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Abstract

In this thesis, we focus on the goodness-of-fit (GoF) testing problem. Although
there are a number of classical GoF tests proposed in the literature, there is no
‘best’ test that suits all purposes and possesses all the desirable properties. In this
thesis, we investigate in detail the properties of two of these classical tests, namely
the Kolmogorov-Smirnov and the Kuiper tests, and provide efficient and exact nu-
merical methods to compute their p-values. As known, the latter tests are ordinal
and that affects their power especially in the tails. Furthermore, we propose a new
H test based on the Hausdorff distance that depends on both the ordinate and
abscissa coordinates. As a result of that and of the fact that it is location invari-
ant but scale dependent, we are able to show that its power can be optimized by
appropriately selecting the scale coefficient. We illustrate the enhanced power of
the H test in numerous numerical examples both in the one-sample univariate and
in the two-sample multivariate settings. More precisely, we show that the H test
outperforms classical alternatives like Kolmogorov-Smirnov (KS), Cramer-von Mises
(CvM) and Anderson-Darling (AD) in terms of power in the univariate case, and
also the Ball Divergence, Maximum Mean Discrepancy, Cross Match, the Nearest
Neighbor, and some other tests in the bivariate case. Last but not least, we in-
vestigate the theoretical properties of the H test and its p-values both for finite
samples and asymptotically. We further provide useful results that allow the nu-
merical evaluation of the H test, its p-values, exact Bahadur slope and asymptotic

power.



Chapter 1

Introduction

This thesis focuses on the goodness-of-fit testing problems. Goodness-of-fit testing
is about checking whether a pre-specified hypothetical distribution fits a random
sample, or whether two random samples come from a common but unspecified dis-
tribution. It is a fundamental statistical task underpinning model validation and
data comparisons that are widely used in any area of research and project develop-
ment where big volumes (samples) of data on one or more variables of interest are

collected and analyzed.

There are many goodness-of-fit test statistics in the literature among which the
classical Kolmogorov-Smirnov (KS), the Kuiper, the Cramer von Mises (CvM), the
Anderson-Darling (AD) and the Wasserstein (W) test more recently considered in
del Barrio et al. (1999) and del Barrio et al. (2000). The latter tests have gained great
popularity and have been widely applied in almost any field where data is collected
and analysed such as, astronomy (McQuillan et al., 2013), social sciences (Salman
et al., 2015), pattern recognition (Alzubaidi and Kalita, 2016), machine learning
(Gretton et al., 2012) etc., to name only a few. More recently, researchers have
started to consider the goodness-of-fit test statistic in multi-dimensional, including
the run tests based on the minimal spanning tree due to Friedman and Rafsky
(1979), and on the shortest Hamiltonian path proposed by Biswas et al. (2014), the
Wasserstein test (Hundrieser et al., 2024), the Ball divergence test (Pan et al., 2018),
the Maximum Mean Discrepancy test (Gretton et al., 2012), the Cross Match test
(Rosenbaum, 2005) and the Schilling-Henze Nearest Neighbor test (c.f. Schilling,
1986; Henze, 1988).

Although many tests are being proposed, there is no universally recognized
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‘best’ tests that suits all purposes and possesses all the desirable properties. The
use of a particular statistic is usually a trade-off between power and computational
feasibility. For example, the widely used KS test, based on the supremum distance,
is readily understood graphically, is easy to evaluate, and is distribution-free when
the null is continuous. However, it is less sensitive in the tails and generally has
lower power (see e.g. Mason and Schuenemeyer, 1983; Feigelson and Babu, 2020),
making it less efficient for tail comparisons, which are particularly important in ex-
treme value applications. The AD and CvM tests, based on the L?-distance, are also
distribution-free and have high power in many cases but have not been introduced for
discrete or mixed null distributions. The W test, based on the L?-Wasserstein dis-
tance, also has high power in many settings but is not distribution-free and becomes
computationally demanding, especially in higher dimensions where its evaluation
can be heavy without entropic regularization (see Cuturi, 2013). Graph-based mul-
tivariate tests, such as run statistics, face similar challenges, as their evaluation can
be non-deterministic polynomial time (NP) problems.

Moreover, as noted by Janssen (2000), no single test can pay equal attention
to an infinite number of orthogonal alternatives, meaning there is no universally
powerful test.

The lack of universally powerful tests and the limitations of existing goodness-
of-fit tests motivatives further research. In this thesis, we investigate the properties
of two of the existing tests, i.e. the Kolmogorov-Smirnov and the Kuiper tests and

propose a new test that is based on the Hausdorff distance.

In Chapter 2, we show that the difference between the critical values of the per-
mutation KS test and the KS test defined in terms of the ecdfs of the two samples
is asymptotically negligible which therefore applies to the difference between their
p-values. We use this result to develop a numerically efficient recurrence method
for computing p-values of the two sample KS test. A similar method but for the
unweighted KS test has been independently considered by Nikiforov (1994), Hilton
et al. (1994), and Schréer and Trenkler (1995), but without any theoretical justifi-
cation. We have completed and generalized the work of these authors as follows: 1)
we provide the missing theoretical justification of why such a recurrence approach

is valid; 2) we allow flexible choices of the weight function of the KS test, leading
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to better power; 3) we extend the method to compute p-values of the two sample
Kuiper test, thus covering the case of data with ties; 4) we show how the recurrence
can be adjusted in the spirit of Viehmann (2021), leading to better accuracy. We also
derive a closed-form expression for the asymptotic distribution of the two-sample KS
test, assuming jumps in the null distribution and illustrate its efficiency in comput-
ing p-values.We also give an extensive overview of the existing statistical software,
computing KS and Kuiper p-values and compare it with the performance of our
proposed methods, implemented in the R functions KS2sample and Kuiper2sample.
The latter can be useful for researchers from various fields, who analyze data, and

perform distributional hypothesis testing, applying KS and Kuiper p-values.

In Chapter 3, we consider the Hausdorff metric and its use in measuring the
distance between an empirical and a theoretical cumulative distribution function
(cdf). We propose a corresponding one-sample Hausdorff goodness-of-fit test statis-
tic, the H test, give its geometric interpretation, and a method to evaluate it. We
show that its exact and asymptotic p-values can be expressed correspondingly as
rectangle probability and as double boundary crossing probability with respect to a
Brownian bridge. Efficient numerical methods for computing the p-values, the exact

Bahadur slope, and asymptotic power of the H test are also provided.

We also show that the p-values of the H test are not invariant under scale
transformation. Investigating theoretically this scale dependence, we find that by
appropriately selecting the scale coefficient, the power of the H test can be controlled
and optimized. This is an important feature which other tests such as Kolmogorov-
Smirnov (KS), Cramer von Mises (CvM) and the Anderson-Darling (AD) do not
possess. In particular, based on synthetic and real data examples, we demonstrate
that when testing goodness-of-fit in the tail, the power and tail sensitivity of the
scale-tuned H test is higher than the power of the KS, CvM and AD tests. All these

properties make the H test a competitive alternative to existing goodness-of-fit tests.

As an extension of Chapter 3, in Chapter 4, we explore the use of the Hausdorff
metric between possibly multivariate empirical cumulative distribution functions

with the purpose of testing for goodness-of-fit. As in the one-sample case, the clas-
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sical tests such as KS, CvM, and AD have appealing properties in the univariate
setting but lose efficiency for tail differences. Existing multivariate tests, including
Wasserstein- and run-based methods, can achieve high power but are computation-
ally demanding. Since no hypothesized null distribution is available, extending the
existing approach in Chapter 3 to the two-sample multivariate setting is challenging.
We address these challenges as follows. We introduce an explicit and computable
representation of the two-sample Hausdorff (H) statistic with a geometric interpre-
tation as the edge of the largest hypercube that can be inscribed between the two
ecdfs. We propose a permutation version of H and establish its asymptotic equiva-
lences in terms of power and type I error, under the null and (fixed or contiguous)
alternative. Based on this, we develop a method to compute the exact and asymp-
totic p-values of the H statistic. In view of the scale dependence of H, we propose
a rule for selecting the scale coefficient, so as to optimize its power. Last but not
least, we give some useful properties of H including its Lipschitz continuity, qual-
itative robustness and connections to the Lévy-Prokhorov metric and the KS test.
We demonstrate based on numerical examples that the scale-tuned Hausdorff test
outperforms the major competitors in terms of power in the univariate and bivariate

cases.

1.1  Publications arising from this thesis

Chapter 2: On the Efficient Exact Calculation of p-values of the Two-sample

Kolmogorov-Smirnov and Kuiper Tests.
This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). Efficient
Exact Calculation of p-values of the Two-sample Kolmogorov-Smirnov and Kuiper

Tests. submitted.

Chapter 3: On a New One-sample Goodness-of-fit Test based on the Hausdorff

Metric.
This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a One
Sample Goodness-of-Fit Test Based on the Hausdorff Metric. submitted.
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Chapter 4: On a New Two-sample Multivariate Goodness-of-fit Test based on the
Hausdorff Metric.

This chapter is based on the paper:

Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a Two-

sample Multivariate Goodness-of-fit Test based on the Hausdorff Metric. near sub-

misston.



Chapter 2

On the Efficient Exact Calculation of
p-values of the Two-sample

Kolmogorov-Smirnov and Kuiper Tests

This chapter is based on the paper:
Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). Efficient
Exact Calculation of p-values of the Two-sample Kolmogorov-Smirnov and Kuiper

Tests. submitted.

Abstract

We show that the difference between the critical values of the permutation KS test
and the KS test defined in terms of the ecdfs of the two samples is asymptotically
negligible which therefore applies to the difference between their p-values. We use
this result to develop a numerically efficient recurrence method for computing p-
values of the two sample KS test. A similar method but for the unweighted KS test
has been independently considered by Nikiforov (1994), Hilton et al. (1994), and
Schréer and Trenkler (1995), but without any theoretical justification.

We have completed and generalized the work of these authors as follows: 1)
we provide the missing theoretical justification of why such a recurrence approach
is valid; 2) we allow flexible choices of the weight function of the KS test, leading
to better power; 3) we extend the method to compute p-values of the two sample
Kuiper test, thus covering the case of data with ties; 4) we show how the recurrence
can be adjusted in the spirit of Viehmann (2021), leading to better accuracy.

We also derive a closed-form expression for the asymptotic distribution of the
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two-sample KS test, assuming jumps in the null distribution and illustrate its effi-
ciency in computing p-values.

We finally give an extensive overview of the existing statistical software, com-
puting KS and Kuiper p-values and compare it with the performance of our proposed
methods, implemented in the R functions KS2sample and Kuiper2sample. The lat-
ter can be useful for researchers from various fields, who analyze data, and perform

distributional hypothesis testing, applying KS and Kuiper p-values.

2.1 Introduction

In almost any area of research and project development such as, economics, natural
sciences, industry, engineering, insurance, banking and finance, big volumes (sam-
ples) of data on one or more variables of interest are collected and analyzed. Such
tasks fall within the rapidly growing field of data science (also big data statistics),
which underpins the development and application of machine learning methods (see
e.g., Gretton et al., 2012). In all these areas, it is often necessary to test whether
the data samples, usually analyzed by pairs, come from an (unspecified) common
probability distribution. There are various goodness-of-fit tests (see e.g. Meintanis
et al., 2024; Borrajo et al., 2024) that are used for the purpose, among which two
widely used are the one and two sample Kolmogorov-Smirnov (KS) tests (see e.g.
Dimitrova et al., 2020; Moscovich, 2023; Nikiforov, 1994; Viehmann, 2021), and the
Kuiper test (Paltani, 2004).

The two-sample KS test is defined as the maximum of the absolute value of the
difference between the empirical distribution functions of the two samples. Since
this maximum tends to be achieved around the center of the distribution, the KS
test is more sensitive there, which is considered as one of its limitations. At the same
time the KS-test is simple and intuitive and is therefore one of the most popular
goodness-of-fit tests applied in numerous fields, e.g., in astronomy, (see Feigelson and
Babu, 2020), internet behaviour analysis, (Mousavi et al., 2022), physics, (Arsioli
and Dedin, 2020), hydrology, (Zhang et al., 2022), to name only a few.

The two sample Kuiper test represents an extension of the KS test that is
equally sensitive both in the center and the tails of the underlying distribution.
This stems from its definition as the sum of the absolute values of the most positive

and most negative differences between the empirical distribution functions of the
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two samples. In addition, the Kuiper test is also better suited for goodness-of-fit
testing with seasonal and circular data. As a consequence, the Kuiper test has
also gained significant popularity and is being widely used, as evidenced by the
numerous references in the literature, see e.g., applications in finance, (Yung et al.,
2008), genetics, (Dudbridge, 2006), neural-networks, (Mouli et al., 2019), astronomy
(Lin et al., 2022), brain-machine interface (Chhatbar and Francis, 2013), the geology

of earthquakes (Kossobokov and Panza, 2020), and many others.

All these examples represent just a small selection from the very large volume of
applications, confirming the importance of providing efficient means for computing
the two-sample KS and Kuiper tests and their p-values. The p-value is defined as
the probability that the (KS or Kuiper) test statistic is greater than or equal to a

specified fixed value.

Our three major goals in this chapter are: 1) to present efficient numerical
methods for computing exact p-values of the two-sample (one-sided or two-sided)
KS test and the two-sample Kuiper test, when sample sizes are finite; 2) to give
a closed form formula for the asymptotic distribution of the two sample KS test,
as the two sample sizes go to infinity, for the case of ties in the observations; 3)
to investigate the numerical performance of both asymptotic and finite sample size
methods and compare the latter with other existing statistical software. For the
purpose we implement our finite sample size methods in the R functions, KS2sample
and Kuiper2sample, and give an extensive overview of the existing implementations,

which we believe will be helpful for the practitioners using these goodness-of-fit tests.

Computing acurate p-values is crucial in testing the null hypothesis that samples
have a common (but unknown) underlying distribution. When the underlying dis-
tributions are continuous, Hodges (1958), Kim (1969) and Kim and Jennrich (1973)
have given recurrence formulas to compute the exact unweighted KS p-values. Maag
and Stephens (1968) and Hirakawa (1973) give formulas to compute the exact Kuiper
p-values when sample sizes are equal. Their formulas are valid, since both the KS and
Kuiper tests are distribution-free for continuous underlying distributions. However,
in the case when the samples come from two arbitrary distributions, computing their
p-values are not directly possible since the distribution of the two-sample KS/Kuiper

test is unknown. In order to overcome this difficulty, we consider an alternative for-
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mulation of the KS/Kuiper test, referred to as the permutation KS/Kuiper test.
The latter is defined over the space of all possible pairs of samples, randomly drawn

without replacement from the pooled sample.

We should point out that when the underlying distributions are non-continuous,
Nikiforov (1994), Hilton et al. (1994), and Schréer and Trenkler (1995) have inde-
pendently given similar formulas to compute the KS p-values conditioned on the
sample realization. However, Hilton et al. (1994) has noted the computational diffi-
culty in recovering the unconditional p-values from the conditional p-values. Schréer
and Trenkler (1995) treated the conditional p-values as unconditional and referred
vaguely to the "principle of randomization tests”. While it is valid in view of The-
orem 3.2 of Hoeffding (1952) when the null hypothesis holds, the principle is not
necessarily valid in a more general case, as pointed out by Chung and Romano

(2013).

In order to fill the existing gaps, we summarize our contributions in this chapter
as follows. First, in Section 2.2.2, we prove Theorem 2.1 which shows that the
difference between the critical values of the permutation KS test and the KS test
defined in terms of the ecdfs of the two samples is asymptotically negligible for
arbitrary underlying distributions of the two samples, which therefore applies to the
difference between their p-values. This fundamental result provides the theoretical
background in support of the recurrence method for computing p-values provided

by formula (2.2.11) and its further enhancement given in formula (2.2.12).

We provide a formal description of the major steps of the method stemming
from formula (2.2.11), with proofs and enlightening examples, given in Section 2.2.2
and Appendix 2.A, that are missing in the chapters of the above-mentioned authors.
We have generalized the latter algorithm to allow for an arbitrary weight function
(see Proposition 2.2 for the corresponding p-value). Such flexibility is important
since, as known, the choice of weight function significantly affects the power of the
test (see Examples 2.18 and 2.19, Appendix 2.C and also Biining, 2001). We have
further enhanced the method, following Viehmann (2021), which leads to a slower
but more stable and accurate computation of the KS p-values, as also shown in
Section 4 and Appendix D. To match the tradeoff between speed and accuracy, we

have implemented both versions of the algorithm in the R function KS2sample.
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Second, in Section 2.2.3 we derive a closed form formula (c.f. (2.2.15), The-
orem 2.5) for the asymptotic distribution, of the two-sample Kolmogorov-Smirnov
test, which is valid for arbitrary samples, allowing ties in the observations. To the
best of our knowledge, the asymptotic distribution of the two-sample KS test has
not been investigated in the literature in the case of tied observations. Therefore,
formula (2.2.15) and Theorem 2.5 represent a novel contribution of theoretical and
numerical importance. We demonstrate (see Example 2.13 and Table 2.2) that
the asymptotic formula (2.2.15) is a numerically efficient alternative to the exact

method, for computing KS p-values when the sum of sample sizes exceeds 90,000.

Third, in Section 2.2.5, we show how the method based on the recurrence for-
mula (2.2.11) can be further generalized in order to compute exact Kuiper p-values
allowing arbitrary continuous, discrete or mixed observations in the sample. To the
best of our knowledge, the computation of exact Kuiper p-values has only been con-
sidered for the continuous case and equal sample sizes (Maag and Stephens, 1968;
Hirakawa, 1973). We have also enhanced the computation in the spirit of Viehmann
(2021), to improve its accuracy. To match the tradeoff between speed and accu-
racy, both of these versions of the algorithm for the KS and Kuiper p-values are
implemented in the two functions KS2sample and Kuiper2sample and are fully in-

vestigated and compared in Section 2.4.

Fourth, we present a power comparison between the Kuiper test and the KS
test with different weight functions. We show that the Kuiper test represents a more
powerful alternative in the case of discrete observations, that seems not to have been

previously investigated (see Appendix 2.C).

Lastly, we present a thorough review of the software that computes KS and
Kuiper p-values, which is motivated by several reasons. Firstly, the majority of
implementations of the KS and the Kuiper tests rely on approximate/resampling
(rather than exact) methods to compute p-values. Secondly, it appears that the
majority of the existing statistical software packages, (see Section 2.4 for a short
summary and further details) have limited capabilities and give only p-values for
the unweighted KS test, assuming single observations in the sample, not offering
sufficient flexibility in choosing the weight function, which ultimately affects the
power of the KS test (see Examples 2.18 and 2.19 in Appendix 2.C). Thirdly, al-
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though the Kuiper test is applicable for circular observations with ties, the existing
software for computing its p-values only work for the case of no ties, as pointed out
by Boulesteix and Strobl (2007) and also evidenced by our thorough comparison in
Section 2.4.2. However, goodness-of-fit testing on circular data with ties is also an
important task, as confirmed by Jammalamadaka et al. (2020), that needs to be

considered.

As mentioned, here we address all these deficiencies by developing the efficient
and numerically stable R functions KS2sample and Kuiper2sample. We include the
latter in the R package KSgeneral, previously developed by Dimitrova, Kaishev and
Tan (2020). The latter package allows for computing p-values of the one-sample KS
test for arbitrary continuous, discrete, or mixed null distribution. It has gained sig-
nificant popularity among researchers and practitioners across various disciplines.
This is evidenced by the large number of downloads of KSgeneral which exceeds
34,000 of present. The functions KS2sample and Kuiper2sample extend the ca-
pabilities of the KSgeneral to the two-sample goodness-of-fit testing with the KS
and Kuiper tests. We have also developed a Mathematica code that computes KS
and Kuiper p-values with arbitrary accuracy (albeit quite slow), and have used the
latter as true benchmark p-values in the software comparisons that we present in
Section 2.4 and Appendix 2.D. The results of the latter comparison are yet another

contribution of this chapter that we believe is worth highlighting.

The chapter is organized as follows. In Section 2.2, we briefly introduce the
weighted KS and Kuiper tests and describe the proposed methods for computing
their corresponding p-values. In Theorem 2.1, we give a theoretical justification of
the latter methods. In Section 2.2.3, we present formula (2.2.15) for the asymptotic
distribution of the two-sample KS test. In Section 2.3, we give two examples, the
first one illustrating the use of the R function Kuiper2sample on circular data with
ties, for computing Kuiper p-values, and the second one illustrating the numerical
performance of the asymptotic formula (2.2.15). Then in Section 2.4, we give a thor-
ough overview of the existing software implementations for computing two-sample
KS and Kuiper p-values and select some of them as benchmark implementations
with whom we further compare our KS2sample and Kuiper2sample functions in

terms of speed and accuracy. Finally, in Section 2.5, we summarize our findings. In
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Appendix 2.A, we give some auxiliary results and proofs of the propositions from
Section 2.2. In Appendix 2.B, we give some examples that illustrate the algorithms
behind the functions KS2sample and Kuiper2sample and their numerical implemen-
tation. In Appendix 2.C, we present power comparisons between the KS and the
Kuiper tests. Finally, Appendix 2.D contains numerical results that support the

comparisons and conclusions of Section 2.4.

2.2 The Two-sample KS and Kuiper Test

2.2.1 The Two-sample KS Test

The two-sample KS statistic is designed to test whether two samples come from
an unspecified common probability distribution. More precisely, let F(x) and G(z)
be two cumulative distribution functions, either continuous or discrete (or mixed).
Let X,, = (X1,...,X\n) and Y,, = (Y1,...,Y,) be two mutually independent random
samples drawn correspondingly from these two (unknown) distributions. We want
to test the null hypothesis Hy : F(x) = G(x) for all x, either against the alternative
hypothesis H; : F'(z) # G(z) for at least one x, which corresponds to the two-sided
test, or against H; : F(x) > G(z) and H; : F(x) < G(z) for at least one x, which
corresponds to the two one-sided tests. The two sample KS statistics that are used

to test these hypotheses are generally defined as:

Amp = ilell@lé [Fin(2) — G (@) W (Epin ()

A;L,n = ilelg{Fm(x) = Gn(2)}W(Emin(2)) (2.2.1)

A= i}éﬁ{Gn(ﬂc) — En(2) )W (Epin(2)),

where A, denotes the two-sided test, A}, and A, denote the two one-sided
tests, Fy,(z) and G, (x) are the empirical (cumulative) distribution functions (edf) of
X, and Yy, Ep () is the edf of the pooled sample Z,, 4, := (X1,..., X, Y1,...Yy),

and W (t) is a non-negative weight function, defined on ¢ € [0,1].

The choice of weight function in (2.2.1) leads to different specifications of the
KS test statistic which, as noted in the introduction, influences its power. Following
are some examples of choices of W (t) for the two-sided KS test, A, , in (2.2.1).

For instance, if W (t) =1, the latter test, denoted as A . and referred to as the

m,n
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unweighted KS test is given as:
AY, . = sup| Fy(x) — Gn(2)]. (2.2.2)
x

When W (t) = 1/[t(1 —1)]'/2, the KS test, denoted as A%?n, and referred to as the

variance-stabilized weighted KS statistic (see Canner, 1975), is defined as:

(2.2.3)

A g Fn@) =Gula)]
’ v/ Emin(2)(1 = Epgn(2))
It is not difficult to see that the weight functions from (2.2.2) and (2.2.3) gen-

eralize to (see Finner and Gontscharuk, 2018):
W(t)=1/[t(1—1)]", (2.2.4)

where 0 <v < 1. The latter defines a family of weighted KS tests, A}, , (0 <v <1),

which covers AJ), | and A}T{?n, for the choices, v =0 and v =1/2.

It has been pointed out by Finner and Gontscharuk (2018) that when the sam-
ples are drawn from two normal distributions, correspondingly with different mean
and variance, the power of the statistic, A}, ,, v € [0,1], as a function of v, is approx-
imately unimodal. The maximum power is achieved when v € [0.3,0.6]. When both
the distributions of null and alternative hypothesis are left skewed and heavy-tailed,
Biining (2001) suggested using the weight function W (t) = 1/[t(2 —t)]'/? which en-

sures higher power than the test A%Qn (see also examples in Appendix 2.C).

2.2.2 Computing Exact P values of the KS Test

Let us note that since the distribution of A, ,, is unknown when F' and G are two
arbitrary distributions, computing its p-values is not directly possible. In order
to overcome this difficulty, we consider an alternative formulation of the KS test,
referred to as the permutation KS test. The latter is defined over the space of all

possible pairs C' = of samples X, and Y, of sizes m and n randomly drawn

(")
without replacement from the pooled sample Z,,1,,. We show in Theorem 2.1 that
the difference between the critical value of the permutation KS test and that of A, ,,
is asymptotically negligible for arbitrary F' and G, which therefore applies to the

difference between their p-values. This fundamental result provides the theoretical
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background in support of the recurrence method for computing p-values provided by
formula (2.2.11) and its further enhancement given in formula (2.2.12). Note that a
recurrence method similar to that given in formula (2.2.11) but for the unweighted
KS test has been independently considered by Nikiforov (1994), Hilton et al. (1994),

and Schroer and Trenkler (1995), but without theoretical justification.

We also show that the formula (2.2.11) can be further simplified to the recur-
rence formula (2.2.12), which leads to an algorithm recently considered by Viehmann
(2021). The latter is slower but more numerically stable and accurate, as demon-
strated in Section 2.4. We have implemented both formulas (2.2.11) and (2.2.12)
in the C++ functions ks2sample_cpp, ks2sample_c_cpp, the R function KS2sample
and in Mathematica (Wolfram Research, Inc, 2024), which are more general than
Nikiforov’s Fortran 77 code, by allowing for arbitrary weight functions. It will be

instructive to briefly highlight the main steps of the algorithm we have implemented.

For a particular realization of the pooled sample Z,, 1, let there be k distinct
values, a1 < ag < ... < ag, in the ordered, pooled sample (21 < 22 < ... < Zpyn),
where kK < m+n. Denote by m; the number of times a; appears in the pooled
sample, ¢ =1,...,k. Given the pooled sample Z,,,, the p-value is then defined as

the conditional probability

P=P(Dpn > q| Zmin), (2.2.5)

where Dy, , is the permutation KS statistic, defined as in (2.2.1), for two samples
X,, and Y, of sizes m and n, randomly drawn from Z,,,, without replacement and
q € [0,1]. To simplify notation, we will further omit the condition in (2.2.5) and
write P (D, n > q).

Formally, given the pooled sample Z,,;,, the permutation KS test D,,, in

(2.2.5) is defined as

Dy p(w) = sug | F(z,w) — G (2,w) |[W (Epgn(z)), (2.2.6)
S
where D,, , is regarded as a mapping on the space Q of all C' = (m;:") possible

pairs of empirical distribution functions (F,(z,w),Gp(z,w)), w € Q. Each such pair

corresponds to a pair of X,, and Yn obtained by randomly drawing (without re-
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placement) from the pooled sample Zm+n, as follows. First, m observations are
drawn at random without replacement, forming the first sample X,,, with corre-
sponding edf, F,,(x,w). The remaining n observations are then assigned to the
second sample Y;,, with corresponding edf G, (z,w). Resampling in this way will
result in the occurrence of all the C possible pairs of edfs F,(z,w) and G, (z,w),
w € Q. The pairs of edf’s may be coincident if there are ties in the data and each pair,
F,,(z,w) and Gy, (z,w) occurs with probability 1/C' (see Example 2.3). The above-
mentioned resampling procedure is a general permutation and randomization tests
construction (See Lehmann and Romano, 2005, Section 15.2). Alternatively, follow-
ing Section 3.8.1, van der Vaart and Wellner (2023), F,,(z,w) and G,,(z,w) can be
equivalently viewed as the ecdfs of the permutation samples X);l ={Zgr,,---,ZR,, }
and Y, = {ZRmsrs-»ZRpin }, Where Ry = (R1,Ry,...,Rpyp) is independent
from the samples X, and Y, and uniformly distributed on the set of permutations
of {1,2,...,m+n}, i.e. every possible realization of R,,, has probability 1/(m+n)!
(see (4.3.9) in Section 4.3.2).

Considering the conditional p-value P in (2.2.5) is important, since it allows us
to show that the difference between the critical levels of D, , and A, , becomes
asymptotically negligible, which leads to the conditional p-value P converging to the

unconditional p-value P(A,, , > ¢) as shown in the following theorem.

Theorem 2.1. Assume that X,, and Y, come correspondingly from the distributions

F(z) and G(x). Denote by g}, ,(p) the critical level of the statistic /2% Dy, ,, given

m4+n

f =inf :P(\/WD > )< VA .
Qm,n(p) m {q m4+n m7n_q _p| m+n}

mn
m—+n

Zm+n, i.e.

Denote by qp, ,(p) the critical value of

A when X, and 'Y, come from the

distribution nF + (1—n)G, n € (0,1), i.e.

mn
* =inf{q:P(\/——Apmn>q) <p}
@ (p) = inf{q ( e ,_q>_p}

When the weighted function W in A, is bounded and uniformly continuous and

for a fized p, we have

* P
@ (D) — o (P) = 0,
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m
m4+n

P . -
as m,n — oo and — 1, where = stands for convergence in probability.

mn
m-+n

The normalizing factor ensures that the convergence result is non-trivial,

since qln’n(p) does not converge to 0. When both F' and G are continuous, the result
is less interesting, since both A,,, and D,,, are distribution-free. However, it
is particularly important when both F' and G are discontinuous cdfs and the null
hypothesis F' = G may fail to hold.

Let us note that a result similar to Theorem 2.1 may not hold for an arbitrary
two-sample statistic and its corresponding permutation test. This is illustrated
by Example 5.3 of Chung and Romano (2013). Let us also note that a similar
asymptotic consistency result for the unweighted KS test is provided by van der
Vaart and Wellner (2023) using a different approach. Theorem 2.1 is more general
as it covers the weighted KS test and naturally leads to the numerical algorithm for

computing KS p-values that follows.

In order to compute the p-value P in (2.2.5), we alternatively express it as,
, (2.2.7)

where, N is the number of pairs, F,(z,w) and G, (x,w), drawn from the pooled
sample Z,, 1, for which D,, , <g. So in order to compute the p-value, P, it suffices
to find V.

In order to find N, let us introduce the integer-valued grid R = {(i,7) : 0 <
i<m, 0<j<n}. Define a trajectory on R as a point sequence {il,jl}ﬁg" that

satisfies the following conditions

Lo (igrsgiv) =@ +1,5) or (ig1,0i4)=G0+1) (0<I<m+n—1)

2. (i0,jo) =(0,0) and  (imtn;jmin) = (m,n)
(2.2.8)

A trajectory moves to the right from (i;,j;) to (i;+1,7;) if 2, the I-th value in
Zyytn, is from the first sample and it moves up to (i;,j;+ 1) otherwise. Let us note
that, a unique trajectory in R corresponds to each of the C' pairs of edfs, Fy,(z,w)
and G, (z,w). As we show in Appendix 2.A, the number N is calculated using the

following proposition.
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Proposition 2.2. The number N, of pairs Fy,(z,w) and Gp(x,w) for which Dy, ,, <
q, coincides with the number of trajectories that lie wholly in a subset, S of R, such

that,

S=RiURyU...URy, (2.2.9)

where Ry, 1 =1,...,k, is a set of points (i,7) € R, such that

min{i: d(:,j) < q,i+j=T—1} <i<max{i:d(i,j) < gq,i+j =T}, ( )
2.2.10
min{j : d(i,j) < gq,i+j=Ti1} <j<max{j:d(i,j) <q,i+j=T}
where Ty =my+...+my, To=0 and d(i,j) is defined as shown in Table 2.1, depending
on the particular definition of the KS test, W(t) is the weight function defined in

(2.2.1).

Table 2.1: Value of d(i,j) depending on the KS test.

Unweighted Weighted
One-sided | +(i/m—j/n) | £(i/m—j/n)W((i+7)/(m+n))
Two-sided | |i/m—j/n| li/m—jg/n|W((i+37)/(m+n))

Proposition 2.2 is a generalization of formula (5) in Nikiforov (1994). The latter
applies to the unweighted test, in which case S is determined only by the value of ¢.
In more general cases, i.e., for the weighted KS test with arbitrary weight function,
the subset S in (2.2.9) is determined not only by the value of ¢ but also by the form
of d(i,7) which is specified by the corresponding KS test. Once S is determined, N
is obtainable by counting the total number of trajectories that lie in the subset S.
For a better understanding of the rationale behind the subset S, see Examples 2.3

and 2.4 and the proof of Proposition 2.2 provided in Appendix 2.A.

Following Proposition 2.2, the subset, S, defined in (2.2.9) is then used to
calculate the number, N, (c.f (2.2.7)), as follows. Denote by Bg(i,j), the total
number of ways to move from point (0,0) to point (¢,5) (1 <i<m,1<j <n) while
staying strictly inside the region S. Since the number N coincides with Bg(m,n),
i.e., Bg(m,n) = N by definition, it suffices to find Bg(m,n), in order to find the p-

value P =1— N/C. For the purpose, Bg(i,j) is computed for each point (i,j) € R,
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by the following recurrence formula
BS(ZJ) - ]15(7'7])[35’(17.7 - 1)+BS(Z_ 17])] for (Z >1,5= 1)7 (2211)

with starting values Bg(0,7) = 15(0,7) and Bg(i,0) = 15(i,0), where 1g(-) denotes
the indicator function. Following (2.2.11), an algorithm containing a loop with index
[ is designed to simultaneously calculate all the values of Bg(i,7) with i+j=1+1,
using all the Bg(i,7) with i+ j =[. When implementing in C4++ and R, appropriate
scaling is applied to ensure that Bg(i,7) does not become too large, which may lead
to possible loss of accuracy and numerical stability. We provide Examples 2.3 and

2.4 illustrating this algorithm as follows.

Example 2.3. For simplicity, we illustrate the algorithm on the example of the
unweighted KS test given in (2.2.2), for the case, W(¢) = 1. Given two samples,
X ={10,30,30} and Y = {30,40,40,50}, of sizes, m = 3 and n = 4, for which the
(observed) unweighted, two-sided KS statistic ¢ = 0.75. The four ordered, distinct
values are (ai,az,as3,a4) = (10,30,40,50) with number of repetitions m; = 1,mg =
3,ms =2,my =1, in the pooled sample Z = (10,30, 30,30,40,40,50), whose entries
can be labeled as 10(z1), 30(z2), 30(z3), 30(z4), 40(z5), 40(z6), and 50(z7).
Following the re-sampling scheme described above, the number, C' of all pairs
of samples and their corresponding trajectories in R, that can be drawn from Z, is
C= (;) =35. It is not difficult to see that, only 11 out of the 35 pairs are distinct.

The pairs and the numbers, r;, ¢ =1,...,11 of their repetitions are:
{{10,30,30},{30,40,40,50} },r; = 3,{{10,30,40},{30,30,40,50} },r2 = 6,

{{10,30,50}, {30,30,40,40} }, 3 = 3, {{10,40,40},{30,30,30,50} },74 = 1,
{{10,40,50},{30,30,30,40}},r5 = 2, {{30,30,30},{10,40,40,50}},rs = 1,
{{30,30,40},{10,30,40,50}},r7 = 6,{{30,30,50},{10,30,40,40}},rg = 3,
{{30,40,40},{10,30,30,50}}, 79 = 3, {{30,40,50},{10,30,30,40}},r19 = 6,

{{40740750}7 {10730730730}}7T11 = ]‘7
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where 11, r; = 35.
The set, S of all trajectories, for which D,,, < ¢ , obtained applying (2.2.9)
and (2.2.10), is illustrated in Fig 2.1 (a), together with the subsets R;,i=1,2,3,4.

4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
1 1 1 1 1
0 1 2 3 0 1 2 30 1 2 3 0 1 2 3 0 1 2 3

(a) Region S (b) Subset Ry (c) Subset Ry (d) Subset R3 (e) Subset Ry

Figure 2.1: Region S and its Component when ng < 0.75 with (M, Mz, M3, My) =
(1,3,2,1).

As noted, a unique trajectory in R, corresponds to each of the 35
pairs of samples. To illustrate this, let us take the first distinct pair,
{{10,30,30},{30,40,40,50} }, repeated r = 3 times, for which D,, = 0.75 = q.
Using the labels Z;,i=1,...,7 of the observations in the pooled sample, these three

pairs are

{{10(21),30(22),30(23)},{30(24),40(25),40(z6),50(27)} },
{{10(21),30(22),30(z4) }, {30(z3),40(z5),40(25),50(27) } },
{{10(2’1), 30(24), 30(2’3)}, {30(22),40(2’5),40(2’6), 50(27)}}.

with trajectories,

{(0,0),(1,0),(2.0),(3,0),(3,1),(3,2),(3,3),(3,4) },

{(0,0),(1,0),(2,0),(2,1),(3,1),(3,2),(3,3),(3,4)},
{(0,0),(1,0),(1,1),(2,1),(3,1),(3,2),(3,3),(3,4) },

illustrated in Figure 2.2 (a),(b) and (c), respectively.
From (2.2.10), we have that, T3 = 1,7, = 4,73 = 6,74 = 7 and one can di-
rectly check that (2.A.11) gives the value D,,, = 0.75, which coincides with

the (observed) value ¢ = 0.75, obtained from the edfs of the distinct pair
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4 4 4
3 3 3
2 2 2
1 1 1
0 1 2 30 1 2 3 0 1 2 3

(a) Trajectory 1  (b) Trajectory 2 (c) Trajectory 3

Figure 2.2: Possible trajectories in the grid R with ties (Example 2.3).

{{10,30,30},{30,40,40,50} }.

In this particular example, under the condition that DY, , < 0.75, (2.2.9) and
(2.2.10) settle the subset S in lattice R, the shape of which is shown in Figure 2.1a.
By further applying (2.2.11), it is not hard to find the fact that N, the number of
pairs of samples for which ng < 0.75, is equal to 30, which could also be found by

exhausting all the possible ways of draws.

We provide another example to illustrate Proposition 2.2.

4 4 4
3 3 3
2 2 2
1 1 1
0 1 2 30 1 2 3.0 1 2 3

(a) Trajectory 1  (b) Trajectory 2 (c) Trajectory 3

Figure 2.3: Possible trajectories in grid R with ties (Example 2.4).

Example 2.4. Given two samples, X = {30,30,50} and Y = {10,30,40,40}, draw-
ing from the pooled sample Z in Example 2.3, for which the unweighted two-sided
KS statistic ¢ =1/3 < 0.75. Applying the same approach as in Example 2.3, we find
that there are three possible corresponding trajectories, as shown in Figure 2.3. Fur-
thermore, the shape of S in Figure 2.1a shows that all 3 corresponding trajectories

are subsets of S.

Computing the p-value based on the recursion formula (2.2.11) can be further
optimized to improve accuracy and numerical stability, in the spirit of Viehmann

(2021). To achieve this, we alternatively define the number Jg(4,7) as the proportion
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of the trajectories from (0,0) to (¢,j) that do not fully stay inside of the subset S.
Then the p-value P is directly expressed as P = Jg(m,n). In addition, it is not
difficult to see that Js(i,j) = 1 — Bg(i,5)/(*17). Hence, one can further rewrite

(2.2.11) as the recursion formula:

Js(i,j) = 1+1S(i,j)[ijjs(z‘— 1,5)+ #jt}s(z‘,j 1)1 for (i>1,5>1)
(2.2.12)
with starting values Jg(0,7) =1—15(0,7) and Jg(7,0) =1 —15(7,0). To implement
(2.2.12), an algorithm containing a loop with index [ is designed to compute Jg(7,7)
with ¢+ 7 =1+41. Note that each step of the algorithm would only involve computing
the weighted averages of floating numbers between 0 and 1, hence there is no loss of

accuracy in each step, which ensures the accuracy of P.

