled samples

σXm = {σX1, . . . ,σXm} and σYn = {σY1, . . . ,σYn}. As illustrated in the following

example, the result of testing the null H0 will depend on σ.

Example 4.29. Let Xm and Yn be samples from two different distributions. We

use the KS, CVM, AD, W and the proposed Hm,n statistic to test the null H0, i.e.

whether the scaled samples σXm and σYn come from the same distributions. To

do so, for a fixed σ > 0, we compute the p-values for all these statistics applying the

permutation approach as in Proposition 4.27 using 2000 simulated permutations.

We then compare the latter p-values with the significance level p= 0.05. The power

of each statistic is estimated as the frequency of rejecting the null H0, i.e. the

frequency of its p-value being less than p= 0.05. We use the R package twosamples

(Dowd, 2023) to evaluate the two-sample W statistic.
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Figure 4.6: The power of KS, CvM, AD, W andHm,n as a function of the scaling coefficient
σ when m = n = 50 and Xm and Yn come from Exp(2) and Exp(3) (Left
Panel), N(0,2) and N(0,4) (Right Panel).

The power of each statistic as a function of σ varied over the range [10−5,5] is

illustrated in Figure 4.6 for the case m = n = 50 and when Xm and Yn come from

different Exponential and different Normal distributions. As can be seen, only the

power of Hm,n varies with σ, whereas the powers of KS, CvM, AD and W remain
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constant.

The scale dependence of the power of Hm,n is a consequence of the scale de-

pendence of its p-value. However, the latter scale dependence is a considerable

obstacle in goodness-of-fit testing with Hm,n since its results will depend on the

units used to express the sample observations. To mitigate this problem which also

arises for the goodness-of-fit test statistic based on the Lévy metric (see Remark

4.22 in Section 4.2.4 for its equivalence of H), Alexander (1974) proposed to first

apply Em+n(·) to each observation and then use the Lévy meausure based statistic.

This means to test whether the samples Em+n(Xm) = {Em+n(X1), . . . ,Em+n(Xm)}

and Em+n(Yn) = {Em+n(Y1), . . . ,Em+n(Ym)} come from the same distribution.

Note that the observations in Em+n(Xm) and Em+n(Yn) only take values i
m+n ,

i = 1, . . . ,m+n. Thus, this test now becomes a rank test, which does not depend

on the scale. While this approach seems to eliminate the scale dependence, it is less

appealing since it does not take into account the information contained in each ob-

servation, as shown in Theorem 4.6. Such rank transformation violates the Lipschitz

continuity in Theorem 4.6 and therefore leads to loss of robustness of the statistic

and a decrease in its power, which approaches that of the KS test.

A different approach to the lack of scale invariance of the H test has been

proposed in Chapter 3 for the one-sample case. By viewing the H test as a function

of a scale parameter σ, we have proposed a rule (3.3.11) to select σ so that the

power of H is optimized. This rule explicitly uses the form of the hypothesized

null distribution. We generalize this approach to the two-sample case, which is not

straightforward, since in this case no information is available about the underlying

null distribution.

Here we propose rules (4.4.6) and (4.4.9) to select σ, so that the H test preserves

the Lipschitz continuity property of Theorem 4.6 and therefore its robustness and

the scale dependence is eliminated. Furthermore, since the power of Hm,n changes

with σ as we demonstrate in Example 4.29, σ should be selected so as to optimize the

latter power, similarly as in the one sample case. This motivates the interpretation

of σ as a scale parameter.

Let σ = (σ(1), . . . ,σ(k))T ∈ Rk be the scale parameter with non-negative com-

ponents, i.e. σ(i) > 0 for i = 1, . . . ,k. For any vector x = (x(1), . . . ,x(k))T ∈ Rk, the
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component-wise scaled vector is defined as

σx= (σ(1)x(1), . . . ,σ(k)x(k))T .

Given samples Xm and Ym their scaled versions are denoted by σXm =

{σX1, . . . ,σXm} and σYn = {σY1, . . . ,σYn}. The empirical cumulative distribu-

tion functions (ecdfs) of these scaled samples, i.e. the scaled versions of Fm and Gn
defined in (4.2.2) are denoted by Fm,σ(·) and Gn,σ(·). The H statistic dependent on

a scale parameter σ is denoted by Hm,n(σ) = H(F cm,σ,Gcn,σ), where F cm,σ and Gcn,σ

are the planar curves of Fm,σ(·) and Gn,σ(·). We also use H◦
m,n(σ) and H†

m,n(σ) to

denote the scaled versions of H◦
m,n and H†

m,n defined in (4.2.17) and (4.3.10) and

view Hm,n(σ), H◦
m,n(σ) and H†

m,n(σ) as families of statistics indexed by σ. Let us

also note that for a fixed σ, one can compute H†
m,n(σ) and its p-value using Lemma

4.15 and Proposition 4.27.

We will first look at how the parameter σ affects the power of Hm,n(σ) in the

univariate case, i.e. when k = 1. For the purpose, we will be interested in how σ

affects the p-value P(Hm,n(σ) > q) for a fixed q > 0, given Xm or Yn, the latter

conditions being symmetric. Therefore in the sequel, we will be conditioning on

Xm. Define q∗
Xm

(σ;p0) as the conditional critical level

q∗
Xm

(σ;p0) = inf{q : P(Hm,n(σ)≤ q|Xm)≥ p0}, (4.4.1)

where p0 is fixed. Let

ŪF c
m

(q,σ) :=
{

(x− q
σ

,z+ q) : (x,z) ∈ UF c
m,σ
} ≡ {(x− q

σ
,z+ q) : (x,z) ∈ UF c

m

}
,

L̄F c
m

(q,σ) :=
{

(x+ q

σ
,z− q) : (x,z) ∈ LF c

m,σ
} ≡ {(x+ q

σ
,z− q) : (x,z) ∈ LF c

m

}
,

(4.4.2)

which are defined by the domains LF c
m

and UF c
m

introduced in Section 4.2.2, appro-

priately modifying the coordinates x and z by q and σ. It is not difficult to see that

the p-value of Hm,n(σ) conditional on Xm can be expressed as

P{Hm,n(σ)≥ q|Xm}=

P
{
Bj ∈ L̄F c

m
(q,σ)∪ŪF c

m
(q,σ), for at least one j ∈ {1, . . . ,2ν}

∣∣∣∣Xm

}
,

(4.4.3)
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where the probability on the right-hand side can be interpreted as the probability

that the ecdf Gn of Yn, with vertices Bj j = 1, . . . ,2ν exits the corridor between

the domains ŪF c
m

(q,σ) and L̄F c
m

(q,σ), which we denote by MF c
m

(q,σ). The latter

corridor is in fact the set that is complimentary to the set L̄F c
m

(q,σ)∪ ŪF c
m

(q,σ).

Therefore, based on (4.4.3), one can see that the p-value of H conditional on Xm

depends on the shapes of L̄F c
m

(q,σ) and ŪF c
m

(q,σ) which depend on σ. Since we are

interested in how change of scale affects the p-value, it would be useful to compare

the shapes of L̄F c
m

(q∗
Xm

(σ;p0),σ) and ŪF c
m

(q∗
Xm

(σ;p0),σ) given Xm for a fixed p0

and varying σ. For the purpose, we need to know q∗
Xm

(σ), which is not directly

available since the true distribution of Yn and therefore of Hm,n(σ), is unknown.

Nevertheless we can rely on the following proposition to investigate the behavior of

L̄F c
m

(q∗
Xm

(σ;p0),σ) and ŪF c
m

(q∗
Xm

(σ;p0),σ) as σ varies.

Proposition 4.30. Given Xm, σ1 > σ2 > 0 and p0 > 0, if Yn comes from a contin-

uous distribution, we have

q∗
Xm

(σ2;p0)≤ q∗
Xm

(σ1;p0)≤ σ1
σ2
q∗
Xm

(σ2;p0). (4.4.4)

Therefore, in order to investigate the behavior of L̄F c
m

(q∗
Xm

(σ;p0),σ) and

ŪF c
m

(q∗
Xm

(σ;p0),σ) when σ varies, we can select σ and a value q∗(σ) for the un-

observable q∗
Xm

(σ) so that inequality (4.4.4) is satisfied. Applying this approach

in Example 4.31, we illustrate graphically the dependence of L̄F c
m

(q∗(σ),σ) and

ŪF c
m

(q∗(σ),σ) on σ, for a particular realization of Xm.

Example 4.31. Let {0.1,0.2,0.4,0.8,1.6} be a particular realization of Xm. We

select σ1 = 0.5, σ2 = 1, σ3 = 5, q∗(σ1) = 0.07, q∗(σ2) = 0.1 and q∗(σ3) = 0.15 which

satisfy (4.4.4).

For the choice of values as in Example 4.31, in Figure 4.7, we present the corridor

MF c
m

(q∗(σi),σi) between L̄F c
m

(q∗(σi),σi) and ŪF c
m

(q∗(σi),σi) for i = 1,2,3. As can

be seen, the smaller σ, the narrower (by area) the latter corridor is in the right tail.

Consequently, a smaller σ increases the probability of capturing deviations in the

right-tail of the distribution underlying Yn. In contrast, a larger σ leads to better

capturing deviations in the left tail.
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s = 0.5, q = 0.07 s = 1, q = 0.1 s = 5, q = 0.15
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Figure 4.7: The corridorMF c
m

(q∗(σi),σi) for different σi and q(σ∗) in Example 4.31 given
Xm = {0.1,0.2,0.4,0.8,1.6}

.

Therefore, in general for a given Xm, a rule for selecting σ analogue to (3.3.11)

would be to standardize the distance between two quantiles, i.e.

σ = ψ1−ψ2
QXm(ψ1)−QXm(ψ2) , (4.4.5)

where QXm(ψ) = X(⌈mψ⌉) + (mψ−⌊mψ⌋)X(⌊mψ⌋) is a smooth version of the ψ-th

quantile of Xm ψ ∈ (0,1), X(i) denotes the i-th order statistics of Xm, ⌈·⌉ and ⌊·⌋

denotes rounding up and down, respectively.

Let us recall that as established by Theorems 4.24 and 4.25. the p-values of

Hm,n(σ) and its permutation version H†
m,n(σ) are asymtotically equivalent and one

can estimate P(Hm,n(σ)> q) by computing P(H†
m,n(σ)> q|Zm+n) following Propo-

sition 4.27 (cf. (4.3.14)).

However, using σ as of (4.4.5) to evaluate the p-value P(H†
m,n(σ) > q|Zm+n)

would not be directly relevant as one would need to substitute Xm with X†
m in

(4.4.5), which makes it dependent on the random vector Rm+n. Another drawback

of (4.4.5) is that it does not take into account the symmetry with respect to Xm

and Yn and only depends on Xm. These problems are mitigated by the following

expression for σ,

σ∗ = ERm+n

[
max

(
ψ1−ψ2

Q
X†

m
(ψ1)−Q

X†
m

(ψ2) ,
ψ1−ψ2

Q
Y †

n
(ψ1)−Q

Y †
n

(ψ2)

)∣∣∣∣Zm+n

]
, (4.4.6)

whereX†
m and Y †

n expressed through the random vectorRm+n are defined in Section

4.3.2 (cf. (4.3.9)) and ψ1,ψ2 ∈ (0,1). As can be seen, the randomness with respect

to Rm+n is eliminated and since (4.4.6) is conditional on Zm+n, it can be used to
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evaluate P(H†
m,n(σ) > q|Zm+n) applying the exact expression (4.3.14). Similarly,

(4.4.6) is also exact and computable either directly when m and n are small or by

simulation when sample sizes are large.

Now we turn our attention to the choice of ψ1,ψ2 ∈ (0,1). As shown in Sections

3.3 and 3.5, by appropriately selecting ψ1 and ψ2, one can control σ and therefore

tune the one-sample H statistic to be sensitive in the left/right tail or in the body

(see Table 3.1 therein). The domain of sensitivity of Hm,n can be similarly controlled

by appropriately selecting ψ1 and ψ2 in (4.4.6) using the latter table. In order to

ensure that H†
m,n is sensitive in either the left/right tail or in the body of H†

m,n, it

suffices for either F †
m or G†

n to exitM
G†c

n
(q,σ) orM

F †c
m

(q,σ) with higher probability

respectively at this region. This can be guaranteed by making either M
G†c

n
(q,σ) or

M
F †c

m
(q,σ) become narrower, which requires the maximum in (4.4.6).

We demonstrate in Example 4.33 that the two-sampleHm,n(σ) statistic becomes

right-tail sensitive if ψ1 and ψ2 are set equal to 0.99 and 0.95 respectively, following

Table 3.1.

Furthermore, in practice, the sample observations may be rescaled for different

reasons e.g., using different scale coefficients, and presented in different units. It

is not difficult to see that under the choice (4.4.6), Hm,n(σ∗) and its p-value will

be invariant with respect to the units used to present the data, which are similarly

stated in Proposition 3.35.

In the following theorem, we show that σ∗ in (4.4.6) converges to the rule

(3.3.11) in Section (3.3.2) with respect to the pooled distribution E.

Theorem 4.32. Let Xm and Yn have underlying unknown distribution F and G

respectively. For ψ1 > ψ2 ∈ (0,1), if e(E−1(ψ1)),e(E−1(ψ2)) > 0, where e and E−1

are the density and quantile functions of the pooled distribution E. Then we have

σ∗ P→ σ0, as m,n→∞, m

m+n
→ η, (4.4.7)

where σ0 = ψ1−ψ2
E−1(ψ1)−E−1(ψ2) and σ∗ is defined in (4.4.6). Furthermore, under the

null or a fixed alternative as in Theorem 4.24, we have

q†
m,n(σ∗)− q∗

m,n(σ0) P→ 0, (4.4.8)
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where q†
m,n(σ∗) and q∗

m,n(σ0) are correspondingly the critical values of
√

mn
m+nH

†
m,n(σ∗)

with σ∗ defined in (4.4.6) and
√

mn
m+nHm,n(σ0).

We will illustrate the application of the H test H†
m,n(σ∗) with σ∗ selected ac-

cording to (4.4.6) in the following example. A similar construction for the one-sample

case is given in Example 3.44.

Example 4.33. We apply the splicing construction as in Example 3.43, where

the alternative G has a density g(x) defined by (3.4.9), satisfying conditions 1)-3).