2.2.3 The Asymptotic Distribution of D,, ,

It is well known that when samples are assumed from continuous distributions with
cdf F and G, A, is distribution-free under the null hypothesis. When m,n — oo
and m/(m+n) — X € (0,1), the asymptotic distribution of the unweighted A, ,

(also DY, ) coincides with the famous Kolmogorov distribution,

IP’{ nimmAg%" < x} =1 —2kil(—1)’“—16—2’“2’02 (2.2.13)
When the underlying null distributions F' = G are purely discrete, Eplett (1982)
shows that, the unweighted A?nm weekly converge to a Gaussian process. While
this result is theoretically useful, it is less appealing for numerical purposes, since
in reality, we do not have any knowledge of F' or G and whether ' = G. Therefore,
the distribution of A?mn is unobservable. The general case when F' and G may be
continuous, discrete or mixed and F' # G seems not to have been considered jointly
in the literature, and our goal here will be to fill in this gap and provide a closed-form
expression for the asymptotic distribution of the unweighted permutation test D?n’n.
The proof of our formula given in Theorem 2.5 is based on several results. First, we
recall the results of van der Vaart and Wellner (2023), who show that the two-sample

and one-sample KS tests converge to a Brownian bridge. Second, based on the latter

convergence, we show that the explicit formula of Dimitrova et al. (2020) for the
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asymptotic distribution of the unweighted one-sample KS test, assuming arbitrary
null distribution, applies also to the two-sample case (see Theorem 2.5 and its proof
in Appendix 2.A).

Let us assume that m/(m +n) — n € (0,1) when m,n — co. Denote by
E(z) =nF(x)+ (1 —n)G(z). By Theorem 2.1, when X,, and Y, come from F
and G, the pooled sample Z,, 1, = (X1,...,Xm,Y1,...,Y,) in the unweighted KS
test Dy, behaves as if it directly comes from the pooled distribution F 1 Clearly,
any assumption on the jump structure of F' and G is valid for the jump structure of
E. Therefore, we can assume that, F has a jump structure and shape, as defined in
Dimitrova et al. (2020) for F' in the one-sample case. More precisely, assume that E
has finite number of jumps A, occurring at points x;, [ =1,..., A, with E(z;—) = fo_1
and F(xz;) = fo;. And we distinguish between increasing segments, i.e. fo_o < fo;_1,
and flat segments, i.e. fo_9 = fo—;. Additionally, we set fo =0 and fop41 =1 to

complete the sequence.

Denote by v1,1s,... the number of increasing segments appearing consecutively,
and by wi,ws,... the number of flat segments appearing consecutively. Without loss
of generality, we assume there are p groups of increasing segments and flat segments,
i.e. A=vi+wi+--+1p+wp, which allows all the jumps x; to appear in the following

order

{xla <o Ty Lo+l -+ T dwr s Lo twi41s - - s Lo twi +ve s Lo dwitrve+ly -+
Lvitwitvatwer - s Lvrtwi+-Fwp_ 1415+ s Lo dwi++wp_1+vps (2'2‘14)

Tyt twp1+p+1s - - Tv e +twp— 1 +vptp |

where w1 > 0,11 >0, w1 +v1 >0; 1, >0,1=2,...,p,w; >0,1=2,...,p—1; w, > 0.

Based the above framework, we now give the asymptotic distribution as follows:

Theorem 2.5. Given the realization of X,, and Y, coming from F and G re-

spectively, denote by ®(x) the limiting distribution of P(\/;2% D), < x) when

m,n — oo with m/(m+n) —n € (0,1) and W(-) = 1. If the joint distribution
E(z)=nF(x)+ (1 —n)G(x) has a structure of jumps as in (2.2.14), under the null

L This consideration relies on Theorem 2.1, and it fails to hold in a more general case. See more
discussion in Chung and Romano (2013).
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hypothesis, when fox = foa+1,
o0 o

Z Z ( j1+ +.7p / / de1 dZva—i-wp—l, (2 2. 15)

Jji=—00  Jp=-—

CcC= H <H(f2(vi_1+wi_1+l)—1 - f2(1}2’_1+wi_1+l)—2)_1/2

=1 =1
(f —f )2 (2.2.16)
2(vi—1twi—1+1) 2(vi—1twi—1+1)—1 L
wj _1/2 _21; +wp—1
X (H <f2(vi+wi_1+l) - f2(v¢+w¢_1+l)—1> ) (27T) - 2 . )
=1

and

2
(ZQ(U¢71+Z)+U/¢71 - 22(U171+l)+wi71*1)

1 p Vi
iy

(ZZ(U¢71+Z)+W—1*1_<_1)J(vi_l+l)z2( vi—1H)twi—1— 2_2'%]‘(1)2'714’[))2 (2.2.17)
f (vz 1tw;— 1+l f2(1), 1t+w;— 1+l)

f2(vi71+wi71+l) - f2(vifl+wi71+l)*1

_l’_

2
+ [ (2201+wi—1+l - Z2vi+w¢—1+l*1) }
Y
=1 f2(1}1+w2_1+l) *f2(vi+wi_1+l)—1

with vg = wy = 0;vp = wo = 0505 = Y 4 Vs Wi = D jeq WhyUp Fwp = A, and 2o =

Z2vp+wp = 0.

Furthermore, when fap < fap+1 and that v, +w, = A, one only need to substitute ¢

for ¢ and @' for ¢ in (2.2.15) to compute ®(x), where

(_(_1)jup+122vp+wp _ 2$jvp+1)2
fant1 — foa

¢ =c(forp1 — .JL12A)71/2(27T)71/2 and v’ =+
(2.2.18)

Corollary 2.6. When E(x) is purely discrete with jumps A, the limiting distribution
®(x) in (2.2.15) becomes:

A 2
_ (2m) 25 )t |t M
®(z) = (2n) l:rll(le fai-1) /_z /_xe p[ (l - )] dzy---dzp_1.
(2.2.19)

Note that in view of Theorem 2.1, (2.2.19) also applies to the limiting distribu-

tion of Am ns it is a closed-form explicit alternative to the result of Eplett (1982),
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who only states convergence to a Gaussian process.

Remark 2.7. Let us note that, as long as A = 0((m+n)_%), the jump structure
fi, 1=1,...,2A, of E can be directly estimated from the pooled sample Z,,, as
the corresponding frequency, so Theorem 2.5 and Corollary 2.6 can be applied to
compute p-values of D, , for large m and n. This is illustrated in Example 2.13,
Section 2.3. In addition, for a fixed x, since %@(:ﬂ) are bounded and the estimators
f converge to f; at the rate Op((m—i—n)*%) for [=1,...,2A, the error |®(z) — ()|
introduced by estimation is also of order Op((m—l—n)_%), where ®(z) is computed

by (2.2.15) based on f;, {=1,...,2A.

2.2.4 The Two-sample Kuiper Test

The (unweighted) two sample Kuiper statistic (Kuiper, 1960) can also be used to
test the null hypothesis Hy : F(x) = G(x) for all x, against the alternative hypothesis
H, : F(z) # G(z) for at least one z. It is defined as

Smon = SUp[F,(z) — Gp(x)] — in{{[Fm(x) —Gp(z)], (2.2.20)
z€eR z€

and can be alternatively expressed as

Sm,n = Ag;’:n + AO_

m,n’

(2.2.21)

where Agnfn and A?nfn are the one-sided two-sample KS tests defined in (2.2.1). As
shown by Kuiper (1960), the Kuiper statistic is invariant to cyclic transformations,
in particular, invariant under all shifts and parametrizations on the circle (as shown
in Example 2.12). It makes the Kuiper test ideal for examining pairs of circular and
seasonal data. Furthermore, this property guarantees that the Kuiper test is equally
sensitive across the entire support of the distribution, i.e., as sensitive in the tails as
around the median (Press et al., 2007). The property of uniform sensitivity is also
supported by various numerical studies, which have pointed out that, the Kuiper
test has equal or higher power than the two-sample Kolmogorov-Smirnov, Cramer-
Von mises and Anderson-Darling tests in some cases, for instance, when the first
sample comes from a Normal distribution and the second sample comes from the
scale shifted first distribution (Foutz and Birch, 1982), when the first sample from a

Normal and the second from a mixture of normal (Dowd 2020 and Wylomariska et al.
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2020). Lemeshko et al. (2014) have also shown that in testing simple hypotheses,
the Kuiper and Watson goodness-of-fit tests have an advantage in power over the

Kolmogorov—Smirnov, Cramer—von Mises, and Anderson—Darling tests.

2.2.5 Computing Exact P values of the Kuiper Test

As highlighted in (2.2.21), the Kuiper test is closely related to the two-sample KS
test. Hence, to calculate the p-value of the (unweighted) two-sample Kuiper test,
we need to extend the recursion formulas (2.2.11) and (2.2.12) for computing the
p-value of the KS test. Note that this step is also a generalization of the approaches
by Maag and Stephens (1968) and Hirakawa (1973), which only apply to equally
large data samples without ties. In this section, we will briefly introduce the main
procedure behind the proposed method.

For a particular realization of an ordered pooled sample Z,,+,, similarly as in

(2.2.5), the p-value for the permutation Kuiper test is defined as the probability
P =P Vi >4l Zmin), (2.2.22)

where V,,, , is the permutation Kuiper statistic, defined as in (2.2.20), on the space
Q, for two samples X,, and Y, of sizes m and n, randomly drawn from Z,,,
without replacement, and ¢ € [0, 2].

Once again, the p-value of the permutation Kuiper test is asymptotically consis-
tent with that of the Kuiper test, since we can also establish the result of consistency
between the critical values of the Kuiper and its permutation statistics, similar to

Theorem 2.1.

Theorem 2.8. Theorem 2.1 remains valid if one correspondingly substitute Ay,

and Dy, 5, with Gy pn and Vi, p.

Following the same logic as in (2.2.7), the p-value in (2.2.22) can be expressed
as P'=1-— %/, where N’ is the number of pairs, Fy,,(z,w) and G, (z,w), drawn from
the pooled sample Z,,, 1, for which V;;, , < ¢. And in order to compute the p-value,

P’ it suffices to find N’, which is given in the following proposition.

Proposition 2.9. The number N', of pairs Fy,(z,w) and Gp(x,w) for which Vi, 5, <



2.2. The Two-sample KS and Kuiper Test 39
q 1s calculated as:

[qr] [qr]-1
N (& (‘17“1 —i+1 N z’ [qﬂ i >1/r
=] BN =5 NG ) >l (2.2.23)

N(1,1) q<1/r

where r =lem(m,n) is the least common multiple of m and n, N(a,b) represents the
total number of pairs Fy,(x,w) and G,(x,w), drawn from the pooled sample Z, iy,
for which D0+ <a and DO_ <b, D% and D%

m,n m,n

are the one-sided unweighted KS

tests, defined on the space ), and a and b take values {0 ., 1}. In particular,

7717717

N(a,b) coincides with the number of trajectories that lie wholly in a subset, S(a,b)
of R, defined as
S(a,b) = Ri(a,b)URa(a,b)U...U Ry (a,b), (2.2.24)

where Ry(a,b), L =1,...,k, is a set of points (i,7) € R, such that

min{i: (i/m—j/n) <a,i+j=T_1} <i<max{i:(j/n—i/m) <b,i+j=1T},
min{j: (j/n—i/m) <bji+j="T_1} <j<max{j:(i/m—j/n) <ai+j=Ty}
(2.2.25)

Remark 2.10. When 1 < g < 2, the alternative for calculating the number N’ is

r+1 . 1/ qT—|
N'= > N . Z N(- ) (2.2.26)
i=[qr]—r i=[qr]—r

which is a simplification of (2.2.23), and therefore leads to a more efficient calculation

of the p-value when ¢ > 1.

Therefore, to obtain N’, which is then used for computing the p-value P’ =
1—N'/C for the Kuiper test, we could compute the numbers N(a,b) in (2.2.23)
via the number Bg(m,n) in (2.2.11) substituting S with S(a,b). The algorithm
is designed to have two separate loops. In the first loop, for a fixed index %, the
values N(%, M) and N(%, @) are computed. In the second loop, N’ is then
computed applying the first line of (2.2.23). In the C4++ and R implementation,
appropriate scaling is applied to these two loops, which leads to a loss of accuracy

as in the case of KS test.
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As in the case of the KS test, we further optimize the accuracy of the algorithm,
following the idea of Viehmann (2021). To do so, we define P(a,b) as the probability
of DVf <a and DY), <b, ie., P(a,b) =1—N(a,b)/C. Then, (2.2.23) could be

rewritten as a formula of the p-value P’

[qr] [gr1—1

P 1‘) [qr]l—i+1y P 3" [qr]—i >1/r
P = 1; ) zgl G50 >l (2.2.27)
P(i,1) qg<1/r

Note that each value P(a,b) in (2.2.27) can be directly computed from (2.2.12)
using the number Jg(m,n), substituting the set S with S(a,b), defined in (2.2.24).

Therefore, the algorithm contains one loop with respect to one index 7, for computing

p(i, =y ang p(i, Larl=ty,

T T T T
Remark 2.11. Further generalizations to the weighted two-sample Kuiper tests are
computational intensive, since ngfn and D(T)n_,n may not be the integer multiples of
1/r, which is the condition required for deriving (2.2.23) from (2.A.15).
We have implemented our more general approach in the C+4++ function

kuiper2sample_cpp, kuiper2sample_c_cpp, the R function Kuiper2sample and in

Mathematica, that applies to arbitrary data samples, possibly with ties.

2.3 Numerical Implementation and Examples

As mentioned in Sections 2.2.2 and 2.2.5, we have implemented the proposed ef-
ficient and exact calculation of p-values in C++, R and Mathematica (Wolfram
Research, Inc, 2024). The Mathematica implementation, following (2.2.11) and
(2.2.23), allows for computing the KS and Kuiper p-values with arbitrary preci-
sion, but at a relatively high computational cost (see Appendix 2.D), especially
when sample sizes are very large. We use the latter p-values as the true val-
ues for comparison purposes. We have implemented (2.2.12) and (2.2.11) cor-
respondingly in the C++4 functions ks2sample_cpp and ks2sample_c_cpp, and
(2.2.27) and (2.2.23) correspondingly in the functions kuiper2sample_cpp and
kuiper2sample c_cpp. The R function KS2sample wraps the C+4++ functions
ks2sample_cpp and ks2sample_c_cpp , whereas the R function Kuiper2sample
wraps the C++ functions kuiper2sample_cpp and kuiper2sample_c_cpp. We il-

lustrate the use of KS2sample and Kuiper2sample in Appendix 2.B.
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As illustrated in Section 2.4 and Appendix 2.D, the R functions KS2sample
and Kuiper2sample yield p-values with high precision and very small run times,
compared with other implementations in the main-stream statistical software,
which makes these functions preferable for practical use. For example, the func-
tion ks2sample_cpp computes KS p-values following (2.2.12) with at least 14 but
typically 16-17 correct digits for sample sizes m +n < 100,000. The function
kuiper2sample_cpp provides Kuiper p-values with at least 7 and up to 14 correct
digits (see Section 2.4).

As we highlighted, the Kuiper test is also applicable for testing circular data,

which is illustrated in the following example.

Example 2.12. Assume we have two discrete samples sample3 and sample4 ob-
served on a circle, containing angular observations in degrees or radians. The
sample3 and sample4 contain 120 and 149 observations respectively, with all the

observations equal to one of four angles, as shown in Figure 2.4.

50: Y

e Number of Observations in sample3
e Number of Observations in sample4

Figure 2.4: The position of observations in sample3 and sample4.

The sample3 and sample4 contain the observations 0, 7, %r, %r, which are
measured from the axis Ox anticlockwise, with multiplicities 30, 30, 30, 30 for
sample3 and 49, 50, 40, 10 for sampled4. To test whether the circular data from
sample3 and sample4 come from the same distribution, one needs to use the function

Kuiper2sample. Hence, the following code should be used:

R> sample3 <- c(rep(0,30),rep(pi/2,30),rep(7*pi/6,30) ,rep(7*pi/4,30))
R> sampled4 <- c(rep(0,49),rep(pi/2,50) ,rep(7*pi/6,40) ,rep(7*pi/4,10))

R> Kuiper2sample(x = sample, y = sample4)
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Two-sample Kuiper Test With Ties

data: sample3 and sample4
v = 0.18289, p-value = 0.00611

alternative hypothesis: two-sided

Note that the result from the Kuiper test does not depend on the choice of
coordinate system. For example, if we choose a different axis, e.g., axis Oy, and
record the observed angles clockwise, the result will be the same, as illustrated by

the following code.

R> sample3b <- c(rep(0,30),rep(pi/2,30),rep(3*pi/4,30) ,rep(4*pi/3,30))
R> sampledb <- c(rep(0,50),rep(pi/2,49) ,rep(3*pi/4,10) ,rep(4*pi/3,40))

R> Kuiper2sample(x = sample3b, y = sampledb)

Two-sample Kuiper Test With Ties

data: sample3b and sample4db
v = 0.18289, p-value = 0.00611

alternative hypothesis: two-sided

In the next example, we provide a comparative study of the asymptotic p-value in

(2.2.15) and the exact p-value when the data samples contain ties.

Example 2.13. Let us assume that we have a realization of the order statistic Z,,1,

as follows:

LT 22T T 2 2(mn) < A1/2(mtn)+1 < < Z4/5(mAn) T 24/5(mn)+1 T T T Zmn

(2.3.1)
Such a sample Z,,,, may come from, e.g. an excess of loss reinsurance contract,
with retention level M and limiting level L, see e.g. Example 3.1 in Dimitrova
et al. (2020). In order to apply (2.2.15) to compute the asymptotic p-value, one has
to extract the jump structure of E from (2.3.1), which yields A =2, fo=fi=0,
fo=05, f35=08, fi=fs=1,wi=ws=1,n=1and v =0, v1 =0, va =1, wy =0,

wy =1, wg = 1. Note that the change of the sample sizes m and n does not affect the
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inferred jump structure of E. According to (2.2.15), the corresponding asymptotic

distribution of the KS test is

H frra—=fi)] 2 Z T/ / e¥dz 29, (2.3.2)
=1 oo Q —rJ-T

j=—

where '

= 1[ 22 n 23 zo—(—1)7 2z — 25z
2 f—fi fi—fs f3—f2
To compare the asymptotic p-value with the exact p-value, we need to imple-

ment 1 —®(z) in (2.3.2) and compare with P{Dpnn > x\/ =™} for different combi-

]

nations of m and n. In this example, these p-values are computed using Mathematica
and R function KS2sample respectively, for x = 1. The results are presented in Table
2.2. Tt is clear that when m 4+ n increases, regardless of the value of 7, the exact
p-values numerically converge to the asymptotic p-value. Their relative error is less
than 1% when m +n > 40,000. Comparing the run times and accuracy, we see
that using the asymptotic formula leads to significant efficiency gains already for

m+mn > 90,000.

2.4 Comparison with Existing Statistical Software

The purpose of this section is to compare the numerical performance of the methods
for computing KS and Kuiper p-values presented in Section 2.2 and implemented
in the R functions KS2sample and Kuiper2sample. In Sections 2.4.1 and 2.4.2, we
first summarize the existing implementations of the two-sample KS and Kuiper tests
in the mainstream statistical software. We discuss their functionalities and select
some representative implementations of the two-sample KS and Kuiper tests which
we then compare with our R functions. In order to assess the accuracy, we use
our Mathematica implementations of KS and Kuiper tests to compute the true p-
values and estimate the relative error for all competing implementations. For speed
comparison, we also provide the corresponding CPU run times on a machine with a

3.00GHz Core i7-9700 processor with 32GB RAM, running Windows 10.

2.4.1 Comparison of Different Implementations for the KS Test

This section summarizes the existing software and packages that implement the

two-sample KS test and demonstrates the advantages of our R function KS2sample.
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n m+n g Exact Asympt. Rel.err(%)
0.2 2,500 0.05 0.171417114 (0.00) 0.174525238 1.78
10,000 0.025  0.172856075 (0.01) (1) 0.96
40,000 0.0125 0.173661725 (0.17) 0.49
90,000 0.008333 0.173943119 (0.90) 0.33
250,000 0.005 0.174172870 (7.13) 0.20
1,000,000 0.0025 0.174347892 (114) 0.10
0.3 2,500 0.043644 0.167449717 (0.00) 0.174525238 4.05
10,000 0.021822 0.171025013 (0.02) (1) 2.01
40,000 0.010911 0.172937728 (0.24) 0.91
90,000 0.007274 0.173593027 (1.20) 0.53
250,000 0.004364 0.173813623 (9.49) 0.41
1,000,000 0.002182 0.174214245 (266) 0.18
0.4 2,500 0.040825 0.168216436 (0.00) 0.174525238 3.61
10,000 0.020412 0.172763135 (0.02) (1) 1.01
40,000 0.010206 0.173546483 (0.27) 0.56
90,000 0.006804 0.173817964 (1.36) 0.41
250,000 0.004082 0.174038893 (11.1) 0.28
1,000,000 0.002041 0.174206779 (186) 0.18

Table 2.2: Exact p-values P{D,, ,, > ¢} when ¢ = \/’Z"—mm and -~ = g obtained from

m-+n
KS2sample and asymptotic p-values 1 — @(1) computed by implementing (2.3.2)
in Mathematica. Numbers in () are relative run times to the Mathematica im-
plementation of (2.3.2).

To the best of our knowledge, the majority of the existing implementations of
the KS test have at least one of the following limitations: ties in the sample are
ignored; approximate or resampling methods rather than exact methods are used
to compute p-values; no flexibility with respects to the choice of weight function is
allowed. The first limitation usually results in a higher p-value when the pooled
sample has ties, therefore making the test too conservative when the data samples
are discrete or mixed. The second limitation results in loss of accuracy. The third
limitation appears in all the alternative implementations that we have discussed, and

it affects the power of the KS test as evidenced by the examples in Appendix 2.C.

First, we summarize the implementations of computing p-values for the weighted
KS test. We find that the R function ks in the package WRS (Wilcox and
Schonbrodt, 2022, see also Wilcox 2012) provides an exact p-value for the KS test
with the Anderson-Darling weight, as defined in (2.2.1). Other than that, the R
package Ecume (de Bezieux, 2024) implements a different weighted KS test, i.e.,

gives weights on the tested samples separately, rather than on the edf of the pooled
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sample W (FE,4n(z)) as defined in (2.2.1).

Secondly, we focus on the methods to compute p-values for the unweighted KS
test, used in alternative software implementations. In order to classify the latter,
we introduce four descriptors taking values 1, 2, 3, 4 (as shown in Table 2.3) based
on two criteria: whether ties are, or are not allowed, and whether the result is an

exact or approximate p-value.

Table 2.3: Descriptors for the unweighted KS test.

No Ties Allow Ties
Non-exact | 1 (Approximation) 3 (Resampling)
Exact 2 4

The result of this classification is as follows.

1 HypothesisTests.jl (Lin et al., 2019) in Julia (Bezanson et al., 2024), Excel package

Real Statistics Resource Pack (Zaiontz, 2024, see function KS2TEST)

2 S-PLUS (TIBCO Software Inc., 2010, see function ks.gof), Python package SciPy

(Virtanen et al., 2020, see function scipy.stats.ks_2samp)

1,2 SAS (SAS Institute Inc., 2023) procedure PROC NPARIWAY, Stata (Stata-
Corp, 2023, see function ksmirnov), package NSM3 (Schneider et al., 2023,
see function pKolSmirm), package dgof (Arnold and Emerson, 2022, see
function ks.test), Mathematica (Wolfram Research, Inc, 2024, see function

KolmogorovSmirnovTest)
3 R package twosamples (Dowd, 2023, see function ks_test)

1,3 SPSS (IBM Corp, 2022), R package Ecume (de Bezieux, 2024, see function

ks_test)

1,2,3 Project Apache Commons Math (Apache Software Foundation, 2024, see

package KolmogorovSmirnovTest) in Java (Oracle Corporation, 2024)

4 MAPLE (Waterloo Maple Inc., 2024) package KSNstat (Brown, 2011), StatsDirect
(StatsDirect Ltd., 2024), StatXact (Cytel Inc., 2019), R package WRS (function
ks)

1,2,3,4 R package stats (R Core Team, 2024, see functions ks.test or psmirnov)
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For example, SPSS KS implementation is classified by 1,3, meaning it pro-
vides two ways of computing p-values, one based on an asymptotic formula (hence
descriptor 1), and the other one based on resampling (hence descriptor 3). The
characteristics of the different methods that lead to their classification are discussed

next.

Firstly, approximate calculations (descriptor 1) are mainly based on the asymp-
totic formula proposed by Smirnov (1933) (only Stata also uses normal approxima-
tion) which assumes that samples are drawn from a continuous distribution, thus it
naturally fails to calculate the correct p-value when there are ties. Even if the data
samples are continuous, the calculated p-values by the approximation methods are
accurate only when both sample sizes are sufficiently large, and usually have non-
negligible errors compared to the true p-value when samples are small. Secondly,
resampling-based implementations (descriptor 3) compute p-values by simulating
the values of KS statistics for pairs of samples that are randomly splitted from the
pooled sample. Hence this method allows the pooled sample to have ties. (This does
not apply to the resampling implementations in R packages stats, NSM3 and dgof,
though they provide calculation options for resampling estimations, they neither are
available for data with ties nor give p-value with large biases). However, the perfor-
mance of the resampling method depends on the number of bootstrapping iterations.
If the latter number increases, the accuracy also increases as does the computational
cost. In practice, (as we have also shown in Table 2.4), the implementations under
the category of descriptor 3 are neither more accurate nor are they more efficient,
compared with implementions using the exact methods, falling under the category

of descriptors 2 and 4.

Hence, the most suitable choice for computing the p-value of the unweighted KS
test narrows down to implementations with descriptor 4, i.e., the exact methods al-
lowing data samples containing ties. These implementations rely on one of the three
methods: Nikiforov (1994, KSNstat in MAPLE and StatsDirect), Hilton et al. (1994,
StatXact) and Schroer and Trenkler (1995, R function ks in the package WRS and
the function psmirnov in the package stats). We have found that Nikiforov (1994),
Hilton et al. (1994), and Schréer and Trenkler (1995) have independently arrived

at a similar algorithm for computing KS test p-values, based on the recurrence for-
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mula (2.2.11) for finding the number of trajectories that lie in the specific subset of
integer-valued grid R (see Section 2.2.2).

To summarize, in order to calculate the exact p-value of the two-sided un-
weighted two-sample KS test, the R functions ks from the package WRS and
psmirnov from the package stats, can be applied for arbitrary data samples that may
come from a continuous, discrete or mixed distribution. Furthermore, psmirnov also
incorporates both (2.2.11) and (2.2.12) for the unweighted KS test, where (2.2.12)
ensures higher accuracy. As for the weighted KS test, only the R function ks calcu-
lates the exact p-value, only for the Anderson-Darling weight and only for samples
from a continuous distribution.

Next, we demonstrate the advantages of our R function KS2sample compared
with the implementations listed above. For this purpose, we compare KS2sample
with the function ks_test from the package twosamples, a representative of resam-
pling estimation (descriptor 3), the functions ks and psmirnov, representing exact
p-value calculation (descriptor 4). We use the data samples from Example 2.17, in
order to compare the speed and accuracy of computing the required p-value, using

the functions listed in Table 2.4, where Mathematica stands for our Mathematica

implementation.
Unweighted Anderson-Darling weight
Mathematica | (2.0317) 2.39402603196511x10~7 (2.0530) 6.49544137675074x10~"
KS2sample | (0.0084) 2.39402603196511x10~7 (0.0144) 6.49544137675074x10~"
psmirnov | (0.0612) 2.39402603196511x10" (=) -
KS2sample.c | (0.0032) 2.39402605184402x10~7  (0.0053) 6.49544139141867x 10"
psmirnov.c | (0.0487) 2.39402604962358x10~" () -
ks (-) NaN (-) NaN
twosamples | (978.41) 1.0 x10~° () -

Table 2.4: The calculated p-values for unweighted and weighted KS tests in Example 2.17
using different implementations, with CPU run times shown in paratheses in
seconds, for computing 10 times the p-value. Number of bootstrapping itera-
tions = 109 in the package twosamples.

Recall that both KS2sample and psmirnov include two methods, a direct com-
putation of the p-value P defined in (2.2.5), using (2.2.12) and an indirect one
computing the complementary p-value 1 — P as in (2.2.7), using (2.2.11). For the
latter method, we label both functions with ”.c” and give the corresponding p-value
P. The same labelling is also used in Appendix 2.D.

Based on the results in Table 2.4, we can see that the unweighted p-values pro-
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duced by KS2sample and psmirnov using (2.2.12), have 17 correct digits compared
with the true p-value from Mathematica, and the p-values from both functions using
(2.2.11), have 8 correct digits compared with the true p-value. Although it is claimed
by the authors of the package WRS that the function ks is suitable for computing
KS p-values with no weight or Anderson-Darling weight, it does not work for sample
sizes m +n > 2500, as seen from Table 2.4, where m +n = 2700. We have further
tested the function ks, and have found out that when n+m < 2500, it is thousands
of times slower than KS2sample and hundreds of times slower than psmirnov in
terms of CPU time. In the package twosamples, the calculation is very slow (10°
times slower than KS2sample) and produces a p-value with a large error. For the
above reasons, the function ks and the package twosamples are not included in our

further comparisons.

Therefore, in the sequel, we systematically compare the run time and the ac-
curacy of the functions KS2sample and psmirnov for the unweighted KS test and
continuous samples, i.e no ties. Since both KS2sample and psmirnov implement the
same recurrence formulas (2.2.11) and (2.2.12), their run times are not substantially
different regardless of whether there are ties or no ties in the samples. As for m
and n, we choose m+n = 100 and 500, to cover the case of small sample sizes,
2,500 and 10,000 for medium sample sizes and 50,000 and 100,000 for large sample

sizes. We choose the ratio of the smaller sample size to the sum of sample sizes,

m

n:= 45 = 02,03, 04, 0.5, to cover correspondingly the cases of severely unbal-

anced (7 =0.2), unbalanced (n = 0.3), relatively balanced (n = 0.4) and perfectly
balanced (n = 0.5) sample sizes. For each combination of sample sizes m and n, the
functions KS2sample and psmirnov are used to calculate p-values P as defined in
(2.2.5), for some given values of ¢, with m; =1, i=1,...,m+n. The relative errors
and the CPU times (for 100 repeated evaluations) are summarized in Table 2.6,

which is given in Appendix 2.D.

The R functions KS2sample and psmirnov with implementation (2.2.12) typ-
ically provide 16-17 correct digits. In contrast, psmirnov with implementation
(2.2.11) fails to provide valid values when n+m > 10000, whereas KS2sample with
implementation (2.2.11) still provides p-values with an acceptable relative error.

However, Table 2.6 shows that the relative run time of psmirnov to KS2sample
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grows as m+n increases, despite the fact that the same recursive formulas (2.2.11)
and (2.2.12) are implemented in both functions. This can be explained by their
different computation complexity. Compared with KS2sample, psmirnov needs to
compute the number B in (2.2.11) or J in (2.2.12) for all points on the set R which
leads to a computation complexity O(n?), whereas KS2sample only computes B and
J for points in S, leading to complexity O(n3/ 2.

In conclusion, we show in Table 2.4 that the R function KS2sample is very
fast and accurate for both the unweighted and weighted KS tests. The only viable
alternative proves to be the function psmirnov in the package stats. In the thor-
ough comparison of the functions KS2sample and psmirnov, we have shown that
KS2sample provides equal or higher accuracy than psmirnov. However, psmirnov
has a higher computational complexity and is 1.8-900 times slower than the proposed

KS2sample for m +n < 100,000.

2.4.2 Comparison of Different Implementations for the Kuiper Test

The purpose of this section is to demonstrate the numerical performance of the
proposed R function Kuiper2sample and compare it with other existing software
and packages that implement the two-sample Kuiper test.

First, we summarize all the existing implementations that compute p-values of
the two-sample Kuiper test. These include the Python package Kuiper (Archibald,
2015), the STATA package CIRCSTAT (Cox, 1998), the Mathematica function
KuiperTest, the SAS procedure PROC NPAR1IWAY, the Java software Advanced-
Miner (Algolytics Technologies, 2022, see the function Kuipertest therein), the R
package Kuiper.2samp (Ruan, 2018, see the function kuiper.2samp therein) and
the package twosamples (see the function kuiper_test therein). Among all these
software, the function kuiper_test from the R package twosamples is the only one
that uses the resampling method to calculate p-values, while all the rest use the
asymptotic method.

These two types of methods are similar to the asymptotic and resampling meth-
ods for computing the KS p-values, corresponding to the descriptors 1 and 3 in
Section 2.4.1. The asymptotic implementation provides high accuracy only for large
samples with no ties. When samples contain ties, the calculated p-value is larger

than the true value, which makes the Kuiper test too conservative. As for the re-
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sampling method, its accuracy and speed are only determined by the number of
bootstrapping iterations and are not affected by whether the samples have ties or
not. However, as we have previously shown in Table 2.4 for the KS test, the re-
sampling method is slow and inaccurate, hence will not be included in our further

comparisons.

We compare our R function Kuiper2sample with the R function kuiper.2samp
from the package Kuiper.2samp. The latter is a representative of the implementa-
tions using the asymptotic method. We provide the corresponding run times and
relative errors to the true p-values from our Mathematica implementation for the

Kuiper test, as we have done in Section 2.4.1.

Similarly as in Section 2.4.1, we choose the sample sizes m and n such that m+n

= 100, 500, 2,500, 10,000, 50,000 and 100,000 and the ratio of the smaller sample size

m
m-+n

to the sum 7 := =0.2,0.3, 0.4, 0.5, thus covering all the possible combinations of
data balancing and sample sizes. Recall that Kuiper2sample includes two methods,
a direct computation of the p-value P’, defined in (2.2.22), using (2.2.27) and an
indirect one computing the complementary p-value 1 — P’, using (2.2.23). For the
latter method, we label both functions with ”.¢c” and summarize the corresponding

relative errors and CPU times for 5 repeated evaluations of the p-values in Table 2.7,

which is presented in Appendix 2.D.

In Table 2.7, we show that when m +n < 100000, Kuiper2sample provides
significantly more accurate results than kuiper.2samp. More preciously, for
Kuiper2sample, the relative error is typically less than 6 x 107> and rarely up to
2 x 10™* for implementation (2.2.23), and is less than 2 x 107® for implementa-
tion (2.2.27). Implementation (2.2.23) is 1.3-2.6 times faster than implementation
(2.2.27). The run time of both methods in Kuiper2sample grows as sample sizes

m—+n increase, whereas the time of kuiper.2samp stays constant as it is asymptotic.

As discussed in Section 2.2.5, the first loop to calculate N’ in (2.2.23) and the
loop to calculate P’ in (2.2.27) have lengths related to the size of the least common
multiple of m and n, r =lem(m,n). In both loops, given an index 4, the computation
is with complexity O(n®/?). Hence the total complexity is O(n%/?r). Therefore, for
two pairs of samples with similar sample sizes, m close to m’ and n close to n’,

but with very different least common multiples 7 and 7/, the running times may be



2.5. Conclusion 51

substantially different. An example of this is shown in Table 2.5. When n = m,
i.e., the least common multiple is small (r = m), the execution time is low even for
large samples, however when n =m+1, i.e., they are relatively prime (r =mn), the
execution time is very high. When m is fixed and n = m, the execution time ratio
for two cases is approximately the ratio between the two least common multiples.
Thus for example, when m = 3000, one should expect that the run time for n =m+1
and that for n =m+ 2 is approximately 3000 and 1500 times slower than the speed
when n = m respectively. Therefore, for an efficient p-values computation with large

samples, it is ideal to have a high greatest common divisor of sample sizes.

Table 2.5: p-value of Kuiper test and the CPU time to compute 100 times using
Kuiper2sample when n =m, m+1 and m+2 and the observed value of statistic

g=1.5,/14n

mn °

CPU time Calculated p.value
m |n=m n=m+1 n=m+2| n=m n=m+1 n=m+2
30 0.00 0.07 0.04 | 0.102592 0.083416  0.105218
50 0.00 0.27 0.15 | 0.084878 0.115417  0.112476
150 0.04 5.32 2.70 | 0.155176  0.137201  0.137160
300 0.17 50.77 25.56 | 0.154374 0.142191  0.148842

500 0.42 207.11 103.71 | 0.152341  0.155741  0.154288
1500 3.12 4624.70 2328.81 | 0.158969  0.165930  0.163623
2000 5.28  10647.56 5359.13 | 0.169913  0.164047  0.165726
3000 | 11.55  34454.99  17353.53 | 0.164606 0.169488  0.167627

However in reality, a restriction on sample sizes is impractical. Thus for a user,
an alternative solution to avoid heavy computations for arbitrary m and n is to
approximate p-value by calculating p-values for close sample sizes of m’ ~m,n’ ~n
but with large greatest common divisor. The validation of this approximation is
shown in Table 2.5, where p-values for n =m, m+1 and m+ 2 are compared. The
differences between these p-values decrease as m increases and become negligible for

large sample sizes.

2.5 Conclusion

In this work, we have considered an alternative formulation of the two sample KS
test, defined over the space of all possible pairs of samples, randomly drawn without
replacement from the pooled sample. We term this permutation KS test and show

in Theorem 2.1 that the difference between the critical values of the permutation KS
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test and the KS test defied in terms of the ecdfs of the two samples is asymptotically
negligible which therefore applies to the difference between their p-values. We use
this result to develop a numerically efficient recurrence method for computing p-
values of the two sample KS test. A similar method but for the unweighted KS test
has been independently considered by Nikiforov (1994), Hilton et al. (1994), and

Schroer and Trenkler (1995), but without any theoretical justification.

In this work, we have provided its thorough theretical justification, given by
Theorem 2.1 its formal description (see Sections 2.2.1 and 2.2.2) and related proofs
(see Appendix 2.A) that are missing from works of these authors (see e.g. Nikiforov
(1994)), followed by some enlightening examples. We have generalized Nikiforov’s
method to accommodate arbitrary weight functions. In Sections 2.2.2 and 2.2.5, we
have extended this method to compute exact p-values of the Kuiper test, for contin-
uous, discrete or mixed observations in the samples. To the best of our knowledge,
computation of exact Kuiper p-values has only been considered for the continuous
case and equal sample sizes (Maag and Stephens, 1968; Hirakawa, 1973). Follow-
ing Viehmann (2021), we have further enhanced the algorithm in order to improve
the accuracy of computing KS and Kuiper p-values. We have implemented the two
versions of the latter algorithm in the corresponding R functions KS2sample and
Kuiper2sample, and also using Mathematica. We illustrate the application of these

functions and the corresponding R code in Section 2.3.

In Section 2.2.3 we have derived a closed form formula (c.f. (2.2.15), Theorem
2.5) for the asymptotic distribution, of the two-sample Kolmogorov-Smirnov test,
Dy, as 70 —n € (0,1) and m — oo, which is valid for arbitrary samples, allowing
ties in the observations. To the best of our knowledge, the asymptotic distribution
of the two-sample KS test has not been investigated in the literature in the case of
tied observations. Therefore, formula (2.2.15) and Theorem 2.5 represent a novel
contribution of theoretical and numerical importance. We have demonstrated (see
Example 2.13 and Table 2.2) that the asymptotic formula (2.2.15) is a numerically
efficient alternative to the exact method, for computing KS p-values when m+n >

90, 000.

Our next goal in this chapter has been to provide a thorough review of the

properties of the major statistical software packages that compute p-values of the
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two-sample KS and Kuiper tests (see Section 2.4). This review shows that among
the nineteen software implementations, only the function psmirnov provides p-
values with the same accuracy (up to 17 correct digits) as our proposed R function
KS2sample, but at a higher computation cost (see Table 2.4 and Table 2.6, Ap-
pendix 2.D). For the Kuiper test, Kuiper2sample is the only function that provides

exact p-values with at least 8 correct digits (see Table 2.7, Appendix 2.D).

m
m+n’

Finally, we have also investigated the power, as a function of the ratio n =
of the KS test for different weight functions, and of the Kuiper test. As can be
seen from Examples 2.18 and 2.19, Appendix 2.C, selecting the appropriate weight

function can significantly improve the power of the KS test for various combinations

m
m-+n

of the sample sizes m and n (n= ), that are often determined before the obser-
vations are collected. As can also be seen in Figure 6, the power of the Kuiper test,
in the case of samples of discrete observations, is significantly higher than that of the
KS test, regardless of the choice of weight function. This highlights the relevance

of using the Kuiper test as an alternative to the KS test, and therefore of using the

function Kuiper2sample to compute its p-values.



Appendix for Chapter 2

2.A Proofs for Chapter 2

In order to prove Theorem 2.1, let us first give the following lemmas.

Lemma 2.14. Denote by pg the probability measure of a distribution with cdf E(x).
Let Fw be a class of functions Fyy = {W(E(#))1(_aq(-) : t €R}. If W is bounded
and uniformly continuous, given the samples X,, and Y, that come from F and G

respectively, we have

im P/ D <) =P( sup / fdBp < 1), (2.A.1)

m,n—o0, —n n+m ™"~ feEFw

mtn
where Bg is a tight brownian bridge with respect to the measure yg.

Proof. Denote by ug the empirical measure of the sample Z,,,, i.e. ug

m—+n m—+n =

1
m+n

47 57, where &, is the Dirac measure. For any set A C R,
0z (A) =T 4g(x).

Denote by fif,, the empirical measure of the sample X, iig, the empirical measure
of the sample Y;,, where X,, and Y,, are drawn at random from the pooled sample

Zy n- Let us note that

sup [ fd(ir, fia,) = D3, (2.A.2)
fer

where F = {1(_oo () : t € R}, and DY is the unweighted one-sided KS test. Fur-
thermore, the class F has a square integrable envelope function 1g(-), under the
measures ur and pg, i.e. f]l]id,up = f]l]%gdug =1 < co. By applying Theorem 3.8.2
of van der Vaart and Wellner (2023), given the samples X,,, and Y; come from F
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and G respectively, we have

nm
n-—+m

(:&/Fm _:&/Gn> E} BE?

on the class F almost surely, where % stands for weak convergence. By the Port-
manteau theorem (see e.g. Theorem 1.3.4 in van der Vaart and Wellner, 2023), it

follows that

lim  P(/ DO <) Sup/deB%E<a:) (2.A.3)

m,n —
m,n—)oo,mL_,'_n—m n+m feF

In addition, the limiting distribution in (2.A.3) is continuous with respect to .

In a more general case

sup [ f(fir,, ~ fig,) = suplFn(a) = Coa)W(E().  (2A4)
feFw z€R

Since W is bounded, i.e. C =supy,.1 W (t) < oo, the class Fy has a square inte-
grable envelope function C'lg(+), under the measures pp and ug, i.e. [C*13dup =
[C*13dug = C? < 0. Again, by applying the Portmanteau theorem and Theorem
3.8.2 in van der Vaart and Wellner (2023), we have

hm \/ sup /fd fr, — ic,) < x)=P( sup /deE <uz),
m,n—00, —1— m-+n fEFw feFw
(2.A.5)

Since the probability in (2.A.3) is continuous with respect to z, the probability in

(2.A.5) is also continuous when W is continuous. Furthermore, we have

MIfitg)W / fd(ip,, — ia,) — Dl
<\ o sup [ P (@) = G W (Byin() = W (B(a) |

Vo sup | () — énmr] sup (W (B yn(z)) — W (E(2))|
MmN zcR z€R

By the Glivenko—Cantelli theorem with respect to F;, and G,, we know that

<

sup,ep |[Fm () — F(x)] = 0 and sup,cg |Gn(x) — G(z)| — 0 almost surely. Therefore

when 7 — 1, sup,eg [Emtn(r) — E(z)| — 0 almost surely. Since W is uniformly
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continuous

ilelng(Em-&-n(I)) —W(E(z))|—0 (2.A.6)
~m(x) — Gp(z)] =

almost surely. In addition, (2.A.3) implies that
O,(1), therefore

- - P
sup /fd fir,, — fic,) — Dif | =0,
\/ "‘n’fefw ( ) nl

as m,n — oo and — n. By the Portmanteau theorem and the continuity in

m+n

(2.A.5) with respect to x, we also have that

mn P
sup /fdu - —iG, P D, <z)—=0 2.A.7
N feFy & )< o)~ B m+n z) ( )
The proof is completed by combining (2.A.5) and (2.A.7). O

Lemma 2.15. When both X,, and Y, come from the pooled distribution E, if W

is bounded and uniformly continuous

lim P( Af;n <z)=P( sup /deE <x) (2.A.8)
m,n— 00 m%n n-+m fE]'-w
Proof. 1t is well known that
Vmlu,, — ] = Bg (2.A.9)

on the class F = {1(_4(-) : t € R}, where pup, denotes the empirical measure of

X, Due to the independence of X, and Y,,, we have

mn

m+n[#Fm — pe,] = V1=nBg + /1B (2.A.10)

where Bg and B, are two independent tight Brownian bridges with respect to the

measure E. Hence

1/ —|—n 1/ n}sclelg:/fd,UFm [e™ —>SUP/fd (V1—nBEg+/1B7).
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Combining the independence of Br and B/, we have

lim ~— P( nm A?,jn <x) sup/deBBE <)
m,n—00, —n n—+m feF

'm+n

Similarly as in the proof of Lemma 2.14, (2.A.5) and (2.A.7) also holds when sub-
stituting fir,, — fic,, and D}, ,, with up,, —pe, and A . Thus (2.A.8) holds. [

Proof of Theorem 2.1. Due to the Portmanteau theorem and the continuity in

(2.A.5), one only needs to show that

lim P( nm —— Ay <z)=P(sup | [ fdBg| <z)

m,n—00, m+n—>n n+m feFw

when both X, and Y,, are from the same distribution £ and the conditional prob-

ability
nm

lim P( Dy <x)=P(sup | | fdBg| <z)

myn—00, s =) n+m feFw

given that X, and Y,, come from the F' and G respectively. Since

A =max{A} AL} and Dy, = max{D},

m,n’ m,n» m,n}7

the proof is completed by combining Lemmas 2.14 and 2.15 and the continuous

mapping theorem. O

In order to prove Proposition 2.2, let us first introduce the following lemma.

Lemma 2.16. For a pair of edfs F,(z,w) and Gp(z,w), w € Q and their corre-
sponding trajectory {(i;, ji) }|=4", the value of the KS statistic Dy, , = sup,(Fp(z) —
Grn(2))W (Em+n(x)), calculated based on the pair Fr,(x,w) and G,(x,w) can be al-
ternatively calculated as

Dy = lngféd(in,jn), (2.A.11)

where d(i,5) = (i/m—j/n)yW((i+7)/(m+n)), and the bracket expression (-) takes
either | -], (-) or —(-) depending on the definition of the KS test in (2.2.1) and
Table 2.1 in Section 2.2.2.

Proof. In the ordered, pooled sample (21 < 22 <...< zp4p), according to the defini-

tion of my and T, 21, < 2147, is always true when [ < k. Hence, (21, > 2;) = (1} > i)
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for 1 <1<k (it is also true for | = k since Ty, = m+n). Therefore, the definition of
m n

a trajectory in (2.2.8) implies that i, = > 1x,<x(27,) and j1, = > Ly,<o(21y)-
t=1 t=1

Therefore, for T;_; <r <T; (1 <1<k), 2z, = z7;, the following condition holds:

m n
ity = Z]lXtéw(zr) JT, = Z]lYtgx(zr)
t=1 t=1

Following the definition of F,, and G, we have i7;/m = Fy,(z), jr,/m = Gn(2r)
and (i1, + jr1,)/(m~+n) = Epin(2). Hence, these relations imply that

iy, 1) = Dmn(z) Tio1<r<Tj, 1<I<k, (2.A.12)

where Dy, n(2) = (Fip () — Gp(2)) W (Ep4n(x)). We further notice that Dy, ,(x) is
a step function with all its jumps occurring at values of z, (1 <r <m+mn). Hence
the statement of the lemma now follows by taking the maximum on both sides of

(2.A.12), with respect to r (1 <r <m-+n). O

Equality, (2.A.12) in Lemma 2.16 explains the meaning of d(i;,j;) for a fixed
[, which is the difference of two edfs at the point Z;. Furthermore, it shows that
the value of the KS statistic D,,, corresponding to a trajectory only depends on
the d(i,j) for i+ j =T1,...,T), rather than on all the values of d(i,5). Now we
are in a position to prove Proposition 2.2. The core of the proof is to show that
the constraint on a trajectory to lie wholly in S is equivalent to the constraint on
the value of KS statistic D,,,, < ¢, for the pair of samples to which the trajectory

corresponds.

Proof of Proposition 2.2. From definition (2.2.8) it follows that, there is a one-to-
one correspondence between a trajectory and its related pair F,(z,w) and Gy (z,w).
Hence, to prove the proposition, we only need to prove its equivalent statement:

For a trajectory {(il,jl)}ﬁg", the corresponding KS statistic D, ,, < ¢ <=
{(i, 303%™ € 8.

Sufficiency:Assume {(i;, j;) }7%4" C S, then from the definition of S, d(iz, jr,) <
q for 1 <k < K. Based on Lemma 2.16, the latter implies D,, , < q.

Necessity: (Proof by contradiction) Let us assume that there exists a trajectory

with Dy, , < ¢ and (44,,71,) ¢ S for some lyp. If lg =T}, for some 1 <ky < K =
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d(ir,,jr,) > ¢, leading to a contradiction to Lemma 2.16. Therefore, Iy # T}, for
any 1 <k < K. Then there must exist 1 < k; < K, such that Ty, <ly < T,.
Without loss of generality, let us assume either ij, < Iy, =min{i: d(i,j) < q,i+j =
Ti—1} or iy > Ipmae = max{i: d(i,j) < q,i+j =T} is true. If the former is true,
i,y <y < Imin = d(iTkl—l’kal—l) > ¢, and if the latter is true, i, > i, > Imaa
== d(iTk1 , jTh) > ¢, both leading to a contradiction. The same logic applies to jj,,
i.e., either j <min{j:d(i,j) < q,i+j=Tk_1} or j > max{j:d(i,j) < qi+j=T}

leading again to a contradiction. O

Proof of Theorem 2.5. On one hand, from (2.A.9), we have
P(sup]/deBE| <z)= 1i_r)n P(v/msup|Fp,(t) — E(t)| < z). (2.A.13)
JeF mTree t

when X, comes from the distribution E. On the other hand, by (2.A.3) and

continuous mapping theorem

lim P( nm

m,n—00, s =) n—+m

mmn —

DY <x)=P(sup| [ fdBg|<=z). (2.A.14)
fer

given X, and Y,, coming from the distribution F' and G respectively. The proof is
completed by combining (2.A.13), (2.A.14) and Propositions 2.3 and 2.4 in Dimitrova
et al. (2020). O

Proof of Theorem 2.8. Due to the Portmanteau theorem and the continuity in

(2.A.5), we only need to show that for a fixed z, when m,n — oo, - — 7, the

probability
nm

B(

n+m§m,n < l’)

when both X, and Y, are from the same distribution £ would converge to the same

limit as
nm

P( Vinn < )

m,n =
n+m

given X, and Y, coming from the F' and G respectively. Since V,, = ngfn#—
D?n”n and (2.2.21), this can be shown by combining Lemmas 2.14 and 2.15 and the

continuous mapping theorem. Therefore, the statement follows. O

Proof of Proposition 2.9. Equality (2.2.21) can be rewritten as V;,, = DO, + D5
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in the space Q. Denote by Ne4(a,b), the total number of pairs F,(z,w) and G, (z,w)
for which DS;“” =a and Dg:n =b. Notice that ngfn and D?n_m can only take integer

values multiples of 1/r, therefore for natural numbers i,j < 2r, we have

i+7<qr
1 J t+1 j+1 t+1 j 1 J+1 1] 2.A1
Neo(2, ) = N(E= ) - N(E= D) - N, o)+ ) (AL

rr r r r T r r

J
eq(;70) = Neq(o') ;) =0

Equation (2.A.15) then yields (2.2.23). The proof of (2.2.25) can be obtained by

similarly as proving Proposition 2.2. O

2.B Examples on the Use of R coding for Computing
the p-value of the KS Test

This section provides the related code to illustrate the use of R functions KS2sample

and Kuiper2sample.

Example 2.17. Assume we are given two samples of sizes, m = 1,200, n = 1,500,

each having the same four distinct observations 1, 2, 3 and 4. The table shows the

sample-1 300 300 300 300
sample-2 500 400 100 500

number of times each distinct observation is repeated in each of the samples, thus
there are 4 distinct observations repeated correspondingly m; times in the pooled

sample, i.e., m; = 800, mgy = 700, mg = 400 and my4 = 800.

To calculate the p-value of the unweighted two-sided two-sample KS test based

on samplel and sample2, one can use the function KS2sample as follows:
R> samplel <- c(rep(1,300), rep(2,300), rep(3,300), rep(4,300))
R> sample2 <- c(rep(1,500), rep(2,400), rep(3,100), rep(4,500))
R> KS2sample(x = samplel, y = sample2)

Unweighted Two-sample Kolmogorov-Smirnov Test With Ties

data: samplel and sample2
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d = 0.1, p-value = 2.394e-07

alternative hypothesis: two-sided

For these two samples from Example 2.17, one could also use Kuiper2sample

to compute the observed Kuiper test statistic, V;,, , = v and its p-value.

R> Kuiper2sample(x = samplel, y = sample2)

Two-sample Kuiper Test With Ties

data: samplel and sample2
v = 0.18333, p-value < 2.2e-16

alternative hypothesis: two-sided

To use the one-sided weighted KS Aﬁm with Anderson-Darling weight and test
against the alternative that the unknown underlying distribution of samplel, F(x),
is greater than that of sample2, G(z), for at least one x, one needs to specify the

weight and the alternative, as follows.

R> KS2sample(x = samplel, y = sample2, alternative = "greater",

R>+  weight = 0.5)

Weighted Two-sample Kolmogorov-Smirnov Test (v=0.5) With

Ties

data: samplel and sample2
d = 0.1825, p-value = 3.41e-06

alternative hypothesis: greater

Alternatively, the p-value can also be obtained by the function KS2sample Rcpp
with an appropriate specification of w_vec and the observed value of the KS statistic,

Dy, n = d obtained above.

R> Emn <- 1:(2700-1)/2700
R> w_vec2 <- 1/sqrt(Emn*(1-Emn))
R> d <- 0.182499098772108
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R> KS2sample_Rcpp(1200,1500,kind = 2, M = M1,

+ q = d, w_vec = w_vec2, tol = toll)

[1] 3.409892e-06

To test whether samplel and sample2 are from the same distribution using
the weighted KS statistic with weight function W (t) = 1/[t(2 —t)]'/? (suggested in
Biining, 2001), one first needs to define the weight function in R and assign it to the

argument weight in KS2sample, as follows:

R> f <- function(t) 1 / sqrt( t * (2 - t) )

R> KS2sample(x = samplel, y = sample2, weight = f)

User Defined Weighted Two-sample Kolmogorov-Smirnov Test With Ties

data: samplel and sample2
d = 0.11729, p-value = 2.503e-06

alternative hypothesis: two-sided

The above code illustrates the use of KS2sample on the samples samplel and
sample2 from Example 2.17 but with different weight specification. In 2.C, we
further show that the choice of weight function may affect and in some cases im-
prove the power of the KS test, which is desirable in practice. For further discussion
on the choice and role of the weight function, see e.g., Biining (2001), Finner and
Gontscharuk (2018).

Next, we illustrate the use of Kuiper2sample to compute the observed Kuiper

test statistic, Vj, , = v and its p-value based on the samples from Example 2.17.

R> Kuiper2sample(x = samplel, y = sample2)
Two-sample Kuiper Test With Ties
data: samplel and sample2

v = 0.18333, p-value < 2.2e-16

alternative hypothesis: two-sided
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2.C Power Comparisons for the KS and Kuiper Tests

Here we provide a brief comparative study on the statistical power of the KS and
Kuiper tests.

The statistical power of a test is the probability of correctly rejecting the false
null hypothesis when the alternative hypothesis is specified. In order to show how
the weight function affects the KS test, we choose K5 statistic with three different
weights, the unweighted D, ., the Anderson-Darling weighted Drln and the KS
statistic with W(t) = 1/[t(2—t)]}/? (suggested by Biining, 2001, see also Section
2.2). The first two statistics are widely known and applied in the literature, and the
last is relatively less known. Then we design two cases under which the power of
these three KS test statistics and the Kuiper test statistic are compared.

To avoid changes in the weight W(E,n(z)) (cf. (2.2.1)) as sample sizes
change, we fix the sum of sample sizes m+n = 500 and change the value of = .
The power of the statistic can be expressed as a function of n, which only focuses on
the effect of changes in the sample sizes ratio (see in Finner and Gontscharuk, 2018).
For further investigation of the effect of changes in the sample sizes, one could fix

the value of n and express the power as a function of m +n.

1
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Figure 2.5: Power comparisons for samples from GEV distributions when m +n = 500 of
the (weighted) KS tests and Kuiper test.

Example 2.18. Let the two samples come from two Generalized Extreme Value

(GEV) distributions with different parameters. More preciously, the first sample

of size m is drawn from a GEV distribution with cumulative distribution function

Fi(z) =exp(—(1 +D.3mj1uf3jl{u_3,>_1} (x), and the second sample of size n is drawn

from F(z) = exp(—(1 +D.4:rj5f2}l{u_dz:,_1}[m}, where 1 4(x) denotes the indicator
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function, which takes value 1 if » £ A and takes wvalue 0 otherwise. In order to
estimate the power, for each value of 7, calculations are repeated 10° times. As
shown in Figure 2.5, the power of D,IT’:i is higher than the power of ng ACTOSS
all values of . The K8 statistic with weight function suggested by Biining has the
highest power when 1 < 0.4, and has lower power when 1 > 0.6.

Example 2.19. Let the two samples come from two negative binomial distributions.
More precisely, the first sample is drawn from NB(6,0.75), and the second sample is
drawn from NB(18,0.9). Hence, these two distributions have the same mean. The
power is estimated and shown in Figure 2.6. In this case, the KS test with Biining
weight has higher power than the unweighted KS statistic across all values of 7,
whereas D,l,{ri has the highest power only for 0.1 < 5 < 0.5. Moreover, we show that
the Kuiper test has power higher than the KS statistic with Biining weight for all
7, and that the power of these two tests are higher than that of the unweighted KS
test, for all n.
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Figure 2.6: Power comparizons for samples from Negative Binomial Distributions of the
(weighted) KS tests and Kuiper test when m + n=500.

Examples 2.18 and 2.19 demonstrate the importance of allowing for more Hex-
ibility in choosing the weight function, since as demonstrated, the KS statistic with
different weights may have different power performance. Implementing the Kuiper
test is also important since, as demonstrated its power is often superior to the KS

test.
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2.D Comparisons for the different implementations of

KS and Kuiper Tests
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Chapter 3

On a One Sample Goodness-of-Fit
Test Based on the Hausdorff Metric

This chapter is based on the paper:
Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a One
Sample Goodness-of-Fit Test Based on the Hausdorff Metric. submitted.

Abstract

We consider the Hausdorff metric and its use in measuring the distance between
an empirical and a theoretical cumulative distribution function (cdf). We propose a
corresponding one-sample Hausdorff goodness-of-fit test statistic, the H test, give its
geometric interpretation, and a method to evaluate it. We show that its exact and
asymptotic distributions can be expressed correspondingly as rectangle probability
and as double boundary crossing probability with respect to a Brownian bridge.
Efficient numerical methods for computing the distributions, the exact Bahadur
slope, and asymptotic power of the H test are also provided.

We also show that the p-values of the H test are not invariant under scale
transformation. Investigating theoretically this scale dependence, we find that by
appropriately selecting the scale coefficient, the power of the H test can be controlled
and optimized. This is an important feature which other tests such as Kolmogorov-
Smirnov (KS), Cramer von Mises (CvM) and the Anderson-Darling (AD) do not
possess. In particular, based on synthetic and real data examples, we demonstrate
that when testing goodness-of-fit in the tail, the power and tail sensitivity of the
scale-tuned H test is higher than the power of the KS, CvM and AD tests. All these

properties make the H test a competitive alternative to existing goodness-of-fit tests.
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3.1 Introduction

Consider the classical, one-sample goodness-of-fit problem of whether a random
sample comes from a pre-specified hypothetical (null) distribution. There are many
goodness-of-fit test statistics in the literature among which the classical Kolmogorov-
Smirnov (KS), the Kuiper, the Cramer von Mises (CvM), the Anderson-Darling
(AD) and the Wasserstein (W) test more recently considered in del Barrio et al.
(1999) and del Barrio et al. (2000). The latter tests have gained great popularity
and have been widely applied in almost any field where data is collected and analysed
such as, astronomy (McQuillan et al., 2013), social sciences (Salman et al., 2015),
pattern recognition (Alzubaidi and Kalita, 2016), machine learning (Gretton et al.,

2012) etc., to name only a few.

These and other existing tests have different properties and there is no ”best”
test that suits all purposes and posesses all the best properties. For example, the very
popular KS test, based on the supremum distance, is readily understood graphically,
is easy to evaluate and is distribution-free when the null is continuous. Furthermore,
recently Dimitrova et al. (2020) provided efficient means of computing the KS p-
values assuming arbitrary continuous, discrete, or mixed null distribution, which
makes the KS test applicable beyond just the continuous case. At the same time,
the KS statistic is less sensitive in the tails, and has in general lower power (see e.g.
Mason and Schuenemeyer, 1983; Feigelson and Babu, 2020). This makes the KS
test less efficient, especially for comparing tails, which is very important in extreme

value applications and related inference.

The AD and CvM tests, based on the L2-distance, are also distribution-free
and have high power but have not been introduced for discrete or mixed null dis-
tributions. The W test, based on the L?-Wasserstein distance, also has high power
but is difficult to evaluate numerically and is not distribution free, which hinders its

practical use.

As noted, each test is defined using a particular metric to measure the distance
between the underlying cumulative distribution functions. The definition of the
distance metric determines the properties of the test, in particular the evaluation of
the test, its distributions and power. All these considerations lead to the conclusion

that there is still scope for applying alternative distance metrics, leading to the



3.1. Introduction 72

construction of new test statistics and the need to investigate their related properties.

The aim of this chapter is to explore how the Hausdorff metric, introduced by
Hausdorff (1914) to measure the distance between sets, can be applied to measure the
distance between (empirical) cumulative distribution functions on the real line, with
the purpose of introducing a corresponding Hausdorff goodness-of-fit test statistic.
The Hausdorff distance has been considered by Sendov and Beer (2012) within the
context of approximation theory, and in machine learning by Huttenlocher et al.
(1993), Li et al. (2017), Karimi and Salcudean (2020), Zhao et al. (2021), to name

only a few of the papers in this stream of literature.

To the best of our knowledge, the Hausdorff metric has not been previously con-
sidered to measure the distance between cdfs, with the only exceptions of Rachev
(1984) and Bloch and Atif (2016). While Rachev (1984) shows that the Levy and
Hausdorff distances between two cdfs are expressed in a similar way (cf. Theorem
1 therein), Bloch and Atif (2016) give an equivalent expression by exploiting the
link between the Hausdorff distance and morphological dilation (cf. expression (11)
therein). However, the latter expression is in general terms, leaving open the ques-
tion of how to efficiently compute the Hausdorff distance between two cumulative

distribution functions.

Here, we provide an answer to this question. Secondly, we use the Hausdorff
distance to construct a corresponding Hausdorff goodness-of-fit test statistic, develop
an efficient method to calculate its distributions and investigate some of its most
important properties. It will be convenient to refer to the latter statistic as the H

(test) statistic.

Let us note that while the H test is invariant to location shifting, it is not in-
variant under scale transformation, in contrast to other tests which are both location
and scale invariant (cf. KS, AD, etc.). We show that the lack of scale invariance
has some desirable effects on the H test. More precisely, we demonstrate that by
appropriately selecting the scale parameter it is possible to tune the H statistic in
such a way that its power is maximized. This makes the newly proposed Hausdorff
test a powerful competitor to other tests when comparing tails of distributions, in

the context of probability theory and statistical inference for extreme values.

Our major contributions can be summarized as follows. First, in Lemma 3.6
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we show that the general definition of the Hausdorff distance simplifies significantly
when applied to cumulative distribution functions. Based on this and on Lemmas
3.8 and 3.9, we provide an efficient method to compute it. The pseudocode of the
method is described in Algorithm 1. We also establish some useful inequalities be-
tween the Hausdorff and Kolmogorov-Smirnov distances and their corresponding
distributions (see Theorem 3.11 and Corollary 3.12). The known equivalence be-
tween the Hausdorff and Lévy metrics is recalled and used to establish some useful

results with respect to the Hausdorff distance.

Second, we propose to use the Hausdorff distance as a goodness-of-fit measure
and, by applying a suitable coordinate transformation, we show in Theorem 3.17
that the H statistic can be expressed alternatively as the supremum of an abso-
lute difference, resembling the form of the Kolmogorov-Smirnov statistic. Using
this form, in Theorem 3.19 we are able to express, the exact distribution of the H
statistic as a Steck (1971) rectangle probability which can be efficiently computed
(with complexity O(n?logn)) using the exact KS-FFT based method proposed by
Dimitrova, Kaishev and Tan (2020). In Theorem 3.21 we give the asymptotic dis-
tribution expressed as a double boundary non-crossing probability with respect to
a Brownian bridge. Closed form expressions for the asymptotic distributions in the
special cases of exponential and uniform nulls are obtained in Corollary 3.22 and
Theorem 3.23. The latter establishes a direct connection between the H test and

the KS test and their distributions.

Third, we take advantage of the scale dependence of the H statistic. By spec-
ifying its confidence band, we show in Proposition 3.27 that its power admits a
representation as a double boundary non-crossing probability, where the boundaries
and the band between them depend on the scale parameter. Therefore, based on
Theorem 3.29 and Corollaries 3.30 and 3.31, we show that under the assumption
of concavity/convexity of the null or its right/left tails, the power can be locally
controlled, making H body or right/left tail sensitive by appropriately selecting the
scale parameter. In particular Theorem 3.29 suggests that if the null has a concave
right tail, and if it deviates from the true therein, the H test would become more
right-tail sensitive as the scale parameter decreases. Since most commonly used null

distributions such as Exponential, Normal, Pareto, Lognormal, Gamma, etc, have
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concave right tails, in this case an optimal power of the H, (o) test is achieved by
appropriately selecting a value of the scale parameter. In (3.3.11) we propose such
an optimal choice which solely depends on the null distribution and is motivated by
the geometric interpretation of the transformed H statistic, provided by Proposi-
tion 3.34. Proposition 3.35 shows that the choice (3.3.11) is invariant under further
rescaling thus ensuring that the issue of scale dependence of the proposed H test is

eliminated.

Last but not least, we provide some insights on the asymptotic power of the
proposed H test. In Theorem 3.41, we give a computable expression for the exact
Bahadur slope of H and use it to evaluate the Bahadur efficiency of H, relative to
the efficiency of the KS test, based on an example where the alternative is a spliced
distribution. The results, summarized in Table 3.2, show that asymptotically the
Hausdorff test is more efficient than the KS test when the null and alternative differ
in the tail. In Theorem 3.39, we provide an expression of the asymptotic power of

the H test under an appropriate contiguous alternative.

To emphasize the practical importance of the proposed H test, we provide
simulated examples and a real data example which demonstrate that for finite sample
sizes the H test has higher power than the KS, CvM and AD tests when samples
deviate from the null distribution in the tail. The real data example, involving
Lloyd’s aviation insurance losses, also illustrates the higher tail sensitivity of the H
test compared to the classical KS, CvM and AD tests. As can be seen from Table
3.4, H is the only test that rejects the null hypothesis, capturing the tail discrepancy
between the null distribution and the sample, indicated by the corresponding QQ
plot in Fig 3.12.

This chapter is organized as follows. In Section 3.2, we recall the general def-
inition of the Hausdorff metric and introduce the H goodness-of-fit statistic. We
further provide methods to compute the H statistic and its exact and asymptotic
distributions. Connections between the H and KS tests and their distributions are
also established. In Section 3.3, we show that the sensitivity of the H test can be
controlled locally by varying the scale parameter and propose a rule to select it so
that the power is optimized in the area (e.g. body or left/right tail) where it is of

interest to test the deviation between the null and the sample. In Section 3.4, we
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give some results on the asymptotic power of the Hausdorff and KS statistics apply-
ing the Bahadur exact slope and efficiency. In Section 3.5, we provide simulated and
real-data examples to demonstrate the advantage of the proposed H test in extreme
value goodness-of-fit testing. In Section 3.6, we provide a summary and discussion
of our findings.

Further numerical examples are given in Appendix 3.B. The proofs of all the

results that appear in the chapter are given in Appendix 3.A.

3.2 The Hausdorff Goodness-of-fit Test Statistic

Given a random sample X,, = {X1,..., X, }, where X;, i=1,...,n, are i.i.d. copies of
the random variable, X, defined on the probability space (2, F,P), with (unknown)
cumulative distribution function Fy(xz). We want to test the null hypothesis, Hy,
that the sample X, comes from a pre-specified (null) distribution, with distribution
function F(x), i.e., Hy: Fy(x) = F(z), for all = € R, against the alternative, ps :
Fy(x) # F(x), for at least one z. For convenience, we assume F'(z) is continuous,
however, most of our results are either directly applicable for the case of F' with
jumps, or applicable with slight adjustments. Denote by F,,(z), z € R, the empirical

cumulative distribution function, (ecdf), corresponding to the sample X, i.e.

n

> LX< x), (3.2.1)

i=1

1
Fo(z) =~
where 1(-) is the indicator function. In the sequel, it will be convenient to inter-
changeably use the notation F,(x) = F,(z,w) = F,,, where w € Q explicitly indicates
that the empirical cdf depends on the random sample X, (w).

3.2.1 Background on the Hausdorff Metric

In order to introduce our test statistic based on the Hausdorff metric, we need to
recall the following definition of a distance measure between two points, A and B,

on the plane, R?.

Definition 3.1. The function p(A,B) is a distance measure between two points

A, B € R? iff it satisfies the following conditions:
1. p(A,B) > 0, for every pair of points A and B.

2. p(A,B) =0, iff the two points A and B coincide.
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3. Symmetry: p(A,B)=p(B,A).
4. Triangle inequality: p(A,B)+p(B,C) > p(A,C).

Example 3.2. Examples of such a distance measure are given by the following

functions:

poo(A, B) = max{|zs —xpl,|ya —ysl} (3.2.2)
p1(A,B) = |ra—xp|+|ya —ys| (3.2.3)
p2(A,B) = \/(ﬂfA—$B)2+(yA—yB)2a (3.2.4)

where x 4,xp and y4,yp are correspondingly, the x and y coordinates of the points

A and B.

It can be directly verified that, all functions, h;, ¢ = 1,2,3, in Example 3.2,

satisfy conditions 1-4 of Definition 3.1. Their geometric interpretations are given in

Figure 3.1.
A y A y A y
1] A A4 ll All
oA
A L d & A 1
-1 1 x -1 N1 . X -1 i . X
di r B% \\B)
7
A 1 -1 -1

Figure 3.1: All points, A, located at unit distance from B(0,0), with respect to p;(A4, B),
1 =00,1,2, defined in Example 3.2, form correspondingly: a) a square; b) a
rombus and ¢) a circumference.

In what follows, it will be conveneint to work with definition, p.,, which is
illustrated in panel a) of Figure 3.1, where the point A can be any point on the
square with sides 2, and center, the point, B. In other words, the set of all points,
{A: ps(A,B) =1}, coincides with the contour of the square, which therefore can be
viewed as the circumference with respect to p~, with radius 1 and center, the point
B.

We are now in a position to recall the definition of the Hausdorff distance
between sets. For the purpose, assume, p(A, B) is an arbitrary measure of distance

between two points A and B, on R2. Let also A and B be two arbitrary sets on the
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plane, R?, bounded with respect to p. We can now define the Hausdorff distance as

follows.

Definition 3.3. The Hausdorff distance, H,(A,B) between the sets A and B is
defined as

H,(A,B) = max{sup inf p(A,B),sup inf p(A,B)}. (3.2.5)
AeABeB BeB AeA

For a proof that H,(A,B) is a distance metric, we refer to Sendov and Beer

(2012).

3.2.2 Properties of the Hausdorff Metric Applied to Cumulative

Distribution Functions

In order to apply the Hausdorff metric H,(.A, B) to measure the distance between the
distribution functions, F'(x) and F,(z), x € R, we need to appropriately define the
sets A and B from Definition 3.3. We replace them with the planar curve (i.e., set)
analogues, F and F¢, of the (right-continuous) cdfs, F'(z) and F,(x), completed by
vertical segments, corresponding to the jumps at their points of discontinuity. Thus,

for the planar curve F¢(w), which is a closed and connected subset in R2, we have
Ff(w)={(z,y) : Fp(z—,w) <y < Fy(z,w),Vz € R}. (3.2.6)

A more general definition of the planar curve is given in (4.2.6) of Chapter 4.

Note that, if F'(x) is continuous, its corresponding planar curve F¢, defined as
in (3.2.6), coincides with its graph, gr(F') = {(x, F(x)) : « € R}, which is a closed and
connected set in R%. Therefore, for simplicity and symmetry, we use the notation

F¢ for the planar curve of the null distribution F'.

Remark 3.4. When the underlying distribution is discrete or mixed, i.e., when
F(z) has jumps, its corresponding planar curve, F'¢, is defined as in (3.2.6), so as to

fill in the missing parts at the jumps.

In order to test the null hypothesis Hy, introduced in Section 3.2, we propose to
use the Hausdorff distance, H,(F¢, Fy), between the planar curves F° and FS, that
correspond to the cdfs, F' and F),. Let us note that, H,(F¢ Ff), is a well defined
goodness-of-fit test statistic, for an arbitrary choice of the distance, p, in particular,

for p=p;, i =00,1,2, as in Example 3.2. To the best of our knowledge, using
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H,(F¢ Ff), to test the null hypothesis, Hp, has not been previously considered,
under any choice of p = p;, i = 00,1,2. The Hausdorff distance under ps has been

considered by Popov (1999) but with respect to arbitrary functions.

As a measure of the distance from a point, on the curve, F¢ to any point on
Ef, we have chosen the metric po, defined in (3.2.2), i.e. we take p = poo. This is
motivated by the following reasons. Firstly, since, F is a staircase curve, and since
the metric H,_ is the side of the largest square inscribed between the curves F'*
and F¢, (see Lemma 3.8), inscribing squares is more natural and computationally
appealing than inscribing other shapes, e.g. rombuses or circles as in Fig 3.1. Sec-
ondly, the choice, p = p, ensures that the Hausdorff metric H,_ coincides with the
Lévy metric, cf (3.2.14). The latter is yet another metric used to measure the dis-
tance between two probability distribution functions. It has some useful properties,
which we consider later in this section. Lastly, if p = ps, the Hausdorff distance
between the graphs, gr(F') and gr(F,), of the cdfs F and Fj,, and between their
corresponding planar curves coincide, as we show in the following lemma. These
geometric conveniences lead to an efficient method of computing it (c.f Algorithm
1) and elegant theoretical results, given in Section 3.2. For brevity, we will drop the

subscript poo from H, (F° FY) and write H(F', FY).
Lemma 3.5. We have, H(gr(F),gr(F,)) = H(F¢,FY).

Since there is a one-to-one correspondence between the functions F' and F), and
their graphs, from Lemma 3.5 it follows that, H (F, F},) and H (F*, F) are equivalent,

so one can view H as a functional, i.e.,

H(F,F,) =max { supinf max (|z —yl,|F(z) — F,(v)|),
y T

(3.2.7)

supinf maxux—y\,rF(x)—Fn<y>\>}.

We will refer to the Hausdorff distance between F,, and F' as the proposed H test
statistic denoted by H(F*¢,Ef).

The following lemma is important since it shows that the general expression
(3.2.5) for the Hausdorff distance simplifies significantly when applied to measuring

the distance between cdfs.
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Lemma 3.6. The Hausdorff distance

H(F° F\)= sup inf po(A,B)= sup inf ps(A,B).
AcFe BeFe BeFe AcFe

where poo = max{|xa—zp|,|lya —ynl}.

As we argued in the introduction, (and demonstrate in the sequel), the test
statistic H(F°, FY) has some nice properties that make it a competitive alternative
to exisitng tests, such as Kolmogorov-Smirnov, Anderson-Darling, Wasserstein, etc.
The H test is more flexible and in general, captures differences between the cdfs Fj,
and F, better than purely ordinal tests, such as KS, CvM and AD tests. This is
because, H(F¢, F¢) depends on both the z and y coordinates of the curves Ff and
F¢ as can be seen from the definition of the distance metric p, given in Example
3.2-(2). This is in contrast to, e.g. the Kolmogorov-Smirnov statistic which depends

only on the y-axis, by definition.

Remark 3.7. In general, for other specifications of p, e.g., for p = p1, ps defined in
(3) and (4) of Example 3.2, the statistic H,(F*, Fy), also depends on both the = and
y coordinates of the curves F and F°, therefore is also better suited to capture the

differences between them, than the purely ordinal tests.

In order to express the Hausdorff test statistic H(F¢, F), and formulate some
important results, we need to introduce the following notation.

Let, {z1,...,2,} denote a realization of the random sample X,, = {X1,..., X, },
such that 21 < x9 < --- < x,. The empirical cdf F,,(z) and its planar counterpart,

E¢ with vertexes, Aj, As,..., Aap, having coordinates

AQi = (gqun(ﬂ?z)), AQi_l = <$Z’,Fn(l‘i_1)> 1= 1,2, ey (328)

where F,,(zg) =0, for some z¢ < z1. Both, F,(z) and FS are illustrated in Figure
3.2, for the case, n = 3.

Let F¢ divide the plane into two open sets, denoted by Upc and Lpe, and
correspondingly referred to as the (strict) epigraph and hypograph of F¢. Simliarly,
F¢ divides R? plane into Upe and Lpe. We are now in a position to formulate some

important lemmas, starting with Lemma 3.8, which establishes a relation between



3.2. The Hausdorfl Goodness-of-fit Test Statistic 80

y y

T R —_— 1

] —

|- |

[ —
Figure 3.2: F), is function whereas F is planar curve

the Hausdorff distance and a square that can be fitted between the curves, F); and
F€. In particular, the side of the maximal such square is the Hausdorff distance

H(F¢,F°).

Lemma 3.8. If a square S(P,d) = {P, € R?: poo(P1,P) < d/2}, with side d and
center at the point P, can be inserted between the curves F¢ and F¢, so that S(P,d)
does not overlap with the sets Upe NUpe and Lpe N Lpe, then for the Hausdorff

distance, we have

H(F,Ff) > d. (3.2.9)

Furthermore,

H(F¢,Fy;) =sup{d}, (3.2.10)

where the supremum is taken over all
S(P,d): S(P,d)N{(Ur: "Upc)U(Lpc N Lpe)} =0, (3.2.11)

or equivalently, over all

S(P,d): S(P,d) C G, (3.2.12)

where G =R?/{(Upe N\Upe)U(LpeNLEe)}, is the area between the two planar curves
F¢ and Fy.