In other words, G coincides with F in the body and has the tail of G0. In this

construction, we assume that both F and G0 come from the family of (unshifted)

Fréchet distributions, which are characterized by scale and shape parameters α and

θ. More precisely, the cdf of a Fréchet distribution is given as (see also (3.5.1))

Φ(x;α,θ) =


exp

(
− (1 + θx

α )− 1
θ

)
x >−α

θ

0 x≤−α
θ

.

In order to compare the powers of KS, CvM, AD, W, Kuiper and H†
m,n(σ),

we take F ∼ FFr(x;0.3,0.3), x = −1, ϕ1 = 0.8, C = (− log0.8)−0.3− 1, and G0 ∼

Φ(x;θ0,α0). Since condition 3) ensures the uniqueness of α0 for a fixed shape pa-

rameter θ0, the choice of θ0 fully determines the shape of G. In this example, we are

interested in comparing numerically the powers of KS, CvM, AD, W, Kuiper and

H†
m,n(σ), under different tail alternatives from the Fréchet family (3.5.1). For this

reason, we choose θ0 = 0.3+∆, where ∆ = 0.2,0.4,0.6, . . . ,3.2 reflects the tail differ-

ence between F and G. As shown in the left panel of Figure 4.8, with ∆ increasing,

the difference between G and F in the tail also increases.

Then we simulate 500 pairs of samples Xm and Yn coming from F (x) and

G(x) respectively, and compute the power as the frequency of rejecting the null

for significance level p= 0.05 applying the statistics KS, CvM, AD, W, Kuiper and

Hm,n(σ). In order to fit the tail, for each pair of realizations of Xm and Yn, we

estimate the optimal scale σ∗ following (4.4.6) with ψ1 = 0.99, ψ2 = 0.95, based on

1000 simulations of the random vector Rm+n uniformly distributed over Π(m+n).

The power of these statistics as a function of ∆ is illustrated in the right panel

of Figure 4.8, for sample sizes m= n= 50, 100 and 300.
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Figure 4.8: Left Panel: F ∼ Φ(x;0.3,0.3) and G with tail G0 ∼ Φ(x;θ0,α0), where θ0 =
0.3 + ∆; Right Panel: the powers of the KS, CvM, AD, W, Kuiper and
H†

m,n(σ∗) tests, as functions of ∆.

Remark 4.34. If the proposed rule σ = f(Xm,Yn) happens to choose an extremely

small scale for certain realizations, the Hausdorff test can become degenerate, i.e., its

statistic shrinks and the resulting p-value type II error will be close to 1. When both

samples are large, this abnormality is unlikely provided the selected scale converges

to a positive limit σ0. This is the case for the rule σ∗, which is guaranteed by the

convergence result in Theorem 4.32. From this perspective, finer properties of the

rule, such as unbiasedness, optimality in terms of variance, are less important, since

they do not by themselves prevent degeneracy at small sample sizes.

As further illustrated in Example 3.44, the rule in (4.4.6) has the additional

practical advantage that it keeps H†
m,n(σ∗) non-degenerate even when m and n are

small.

As evidenced by Figure 4.8, the power of H†
m,n(σ∗) with σ∗ chosen according to

(4.4.6) is substantially higher than the power of all other tests except the Wasserstein

(W), confirming the efficiency of H†
m,n(σ∗) in detecting tail differences. Furthermore,

the power ofH†
m,n(σ∗) tends to converge to the power of the W test when sample sizes

increase, as can be seen from the right panel of Figure 4.8. This tendency is preserved

for m= n= 500, the corresponding plot is very similar to that for m= n= 300 and is

therefore omitted. We argue that this convergence stems from the shared geometric

properties of H and W, both being area-based tests. More precisely, the univariate

Wasserstein distance equals the integral between two empirical cdfs, while H†
m,n(σ∗)
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extracts only the side of the largest square that can be inserted between these cdfs.

Although this square constitutes only a portion of the total integral, it contains the

essential information for capturing tail differences, therefore replacing the need for

full integration.

In the spirit of (4.4.6), for the multivariate case, we propose to choose σ∗ =

(σ∗(1), . . . ,σ∗(k))T following

σ∗(i) = E

max

 ψ1−ψ2

Q
(i)
X†

m
(ψ1,ψ)−Q(i)

X†
m

(ψ2,ψ)
,

ψ1−ψ2

Q
(i)
Y †

n
(ψ1,ψ)−Q(i)

Y †
n

(ψ2,ψ)

∣∣∣∣∣Zm+n

 ,
(4.4.9)

when i = 1, . . . ,k, where Q
(i)
X†

m
(ψ1,ψ) is the ψ1-quantile of the i-th component of

X†
m, conditional on the event that all its other components with index j ̸= i exceed

their respective marginal ψ-quantiles. Clearly, when ψ is chosen to be close to 1, σ∗

defined according to (4.4.9) captures the marginal shape of the tail in each direction.

We will illustrate the application of (4.4.9) in conjuction with the statistic

H◦
m,n(σ∗) instead of H†

m,n(σ∗), since H◦
m,n(σ∗) is invariant with respect to the defi-

nitions Fm,i, i= 1, . . . ,2k, as can be seen from (4.2.17). The same definition invari-

ance applies to a set of competing tests, including the Friedman and Rafsky (1979)

(FR) run test, extented KS test by Peacock (1983), Ball Divergence (BD) test (Pan

et al., 2018), Maximum Mean Discrepancy (MMD) test (Gretton et al., 2012) with

Gaussian kernel, Cross Match (CM) test (Rosenbaum, 2005), Biswas et al. (2014)

(BMG) run test, and Schilling-Henze Nearest Neighbor (NN) test (cf. Schilling,

1986; Henze, 1988). In Example 4.35, the power of the latter tests is compared with

that of H◦
m,n(σ∗), where σ∗ is selected according to (4.4.9). The required p-value

of H◦
m,n(σ∗) is estimated by the p-value of its permutation version, as described in

Section 4.3.2.

Example 4.35. We take F1 ∼ EC(µ1,Σ1,f) and G1 ∼ EC(µ2,Σ2,g) to be two

elliptical distributions that are defined on R2 with density functions f1 and g1 re-

spectively, i.e.

f1 ∝ f((x−µ1)TΣ−1
1 (x−µ1)), g1 ∝ g((x−µ2)TΣ−1

2 (x−µ2)),

where µ1,µ2 ∈R2, Σ−1
1 ,Σ−1

2 are the inverse of the positive definite matrixes Σ1,Σ2 ∈
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R2×2, f and g are positive integrable functions defined on [0,∞). Since we are

interested in the performance of H◦
m,n(σ∗) when F and G are different in the tail,

we require that µ1 = µ2, Σ1 = Σ2, f(x) and g(x) are univariate density functions

meet the conditions 1)-3) in Example 3.43, i.e.
∫∞

0 f1(x)dx=
∫∞

0 g1(x)dx= 1, f1(x) =

g1(x) up to a constant C, and differs from g1(x) when x > C.

We take µ1 = µ2 = (0,0)T , Σ1 = Σ2 =

 2 0.7

0.7 2

, f = e−x, ϕ1 = 0.5, C =

− logϕ1 = log2, g(x) =


e−x 0≤ x≤ C

θ0α
θ0
0

(x+α0)θ0+1 x > C

with α0 =− logϕ1
(1−ϕ1)−1/θ0 −1 .

In this way, F is a multivariate Normal distribution and G is a spliced elliptical

distribution with its center region coinciding with F . We have used the rejection

sampling to draw Xm and Yn correspondingly from F and G.

We evaluate σ∗ as defined in (4.4.9) by setting (ψ1,ψ2,ψ) = (0.99,0.95,0.7) and

computing the corresponding quantiles using simulation. We then use σ∗ to estimate

the p-value of H◦
m,n(σ∗).

The above-mentioned power comparisons for particular choices of θ0, α0, m

and n are summarized in Table 4.1. As can be seen, the power of H◦
m,n(σ) is mostly

higher than the power of all the other tests except W. However, let us note that a

m= n (θ0,α0) H◦
m,n(σ∗) KS BD MMD CM BMG FR NN W

50 (1.5,1.1800) 0.14 0.03 0.08 0.06 0.07 0.04 0.05 0.07 0.23
50 (2.0,1.6734) 0.07 0.02 0.04 0.05 0.04 0.06 0.06 0.07 0.22
100 (1.5,1.1800) 0.22 0.05 0.16 0.10 0.07 0.05 0.11 0.14 0.7
100 (2.0,1.6734) 0.11 0.04 0.14 0.07 0.08 0.03 0.07 0.11 0.43

Table 4.1: The powers of the extended KS, W, BD, MMD with Gaussian kernel, CM,
BMG, FR, NN with N = 3 and H◦

m,n(σ) with σ = σ∗ chosen following (4.4.9)
when m= n= 50 and 100, and some particular choice of (θ0,α0).

direct computation of W (without entropic regularization) becomes computationally

demanding (see Cuturi, 2013), especially in higher dimensions.

4.5 Bahadur Exact Slope
As we have introduced in Section 3.4.2, the Bahadur exact slope of a statistic is

a characterization for the exponential convergence rate of its p-value under a fixed

alternative. The ratio of slopes of two different statistic, which is referred to as

their Bahadur relative efficiency, also reflects their relative size of asymptotic power



4.6. Conclusions 179

(cf. (3.4.6)). In Theorem 3.41 of Section 3.4.2, we have provided an computable

expression of the exact slope of the one-sample Hn(σ) test. In this section, we will

provide some results to the exact slope of Hm,n(σ).

Similar to Section 3.4.2, we introduce the corresponding Bahadur exact slope

of Hm,n(σ) as

c(σ;η) =− lim
m,n→∞, m

m+n
→η

2(m+n)−1 logPm,n(σ) a.s., (4.5.1)

where Pm,n(σ) is the random p-value of Hm,n(σ) under a fixed alternative F ̸=G. In

the following, we will generalize Theorem 3.41 and give to the exact slope of Hm,n.

Theorem 4.36. Let Xm and Yn come from univariate distributions F and

G, the exact slope defined in (4.5.1) exists, and can be expressed as c(σ;η) =
1
2fσ,η(H(Fσ,Gσ)), where Fσ and Gσ denote F and G scaled by σ, fσ,η(q) =

−max{r1(q), r2(q)}, and where

r1(q) = sup
0<x<1

{
η log(φx(τ1(x,q)

η
)− q) + (1−η) log(φx(−τ1(x,q)

1−η ))− τ1(x,q)q
}

r2(q) = sup
0<x<1

{
η log(φx(−τ1(x,q)

η
) + q) + (1−η) log(φx(τ1(x,q)

1−η ))− τ2(x,q)q
}

φx(t) = E(x)et+ 1−E(x)
(4.5.2)

and τ1, τ2 are functions of x and q implicitly defined by the following equations

φ′
x(τ1
η
− q)/φx(τ1

η
− q)−φ′

x( τ1
1−η )/φx( τ1

1−η ) =q

φ′
x(τ2
η

+ q)/φx(τ2
η

+ q)−φ′
x( τ2

1−η )/φx( τ2
1−η ) =− q

(4.5.3)

4.6 Conclusions

We have proposed to use the two-sample Hausdorff (H) metric to measure the

distance between two multivariate ecdfs, in the context of goodness-of-fit testing.

The H test, which depends on both the ordinate and abscissa coordinates, is location

invariant but scale dependent, in contrast to most of the classical tests, which are

rank tests. The rank tests are computationally appealing since their p-values are

independent of the underlying distribution. However, they have lower power when

the samples have different tails. In addition, the rank tests are not continuous as
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point functions of the observations, which affects the type I error. In contrast, the

H test is Lipschitz continuous (see Theorem 4.6), which leads to its robustness to

small perturbations in the sample observations. Furthermore, in Theorem 4.25 we

show that H is qualitatively robust.

In Section 4.3.2, we consider the permutation version of the H test and show

in Theorems 4.24, 4.25 and 4.26 that it is asymptotically equivalent to the original

H test in terms of p-value, type I error, and power. This allows us to estimate the

p-values of the H test which depend on the unknown null and therefore are not

directly computable.

In Section 4.4, we have investigated the scale dependence of H, and have shown

that, while such a property may seem to impede the use of H, it is, in fact, useful.

It allows one to control locally the sensitivity of H and therefore optimize its power

in the corresponding distributional domain (i.e. left/right tail or body). This is

achieved by appropriately selecting the scale coefficient following Equation (4.4.6)

or its multivariate generalization (4.4.9). We show by numerical examples (see Ex-

amples 4.33 and 4.35) that when the samples differ in the right tail, the scale-tuned

univariate and bivariate H tests outperform many other tests in terms of power as

summarized in Figure 4.8 and Table 4.1. In the univariate case, the power of H is

lower than that of W for small sample sizes but tends to converge to the power of

W for sample sizes equal to and exceeding m = n = 300, as illustrated in the right

panel of Figure 4.8.

We have also obtained some additional results (cf. Proposition 4.9 and Theorem

4.19) that connect H to the Lévy-Prokhorov metric and the KS test. This offers a

bridge to applying the H statistic in the context of global sensitivity analysis and

variable importance measurement.

All this makes H a favorable alternative to other existing two-sample tests.



Appendix for Chapter 4

4.A Evaluating Hm,n when k = 2

This section is to give the method to compute H(F cm,Gcn) for the multivariate case

when k = 2, as a further extension of the projection method in Section 4.3.1. Cases

with k > 2 are not discussed here, as they involve only additional notational com-

plications beyond the k = 2 case. For simplicity, we further assume that F and G

are continuous, i.e. no tie is presented in the pooled sample with respect to each

coordinate.

The task in this section is not trivial, since many existing results, which make

the computation of H(F cm,Gcn) easier becomes complicated in the multivariate case.