Lemma 3.8 is important as it provides a geometric interpretation of the distance,
H(F€ Ff), and gives insight on how to numerically compute H(F¢, FY), and link it to
the Lévy metric. The latter is used to measure the distance between two probability

distribution functions. For any two arbitrary cdfs F'(z) and G(z), the Lévy metric
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is defined as (see e.g. Zolotarev, 2011)

PLevy(F,G) =inf{e: F(z—€) —e < G(x) < F(x+¢€)+¢€}. (3.2.13)

It is important to note that both H and the Lévy metric, pre,y have a coincident
geometric interpretation as the side of the largest square inscribed between the
corresponding planar curves, as shown in Lemma 3.8, for H and as illustrated by
Zolotarev (2011), for preyy. Therefore, the Hausdorff metric H and the Lévy metric,
coincide, i.e.

H(F®,G€) = prevy(F,G), (3.2.14)

where G° is the planar curve of G(x). This fact has also been highlighted in Theorem
1* of Rachev (1984). Therefore, the properties of the Lévy metric are also valid
for the metric H, as summarized by the Lemma 3.46, which is a restatement of
properties (2) (6) and (7), summarized in Zolotarev (2011) with respect to the
Lévy metric. For further upper bounds with respect to the Lévy metric, we refer
to Zolotarev (1971). We should highlight that Alexander (1974) has proposed the
goodness-of-fit statistic based on the Lévy metric, however, the Alexander (1974)’s
statistic shares the same property as KS. For more discussion, we refer to Remark

3.24.

We can now address the question of how to compute H(F¢, F¢), by specifying
result (3.2.10), of Lemma 3.8. Denote by, Bjo. = [({A2i—1}1-1 N Lre) U ({A2:} 1N
Upe)}] = {Bi1,Ba,...,B,}, the part of the vertices of the curve FS that are locally
farthest from F€¢. The following proposition gives an explicit expression for the
Hausdorff distance, based on which we develop numerical methods to compute the

value of the statistic H(F¢, FY).

Lemma 3.9. Let, £;, [=1,2,...,v be parallel straight lines, correspondingly passing
through each of the vertices, By, I =1,2,... v, in such a way that they cross the x-
azis, at an angle of 3w/4. Denote by Ey, | =1,2,...,v the points of intersection
of the lines, L; with the planar curve F¢ and consider the distances pso(By, E}),

1=1,2,...,v. Then we have

H(F¢ F}) =max{poo (B, E}),l =1,...,v}. (3.2.15)
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E |

0 X1 X2 X3 X

Figure 3.3: Illustration of the lines £;, and the points B; and F;, [ =1,2,3,4, from Lemma
3.9.

Lemma 3.9 is geometrically illustrated in Fig. 3.3. Equation (3.2.15) is essential
for computing the value of H(F¢ F¢). In particular, when F' is continuous, the
computation is straightforward, as illustrated in Algorithm 1. Denote by zp, and
yB,, the x and y coordinates of the points B;, [ =1,...,v, respectively. Then it is
easy to find all the crossing points, E; = (x}, F(x})) of the straight line £; = {(z,y) :
r+y=xp,+ypg, } with the curve F¢, where z}, [ =1,...,v are the unique solutions
of the equations in line 5. The latter uniqueness is guaranteed by the continuity of

F(z). The value of H(F¢ Ff) is then found via the maximization in line 6.

Algorithm 1: Computing the value of H(F*, FY)
Data: F,xq,...,z,

Result: y = H(F°, Ff)
Broc < {(zi,52) : F(wi) > S U{(ws, £)  Fla) < 1}

V<= ’Bloc’;

Ju

N

w

y < 0;
aforl=1;1<v;l=I1+1do

5 x} < the solution of z+ F(z) = xp, + yn,;

=]

y < max(y, |z} —xpg,]) ;

7 end

Remark 3.10. Lemma 3.9 is also true for distribution functions F'(x) with jumps.
However, in the latter case, equation x4+ F'(x) = xp, +yp, may not have a solution.
since the line £; may cross F(x) at some of the jump discontinuities. Therefore,
to find the points Ej, [ =1,...,v, one may need to accordingly adjust line 5 in

Algorithm 1.

Next, based on Lemma 3.9 we state Theorem 3.11, which is central since it gives
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a connection between H(F°, F¢) and the one sample Kolmogorov-Smirnov statistic,

D,, defined as

Dn=pp(F,F,):= sup |F,(x)—F(z)| (3.2.16)

—oo<r<+00

Theorem 3.11. For any distribution F(x), we have

H(F®, FS(w)) < pp(F, Fu(w)) (3.2.17)

for every w € Q.

Let us note that the following corollary with respect to the cdfs of H and KS is

a direct consequence of Theorem 3.11.
Corollary 3.12. For any q € [0,1], P(H(F¢ Ff) > q) <P(D,, > q).

3.2.3 The Exact and Asymptotic Distributions of the One-sample
Hausdorff Statistic H

In this section, we provide means for efficient computation of exact and asymptotic
distributions of the statistic H. Our approach is based on performing an appropri-
ate transformation of the planar curves F¢ and F? into a new coordinate system.
We show that, by applying the transformation, the value of the statistic H can
be expressed alternatively in the form of the supremum of an absolute difference,
analogous to the form of the Kolmogorov-Smirnov statistic. Using this form, we
are able to express the exact cdf as a rectangle probability which can be efficiently
computed via the exact KS-FFT based method proposed by Dimitrova, Kaishev and
Tan (2020). We further extend the latter expression and obtain the asymptotic cdf.

Before introducing the new coordinate system, it would be useful to provide
some auxiliary properties of the largest square, S(Fy,dp), with side, dy = H(F*,
Ef), which can be fitted in G, i.e. S(FPp,dp) C G, see Figure 3.4. It is easy to see
that the upper-left and lower-right vertices of the square S(Py,dp), lie on either of

the curves F'¢ and F). This is formally stated by the following lemma.

Lemma 3.13. Denote by dy = H(F¢,FS), and if 3 Py = (z0,y0) € R? such that
S(Py,do) C G, then the upper-left and lower-right vertices of S(Py,do) lie on one of
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Figure 3.4: Left panel: Illustration of Lemma 3.13 - the upper-left and lower-right vertices
of S(Py,dp) lie on the curves F¢ or FS; Right panel: Illustration of the class

{Sx}

the curves, F°, FS, i.e.,
(o —do/2,y0+do/2), (0 +do/2,y0 — do/2) € FCUFy

Hence, to find the largest square, one only needs to search within the class of
squares, whose upper-left and lower-right vertices lie on the curves F* and F};, which
we denote as S). Specifically, each element Sy € S indexed by A, is the square with
line {(z,y) : x+y = A} passing through its center, and satisfying Sy C G, SxNF*“ # 0,
S\NES # 1, as illustrated in the right panel of Figure 3.4. Formally, we have

Lemma 3.14. Denote by P\ = (x),yx) the center of the square Sy and by dy the
length of its side. Then
H(F€ F\) =supdy,
A

where X is the index for the line {(xz,y): x+y = A} passing through the center of Sy,

i.e. A=1T)\+Yy.

The statement of Lemma 3.14 is equivalent to (2.2) in Rachev (1981), formulated
with respect to the Lévy metric. For the sake of consistency, in Appendix 3.A we

give its proof for the Hausdorff metric.

Remark 3.15. Lemmas 3.13 and 3.14, are also true for arbitrary right continuous

nondecreasing functions F’ and G’, as substitutes of F' and F},, respectively.

Lemma 3.14 is a further generalization of Lemma 3.9, which is needed to express
the Hausdorff metric as an appropriate supremum under the transformed coordinate

System.
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Now, let us introduce an operator to transform the coordinates of points in the
plane. Denote by T : R? — R? a 2-dimensional coordinate transformation operator
such that, for any point P = (z,y), T(P) = (x+y,y). It is easy to verify that
the operator T is a bijection and its inverse operator is then 771 (u,v) = (u —v,v).
For an arbitrary subset A in the plane xOy, denote by T'(A) ={T(P): P € A}
its corresponding image set on the plane uOv. Before formally introducing the
alternative expression of H(F¢ F¢) under T, we give the following descriptions for

the image sets of some important subsets.

Example 3.16. (i). For any square S(P,d) in the plane zOy, the corresponding
image set T'(S(P,dp)) is a parallelogram with both its base and height equal to dy

and one of the diagonals vertical, as shown in Figure 3.5.

oyl (ay, 1) (xo +yu,¥1) (xi; ¥1,91)

P
.
p .
do _— e dy -
p .

(xo ) . . o >
e 1'(1")”] \Xo /,Pf",)iug ,,,,, 1x; + v, ¥o)

X u

Figure 3.5: Graphical illustration of S(P,dy) and T(S(P,dp))

(ii). Let F', be a continuous cdf. Let the function K have the following form
K (u) = Pl (), (3.2.18)

where n~1(u) is the inverse function of n(x) = x4+ F(z), z € R. Then the graph of
the parametric equation v = K (u) coincides with the image set of the planar curve

Fe ie. T(F¢) = {(u,v):v=K(u), for every real u}.!

(iii). Similarly as in (ii), denote by v = K,,(u) the parametric equation corre-

sponding to the curve T'(FY) on the plane uOv. Then K, is a continuous piecewise

n fact, (ii) is valid for any continuous non-decreasing function F.
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x4 X; X3 x u
Figure 3.6: Illustration of F; and T(Fy) for {z1,z2,23}
linear function with vertices T'(4;) i = 1,2,...,n, that has the following form:

1 n
=) 1(X;+ Fo(X;) <u),
+- 2 L(Xi+ Fu(Xi) <)
(3.2.19)
where X(;), ¢ =1,...,n are the order statistics of the sample X, and Fn(X(O)) =0.

This is also graphically illustrated in Figure 3.6.

Then the Hausdorff distance H(F¢, F¢) given by (3.2.15) is alternatively ex-

pressed as follows.

Theorem 3.17. The one-sample Hausdorff statistic H(F¢,FY) is expressed as
H(F*,FE) = sup | Ko (1) - K (1), (3.2.20)
t

where K(t), K, (t) are defined in (3.2.18) and (3.2.19), respectively. Furthermore,
the supremum is achieved either at the point t = X ;) + % or at t =X+ %

Note that the points (X(;) + =2, Kp (X + 52)) and (X + L, K (X + 1)),
i=1,...,n, coincide correspondingly with the points T'(Az;—1) and T(Ag), i =
1,...,n. Furthermore, obtaining values n(X; + 1) or n(X(; + %), is equivalent to
sequentially solving equations z + F(z) = X;) + =1 or #+ F(z) = X(;+ £. There-
fore, computing (3.2.20) is equivalent to computing (3.2.15), using Algorithm 1.

Remark 3.18. Theorem 3.17 is also true when F' is discontinuous, with K in
(3.2.18) and K, in (3.2.19) accordingly adjusted so as to determine the parametric
equations of T'(F°) and T(EY).



3.2. The Hausdorfl Goodness-of-fit Test Statistic 87

The representation in (3.2.20) allows us to express the cdf as a rectangle proba-
bility with respect to the uniform order statistics, following Lemma A.1 in Dimitrova,

Kaishev and Tan (2020). The expression is provided in the following theorem.

Theorem 3.19. When the null cdf F(x) is continuous, the complementary cdf of
the one-sample Hausdorff statistic P(H(F¢,Ff%) > q),q € [0,1] can be expressed in
terms of the rectangle probability with respect to the order statistics Ug,i=1...,n

of n independent and identically distributed uniform (0,1) random variables U;, i =

1,...n, as
]P’(H(FC,FE) > q) =1 —}P’(ai < U(z) <b;,1<i < n), (3.2.21)
where ]
1,1
ai=F(F7(~—q)—q),
?_1 (3.2.22)
bi=F(F~ ' (—+a)+a),

and where F~1(y) = 400 for y > 1, F~(y) = —oo for y <0, F(+oc0) =1 and
F(—o00)=0.

Expression (3.2.21) can be computed applying the procedure exact-KS-FFT
proposed by Dimitrova, Kaishev and Tan (2020) with computational complexity
O(n?log(n)).

Remark 3.20. When F(x) is discrete or mixed, the exact cdf P(H (FS, F€) > q) can
be expressed similarly as in (3.2.21), with some further adjustments to the values of

a; and b;.

It should be noted that the cdf P(H(F ES) <q) q € [0,1] in Theorem 3.19
depends on the null cdf F, since H(F¢ FS) depends on the y and x coordinates.
In fact, for any cdf F' and ¢ € (0,1), the sequence P(H (FY,F¢) > q), n — oo con-
verges to 0, as suggested by Corollary 3.12, noting that the KS cdf P(D,, > q)
converges to 0. Therefore, it is meaningful to consider the asymptotic distribution

nh_)rrgo P(y/nH(ES,F°) > A) which is done in the following theorem.

Theorem 3.21. Let By(t), t € [0,1] be a Brownian bridge with By(0) = By(1) =0,
E[Bo(t)] =0, E[Bo(t)Bo(s)] = s(1—1t) for 0 <s<t<1. If the null cdf F(x) has a

bounded continuous derivative f(x), the asymptotic distribution of the one-sample
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Hausdorff statistic can be expressed as a double-boundary non-crossing probability
with respect to the process By(t). More precisely,

Jim P(v/nH(F;, F°) > x) (3.2.23)

=1 =P (=a(1+ f(F7H(0) < Bo(t) (14 f(F(1),V 0 <t < 1)

For a particular choice of the null distribution F'(z), the analytical expression

(3.2.23) can be specified as shown by the following corollary.

Corollary 3.22. If the null distribution F(x) is exponential, i.e. F ~ Exp(a), then

the asymptotic distribution can be expressed as

C C
lim P(v/nH(Fy, F€) > x)

=1-P(-z(1+a(l-1)) <Bo(t) Sz(l+a(l1-1))),V0<t<1) (3.2.24)

o0
Z k 1,—2 (1+a)k22?

Furthermore, the following theorem establishes an explicit connection between
the Kolmogorov-Smirnov and the Hausdorff test statistics and their corresponding

(asymptotic) cdfs.
Theorem 3.23. If the null distribution F(z) is uniform, i.e. F ~U(a,a+b), then

b
H(F,F) = 15D, (3.2.25)

and for the cdfs we have

b
P(D, > q) = P(H(F°,FS) > 1q+b) (3.2.26)
Moreover,
s k—1 —2(1+b>2k2:172
lim P(v/nH (F¢,F) <x) = 1-2> (-D)rte™ 2 : (3.2.27)

Theorem 3.23 demonstrates the connection between the KS and the Hausdorff
statistics and gives the asymptotic distribution of the latter when the null is uniform.

Another relation between the H and the KS statistics is established in Theorem
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3.36, which indicates that the KS statistic can be viewed as the limit of the scaled

H statistic, when the scale parameter goes to infinity.

Remark 3.24. Alexander (1974) has noted the distribution dependence of the Lévy
metric in the context of goodness-of-fit testing. Therefore he proposed to use statistic
based on Lévy metric to test whether {F'(X;),...,F(X,)} comes from the uniform
distribution UJ0,1]. However, in view of Theorem 3.23, it is not difficult to show
that the p-value of Alexander (1974)’s Lévy statistic, will always coincide with that

of the KS test as long as the null distribution is continuous.

Let us note that the boundaries in Theorem 3.21 are general and depend on the
form of the null distribution. Explicit expressions for the probability that the Brow-
nian bridge By () stays within the corridor between two piecewise linear boundaries
have been obtained by Novikov et al. (1999) and Potzelberger and Wang (2001).
Note also that an arbitrary null cdf F(x) can be approximated using exponential
splines F(aj) € C'(R) that consist of pieces of exponentials a; + b;e*®, i =1,...,k,
smoothly joint together at some points called knots, where a;,b; and k; are param-
eters. It is not difficult to show that such an exponential spline approximation of
F would result in piecewise linear boundaries in (3.2.23), and therefore (3.2.23) can
be used to compute the asymptotic distributions of the H test for an arbitrary null

A

distribution F, approximated by F(x).

3.3 On the Scale Dependence of the H test

It is well known that the majority of the goodness-of-fit tests such as the KS, CvM
and AD, and their p-values are location and scale invariant, and this to a great
extent motivates their popularity in practice. However, it is not difficult to show
that while the proposed H test is location invariant, it is not scale invariant. As a
result of this, a major difficulty that arises when one tries to apply the statistic H is
that its p-value and hence its power is not invariant to a scale transformation o.X,
for some constant o > 0. This is illustrated in Figure 3.7, where it can be seen that
the statistical power of H(F'¢, FY) is significantly affected by the choice of the scale
coeflicient ¢. Since power is estimated based on the p-value, Figure 3.7 implies that
the p-value of H also changes as o changes.

To formally illustrate this scale dependence, consider a particular realization
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Figure 3.7: Statistical power of AD, CvM, H and KS tests under different scales ¢ when
the sample is from N(3/o 0'22) and the null distribution is N(3/0,0"7—222)

7302
of the random sample, X, (w) = {x1,...,z,}. Let § = H(F° F5(w)) denote the
observed value of the H-statistic, with p-value p = P(H(F€¢ Ff) > §). Assume
now, that we would like to change the scale and work with the re-scaled sample

0 X, ={0Xi,...,0X,} with empirical cdf F}, , and re-scaled hypothetical cdf F,,(x),

ie.
1 n
Fo(x)=F(z/o), Fno(z)=F,(z/o)= EZMUX@' <uz), (3.3.1)
i=1
where o is appropriately chosen. For example, say {xi,...,z,} are heights of a

sample of n individuals, expressed in meters and we want to work with the same
sample of observations but expressed in centimeters, in which case ¢ = 100. For
the same realization, the observed sample would be 0 X,,(w) = (cz1,...,0%,), with
empirical cdf F,, ,(w) =2 3", 1(cx; < z), observed statistic ¢’ and corresponding
p-value p=P(H(Fg,Fy ;) >q'), where F§ and F}; , denote the corresponding planar
curves of F, and F), ,, defined as in (3.2.6). Under the two different scales, the

p-values p and p may not coincide.

3.3.1 On the Scale Dependent H Statistic H,(c) and Its Related

Power

Our aim in this section is to show how the scale dependence property of H can be
exploited to optimize its power and therefore eliminate its dependence on o. To
address this aim, we will view the scale coefficient ¢ > 0 as a hyperparameter and

consider the family of (scaled) Hausdorff statistics

Hn(g) = H(FO'C7F’I§,O')7
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where Fy and Fj; , are defined by (3.3.1) and (3.2.6). Given ¢ >0, denote by Ly, »

the complementary cdf of the statistic H, (o) under the null hypothesis, i.e.

Ln,a(q) = P(Hn(a) > Q)a qc [07 1]'

Because the power is directly related to the p-value, we will consider the p-value
corresponding to a realization #,(o,w) and define it as a random variable (see
Sidak et al., 1999, Chapter 8.3.1, for a similar definition), which we denote as P, (o),

P,(0) = Py(0,w) = Ly o(Hn(o,w)) =P(Hp(0) > Hy(o,w)),w € Q. (3.3.2)

Given a realization 0 X, (w) = (0x1,...,02,), we obtain a specific realization of the
p-value P, (o,w). If the sample does not come from the null distribution, we should
expect P, (o,w) to be small. The null hypothesis is rejected if the p-value is less than
the specified significance level p, i.e., if P,(0) <p and the power of the H test, can

be expressed as

(o) =P(Ho|Hy) =P(P,(0) <p|H;) o>0. (3.3.3)

Our aim is to characterize how o affects the power m,(c). To do so, we use
the confidence band approach, previously considered by Mason and Schuenemeyer
(1983). For a fixed significance level p and scale parameter o, the confidence band
of the statistic H,, (o) is defined as the area between two boundaries F+(-;a, p) and

F_(-;0,p), such that the following events are equivalent
[Pa(0) > p} = {F-(30,p) < Fu(2) < Fy (w;0,p) for all ), (3.3.4)

where F,,(x) is the empirical cdf defined in the original scale. Note that the events
on both sides of (3.3.4) depend on o under the alternative H;, which is the case we

are interested in, to investigate the power m, (o).

Remark 3.25. Let us note that in fact under the null Hj, the probabilities of the
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events in (3.3.4) no longer depend on o, i.e.
P(P,(0) > p) = P(F_(x;0,p) < Fy(x) < Fy(w;0,p) forall z) =1—p,  (3.3.5)
which follows from the uniformity of P, (o).

The following proposition establishes that the boundaries F,(-;o,p) and

F_(-;0,p) exist and can be found explicitly.

Proposition 3.26. Given a significance level p and fized o > 0, denote by ¢’ the
(1 —p)-th quantile of the statistic H, (o) under the null, i.e.

0 =q" (n,0,p) = L (p). (3.3.6)

Then .
I q *
F(w;00p) = Fle—->)—q

o

(3.3.7)

Fy(z;o,p)=F(x+ %“) +q;.

Note that the boundaries F_(z;0,p) and F,(z;0,p) in (3.3.7) hold, regard-
less of whether F, is under the null or not and that the confidence band
(F_(x;0,p), Fy(x;0,p)) depends on the null distribution ' and on the scale param-
eter 0. The following proposition shows that the power, m,(c), coincides with the

probability of F,(z) exiting the band (F_(z;0,p), Fy(x;0,p)), under the alternative.
Proposition 3.27. For a fixed o > 0, we have
Tn(0) =1 =P(F_(z;0,p) < Fp(z) < Fy(x;0,p) for all z|Hy). (3.3.8)

Proposition 3.27 suggests that the width and shape of the band, (F_ (z;0,p), Fy (x;0,p)),
directly affect the power of the statistic H, (o), which therefore can be controled
by appropriately selecting the scale parameter, ¢. In Theorem 3.29, we further
characterize the confidence band of #,(c) as a function of o, for a class of null
distributions F. Before this, it will be useful to introduce the following auxiliary

lemma.
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Lemma 3.28. For any F', p >0 and o1 > g2 > 0, the following inequalities holds
QUQ < qu < ;quza (339)

where ¢}, and g}, are defined as in (3.3.6).

Theorem 3.29. Let v(x,0) := F. (z;0,p) —F_ (x;0,p), denote the width of the con-
fidence band, for a fized x. If there exists xg such that ¥ x > x¢ the null cdf F(x)
is concave, then for any o1 > g9 > 0, there always exists x1 > xg € R, such that for

any © > x1, t(x,01) > 1(z,02).

Corollary 3.30. If there exists xo such that the null distribution F(x) is convez for
every x < xg, for any g1 > o9 > 0, there always exists x1 < xo € R, such that for any

x <z, t(z,01) > 1(x,09).

Corollary 3.31. If there exists xg, such that F(x) is convex for x < xy and F(x)
is concave for x > xg (i.e. F is S-shaped), for any o1 > o9 > 0, there always exists

x1 > xo € R, such that for any x € (—oo,x2) U (x1,+00), t(x,01) > t(x,09).

To conclude, Theorem 3.29 suggests that, if F'(z) has a concave right tail, a
smaller o will result in a narrower confidence band at the right tail, which is illus-
trated in Example 3.32. Therefore, if the null F' deviates from the true distribution
Fy mostly in the right tail, then for a fixed significance level p, F),(z,w) would exit
the band at the right tail with higher probability. This would make H,, (o) right-tail
sensitive, i.e. H,(c) would have higher power when the null and the true distribu-
tions tend to differ more in the right tail. To summarize, all these considerations
apply to the most commonly used null distributions such as Exponential, Normal,
Pareto, Lognormal, Gamma, etc, in which case we achieve an optimal power of the
H, (o) test by appropriately selecting a small o. Similarly, following Corollary 3.30,
if F' has a convex left tail, a smaller o will make H,, (o) left tail sensitive, i.e. it would
have higher power when the null and the true distributions tend to differ more in
the left tail. And following Corollary 3.31 if F' is S-shaped, a smaller ¢ will make

H, (o) left and right tail sensitive. The case of large o, is covered in Section 3.3.3.

Example 3.32. Let the null distribution F' ~ Exp(1). For p = 0.5, the implied
confidence bands (F_(x;0,p), Fy(z;0,p)) for different fixed o, computed based on

Proposition 3.26 are shown in Figure 3.8.
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Figure 3.8: Confidence band of H,, (o) for different o when the null is Fzp(1) with p=0.5
and n = 50 or when the null is LN (0,0.252) with p = 0.2 and n = 50

As can be seen from Figure 3.8, when ¢ is small, the confidence band is narrower
at the right tail (as can be seen from the rightmost panel for o = 0.025), whereas
when o is large, the confidence band is narrower at the left tail (as can be seen from
the leftmost panel for o = 40).

Alternatively, if F' is S-shaped, as assumed in Corollary 3.31, a small o would
imply narrower band both at the left and right tails. We illustrate this in Example

3.33 where we choose F' to be lognormal.

Example 3.33. Let the null distribution F' be Lognormal with location parameter
0 and shape parameter 0.252, i.e. F'~ LN(0,0.25%). The corresponding confidence
bands for different choices of the scale parameter ¢ are shown in Figure 3.8. As can
be seen from the rightmost panel for o = 0.143, small o values lead to bands that
are narrow both at the left and right tails. As can be seen from the leftmost panel
for o =40, large o values lead to a narrower band in the body. The middle panel for
o =1 suggests that by appropriately selecting o, one can achieve a more uniformly
sized band across the entire support of F'. Therefore, the statistic H, (o) would have
greater power for smaller ¢ when the alternative and the null cdfs differ either at
the left or right tails. And when o is large, H, (o) would be more sensitive in the
body, i.e. would have greater power if the alternative and the null distributions are

expected to differ more in the body.

In conclusion, the sensitivity of #H,(o) can be controlled locally over the
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support of F' by appropriately selecting the scale parameter o, i.e. accordingly
rescaling the sample 0X,. In other words, one can select o so that the band
(F_(z;0,p), Fy(x;0,p)) becomes narrower at the area (left and/or right tail or the

body) where the null and the true distributions are expected to differ most.

3.3.2 Optimal o Selection

While Theorem 3.29 and Corollaries 3.30 and 3.31 shed some light on how to change
o, so as to control the bandwidth locally, these results do not suggest a rule for
choosing the scale parameter o, that can be applied in practice. In what follows,
we provide such a rule based on insights stemming from these results and some
empirical and geometric considerations. One such key insight comes from the ability
to decrease o, and narrow down the confidence band around the tails where Fjy and
F are expected to differ most. This motivates us to consider the difference in the
left /right tails of F;, (which comes from Fp) and F. Another insight is that the rule
for selecting o should only depend on F' and should eliminate the scale dependence
of the proposed H statistic.

In order to follow upon these insights, recall Lemma 3.8 which states that the
H statistic H(F*¢, FY) coincides with the (vertical) side of the largest square that can
be inscribed between F¢ and FJ. Therefore, the o scaled H statistic #H,, (o) should
also coincide with the (vertical) side of the largest square that can be inscribed
between the scaled cdfs Fy and F}; ;. Therefore, the value of H,, (o) will equivalently
be found as the vertical side of the largest rectangle among all rectangles with
ratio of sides equal to o, inscribed between F¢ and F, as illustrated in Figure 3.9.
These considerations are formally summarized in the following proposition, which is
a straightforward restatement of Lemma 3.8 under rescaling with respect to x and

is therefore given without proof.
y o<1 Y ag>1

1

' 1 1
H H
0 0
pel Xz X3 x X1 Xz X3 X

Figure 3.9: #, (o) coincides with the vertical side of the colored rectangles for o < 1 (left
panel) and ¢ > 1 (right panel) in the original scale
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0Ty o X F I F i

Figure 3.10: The selection of o for right-tail sensitive statistic following (3.3.11) for F' with
concave right-tail

Proposition 3.34. For o >0, if a rectangle S(P,d;0) = {(z,y) € R?: |z —zp| <
d/(20),ly —yp| < d/2}, with vertical side d, horizontal side d/o and center at the
point P, can be inserted between the curves F¢ and Ff, so that S(P,d;0) C G , then

Hyn (o) >d. Furthermore,
Hn(o) =sup{d: S(P,d;o) C G}, (3.3.10)

where G denotes the area between the two planar curves F¢ and FS, which has been

n’

formally defined in Lemma 3.8.

In summary, the alternative geometric interpretation of H, (o) following from
Proposition 3.34 is that it coincides with the vertical side of the largest rectangle
S(P,d;o) with a ratio of vertical to horizontal sides equal to o, which can be inscribed
in G, i.e. in the area between F' and F};. This is illustrated in Figure 3.9 for different

choices of o.

On the one hand, when o becomes smaller, the vertical side d of the largest
S(P,d;o) decreases and the horizontal side d/o increases, i.e. it becomes flatter.
Therefore, with o decreasing, it is less likely that the largest S(P,d;0), i.e. Hy(o)
(cf. (3.3.10)) would occur in the body of G, and more likely it would appear in its
tail area (see the left panel in Figure 3.9). On the other hand, as we established,
when ¢ becomes smaller, the confidence band narrows down along the right tail
and H, (o) becomes more right-tail sensitive. So ¢ should be chosen so that its
corresponding largest S(P,d;o) has a small vertical side and a large horizontal side
and appears in the right tail with its top-left vertex coinciding with the right-most
vertex of the staircase F;. Unfortunately, this is not formally achievable, since

the largest S(P,d;o) depends on the random F¢. Instead, we consider a rectangle
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defined solely by the null F¢ that can be viewed as an approximation to the largest
S(P,d;o).

One way to construct such a rectangle and therefore choose o, is to take its
vertical side equal to ¥ — g, where 11 # 13 € (0,1) are chosen close to each other and
close to one, ensuring that the vertical side is small and that the rectangle will appear
in the right tail. It is natural to take its horizontal side equal to F~1 (1) — F~1(3»)
in order to take into account the shape of the right tail of F' (see light blue rectangle

in Figure 3.10). This leads to the following choice of o

ot = Y12 (3.3.11)

CFY (1) = F (o)

which can be interpreted as the reciprocal of the quantile density function evaluated
at 11 = 9. The latter plays an important role in exploratory data analysis, extreme
value theory, reliability and survival analysis (see Soni et al., 2012).

Alternatively, the values of 1; and 19 can be chosen close to zero, or around
0.5, depending on whether a left-tail-sensitive or body-sensitive H-statistic H, (o)
is required. Appropriate choices of 1; and 15 are summarized in Table 3.1.2 In
Appendix 3.B, we provide numerical evidence that selecting o according to (3.3.11),

applying Table 3.1 optimizes the power of H, (o).

Table 3.1: Suggested choice of 11,19 in (3.3.11)

Fitting (3 o
Left tail 0.05 0.01

Body 0.70r 0.6 0.4 o0r 0.3
Right tail 0.99 0.95

Let us note once again that selecting o according to (3.3.11) requires only the
knowledge of the null distribution and therefore can be done prior to testing the

goodness-of-fit. The Type I error can be expressed as

P(Ho|Ho) = P(Py(0) < p|Ho) =p,

where the last equality follows from (3.3.5) and indicates that the Type I error

is a constant and does not depend on o. However, this is not the case if o is

2In case when the null distribution F' is S-shaped, choosing according to either left tail sensitive
or right tail sensitive would result in both tail sensitive.
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estimated based on the sample, e.g., o is estimated by the sample range or its
standard deviation, in which case the Type I error may increase.

Often in practice, the sample data may be rescaled for different reasons e.g.,
using different scale coefficients, and presented in different units. It is not difficult
to see that under the choice (3.3.11), H,(c*) and its p-value P,(¢*) will be invari-
ant with respect to the units used to present the data, as stated in the following

proposition.

Proposition 3.35. Let o* be computed from (3.3.11) under the initial scale of
the null F(z) and the sample X,. Let F(x) and X, be rescaled using a scale
coefficient og, in which case they become F(x/og) and 09X, respectively. Then the

corresponding rescaled o* given by (3.3.11) becomes

1 — 1o
oo F~1(¢1) — F~1(h2)]

oy =

and the null and the sample rescaled with oy can be seen to be invariant with respect
to o9, i.e. F(x/(0g0y)) = F(x/0*) and oo(0§Xy) = 0*X,, and so will be H,(c*)
and P,(c*).

To conclude, Proposition 3.35 states that the proposed rule of selecting o using
(3.3.11) eliminates the scale dependence of H,, (o), and leads to the invariance of the

p-value P, (o) under affine transformations of the data.

3.3.3 Limiting Results for H, (o) as a function of o

Another important implication of introducing variability with respect to the scale
parameter o is that as we show in Theorem 3.36 the KS statistic is the limit of the
Hausdorff statistic H,,(¢) when o — co. This result suggests that, the p-value and
power of the Hausdorff test converge correspondingly to the p-value and power of

the KS test when ¢ — oo, as stated in Corollary 3.37.

Theorem 3.36. For any distribution F(x), we have

lim H,(o,w) = pp(Fp(w),F) (3.3.12)

ag—00

for every w € Q.
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Corollary 3.37. Denote by P, (c0) and 7,(00) the p-value and the power of the KS
test (which is Hp(00)), for any fized alternative Hy. Then we have

P,(c0) = Jgrgo P,(0), mp(o0)= UIL%OW”(J)‘

Let us note that all the results in Section 3.3.1 hold for 0 = 0co. As demonstrated,
when o increases, H,(c) becomes more sensitive either in the left tail as in Example
3.32, or in the body as in Example 3.33 or in the right tail (e.g. if F' is purely
convex). Since the KS test is the limit of H,(c) as 0 — oo, its power is bounded
from above by the power of the KS test, if the null deviates from the true at either

of these areas.

Theorem 3.38. For any distribution F(x), we have

1
lim ~H,(o,w) = sup |F; (t,w)—F71(t) (3.3.13)
ol0 o 0<t<1

for every w € Q, where F; ! is the inverse of Fy,. If F has unbounded support, the
limit in (3.8.13) diverges.

As a consequence of Theorem 3.38, if the null ' has unbounded support, %q; —
oo as 0 | 0, where ¢ is defined in (3.3.6). Therefore, for the boundaries (3.3.7), we

have lim, o F_(z;0,p) = ¢ and lim, o Fy(z;0,p)=1—¢t.

3.4 Asymptotic Power

In Section 3.3, we showed that when the sample size n is finite, the power of the
proposed H statistic can be optimized by appropriately selecting the scale parameter
o (according to (3.3.11)), so that it significantly exceeds the power of the major
classical tests, including the KS test, as also demonstrated in Section 3.5.

In this section, we go a step further and provide some asymptotic results for
the power, m,(c) of the H test, when n — oo, expressing it as a boundary crossing
probability and utilizing the concept of exact Bahadur slope and Bahadur efficiency.
The importance of these results are illustrated in Example 3.43, where we show that
the proposed H statistic is better suited to test tail differences than the KS statistic
not only when n is finite, but also asymptotically when n — oco. The importance of

studying the asymptotic power of goodness-of-fit tests has been highlighted in the
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seminal work by Janssen (2000).

Let us assume that a sequence of i.i.d. random variables {Xy,...,X,,...} come
from an unknown true distribution Fy. For our asymptotic considerations we will
keep the null hypothesis Hy : Fyp = F', but will make the alternative more specific,
ie. Hy: Fo(x) = G(x;n), where G(z;n) is indexed by n. Here, we will be interested
in the behaviour of 7, (o) and 7, (c0) as n approaches infinity. To characterise these
asymptotic powers, we could take two approaches. First is to consider describing
the speed of convergence of the p-values P, (o) and P,(o0) for a fixed alternative,
ie. G(x;n)=G(z), n=1,2,..., leading to the study of the Bahadur efficiency of
Hy (o). The concept of the Bahadur relative efficiency is illustrated in Example 3.43,
Section 3.4.2.

Second is to choose an appropriate contiguous alternative, resulting in the study
of the asymptotic power m, (o) and m,(c0), n — oco. Note that the second approach
cannot be applied if a fixed alternative is chosen, since both 7, (o) and 7, (c0) would
converge to 1. Theorem 3.39 gives a representation of the asymptotic power of the

H test as the boundary crossing probability of a shifted Brownian bridge.

3.4.1 Asymptotic Power under A Contiguous Alternative

As mentioned, in order to study the asymptotic behavior of m,(¢) and m,(c0),
n — 00, we require a contiguous alternative, i.e. we assume that the alternative
G(z;n) converges to the null at the rate % Therefore, we assume that G(x;n) has
the inverse

\/155@), te(0,1), (3.4.1)

where J(t) is a bounded continuous function defined on (0, 1), characterizing how the

G ttn)=F1(t)+

alternative differs from the null F. Since we are interested in the limiting behaviour
of 7, (o), the required 0(t) ensures G(x;n) are cdfs for sufficiently large n. It is well
known (see Milbrodt and Strasser, 1990) that the asymptotic power of the KS test
7 (00) is related to the shifted Brownian bridge. This result can be generalized to
the asymptotic power m,(c) of the Hausdorff statistic, as shown in the following

theorem.

Theorem 3.39. Consider the null hypothesis Hg : Fy = F with density f, and as-

sume that the sequence {X1,...,Xn,...} comes from G(x;n) with inverse defined as
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in (8.4.1). For fized o >0 and signficance level p, the asymptotic power of the scaled
Hausdorff statistic Hy (o) can be expressed as

lim 7,(0) = Py (£) < Bo(t) —C(t) S (0¥ 0<E< 1), (34.2)

n—oo

where By(t) is a Brownian Bridge defined as in Theorem 3.21,

€)= 6(0) F(F (1)), 70 () = Ap(o) (14— F(F (1)),

and where \p(o) is the quantile of the asymptotic distribution of H, (o), i.e. it is

the solution of
1
p=P (\Bo(t)] < 2\(0) (1+ f(F‘l(t))) Vo<t< 1) .
o
Corollary 3.40. The asymptotic power of the KS statistic is

lim 7, (c0) =P(|Bo(t) —¢(£)| < Ap(00),¥V 0 <t <1),

n—00

where A\, (00) is the quantile of the asymptotic distribution of the KS statistic, which
is also the solution of p=P(|Bo(t)| < A\p(o0),V 0 <t <1).

Similar result for the KS statistic is also obtained in Milbrodt and Strasser

(1990).

3.4.2 The Bahadur Relative Efficiency

The p-value of many well-known goodness-of-fit statistics among which KS, CvM,
and AD converge to zero exponentially, i.e. O(e™") when the null is Hy : Fy(z) =
F(z) and the sample {X,...,X,,} comes from a fixed alternative with cdf G(z;n) =
G(z). Therefore, Bahadur (1971) introduced the Bahadur exact slope ¢ as a char-
acterization for the speed of the exponential convergence. Let us note that the
existence of the slope ¢ implies an exponential rate of convergence. We adopt the
definition from Bahadur (1971) and introduce the corresponding Bahadur exact
slope of Hy,, (o) as

c(o) = — lim 2n"'log P,(0) a.s., (3.4.3)

n—oo
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which can be interpreted as the speed of exponential convergence of the p-value
P, (o). For consistency, denote ¢(00) = limy_,o0 ¢(0) the Bahadur exact slope of the
KS statistic. As known from the literature (see e.g. Abrahamson, 1967), the exact
slope ¢(o0) of the KS test exists. Furthermore, as shown in Theorem 3.41, the limit

in (3.4.3) exists for any o > 0 and therefore ¢(o) is well defined.

It is worth pointing out that for any goodness-of-fit statistic the corresponding
exact slope depends on the choice of the null ' and the alternative GG and is bounded
from above by 2pk (G, F), where pir denotes the Kullback-Leibler information
measure, defined as

oo 9(z)

prcn(GF) = /_ _ gla)log v, (3.4.4)

where f(z) and g(z) are the density functions of F(z) and G(z). Thus, ¢(o) <
2pk (G, F). Furthermore, this bound is attained by a class of statistics with certain
regularity conditions (see e.g. Nikitin, 1995). The quantity

c(o)
2pK1L

<1 (3.4.5)

is also referred to in the literature as the absolute Bahadur efficiency.

Given the sequence {Xi,...,X,,...} and the null distribution F(x), under the
alternative hypothesis G(z), let N(o;,p), be the smallest sample size required for
the null to be rejected using the H,,(0;) statistic for fixed o;, i = 1,2 at a significance

level p. Then we consider,

. N(on,p)  c(o2) 0s
o) = o) O (3.4.6)

which is known as the Bahadur relative efficiency (see Bahadur, 1971, page 27
therein). As noted by Bahadur, comparing the exact slopes of two goodness-of-
fit statistics leads to comparing their relative efficiencies. Therefore, in order to
compare the powers of the KS and H, (o) statistics, we need to estimate their cor-
responding exact slopes c¢(co) and ¢(o). While ¢(oco) is known for the assumed F
and G (see e.g. Abrahamson 1967), estimating the exact slope ¢(o) can be done by

applying the following theorem.

Theorem 3.41. Under the alternative po : Fo = G, the exact slope defined in (3.4.3)
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exists, and can be expressed as c(0) = 3 f,(H(F,,G,)), where F, and G, denote the

null and the alternative scaled by o,

fo(@) = inf min{r(ta+F(E(0)+2) =t r(l—te—F(F ()= 2)+1)},
(3.4.7)
and where
(z+y)log () +(1—z—y)log(T55Y4), O<z<l-—y
r(z,y) =

+00, 1—y<ax<l;

Corollary 3.42. When the null distribution F is continuous, for sufficiently small

x, fo(x) can be represented as

(1+§fUP4@D2

: 3
Ogtlil =0 +0(z°). (3.4.8)

fo(z) =22

In the following example, we illustrate how the Bahadur relative efficiency can
be used to compare the asymptotic powers of the KS and the scaled H,, (o) tests for
o = o* selected according to (3.3.11) and assuming that the alternative differs from
the null only in the tail, which is achieved by an appropriate splicing construction

for the alternative.

Example 3.43 (A Splicing Construction of G). We take the alternative G to be a
spliced distribution with support [z,00) and density g(x), that coincides with the
null F (with density f) up to a splicing point < C' < oo, after which it coincides
with a distribution Go(x;6,«) (with density go(z;0,c)) depending on shape and

scale parameters 6, a. The density g(x) can then be expressed as

g(z) = ¢mm@,g§x§07 (3.4.9)

P2g2(x), >C

where ¢1,¢2 > 0 are the splicing weights, satisfying ¢1 +¢2 =1, g1(z) and ga(x) are
proper probability density functions defined on [z,C] and [C,00) respectively. We

also require the following conditions to be met.

1) C=F"Y(),
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2) g(.%') = f(x)v for z € [070]

3) g(x) = go(x;0,a) for z > C and as a consequence Go(C;0,a) = ¢1, where «

and 6 are appropriately chosen.

It is not difficult to verify that conditions 1) - 3) ensure that g1 (z) = f(x)/¢1
and go(x) = go(x;0,) /¢y intergrate to one, and that the alternative G has the body
of the null F' and the tail of Gy. In order to illustrate the construction, we take F'
to be exponential F' ~ Exp(1), ¢1 = 0.8, z =0, C = —log(0.2) which follows from
condition 1), and represent the tail by Go(x;0,a) = Go(x/;0,1) defined by 6 and a.
Clearly, if one fixes «a, the value of # is uniquely determined from Gy(C;60,a) = ¢1
of condition 3). Therefore, G is fully controlled by the choice of a. To determine «,
we also require G to be as close to F as possible, in terms of the Kullback—Leibler

information measure pg (G, F), (c.f (3.4.4)) which is specified in the next condition.

4) (a) If inf, pxr(G,F) # 0, we choose o = arginf, pxr(G,F).

(b) If inf, px (G, F) =0, then we choose a* such that pxr(G,F)=0.001.
When the latter equality does not ensure that o™ is unique, we further

require that F'(z) < G(z) for x > C to guarantee its uniqueness.

In summary, given the class Gg, we are able to find unique a* and 6* that
characterize G so that conditions 1) - 4) are met. In Table 3.2 we present the Bahadur
absolute efficiencies 5(0*) g () " for the H and the KS tests and the Bahadur relative
PKL PKL

efficiency Z((Z;)), for the H versus the KS test, for different tails Gy of GG. For all tail

distributions Gy, inf, pxr, = 0. These efficiencies are eveluated following (3.4.5) and
(3.4.6), where ¢(-) and pg are computed based on Theorem 3.41 and Eq. (3.4.4).
As can be seen from the last column of Table 3.2, under the different choices for the
tail part Go of G, the H,,(c*) test is between 6 and 267 times more efficient than
the KS test, in the sense of the Bahadur relative efficiency. The scale parameter
o* in H,(c*) is chosen according to (3.3.11) with (¢1,%2) = (0.99,0.95) (cf. Table
3.1) and F' ~ Exp(l). According to (3.4.6), when p — 0, the sample size N(c*,p)
required to reject the null using H,,(c*) is asymptotically between 6 and 267 times
less than the sample size N(oo,p) required using the KS, if the null and alternative
differ in the tail. In other words, for a given sufficiently large sample size n, the

power of H,(c*) is much higher than the power of KS.



3.5. Numerical Studies on the Use of H,, (o) for Fitting Tails 105

Table 3.2: Absolute and Relative Bahadur Efficiency of the KS test and the scaled H,, (o)
test with o = o* following (3.3.11) with ¢1 = 0.99 and 9 = 0.95 for different
tail specifications G of the alternative.

Go(z30,a) PKL 0* S
Lognormal tail ®(22)=2) 0.0024 -0.1314 0.7216 | 0.013 0.0004 32.39
Gumbel tail e " 0.00011 0.1887 0.9472 | 0.035 0.0018 19.84
Fréchet tail e~ (@/@)’ 0.0150  2.9353 0.9655 | 1.32¢-3 4.9¢-6 267.4

Weibull tail *  (1—e~@/9")1(2>0) | 0.0010 0.9321 0.9659 | 0.158 0.0220 7.17
Pareto tail *  (1—(32.)")1(x>0) | 0.0010 21.114 20.319 | 0.118 0.0117 10.1

Gamma tail * [ rroet’'e”dt | 0.0010  0.8528 11592 | 0.142  0.0228 6.25

It would also have been interesting to compare the asymptotic power of the H
test with that of other classical tests, e.g., the CvM and AD tests, using the Ba-
hadur relative efficiency, (3.4.6). Although expressions for their exact slopes, needed
in (3.4.6), have been obtained by Nikitin (1995), they are difficult to compute nu-
merically for given F' and G. For this reason, we have not included such comparisons

in Table 3.2.

3.5 Numerical Studies on the Use of H,(o) for Fitting
Tails

We showed in Sections 3.3 and 3.4, (see Proposition 3.27, Theorems 3.29, 3.41 and
Table 3.2) that as o decreases, H,(c) becomes more sensitive in capturing tail
deviations. This is illustrated and supported, based on the simulated Example 3.44
of Sections 3.5.1 and the real data Example 3.45 in Section 3.5.2. Example 3.44
shows that when the null and alternative differ in the right tail, the power of the
scaled H,(c*) test with o* selected according to (3.3.11), is significantly higher
than that of other classical goodness-of-fit tests. In Example 3.45, we first specify
the null cdf F' as a spliced distribution from the Mixed Erlang-Pareto (ME-P) family
considered by Reynkens et al. (2017) as a global, body and tail fitting model. We
then fit the latter to an appropriately selected subset of a Lloyd’s aviation loss data
set and then use the remaining subset to test the null Hy: Fy = F, applying the KS,
CvM, AD and H,(c*) tests. By analyzing the PP and QQ plots of Fig 3.12 and
the goodness-of-fit testing results summarized in Table 3.4, we show that, among all
tests, the H,(c*) test is better suited for detecting the tail difference between the

sample and the null.



3.5. Numerical Studies on the Use of H,, (o) for Fitting Tails 106

3.5.1 Simulated Example

This section provides a simulated example to illustrate the power of H,, (o) when the
null and alternative differ in the tail following the results of Section 3.3. We show
that if the sample comes from a distribution whose tail differs from that of the null,
H,(c*) has a higher power than KS, CvM and AD, when o* is chosen according to
(3.3.11).

Example 3.44. We apply the splicing construction as in Example 3.43, where the
alternative G has a density g(z) defined by (3.4.9), satisfying conditions 1)-3). In
other words, GG coincides with F' in the body and has the tail of Gy. We assume that
both F' and G come from the family of (unshifted) Fréchet distributions, which are
characterized by scale and shape parameters o and . More precisely, the cdf of a

Fréchet distribution @(z;«,0) is given as

exp((1+00”f)61)) x> —

«a

Slis

&(x;0,0) = (3.5.1)

In order to compute and compare the powers of H, (o), KS, CvM and AD,
we take F' ~ @(z;0.3,0.3), z = —1, C = (—10g0.8) %3 — 1, F(C) = ¢1 = 0.8, and
Go ~ D(z;0p,0). As in Example 3.43, condition 3) ensures the uniqueness of «q for
a fixed shape parameter 6. Therefore, the choice of 6y fully determines the shape
of G. In this example, we are interested in comparing numerically the powers of
KS, CvM and AD with that of the H,, (o) statistic, under different tail alternatives
from the Fréchet family (3.5.1). For this reason, we choose 6y = 0.3+ A, where
A =0.2,0.4,0.6,...,3.2 reflects the tail difference between F' and G. As shown in
the left panel of Figure 3.11, with A increasing, the difference between G and F in
the tail also increases.

Then a sample X, with n =50 is simulated from G(z), and the powers of KS,
Cramér—von Mises (CvM), Anderson-Darling (AD) and H,,(c*) tests are estimated
by their corresponding frequencies of rejection of the null Hy : Fy = F' at significance
level p = 0.05. To compute the p-value of CvM and AD tests, we use the R package
goftest (Faraway, Marsaglia, Marsaglia and Baddeley, 2021). To compute the p-
value of KS and the #,,(c*) tests, we use the exact-KS-FFT procedure from the R
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Figure 3.11: Left Panel: the null (solid) F(z) ~ &(z;0.3,0.3) and the alternative G
with tail Go(z) ~ ®(fo,a0), where the splicing point C' = (—1og0.8) 793 — 1,
F(C)=¢1=0.8 and 6y =0.3+ A for A =0.4 (dashed), 0.8 (dotdash), 1.2
(dotted); Right Panel: the powers of AD, CvM, H,(c*) and KS tests, as
functions of A.

package KSgeneral (Dimitrova et al., 2020) to implement (3.2.21) in Theorem 3.19.
Since we are interested in fitting the right tail, we choose o = ¢* defined in (3.3.11)
with ¢ =0.99, 1) = 0.95 (cf. Table 3.1). The right panel of Figure 3.11 shows the
powers of the H, ("), KS, CvM and AD tests, as functions of A.

As can be seen, the power of the proposed H statistic is significantly higher
than the powers of the classical tests, AD, CvM, and KS. This illustrates very well
the advantage of the H statistic in examining tail differences. This is also supported
by the result of Example 3.43, which shows that the relative efficiency of H to KS

is significantly higher.

3.5.2 Real Data Example

For this example, we use real data from a Llody’s syndicate. The dataset comprises
1,743 aviation insurance losses which have occurred within the period from 2014 to
2019. In aviation insurance, financial losses tend to exhibit a heavy right tail with
low frequency but high severity insurance claims, as is the case with our dataset
(see the right panel of Figure 3.13). Accurately modeling the tail behavior of such
losses, i.e. quantifying the likelihood and magnitude of high-consequence events, is
critical for robust risk assessment.

Our purpose is to demonstrate the advantage of applying the proposed H, (o)
statistic for testing tail difference compared to the KS, AD and CvM statistics. Note
that in goodness-of-fit testing, the null cdf, F must be fully specified a priori, with

no parameters estimated based on the tested sample. To ensure this, we randomly
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divide the dataset into two groups, Groups A and B, based on whether the loss
occurred on an odd-numbered (Group A) or even-numbered (Group B) day of the
month. This splitting criterion is random, as the loss date is independent of the
loss amount. We then use Group A to fit the null cdf, F' belonging to a class of
distributions and subsequently test whether Group B comes from this fitted null.

To further demonstrate the randomness of the split, we present summary statistics

Table 3.3: Summary statistics for the aviation data Group A (odd) and Group B (even)
losses that have occurred correspondingly on the odd or even days of the month

# Obs. Mean St.Dev. Min Q1 Q2 Q3 Max
Group A (Odd) 930 1,030,282 4,363,370 0.5 6,257 25,000 209,618 63,615,000
Group B (Even) 813 923,381 5,201,619 19.3 5,589 26,180 210,712 116,936,064

Total 1,743 980,420 4,771,612 0.5 5,771 25,304 210,349 116,936,064

of Groups A and B in Table 3.3. As shown, the summary statistics for both groups
are very similar, indicating that the two samples are similar in distribution. There-
fore, we expect that any differences identified by the goodness-of-fit test will not be
attributable to differences between the groups, but rather to deviations from the

fitted null. Details of how this is implemented are summarized as follows.

Example 3.45. We first asume that the null is a Mixed-Erlang and Pareto (ME-P)
spliced distribution which we fit to the aviation losses dataset. The latter spliced
distribution has been suggested by Reynkens et al. (2017), as a model that can
successfully capture small to medium losses in the body and large losses in the tail,
referring to this as a ”global fit” strategy. A ME-P spliced distribution is defined by
the following density

fue(x;a,r,0)
1 FyEe(Crsonr,d) O=z<C

fup-p(z) = , (3.5.2)
2 fp(x;0p,C1,00) x> Ch

where ¢1 and ¢o are the splicing weights with ¢1,¢9 > 0 and ¢1 + ¢ =1, Cy is
the splicing point, fy;g and Fi;gp are the density and cdf of the Mixed Erlang

distribution, and fp is the density of the truncated Pareto distribution. The latter
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density functions are defined as

M exp(—x/a)x™i !
fME(x;ﬂvraa):25j 7$>07
j=1

a’i(r;—1)!
6,07
fp(z;0,,C1,Co) = e (i’ 1(01)0p) , C1 <z <Oy,
where M is the number of Erlang distributions used for the mixture, = (ry,...,7a)
are their shape parameters, satisfying r1 <ro <--- <wrpr, r; =1,2,3,..., « is their
common scale parameter and 8 = (f1,...,8)) are the mixing weights, i.e. §; >0

1=1,...,M,and Zf\il Bi =1. For the truncated Pareto distribution fp(x;6,,C1,C>),
it is required that 0 < C1 < Cy, 0, > 0, where Cs is allowed to take infinity. In the
ME-P spliced distribution, we let Cy = co. Given a data sample and a chosen splicing
point C, Reynkens et al. (2017) estimate r, 8, a and 6, via maximum likelihood,
and use the Bayesian Information Criterion (BIC) to select the parameter M, which
discourages over-fitting. Estimation of the latter parameter can be performed using
the R package Relns (Albrecher et al., 2017), which we also use in this Example.
Then we apply the procedure mentioned above to fit the ME-P spliced distri-
bution (3.5.2) to the data in Group A and consider it as our null F. Note that
the estimated M will depend on the choice of the splicing points C;. Therefore, we
further estimate the pair C; and M corresponding to the minimum BIC. All the

estimated parameters are shown in Table 3.4.

Table 3.4: Parameters of the ME-P null fitted to Group A data for Cy equal to the 64.95%
data quantile and the results of the goodness-of-fit testing based on Group B
data

Estimated Parameters of the ME-P null for Group A Goodness of fit for Group B

Splicing Point (7 =91,464.41 Statistics p-values Values
(¢1,¢2) = (0.6495, 0.3505) | KS 0.3711 0.0321
Mixed Erlang (Body) S =(0.8325797,0.1674203) | CvM 0.3581 0.1609
(M=2) r=(1,6) AD 0.2443  1.2643
o = 10605.33 Hp (%)

Pareto Tail 0, =0.4968537 with ¢ = (0.99,0.95) 0.001837  0.0116

Then we use the KS, AD, CvM, and the proposed H,(o) statistics to test
whether the estimated ME-P null F fits well the data in Group B, i.e. to test the

null Hy : Fy = F. Since our focus is testing the goodness-of-fit in the tail, we select

the scale parameter o for H, (o), following (3.3.11) with ¥ = (¢1,12) = (0.99,0.95)
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Figure 3.12: The PP and QQ plots for the ME-P distribution in Table 3.4

(cf. Table 3.1), based on the fitted ME-P null distribution F', which yields ¢* =
3.541102 x 10710, The values of these statistics and their p-values are summarized

in Table 3.4.

As can be seen from Table 3.4, for a significance level p = 0.05, the null Hy is
rejected applying the H,,(c*) test, whereas it is not rejected by the KS, CvM, and
AD tests. This suggests that the null F' does not fit well the right tail of the Group
B data. This is also illustrated by the QQ plot in the right panel of Figure 3.12. As
can be seen, there is a perfect alignment with the 45-degree diagonal on the PP plot
in the left panel, whereas the QQ plot clearly indicates a significant tail deviation.
Let us note once again that among all competing tests, the scaled Hausdorff test

H,(c*) is the only one that captures this deviation.

In order to remedy this tail discrepancy, we further enhance the ME-P null
distribution by introducing a second splicing point Cy and consider a Mixed-Erlang,
Pareto and Pareto (ME-P-P) spliced distribution, with density

Sy e (z;0,7,0)
1 Pt (Cricnr ) O<z<Ch

IME-P-P(2) =\ ¢ofp(2;60p,,C1,C0)  Cr<w<Cy» (3.5.3)
¢3fp(;0p,,C2,00) r>Cy
where ¢1,02,¢3 >0, ¢1+ ¢2+ ¢3 = 1. In this setting, the choice C is the same as

in the ME-P null distribution. To select Ca, we use the mean excess plot criterion

instead and thus select C5 to be the 99-percentile of the data in Group A. Given



3.5. Numerical Studies on the Use of H, (o) for Fitting Tails 111

C4 and (5, the same procedure as for the ME-P null has been used to estimate the
parameters o, 7, ¢,6,6,, and 6,, in (3.5.3), and the results are summarizes in Table
3.5.

Table 3.5: Parameters of the ME-P-P null fitted to Group A data for C; and Cs equal to
the 64.95% and 99% data quantiles and the results of the goodness-of-fit testing
based on Group B data

Estimated Parameters of the ME-P-P null for Group A  Goodness of fit for Group B

Splicing Point (7 =91,464.41, Cy = 25,142,116.72 | Statistics p-values Values
(¢1,¢2,03) = (0.6494, 0.3398, 0.0108) | KS 0.1655 0.0391
Mixed Erlang /= (0.8325797,0.1674203) CvM 0.3380 0.1685
(M=2) r=(1,6) AD 0.2522 1.2417
a =10605.33 Hn(o*)
Pareto Tails 6, =0.3738528 with ¥ = (0.99,0.95) 0-1767 0.0057
0, = 4.0654859

The scale parameter o has been estimated as o = 1.943354 x 1079 using
(3.3.11), based on the fitted ME-P-P null distribution. As for the initial ME-P
null, we again apply the KS, CvM, AD and #, (o) tests and the corresponding re-
sults are summarized in Table 3.5. As can be seen, at a significance level p = 0.05,
the null is not rejected by all statistics, indicating a good fit. This is also confirmed

by analyzing the PP and QQ plots, shown in Figure 3.13.
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Figure 3.13: The PP and QQ plots for the ME-P-P distribution in Table 3.5

Finally, we slightly modified the ME-P-P null by changing C; to be the 90%
quantile of the data in Group A. In addition to the KS, CvM, AD tests, we then
considered two versions of the H, (o) test, Hy(c}), tuned for the tail with o] =
1.869573 x 10~ and H,,(03), tuned for the body with o3 = 5.382781 x 1076, Both
o} and o3 have been obtained following (3.3.11) with 13 = (0.99,0.95) and 2 =



3.5. Numerical Studies on the Use of H, (o) for Fitting Tails 112

(0.6,0.4) selected from Table 3.1 accordingly. We have repeatede the same estimation
and test steps as before, and the results are summarized in Table 3.6 and illustrated
in Figure 3.14.

Table 3.6: Parameters of the C7 updated ME-P-P null fitted to Group A data for C; and

C5 equal to the 90% and 99% data quantiles and the results of the goodness-
of-fit testing based on Group B data

Estimated Parameters of the ME-P-P null for Group A Goodness of fit for Group B

Splicing Point 4 =1,404,102, Cy = 25,142,117 Statistics p-values Values
(¢1, 2, ¢3) = (0.9, 0.0892, 0.0108) KS <2x10716  0.2249
Mixed Erlang /3 = (0.8717319, 0.1282681) CvM <2x10716  11.981
(M=2) r=(1,13) AD 7.38x 1077  82.262
a = 50624.60 Hn(o7)
Pareto Tails 6, =0.5236715 with ¢ = (0.99,0.95) 04876 0.0040
0, = 4.0654859 Hn(oF) 7
with % = (0.6,0.4) 1.94x 10 0.0783

As can be seen from Figure 3.14, the updated ME-P-P null fits the body poorly
(as seen from the PP plot), but fits the right tail quite well (as seen from the QQ
plot). The results from the goodness-of-fit testing summarized in Table 3.6 show
that, the null is rejected by the KS, CvM, AD and the body sensitive H,,(c3) but
it is not rejected by the right-tail sensitive H,(c7), which is coherent with Figure

3.14.

In conclusion, with this final example, we demonstrate that under one and the
same null distribution, it is possible to tune o for different testing purposes, i.e.

targeting differences expected either in the body or in the tail.
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Figure 3.14: The PP and QQ plots for the C; updated ME-P-P distribution in Table 3.6
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3.6 Discussion

We have proposed to use the Hausdorff metric to measure the distance between two
(empirical) distribution functions and to view this metric as a goodness-of-fit test
statistic, referred to as the H test. In Section 3.2, we have explored the properties of
the H test and provided efficient algorithms to compute it and its exact/asymptotic
p-value. The latter algorithms are very numerically efficient, which makes the H
test particularly suitable for goodness-of-fit testing in data-rich environments such
as machine learning, where large data samples are often collected.

We have shown in Section 3.3, that the H test can be tuned to become tail
sensitive if certain convexity/concavity conditions with respect to the underlying
null distribution are met, and we have also provided the corresponding tuning rules.
These conditions are commonly met in data-scarce applications such as extreme
value theory applied to finance and insurance, environmental science, cybersecurity,
operations research, and many others. In such applications, observations are rare,
as each of them is a large loss occurring with small (tail) probability, and the null
distribution is often taken to be one of the common heavy-tailed distributions, or a
related spliced construction. As illustrated in Section 3.5, the required convexity/-
concavity conditions are met for such choices of the null distribution.

As illustrated in Sections 3.4 and 3.5, the power of the H test is improved for
different tail alternatives, and the sample size required to reject the null i.e. to
validate the model is smaller, as evidenced by its Bahadur efficiency, compared to
other classical tests. These properties make the H test a more appropriate goodness-

of-fit test alternative in such extreme value applications.



Appendix for Chapter 3

3.A Proofs for Chapter 3

Before we present some important results, it would be useful to give some auxiliary
results and properties first.

As stated by (3.2.14), the Hausdorff metric H and the Lévy metric preyy co-
incide, which is also evidenced by their coincidental geometric interpretation as the
side of the largest square inscribed between the corresponding planar curves. This
fact has also been highlighted in Theorem 1* of Rachev (1984). Therefore, the prop-
erties of the Lévy metric are also valid for the metric H, as summarized by the
Lemma 3.46, which is a restatement of properties (2) (6) and (7), summarized in

Zolotarev (2011) with respect to the Lévy metric.

Lemma 3.46. Suppose, F' and G are nondecreasing, right-continuous functions.
Denote by F~Y(z) = inf{t: F(t) > 2} and G~'(z) = inf{t : G(t) > x}, the inverse
functions of F(z) and G(z), and denote by F~'¢ and G~'¢, their corresponding

planar curves. We have

H(F¢,G°) = H(F~1¢,Gg 1), (3.A.1a)
H2(F°,G°) < / P (@) — G da, (3.A.1D)
H(F°,G%) < sui |F(z)—G(x)| < H(F,G°)+h(H(F°,G°)) (3.A.1c)

where h(zx) = min{sgp |F(x+t) — F(t)],sgp |G(z+1t) —G(t)|}.

Let us note that the Hausdorff metric is defined with respect to two compact
subset. Therefore, for the one-sample goodness-of-fit test, in the following, we give

the localization consideration, which will be used in later proofs.
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Lemma 3.47. For M >0, denote set Ay = [—M,M] x [0,1]. Then

H(F F))= lim H(F‘NAm,F;NAm),
Moo (3.A.2)
H(gr(F),gr(Fy) = lim_H(gr(F)NAsr,gr(Fa) 0 An).

Proof. Since lim F(z)=0, lim F(z)=1, Ve >0, there exists M > 0, such that

T——00 r—r-+00

F(z) <e for any x < —M and F(x) >1—¢ for any x > M,

Fo(x) =0 for any x < —M and F,(z) =1 for any x > M
Let us define the function ' as

F(r)=140 < —M-

1 x>M
Then, ¥ x € [-M, M), (z,F(x)) € FCNEF, which implies,

inf poo((2,F(2)),B) =0 and inf peo((x,F(x)),A) =0.
BGFC AGFC

Y |x| > M, it is also easy to verify that

A

inf poo((z,F(z)),B) <eand inf poo((z,F(z)),A)<e
Bepe Acke

Hence, H(F¢ F€) < e. In addition, since F'(z) = F,(x) for |z| > M, we have

sup inf  poo(A,B) = sup inf p(A,B)

AGFCﬂAMBEF,ﬁﬁ.AM AGF’;BGFT’i
sup inf Poo(A,B) = sup inf ps(A,B)
Aegr(F)NAym Begr(Fn)NAn AeFe Begr(Fp)

Similarly, we can also show that
sup inf  poo(A4,B) = sup inf poo(A,B)
BEFSN Ay AEFeNApy BeFg Acke

sup inf Poo(A,B)= sup inf ps(A,B)
Begr(Fp)NAy Acgr(F)NAy Begr(F,) AcFe
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Hence, we can show that

H(F°N Ay, FENAy) = H(EC, FC)

H(gr(F) N Awr,gr(Fn) N Ay = H(F, gr(Fy,))
Therefore, the triangle inequality implies that

|H(F Fy) — H(FN Ay, Fyy0 A )|
<|H(F¢,F°) 4+ H(F°,FS)— H(FN Ay, FSNAy)| < e

|H(F¢,gr(F,)) — H(FN Ay, gr(Fn) N Ar)| < H(FC FC) < e
Thus, the lemma follows due to the arbitrariness of e. 0

Lemma 3.47 can be extended to the planar curves of any distribution functions,
but not to two arbitrary closed sets. Note that in a more general case, i.e. when the
sets A and B are closed, and for an arbitrary sequence of compact sets Aj,.4s, As, ...
such that A — A as 1 =1,2,3,... with respect to the hit-or-miss topology, H(.A;,B)
does not necessarily converge to H(A,B). Formally, the hit-or-miss topology is

defined through the convergence criterion:
A; — Aif and only if A=U;N; Aps =M U A

This topology is defined on the collection of all closed subsets. The latter topology

restricted on the collection of all the compact subsets is coarser than the myope

topology, which is induced by the Hausdorff metric (cf. Matheron, 1974).
Furthermore, for arbitrary functions F' and G, if M7 > Ms > 0, it is not neces-

sarily true that

H(Fcﬂ([—Ml,Ml] XR),GCD([—Ml,Ml] XR)) >

H(Fcﬂ ([—MQ,MQ] xR),G°N ([—MQ,MQ] X R))
See Section 2.3 in Sendov and Beer (2012) for a counter-example.

Lemma 3.48. For any A € R? and any distribution function F, inf pepe poo(A, B)
is always attainable. Furthermore, if inf pepe poo(A, B) > 0, let By be the crossing

point of F¢ with the line passing through A and crossing the azis Ox at an angle
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37T/47 then ;OOO(Aa BO) = infpepe poo(A7B)

Proof. 1t is easy to prove that infpcpe poo(A, B) is attainable, since the set F°N

S(A,inf pepe poo(A, B) +¢) is nonempty and compact for arbitrary €, where
S(A, inf poc(4, B) +¢)

is the square with side inf ge pe poo (A, B) + € and center at the point A.
The proof of ps (A, By) = inf gepe poo (A, B) is trivial, thus will be omitted. [

Proof of Lemma 8.5. Given the planar curve F),, there exists My > 0, such that
FS/ A, = gr(Fn)/An,- Note that the set F)$N Ay, is compact, and that according
to Lemma 3.48, 3 Ay = (z0,y0) € FSN A, and By = (xg,,yB,) € F° such that,

H(E; 0 A, FC0 Anr) = inf poo(Ao, B) = poo(Ao, Bo)- (3.A.3)

Furthermore, a line passing point Ay and By should cross the axis Ox at an angle
of %77.

Hence, according to Lemma 3.47, to prove Lemma 3.5, it suffices to show that
H(F;NAmy, FNAp) = H(gr(EFn) NV Ay, g7 (F) NV Ang,)- (3.A.4)

In what follows, we will prove (3.A.4) by contradiction.

If (3.A.4) does not hold, then one must have that,

VA€ gr(F) N Auy, it po(A, B) < H(EGN Ary, PN Ayg). (3.A.5)

Thus, there should exist Ay = (xo,y0) € F/gr(Fy), ie. Fp(ro—) < yo < Fn(zo),
where gr(F,) is the closure of ¢gr(F,). In other words, the point Ay should fall
within one of the internal jump segments of F;. Denote by A; = (xg, Fp(z9—)), A2 =
(x0, Fr(x0)). According to Lemma 3.48, there exist By = («p,,yB, ), B2 = (*B,,yB,) €
F¢ such that

A0f poo(A1, B) = poo(A1, Br) and inf poo(Az, B) = pos(Az2, Ba),

and that both the lines passing through the points, A1, By and Ay, Bs cross the axis
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Oz at an angle 37. Therefore, we have |vp, — =o| = poo(A1,B1) and |z, — 0| =
Poo(Az, Ba).

Since F' is monotonic one should have zp, <zp, < xp,. Hence at least one of
the |xp, — zo| = poo(A1,B1) and |xp, — To| = poo (A2, B2) is not less than |zp —xz¢| =

Poo(Ag, Bo). This implies

sup inf poo(A, B) > poo(Ag, Bo) = H(ESN Angy, FCN A,

Aggr(Fn)NAn, BEF®

which contradicts with (3.A.5). Therefore, (3.A.4) holds. Similarly, we can also

show that
sup inf Poc(A,B) =H(F;NAn,, FCNAn).
A€F¢c BEgT‘(F)ﬂ.AJWO
Thus, the lemma holds. O

Proof of Lemma 3.6. Following Definition 3.3, we have

H(F° F))=max | sup inf ps(A,B), sup inf ps(A,B)]|.
A€F¢ BeFe BeFe AcFe
From Lemma 3.47, it is clear that sets F'° and F; are locally compact. Thus, there

exists A* € F°, and B* € F, such that

Poo(A*,B*) = inf poo(A*,B)= sup inf p(A*,B).
BeFg AeFe BeF¢

Furthermore, according to Lemma 3.48, the line passing through the points A* B*
crosses the axis Ox at an angle 3w/4. Therefore po(A*, B*) = inf gcpe poo (A4, B*).
Thus,

sup inf peo(A,B) = poc(A*,B*) < sup inf poo(A4,B).
AcFe BeFe BeFe AcFe

By symmetry, we can also show that sup inf p.(A,B*) < sup inf poo(A4,B).

BEFS AcFe A€Fc BEFE
This completes the proof of the lemma. O

Lemma 3.6 allows us to consider only one of the two sup-inf forms in Defini-
tion 3.3 for the distance H(F*¢, F¢). Therefore it is very useful in deriving all the
proofs and developing the numerical algorithms for evaluating the H test and its

distributions.
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Proof of Lemma 3.8. Given the sets A and B, denote by A® B their Minkowski sum,
ie. A@B={Pi+P,: P, € A P, € B}. Denote by O=(0,0). Then an alternative

expression of the Hausdorff distance is (cf. Sendov and Beer, 2012)

H(F° F))=inf{e: F° C 5(0,2¢)® F;, Fy, C S(O,2¢)® F°}. (3.A.6)

n T n

For simplicity, denote dyg = H(F*°, F) < co. Then Ve > 0, we have
FCC S(0,2(dy+e))®FS, Fe C S(0,2(dy+¢))® F°. (3.A.7)

Note that both R%/(S(0,2(do+¢))® FS) and R?/(S(0,2(dy +¢€)) ® F€) are the
unions of two disjoint but connected open sets. These open sets can be viewed
as an epigraph and a hypograph of a certain (interval-valued) function. For simplic-
ity, denote by Upc(e) and Upe(e) the epigraphs of the sets/functions S(O,2¢) ® F¢
and S(O,2¢) @ Ff respectively, i.e.

Upe(e) ={(z,y) :V (z,2) € S(O,2e) D F°, y > z},

Ure(e) = {(z,y) : ¥ (z,2) € S(0,2e) ® F, y > z}.

Denote by Lrec(e) and Lre () their corresponding hypographs. Clearly

R?/(5(0,28) ® F®) =Upe(e) ULpe(e),

R2/(S(0,26) ® FY) = Urs () U L ().
Furthermore, from (3.A.7), we have
Upe(do+e) CUFe, Lpe(do+¢) C Lpe, Upe(do+€) CUFRe, Lre(do+e) C Lpe.
Hence

(UFﬁ(do —|—6) ﬂch(do +€)) U (ﬁFﬁ(do +€) ﬂﬁpc(do +€))
(3.A.8)
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Therefore, with respect to the complementary sets of both sides of (3.A.8), we have

Iw/ﬁuwmuﬁnxﬁﬁmcpg}:gc
Iw/%u@@m+@mupgm+@nxpﬁum+@mcF4%+f»}
— (S(0,2(do +2)) ® F) N (S(0,2(do + ) & F°).

Thus, if S(P,d) C G then d < dp+¢. Inequality (3.2.9) follows by the arbitrariness

of e.

Then according to Lemmas 3.47 and 3.48, there exist points A; € F'“ and By € F

such that
poo(Al,Bl) = Alélg,cpoo(AaBl) = d07

and the line passing through the points A; and Bj crosses the axis Ox at an angle
3m/4. Clearly, By € S(A1,2dy) and Ay € S(B1,2dp). From (3.A.6), for any € > 0, it is
easy to show that S(Aj,2dy—2¢)NS(B1,2dy—2¢) = S(%,dg —€) CG. Hence, we
have dg—e <sup{d: S(P,d) C G} <dy. Equality (3.2.10) follows by the arbitrariness
of €. O

Proof of Lemma 3.9. To show that the supremum can be taken only with respect

to the vertices of Ff, following (3.A.4), it suffices to show that the supremum of
inf A B
Auf _poo(4, B)

with respect to A € FS cannot be achieved on the interior of the horizontal segments
between the vertices Ag; 1 and Ag;, i =1,2,...,n. This proof is similar to proving
(3.A.4) in Lemma 3.5, so will be omitted. Therefore we have
H(F¢,F°) = Be?fixfgl Alglg’c Poo(B,A). (3.A.9)
Since the maximum in (3.A.9) cannot be achieved at the vertices that are locally
closest to F° (cf. Fig. 3.3), (3.A.9) can be rewritten as

c c\ __ .
H(F*, Fy) = max  inf poo(B,A).
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By applying Lemma 3.48, we have that for every B; € Bjye, inf acpe poo(Bj, A) =
Poo (B, Ei). Therefore, (3.2.15) follows. O

Proof of Theorem 3.11. Consider vertical straight lines £ perpendicular to the axis
Oz, that pass through each of the vertices B;, [ =1,2,...,v. Denote by Q;, I =
1,2,...,v the points of intersection of the lines £; with the planar curve F°. Then

it is easy to verify that

pp(F, F,) = max{ps(B,Q1),l =1,2,...,v}. (3.A.10)

Denote by zg, and yg,, the x and y coordinates of the points @Q;, [ =1,...,v.

If B; € Upe, then we have x5, = zg, < xg,, Therefore, since F'(x) is nondecreas-
ing, Yo, < yr, <yp, and poo(B1, Q1) = YB, —YQ, = YB, —YB, = Poo(Bi, E1).

If B € Lpe, vg, < xp, = xg,. For the same reason, yp, < yg, < yg, and
Poo(B1, Q1) = Y@, —YB, > YE, — YB, = Poo( B, E1).

In summary, poo(Bi, Q1) > poo(Bi, Ep), 1 =1,2,...,v and result (3.2.17) follows
from (3.2.15) and (3.A.10). O]

Remark 3.49. It should be pointed out that, the result of Theorem 3.11 coincides
with the first inequality in (3.A.1c) (see Lemma 3.46).

Proof of Lemma 3.13. The proof of Lemma 3.13 can be directly obtained by Lemma
3.48, thus will be omitted. O

Proof of Lemma 3.14. (Proof by contradiction) Suppose maxydy < H(F¢ FS). It
implies that there exist a point P = (2,%5) € R? and a constant da € R , such that
max)dy < do < H(F¢, F¢) and S(P,d2) CG.

Let Ao = xh +y5, it is not difficult to verify that the point Py, = (zx,,Yx,)
which is the center of the square Sy,, Ps, (25 —d2/2,y5+ d2/2) and the point (z), —
dx,/2,Yyn, +d»,/2) are on the line z +y = \g. Furthermore, we have that (z), —
dxo/2:Yn, +dx,/2) € FCUFS. And since S(Pa,dz) C G, one must have (x5 —da/2,y5+
dy/2) € S(Py,,dy,). By applying the same logic, (25 +d2/2,y5 —da/2) € R(Ph,,dy,)-
Hence, dy < d),. However, this contradicts with sup, dy < d2, which completes the

proof of Lemma 3.14. O

The statement of Lemma 3.14 is equivalent to (2.2) in Rachev (1981), formulated
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with respect to the Lévy metric. Lemma 3.14 is a further generalization of Lemma
3.9, which is needed to express the Hausdorff metric as an appropriate supremum
under the transformed coordinate system, see Section 3.2.3. Before proving Theorem
3.17, it will be useful to recall Example 3.16 (i), (iii) and the corresponding graphical

illustrations of the image sets of S(P,d) and Ff given in Figure 3.5.

Remark 3.50. Lemmas 3.13 and 3.14, are also true for arbitrary right continuous

nondecreasing functions F’ and G’, as substitutes of F' and F},, respectively.