Firstly, the modification rule of the planar curves proposed in Section 4.2.4 is less

meaningful for k = 2, since the calculation simplification benefit of introducing such

a rule now becomes much less than the additional calculation cost raised due to

complexity of the rule per se. Secondly, the projections of vertices, divide the real

line into semi-open intervals in the case of k= 1, but no longer divide R2 as such when

k = 2. Thirdly, set G in (4.2.21) is not bounded, thus, to implement Lemma 4.15,

one needs to also incorporate Lemma 4.3. Given x1, . . . ,xm ∈R2 and y1, . . . ,yn ∈R2,

the realizations of samples Xm and Yn respectively, the computation of statisistics

are as follows:

Step 1. Find the omnidirectional jumps of ecdfs and the vertices of F cm de-

fined in (4.2.19). Let set Ax1 = {x(1)
1 , . . . ,x

(1)
m } and Ax2 = {x(2)

1 , . . . ,x
(2)
m }. Then the

omnidirectional jumps of F cm, α1, . . . ,αυ ∈ R2, occur only on set Ax1×Ax2. Hence,

to find all the omnidirectional jumps, we could exhaustly check whether condition,

Fm(α) ̸= Fm(α−ε0ei), for all i= 1,2 (a)
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holds, where α∈Ax1×Ax2, ei is the basis vector in R2, ε0 is a positive and sufficiently

small number, and can take e.g.

ε0 = 1
2 min
i=1,2;j ̸=l

|x(i)
j −x

(i)
l | (4.A.1)

If condition (a) is satisfied, then α is an omnidirectional jump, corresponding to

vertices (α,Fm(α− ε))T and (α,Fm(α))T , where ε ∈ R2 are required to positive

and sufficiently small with respect to each components, and can be taken as ε =

(ε0,ε0)T . Then, all the vertices in (4.2.19) of F cm that are used to compute Hm,n are

A1 = (α1,Fm(α1− ε))T , A2 = (α1,Fm(α1))T ,. . ., A2υ−1 = (αυ,Fm(αυ− ε))T , A2υ =

(αυ,Fm(αυ))T . Similarly, we can find the omnidirectional jumps of Gn by checking

condition (a) with respect to Gn on set Ay1×Ay2, where set Ay1 = {y(1)
1 , . . . ,y

(1)
n }

and Ay2 = {y(2)
1 , . . . ,y

(2)
n }.

Step 2. Find the additional vertices of F̂ cm(M), for an appropriately selected M .

Note that to use Lemma 4.15, we need to incorporate Lemma 4.3 with appropriately

selected M such that (4.2.10) holds, i.e. the metric between two truncated curves

coincides with the value of the statistic. Thus, we select

M = 1 + max{x(i)
j ,y

(i)
l ,1≤ i≤ k,1≤ j ≤m,1≤ l ≤ n}.

The additional vertices generated by truncation occur only on the set (Ax1×{M})∪

({M}×Ax2). Then we could check whether either one of the conditions

Fm(a,M) ̸= Fm(a−ε0,M), (a*)

Fm(M,b) ̸= Fm(M,b−ε0) (a**)

hold for a ∈ Ax1 and b ∈ Ax2 respectively. If condition (a*) is satisfied for

a ∈ Ax1, then we find its corresponding additional vertices (a,M,Fm(a− ε0,M))

and (a,M,F (a,M)). Similarly, we could also find vertices (M,b,Fm(M,b−ε0)) and

(M,b,Fm(M,b)) through condition (a**). Finally, we fine all the boundary vertices
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of F̂ cm(M),

A2υ+1 = (a1,M,Fm(a1−ε0,M)),A2υ+2 = (a1,M,Fm(a1,M)), . . . ,

A2(υ+υ′)−1 = (aυ′ ,M,Fm(aυ′−ε0,M)),A2(υ+υ′) =(aυ′ ,M,Fm(aυ′ ,M)),

A2(υ+υ′)+1 = (M,b1,Fm(M,b1−ε0)),A2(υ+υ′)+2 = (M,b1,Fm(M,b1)), . . . ,

A2(υ+υ′+ν′)−1 = (M,bν′ ,Fm(M,bν′−ε0)),A2(υ+υ′+ν′) = (M,bν′ ,Fm(M,bν′))

Step 3. Project the vertices Al, l = 1, . . . ,2(υ+υ′ +ν ′) onto the x(1)x(2) plane

R2, along the direction of the vector E0 = (1,1,−1)T and denote these projections

with λAl
. Clearly

λAl
= (w(1)

Al
+w

(3)
Al
,w

(2)
Al

+w
(3)
Al

),

where w(i)
Al

, i= 1,2,3 is the coordinates of Al.

Step 4. Project all the vertices of Gn to x(1)x(2) plane and constructing a

partition of the R2 plane x(1)x(2), similarly as Steps 3-4 in Section 4.2.4. Each jump

I1,3I1,1

I1,2

I2,3I2,1

I2,2

I3,3I3,1

I3,2

λB1,1

λB1,2 = λB1,3

λB1,4

λB2,1

λB2,2 = λB2,3

= λB2,4

λB3,1

λB3,2 = λB3,3

= λB3,4
x(1)

x(2)

0

Figure 4.9: The vertex projection of Gn on plane x(1)x(2), together with the faces projec-
tion.

βi, i = 1,2, . . . ,ν, corresponds to 4 possible vertices, a locally concave vertex Bi,1,

two saddle vertices Bi,2 and Bi,3 and a locally convex vertex Bi,4:

Bi,1 = (βi,Gn(βi))T , Bi,2 =
(
w

(1)
βi
,w

(2)
βi
,Gn(w(1)

βi
−ε′

0,w
(2)
βi

)
)T
,

Bi,3 =
(
w

(1)
βi
,w

(2)
βi
,Gn(w(1)

βi
,w

(2)
βi
−ε′

0)
)T
, Bi,4 =

(
w

(1)
βi
,w

(2)
βi
,Gn(w(1)

βi
−ε′

0,w
(2)
βi
−ε′

0)
)T
,
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where ε′
0 is obtained via (4.A.1) by substituting y for x. The two saddle vertices and

the locally convex may coincide. If there is no tie on both coordinates, the two saddle

vertices always coincide, in which case we only refer to the vertex Bi,2. We project

all the vertices as in Step 3, together with their surfaces, as illustrated in Figure 4.9.

For clarity in presenting the algorithm, we further assign conceptual labels to the

projection of the surfaces, though these notations are purely illustrative. Specifically,

the projected regions Ii,1, Ii,2 and Ii,3 use a two-index label, the first aligns with

that of the locally concave vertices Bi,1, and the second reflects the normal vector

direction of the corresponding surfaces, as in Figure 4.9. Alternatively, one can also

view that the locally concave vertices Bi,1 would generate three projected surfaces.

Therefore,

I1,1,I1,2,I1,3, . . . ,Iν,1,Iν,2,Iν,3,R2/(
⋃

1≤i≤ν,1≤s≤3
Ii,s) (4.A.2)

forms a partition of R2. In addition, we also give the following lemma, describing

the relative positions of omnidirectional jumps and projections,

Lemma 4.37. For any two omnidirectional jumps βj0 and βj1 of Gn, if they are

discordant, i.e. sgn(β(1)
j0
−β(1)

j1
) =−sgn(β(2)

j0
−β(2)

j1
), there must exist an omnidirec-

tional jump of Gn

βmax = (max(β(1)
j0
,β

(2)
j1

),max(β(2)
j0
,β

(2)
j1

))T .

Furthermore, for any two discordant projections, λBj0,t0
and λBj1,t1

, t0, t1 ∈ {1,2}

then there must exists a projection λBj2,t2
⪯ (max(λ(1)

Bj0,t0
,λ

(1)
Bj1,t1

),max(λ(2)
Bj0,t0

,λ
(2)
Bj1,t1

))T

with t2 ∈ {2,4} such that λBj2,t2
⪰ λBj0,t0

or λBj2,t2
⪰ λBj1,t1

holds.

For convenience, we define λBj2,2 as the successor of both λBj0,1 and λBj1,1 , and

λBj2,4 as the successor of both λBj0,2 and λBj1,2 . Conversely, λBj0,1 and λBj1,1 are

the predecessors of λBj2,2 , while λBj0,2 and λBj1,2 are the predecessors of λBj2,4 . For

instance, in Figure 4.9, the successor of λB2,1 and λB3,1 is λB1,1 , and λB1,4 is the

predecessor of λB2,2 and λB3,2 .

Step 5. Compute the distance infB∈Gc
n
ρ∞(Al,B) for some l = 1, . . . ,2(υ+υ′ +

ν ′) and then compute H(F cm,Gcn). Note that in this step, to compute H(F cm,Gcn), one

do not need to compute infB∈Gc
n
ρ∞(Al,B) for each l = 1, . . . ,2(υ+υ′ +ν ′). In fact,

this result can be further simplified in the spirit of Lemma 4.18. In Lemma 4.18, all
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the even vertices that are used to compute the distance are also the vertices that have

the locally furthest distance. Therefore, we only need to compute infB∈Gc
n
ρ∞(Al,B)

if Al is locally furthest to Gcn, i.e. Al ∈ Vloc, where

Vloc =

Al ∈

UGc

n
and l is odd

LGc
n

and l is even
: l = 1, . . . ,2(υ+υ′ +ν ′)


.

Then, given an arbitrary projection λAl
∈ Vloc, our goal is to compute the dis-

tance by (4.2.21). Ideally, by Lemma 4.15, one should explicitly find the intersection

El of line Ll defined according to (4.2.20) and the planar curve Gcn and compute

infB∈Gc
n
ρ∞(Al,B) = ρ∞(Al,El). However, in the spirit of Lemma 4.23, it suffices

to compute infB∈Gc
n
ρ∞(Al,B) if we locate which region Ij,t the projection λAl

falls

into.

In order to find which set in (4.A.2) λAl
falls into, we first find the vertices

projections of Gcn satisfying

V(λAl
) = {λBj,t : λAl

−λBj,t ⪰ 0, j = 1, . . . ,ν , t= 1,2,3,4}.

This is a useful subset since, we expect that there exists λBj ,t0 ∈ V(λAl
) such that

λBj ,t0 ,λAl
∈ Ij,t for some j and t. However, set V is quite large. To improve the

searching efficiency, we further consider its subset consists of all the frontier projec-

tions of V(λAl
), i.e.

Ṽ(λAl
) = {λBj0,t0

∈ V(λAl
) : ∀ λBj,t ̸= λBj0,t0

∈ V(λAl
),λBj0,t0

⪰̸ λBj,t}.

On the one hand, since all the region we have considered in (4.A.2) does not overlap

each other, the set Ṽ(λAl
) still keeps the projection λBj ,t0 such that λBj ,t0 ,λAl

∈ Ij,t.

On the other hand, as a direct consequence Lemma 4.37, only one projection of

Type 1 or 2 could fall in Ṽ(·), as formally stated in Proposition 4.38.

Proposition 4.38. For any (x,y) ∈ R2, there does not exists 1≤ j0 ̸= j1 ≤ ν, such

that λBj0,t0
,λBj1,t1

∈ Ṽ(x,y), where t0, t1 ∈ {1,2}.

Hence, from the above proposition, the set Ṽ(λAl
) would only be one of the
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following 3 cases.

• Case 1. Ṽ(λAl
) is empty. Then λAl

∈ R2/(⋃Ii,s), thus infB∈Gc
n
ρ∞(Al,B) =

|w(3)
Al
|

• Case 2. There exists j0, such that λBj0,t0
∈ Ṽ(λAl

), where t0 = 1 or 2.

• Case 3. Ṽ(λAl
) is not empty and ∀ j = 1, . . . ,ν and t= 1,2, λBj,t /∈ Ṽ(λAl

).

In Case 2 and 3, to compute infB∈Gc
n
ρ∞(Al,B), we need to further identify the

projection λ∗
B(Al) sharing the same region in (4.A.2) with λAl

. In Case 2, we should

have

λ∗
B(Al) = λBj0,t0

, t0 = 1,2 where λBj0,t0
∈ Ṽ(λAl

) (4.A.3)

In order to compute infB∈Gc
n
ρ∞(Al,B), we additionally require knowledge about

the normal direction of the surface corresponding to the projected region Ij,t that

contains Al and λ∗
B(Al), i.e. the second subscript t of Ij,t. This can be identified

by the information of λ∗
B(Al). When the representative element λ∗

B(Al) = λBj0,1

for some j0, it is clear that both Al,Bj0,1 ∈ Ij0,3. When λ∗
B(Al) = λBj0,2 , both

λAl
,λBj0,2 ∈


Ij0,1 if w(1)

Bj0,2
−w(1)

Al
≤ w(2)

Bj0,2
−w(2)

Al

Ij0,2 if w(1)
Bj0,2

−w(1)
Al
>w

(2)
Bj0,2

−w(2)
Al
.

In Case 3, we should have

λ∗
B(Al) = argmin

λBj,t
∈Ṽ(λAl

)
ρ∗

∞(λBj,t ,λAl
). (4.A.4)

However, it is not sufficient to compute infB∈Gc
n
ρ∞(Al,B), since we are not clear

about the normal direction of Ij,t containing λ∗
B(Al). To obtain this, we need to

further find the predecessors λBj1,2 and λBj2,2 in V(λAl
) of λ∗

B(Al) in (4.A.4). Since

Ij,t contains λ∗
B(Al), one of the predecessors λBj1,2 and λBj2,2 must fall in λ∗

B(Al).

Such a predecessor is found by

λ∗
B(Al) = argmin

λ∈
{
λBj1,2 ,λBj2,2

}ρ∞(λAl
,λ). (4.A.5)

Thus, identifying the normal direction of the region Ij,t will be the same as in

(4.A.3).

In summary, we are able to compute infB∈Gc
n
ρ∞(Al,B) by the following lemma.
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Lemma 4.39. When λ∗
B(Al) is determined by (4.A.3) or (4.A.5), and λ∗

B(Al) =

λBj0,t0
for some 1≤ j0 ≤ ν and t0 = 1 or 2, then

inf
B∈Gc

n

ρ∞(Al,B) =


|w(1)
Al
−w(1)

Bj0,t0
|, if t0 ̸= 1 and w

(1)
Bj0,2

−w(1)
Al
≤ w(2)

Bj0,2
−w(2)

Al

|w(2)
Al
−w(2)

Bj0,t0
|, if t0 ̸= 1 and w

(1)
Bj0,2

−w(1)
Al
>w

(2)
Bj0,2

−w(2)
Al

|w(3)
Al
−w(3)

Bj0,t0
|, if t0 = 1

(4.A.6)

Eventually, H(F cm,Gcn) = max
Al∈Vloc

inf
B∈Gc

n

ρ∞(Al,B). This finishes the description

of the required algorithm. To compute other alternatives, H(F cm,i,Gcn,i) i = 2,3,4,

one only needs to apply the same procedure above on both samples, using their

corresponding coordinates with opposite signs.