Proof of Theorem 8.17. For any real number A, consider the image set of Sy in the
uOv plane, it is easy to see that T'(S)) is a parallelogram with both its base and
height equal to A (cf. Example 3.16 and Figure 3.5). According to the definition of
Sx, T(S\)NT(F°) and T(S))NT(FY) are non empty. In addition, denote by O, and
R, correspondingly the upper-left and lower-right vertices of the square S. Clearly,
Oy, Ry € FCUFY. Then it is not difficult to observe that

Poc(Ox, Ry) = dy = |[K(A) — Ky (M)]. (3.A.11)

Equality (3.2.20) now follows by taking the supremum on both sides of the last
equality in (3.A.11) and applying Lemma 3.14. The fact that the supremum in
(3.2.20) is achieved either at the point ¢ = X ;) + % or at t = X, —1—% follows from
(3.A.9) (see the proof of Lemma 3.9). This completes the proof of Theorem 3.17. [

— K ()
— K@®
2/3 — k() +q
— K{t)—q
1/3
K(0) +q

Xy + 2
(2) 3

t
X 1 1 2
(1) X(1)+§ X(z)+§ X(3)+§ Xz +1
K(0)—gq

Figure 3.15: Illustration of the equivalence of P(K(t) — g < K, (t) < K(t) +g,for all t) to
]P’<K_1(T"l —q)—Li< Xy < K1 (&= 4g) - =L for1<i< n> (cf. Proof of
Theorem 3.19), for n = 3.

v
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Proof of Theorem 3.19. We have

P(H(F",F}) > ) =B(__swp K, (1)~ K(t)] >q)

=1-P( sup |Ky(t)—K(t)]<q)

—oo<t<+00

=1-P(|K,(t) — K(t)| < g,for all t)

=1-P(K(t)—q< Ku(t) < K(t)+q,for all ¢)

_1—P<K(X(i)+z_nl) —q< Kn(X(Z) + Z;l) and

) )
Ko (X +4) < K(Xi+2) +q,for 1<i<
( ()+n) ( ()+n)+q or i n)

1—1)§z—1

:1—P<K(X(i)+ +q

and i—qu(X(Z-)—i— ), for 1§i§n)

- -
< Xu) SK_l(ZT-I—q)—lT,for lgign)

:1—P<F(K_l(l—q)—> SU(Z) SF(K_1<Z_1+Q)—Z_1>,fOI“ 1§z§n>
n n

The equivalence of P(K (t) —q < K, (t) < K(t)+q,for all ¢) to P(‘K_l(fz —q)—

% <X < K‘l(% +q)— %,for 1<i< n) is also graphically illustrated in Figure
3.15. Then, from the definition of K (), we have that K~1(z) = 2+ F~!(z). Hence,

Proof of Theorem 3.21. Following equality (5) in Dimitrova et al. (2020), one can

re-express (3.2.21) as
P(VRH(FS, FC) > 2) =1—=P(gn(t) <nn(t) < hp(t),V 0<t < 1), (3.A.12)

where the process 1, (t) = > i 1{U; <t}, t € [0,1] and the upper and lower boundary
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functions hy,(t), gn(t) are defined as

ha(t) =Y L(ain <t), gn(t)=> L(bin <t), (3.A.13)
i=1 i=1
and ‘

Qi = F(F_l(i —an~ Y2 —an~1/?),
n
—1

bin = F(F’l(—l +anV?) 4 anl/?),

n

with z = gn'/?

u € [0,4/n]. Then from the definition of h,(t) in (3.A.13) for ay,(u), we have

. For simplicity, we denote the inverse function of ﬁhn (t) as an(u),

(1) = A g = F(Fl([\/;nu] —zn V) —an71/?), (3.A.14)

where [-] denotes the integer part and u € [0,4/n]. Let y = ﬁhn(t) —y/nt. Since

ap(u) is the inverse function of ﬁhn(t), we have

t=an(u), u=y+/nt,
and for large n, (3.A.14) can accordingly be re-written as
t=F(F Yn 2 (y—z)+t)—an1/?),
or equivalently as
y=/n[F(F7L(t)+2n~Y?) —t] +z. (3.A.15)

When n — oo, by the definition of the derivative, the right-hand side of (3.A.15)
converges to z(1+ f(F~1(t))). Hence, for a fixed ¢, we have
1 -1
(\/ﬁhn(t) - \/ﬁt> (11 (P0)).

(jﬁgn@) ~vit) -+ =z (14 F(F ).

(3.A.16)

Since f is bounded, one can show that (3.A.16) are uniformly convergent.

For simplicity, denote by X, (t) = y/n(2n,(t) —t). Then by the Donsker’s
theorem, there exists a Brownian bridge By(t), t € [0,1] with By(0) = By(0) = 0,



3.A. Proofs for Chapter 3 125

E[By(t)] =0, E[Bo(t)Bo(s)] = s(1—t) for 0 < s <t < 1, such that
Xn(t) %BO(t)v

on the space L*°[0,1], where L*°[0,1] is the collection of functions defined on [0, 1]
that are essentially bounded and = stands for weak convergence. We can then

rewrite (3.A.12) as

P(vnH(F;,F) > x)

1 1 (3.A.17)
=1-P (\/ﬁgn(t) —v/nt < X, (t) < —nhn(t) —/nt,V0<t< 1) :
Denote by
A, = {2(t) € L[0,1] - \}ﬁgn(t) ot < () < \}th(t) RtV 0<t <1},

A={2(t) € L®[0,1] : —x(L+ f(F71(1)) < 2(t) Sz(1+ f(F1(1))),¥ 0 <t < 1},
which represent subsets of L*°[0,1]. In view of (3.A.17), to estabilish (3.2.23), it
suffices to show that

lim P(X,(t) € A,) =P(By(t) € A). (3.A.18)

n—o0

In order to prove (3.A.18), for any € > 0, let us define

AE:{z(t): inf [2(0)+2(1+ F(F7(1))] 2 ¢

t€[0,1]

and it a1+ £(F~ (1) ==(0)] > g},

)

A= {z(t)' inf [2(0)+a(1+ F(F )] > —

"telo,1]

and teif(l)fl] [1:(1+f(F_1(t))) fz(t)} > 8}.

The set A° is closed in L*°[0,1], whereas the set .A™¢ is a Borel set with closure

A€ = {z(t) . inf [z(t)%—x(l—i—f(F*l(t)))} > —c

t€[0,1] -

and tei%(lfl} {x(l—i—f(F—l(t))) —z(t)} > —5}.
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Furthermore, due to the uniform convergence in (3.A.16), V& > 0, there exists N
such that,
Vn>N, ACA,C A" (3.A.19)

Since A° is closed, for any € > 0,

04 C {z(t): in [() +2(1+ F(F(1))] ze}U

te(0,1]

DA~ C {z(t) inf [o(0) +a(L+ F(F0)] = —E}U

t€(0,1]

{ inf [2(14+ F(F (1)) = 2()] :—5},

te€(0,1]

where 0.A° and 0A™¢ denote the boundary of A® and A7¢. By the property of the

Brownian bridge,

P(Bo(t) € A%) = P(Bo(t) € JA) = 0.

Therefore, by the Portmanteau theorem (cf. Theorem 1.3.4 in van der Vaart

and Wellner, 2023), we have

lim P(X,(t) € A%) =P(By(t) €A°) and
e (3.A.20)
lim P(X,(t) € A~%) =P(By(t) € A7)

n—o0

holds for any € > 0. By (3.A.19), Ve > 0, there exists N,
Vn>N, P(X,(t) e A%) <P(X,(t) € A,) <P(X,(t) € A79).

We take the limit with respect to n and have

P(Bo(t) € A°) < liminf P(X, (1) € Ay)

(3.A.21)
<limsupP(X,(t) € A,) <P(Bo(t) € A7°).

n—oo

Note that when ¢ | 0, A® T A°, and A¢ | A, where A° is the interior of A, i.e.

A° ={z(t) € L®[0,1] : —x(1+ f(F7Y(1))) < 2(t) < z(1+ f(FL()),y0<t <1}
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Similarly, we can show that P(Bg(t) € A°) =P(By(t) € A). Thus, by the arbitrariness
of € in (3.A.21),

P(Bo(t) € A) = supP(Bo(t) € A%) < liminf P(X,(t) € Ap)

£>0 n—oo

< limsupP(Xn(t) € Ay) < iInf P(Bo() € A7) = P(Bo(t) € A),

n—oo

which yields (3.A.18). This completes the proof of (3.2.23) and therefore Theorem
3.21. O

Proof of Corollary 3.22. Since F ~ Exp(a), f(F~1(t)) =a(1—t) for 0 <t < 1. Note
that these boundaries are linear, to obtain the result, we apply Theorem 4.2 of

Anderson (1960), which states that

P(—(t) <Bo(t) <4(t),Y 0 <t <1) =12 (~1)k le PO+ (3.A.22)

k=1
where y(t) = § 4+ t, noting that the bounds +z(1+ (1 —t)) in (3.2.24) are in the
form of +7(t), with § = z(1+«), f = —za. O

Proof of Theorem 3.23. Let us recall the alternative expressions of H(FS(w),F¢) in
(3.2.15) and Dy, (w) in (3.A.10). Equalities (3.2.25) and (3.2.26) directly follow from
the fact that poo (B, Q) = ﬁpoo(Bl,El) for every [=1,...,v, when F ~U(a,a+D0).
Equality (3.2.27) follows from (3.A.22), replacing (t) = 112x. O

Proof of Proposition 3.26. Let us first note that the following two events are equiv-

alent, i.e.

{Pu(o) > p} ={Fs(x—q}) — ¢} < Fao(x) < Fy(x+q;) +q, for all z}, (3.A.23)

where Fi, and F,, , are defined in (3.3.1). The equivalence stems from {P,(c) >
p} = {Hn(o) < ¢} and Theorem 3.17. Then to obtain (3.3.7), we need to apply
the inverted scale 1/0 to the cdfs F, ,(z,w), Fo(x—q}) —q} and Fp(z+q})+ ¢k in
(3.A.23) so that they transform back to the original scale. Hence, F}, ,(z,w) becomes

F,(z,w), and the latter boundaries then become F,(ocx —¢%)— ¢ = F_(x;0,p) and
Fy(ox+q%)+q; = Fy(z;0,p). m

Proof of Proposition 3.27. Equation (3.3.8) follows from (3.3.3) and (3.3.4). O
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* *
qo'2 > qo'l
g2 g1

Proof of Lemma 3.28. Let us prove the second inequality in (4.4.4), i.e.

for o1 > 09. We show this holds by contradiction.
Suppose that 222 < ‘%1. According to Proposition 3.34, when H,(o1) > ¢, ,

02

there exists Py, such that S(P,q},;01) CG. Since % < it s easy to see that

o1’

S(Po,q5,;02) € S(Po,q5,501) CG. The latter implies Hy,,(02) > g;,. Hence, we have
{w:Hn(on,w) > q;, } SH{w: Hp(o2,w) > q;, }- (3.A.24)

Taking probabilites on both sides of (3.A.24), we have
P{w: Hp(o1,w) > g5, } <P{w: Hp(o2,w) >q;,}. (3.A.25)

Noting the definition of ¢*(o) in (3.3.6), we have P(P,(0;) > p) = P{w : Hy(0i,w) >
q5,} under the null for i =1,2. Therefore (3.A.25) can be rewritten as

P(Pn<0'1) > p) < P(Pn(UQ) > p). (3.A.26)

However, under the null hypothesis, (3.3.5) must hold, which contradicts with
(3.A.26). One arrives at a similar contradiction in the case when ¢}, < ¢;,. This

completes the proof of Lemma 3.28. OJ

Proof of Theorem 3.29. «(x,0)=F(z+ %) —F(z— %) +2q}. For 01 > 09, inequality

oy > 951 Thus
) oo o1 9

(4.4.4) suggests q;, —q5, >0

Uz,01) — 1z, 00) =F(z+ 20y — (e + T2+

01 (o]
75 75 . 3.A.27
Fla—22) F—t) 1o —gry  CA)
092 o1 —_——
part b
part a

For simplicity, denote part a in (3.A.27) as j(z). Clearly j(x) <0 for any x € R with
j(x) — 0as g— +oo. Note that part b is always positive, thus it only remains to show
that there exists € > 0, such that j(z) is monotonically increasing for every x > z¢+e.

The latter is valid, since the concavity of F' ensures that both F(z+ 1) — F(z + q{%)

o1

.
qu2
o2

and F(x — %) —F(x— %1) are increasing for every z > 9+ -2, which completes

the proof. O
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Proof of Theorem 3.36. For every w € Q, (3.A.1c) suggests that

Hn(0,w) < pp(Fo, Fro(w)) < Hn(0,w) + he(Hn(o,w)) (3.A.28)

where hy(2) = min{sup |Fy(z +1t) — F,(t)|,sup|Fpo(x+t) — F,»(t)|}. For any z €
t t
[0,1], it is not difficult to show that

lim hy(z) = 0.

T—00

Based on the definition of pp, it is not difficult to see that for any o > 0,
pp(Fy, Fy o(w)) = pp(Fyn(w),F). The result follows by taking the limit inferior on
both sides of the first inequality in (3.A.28) and taking the limit superior on both
sides of the second inequality in (3.A.28). O

Equation (3.3.12) of Theorem 3.36 has also been obtained by Rachev (1984)
(see (2.2) therein).

Proof of Theorem 3.38. Equation (3.3.13) can be directly obtained from (3.2.14)
and (2.3) of Rachev (1984), which is established with respect to the scaled Lévy

metric. O

Proof of Theorem 3.39. Based on (3.3.8), when the sample comes from the alterna-

tive G(z;n), we have

(o) =1-P(F_(x;0,p) < F,(z) < Fy(z;0,p) for all z)

= 1 B(F (G (1);0,p)) < ~n(0)
1 P(Va(F (G} (t);0,p)) — Vit

1 .
<Vn(=na(t) —t) < VnF (G7L(t);0,p) —/nt, forall 0 <t<1),
n
(3.A.29)
where 7,,(t) is the process defined in (3.A.12). Substituting (3.3.7) and (3.4.1) in

(3.A.29), we have

F (G (t);0,p) forall 0 <t < 1)

IN

mal0) = L= P(VAIF(F 10+ 2200~ 22) ~ g5 — 1) < Vi(ma(t) 1)
v 7 " (3.A.30)
< VAL (0) + 7-0(0) + L)t g;—1), forall 0<t < 1)
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On the one hand, since §(t) is continuous and bounded, we have

Vn {F(F_l(t)Jr\/lﬁé(t) —%)—F(F‘l(t) _%) .
vn {F(F‘l(t) + Ld(t) 4 ﬁ) CF(FY () + ‘13)] — SOFETD) =)
Vvn o o
\/ﬁ(%ﬁn(t) —t) B By(t) on L=[0,1],

(3.A.31)
where the former convergences are uniform. On the other hand, from (3.3.6),

(3.A.16), and the convergence in Theorem 3.21, we have

Vi[F(E @) ) s = 20 (0) 14 FFN0) = 20(t), (3.A52)

uniformly. The required convergence relation (3.4.2) follows by substituting (3.A.31)
and (3.A.32) in (3.A.30) and following the reasoning as in the proof of Theorem
3.21. OJ

Proof of Corollary 3.40. The result follows from Corollary 3.37, which states that
the power 7,(00) of the KS statistic is the limit of the power m,(c) of H,(o) as

o — 0. O

Proof of Theorem 8.41. According to Theorem 7.2 in Bahadur (1971), in order to

prove Theorem 3.41, we only need to prove that

H(F;,Gy) = lim Hy(o) a.s.,
nee (3.A.33)
—fo(q) :nLr{:On_llog(l—ng(q)) a.s.

under the null hypothesis G.

To prove the first equation in (3.A.33), based on the triangular inequality, we

obtain
H(FaaGJ) - H(GO'7Fn,O') < Hn(g) < H(FaaGa) +H(G07Fn,a)‘ (3A34)

Since

0< H(Go,Frno) <pp(GoyFrp),

pp(Gs,Fns) — 0 a.s., under the alternative. The first equality in (3.A.33) follows
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by taking n — oo in (3.A.34).
In order to prove the second equality in (3.A.33), we apply Theorem 1 in Abra-

hamson (1967), then it is not difficult to show that

P{Ha(0) > q} > P{Eu() —t > F(F' () + 2) +q -1},

(3.A.35)
P{Ha(0) > q} > P{E,() —t < F(F'()) = 2) —q— 1},
where E,, is the empirical cdf of the sample Uy, ...,U, of n i.i.d uniform (0,1) random
variables.
Given a fixed t, we have,
1 _ q q
lim —logP(E,(t)—t>F(F'(t)+ =) +q—t t,q+F(F~ L) —t

ngrolonog( (B)—t=FF )+ ") +g—t) =—r(t.g+ F(F(t)+ ) —1),

nhngoﬁlogp( ()=t SFEN )= D) —g—t) = —r(l—t,g— F(F~'(t) = 2) +1),
(3 A.36)

which are obtained by substituting € in (3.7a) and (3.7b) in Abrahamson (1967)
with g+ F(F~1(t)+%)—t and ¢— F(F~(t) — 1)+t respectively. Based on (3.A.35)
and (3.A.36), we have

hmmf—logIP’(H (o) >q)

n—oo 1

Zoiliglmax{—r(t,q—i—F(F*l(t) + g) —t),—r(1—t,q— F(F~(t) - g) +6)} =—f5(q).
(3.A.37)
On the other hand,
Halo) >y € U {B() —t= F(F 0+ 1) +g—1}
Ost<t (3.A.38)

U U (B —t<F(F L) - L) —g—1}.
0<t<1 g
For any positive integer N, since E,(t) —t < E, (%) — %+ when 2 <t < £, we

have

U {Bu() =t = F(F O+ D) +q—-1}

o<t«1
N
c‘U1 U {En(t)—tzF(F’l(t)+g)+q—t} (3.A.39)
=1L, 4]
i q 1+1
—U{E e P+ D= L
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Therefore, for a sufficiently large N, taking probability on both sides of (3.A.39),

we have

P{ U {En(t)—tZF(F‘I(t)+§)+q—t}}
o<t<1

<ZNjP{E (Lo L prrly 4 4 il

)+g)+q—

N (3.A.40)

N . . .
) 4,0 q 141
< —nr(—,q+ F(F Y —=)+2)—
_;exp{ nr(spa + FET () + ) = —)
1
<N sup exp{—nr(t,q+ F(F 1)+ L) —t— ).
o<t<1 o N

Then, from (3.A.38), (3.A.40) and an inequality similar to (3.A.40) with respect to
U {En(t)—t < F(F~1(t)— L) — g —t}, it follows that
0<t<1
1
P(H,(0) > q) < 2N sup max{exp{—nr(t,q+ F(F~(t)+ g) —t——)}

o<t<1 o N

exp{-nr(1~ g~ F(F () + L) 41— D))},
(3.A.41)

Taking first %log and then limsup as n — oo on both sides of (3.A.41), we obtain

1
limsup — logP(H,,(0) > ¢q) <
n—oo M
q
)

—Oirtlilmin{r(t,q—ﬁ—F(F*l(t)—i—; —t—i),r(l—t,q—F(Ffl(t) — §)+t_ —)}

N

Due to the arbitrariness of N in (3.A.42), one can choose N = oco. Therefore the
right hand side of (3.A.42) becomes equal to —f,(q) as defined in (3.4.7), and from
(3.A.42) we have

limsupélogP(Hn(U) > q) < —f-(q)- (3.A.43)

n—o0

The required second equality in (3.A.33) follows by combining (3.A.37) and (3.A.43).
O

3.B Power of the Scaled Hausdorff Statistic for Differ-

ent o

In Section 3.3, we have analysed theoretically how the choice of scale parameter o

affects the power 7, (o) of the H, (o) statistic. In this section, we verify numerically
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Table 3.7: The Parameters of the Heavy-tailed G in Example 3.51

C  F(C)=¢ | Tail Go(z) (a,0)
I
log2 0.5 Pareto 1— (m)e (2f/’§21, 3)
logh 0.8 Lognormal LN (a,6) (logh —1.2071(0.8),1.2%)
logh 0.8 Weibull 1— e (@/)’ ((log5)1/2,2)
1004 e J n=50
0 |
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Figure 3.16: Left panel: F' ~ Exp(1l) (solid) and G (dashed) is spliced with C = log2,
F(C)=¢1 =0.5 and a Pareto tail Go(z) = 17(I+a) where § =3 and a =

2117§21, Right Panel: the powers of the H, (o), KS, CvM and AD tests as a
function of o, with ¢* defined in (3.3.11) with 1) = (0.99,0.95) and indicated

by the dashed vertical darkred lines.

these theoretical considerations, by applying the splicing construction for the alter-
native G(z) as in Example 3.43. The density g(x) of G(z) is defined as in (3.4.9) and
is assumed to satisfy conditions 1)-3) of Example 3.43. In other words, G coincides

with F' in the body and has the tail of a preselected distribution Gj.

Example 3.51 (Light-tail Null vs Heavy-tail Sample). We take F' ~ Exp(1), x =
0, and G to be a spliced distribution with body G(z) = F(z), = € [z,C] and tail
G(x) = Go(z), x > C, where Gy is taken to be Pareto, Lognormal, and Weibull, with
splicing point C' and weight ¢; specified in Table 3.7, satisfying condition 1)-3) in
Example 3.43, where ®~! denotes the quantile function of standard Normal. The
shapes of the null F' and the alternative G from Table 3.7 are illustrated graphically
in the left panels of Figures 3.16, 3.17 and 3.18.

The right panels of Figures 3.16, 3.17 and 3.18 illustrate the power m,(c) of
Hn, (o), compared with the powers of KS, AD and CvM, for different sample sizes
n =50, 100 and 300 and different choices of the scale parameter o, ranging from

1075 to 1. As can be seen, the p-values (and therefore the powers) of KS, AD and
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Figure 3.17: Left panel: F ~ Exp(1) (solid) and G (dashed) with C' =logh, F(C) =

¢1 = 0.8 and a Lognormal tail Go ~ LN(a,f) where 6 = 1.2% and o =
log5 — 1.2071(0.8); Right Panel: the powers of the H, (o), KS, CvM and

AD tests as a function of o, with ¢* defined in (3.3.11) with ¥ = (0.99,0.95)

shown by the dashed vertical darkred lines.
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Figure 3.18: Left panel: F ~ Ezp(l) (solid) and G (dashed) is spliced with C' = log5,

F(C)=¢1 =0.8 and a Weibull tail Go(z) =1— e=@/®)” where § =2 and
a = (log5)'/2; Right Panel: the powers of the H, (o), KS, CvM and AD tests

as a function of o, with ¢* defined in (3.3.11) with 4 = (0.99,0.95) shown by

the dashed vertical darkred lines.

0.99-0.95__ ¢yyopested by the

= Tn0.05—1n0.01

rule (3.3.11) with % = (0.99,0.95) is indicated by dashed vertical darkred line in

the right panel of Figure 3.16. As shown, when the null F is light-tailed and the
alternative G is heavy-tailed, the dashed red line corresponding to ¢* approximates
reasonably well the local maxima of 7, (o), which are also global maxima in the case
of Pareto and Lognormal tail (see the right panels of Figures 3.16 and 3.17). In the
case of Weibull tail, the global maximum of 7, (o) is achieved at ¢ — 0, which is

degenerate and makes no practical sense, since transforming the scale with a very
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Table 3.8: The Parameters of Heavy-tailed F' and Light-tailed G in Example 3.52

Null F Alternative G

CDF z (a,0) C F(C)=¢
Pareto Flz)=1- (xii)g 0 (2,2.5) | 0.8853998 0.6
Lognormal | LN («,0) 0 (0,1.2%) | 2.745451 0.8
Weibull | F(z)=1—e @/’ | 0 (1,0.5) | 2.590290 0.8

small o zeroises the entire sample 0 X,,.

Example 3.51 validates numerically the theoretical results of Section 3.3. We
have also shown that by choosing o = ¢* following (3.3.11), the power of H,(c*)
becomes significantly higher than the powers of AD, CvM and KS (as seen from
Figures 3.16, 3.17 and 3.18).

In Example 3.52, we investigate the power m,(c) of H,(c) as a function of o
when F' is heavy-tailed and G is light-tailed. More precisely, we assume that F'is a
heavy-tailed distribution and G is a spliced distribution as in Example 3.43 with a
body coincident with F' and a light exponential tail. For the heavy-tailed null dis-
tribution F', we consider three cases, Pareto, Weibull, and Lognormal, summarized

in Example 3.52 with parameters in Table 3.8.

Example 3.52 (Heavy-tail Null vs Light-tail Sample). The null cdfs are taken to
be Pareto Weibull, or Lognormal, and the alternative G to be a spliced distribution
with body G(z) = F(x), z € [z,C] and tail G(z) = Go(z), x > C, Gy ~ Exp(a.) with
ae = —log(1—¢1)/C so that condition 3) of Example 3.43 is met. The parameters
of the null F' and values of splicing point C' and weight ¢; are summarized in Table
3.8.

The shapes of F' and G from Table 3.8 are illustrated in the left panels of Figures
3.19, 3.20 and 3.21 where in the right panels, we illustrate the powers of KS, AD,
CvM and H, (o), for sample sizes n = 50, 100 and 300 and different choices of o,
ranging from 107° to 1. In the latter right pannes, the corresponding “optimal”
value ¢* are indicated by the dashed vertical darkred lines. As can be seen, o* is
reasonably close to the local maximum of H,,(¢), where the approximation improves

when the sample size n increases.
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Figure 3.19: Left panel: F(z) (solid) is Pareto with o =2 and 6 = 2.5 and G (dashed) is
spliced with C' = 0.8853998, F(C) = ¢1 = 0.6 and an Exponential tail Gy ~
Ezxp(a.) where a, = —log(1 — ¢1)/C; Right Panel: the powers of the H, (),
KS, CvM and AD tests as a function of o, with ¢* defined in (3.3.11) with
¥ = (0.99,0.95) shown by the dashed vertical darkred lines.
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Figure 3.20: Left panel: F'~ LN (a,) (solid) to be Lognormal with o =0 and § = 1.22 and
G (dashed) is spliced with the splicing point C' = 2.745451, F(C) = ¢1 =0.8
and an Exponential tail Gy ~ Exp(a.) where o = —log(1 —¢1)/C; Right
Panel: the powers of the H,(c), KS, CvM and AD tests as a function of o,
with o* defined in (3.3.11) with ¥ = (0.99,0.95) shown by the dashed vertical
darkred lines.
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Figure 3.21: Left panel: F'(z)=1— o=@/’ (solid) to be Weibull distribution with ov =1
and # = 0.5 and G (dashed) is spliced with the splicing point C' = 2.59029,
F(C)=¢1 =0.8 and an Exponential tail Gy ~ Fxp(a.) where a, = —log(1—
¢1)/C; Right Panel: the powers of the H,(c), KS, CvM and AD tests as a
function of o, with o* defined in (3.3.11) with 1 = (0.99,0.95) shown by the
dashed vertical darkred lines.



Chapter 4

On a Two-sample Multivariate
Goodness-of-fit Test based on the
Hausdorff Metric

This chapter is based on the paper:
Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2025). On a Two-
sample Multivariate Goodness-of-fit Test based on the Hausdorff Metric. near sub-

mission.

Abstract

We introduce a two-sample goodness-of-fit test based on the Hausdorff distance
between possibly multivariate empirical cumulative distribution functions (ecdfs).
Classical tests such as Kolmogorov—Smirnov (KS), Cramér-von Mises (CvM), and
Anderson—Darling (AD) have appealing properties in the univariate setting but lose
efficiency for tail differences. Existing multivariate tests, including Wasserstein and
run-based tests, can achieve high power but are computationally demanding. Since
no hypothesized null distribution is available, extending the existing approach in
Chapter 3 to the two-sample multivariate setting is challenging. We address these
challenges as follows. We introduce an explicit and computable representation of
the two-sample Hausdorff (H) statistic with a geometric interpretation as the edge
of the largest hypercube that can be inscribed between the two ecdfs. We propose
a permutation version of H and establish its asymptotic equivalences in terms of
power and type I error, under the null and (fixed or contiguous) alternative. Based

on this, we develop a method to compute the exact and asymptotic p-values of the
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H statistic.

We address these challenges as follows. We introduce an explicit and com-
putable representation of the two-sample Hausdorff (H) statistic with a geometric
interpretation as the edge of the largest hypercube that can be inscribed between
the two ecdfs. We propose a permutation version of H and establish its asymptotic
equivalences in terms of power and type I error, under the null and (fixed or con-
tiguous) alternative. Based on this, we develop a method to compute the exact and
asymptotic p-values of the H statistic. In view of the scale dependence of H, we
propose a rule for selecting the scale coefficient, so as to optimize its power. Last
but not least, we give some useful properties of H including its Lipschitz continuity,
qualitative robustness and connections to the Lévy-Prokhorov metric and the KS
test. We demonstrate based on numerical examples that the scale-tuned Hausdorff
test outperforms the major competitors in terms of power in the univariate and

bivariate cases.

4.1 Introduction

Consider the two-sample goodness-of-fit problem of whether two random samples
come from one and the same unknown multivariate distribution. The classical
goodness-of-fit tests in the case when the two samples are drawn from univariate
distributions, include the Kolmogorov-Smirnov (KS), the Kuiper, the Cramer von
Mises (CvM), and the Anderson-Darling (AD), introduced correspondingly, by Kol-
mogorov (1933), Smirnov (1939), Kuiper (1960), Cramér (1928), Von Mises (1931)
and Anderson and Darling (1952). The latter tests have gained significant popu-
larity and have been widely applied in almost any field where data is collected and
analysed, such as, astronomy (McQuillan et al., 2013), social sciences (Salman et al.,
2015), pattern recognition (Alzubaidi and Kalita, 2016), machine learning (Gretton
et al., 2012) etc., to name only a few. These tests are based on distances between
empirical distribution functions, which are easy to compute in the univariate case.
Due to their popularity, some of these tests are further extended to the multivariate
case by e.g. Peacock (1983), Kim et al. (2020).

In the multivariate case, alternative definitions of distances between the samples
and related goodness-of-fit statistics have also been considered, including the run

tests based on the minimal spanning tree due to Friedman and Rafsky (1979), and on
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the shortest Hamiltonian path proposed by Biswas et al. (2014), the Wasserstein test
(Hundrieser et al., 2024), the Ball divergence test (Pan et al., 2018), the Maximum
Mean Discrepancy test (Gretton et al., 2012), the Cross Match test (Rosenbaum,
2005) and the Schilling-Henze Nearest Neighbor test (cf. Schilling, 1986; Henze,
1988).

These and other existing two-sample tests with different properties are a popular
tool for classification and unsupervised learning. However, there is no ’best’, test
that suits all purposes and possesses all the best properties. For example, the very
popular KS test, based on the supremum distance, is readily understood graphically,
is easy to evaluate, and is distribution-free in the univariate case, when the null is
continuous. Furthermore, recently, Dimitrova et al. (2020) provided efficient means
of computing the KS p-values assuming arbitrary, continuous, discrete, or mixed
null distribution, which makes the KS test applicable beyond just the continuous
case. At the same time, the KS statistic, is less sensitive in the tails, and has in
general lower power (see e.g. Mason and Schuenemeyer, 1983; Feigelson and Babu,
2020). This makes the KS test less efficient, especially for comparing tails, which is
very important in extreme value applications and related inference. The Wasserstein
test and the run tests in the multidimensional setting also have high power but are
difficult to evaluate numerically. The evaluation of the latter run statistics may be a

non-deterministic polynomial time (NP) problem, which hinders their practical use.

The definition of the distance between the two samples determines the proper-
ties of the test, in particular the evaluation of the test, its p-values and power. All
these considerations lead to the conclusion that there is still scope for using alter-
native distance metrics, leading to the construction of new test statistics, and the

need to investigate their related properties.

The aim of this chapter is to explore how the Hausdorff metric, introduced
by Hausdorff (1914), to measure the distance between sets, can be applied to
measure the distance between multivariate empirical cumulative distribution func-
tions (ecdfs), with the purpose of introducing a corresponding two-sample Hausdorff
goodness-of-fit test statistic. The Hausdorff distance has been considered by Beer
(1984); Sendov and Beer (2012), within the context of approximation theory, and

more recently in machine learning, by Chavent (2004), Li et al. (2017), Karimi and
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Salcudean (2020), Zhao et al. (2021), to name only a few of the papers in this stream
of literature. In Chapter 3, we have proposed to apply the Hausdorff (H) distance in
the context of one-sample univariate goodness-of-fit testing. By investigating theo-
retically the scale dependence of the H test and its p-values, we have shown that its
power can be controlled and optimized by appropriately selecting the scale. As they
note, knowledge of the hypothesized null distribution is central in implementing the
latter power optimization. As demonstrated, this leads to the H test significantly
outperforming the classical KS, CvM and AD tests in terms of statistical power.
Efficient numerical methods to compute the Hausdorff metric, the exact and asymp-
totic p-values and the asymptotic power and Bahadur efficiency of the related H-test

have also been provided.

However, extending these results to the two-sample case is not straightforward
since, no null distribution is hypothesized, in contrast to the one-sample case. Fur-
thermore, the methods to compute the one-sample Hausdorff statistic and its p-
values assume continuity of the null distribution, which is not defined in the two-
sample case, where H measures the distance between two empirical cdfs. Evaluating
numerically a distance measure between possibly multivariate ecdfs represents yet

another challenge by itself.

In this paper, we address all these challenges. Our major contributions can
be summarized as follows. First, we introduce the two-sample Hausdorff (H) test
as the distance between two possibly multivariate empirical cdfs. In Theorem 4.5
we show that the H test can be interpreted geometrically as the edge of the max-
imum hypercube that can be inscribed between the two ecdfs. Based on Theorem
4.5, we prove Lemma 4.15, which gives an explicit and computationally appealing
expression of the two-sample multivariate H test. Theorem 4.5 and Lemma 4.15
are generalizations of Lemmas 3.8 and 3.9 derived in Section 3.2 for the case of
one-sample drawn from a univariate distribution. In Section 4.3.1 and Appendix
4.A, we give methods to compute the H statistic when the two samples come from

univariate and bivariate distributions.

Second, we develop a method to compute the p-value of the H test by intro-
ducing an appropriate permutation H test in (4.3.10). This is necessary since the

p-value of the permutation H test is based on the observable pooled sample, in
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contrast to the p-value of the H test, which depends on the unknown null. This
is further justified by relation (4.3.11), Theorems 4.24 and 4.25, where we show
that the discrepancy between the p-values of the H test and its permutation version
(4.3.10) is asymptotically negligible under the null, or under fixed and contiguous
alternatives. Then in Theorem 4.26, we show that the univariate permutation H
test controls the type I error under the null, and also yields the same power as the
original test under the fixed and contiguous alternative. In addition, in Theorem

4.28, we also give an expression for the asymptotic p-value of the H statistic.

Third, in Section 4.4, we address the problem of scale dependence of the H
test, its p-values and power, and provide a rule to select the scale so as to optimize
the power. Rule (3.3.11) proposed in Section 3.3.2 for the one-sample statistic
is not directly applicable, since no distributional assumptions are made in two-
sample goodness of fit testing. Alternatively, based on the permutation H test,
we propose the rule (4.4.6) and its multivariate generalization (4.4.9) to tune the
two-sample statistic H in the spirit of (3.3.11). We further show that rule (4.4.6)
is asymptotically equivalent to the one-sample rule (3.3.11). When samples deviate
from each other in the right tail, we demonstrate by numerical example that in
the univariate case, the power of scale-tuned H test is higher than that of the KS,
CvM, and AD tests, and is very close to the power of the Wasserstein test when
sample sizes are moderately large (see Figure 4.8). In the bivariate case, we show
by numerical comparison that the power of the H test is higher than that of other
multidimensional tests and is significantly higher than the power of the KS test
generalized by Peacock (1983) (see Table 4.1). In Theorem 4.36, we also give an

expression of the exact Bahadur slope of the H test.

Last but not least, we provide some useful properties of the H statistic. In
Theorem 4.6, we establish its Lipschitz continuity as a point function of the sample
observations which we combine with Theorem 4.25 to establish the qualitative ro-
bustness of H. In Proposition 4.9, we show that H can be viewed as a degenerate
Lévy-Prokhorov metric. Theorem 4.19 establishes how the two-sample univariate H

test is related to the two sample KS test.

This paper is organized as follows. In Section 4.2, we recall the general definition

of the Hausdorff metric and the empirical cdf in the multivariate case, and propose
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the Hausdorff statistic to be the distance between empirical cdfs. We further provide
some useful properties of the H statistic among which its connection to the KS
statistic and the Lévy-Prokhorov distance. In Section 4.3, we give detailed methods
to compute the H statistic and its p-values in the one- and two-dimensional cases. In
Section 4.4, we show how the p-values of the H test depend on the scale and provide
a rule to select the scale so as to optimize its power. The latter rule is illustrated

by numerical examples. Finally, in Section 4.6, we summarize our findings.

In Appendix 4.A, we give a detailed method to compute the H statistic in the
bivariate case. In Appendix 4.B, we provide an expression of the H p-values as a
boundary crossing problem. The proofs of all the results that appear in the paper
are given in Appendix 4.C. In Appendix 4.D, we compare the numerical efficiency

of the two methods in Section 4.3.1.

4.2 The Hausdorff Goodness-of-fit Test Statistic

Let two samples X,,, = {X3,...,X,,} and Y,, ={Y1,...,Y,,} be defined on the prob-
ability space (Q,F,P), where X; and Y;, i=1,...,m, j=1,...,n are i.i.d. copies of
the k-dimensional random vectors X and Y, i.e.

X=X, xPy v =W,y W),

)

Denote by F(z) and G(x) the (unknown) cdfs of the the random vectors X and
Y respectively. We assume that F(x) and G(z) as arbitrary distribution functions,
i.e. repeated observations are allowed in the two samples. We want to test the null
hypothesis Hy : F(z) = G(z), for all x € R¥, against the alternative H; : F(x) # G(x)
for at least one x € R¥. We are interested in applying the Hausdorff metric to measure

the distance between two empirical distribution functions for goodness-of-fit testing.

4.2.1 Empirical Distribution Funtions

When X and Y are univariate random variables, i.e. k=1, denote by F,,(z),
Gn(z) and E,im(z) (z € R) the empirical cumulative distribution functions

(ecdfs) corresponding to the samples X,,,Y, and the pooled sample Z,,, =
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{Xl,...,Xm,Yl,...,Yn} = {Zl,...,Zern}, i.e.

1 & 12 1 m-+n
Ful) = 31X <), o) = 23105 <0), Bal) = 3" 00z <),
=1 =1 j=1

(4.2.1)

where z € R and 1(-) is the indicator function.
When X and Y are multivarite, i.e. k> 2, it is well known that the ecdfs of
samples have multiple alternative definitions, (see e.g. Langrené and Warin, 2021).
Hence to define the latter, we need to first introduce the component-wise order =

on R*. For any z1,z2 € RF, we say x; < xo, if and only if :cgi) < mg), i=1,...,k,

where :cgi) and xg) are the i-th components of 1 and z5. Given the component-wise

order, the corresponding empirical distribution functions of X,, and Y, is

1 & 1
“NTUX <2), G, ==Y 1(Y; < e RF. 4.2.2
mJZ::I ( fo) n n; (J—'x)x ( )

Fo(x)=

However, one can have 2¥ — 1 alternative component-wise order definitions on R¥,
which we denote as =<; (i = 2,...,2F). For example, when k = 2, the alternative

component-wise order definitions are

x1 =9 x9 if and only if xgl) < :cél) and x§2) > ng),
x1 =33 x9 if and only if :vgl) > l'gl) and xg2) < :pgz), (4.2.3)

r1 =4 x2 if and only if xgl) > :Eél) and ;" > x5,

We will denote by Fy,(z) the empirical cdf defined by the i-th component-wise
order =;. Clearly <1==, therefore F;,, = F};,1 and G,, = G, 1.

In the sequel, it will be convenient to interchangeably use the notation F,,,(z) =
Fo(z,w) = Fip, G(2) = Gp(z,w) = Gy, and By () = Eggn(2,w) = Epygp, where
w € Q explicitly indicates that the ecdfs are random realizations underpinned by

correspondingly the random samples X, (w), Y, (w) and Z,,4p(w).
4.2.2 Background on the Hausdorff Metric

In Chapter 3, we have considered the Hausdorff metric and its use to measure the
distance between a continuous cdf and an empirical cdf in the one-sample one-
dimensional case. In this section, we will extend the definitions of the Hausdorff

metric and statistic in Section 3.2.1 to the two-sample multi-dimensional case. For
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the purpose, we recall the Definition 3.1, which defines a distance measure between

two points in RF*1,

Definition 4.1. Let A, B € R*t! with coordinates z4,zp € R*, 24,25 € R, i.e.
A= (x4,24)T, B=(2p,2B)T, where - denotes transposition. The function p(A4, B)
is a distance measure between two points A, B € Rt iff it satisfies the conditions

(1)-(4) in Definition 3.1, i.e.:
1. p(A,B) > 0, for every pair of points A and B.
2. p(A,B)=0, iff A=B.
3. Symmetry: p(A,B)=p(B,A).
4. Triangle inequality: p(A, B)+ p(B,C) > p(A,C), C € RF1L

For example, we could easily verify that the Chebyshev and Euclidean distances,

defined by
Po(A,B) = max ]wg) —wg)|,

1<i<k+1
B (4.2.4)
p2(A,B) = | Y (wy —wy)?,
=1

respectively, satisfy Definition 4.1, where wEZ) and wg) are the i-th components of
points A and B respectively. Given an arbitrary measure p(A, B) of distance between
two points in R¥T! the Definition 3.3 of the Hausdorff distance can be generalized

as follows.