4.B The Expression of the p-values as a Boundary

Crossing Problem

Let us note that P(H†
m,n ≤ q) can be expressed in terms of the probability of a

trajectory G†c
n staying within a corridor between two boundaries. The detailed

computations are given in Appendix 4.B.

To see this, we give the result for k = 1 case and consider the set of points

(x,z) ∈ R2 such that inf
A∈F †c

m
ρ∞(A,(x,z)) ≤ q which defines a corridor around the

curve F †c
m .

Define the set Ū
F †c

m
= {(x−q,z+q) : (x,z)∈U

F †c
m
} (The open set above in Figure

4.10). Similarly, define the set L̄
F †c

m
= {(x− q,z+ q) : (x,z) ∈ L

F †c
m
} . Thus, the set

Ū
F †c

m
∪ L̄

F †c
m

= R2/{(x,z) : inf
A∈F †c

m
ρ∞(A,(x,z)) ≤ q}. Therefore, one can see that

the event {H(F cm,Gcn)> q} is equivalent to the event that at least one of the vertices

B†
j of G†c

n falls in the region Ū
F †c

m
∪L̄

F †c
m

i.e.,

{H†
m,n > q|Rm+n = πi(m+n),Zm+n}

≡ {B†
j ∈ ŪF †c

m
∪L̄

F †c
m
, for at least one j ∈ {1, . . . ,2ν}|Rm+n = πi(m+n),Zm+n}

(4.B.1)

From (4.B.1) it follows that,



4.C. Proofs for Chapter 4 188

Figure 4.10: The probability P(Hm,n ≤ q) as a double boundary crossing problem

1{H†
m,n ≤ q|Rm+n = πi(m+n),Zm+n}

= 1−1{B†
j ∈ ŪF †c

m
∪L̄

F †c
m
, for at least one j ∈ {1, . . . ,2ν}|Rm+n = πi(m+n),Zm+n}

(4.B.2)

Substituting (4.B.2) in (4.3.14) we obtain that,

P(H†
m,n ≤ q|Zm+n)

= 1− 1
C

C∑
i=1

1
{
B†
j ∈ ŪF †c

m
∪L̄

F †c
m
,

for at least one j ∈ {1, . . . ,2ν}|Rm+n = πi(m+n),Zm+n
}

(4.B.3)

4.C Proofs for Chapter 4
This appendix provides proofs to all the statements in Chapter 3. Before we present

some important results, it would be useful to give some auxiliary results and prop-

erties first.

We will start with Lemma 4.40, which is a multivariate generalization of Lemma

3.48.

Lemma 4.40. For any A ∈ Rk+1 and any planar curve F c of F that is monotonic

with respect to ⪯, the infimum infB∈F c ρ∞(A,B) is always attained. Furthermore, if

infB∈F c ρ∞(A,B)> 0, let B0 be the crossing point of F c and the line passing through

A parallel to the vector OE0 where E0 = (1, . . . ,1,−1)T ∈ Rk+1, then ρ∞(A,B0) =

infB∈F c ρ∞(A,B).

Proof. Note that the planar curve defined by (4.2.6) is closed, therefore for an arbi-

trary ε the set F c∩S(A, infB∈F c ρ∞(A,B)+ε) is compact. Hence, infB∈F c ρ∞(A,B)

is obtainable.
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In addition, since the vector OE0 is parallel to the vector AB0, we have

ρ∞(A,B0) = |w(i)
A −w

(i)
B0
| for i= 1, . . . ,k+1, where w(i)

A ,w
(i)
B0

are the i-th component of

the point A and B0 respectively. Without loss of genreality, we assume that w(k+1)
A >

w
(k+1)
B0

. This implies that w(i)
A < w

(i)
B0

. For any B ∈ Rk+1, if ρ∞(A,B) < ρ∞(A,B0),

we must have |w(i)
A −w

(i)
B | < ρ∞(A,B0) for every i = 1, . . . ,k+ 1, where w(i)

B0
is the

i-th component of the point B. For every x ∈ Rk, when x ⪯ xB0 = (w(1)
B0
, . . . ,w

(k)
B0

),

due to the monotonicity of F , we have F (x) ≤ w
(k+1)
B0

. Therefore, if x ⪯ xB0 ,

w
(k+1)
A −F (x+)≥ ρ∞(A,B0). Then any point B such that |w(i)

A −w
(i)
B |< ρ∞(A,B0)

for every i= 1, . . . ,k+ 1, i.e. ρ∞(A,B)< ρ∞(A,B0), we have B /∈ F c.

4.C.1 Main Results in Chapter 4

Proof of Lemma 4.3. Let us take

C = max
1≤i≤k

1≤j≤m,1≤l≤n

{X(i)
j ,Y

(i)
l }.

Then for any x∈Rk, if x(i) >C, then it is easy to show that Fm(x) =Fm(x+eiε) and

Gn(x) = Gn(x+ eiε) for any ε > 0, where ei = (0, . . . ,0,1,0, . . . ,0)T ∈ Rk is the i-th

standard basis vector of Rk, with 1 appears exactly in the i-th position. Therefore,

if A ∈ F cm∩
[
(Rk− (−∞,C]k)× [0,1]

]
and B ∈Gcn∩

[
(Rk− (−∞,C]k)× [0,1]

]
,

A+e∗
i t∈F cm∩

[
(Rk−(−∞,C]k)× [0,1]

]
and B+e∗

i t∈Gcn∩
[
(Rk−(−∞,C]k)× [0,1]

]
(4.C.1)

for any t > 0 and i= 1, . . . ,k, where e∗
i = (ei,0)T ∈Rk+1. Let us decompose both F cm

and Gcn into two parts,

F cm∩ (−∞,C]k× [0,1] and F cm∩
[
(Rk− (−∞,C]k)× [0,1]

]
,

Gcn∩ (−∞,C]k× [0,1] and Gcn∩
[
(Rk− (−∞,C]k)× [0,1]

]
.

For simplicity, we denote

F cm(C) = F cm∩ (−∞,C]k× [0,1], F cm(C−) = F cm∩
[
(Rk− (−∞,C]k)× [0,1]

]
,

Gcn(C) =Gcn∩ (−∞,C]k× [0,1], Gcn(C−) =Gcn∩
[
(Rk− (−∞,C]k)× [0,1]

]
.

(4.C.2)
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Clearly, for a fixed M

H(F̂ cm(M), Ĝcn(M)) = max{ sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B), sup
A∈Gc

n(M)
inf

B∈F c
m(M)

ρ∞(A,B)}.

In order to show (4.2.10), it suffices to show that sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B) =

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) and sup
A∈Gc

n(M)
inf

B∈F c
m(M)

ρ∞(A,B) = sup
A∈Gc

n

inf
B∈F c

m

ρ∞(A,B) for a suf-

ficiently large M .

In order to show this, we first note that

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) = max
{

min
{

sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B), sup
A∈F c

m(C)
inf

B∈Gc
n(C−)

ρ∞(A,B)
}
,

min
{

sup
A∈F c

m(C−)
inf

B∈Gc
n(C)

ρ∞(A,B), sup
A∈F c

m(C−)
inf

B∈Gc
n(C−)

ρ∞(A,B)
}}
.

We can easily verify that the term sup
A∈F c

m(C)
inf

B∈Gc
n(C−)

ρ∞(A,B) and sup
A∈F c

m(C−)
inf

B∈Gc
n(C)

ρ∞(A,B)

diverges. Thus,

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) = max
{

sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B), sup
A∈F c

m(C−)
inf

B∈Gc
n(C−)

ρ∞(A,B)
}
.

Then we take M0 = C+ 1, for any M ≥M0,

sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B) = max
{

min
{

sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B),

sup
A∈F c

m(C)
inf

B∈Gc
n(M)−Gc

n(C−)
ρ∞(A,B)

}
,

min
{

sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(C)
ρ∞(A,B),

sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B)
}}
.

Since

sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B)< 1, sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B)< 1,

sup
A∈F c

m(C)
inf

B∈Gc
n(M)−Gc

n(C−)
ρ∞(A,B)≥ 1, sup

A∈F c
m(M)−F c

m(C−)
inf

B∈Gc
n(C)

ρ∞(A,B)≥ 1,
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we have

sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B) = max
{

sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B),

sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B)
}}
.

Both sup
A∈F c

m(C)
inf

B∈Gc
n(C)

ρ∞(A,B) and sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B)

are obtainable, since both F cm(M)△Gcn(M) and (F cm(M)− F cm(C−))△(Gcn(M)−

Gcn(C−)) are bounded.

Then to show sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B) = sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B), it remains to

show that

sup
A∈F c

m(C−)
inf

B∈Gc
n(C−)

ρ∞(A,B) = sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B).

Since we have

sup
A∈F c

m(C−)
inf

B∈Gc
n(C−)

ρ∞(A,B)≥ sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B),

we only need to show that strict inequality does not hold, which will be done by

contradiction.

Suppose the strict inequality holds, then there should exist ε > 0, such that

sup
A∈F c

m(C−)
inf

B∈Gc
n(C−)

ρ∞(A,B)> sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B) + ε.

Therefore, we can always find A∗ ∈ F cm(C−) such that

inf
B∈Gc

n(C−)
ρ∞(A∗,B)> sup

A∈F c
m(C−)

inf
B∈Gc

n(C−)
ρ∞(A,B)−ε/2>

sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B) + ε/2

By Lemma 4.40, we can also find B∗ ∈ Gcn(C−), such that ρ∞(A∗,B∗) =

infB∈Gc
n(C−) ρ∞(A∗,B). Thus,

ρ∞(A∗,B∗)> sup
A∈F c

m(M)−F c
m(C−)

inf
B∈Gc

n(M)−Gc
n(C−)

ρ∞(A,B) + ε/2. (4.C.3)
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Due to (4.C.1), we should always find A∗∗ ∈ F cm(M)−F cm(C−) and B∗∗ ∈

Gcn(M)−Gcn(C−), such that ρ∞(A∗∗,B∗∗) = ρ∞(A∗,B∗). This contradicts (4.C.3).

Therefore we have sup
A∈F c

m(M)
inf

B∈Gc
n(M)

ρ∞(A,B) = sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) for M >M0.

Due to the symmetry of F cm and Gcn, we also have sup
A∈Gc

n(M)
inf

B∈F c
m(M)

ρ∞(A,B) =

sup
A∈Gc

n

inf
B∈F c

m

ρ∞(A,B). Hence (4.2.10) follows.

Proof of Lemma 4.4. According to Lemma 4.3, there exists A∗ ∈ F cm(M), B∗ ∈

Gcn(M) such that ρ∞(A∗,B∗) = supA∈F c
m

infB∈Gc
n
ρ∞(A,B) for an sufficiently large

M > 0, where F cm(M) and Gcn(M) are defined in (4.C.2). By Lemma 4.40, we also

have ρ∞(A∗,B∗) = infA∈F c
m
ρ∞(A,B∗). Thus, we have

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B)≤ sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B).

Similarly, by applying Lemmas 4.3 and 4.40, we can also show that

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B)≥ sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B).

Thus, supA∈F c
m

infB∈Gc
n
ρ∞(A,B) = supB∈Gc

n
infA∈F c

m
ρ∞(A,B).

Let us note that the core of the proof relies on Lemma 4.40 and the boundedness

G. Therefore, Lemma 4.4 is generally true for the planar curves of two functions

monotonic with respect to ⪯ with a compact region between them, which is impor-

tant for us to prove Lemma 4.15.

The proof of the Theorem 4.5 relies on Lemma 4.40 and the expression of the

Hausdorff distance given by Sendov and Beer (2012), i.e.

H(F cm,Gcn) = inf{ϵ : F cm ⊂ S(O,2ϵ)⊕Gcn,Gcn ⊂ S(O,2ϵ)⊕F cm}.

This proof is similar to the proof of Lemma 3.8, with the additional consideration

of Lemma 4.3 to ensure that there exists A∗ ∈ F cm and B∗ ∈Gcn such that the vector

A∗B∗ being parallel to OE0 and ρ∞(A∗,B∗) = d0 is obtainable, thus will be omitted.

Proof of Theorem 4.6. In order to prove (4.2.14), it suffices to show that for any

ε > 0, when ρ∞(Xi, X̌i)< ε for i= 1, . . . ,m and ρ∞(Yj , Y̌j)< ε for j = 1, . . . ,n,

H(F cm, F̌ cm)< 2ε,H(Gcn, Ǧcn)< 2ε. (4.C.4)
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This will be trivial since when ρ∞(Xi, X̌i) < ε for i = 1, . . . ,m and ρ∞(Yj , Y̌j) < ε

for j = 1, . . . ,n, F̌ cm ⊂ F cm⊕S(O,ε) and Ǧcn ⊂Gcn⊕S(O,2ε). Hence by Theorem 4.5,

(4.C.4) holds.

Proof of Lemma 4.15. In order to show (4.2.21), according to the triangular inequal-

ity, it suffices to show that

H(F cm,Gcn) = max{ inf
B∈Gc

n

ρ∞(Al,B), l = 1, . . . ,2υ}

when G is compact. This statememt may seems not to be direct. Alternatively,

for an arbitrary ε > 0, we can always find a continuous Ĝ ∈ C(Rk) being strictly

monotonic with respect to ⪯, such that its planar curve Ĝc ⊂Gcn⊕S(O,ε) and the

region between F cm and Ĝc, G(F cm, Ĝ), is compact. Since Ĝc ⊂ Gcn⊕S(O,ε), we

should have

|H(F cm,Gcn)−H(F cm, Ĝc)|< ε,

and
∣∣∣∣∣ inf
B∈Ĝc

ρ∞(Al,B)− inf
B∈Gc

n

ρ∞(Al,B)
∣∣∣∣∣< ε, for l = 1, . . . ,2υ.

(4.C.5)

Since Ĝ is monotonic with respect to ⪯ and G(F cm, Ĝ) is compact, by Lemma

4.4, we have

H(F cm, Ĝc) = sup
A∈F c

m

inf
B∈Ĝ

ρ∞(A,B). (4.C.6)

By (4.C.5), (4.C.6) and the arbitrariness of ε, it remains to show that

sup
A∈F c

m

inf
B∈Ĝ

ρ∞(A,B) = max{ inf
B∈Ĝ

ρ∞(Al,B), l = 1, . . . ,2υ}. (4.C.7)

To show this, we first consider A∈ F cm that is locally flat, i.e. A0 = (xA0 ,Fm(xA0))T ,

xA0 ∈ Rk and there exists δ > 0 such that ∀ x ∈ {x : ρ∗
∞(x,xA0) < δ}, Fm(x) =

Fm(xA0), where ρ∗
∞ is ρ∞ restricted on Rk. Therefore, we can always find A1 =

(xA1 ,zA1)T ,A2 = (xA2 ,zA2)T ∈ F cm such that xA1 ≺ xA0 ≺ xA2 and zA0 = zA1 = zA2 .

Since Ĝ is strictly monotonic with respect to ⪯, we should have either

inf
B∈Ĝc

ρ∞(A0,B)> inf
B∈Ĝc‘

ρ∞(A1,B) or inf
B∈Ĝc

ρ∞(A0,B)> inf
B∈Ĝc‘

ρ∞(A2,B)

to be true. Therefore the supremum cannot be achieved at A0. Similarly, for A′
0 at
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the vertical part of F cm, if A′
0 is at the interior, we can also find A′

1 and A′
2, such

that xA′
0

= xA′
1

= xA′
2

but zA′
1
< zA′

0
< zA′

2
, once again by the strict monotonic of Ĝ,

either

inf
B∈Ĝc

ρ∞(A′
0,B)> inf

B∈Ĝc‘
ρ∞(A′

1,B) or inf
B∈Ĝc

ρ∞(A′
0,B)> inf

B∈Ĝc‘
ρ∞(A′

2,B)

should be true. Therefore, the supremum cannot be achieved at A0. By using the

same reasoning, the supremum is neither achieved at saddle points. However, since

G(F cm, Ĝ) is compact, the supremum is achievable. Therefore, the supremum can

only be achieved at Al, l ∈ 1, . . . ,2υ. Hence, (4.C.7) should hold.

Proof of Theorem 4.19. Consider the vertices A1,A2, . . . ,A2υ and B1,B2, . . . ,B2ν of

the curves F cm and Gcn respectively. Let us fix an arbitrary vertex A2k, k =

0,1,2, . . . ,υ.

Let us take the straight line with points {(x,z) : z− k
m = xk,m− x}, passing

through the vertex A2k, with coordinates (xk,m, km), where xk,m is the realization of

the k-th order statistic, X(k) of the random sample Xm.

It is easy to see that the intersection of the sets Gcn and {(x,z) : z− k
m = xk,m−x}

consists of only one point which we denote by P2k, i.e. P2k =Gcn∩{(x,z) : z− k
m =

xk,m−x}.

Let us consider the two cases:

1. P2k on the vertical line {(xk,m,z) : z ∈ R}. In this case it is easy to see that

ρ∞(A2k,P2k)≤ |Fm(xk,m)−Gn(xk,m)| (4.C.8)

= | k
m
−Gn(xk,m)|

From (4.C.8), we obtain that

ρ∞(A2k,P2k)≤ sup
1≤k≤n

| k
m
−Gn(xk,m)|, (4.C.9)

for k = 1, . . . ,m. Therefore, we have from (4.C.9) that

sup
1≤k≤m

ρ∞(A2k,P2k)≤ sup
1≤k≤m

| k
m
−Gn(xk,m)| (4.C.10)
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Next, we provide an auxiliary lemma that we apply to the left-hand side of

(4.C.10).

Lemma 4.41. We have

sup
1≤k≤m

ρ∞(A2k,P2k) =H(F cm,Gcn)

Now, from Lemma 4.41 and equality (4.C.10), we can see that

H(F cm,Gcn)≤ sup
1≤k≤m

| k
m
−Gn(xk,m)|= sup

−∞<x<∞
|Fm(x)−Gn(x)|=Dm,n

2. Let us now consider the second case, i.e. P2k on the horizontal line {(x, ln)}.

On the other hand, P2k ∈ z− k
m = xk,m−x. Therefore, l

n −
k
m = xk,m−x ⇒

x= xk,m+ k
m −

l
n , i.e. P2k = (xk,m+ k

m −
l
n ,

l
n).

Let us now evaluate H(A2k,P2k). We have h(A2k,P2k) = max(|xk,m+ k
m−

l
n−

xk,m|, | ln −
k
m |)≡ |

k
m −

l
n |= |Fm(xk,m)−Gn(xk,m)|. Therefore,

sup
1≤k≤m

ρ∞(A2k,P2k) = sup
1≤k≤m

|Fm(xk,m)−Gn(xk,m)|

= sup
−∞<x<+∞

|Fm(x)−Gn(x)|=Dm,n,

which completes the proof of inequality (4.2.25).

To show that (4.2.26) holds, recall that from Lemma 4.4, we have

H(F cm,Gcn) = max
[

sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B), sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B)
]

= sup
A∈F c

m

inf
B∈Gc

n

ρ∞(A,B) = sup
B∈Gc

n

inf
A∈F c

m

ρ∞(A,B)

Equality (4.2.26) follows noting that, if condition (4.2.27) holds, we have

ρ∞(A,B) = max{|xA−xB|, |yA−yB|}= |yA−yB|

Therefore H(F cm,Gcn) = sup
−∞<x<+∞

|Fm(x)−Gn(x)|
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Proof of Lemma 4.23. Let us note,

H
(
Ã2l, Ẽ2l

)
= ρ∞(Ã2l, Ẽ2l), (4.C.11)

the geometric interpretation of the latter distance, ρ∞
(
Ã2l, Ẽ2l

)
, is the side of the

square. In order to prove (4.3.6), we will consider the two possible ways in which the

curves F̃ cm and G̃cn may be positioned with respect to each other, which corresponds

to either i being odd, i.e. the segment
[
B̃i−1, B̃i

]
, crossed by the line Ll, being

horizontal, or i being even, i.e.,
[
B̃i−1, B̃i

]
being vertical.

Case 1, i = 2p+ 1 odd, i.e.,
[
B̃i−1, B̃i

]
horizontal. The case is illustrated in

Figure 4.11: Graphical illustration of Case 1, i= 2p+ 1 odd, i.e., [B̃i−1, B̃i] horizontal

Figure 4.11, from where one can see that the maximum, in (4.3.6) is achieved in the

last vertex, Ã2t of the batch Āi. This holds, because, by contruction of the curve

F̃ cm, its consecutive vertices Ã2j , j = s,s+ 1, . . . , t, deviate further away from the

horizonal segment [B̃i−1, B̃i] of the curve G̃cn, as j increase to t. Setting j = t in

(4.C.11), the projection λÃ2t
, on the Ox axis, of the vertex, Ã2t(

∑t
k=1 ãk,

∑t
k=1 b̃k)T ,

is λÃ2t
=∑t

k=1(ãk + b̃k).

From the above considerations, we can write that

max
A∈Āi

inf
B∈G̃c

n

ρ∞ (A,B) = max
s≤j≤t

inf
B∈G̃c

n

ρ∞(Ã2j ,B)

=ρ∞(Ã2t, Ẽ2t) = yÃ2t
−yẼ2t

=
t∑

k=1
b̃k−yB̃2p

=
t∑

k=1
b̃k−

p∑
k=1

d̃k

Case 2, i = 2(s+ 1) even, i.e., [Bi−1,Bi] vertical. This case is illustrated in

Figure 4.12, from where one can see that the maximum in (4.3.6) is achieved in

the first vertex, Ã2s of the batch Āi. This holds, because, by construction of the
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Figure 4.12: Graphical illustration of Case 2, i= 2(p+ 1) even, i.e., [B̃i−1, B̃i] vertical

curve F̃ cm, its consecutive vertices, Ã2j , j = s,s+ 1, . . . , t, are positioned closer to

the vertical segment [B̃i−1, B̃i] of the curve G̃cn, as j increases to t. Setting j = s in

(4.C.11), the projection, λÃ2s
on the Ox axis, of the vertex, Ã2s(

∑s
k=1 ãk,

∑s
k=1 b̃k)T ,

is λÃ2s
=∑s

k=1(ãk + b̃k).

Following from the above considerations, we can write that

max
A∈Āi

inf
B∈G̃c

n

ρ∞ (A,B) = max
s≤j≤t

inf
B∈G̃c

n

ρ∞(Ã2j ,B)

=ρ∞(Ã2s, Ẽ2s) = xÃ2s
−xẼ2s

=xB̃2(p+1)
−

s∑
k=1

ãk = a1 +
p+1∑
k=1

c̃k−
s∑

k=1
ãk =

p+1∑
k=1

c̃k−
s∑

k=2
ãk

This completes the proof of the lemma.

The proof of Theorem 4.24 will be given after the proof of Theorem 4.28.

Lemma 4.42. When Xm comes from distribution F and Yn comes from distribution

G, we have

sup
t∈R

∣∣∣∣√ mn

m+n
(Em+n(t)−E(t))−

(√
1−ηB0(F (t)) +√ηB′

0(G(t))
)∣∣∣∣→ 0 a.s.

(4.C.12)

as m+n→∞ and m
m+n → η, under norm l∞, where B0(F ) and B′

0(G) are indepen-

dent Brownian bridges. Furthermore, when Rm+n is uniformly distributed, we also

have

P
{[√

mn

m+n

(
G†
n(t)−Em+n(t))

)∣∣∣∣Zm+n

]
w→ (1−η)B0(E(t))

}
= 1 (4.C.13)
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where the weak convergence w→ is considered over the indicator functions of intervals

of R, i.e. {1(x,y](·) :−∞≤ x < y ≤+∞}.

Proof. The proof of (4.C.12) is a natural extension of Theorem 3 and Corollary of

Komlós et al. (1975), thus will be omitted. Since the class {1(x,y](·) :−∞≤ x < y ≤

+∞} has a square integrable envelope function 1R with respect to measure µF and

µG, i.e.
∫
12
RdµF =

∫
12
RdµG = 1 <∞, where F and G are the probability measure

of the distribution F and G, (4.C.13) follows by applying Theorem 3.8.2 in van der

Vaart and Wellner (2023).

Proof of Theorem 4.28. Since metric H coincides with the Levy metric, according

to the definition of the Levy metric (see in Remark 4.22)

H†
m,n = inf

ε

{
ε : F †

m(t−ε)−ε≤G†
n(t)≤ F †

m(t+ε) + ε, for all t
}

Hence,

√
mn

m+n
H†
m,n = inf

ε

{
ε :−ε≤

√
mn

m+n

[
G†
n(t)−F †

m

(
t−ε/

√
mn

m+n

)]

and
√

mn

m+n

[
G†
n(t)−F †

m

(
t+ε/

√
mn

m+n

)]
≤ ε, for all t

}

Thus

P
{√

mn

m+n
H†
m,n > x

∣∣∣∣Zm+n

}
= P

{
∀ ε < x,∃ t0 ∈ R,such that

√
mn

m+n

[
G†
n(t0)−F †

m

(
t0−ε/

√
mn

m+n

)]
<−ε or

√
mn

m+n

[
G†
n(t0)−F †

m

(
t0 +ε

√
mn

m+n

)]
> ε

∣∣∣∣Zm+n

}
(4.C.14)
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Note that F †
m(t)−Em+n(t) = n

m+n(F †
m(t)−G†

n(t)). Then

√
mn

m+n

[
G†
n(t)−F †

m

(
t−ε/

√
mn

m+n

)]
=
√

mn

m+n

[
(G†

n(t)−Em+n(t)) +
(
Em+n

(
t−ε/

√
mn

m+n

)
−F †

m

(
t−ε/

√
mn

m+n

))
+ (Em+n(t)−E(t)) +

(
E

(
t−ε/

√
mn

m+n

)
−Em+n

(
t−ε/

√
mn

m+n

))
+E(t)−E

(
t−ε/

√
mn

m+n

)]

For simplicity, let X(t,h) =
∫
1[t,t+h)d[√ηB0(F )+

√
1−ηB0(G)], therefore supt∈RX(t,h)

is the modulus of continuity of the Brownian Bridge √ηB0(F )+
√

1−ηB0(G). Since

both F and G are uniformly continuous, by Lévy’s modulus of continuity theorem,

we have supt∈RX(t,h)→ 0 almost surely as h→ 0. According to (4.C.12) in Lemma

4.42, we have

√
mn

m+n

(
Em+n(t)−E(t) +E

(
t−ε/

√
mn

m+n

)
−Em+n

(
t−ε/

√
mn

m+n

))
→0 a.s.

In addition, since F and G have bounded densities, we have

sup
t∈R
|
√

mn

m+n
(E(t)−E(t−ε/

√
mn

m+n
))−εδ−(t)| → 0.

Thus given the pooled sample Zm,n,

sup
t∈R

∣∣∣∣√ mn

m+n

(
Em+n(t)−Em+n

(
t−ε/

√
mn

m+n

))
−εδ−(t)

∣∣∣∣→ 0, (4.C.15)

almost surely. Additionally, by the continuity of E and (4.C.13), we have

P
{[√

mn

m+n

(
G†
n(t)−Em+n(t)+

Em+n

(
t−ε/

√
mn

m+n

)
−F †

m

(
t−ε/

√
mn

m+n

))∣∣∣∣Zm+n

]
w→ B0(E(t))

}
= 1

(4.C.16)
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By arranging (4.C.14), (4.C.15) and (4.C.16), we obtain

P
{√

mn

m+n
H†
m,n > x

∣∣∣∣Zm+n

}
→P{∀ ε < x,∃ t, −ε > B0 ◦E+εe(t), or B0 ◦E−εe(t)> ε}

=P
{
∃ t0 ∈ [0,1],∀ ε < x, −ε−εe

(
E−1(t0)

)
> B0(t0) or B0(t0)> ε+εe

(
E−1(t0)

)}
=P

{
∃ t0 ∈ [0,1], inf

ε<x

[
−ε−εe

(
E−1(t0)

)]
> B0(t0) or B0(t0)> sup

ε<x

[
ε+εe

(
E−1(t0)

)]}
=P

{
∃ t0 ∈ [0,1],−x(1 + e(E−1(t0)))> B0(t0) or B0(t0)> x[1 + e(E−1(t0))]

}
Therefore, we have

lim
m,n→∞, m

m+n
→η

P
{√

mn

m+n
H†
m,n > x

}
=P

{
∃ t0 ∈ [0,1],−x

[
1 +e(E−1(t0))

]
> B0(t0) or B0(t0)> x

[
1 + e(E−1(t0))

]}
=1−P

{
−x[

[
1 + e(E−1(t0))

]
≤ B(t)≤ x

[
1 + e(E−1(t0))

]
, ∀ 0≤ t≤ 1

}
.