Definition 4.2. Let A and B be two arbitrary sets in R¥*!. The Hausdorff distance,
H,(A,B) between the sets A and B is defined as

H,(A,B) =max[sup inf p(A,B),sup inf p(A4,B)]. (4.2.5)

AcABeB BeBAcA
In order to apply the Hausdorff metric H,(A,B) to measure the distance be-
tween two ecdfs, Fy,(z,w),Gn(z,w), x € R, we need to appropriately define the sets
A and B from Definition 4.2, replacing them with the corresponding planar curve

(set) analogs of Fy,(z,w) and Gy (z,w).
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The latter planar curve analogues Ff,(w) and G¢(w) in the univariate case, i.e.
for k=1 are defined as

Ff(w)={(z,2): Fp(z—,w) <z < Fp(z+,w)}
(4.2.6)

Gr(w)={(z,2) : Gp(z—,w) < 2 < Gpz+,w)},

where F(x—) and F(x+) are the left and right limits at the point z € R. When
k> 1, we need to adequately define Fy,(x—), Fi(z+), Gp(z—) and Gp(z+) for
x € R* (k> 1). This task has been considered by Popov (1999), who refers to these
limits as lower and upper Baire functions. For example, the Baire functions of the

ecdfs Fy, ;, are

Fini(2—) = liminf Fyi(t),

(4.2.7)
Fini(xz+) = limsup F, ;(t).
t—a
Similar definitions for G, ; are also adopted. Note that the planar curves Fy, and
G¢, defined by (4.2.6) and (4.2.7) are the minimum closed and connected sets in
R*+1 containing the graphs of the functions F,(z,w) and G, (z,w) (cf. Lemma 2
in Popov, 1999). The latter graphs are gr(F,(z,w)) = {(z, Fn(z,w)), ¥z € R}, and
gr(Gp(z,w)) = {(z,Gp(z,w)),Vz € R}, respectively, which are unclosed and uncon-
nected sets. These graphs and their corresponding planar curves are illustrated for
the case k = 1. For this purpose, we introduce the following notation. Denote by
(z1,...,2) and (y1,...,y,) the corresponding distinct values x; < o < --- < x,, and
y1 <y < --- <y, of the observations (Xi,...,X,,) and (Y1,...,Y},,), where each z;
and y; is repeated r; and e; times, respectively, with >7;" 1 r; =m and }°7_; e; =n.

Clearly, for the ecdfs F),, and G,, we have

r ri+r ri+---4+r
Fm(I'l) = El,Fm(JQ) = 1m 27...,Fm($v) — %

€1 e1+eo el +---+e
Gn(yl) = E;Gn(yQ) = - ,...,Gn(yy) — #V

Clearly, the planar curves F), and G¢ that correspond to the cdfs F,, and
G, represent piecewise linear curves, with horizontal and vertical linear segments
forming steps. In order to define the latter staircases, we will introduce the nota-
tion, 1 =a1, Ta—x1=0a3, ..., Ty — Ty—1 = Qy and by = 0, % =b;,i=1,...,v and

e;j .
Cho=4ai, C1 =Y1 —Co, Y2 —Y1 =¢C2, ... Yo —Yp—1 = Cyp, d():(), EJ:dj, j:1,...,V
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and ay1 = Y 7_o¢j — > ;=1 aj. Without loss of generality, assume a3 < c;. Let
E° have vertices A1, Ag, ..., Aoy, Aoyt1, with coordinates on a positively orientated

orthogonal, Cartesian coordinate system Oz in R?, given as

I+1 l

l l
Agl = (Zaj,ij> l:1,2,...,U; A2l+1 = (Zaj,ij) lZO,l,...,U. (4.2.8)
=1 j=1 j=1  j=0

Similarly, let G¢ have vertices By, By, ..., Bg, with coordinates
l l +1 l
Bgl = (ZCj,Zdj) lZO,l,...,l/; le+1 = (ZCj,Zdj) lZO,l,...,I/—l.
Jj=0  j=0 j=0  j=0

(4.2.9)
The stepwise curves F};, and Gy, may have arbitrary numbers of vertices 2v +1
and 2v+ 1, they have a common initial vertex A;(a;,0) = By(a1,0) and a common

final vertex Ag,+1 = Ba,. The latter condition is equivalent to assuming that

v+1

Zaj = ZCj and ij = Zdj.
Jj=2 Jj=1 j=1 j=1

Therefore, both FY, and G¢ are contained within a rectangle. They may cross
each other or some of their segments may overlap and to reflect upon this, we will
say that the two curves are in a general position. The ecdfs F,,(z) and G, (z) and

their counterparts F¢, G¢ that are stepwise curves in R? are illustrated in Figure

4.1.
VA z
'y r N
Epn(x) Gn(x)
ST SR A 1 EI T
T3 i
m, i L2
.\_(.5 ' by +bjf------m-=
2 1
mio ] Ay
9—? i L | by }--
ri: 1 1 :_ 1
mi ' Bo| A
O Lo - - >
X1 X2 X3 )1 Y2 x 0 c=a at+a; B x

Figure 4.1: Graphs of F},, G, and planar curves F;5, and G¥, for v =3 and v = 2.

Let us also note that F¢ in Figure 4.1 divides the plane R? into two open sets,
the (strict) epigraph and hypograph of F¢, denoted in the general R**! case k > 1,
correspondingly by Upe and Lpe .

Given the two unknown cdfs F(z) and G(z), x € R* behind the random samples
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X, and Y,,, in order to test the null hypothesis Hy : F'(x) = G(x) for all z, against
the alternative Hy : F'(x) # G(z). for at least one x, we propose to use the Hausdorff
distance H,(FY,,GS) between the planar curves F, and G, that correspond to the
ecdfs, F,, and G,,. We specify p to be the Chebyshev distance po, defined in (4.2.4),
i.e. we take p = poo. The rationale behind this choice can be similarly justfied as
in Section 3.2.2 and is two-fold. First, as we show in Theorem 4.5, H,_ _(Fy,,GS)
coincides with the edge of the largest hypercube that can be fitted between the
planar curves FS and G¢ in RF*! that represent staircases in R¥*1. This motivates
geometrically the choice p = po which also leads to more efficient evaluation of
H, (Ff,,G¢%), illustrated in Section 4.3 (see Lemmas 4.23 and 4.39 therein). Second,
the choice p = p, allows us to establish a potentially fruitful connection between the
Hausdorff and the Lévy—Prokhorov metrics given by Proposition 4.9. For brevity,
we will drop the subscript po from H, (Fy,,GS), write H(F},,GY) and also use the
shorter notation H,, ,. In what follows, we will refer to the latter Hausdorff distance
as the (two-sample) Hausdorff test statistic, or simply the H test. As we noted in the
introduction, the two-sample case considered here is fundamentally different from
the one-sample H test, because both of the ecdfs F, and G, stem from unknown
underlying distributions, in contrast to the one-sample case, where an explicit null

cdf is hypothesized.

4.2.3 Properties of the H,,, Statistic: the Multivariate Case

In this section, we will establish some general properties of the proposed statistic
H(Ff,,GS) in the multivariate case, i.e., when F¢ and G¢ are planar curves in
RF1 k> 1. Let us note that the sup-inf in (4.2.5) is always achievable for two
compact sets, therefore the Hausdorff metric is always well-defined. However, the
sets FY, and G¢ are not bounded, nor is their symmetric difference FSAGS =
(F5, —GS)U(GS — Ff,) when k > 2, where the sup-inf in (4.2.5) can be achieved. In
order to mitigate this problem, we alternatively consider two functions F,, and G,
that truncate F),, and G,,, with corresponding planar curves ﬁ’ﬁl and CA?%, such that

their symmetric difference FTC,LAGZ is bounded.

Lemma 4.3. For M >0,z € R*, let us define two functions Fy,(z; M) and G, (z; M)
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truncating F,, and G, as follows

A

Fo(x;M)=1(x <M -1)Fp(z)+[1—1(z X M-1)],

A

Gulx; M) =1(x 2 M -1)Gp(x)+[1—1(x 2 M -1)],

where I =(1,...,1)T € R*. There always exists My > 0, such that ¥ M > My,

N

Hynm = H(FS (M), GE(M)), (4.2.10)

) n

where ES (M) and GS(M) are the planar curves of Ey,(x; M) and Gy, (x; M) respec-

tively.

Therefore, to compute H,, , we can instead compute H(FS (M), GS(M)), for
a suitably large choice of M. Since the symmetric difference ES(M)AGS(M) is
always bounded, Lemma 4.3 provides a convenient framework for us to consider
further properties of H,, , and generalize results in Section 3.2.2. We will start with

generalizing Lemmas 3.6 and 3.8.

Lemma 4.4. The Hausdorff distance

Hmn=max | sup inf po(A,B), sup inf p(A4,B)
AEFe BEGE BeGe AcF,

= sup inf po(A,B)= sup inf po(A4,B)
AEFe, BeGe BeGe AcFe

m m

Lemma 4.4 is important as it significantly simplifies the evaluation of H,,
requiring only one sup-inf form (instead of two). Next we formulate Theorem 4.5,
which states that the Hausdorff distance with respect to the metric py can be
expressed as the edge of the maximum hypercube that can be fitted between the

curves, F, and GY,.

Theorem 4.5. Denote by S(Q,d) = {P € RF1: p_ (P,Q) < d/2} the hypercube with
edge d and center at the point Q. If the hypercube S(Q,d) can be inserted between
the curves Fy, and Gy, so that it does not overlap with the sets Upe NUge and

Lre NLge, then for the Hausdorff distance, we have

H(FS,G) > d. (4.2.11)
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Furthermore,
H(F&,G%) = Sup{d : S(Q,d) N [(UFTCH mZ/{G%) U (EFﬁl N ﬁG%)] = @} (4212)

or alternatively

H(FS,Gr) =sup{d: S(Q,d) C G}, (4.2.13)

where G =R¥ N\ {{(Upe NUGe )U(Lpe NLee )|} s the area between two planar curves
ES and Gy,.

m

Theorem 4.5 is an important result, as it gives a geometric interpretation of the
distance H(F},,G¢), which links it to the Lévy-Prokhorov metric (cf. Proposition
4.9), and also provides effcient means for computing H(Ff,,GS) (cf. Lemma 4.15).
In addition, based on the latter geometric interpretation, it is not difficult to see
that all the observations (Xi,...,X,,) and (Y1,...,Y;,) directly influence H(F,,GS,),
in contrast to the run/rank tests (such as KS, CvM and AD), which depend solely
on the relative ordering of (X1i,...,X;,) and (Y1,...,Y,). Furthermore, H(F,,G%)
is Lipschitz continuous as a point function of the observations, as stated in the

following theorem.

Theorem 4.6. Let X, = {Xl,...,Xm} and Y, = {}V/l,,f’n} be two arbitrary ran-
dom samples in R* with corresponding empirical cdfs E,, and G,, and planar curves

FS and GV% We have

m

\H(FC,G%)— H(ES, G¢)| < 4max{ max p%(X;, X,), max pj;o(yj,x?j)}, (4.2.14)
1<i<m 1<j<n

where p} is the metric defined by pso (cf. (4.2.4)) restricted on RF.

One consequence of Theorem 4.6 gives a key advantage of the H(FY,,GS) test
over other rank/run tests, which is its robustness to small perturbations in the
sample values. The latter guarantees that the goodness-of-fit testing result under
Hm,n are stable when samples are noise-contaminated, which may be due to many
unavoidable practical reasons, such as measurement errors, rounding errors, and
privacy protection (see Avella-Medina, 2021). For example, the noise induced by
rounding errors, which typically leads to ties appearing in the data, can substantially

inflate the type I error when applying a rank statistic (see e.g. Schréer and Trenkler,
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1995). The robustness of H,, , with respect to small perturbations is illustrated in

the following simple example.

Example 4.7. Let X, and Y, have realizations X,, = {0,0.5,1} and Y, =
{0,0.5,1}. Let X,, = {0,0.4999,1} and ¥; = {0,0.5001,1} be noise-contaminated
samples of X,,, and Y,,. Clearly, the values of the H and KS statistics with respect
to the original samples X, and Y,, are H, , =0 and D, , = 0, whereas the values
with respect to Xm and ?n are ﬁmn = 0.0002 and f)m,n = % The latter values are
graphically illustrated in Figure 4.2, where the cdfs of X,, and Y,, coincide except at
the middle observation. As can be seen, 7—vlmn =0.0002 is the side of the maximum

square that can be fitted between F¢ and G¢ (cf. Theorem 4.5).

b Y]

1/3}--

Ay 110.5001 ! R
0  0.4999 1 T x

Figure 4.2: The effect of a small perturbation in the samples as in Example 4.7, on Hp, n
and Dy, p; Zv)m,n = 1/3 — the dotted line, against the robust 7—vlm,n = 0.0002 -
the side of the shaded rectangle which is much closer to H,, n = D n = 0.

In Theorem 4.25 of Section 4.3.2, we further establish the robustness of the
p-values of H,, , referred to as the qualitative robustness.

Next, we establish a connection between the Hausdorff and the Lévy-Prokhorov
metrics. For the purpose, let us recall the definition of the Lévy-Prokhorov metric,

which measures the distance between two probability measures.

Definition 4.8 (Lévy-Prokhorov metric). For any subset A C R¥, its e-neighbor

(with respect to the metric ps) is defined as
A*={yeRF: 3z € A poo(z,y) <}

Denote by B the collection of all Borel sets of R¥, by 1 and jp two probability mea-

sures defined on (R¥,%8). Then the Lévy-Prokhorov metric, measuring the distance
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between 1 and ps, is defined as

pLp(p1;p2) = prp(p, p2;B) =inf{e > 0:
p1(A) < p2(A°) +e, and pa(A) < pa(A°) +¢, VA € B}

(4.2.15)

The following proposition expresses the Hausdorff metric in the form of a Lévy-
Prokhorov metric. A Hausdorff expression of the Lévy-Prokhorov metric is given in

Rachev (1981).

Proposition 4.9. Denote by ux,, and py, the empirical measures with respect to
the samples Xy, and Y, i.e. ux,, = ﬁZ}Zl 0x, and py, = ﬁZ?:l dy;, where

S, is the Dirac measure, i.e. for any set A C RF,

where 1 4(+) is the indicator of the set A. Denote by B; = {{x eRF:x=; y} (Y € Rk},

then the Hausdorff statistic can also be expressed as

and py, (A) < px,, (A%)+e, VA€ B}

Note that since each class B; for 1 < i < 2* generates the sigma algebra B,

therefore B, C 9B, and it is clear that the Hausdorff metric H (F¢

wm.i»G.i) 1s therefore
a degenerate form of the Lévy-Prokhorov metric prp(ux,,,fty, ), which also results

in Corollary 4.10.
Corollary 4.10. H(Fy, ;,G} ;) < pLp(px,,, 1y, )-

The next example shows that the Hausdorff metric is a different metric from the

Lévy-Prokhorov metric, in other words, the equality sign does not hold in general.

Example 4.11. Let X,,, = {1}, Y;, ={0,2}. One easily checks that H(F},,GS)=0.5,
whereas prp(px,,,pty,) > 1. Indeed, take A= {1}. Then for any e <1, A° =[1—
g,1+¢] which contains neither 0 nor 2, and therefore py;, (A°) =0. Thus px,, (4) =
1> py, (A%)+e=¢ for any e < 1.

The Hausdorff statistic H (FS

w.i»Gr.i) depends on the component-wise order =;.

Alternatively, we could also define the following statistic, which is independent of
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the choice of =<;, in analogy to the multivariate generalization of the KS test by

Peacock (1983),

Mo = max H (Fri» Gni) = pLp(px,,. iy, ; UB)

= inf{e > 0: ux,, (A) < py, (A%) +¢, and (4.2.17)

py, (A) < px,, (A%)+e, VA€ UB; |

Let us note that, H,, ,, is also a degenerate Lévy-Prokhorov distance since U;*B; also

generates the sigma algebra 93.

Remark 4.12. The link between the Hausdorff and Lévy-Prokhorov metrics es-
tablished in Proposition 4.9 is important since it offers a bridge to applying the
Hausdorff statistic H,,, to the context of global sensitivity analysis and variable

importance measurement (see Borgonovo et al., 2025b, and discussions in Section

5.2).

Remark 4.13. In practice, given a pair of data samples in high dimension, instead
of directly testing for goodness-of-fit, one may first project the data into a lower
dimension and then perform the goodness-of-fit testing. If the dimension reduction
does not affect the scale of the data samples, it is not difficult to show that the Haus-
dorff distance computed with respect to the projected data (in the lower dimension)
is bounded from above by H (F%Z-*,G%’i*) with an appropriate specification of <;«
in the original high dimension. This statement is analogus to Corollary 4.10, since
the class B; generated by the component-wise order <; in the lower dimension is a

subset of the original class 2B;+ generated by =<;=.

Following the geometric interpretation given by Theorem 4.5, we give some
results on how to compute the proposed H statistic. For the purpose, let us introduce
some notation for the vertices of F), and Gf, in the case k > 1, generalizing the
notation given in Section 4.2.2, for the case k = 1. Defining the vertices in the latter
case is trivial, since each vertex occurs at each point of jump discontinuity of F;,
and G,,. However, a direct extension to the case k > 1 does not work since Fj, and
G, may be discontinuous not only at points but also over entire segments in R*.
Therefore, in order to define the vertices of F},, and G,, in the case k > 1, we need to

select the points in R* at which F},, and G,, jump with respect to all its coordinates.
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We refer to the latter as points of omnidirectional jumps.

Definition 4.14. Denote by e; = (0,...,0,1,0,...,0) € R* (1 <i < k), the i-th stan-
dard basis vector in R¥, where 1 appears exactly in the i-th position. Then z is a

point of omnidirectional jump of F,, if and only if, for every i,
lim F, te;) # lim F, te;). 4.2.1
tlfg m (@ +te;) # tlT%l m (@ +te;) ( 8)

When k =1, every jump of F, is automatically an omnidirectional jump. De-
note by ay,ao,...,a, € RF and B, fs,...,5, € RF all the points of omnidirectional
jumps of F,,, and G, respectively. Without loss of generality, let us further assume
that both samples come from continuous distributions, i.e. there are no ties in the

samples X, and Y;,. In the latter case, we define the vertices Aj,..., Ag, of Fy, as
A9 1= (Oéi,Fm(Odi—))T,AQi = (Oéi,Fm(Oéi—l-))T, 1=1,2,...,v, (4219)

which are sufficient to give a computable expression of H,,,, as shown in Lemma
4.15. A more detailed description of all the vertices of G¢, is given in Appendix 4.A.

The following lemma generalizes Proposition 3.9 and provides an explicit ex-
pression for the Hausdorff statistic H,, , and numerical methods to compute it given

in Section 4.3.1 and Appendix 4.A.

Lemma 4.15. Let £;, | =1,2,...,2v be straight lines, correspondingly passing
through each of the vertices A; of F,, defined in (4.2.19) and parallel to the vec-
tor OEy," where Ey = (1,...,1,—1)T € Rt i.e. each L) is explicitly defined as

Li={PeR'': P A =tFtecR}. (4.2.20)

Denote by E;, 1 =1,2,...,2v the points of intersection of the lines, L; with the
planar curve G¢, and consider the distances poo(Ay, Ep), 1 =1,2,...,2v. Then for the
Hausdorff statistic, we have

Hmn = H(Fy,,Gy) =max{ps (A, Ep),l =1,...,2v}, (4.2.21)

)

'In this paper, the point O denotes the zero vector in R**1 and 0 denotes the zero vector in R”.
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under the assumption that the domain G =R* I\ {[(Ure NUGe )U(Lpe NLae )]} (cf.
Theorem 4.5) is bounded in RF1.

When k£ =1, it can be seen that G in (4.2.21) is always bounded. When &k > 1,
F¢ and G¢ need to be truncated according to Lemma 4.3, appropriately selecting the
constant M, so that G(FC (M),GS(M)), the area between FC (M) and GS (M), be-
comes bounded. Furthermore, the vertices of each planar curve FC (M) and G (M)
that are defined in Lemma 4.3 are composed of two distinct parts: (i) the origi-
nal vertices of F¢ and G¢, (i) additional vertices in < (M) and G¢ (M) generated
by the truncation of Ff and G¢. Therefore in order to use (4.2.21) to compute
H(F,,,G.), one needs to incorporate the second part of the vertices of F¢ (M). The
choice of M and the detailed adjustment of (4.2.21) are discussed in Appendix 4.A.

Let us note that (4.2.21) can also be applied to compute H,, , defined in
(4.2.17). To see this, note that Iy, | = Fy,, G}, 1 =G, (cf. Section 4.2.1), and there-

m,1 =

fore Hpmn = H(Fy,,Gy) = H(Fy, 1,Gy, 1). To compute the remaining H(Fy, ;, Gy, ;)
(2 <4< 2%)in (4.2.17), one only needs to modify Ey in (4.2.20) as Eq = (§;,—1)T €
RFEFL where &; € {—1, 1}k C R*, i.e. each component of & is either -1 or 1, and such

that & =; 0.
4.2.4 Further Properties of H,,, in the Univariate Case

The purpose of this section is to give some further properties of the proposed statistic
Hmn = H(ES,,G5) in the univariate case i.e., when F, and G¢, are planar curves in
R?, i.e. when k= 1. In this case, its definition does not depend on the ordering <
considered in Section 4.2.1, and it is easy to compare H,, , with other tests such as
the KS statistic. An essential difference between the latter two is that H,, ,, depends
on both coordinates of the planar curves F, and G%,, while the KS statistic depends
only on their vertical coordinates. As a consequence, as established in Section 4.4,
Hm,n has higher power than the KS statistic. As we also note in Remark 4.22, H,, ,,
coincides with the Lévy metric.

The first property we introduce is a special case of Lemma 4.15, which further
simplifies the computation of H,, . For the purpose, we modify the planar curves
F¢ and G¢ defined in R? (see Fig. 4.1) so as to ensure that they only touch but not
cross each other. As we show in Lemma 4.17, such a modification does not affect

the value of H,, .
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Consider the subset of the vertices Bi,...,Bs, of Gf, which intersects with
Upe, ie. {B1,...,Ba,} NUpe. Consider also the intersection {Ap,...,A2,} N
Lge. The modified planar curve FS, has vertices ({A1,..., A2y} \ ({A1,..., 42, }) N
Lg:)U({Bi,...,Ba}NUFe ). Similarly, the modified planar curve G¢ has vertices
{B1,..., By} \({B1,...,Ba, } NUpe ) U({A1,..., A2, } N Lge ). The latter sets of ver-
tices exclude the additional vertices at the crossing points of FS, and G¢, where F¢,

and G¢ touch. Therefore these additional vertices are irrelevant in the computation

of H(FS,GS,).

Remark 4.16. Let us note that if we modify F,% and GfL applying the above mod-
ification rules, then it can be seen that ﬁﬁl and éfl coincide respectively with F¢

and G¢.

Denote by, a1 = a1, ¢g = a1, d;41 and bi, i=1,...,0, and by, ¢; and Jj, j=
1,...,7, the sizes of the horizontal and vertical segments of correspondingly the
staircases an and @; Their step sizes a;, b;, ¢; and Jj can be expressed in terms of
the step sizes a, b, c and d of F), and GY, for any particular pair of the cdfs F},, and
G, that are in general position. This is described in Section 4.3.1. For the vertices

of F¢ and G¢, we have

7j=1 j=1 j=1 7=0
! I I+1 ~
le_(Zé],ZdJ) 1=0,1,...,7; BQ,H_( &, dj> 1=0,1,...,0—1
J=0  j=0 J=0  j=0

(4.2.22)
The following lemma states that the Hausdorff distances between the planar

curves FS and G¢ and their modified versions F¢, and G¢ coincide.

Lemma 4.17. The Hausdorff metric Hupmn, = H(FS,GS) = H(FS,GS).

Proof. The result follows since the domain G is not affected by the modification of

(FS,G¢) into (F¢,GS). O
The following lemma is a special of Lemma 4.15 which further simplifies the

numerical evaluation of H,, .

Lemma 4.18. Let, £, 1=1,2,...,0, be parallel straight lines, correspondingly pass-

ing through each of the vertices Ay, 1 =1,2,...,0, in such a way that they cross
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the horizontal axis, at an angle of 3w/4. Denote by Eo, 1=1,2,...,0 the points
of intersection of the lines, L£; with the planar curve CNJ% and consider the distances

pm(Agl,Egl), 1=1,2,...,0. We have

Honn = H(FS,G2) = max{poo (A, Ex),l =1,...,0}. (4.2.23)

We also have
Hun = H(FS,,GS) = max{poo(Bay_1,D_1),e = 1,...,0)}, (4.2.24)
where Dyj_1, l=1,...,0 are the points of intersection of the lines L with the planar

curve Fﬁ, where the lines L] pass through the vertices Boy_1 and cross the horizontal

azis at an angle of 37 /4.

Let us note that the maximum in (4.2.23) is taken over only the even vertices
of Fﬁl in contrast to (4.2.21) in Lemma 4.15, where the corresponding maximum
is taken over all vertices of FY,. Therefore in many practical cases, depending on
the structure of the two samples X, and Y, i.e. of their planar curves F, and
G¢, the evaluation of H,,, following (4.2.23) may be significantly more efficient
than if one applies (4.2.21) for k = 1. In fact, all the even vertices of F¢ are all
the locally concave vertices, which are also locally the farthest from éfL Therefore,
the maximum in (4.2.21) can be taken over the vertices which are only locally the
farthest from G¢, which we further illustrate in Appendix 4.A.2

Based on Lemmas 4.18 and Theorem 4.5, we develop an efficient method for
computing H(Ff,,GS) and its p-values, which we present in Sections 4.3.1 and 4.3.2.
Next, we state Theorem 4.19, which is important as it gives a connection between

Hum,n and the two sample Kolmogorov-Smirnov statistic, Dy, p, defined as

Dm,n:PD(FmaGn) = sup |Fm($)_Gn(l‘)|

—oo<r<+00

Theorem 4.19. We have

H(Fy,(w),Gr(w)) < pp(Fm(w),Gn(w)) (4.2.25)

2A vertex A € GS is locally concave iff S(A,0) NLge is convex for some ¢ > 0, and is locally
convex iff S(A,0) NUge is convex for some & > 0.
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for every w € Q. Furthermore,

H(Fy,(w), G} (w)) = pp(Fn(w), Gn(w)) (4.2.26)
for every w € Q, if
Jmin (2 —x;-1) 2 1 and min (y; — i) 2 1 (4.2.27)

Remark 4.20. It can be directly seen that conditions (4.2.27) is met by the class
of discrete integer valued distributions, such as Poisson, Negative Binomial, and
some other distributions. In the latter case following (4.2.27), the Hy, n and Dy,
statistics coincide. However, there are important discrete distributions which do not
meet conditions (4.2.27) and H,y, » and D, ,, do not coincide. It is worth noting also

that when the random samples X, and Y,, are continuous, in general, H, n 7# Dy -

As a consequence of Theorem 4.19, we can now formulate Corollary 4.21 which

states that the cdf of D,, ,, is dominated by the cdf of H,y, .

Corollary 4.21. For any q € [0,1], we have

]P)(Dm n< Q) < IPJ(/Hm,n < Q)-

5 —=

Remark 4.22. Let us note that following Proposition 4.9, the univariate H,,,
statistic can be expressed as a degenerate Lévy-Prokhorov metric and therefore as
a Lévy metric (cf. (3.2.14)). Therefore relations (4.2.25) and (4.2.26) can also be

obtained from the property of the Lévy metric (cf. Lemma 3.46).

4.3 Evaluating #H,,, and its p-values

To test the null Hy using the Hausdorff statistic H, , = H(Fy,,GS) in the general
case i.e., when FS and G are planar curves in R¥+1 for & > 1, one needs numerical
methods to efficiently evaluate it and its p-values. Such methods are presented here

for the case k=1 and 2.

4.3.1 Evaluating H,,, when k=1

In this section, we introduce two methods to evaluate H,, , when k£ =1, the pro-

jection and the transformation method. The latter is based on transforming the
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coordinate system, which is easy to understand geometrically but is more difficult
to generalize to higher dimensions, i.e. for £ > 1. The projection method is slightly
more complex but can be generalized to the case k > 1, as we demonstrate in Ap-
pendix 4.A.
The projection method for computing the value of H(Ff,,GS), for a fixed pair
F¢, and Gf, is based on Lemmas 4.17 and 4.18. From the latter lemmas, it follows
that
H(FS,GS) = H(FS,GS) = max{peo(Ag, Ey),l = 1,...,70} (4.3.1)

and therefore we can focus on finding H(EY,,GS) which is more convenient since,

F¢ with vertices,
{Al, ... ,AQU}/({Al, ... ,AQU} ﬂﬁG%) U ({Bl, ... ,BQV} muFﬁL) (432)
lies entirely in Ug, , i.e. FS € Uge , and Gy, with vertices

{Bl, .. .,BQV}/({Bl, ... ,BQV} ﬂblpﬁl) U ({Al,. . .,AQU}OEG%) (433)

lies entirely in Lz, , i.e. G € L. . In other words, F¢ lies "above” G¢, i.e. FS

and G¢ may touch but not cross each other, in contrast to F¢ and G¢, which are

n
assumed in general position, i.e. may cross (see Figure 4.3). This property of Fﬁl
and CNJ% simplifies the numerical evalutation of H,, .

Thus, following (4.3.1), in order to find all the squares, S(Q,d) that fit and
touch F,% and @7";, but do not stretch into either U e OF L’@% , pass bisections through
the vertices Ay, [ =1,...,0 of the 90-degree angles, formed by the staircase curve
F¢ (See Figure 4.3), and find their points of intersection, Ey, [ =1,...,0 with the
curve @% The point Fs;, with coordinates <ngl’ZE21) defines the side d; of the
square S(Q,d;), i.e. dj=x fy — LAy, Following Lemma 4.18, the Hausdorff distance
H(Ff,,G¢) is then equal to the 1n§1[a§>%{dl}.

The latter maximum can be found applying Lemma 4.23 which requires pro-
jecting the vertices of an and C;’fl onto the horizontal axis, as illustrated in Figures
4.3 and 4.4. The projection method for computing H,, , can now be summarized as

follows.

Step 1. If U > 0, perform an appropriate change of the coordinate system, and
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- =9
1 ______________;418=B12
Aig = By dg | Big #=9
AT TR
. Ay, =Bg E e 10
B Aw=Bg FoT
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- ““\AF’:A(’ d4J~8 Bio
Ai=By __JT
..__:AI B3 =157 B
~d2 E: 545 B6
A E B, I
dif _ A3 =53
, UF
/ By =8 X
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Figure 4.3: The curves F¢ and G¢, and the Hausdorff distance between them
H(F§,GS) = max d;

1<1<9

recompute the coordinates of all the vertices of £, and G¢, so that the latter change

positions, i.e., G’% takes position above F’,% If 7 < O, proceed to Step 2. Therefore,

Step 1 ensures that the curve with smaller number of vertices is above the curve
with higher number of vertices.

Step 2. Project the vertices of Fﬁl with even indexes, i.e. the vertices

Ay (Zé:l di,ZLl Bi)T, l=1,...,0 onto the horizontal axis Oz, in direction of the

line x4+ z =0 in the xOz coordinate system and denote these projections with A Ay

It is easy to see that,
!

)\Am :Z(&i—f-i)i).
i=1
Step 3. Similarly as in Step 2, project all the vertices of G’fl and denote their

projections on the abscissa Ox, by )\Bz’ 1=1,2,...,2p. Clearly,

j
)\szzz:(ék-i-dk), for j=1,2,....,0 and
k=1
jt1 j
ABQJ_H:];ékJrk_ldk, for j=0,1,2,...,0—1.

Step 4. Define the semi-open intervals (open from the left and closed from the
right) as:
Aj= (/\Bjil,)wj}, j=1,2,...,20. (4.3.4)
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Ag,J=0,1,2,...,20
Order all the points from the set ! in a non-decreasing
A, l=12,...,0

order. Steps 2-4 are illustrated graphically in Figure 4.4.

193
o o Py o o
ay /151 /15’4 /L‘Tz }%4 /1156 Agt{ AEL} Ai‘is Agm AA10 AAzo 2‘311 /131@
- —— -
1t batch of 3 2" batch of 3 34 batch of 3
vertexes vertexes vertexes

Figure 4.4: Graphical illustration of Steps 2-4. Blue tick marks indicate the points A B,
1=0,1,2,...,20, red circles denote the points )‘Azz’ l=1,2,...,0, and >‘A1 =
)\BO =a.

Step 5. We will start the description of this step with some preliminaries. Let
us consider only the intervals, A;, defined as in (4.3.4), which contain at least one
point from the set of projections {A;, ,l=1,2,...,0}. Order their corresponding
indexes in an increasing order and denote them by i1 <i9 < ... <14,, where r is the
number of such intervals, 1 <r < 2v. In the special case of Figure 4.4, r =3, i; = 3,
1o =10 and i3 =11.

Consider the i-th such interval, A;, where i € {i1,i2,...,i,}. We will say that the
vertices, AQS,AQ(SH),AQ(HQ),...,/igt, with consecutive even indexes, form a batch

of size t — s+ 1, if their projections, )‘A25>)‘A2 ---3A4,, on the Ox axis,

o1 Ma(era)?
belong to the interval A; = ()\Bi_l,ABJ, for some i € {i1,i2,...,7,}. We will call the
vertex, Ass, the initial (first) vertex of the batch and Ay, its final (last) vertex. We
will also call the point A By the smallest upper bound of type C:'%, of the projections
in the batch. One can easily see that, if Ags,flg(sﬂ), ..., Ay is a batch with smallest

upper bound, A B, then the open interval ()\ A237)\ A2t> does not contain any projec-

tion from the set, {)\Bj ,j=1,2,...,20}. In what follows, it will be convenient to use
the notation, A;, for the batch of vertices, AQS,AQ(S+1), ..., Ay, whose projections
)\AQS,)\AQ(SH),...,)\A% belong to the interval A;, i € {i1,i2,...,i,}.

Since poo(flgl,Egl) =infg e poo(flgl,B), l=1,...,0, to compute the maximum
in (4.2.23) of Lemma 4.18, i.e. the Hausdorff distance M, = H(FS,GS), we can
compute

max max inf A, B). 4.3.5

The following lemma gives an explicit expression for the second maximum in (4.3.5)

and therefore for H,, 5.
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Lemma 4.23. For the distance, max inf po, (A, B), we have
A€A; BeGS,

max inf poo(A,B) = max inf pu(Azj, B)

A€A; BEGE s<j<t BeGe,
t . p . L
> b= 3 di = poo (Aot ), if i s odd, e i=2p+1 (4.3.6)
k=1 k=1
p+1 s - -
S Ck— D Ak = Poo (AQS,E23>, if i is even, i.e. i=2(p+1)
k=1 k=2

for some fixed i € {i1,i2,...,ir}, m <n and p obtained fromi=2p+1 ori=2(p+1).

The Hausdorff distance, H,,, is obtained by taking the maximum in (4.3.5)
over all the r batches, /_lil, 1=1,2,...,r. This is implemented sequentially applying

the following algorithm.

Denote by s, and t,4, the indexes of, correspondingly the initial and final vertices,
Ay, and Ay, of the g-th batch, 4;, ¢g=1,2,...,7. Set, =1 and find sy, i1 and ¢;.
Clearly, A, is the initial vertex of the first batch, i.e. Ay = Agxl, therefore s1 = 1.
Next, we find the index 7 = i1, of the smallest upper bound A, 1=1,2,...,20, of

the first batch A;. The index i is obtained by sequentially checking the inequalities

)‘Az_)‘1§1 :)\A251 —)\Bl >0, )\Azsl —)\32 >0,

""AAQSl_)\B¢171>O’ )\A2sl_)\Bi1 SO,

starting with the index ¢ =1, until the index ¢ = ¢1, for which Az , becomes equal
1

to or exceeds Az, ,le, Aj, <Ap .
1 1 1

The index t1, is then obtained in a similar way, by sequentially checking the
inequalities
)\Bil—/\AQZO, )\Bil_)\A4ZO’ "")\Bil_)\AQtl >0, )\Bz‘l_)\gz(t1+1)<0’

Applying Lemma 4.23, substitute the indexes, s = s1, i =i and ¢t = ¢, in

(4.3.6) and compute the distance, max inf po (A4,B), for the first batch. Set,
A€A, BeGs,
H (Fﬁné%) =max inf ps (A4,B).
A€A, BeGe,

For the second batch, As, we can directly see that its first vertex is Ao, =
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Aa(ny+1)- Therefore, the index iz is found by sequentially verifying the inequalities

A14232 N >\Bi1+1 > 07 )\AQmQ B )\Bi1+2 > O? AR

)\A252 _)\BiQ—l >0, Aj _)\Big <0,

259

starting with the index ¢ =41 + 1, until the index i = i, for which >‘Bi27 becomes

equal to or exceeds )\A282, i.e., )‘A252 < )‘BQ'

The index no is found, similarly as for the first batch, from the inequalities

9

s A > - — s >
)\Bzg )\AQSQ*O’ )\BiQ )\A2(52+1)*

AR >0, >‘1§¢2_)‘A2t2<0‘

— M\
i9 A2(t2—1) -

Substitute the indexes, s = s2, i =i and t = tg, in (4.3.6) and compute the distance,
max inf po (A, B), for the second batch. If H(F,%,é%) < max inf po (A, B)
A€Az BeGS, A€Az BEGS,

then set

H (Fg,G5) =max inf peo(4,B),
A€Az BeGS,

else set ¢ = ¢+ 1 and following the algorithm for the previous batches, compute the

distance max inf H (A, B), for the ¢-th batch. Continue this process until reaching
Aed BeGs, i )

the last, r-th batch A,, for which Ay, = Asg, ie., t, = 0. Clearly, the required

Hausdorff distance between the curves FS and G¢ is obtained in H (ﬁ'ﬁl, CNJ%) This

completes the description of the projection method.

Under the transformation method, the curves F, and G, that are assumed in
general position are transformed into a new coordinate system rotating them by 7%
as shown in Figure 4.5. The Hausdorff distance is then computed with respect to
the rotated Fy, and Gf,. In what follows, we will briefly introduce the idea behind

this transformation method.

Let us define T} : R? — R? the rotation operator, such that for any (z,2) € R2,

ie. it rotate the xOz plane by 7 to the 2/Oz' plane. Based on Theorem 4.5,

the Hausdorff distance is the side of the largest square fitted between F;, and G,
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which has the largest diagonal. Therefore, one can compute H(FY,,GS) by looking

at the vertical largest difference of the rotated curves T,.(Ff,) and T,(G¢), which

n
corresponds to the largest diagonal.