This finishes the proof of the required theorem.

Proof of Theorem 4.24. In order to show (4.3.11) holds under the condition of The-

orem 4.24, according to the Portmanteau Theorem (cf. Theorem 1.3.4 in van der

Vaart and Wellner, 2023), one only needs to prove that

P
(√

mn

m+n
Hm,n ≤ q

)
→ P

{
|B(t)| ≤ x

[
1 + e(E−1(t))

]
, ∀ 0≤ t≤ 1

}
(4.C.17)

whenXm and Yn come from ηF (x)+(1−η)G(x). Note that when the pooled sample

Zm+n = {X1, . . . ,Xm,Y1, . . . ,Yn} come from the pooled distribution E,

√
mn

m+n
(Em+n−E) w→ B0(E) (4.C.18)

under norm l∞. Therefore, we have

√
mn

m+n
(Gn(t)−Em+n(t))) w→ (1−η)B0(E(t)) (4.C.19)

over the class {1(x,y](·) : −∞≤ x < y ≤ +∞}, which is equivelent to (4.C.16) with

respect to respect to Fm and Gn. Therefore, the required convergence (4.C.17) is
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obtained by arranging (4.C.14), (4.C.15) and (4.C.16) with respect to Fm, Gn.

Proof of Theorem 4.25. Under the contiguous alternative, since ρC1(F,G) = o(1),

we have supx |f(x)− e(x)| → 0. We can show that (4.C.19) still holds (although

(4.C.18) no longer holds).

For a fixed x, let b= P{|B(t)| ≤ x[1+f(F−1(t))], ∀ 0≤ t≤ 1} and let sequences

am,n,k = P
{√

mn

m+n
H†
m,n ≤ x

∣∣∣∣Zm+n

}
,

when Xm and Yn correspondingly come from F and G(;k),

bk = P
{
|B(t)| ≤ x

[
1 + ek(E−1

k (t))
]
, ∀ 0≤ t≤ 1

}
,

where Ek(x) = ηF (x) + (1−η)G(x;k) with density ek. Therefore, to show (4.3.13),

it suffices to show that am,n,n → b as m,n →∞. Note that ρC1(F,G(;k)) → 0,

ρC1(F,Ek)→ 0, by the property of Brownian bridge, we have bk→ b. By Theorem

4.28, we also have that am,n,k→ bk as m,n→∞ and m
m+n→ η. Therefore, it remains

to show that am,n,k→ bk uniformly as m,n→∞ and m
m+n → η, or equivalently that

the convergence in (4.C.13) is uniform.

To show (4.C.13) is uniform convergence, we need to show that (i) the speed

of convergence in (4.C.13) does not depend on k for a finite subset F0 ⊂ F and

(ii) the left-hand side process of (4.C.13) is stochastic equicontinuity over the class

F = {1(x,y](·) :−∞≤ x≤ y ≤+∞} and uniformly with respect to k.

In fact, (i) is ensured by the existence of a square-integrable envelope function

1R(·) of F . To show (ii), we further denote Fδ,k = {f−g : f,g ∈F ,
∫

(f−g)2dEk ≤ δ}

and Fδ = {f −g : f,g ∈ F ,
∫

(f −g)2dE ≤ δ}. Since ρC1(F,G(;k))→ 0, for any ε > 0,

there exists K, such that for any k >K, Fδ,k ⊂F(1+ε)δ. Note that F has an envelope

function 1R that is square-intergrable with respect to each measure µG(;k) and µF ,

by the inequalities established on page 508 van der Vaart and Wellner (2023), we

have

E
[

sup
f∈Fδ

∫
fd(µ

X†
m
−µZm+n)

∣∣∣∣Zm+n

]
≤

C0

(
E
[

sup
f∈Fδ

∫
fdZF

]
+
√

(1−η)/ηE
[

sup
f∈Fδ

∫
fdZG(;k)

])
,

(4.C.20)
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for almost every Zm+n where ZF and ZG(;k) are tight Brownian processes, µ
X†

m
is

the empirical measure corresponding to X†
m, and C0 is a universal constant that

does not depend on the measures F and G. Based on that ρC1(E,Ek)→ 0 and that

ZG(;k) have continuous sample paths with respect to the semi-metric L2(Ek), one

can easily show that both ZF and ZG(;k) have uniformly continuous sample paths

with respect to the semi-metric L2(E). Therefore, the RHS of (4.C.20) converges

to 0 when δ ↓ 0. Therefore E
[
supf∈Fδ

∫
fd(µ

X†
m
−µZm+n)

∣∣∣∣Zm+n

]
→ 0 as δ ↓ 0. In

addition, according to the fact that Fδ,k ⊂F(1+ε)δ holds for sufficiently large k, one

can show that

lim
δ↓0

sup
k,m,n

{
E
[

sup
f∈Fδ,k

∫
fd(µ

X†
m
−µZm+n)

∣∣∣∣Zm+n

]}
= 0.

Therefore (ii) holds.

Then by Theorem 1.5.4 and Lemma 1.5.9 of van der Vaart and Wellner (2023),

one can show that the weak convergence in (4.C.13) holds over F when (i) finite

convergence and (ii) stochastic equicontinuity satisfy. In addition, we have shown

that both the finite convergence and stochastic equicontinuity do not depend on

k. Therefore, we can show that am,n,k → bk uniformly in k. Hence, the theorem

follows.

Lemma 4.43. For a fixed x, let Xm come from F and let Yn come from a contigous

alternative G(x;n) = F (x) + 1√
n
δ(x), δ ∈ C(R), we have

P
(√

mn

m+n
Hm,n > x

)
→ 1−P{|B(t) +√ηδ(t)| ≤ x[1 + e(E−1(t))], ∀ 0≤ t≤ 1}

(4.C.21)

Proof. We have

√
mn

m+n

[
Gn(t)−Fm

(
t−ε/

√
mn

m+n

)]
=
√

mn

m+n

[
(Gn(t)−G(t;n)) +

(
F

(
t−ε/

√
mn

m+n

)
−Fm

(
t−ε/

√
mn

m+n

))
+G(t;n)−F

(
t−ε/

√
mn

m+n

)]
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We can show that

√
mn

m+n

[
(Gn(t)−G(t;n)) +

(
F

(
t−ε/

√
mn

m+n

)
−Fm

(
t−ε/

√
mn

m+n

))]
w→B0(F )

(4.C.22)

almost surely. In addition, we have

√
mn

m+n

[
G(t;n)−F (t−ε/

√
mn

m+n
)
]
→√ηδ(t) + εf(t) (4.C.23)

According to (4.C.12) in Lemma 4.42 and that δ ∈ C(R), we can also show that the

convergence in (4.C.22) and (4.C.23) are uniform convergence. Therefore, (4.C.21)

follows.

Proof of Theorem 4.26. For a fixed null, by (4.3.11) and definitions of q∗, it is not

difficult to show that (4.3.12) holds. Therefore, we only need to prove (4.3.13).

For a fixed p and fixed alternative, it is easy to show that both q† and q∗ are

bounded from above, and for any ε > 0, P(
√

mn
m+nHm,n > ε)→ 1, therefore (4.3.13)

follows.

Under a contiguous alternative ρC1(F,G(·;n)) = O(n−1/2), (4.3.13) follows by

applying Lemma 4.43 and Theorem 4.25.

Proof of Theorem 4.32. For simplicity, denote by

Am = ψ1−ψ2
Q
X†

m
(ψ1)−Q

X†
m

(ψ2) and Bn = ψ1−ψ2
Q
Y †

n
(ψ1)−Q

Y †
n

(ψ2) .

Given Zm+n, the number of observations N
X†

m
(ψ) in X†

m that are less than

E−1
m+n(ψ) follows a hypergeometric distribution, i.e. N

X†
m

(ψ) = Hypergeometric(m+

n,⌊mψ⌋,m). By the law of large numbers, Fm(E−1
m+n(ψ)) =N

X†
m

(ψ)/m P→ψ. There-

fore given Zm+n,

|Q†
Xm

(ψ)−E−1
m+n(ψ)| ≤ C(|N

X†
m

(ψ)/m−ψ|+ 1
m+n

) P→ 0.

Hence, we have Q†
Xm

(ψ) P→ E−1
m+n(ψ), which then imply Q

X†
m

(ψ1)−Q
X†

m
(ψ2) P→

E−1
m+n(ψ1)−E−1

m+n(ψ2). By the continuous mapping theorem, given Zm+n, we have

Am− ψ1−ψ2
E−1

m+n(ψ1)−E−1
m+n(ψ2)

P→ 0 The same result holds with respect to Bn. Thus, given
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Zm+n,

max(Am,Bn)− ψ1−ψ2

E−1
m+n(ψ1)−E−1

m+n(ψ2)
P→ 0 (4.C.24)

By the Glivenko-Cantelli theorem, supt |Fm(t)−F (t)| → 0 and supt |Gn(t)−

G(t)| → 0 almost surely. Therefore, it is clear that supt |Em+n(t)−E(t)| → 0 almost

surely. Hence, for an arbitrary ψ ∈ (0,1), one have E−1
m+n(ψ)→ E−1(ψ) almost

surely. Therefore by continuous mapping theorem, ψ1−ψ2
E−1

m+n(ψ1)−E−1
m+n(ψ2)

P→ σ0. Thus,

max(Am,Bn) P→ σ0, and (4.4.7) follows.

To prove (4.4.8), it suffices to show that q†
m,n(σ∗)− q†

m,n(σ0) P→ 0 since we have

q†
m,n(σ0)− q∗

m,n(σ0) P→ 0 by applying Theorem 4.24.

For any σ1,σ2 ∈R, according to Theorem 4.5 and following the proof of Theorem

4.6, given Zm+n, it is not difficult to show that

∣∣∣H†
m,n(σ1)−H†

m,n(σ2)
∣∣∣≤ 4

(
|QZm+n(ε)|+ |QZm+n(1−ε)|

)
|σ1−σ2|+ 2ε,

so does their quantiles, i.e.

∣∣∣q†
m,n(σ1)− q†

m,n(σ2)
∣∣∣≤ 4

(∣∣QZm+n(ε)
∣∣+ ∣∣QZm+n(1−ε)

∣∣) |σ1−σ2|+ 2ε,

When the support of F andG are both bounded, supm,n
(
|QZm+n(ε)|+ |QZm+n(1−ε)|

)
is bounded for any ε. When the support of E is unbounded, we can always find ε

that is sufficiently small such that e(E−1(1−ε))> 0. By continuity of e, we can find

c1, c2 > 0 such that e(x)> c2 for any x ∈ (E−1(1−ε)− c1,E
−1(1−ε)+ c1). Then by

considering Dvoretzky–Kiefer–Wolfowitz inequality, we have

P
{
QZm+n(1−ε)>E−1(1−ε) + c1

}
≤ P

(
sup
x
|Em+n(x)−E(x)|> c1c2

)
≤ 2e−2(m+n)c2

1c
2
2 .

Therefore for any δ > 0, we can pick c2 and N0 such that 2e−2N0c2
1c

2
2 < δ. Therefore,

for any δ > 0, there exists C > 0 and N0 such that

sup
m+n>N0

P{QZm+n(1−ε)>C}< δ, (4.C.25)

which holds true regardless of the support set of F and G. Similarly, we can also
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show that (4.C.25) holds true with respect to |QZm+n(ε)|. Then for any η > 0,

P
(∣∣∣q†

m,n(σ∗)− q†
m,n(σ0)

∣∣∣> η
)
≤

P(4C|σ∗−σ0|+ 2ε > η) +P
{
|QZm+n(ε)|+ |QZm+n(1−ε)|>C

}
.

Then we pick ε < η, C = |E−1(1− ε)|+ |E−1(ε)|, then by (4.4.7) and (4.C.25), we

can find N0, such that when m,n > δ, P{|QZm+n(ε)|+ |QZm+n(1− ε)|> C}< δ and

P(4C|σ∗−σ0|+ 2ε > η)< δ. Therefore, we have

P
(∣∣∣q†

m,n(σ∗)− q†
m,n(σ0)

∣∣∣> η
)
≤ δ,

for sufficiently large m and n, i.e. q†
m,n(σ∗)− q†

m,n(σ) P→ 0. Therefore, the result

follows.

In order to prove Theorem 4.36, we need to start with the following lemma.

Lemma 4.44 (Lemma 3 of Abrahamson 1967). Let Z(i)
1 ,Z

(i)
2 , . . . be independent

sequences of independent random variables Z(i), i = 1,2. Let the mean of the first l

observations in the ith sample be Z̄(i)
l . Let φi(t) = E(etZ(i)).

Suppose there exists a positive number τ in the interior of

Tη = {t : φ1(t/η)φ2((−t)/(1−η))<∞} (4.C.26)

such that, for a given number ϵ > 0, ϵ > E[Z(1)−Z(2)],

φ′
1(τ/η)/φ1(τ/η)−φ′

2(−τ/(1−η))/φ2(−τ/(1−η)) = ϵ, (4.C.27)

and let

ρ= e−τϵ [φ1(τ/η)]η [φ2((−τ)/(1−η))]1−η . (4.C.28)

Then

P
{
Z̄(1)
m − Z̄(2)

n ≥ ϵ
}
≤ ρn+m, (4.C.29)

and

lim
m,n→∞

1
m+n

logP
{
Z̄(1)
m − Z̄(2)

n ≥ ϵ
}

= logρ (4.C.30)

where m,n→∞ in such a way that m/(m+n) = r/k = η.
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Proof of Theorem 4.36. Similarly to proving Theorem 3.41, in order to prove The-

orem 4.36, we only need to prove that

H(Fσ,Gσ) = lim
m,n→∞

Hm,n(σ) a.s.,

−fσ,η(q) = lim
m,n→∞

1
m+n

logP(Hm,n ≥ q) a.s.
(4.C.31)

The proof of the first equation of (4.C.31) is similar to proving the first equation

of (3.A.33), thus will be omitted. Let us prove the second equation of (4.C.31).

For a given x, Gn(x) is the mean of m independent copies of the random vari-

ables, which we denote as V (1) that follow the Bernoulli distribution. Then

φx(t) = E(etV (1)) = E(x)et+ 1−E(x) (4.C.32)

Similarly, for a fixed x and q, Fm(x+q) is also the mean of n independent copies of

the random variables V (2), with

E(etV (2)) = E(x+ q)et+ 1−E(x+ q) = φx(t+ q). (4.C.33)

Let τ1, τ2 be functions of x and q implicitly defined by (4.5.3). Then by applying

(4.C.30) of Lemma 4.44, we have

lim
m,n→∞

1
m+n

logP{Fm(x− q)−Gn(x)≥ q}=

η log(φx(τ1(x,q)
η

)− q) + (1−η) log(φx(−τ1(x,q)
1−η ))− τ1(x,q)q,

lim
m,n→∞

1
m+n

logP{Gn(x)−Fm(x+ q)≥ q}=

η log(φx(−τ1(x,q)
η

) + q) + (1−η) log(φx(τ1(x,q)
1−η ))− τ2(x,q)q,

when m
m+n → η. Since, it is not difficult to show that P(Hm,n(σ) > q) ≥ P(Fm(x−
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q)−Gn(x)> q) and P(Hm,n(σ)> q)≥ P(Gn(x)−Fm(x+ q)> q)

liminf
m,n→∞, m

m+n
→η

1
m+n

logP(Hm,n ≥ q)≥

sup
0<x<1

max
{
η log(φx(τ1(x,q)

η
)− q) + (1−η) log(φx(−τ1(x,q)

1−η ))− τ1(x,q)q,

η log(φx(−τ1(x,q)
η

) + q) + (1−η) log(φx(τ1(x,q)
1−η ))− τ2(x,q)q

}
=−fσ,η(q)

Then it remains to show that liminfm,n→∞, m
m+n

→η
1

m+n logP(Hm,n ≥ q) ≤

−fσ,η(q). The remaining technical part is similar to proving Theorem 3.41, thus

will be omitted.

4.C.2 Results in Section 4.A

In order to prove Lemma 4.37, let us first introduce an auxiliary lemma.

Lemma 4.45. When there are no ties in the sample, for two vertex projections

λBj0 ,t0
and λBj1 ,t1

, where t0, t1 ∈ {1,2}, if they are discordant, their corresponding

omnidirectional jumps must also be discordant.

Proof. To prove Lemma 4.45, it suffices to show that two concordant omnidirectional

jumps βj0 and βj1 must have concordant vertex projections λBj0 ,t0
and λBj1 ,t1

, t0, t1 ∈

{1,2}. For simplicity, let us assume that βj0 ⪯ βj1 .

• Case 1. t0 = t1. This is trivial since if βj0 ⪯ βj1 , Gn(βj0)<Gn(βj1).

• Case 2. t0 ̸= t1. Since Gn(βj0) < Gn(βj1), it is obvious that λBj0 ,2 ⪯

λBj0 ,1. On the other hand, Gn(βj1)≥Gn(βj1) + 1
n , thus Gn(w(1)

βj1
− ε0,w

(2)
βj1

) =

Gn(w(1)
βj1
,w

(2)
βj1
−ε0)≥Gn(βj1)− 1

n ≥Gn(βj1). Therefore we have λBj0 ,1⪯λBj0 ,2.

Proof of Lemma 4.37. For any two omnidirectional jumps βi and βj of Gn,

Gn(βmax) = Gn(βi) + Gn(βj) − Gn(βmin) + 1
n

∑n
i=11(βmin ≺ Xi ⪯ βmax), where

βmin = (min(β(1)
i ,β

(2)
j ),min(β(2)

i ,β
(2)
j )). When they are discordant, for ε0 ∈ R de-

fined in (4.A.1) and ei, i= 1,2,

Gn(βmax)−Gn(βmax−ε0ei)

≥Gn(βi)−Gn(βi−ε0ei) +Gn(βj)−Gn(βj−ε0ei)− (Gn(βmin)−Gn(βmin−ε0ei)).
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Due to the continuity of F and G, Gn(βmin) − Gn(βmin − ε0ei) = 0. Thus,

Gn(βmax)−Gn(βmax− ε0ei) > 0 for i = 1,2. Therefore, βmax is also an omnidi-

rectional jump of Gn. For two discordant projections λBj0,t0
and λBj1,t1

, according

to Lemma 4.45, their corresponding jumps βj0 and βj1 also must be discordant.

Then we consider one of two cases

• Case 1. Gn(βmax)−Gn(βj0) =Gn(βmax)−Gn(βj1) = 1
n for i= 1,2. Then there

must exists an omnidirectional jump βj2 = (max(β(1)
j0
,β

(2)
j1

),max(β(2)
j0
,β

(2)
j1

)) of

Gn with corresponding projections

λBj2 ,2 = (max(λ(1)
Bj0,1

,λ
(1)
Bj1,1

),max(λ(2)
Bj0,1

,λ
(2)
Bj1,1

)),

λBj2 ,4 = (max(λ(1)
Bj0,2

,λ
(1)
Bj1,2

),max(λ(2)
Bj0,2

,λ
(2)
Bj1,2

)).

Clearly λBj2 ,4 ⪯ (max(λ(1)
Bj0,t0

,λ
(1)
Bj1,t1

),max(λ(2)
Bj0,t0

,λ
(2)
Bj1,t1

)), for t0, t1 ∈ {1,2}.

• Case 2. Gn(βmax)−Gn(βj0) ̸= 1
n or Gn(βmax)−Gn(βj1) ̸= 1

n . Without loss of

generality, let us assume that Gn(βmax)−Gn(βj1) > 1
n and β

(1)
j0

< β
(1)
j1

. The

case of β(1)
j0

> β
(1)
j1

will be omitted, as it is similar to that when β
(1)
j0

< β
(1)
j1

.

(a) Gn(βj1) <Gn(βj0). Since no tie is appeared in the sample, there always

exists Yj′
1
∈ {x ∈ R2 : x ≺ βmax,x ⊀ βj1}. Clearly, Yj′

1
is also an omnidi-

rectional jump which is discordant to βj1 . Denote by β̃j′
1

= (β(1)
j0
,Y

(2)
j′

1
).

Gn(βmax)−Gn(βj1)>Gn(β̃j′
1
)−Gn(βj1). Therefore, there must exists

Yj∗ ∈ {x ∈ R2 : x≺ βmax,x⊀ βj1} such that Gn(β̃j∗)−Gn(βj1) = 1
n
,

where β̃j∗ = (β(1)
j0
,Y

(2)
j∗ ). Since Yj∗ is discordant with βj1 , β̃j∗ must be an

omnidirectional jump of Gn with Gn(β̃j∗) =Gn(βj1)+ 1
n . Thus, we select

βj2 = β̃j∗ . Clearly, λBj2 ,2 = (β(1)
j1

+Gn(βj1),Y (2)
j∗ +Gn(βj1)) ⪰ λBj1 ,1 and

λBj2 ,4 ⪰ λBj1 ,2. In addition, we have

Y
(2)
j∗ +Gn(βj1)≤ β(2)

j0
+Gn(βj0)− 1

n
,

due to that Y (2)
j∗ < β

(2)
j0

and that Gn(βj1) < Gn(βj0). Therefore when

t0 = 1,2, t1 = 1, i.e. λBj0 ,t0
and λBj0 ,1 are discordant, there exists λBj2 ,2 ⪯
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(max(λ(1)
Bj0,t0

,λ
(1)
Bj1,t1

),max(λ(2)
Bj0,t0

,λ
(2)
Bj1,t1

)). When t0 = 1,2, t1 = 2, and

there exists λBj2 ,4 ⪯ (max(λ(1)
Bj0,t0

,λ
(1)
Bj1,t1

),max(λ(2)
Bj0,t0

,λ
(2)
Bj1,t1

)).

(b) Gn(βj1) > Gn(βj0). Therefore Gn(βmax)−Gn(βj0) > 1
n . This is similar

to the case when Gn(βj1) < Gn(βj0). Thus we can either select λBj2 ,2 ⪰

λBj0 ,1 or λBj2 ,4 ⪰ λBj0 ,2.

(c) Gn(βj1) = Gn(βj0). The existence of j2 also directly follows if t0 = t1.

If they are not equal, let us assume that t0 = 1 and t1 = 2, i.e. λBj0 ,1

and λBj1 ,2 are discordant. Following a similar argument, we can find βj2

such that β(1)
j2

= β
(1)
j1

and β
(2)
j0

> β
(2)
j2

> β
(2)
j1

with Gn(βj2) = Gn(βj1) + 1
n .

Then we have λBj2 ,4 = (β(1)
j2

+Gn(βj1)− 1
n ,β

(2)
j2

+Gn(βj1)− 1
n) ⪰ λBj2 ,2.

Note that λBj0 ,1 = (β(1)
j0

+Gn(βj0),β(2)
j0

+Gn(βj0)), β(2)
j2

+Gn(βj1)− 1
n ≤

β
(2)
j0

+Gn(βj0). Thus we are able to find λBj2 ,4 meet the requirement.

Therefore, the existence of λBj2 ,t2
follows.

To prove Lemma 4.39, we first introduce the following auxiliary lemma.

Lemma 4.46. For any (x,y) ∈ R2, if V(x,y) is not empty, there always exists

λ ∈ Ṽ(x,y) and Ij,t, such that λ,(x,y) ∈ Ij,t.

Proof. If V(x,y) is not empty, it is clear that (x,y) ∈ Ij,t must hold for some j and

t. Since (x,y) ∈ Ij,t, there must exists (x1,y1),(x2,y2) ∈ Ij,t such that

(x1,y1)⪯ (x,y)⪯ (x2,y2). (4.C.34)

Therefore, there should at least exists λ, one vertices of Ij,t, such that λ ∈ V(x,y).

Additionally, since the set in (4.A.2) are non-overlapping, at least one vertices of

Ij,t should further fall in Ṽ(x,y). Otherwise, for any (x0,y0) ∈ Ij,t, (x,y) ⪯̸ (x2,y2),

which contradicts (4.C.34).

Proof of Lemma 4.39. We consider two cases of λ∗
B(Al).

• Case 1. λ∗
B(Al) is determined by (4.A.3). Therefore, λBj0,t0

∈ Ṽ(λAl
), for some

j0 and t0 = 1 or 2. By the definition of Ṽ(λAl
), we have λ∗

B(Al)⪯ λAl
.

(a) t0 = 1. It is trivial to show that region Ij0,1 contains λAl
, which cor-

responds to the surface with the normal direction parallel to the axis
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Oz. By the definition of El, the projection of El and Al along the di-

rection OE0 should coincide. Therefore, the surface with projection cor-

responding to the region Ij0,3 should contain the point El. Therefore,

we have w
(3)
El

= w
(3)
Bj0,1

, where El is the intersection of line Ll and the

planar curve Gcn, defined in Lemma 4.15. Additionally, by the property

of El, we have |w(1)
El
−w(1)

Al
| = |w(2)

El
−w(2)

Al
| = |w(3)

El
−w(3)

Al
|, thus we have

infB∈Gc
n
ρ∞(Al,B) = ρ∞(Al,El) = |w(3)

Al
−w(3)

Bj0,t0
|.

(b) t0 = 2. This is the case when either Ij0,1 or Ij0,2 contains λAl
. This can be

further specified by checking whether w(1)
Bj0,2

−w(1)
Al
≤ w(2)

Bj0,2
−w(2)

Al
holds.

If w(1)
Bj0,2

−w(1)
Al
≤ w

(2)
Bj0,2

−w(2)
Al

, then λBj0,2 ∈ Ij0,1. Similarly, we have

w
(1)
El

= w
(1)
Bj0,2

. Thus infB∈Gc
n
ρ∞(Al,B) = ρ∞(Al,El) = |w(1)

Al
−w(1)

Bj0,t0
|.

The case when λBj0,2 ∈ Ij0,2 is similar.

• Case 2. λ∗
B(Al) is determined by (4.A.5). Therefore, Ṽ(λAl

) is not empty

and ∀ j = 1, . . . ,ν and t = 1,2, λBj,t /∈ Ṽ(λAl
). Our first step is to show that

λ∗
B(Al) defined in (4.A.4) fall in the same region as λAl

, i.e. λ∗
B(Al),λAl

∈

Ij,t for some j and t. By Lemma 4.46, we could always find λ ∈ Ṽ(λAl
),

such that λ,λAl
∈ Ij,t. Thus, it suffices to show that if λj1,4 ̸= λj2,4 ∈ Ṽ(λAl

),

ρ∞(λj1,4,λAl
)>ρ∞(λj2,4,λAl

), then λj1,4 /∈ Ij,t. This can be shown graphically

by Figure 4.13. Since ρ∞(λj1,4,λAl
) > ρ∞(λj2,4,λAl

), it is clear that λ falls

λj1,4

λj2,40 x(1)

x(2) ρ∞(λ,λj1,4) = ρ∞(λ,λj2,4)

ρ∞(λ,λj1,4)< ρ∞(λ,λj2,4)

ρ∞(λ,λj1,4)> ρ∞(λ,λj2,4)

Figure 4.13: Regions where ρ∞(λ,λj1,4) > ρ∞(λ,λj2,4) or ρ∞(λ,λj1,4) < ρ∞(λ,λj2,4) for
λ ⪰ λj1,4,λj2,4, with the boundary ρ∞(λ,λj1,4) = ρ∞(λ,λj2,4) shown as a
blue dashed line.

in the light green region of Figure 4.13. Additionally, the equidistant line

ρ∞(λ,λj1,4) = ρ∞(λ,λj2,4) is of 45 degrees. By the shape of I·,2 and I·,3, it is

clear that λj1,4 /∈ Ij,t. Thus λ∗
B(Al) defined in (4.A.4) should be in the same

region as λAl
. By the shape of regions in (4.A.2), it is also easy to show that
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λ∗
B(Al) in (4.A.5) also stays in the same set in (4.A.2) as λAl

. Therefore,

(4.A.6) can also prove to be true by using the same step as in Case 1(b)).

In summary, (4.A.6) holds.

4.D Accuracy and Speed Comparisons
In this appendix, we compare the speed and accuracy of the C++ implementation

of the projection and the transformation method in Section 4.3.1 for computing the

Hausdorff distance, H(F cm,Gcn). The reported CPU times are obtained running the

related C++ code on a machine with a 2.20 GHz Intel Core i7-14650HX processor

with 16GB RAM, running Windows 11.

We separately consider cases n = m =20, 50, 100, 500, 1000, 5000, 10000, and

50000. In each case of sample sizes, we generate two random samples from the

uniform distribution U(0,1) and then compute the H(F cm,Gcn). To further evalu-

ate the accuracy, we further round each observation in both samples to 6 decimal

places. Thus, although the statistical value H(F cm,Gcn) is sample dependent (there-

fore random), in the view of Lemma 4.23, the real value of H(F cm,Gcn) must be an

integer multiple of the value 10−6. With this available, we provide the run time for

computing H(F cm,Gcn) 1000 times, as well as their precision, in Table 4.2. Clearly,

m= n Algorithm H(F cm,Gcn) Rel.Err CPU time Relative time
20 P 0.15000000000000000 0 0.0057 0.98

Tr 0.15000000000000000 0 0.0058 1
50 P 0.08000000000000000 0 0.0098 1.04

Tr 0.07999999999999990 1.22×10−15 0.0094 1
100 P 0.04000000000000000 0 0.0184 1.18

Tr 0.04000000000000000 0 0.0157 1
500 P 0.02526300000000000 0 0.2455 2.47

Tr 0.02526300000000090 0 0.0994 1
1,000 P 0.01600000000000000 0 0.9185 3.91

Tr 0.01600000000000020 1.27×10−14 0.2348 1
5,000 P 0.00901700000000005 5.33×10−15 20.0851 13.9

Tr 0.00901699999999918 9.10×10−14 1.4468 1
10,000 P 0.00639999999999996 6.22×10−15 83.3945 26.0

Tr 0.00640000000000377 5.89×10−13 3.2110 1
50,000 P 0.00165999999999999 6.00×10−15 2002.7778 87.9

Tr 0.00165999999997949 1.24×10−11 22.7778 1

Table 4.2: The computed distance H(F c
m,G

c
n) with the corresponding relative error and

the CPU time for 1000 times repeated evaluations using C++ implementation
of projection (P) and Transformation (Tr) approach
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the projection approach usually provide 16 correct digits, in contrast to the trans-

formation approach, which typically provides 14 correct digits. This is at a cost

of higher run time, since the former approach is 1-87 times slower than the latter,

which further grows as sample sizes increase.



Chapter 5

Conclusions and Further

Developments

5.1 Summary of Potential Extensions

In Chapter 2, we have given recursive formulae (2.2.11) and (2.2.23) for the comput-

ing of the exact p-values of the KS tests and Kuiper tests with arbitrary weights for

data samples coming from discontinuous distributions. In principle, these recursive

formulae potentially can be generalized to the multivariate KS or Kuiper tests with

appropriate definitions.

We have further shown that the weight function suggested by Büning (2001)

can significantly improve the power of the KS test when samples come from purely

discrete distributions. The use of some particular weight functions of the KS test

has been thoroughly explored for continuous data samples; however, it remains to be

seen how to systematically select weight functions in the more general case, which

will be interesting to investigate in the future.

In addition, we have shown that the recursive formula (2.2.23) is efficient only

if the sample sizes m and n have a small least common multiple and is extremely

time-consuming if m and n are coprime. This computational inefficiency can be

addressed by two possible directions: one is to give a bound of the approximation

error arising from replacing m′ ≈m,n′ ≈ n so that it can be reasonably controlled,

the other is to further give a universal recursion formula without relying on the least

common multiple.

Potential extensions arising from Chapter 3 are given in Section 5.2.

In Chapter 4, we introduced the two-sample statistic based on the Hausdorff
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distance in the general case of dimension k ≥ 1 and developed a numerical method

to compute it when k ≤ 2. However, the computation complexity of the latter

method increases with k increasing, since it relies on searching and sorting the

onmidirectional jumps in the empirical cdfs Fm and Gn, whose numbers grow at

rates mk and nk respectively. Therefore, a potential further extension would be

to find an efficient method that evaluates the distance between empirical cdfs in

high dimensions with lower computational complexity. Furthermore, it would be

informative to conduct more systematic power comparisons against the existing test

statistics in high dimensions.

Another interesting extension of the results in Chapter 4 would be to consider

possibly dependent data and develop statistics for testing (conditional) indepen-

dence based on the Hausdorff distance. In particular, Kim et al. (2022) propose a

general framework for conditional independence testing based on local permutations

in the sample. This line of work has been extended further by Neykov et al. (2024),

who construct Wasserstein-type statistics for conditional independence and obtain

several fruitful results, where smoothness assumptions play a crucial role. We be-

lieve that this framework could be further generalized to construct independence

test statistics based on the Hausdorff metric, relying on the Lipschitz continuity

properties established in Theorem 4.6.

5.2 New Metrics and Statistics

In Chapter 3, we have investigated the properties of the Hausdorff statistic and its

scaled version Hn(σ). We have particularly highlighted its connections to the KS

statistic and shown in Theorem 3.17 that it can be rewritten in the form of the KS

test. We would like to highlight that this approach can be extended to introducing a

new metric in analogy to the Kuiper test. Following (3.2.7), which is the functional

form of the Hasudorff metric, we define the distance H ′ between cdfs F and Fn as

H ′(F,Fn) = sup
y

inf
x

max(|x−y|,F (x)−Fn(y)) + sup
x

inf
y

max(|x−y|,Fn(y)−F (x)) .

(5.2.1)

It is not difficult to show that H ′(F,Fn) can be expressed as

H ′(F c,F cn) = sup
t

[Kn(t)−K(t)]− inf
t

[Kn(t)−K(t)],
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similarly as in Theorem 3.17, where Kn and K are defined in Example 3.16. Since

Abrahamson (1967) has shown that the Bahadur exact slope of the Kuiper test is

higher than that of the KS test, following the similar logic, one should expect that

the statistic based on the metric H ′ may have higher Bahadur efficiency compared

with the Hausdorff metric, i.e., it has higher power.

Based on the Proposition 3.34, the values of Hn(σ) can be interpreted as the

vertical side of the largest rectangle among all rectangles with ratio of sides equal to

σ, inscribed between F c and F cn. Consequently, the values of Hn(σ) across different

σ are not directly comparable. A more natural normalisation is to consider 1
σH

2
n(σ)

or 1√
σ
Hn(σ) which both represent the area of that largest rectangle. In particular,

1√
σ
Hn(σ) can be meaningfully compared across different σ.

Since different choices of σ emphasise different aspects of the deviation between

F c and F cn, a statistic that aggregates all such information can be defined as

Hp
max = max

σ>0

{
w(σ)

[ 1√
σ
Hn(σ)

]p}
, Hp

int =
∫ ∞

0
w(σ)

[ 1√
σ
Hn(σ)

]p
dσ,

where w(σ) is an appropriately chosen weight function on σ ∈ (0,∞) guaranteeing

that both statistics are well defined, i.e., Hp
max < ∞ and Hp

int < ∞. More im-

portantly, since 1√
σ
Hn(σ) represents the area, it is not difficult to show that any

rescaling with respect to F and Fn does not affect the p-values of Hp
max and Hp

int.

When w(σ) ≡ 1, the value H2
max has the simple geometric interpretation of being

the area of the largest rectangle inscribed between F c and F cn.

Furthermore, combining the reasoning based on Section 3.3.2 and the rule

(3.3.11), when ψ1 ≈ ψ2 ≈ ψ, (3.3.11) reduces to σ = f(F−1(ψ)). Substituting this

reparametrisation into Hp
int yields

Hp
int =

∫ 1

0
w̃(ψ)

[
1√

f (F−1(ψ))
Hn

(
f
(
F−1(ψ)

))]p
dψ,

where w̃(ψ) is a weight function with respect to ψ ∈ (0,1).

Intuitively, 1√
f(F−1(ψ))

Hn
(
f
(
F−1(ψ)

))
is the statistic that are sensitive around

the ψ quantile of F . Therefore, by choosing w̃(ψ) to take larger values when ψ

is close to 0 or 1, one can construct a statistic that is simultaneously sensitive to

deviations in both the left and right tails of the null distribution, regardless of the
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shape of F . This stands in contrast to the original Hn(σ), for which it is impossible

to tune σ so as to achieve simultaneous left- and right-tail sensitivity when F is

purely concave or purely convex. However, all of the above statistics effectively

introduce new metrics on the space of distribution functions and therefore require

systematic investigation. For instance, one can show that when w(σ) ≡ 1, H2
max is

well defined (i.e. finite) for any distribution function F satisfying

∫ +∞

0
[1−F (t)]dt+

∫ 0

−∞
F (t)dt <∞.

However, in general, H2
max need not be finite for arbitrary F , and it may fail to

define a well-defined metric on the full class of distributions.

In Chapter 4, we have also highlighted the connection between the Hausdorff

metric and the Levy-Prokhorov metric. Another interesting investigation will be to

extend the existing methods and theoretical results for the Hausdorff metric to the

statistic constructed based on the Levy-Prokhorov metric, i.e. ρLP (µXm ,µYn), which

again is scale-dependent but robust to mild perturbations. We should highlight that

Alexander (1974) has investigated a statistic based on the Prokhorov metric and

applying rank transformation. However, as we have similarly argued in Remark 3.24

and Section 4.4, such a rank-statistic is less appealing since it does not take into

account the information contained in each observation and violates many robustness

properties. We still believe the approach to tune scale rather than applying the

ranking transformation gives potential to develop more powerful tests against the

Wasserstein test and more flexibility to develop locally sensitive tests.

We also believe this statistic will be particularly powerful for (two-sample) high-

dimensional statistics since it does not rely on any specific definitions of the empir-

ical cdf and thus is independent of the relative ordering in Rk. In addition, Garel

and Massé (2009) have shown in their Lemma 5 that the exact Prokhorov distance

between finite-support probability measures can be obtained by solving an optimiza-

tion problem through the simplex method. The latter requires the knowledge of the

distances between different data points and thus the complexity does not grow as

the dimension grows, in contrast to the H statistic.

For the purpose of computing the p-values of ρLP (µXm ,µYn), one will need the

permutation version ρLP (µ
X†

m
,µ
Y †

n
) and the theory regarding their p-value differ-
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ences, similar to Theorem 4.24. It may be possible to extend Theorem 4.24 to the

univariate ρLP (µXm ,µYn) through the following route. First, we consider the class

Ck, which denotes the collection of unions of finite (at most k) intervals, then one can

extend the weak convergence in (4.C.13) of Lemma 4.42 over the indicator functions

1C , C ∈ Ck, since Ck has finite Vapnik–Chervonenkis dimension. Therefore one can

extend Theorem 4.24 to the statistic ρLP (µXm ,µYn ;Ck) and its permutation version.

Second, if it is possible to establish a bound

√
mn

m+n
|ρLP (µXm ,µYn)−ρLP (µXm ,µYn ;Ck)|< α(k), ∀m,n

where α(k)→ 0 as k →∞ under certain regularity conditions of the underlying

distributions F and G, Theorem 4.24 can then be extended to ρLP (µXm ,µYn).

Furthermore, we emphasise that, unlike the Hausdorff metric, which is only

quasi-convex with respect to the probability measures, the Prokhorov metric is gen-

uinely convex. This makes Prokhorov-based constructions particularly attractive in

global sensitivity analysis and variable-importance measures, where convexity un-

derlies several other desirable properties Borgonovo et al. (2025a). In addition, as

already mentioned, the Prokhorov distance could be tuned to emphasise different

features of the distributions, in close analogy with the Hausdorff metric. Therefore,

we expect that, in the context of variable-importance analysis, Prokhorov-based in-

dices would systematically reveal how the distribution of the output responds to

perturbations in each input.



Bibliography

Abrahamson, I.G., 1967. Exact Bahadur Efficiencies for the Kolmogorov-Smirnov

and Kuiper One- and Two-Sample Statistics. The Annals of Mathematical Statis-

tics 38, 1475 – 1490.

Albrecher, H., Beirlant, J., Teugels, J.L., 2017. Reinsurance: Actuarial and Statis-

tical Aspects. John Wiley & Sons.

Alexander, C.H., 1974. Statistical Tests Based on the Levy and Prohorov Metrics.

Ph.D. thesis. North Carolina State University. Raleigh, NC.

Algolytics Technologies, 2022. AdvancedMiner, Version 3.3.11. Warszawa, Poland.

Alzubaidi, A., Kalita, J., 2016. Authentication of Smartphone Users Using Behav-

ioral Biometrics. IEEE Communications Surveys & Tutorials 18, 1998–2026.

Anderson, T.W., 1960. A Modification of the Sequential Probability Ratio Test to

Reduce the Sample Size. The Annals of Mathematical Statistics , 165–197.

Anderson, T.W., Darling, D.A., 1952. Asymptotic Theory of Certain ”Goodness of

fit” Criteria Based on Stochastic Processes. The Annals of mathematical statistics

, 193–212.

Apache Software Foundation, 2024. Commons Math: The Apache Commons Math-

ematics Library, Version 4.0-SNAPSHOT. Wakefield, Massachusetts.

Archibald, A., 2015. Kuiper: Kuiper test and other tools from circular statistics.

URL: http://github.com/aarchiba/kuiper.

Arnold, T.B., Emerson, J.W., 2022. dgof: Discrete Goodness-of-Fit Tests. URL:

https://CRAN.R-project.org/package=dgof. R package version 1.4.

http://github.com/aarchiba/kuiper
https://CRAN.R-project.org/package=dgof


BIBLIOGRAPHY 219

Arsioli, B., Dedin, P., 2020. Machine Learning Applied to Multifrequency Data in

Astrophysics: Blazar Classification. Monthly Notices of the Royal Astronomical

Society 498, 1750–1764.

Avella-Medina, M., 2021. Privacy-preserving Parametric Inference: A Case for Ro-

bust Statistics. Journal of the American Statistical Association 116, 969–983.

Bahadur, R.R., 1971. Some Limit Theorems in Statistics. SIAM.

del Barrio, E., Cuesta-Albertos, J.A., Matrán, C., Csörgö, S., Cuadras, C.M.,
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