Applying the operator T}, the curves £}, and Gf, are transformed into the func-
tions hq(z') and ho(x'), which are piecewise linear with each segment having slope +1
and corresponding vertices T;.(4;), 1 =1,2,...,2v and T,.(B;), j =1,2,...,2v. Denote
by 2 = hy(2') and 2’ = ha(2') the parametric equations of the rotated curves T,.(Ff,)
and T,(GS), i.e. {(2/,h1(2")): 2’ e R} =T,(F5,) and {(2',ha(2’)) : x € R} =T,.(GS).
Then the Hausdorff distance H(F,,GY) is obtained as

1
H(F5,G) = sup  S|hi(a") —ha(2')]. (4.3.8)
—oo<z! <400 2
A P xl Z’
I’ 4
1 IS e
Gm () | 22 !
* e ‘ af :
Fa®) i
N ° . | IR NG P U S A —. >0
0 ; ha(x)

Figure 4.5: Computing H(Ff,,G¢) applying the transformation method.

Following Lemma 4.15, it is not difficult to show that the supremum in (4.3.8) is
achieved over all x;, 1 =1,2,...,2v, where x; is the abscissa with respect to 'Oz’ of
the transformed vertex 7,.(A4;). Then to compute (4.3.8), one only needs to compute
hi(x;) — ha(z;) sequentially, where hq(z;) and ha(z;) are known by definition.

We have implemented both the projection and transformation methods in C++,
and their numerical efficiency is compared and discussed in Appendix 4.D. The
projection method is slightly more accurate, usually providing 16 correct digits but
is slower compared to the transformation method, which provides 14 correct digits
and is significantly faster, as shown in Table 4.2.

The projection method outlined above for the case k =1 is generalized for the

case k =2 in Appendix 4.A.
4.3.2 The p-values of H,,, and its Permutation Version

The distribution of H,,, is not easy to obtain since it depends on the underlying,

(unknown) distributions F' and G. This hinders the computation of its p-value
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P(Hmn > q), ¢ € (0,1), therefore its application in testing the null hypothesis Hy.
In order to mitigate this difficulty, in (4.3.10) we introduce a permutation version
of the H,, , test and show in Theorems 4.24 and 4.25 that its p-value conditional
on Zy,n approximates asymptotically the p-value of H,,,. The p-values of the

permutation H test are easy to compute by applying Proposition 4.27 (cf. (4.3.14)).

Following Section 3.8 in van der Vaart and Wellner (2023), let the random
vector Ryin = (R1,Ra,...,Rmyin) be independent from the samples X, and Y;?
and uniformly distributed on the set of permutations of {1,2,...,m+n}, i.e. every
possible realization of R, has probability 1/(m+n)!. Given a realization of Z,, 4,
define the permuted samples X, = {Zg,,....Zg,, } and Y,] ={Zr,,.\,---, 2R, ..}

with empirical cdfs

1 m 1 m+n
El (x) = EZ]I(ZRZ. <), Gl () = - > 1(Zg, X w). (4.3.9)
=1 =m-+1

Then the corresponding permutation Hausdorff test, which we denote as H,Tmn, is
defined as

M = H(FL G, (4310

where FI¢,GI¢ are the corresponding planar curves of F)l, and G, with vertices A;
(j=1,...,0") and B]T (j=1,...,v"). Given the pooled sample, the p-value of the

permutation statistic H,Tnn is expressed as 1 —IP’(’HInm <q|Zn+n),q € [0,1].

The essential reason to introduce the permutation statistic is the relationship

between the critical levels g, ,,(p) and gy, n(p) of the é”fnﬂlln and /7 Ho s

which are defined as

; —inf :[p(/m”T<Z >>}
qm,n(p> n {q m+nHm,n_Q‘ m+n | Z P
mn
. =infdq:P(/——Hmn<q|>p?,
G (p) =in {q (y/ern’H , _q> _p}

where the normalization /™" guarantees that g;, ,(p) is nondegenerate. If we

can show that under the null, the difference between the critical levels g;, ,,(p) and

3Sometimes, Ry, 1y is considered to be defined on another probability space (%, F*,P*) and the
independence is considered as on the product space of (2, F,P) and (2%, F*,P*). The permutation
statistic is measured by P*, which is also called outer probability in the literature.
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dmn(p) is asymptotically negligible, i.e.

fun (D) = Gn(p) = 0, as n,m — oo, (4.3.11)

qm,n

where 5 stands for convergence in probability, we should have that the difference
between the p-values of H,, , and Hin,n is also asymptotically negligible. In fact,
this will be the case under the null, since by applying Theorem 15.2.3 of Lehmann
and Romano (2005), one can show that under the null (4.3.11) holds universally
regardless of the choice of null and the dimension k.

However, this conclusion does not imply that the H,,, and ’H;fnn tests lead
to the same statistical inference when sample sizes are sufficiently large, since it is
also often the case that the null does not hold. For this reason, in Theorems 4.24

and 4.25, we present some asymptotic results under fixed or contiguous alternative,

assuming H,, , is univariate, i.e. when k= 1.

Theorem 4.24. For a fixed significance level p, let q;ﬂ%n(p) be the critical level

of the statistic mm—fn’Hl%n, assuming that X,, and Y, come from the univariate

distributions F'(z) and G(x) respectively. Let qp, ,(p) be the critical level of the

mn
m—+n

distribution nF(x)+ (1 —n)G(x). If F(x) and G(z) have bounded densities, i.e.

F,G € CYR) and o —+ , then (4.3.11) holds and the difference between the p-

statistic Homn when the samples X, and Y, come from one and the same

values of Hmn and M is also asymptotically negligible.

m,n

Theorem 4.25. Let an’n(p) and qy, ,(p) be defined as in Theorem 4.24. Define the
metric pcr (F,G) =sup, |F(z) — G(z)|+sup, | £ F(z) — £ G(z)|. Under a contiguous
alternative G(z;n) € CY*(R), i.e. if pcr (F,G(:;n)) = o(1), then (4.3.11) holds and the

difference between the p-values of Hy,n and Hi . is also asymptotically negligible.

m,n

Theorems 4.24 and 4.25 show that the difference between q,Tnm and gy, , is
asymptotically negligible under the alternative. It is worth noting that the relation
established in Theorem 4.25 describes the asymptotic behavior of the p-value of
Hmn, and shows that the p-value of H,, , does not change significantly under mild
perturbation of the null. This is an important property, which is also often referred
to as the qualitative robustness of a statistic (see Rieder 1982 and more recently

Liu and Briol 2024). Additionally, Theorems 4.24 and 4.25 suggest that the type I



4.3. Evaluating H, , and its p-values 167

error and the power of the H,, , and ’Himn tests are asymptotically identical, as we

formally show in the next theorem.

Theorem 4.26. Assuming that F and G are defined in RF (k> 1), under the null
F =G, both the H,, n test and its permutation version Hi . control the type I error,

m,n

i.e.

mn i )< (\/W . ><
P <\/m7_‘rn?'tmn > @) | <p and P m+nHm’" > Gmn(P) ) <p. (4.3.12)

Furthermore, when k =1, under a fived alternative G # F € C1(R) or a contiguous
alternative G(x;n) € CY(R), i.e. per(F,G(n)) =O0(n~Y2), for the power of Hmn

we have

_mn_ i ): (\/W . )
P<\/m7_HLHm,n>q'm,n(p) P m+nHm’">qm7”(p) +o(1), (4.3.13)

where the metric pea (F,G) = sup,, |F(z) — G(2)| +sup, | L F(z) — LG (z)| and Trm

is the critical value when both X,, and Y, come from the null F.

Note that we have defined the vector R,,t, over all possible permutations of
{1,...,m+n} and any further permutation among the first m or the last n ele-
ments of R, does not change F and G|. Therefore, any permutation can also
be equivalently considered as a split of the pooled sample Z,,,, into X;fn and YnT .
Denote by II(m+n) the set of all C' = (mnt") possible splits of Z,,,1,. One can alter-

natively consider R, , uniformly distributed on II(m +n) with equal proabaility

1/C. Therefore, we have

Proposition 4.27. For the permutation H test, we have
C
i 1 i
P(HSyn > 0| Zign) = GZH{Hm’n > q|Romin =mi(m+n), Zmin},  (4.3.14)
i=1
where each mi(m+n) € (m+n), i=1,...,C represents a realization of Ry, 1y cor-

responding to a unique split of Zmin-

Let us note that (4.3.14) is exact and computable, since given the permutation,
the event {’Hjmn < g} in (4.3.14) can be expressed as the event of a trajectory Gi¢ (or

FI¢) non-exiting two boundaries and can be explicitly evaluated. For more details,



4.4. On the Scale Dependence of H, 168

we refer to Appendix 4.B.

When n and m are small, all the possible realizations C, of R4+, can be
generated at an affordable computational cost, which leads to the exact evaluation
of (4.3.14). For large n and m, the number C = (™'") is very large and exact
evaluation of (4.3.14) becomes prohibitively time consuming. To alleviate this, we
propose to use the Monte Carlo sampling of R,, 1, to estimate the p-value, which is
implemented in the numerical studies in Section 4.4.

Alternatively, the p-value of H,, , in the univariate case k =1 for large sample

sizes m and n can be calculated based on the following asymptotic theorem.

Theorem 4.28. Let 7. —n € (0,1) as m — co. Assume that X, and 'Y, come
from the univariate distributions F' and G respectively with bounded densities. Given
the realization of Zpmin, when R,y is uniformly distributed over the permutations

of {1,2,...,m+n}, we have

[ mn
i T
"%lm IP’( - nHm’" >z

= I—P(]Bo(tﬂ <z(1+e(B7(1)), ¥o<t< 1),

Zm+n> (4.3.15)

where E(z) =nF(x)+(1—n)G(z), with density e and inverse E~1 and By(t) t € [0,1]
is a standard Brownian Bridge, i.e. a Gaussian process with By(0) = Bo(1) = 0,

E[Bo(t)] =0, E[Bo(t)Bo(s)] =s(1—t) for0<s<t<1.

In practice, the null distributions F' and G are unknown. However, we could still
compute the asymptotic p-value in (4.3.15), since the e(E~1(t)) is also the reciprocal
of the quantile density function (i.e. the derivative of E~'), which can be estimated
from the realization of Z,,+,. The latter estimation problem is also well studied,
see e.g. Soni et al. (2012) and Chesneau et al. (2016), to name only a few of the
references. The estimator 6(F(t)) can be directly substituted in (4.3.15) to obtain

the asymptotic p-value.

4.4 On the Scale Dependence of H,,

In this section, we investigate the statistical power of the two-sample H test H,, ,, =
H(Ff,,GY) in the univariate and bivariate cases, i.e., when Ff, and G¢, are planar

curves in RFt1 k =1,2. While Hum,n is clearly location invariant, as shown in
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Chapter 3 for the one-sample case and in Example 4.29 for the two-sample case,
Hmn and its power are not invariant under scale transformation (see Figure 4.6).
In this section, we explore how change of scale affects the power of the H test, and
further propose rules to adjust the scale so as to optimize the power.

We formally describe the scale dependence of the statistic H,,, as follows.
For a given pair of samples, {X1,...,X,,} and {Y7,...,Y,} and a scaling constant
o >0, we apply H,,n to test the null hypothesis Hy based on the scaled samples
o Xy ={0X1,...,0Xn} and oY, = {oY1,...,0Y,}. As illustrated in the following

example, the result of testing the null Hy will depend on o.

Example 4.29. Let X, and Y,, be samples from two different distributions. We
use the KS, CVM, AD, W and the proposed H,,, statistic to test the null Hy, i.e.
whether the scaled samples 0X,, and oY, come from the same distributions. To
do so, for a fixed ¢ > 0, we compute the p-values for all these statistics applying the
permutation approach as in Proposition 4.27 using 2000 simulated permutations.
We then compare the latter p-values with the significance level p = 0.05. The power
of each statistic is estimated as the frequency of rejecting the null Hy, i.e. the
frequency of its p-value being less than p = 0.05. We use the R package twosamples
(Dowd, 2023) to evaluate the two-sample W statistic.

0.5

0.30 J—ﬁ—ﬁ—rﬁ—ﬁ—ﬁ—"\\ /\/‘r

0.25

Statistic

- AD

CvMm

-4 H

= Ks
Kuiper

- W

0.2+ 0109

IR LR
1e-04 1e-04

Figure 4.6: The power of KS, CvM, AD, W and H,, », as a function of the scaling coefficient
o when m =n = 50 and X,,, and Y, come from Exp(2) and Exp(3) (Left
Panel), N(0,2) and N(0,4) (Right Panel).

The power of each statistic as a function of o varied over the range [107°,5] is
illustrated in Figure 4.6 for the case m = n = 50 and when X,, and Y,, come from
different Exponential and different Normal distributions. As can be seen, only the

power of H,, , varies with o, whereas the powers of KS, CvM, AD and W remain
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constant.

The scale dependence of the power of H,,, is a consequence of the scale de-
pendence of its p-value. However, the latter scale dependence is a considerable
obstacle in goodness-of-fit testing with H,,, since its results will depend on the
units used to express the sample observations. To mitigate this problem which also
arises for the goodness-of-fit test statistic based on the Lévy metric (see Remark
4.22 in Section 4.2.4 for its equivalence of H), Alexander (1974) proposed to first
apply En4n(-) to each observation and then use the Lévy meausure based statistic.
This means to test whether the samples Ey,n(Xm) = {Emin(X1)s- oy Emgn(Xm) }

and Epyn(Yn) = {Emin(Y1),. .oy Emin(Yim)} come from the same distribution.

Note that the observations in FEy,4n(X,,) and E,1,(Y,) only take values mj—n’
1=1,...,m+n. Thus, this test now becomes a rank test, which does not depend
on the scale. While this approach seems to eliminate the scale dependence, it is less
appealing since it does not take into account the information contained in each ob-
servation, as shown in Theorem 4.6. Such rank transformation violates the Lipschitz
continuity in Theorem 4.6 and therefore leads to loss of robustness of the statistic
and a decrease in its power, which approaches that of the KS test.

A different approach to the lack of scale invariance of the H test has been
proposed in Chapter 3 for the one-sample case. By viewing the H test as a function
of a scale parameter o, we have proposed a rule (3.3.11) to select o so that the
power of H is optimized. This rule explicitly uses the form of the hypothesized
null distribution. We generalize this approach to the two-sample case, which is not
straightforward, since in this case no information is available about the underlying
null distribution.

Here we propose rules (4.4.6) and (4.4.9) to select o, so that the H test preserves
the Lipschitz continuity property of Theorem 4.6 and therefore its robustness and
the scale dependence is eliminated. Furthermore, since the power of H,,, changes
with o as we demonstrate in Example 4.29, o should be selected so as to optimize the
latter power, similarly as in the one sample case. This motivates the interpretation
of o as a scale parameter.

Let 0 = (0(1),...,0(k))T € R* be the scale parameter with non-negative com-

ponents, i.e. 0@ >0 for i =1,...,k. For any vector x = (x(l),...,x(k))T € R¥, the
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component-wise scaled vector is defined as

oz = (oW o®zFNT,

Given samples X,, and Y, their scaled versions are denoted by ocX,, =
{cX1,...,0Xn} and oY, = {oY1,...,0Y,}. The empirical cumulative distribu-
tion functions (ecdfs) of these scaled samples, i.e. the scaled versions of F,,, and G,
defined in (4.2.2) are denoted by F, »(-) and Gy, (). The H statistic dependent on
a scale parameter o is denoted by H,n(0) = H(F, ,, G, ), where Fy , and Gy, ,

are the planar curves of Fp, ,(-) and Gpo(-). We also use H, (o) and H], (o) to

denote the scaled versions of H, ,, and ’Hjnn defined in (4.2.17) and (4.3.10) and

m,n
view Hpmn(0), Hy, (o) and M, (o) as families of statistics indexed by o. Let us
also note that for a fixed o, one can compute H}Ln’n(a) and its p-value using Lemma

4.15 and Proposition 4.27.

We will first look at how the parameter o affects the power of H,, (o) in the
univariate case, i.e. when k = 1. For the purpose, we will be interested in how o
affects the p-value P(Hy (o) > q) for a fixed ¢ > 0, given X, or Y, the latter
conditions being symmetric. Therefore in the sequel, we will be conditioning on

Xm. Define g (0;p0) as the conditional critical level
ax,, (o3p0) = inf{q : P(Hmn(0) < q|Xm) > po}, (4.4.1)

where pg is fixed. Let

Upre (q,0):= {(x;q,z—i—q) :(z,2) eupfw} = {(w—%,z%—q) Sz, 2) GUFﬁL};

m

EF%(CI,U) = {(x—i—q

,2—q): (x,2) € ﬁpﬁlya} = {(a:—i—g,z—q) (x,2) € ﬁFJh}?
(4.4.2)

which are defined by the domains Lre and Upe introduced in Section 4.2.2, appro-

priately modifying the coordinates x and z by ¢ and o. It is not difficult to see that

the p-value of H,, (o) conditional on X, can be expressed as

P{Hm,n(a) >q| Xm} =

] i (4.4.3)
I[D{Bj € Lre (q,0)UUFe (q,0), for at least one j € {1,...,2v} Xm},
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where the probability on the right-hand side can be interpreted as the probability
that the ecdf G,, of Y, with vertices B; j =1,...,2v exits the corridor between
the domains Z;{an (¢,0) and EF% (¢,0), which we denote by Mpe (q,0). The latter
corridor is in fact the set that is complimentary to the set E_Fﬁb(q,a) UL_{an (q,0).
Therefore, based on (4.4.3), one can see that the p-value of H conditional on X,,
depends on the shapes of EF% (¢,0) and Z;{Fﬁl(q,o) which depend on o. Since we are
interested in how change of scale affects the p-value, it would be useful to compare
the shapes of L_Fﬁl(q}m(a;po),a) and L_{Fﬁz(q}m(a;po),a) given X,, for a fixed po
and varying o. For the purpose, we need to know ¢y (o), which is not directly
available since the true distribution of Y;, and therefore of #,, (o), is unknown.
Nevertheless we can rely on the following proposition to investigate the behavior of

EF,% (q}m (03p0),0) and Z;{Fﬁl(q}m(a;po),a) as o varies.

Proposition 4.30. Given X,,, 01 > 09 >0 and py > 0, if Y,, comes from a contin-

uwous distribution, we have

o1
ax, (02;p0) < dX, (01;p0) < U—Qq}m (o2;p0)- (4.4.4)

Therefore, in order to investigate the behavior of E_an(q}m(ff; po),o) and
Upe (¢%,, (03p0),0) when o varies, we can select o and a value ¢*(o) for the un-
observable ¢%, (o) so that inequality (4.4.4) is satisfied. Applying this approach
in Example 4.31, we illustrate graphically the dependence of EF% (¢*(0),0) and

Z;{F;h (¢*(0),0) on o, for a particular realization of X,,.

Example 4.31. Let {0.1,0.2,0.4,0.8,1.6} be a particular realization of X,,. We
select 01 = 0.5, 09 =1, 03 =5, ¢*(01) = 0.07, ¢*(02) = 0.1 and ¢*(o3) = 0.15 which
satisfy (4.4.4).

For the choice of values as in Example 4.31, in Figure 4.7, we present the corridor
Mee (q*(0;),0;) between Lpe (¢*(04),0:) and Upe (¢*(07),05) for i =1,2,3. As can
be seen, the smaller o, the narrower (by area) the latter corridor is in the right tail.
Consequently, a smaller ¢ increases the probability of capturing deviations in the
right-tail of the distribution underlying Y,,. In contrast, a larger o leads to better

capturing deviations in the left tail.
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6=0.5,q=0.07 o=1,q=0.1 c=5,q=0.15
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Figure 4.7: The corridor Mpe (¢*(0;),0;) for different o; and ¢(o*) in Example 4.31 given
X, = {0.1,0.2,0.4,0.8,1.6}

Therefore, in general for a given X,,,, a rule for selecting o analogue to (3.3.11)

would be to standardize the distance between two quantiles, i.e.

_ 1 — P2
Qx,, (V1) —Qx,, (V2)’

o (4.4.5)

where Qx.,, (V) = X([mqy)) + (M — [m1p]) X (|my)) 13 a smooth version of the v-th
quantile of X, 1 € (0,1), X(;) denotes the i-th order statistics of X, [-] and [-]

denotes rounding up and down, respectively.

Let us recall that as established by Theorems 4.24 and 4.25. the p-values of
Hmn(o) and its permutation version Hin,n (o) are asymtotically equivalent and one
can estimate P(Hm,n(0) > ¢) by computing P(H], ,,(0) > q| Zmy) following Propo-
sition 4.27 (cf. (4.3.14)).

However, using o as of (4.4.5) to evaluate the p-value P(H], ,,(0) > q|Zmin)
would not be directly relevant as one would need to substitute X, with X in
(4.4.5), which makes it dependent on the random vector Ry, ,. Another drawback
of (4.4.5) is that it does not take into account the symmetry with respect to X,,
and Y, and only depends on X,,. These problems are mitigated by the following

expression for o,

o = Ep [max ( 1 — o Y1 — o
o QX,JLL (¢1) - ijn (¢2) ’ erj (¢1) - QYJ (wZ)

) ‘Zmn] . (4.4.6)

where XTTn and Y,;f expressed through the random vector R, are defined in Section
4.3.2 (cf. (4.3.9)) and 1,792 € (0,1). As can be seen, the randomness with respect

to R4y is eliminated and since (4.4.6) is conditional on Z,,1,, it can be used to
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evaluate ]P(’H;fn,n(cr) > q|Zm+n) applying the exact expression (4.3.14). Similarly,
(4.4.6) is also exact and computable either directly when m and n are small or by

simulation when sample sizes are large.

Now we turn our attention to the choice of 11,12 € (0,1). As shown in Sections
3.3 and 3.5, by appropriately selecting ;1 and w3, one can control ¢ and therefore
tune the one-sample H statistic to be sensitive in the left/right tail or in the body
(see Table 3.1 therein). The domain of sensitivity of H,, , can be similarly controlled
by appropriately selecting v and 3 in (4.4.6) using the latter table. In order to

ensure that HI

m,n

is sensitive in either the left/right tail or in the body of ’H,Tn,n, it
suffices for either Ff, or GI to exit M ate (g,0) or M e (¢,0) with higher probability
respectively at this region. This can be guaranteed by making either M ch(q,a) or

M

pte(g,0) become narrower, which requires the maximum in (4.4.6).
We demonstrate in Example 4.33 that the two-sample H,, ,, (o) statistic becomes
right-tail sensitive if ¢ and 19 are set equal to 0.99 and 0.95 respectively, following

Table 3.1.

Furthermore, in practice, the sample observations may be rescaled for different
reasons e.g., using different scale coefficients, and presented in different units. It
is not difficult to see that under the choice (4.4.6), Hy n(c™) and its p-value will
be invariant with respect to the units used to present the data, which are similarly

stated in Proposition 3.35.

In the following theorem, we show that ¢* in (4.4.6) converges to the rule

(3.3.11) in Section (3.3.2) with respect to the pooled distribution E.

Theorem 4.32. Let X,, and Y, have underlying unknown distribution F and G
respectively. For 1y > 19 € (0,1), if e(E~1(¢1)),e(E~1(2b2)) > 0, where e and E~*

are the density and quantile functions of the pooled distribution E. Then we have

o 5 00, as m,n — 0o, =, (4.4.7)

+n

where oy = E71(¢1€1):Ié271(’(/12) and o* is defined in (4.4.6). Furthermore, under the

null or a fized alternative as in Theorem 4.24, we have

dh 0 (0%) = @y (00) 5 0, (4.4.8)
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where g, ,(c*) and g}, ,,(c0) are correspondingly the critical values of ey Hi\ (o)

with o* defined in (4.4.6) and /-2 H, n(00).

m—+n

We will illustrate the application of the H test H;’mn (c*) with o* selected ac-
cording to (4.4.6) in the following example. A similar construction for the one-sample

case is given in Example 3.44.

Example 4.33. We apply the splicing construction as in Example 3.43, where
the alternative G' has a density g(z) defined by (3.4.9), satisfying conditions 1)-3).
In other words, G coincides with F' in the body and has the tail of Gy. In this
construction, we assume that both F' and Gy come from the family of (unshifted)
Fréchet distributions, which are characterized by scale and shape parameters a and

6. More precisely, the cdf of a Fréchet distribution is given as (see also (3.5.1))

exp(—(l—koj);) x> —

0 r<—

Slls

b(x;0,0) =

&
0

In order to compare the powers of KS, CvM, AD, W, Kuiper and ’H}Ln’n(o),
we take F' ~ Fp.(2;0.3,0.3), z = —1, ¢ = 0.8, C = (—10og0.8)7%3 — 1, and Gy ~
& (x;00,0). Since condition 3) ensures the uniqueness of ag for a fixed shape pa-
rameter 6y, the choice of 6y fully determines the shape of G. In this example, we are
interested in comparing numerically the powers of KS, CvM, AD, W, Kuiper and
HI,W(J), under different tail alternatives from the Fréchet family (3.5.1). For this
reason, we choose 6y = 0.3+ A, where A =0.2,0.4,0.6,...,3.2 reflects the tail differ-
ence between F' and G. As shown in the left panel of Figure 4.8, with A increasing,
the difference between G and F' in the tail also increases.

Then we simulate 500 pairs of samples X, and Y, coming from F(z) and
G(x) respectively, and compute the power as the frequency of rejecting the null
for significance level p = 0.05 applying the statistics KS, CvM, AD, W, Kuiper and
Hmn(o). In order to fit the tail, for each pair of realizations of X, and Y;, we
estimate the optimal scale o* following (4.4.6) with 1 = 0.99, ¥9 = 0.95, based on
1000 simulations of the random vector R4, uniformly distributed over II(m +n).

The power of these statistics as a function of A is illustrated in the right panel

of Figure 4.8, for sample sizes m = n = 50, 100 and 300.
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Figure 4.8: Left Panel: F ~ &(2;0.3,0.3) and G with tail Gy ~ &(z;00, ), where 0y =
0.3+ A; Right Panel: the powers of the KS, CvM, AD, W, Kuiper and
iy (o) tests, as functions of A.

Remark 4.34. If the proposed rule o = f(X,,,Y;) happens to choose an extremely
small scale for certain realizations, the Hausdorff test can become degenerate, i.e., its
statistic shrinks and the resulting p-value type II error will be close to 1. When both
samples are large, this abnormality is unlikely provided the selected scale converges
to a positive limit og. This is the case for the rule ¢*, which is guaranteed by the
convergence result in Theorem 4.32. From this perspective, finer properties of the
rule, such as unbiasedness, optimality in terms of variance, are less important, since
they do not by themselves prevent degeneracy at small sample sizes.

As further illustrated in Example 3.44, the rule in (4.4.6) has the additional
practical advantage that it keeps ’Hinyn(a*) non-degenerate even when m and n are

small.

As evidenced by Figure 4.8, the power of Hjnm (0*) with o* chosen according to
(4.4.6) is substantially higher than the power of all other tests except the Wasserstein
(W), confirming the efficiency of H}an(a*) in detecting tail differences. Furthermore,
the power of H;fnm(a*) tends to converge to the power of the W test when sample sizes
increase, as can be seen from the right panel of Figure 4.8. This tendency is preserved
for m =n =500, the corresponding plot is very similar to that for m =n =300 and is
therefore omitted. We argue that this convergence stems from the shared geometric
properties of H and W, both being area-based tests. More precisely, the univariate

Wasserstein distance equals the integral between two empirical cdfs, while Hinn (o)
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extracts only the side of the largest square that can be inserted between these cdfs.
Although this square constitutes only a portion of the total integral, it contains the
essential information for capturing tail differences, therefore replacing the need for
full integration.

In the spirit of (4.4.6), for the multivariate case, we propose to choose o* =

(oM., *"NT following

. V1—Y2 . Y1 — Y2
QY (1) = QY (¥2.9) QY (¥1.0) Q) ()

o) = | max man |

(4.4.9)
when ¢ =1,...,k, where Q()?:n (11,7) is the 11-quantile of the i-th component of
X,Tn, conditional on the event that all its other components with index j # i exceed
their respective marginal i-quantiles. Clearly, when % is chosen to be close to 1, o*
defined according to (4.4.9) captures the marginal shape of the tail in each direction.

We will illustrate the application of (4.4.9) in conjuction with the statistic
H, o (0*) instead of Hf, , (c*), since Hy, ,,(0*) is invariant with respect to the defi-
nitions F,;, i =1,.. .,2¥ as can be seen from (4.2.17). The same definition invari-
ance applies to a set of competing tests, including the Friedman and Rafsky (1979)
(FR) run test, extented KS test by Peacock (1983), Ball Divergence (BD) test (Pan
et al., 2018), Maximum Mean Discrepancy (MMD) test (Gretton et al., 2012) with
Gaussian kernel, Cross Match (CM) test (Rosenbaum, 2005), Biswas et al. (2014)
(BMG) run test, and Schilling-Henze Nearest Neighbor (NN) test (cf. Schilling,
1986; Henze, 1988). In Example 4.35, the power of the latter tests is compared with
that of Hy, ,,(0*), where o* is selected according to (4.4.9). The required p-value
of Hy, () is estimated by the p-value of its permutation version, as described in

Section 4.3.2.

Example 4.35. We take Fy ~ EC(u1,%1,f) and G ~ EC(u2,%2,9) to be two
elliptical distributions that are defined on R? with density functions f; and g¢; re-

spectively, i.e.

froc flla—m) ST Ha—m)), g1 o< g((x— p2) 55 (@ — p2)),

where p1, po € R?, 21_1, 22_1 are the inverse of the positive definite matrixes 1,39 €
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R2X2_ f and g are positive integrable functions defined on [0,00). Since we are
interested in the performance of H;, ,(0*) when F' and G are different in the tail,
we require that gy = ug, X1 = X9, f(z) and g(x) are univariate density functions
meet the conditions 1)-3) in Example 3.43,i.e. [;° fi(z)de = [;7g1(x)dx =1, fi(z) =

g1(x) up to a constant C, and differs from ¢;(z) when = > C.

T 2 0.7
We take p1 = pg = (0,0)", ¥ = X9 = , f=e % ¢ =05, C=
0.7 2
e * 0<z<C oo
—log 1 =log2, g(z) = 0 with o = —(l_d))gfl}eo_l.
Booyg C 1
(z+ag)?0TT x>

In this way, F' is a multivariate Normal distribution and G is a spliced elliptical
distribution with its center region coinciding with F'. We have used the rejection
sampling to draw X, and Y,, correspondingly from F and G.

We evaluate o* as defined in (4.4.9) by setting (¢1,v2,v) = (0.99,0.95,0.7) and
computing the corresponding quantiles using simulation. We then use ¢* to estimate
the p-value of Hy, ,,(0%).

The above-mentioned power comparisons for particular choices of 0y, ag, m
and n are summarized in Table 4.1. As can be seen, the power of Hy, (o) is mostly

higher than the power of all the other tests except W. However, let us note that a

m=n_(0o,q0) Ho,.(0") KS BD MMD CM BMG FR NN W
50 (1.5,1.1800) 0.14 0.03 008 006 007 004 005 007 023
50 (2.0,1.6734)  0.07 002 004 005 004 006 006 007 0.22
100 (1.5,1.1800) 0.2 005 0.16 0.10 007 005 011 014 0.7
100 (2.0,1.6734) 0.1 004 0.14 007 008 003 007 011 043

Table 4.1: The powers of the extended KS, W, BD, MMD with Gaussian kernel, CM,
BMG, FR, NN with N =3 and H;, ,,(¢) with 0 = 0" chosen following (4.4.9)
when m =n =50 and 100, and some particular choice of (6g, ).

direct computation of W (without entropic regularization) becomes computationally

demanding (see Cuturi, 2013), especially in higher dimensions.

4.5 Bahadur Exact Slope

As we have introduced in Section 3.4.2, the Bahadur exact slope of a statistic is
a characterization for the exponential convergence rate of its p-value under a fixed
alternative. The ratio of slopes of two different statistic, which is referred to as

their Bahadur relative efficiency, also reflects their relative size of asymptotic power
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(cf. (3.4.6)). In Theorem 3.41 of Section 3.4.2, we have provided an computable
expression of the exact slope of the one-sample H,, (o) test. In this section, we will
provide some results to the exact slope of Hp, n(0).

Similar to Section 3.4.2, we introduce the corresponding Bahadur exact slope

of Hymn(o) as

c(oyn) = — lim 2(m+n) tlog Ppa(o) a.s., (4.5.1)

m
mM,N—00, -5 =)

where P, (o) is the random p-value of H,, (o) under a fixed alternative F'# G. In

the following, we will generalize Theorem 3.41 and give to the exact slope of H,, .

Theorem 4.36. Let X,, and Y, come from univariate distributions F and
G, the exact slope defined in (4.5.1) exists, and can be expressed as c(o;n) =
3 fon(H(Fy,Gs)), where F, and G, denote F and G scaled by o, fsy(q) =
—max{ri(q),r2(q)}, and where

) )+ (1= ol ) (00 )

r1(g) = sup {nlog(%«( 1

0<x<1

ra(a) = s {nlosion D) 4 )+ (1= mlog(enBEL)) oo,

©z(t) = BE(x)e! +1— E(x)
(4.5.2)

and 1,7 are functions of x and q tmplicitly defined by the following equations

1 71

eu( =0/ ee( =) =) el ) = s,
90;(% +Q)/¢x(% +q) —w;(l?n)/%(l? )=—q

4.6 Conclusions

We have proposed to use the two-sample Hausdorff (H) metric to measure the
distance between two multivariate ecdfs, in the context of goodness-of-fit testing.
The H test, which depends on both the ordinate and abscissa coordinates, is location
invariant but scale dependent, in contrast to most of the classical tests, which are
rank tests. The rank tests are computationally appealing since their p-values are
independent of the underlying distribution. However, they have lower power when

the samples have different tails. In addition, the rank tests are not continuous as
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point functions of the observations, which affects the type I error. In contrast, the
H test is Lipschitz continuous (see Theorem 4.6), which leads to its robustness to
small perturbations in the sample observations. Furthermore, in Theorem 4.25 we
show that H is qualitatively robust.

In Section 4.3.2, we consider the permutation version of the H test and show
in Theorems 4.24, 4.25 and 4.26 that it is asymptotically equivalent to the original
H test in terms of p-value, type I error, and power. This allows us to estimate the
p-values of the H test which depend on the unknown null and therefore are not
directly computable.

In Section 4.4, we have investigated the scale dependence of H, and have shown
that, while such a property may seem to impede the use of H, it is, in fact, useful.
It allows one to control locally the sensitivity of H and therefore optimize its power
in the corresponding distributional domain (i.e. left/right tail or body). This is
achieved by appropriately selecting the scale coefficient following Equation (4.4.6)
or its multivariate generalization (4.4.9). We show by numerical examples (see Ex-
amples 4.33 and 4.35) that when the samples differ in the right tail, the scale-tuned
univariate and bivariate H tests outperform many other tests in terms of power as
summarized in Figure 4.8 and Table 4.1. In the univariate case, the power of H is
lower than that of W for small sample sizes but tends to converge to the power of
W for sample sizes equal to and exceeding m =n = 300, as illustrated in the right
panel of Figure 4.8.

We have also obtained some additional results (cf. Proposition 4.9 and Theorem
4.19) that connect H to the Lévy-Prokhorov metric and the KS test. This offers a
bridge to applying the H statistic in the context of global sensitivity analysis and
variable importance measurement.

All this makes H a favorable alternative to other existing two-sample tests.



Appendix for Chapter 4

4.A Evaluating H,,, when k =2

This section is to give the method to compute H(F},,G¢) for the multivariate case
when k = 2, as a further extension of the projection method in Section 4.3.1. Cases
with k > 2 are not discussed here, as they involve only additional notational com-
plications beyond the k = 2 case. For simplicity, we further assume that F' and G
are continuous, i.e. no tie is presented in the pooled sample with respect to each

coordinate.

The task in this section is not trivial, since many existing results, which make
the computation of H(Ef,,G¢) easier becomes complicated in the multivariate case.
Firstly, the modification rule of the planar curves proposed in Section 4.2.4 is less
meaningful for k£ = 2, since the calculation simplification benefit of introducing such
a rule now becomes much less than the additional calculation cost raised due to
complexity of the rule per se. Secondly, the projections of vertices, divide the real
line into semi-open intervals in the case of k = 1, but no longer divide R? as such when
k =2. Thirdly, set G in (4.2.21) is not bounded, thus, to implement Lemma 4.15,
one needs to also incorporate Lemma 4.3. Given z1,...,2,, € R? and y1,...,y, € R?,
the realizations of samples X, and Y,, respectively, the computation of statisistics

are as follows:

Step 1. Find the omnidirectional jumps of ecdfs and the vertices of F, de-
fined in (4.2.19). Let set A, = {wgl), . ..,x%)} and Ago = {x§2),...,a:$,2l)}. Then the
omnidirectional jumps of F¢, ai,...,a, € R?, occur only on set A x Ago. Hence,

to find all the omnidirectional jumps, we could exhaustly check whether condition,

Fp(a) # Fn(a—epe;),for all i =1,2 (a)
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holds, where o € Ay X Aya, €; is the basis vector in R?, g is a positive and sufficiently

small number, and can take e.g.
‘ mi.n;”é |m(l) —xl(i)| (4.A.1)

If condition (a) is satisfied, then « is an omnidirectional jump, corresponding to
vertices (a, Fy(a—¢))T and (a, Fiu(a))?, where e € R? are required to positive
and sufficiently small with respect to each components, and can be taken as ¢ =
(€0,€0)7. Then, all the vertices in (4.2.19) of F¢, that are used to compute H,, , are
Ay = (a1, Fnlar — )T, Ay = (a1, Fn(an))T,. .., Asy1 = (ap, Fpp(ay — )T, A, =
(aw, Fin(aw))T. Similarly, we can find the omnidirectional jumps of Gy, by checking
condition (a) with respect to Gy, on set Ay x Aya, where set A, = {ygl), . ..,yg)}
and Ay = {y?), . .,y7(12)}.

Step 2. Find the additional vertices of F,%(M ), for an appropriately selected M.
Note that to use Lemma 4.15, we need to incorporate Lemma 4.3 with appropriately
selected M such that (4.2.10) holds, i.e. the metric between two truncated curves

coincides with the value of the statistic. Thus, we select
M =14max{z\),y) 1<i<k1<j<m1<i<n}.

The additional vertices generated by truncation occur only on the set (Ay1 x {M})U
({M} x Az2). Then we could check whether either one of the conditions

Fo(a,M) # Fy(a—eo, M), (a*)

F (M, b) # Fp(M,b—eg) (a**)

hold for a € Ay and b € Ay respectively. If condition (a*) is satisfied for
a € Ay, then we find its corresponding additional vertices (a, M, Fy,(a —eo,M))
and (a,M, F(a,M)). Similarly, we could also find vertices (M,b, F,,,(M,b—ep)) and
(M,b, F,,(M,b)) through condition (a**). Finally, we fine all the boundary vertices
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of £, (M),

A2U+1 = (al,M,Fm(al —60,M)),A2U+2 = (al,M,Fm(al,M)),...,
AQ(U+’U/)71 = (aU’7M7Fm(a’U/ _607M))7A2(’u+v/) :(CLU/,M,Fm(CLUI,M)),
AQ(’U+U’)+1 - (M7b17Fm(M7bl _EO))uAZ(U+v’)+2 = (MubluFm(M)bl))a"'a

A2(U+v’+u’)—1 = (M, bl/’va(Ma by _50))7A2(v+v’+1/’) = (M)bV/)Fm(Mv bu’))

Step 3. Project the vertices 4;, I =1,...,2(v+v'+1/) onto the 2 z(?) plane
R?, along the direction of the vector Eg = (1,1,—1)7 and denote these projections
with Ay,. Clearly

1 3 2 3
)\Al = (w1(41) + w1(4l) ? w,(Al) + wl(Al) )7

where wfjl), i1 =1,2,3 is the coordinates of A;.
Step 4. Project all the vertices of G, to Wz plane and constructing a

partition of the R? plane (022, similarly as Steps 3-4 in Section 4.2.4. Each jump

e
I8 T3
I
.Z,.g’] IQ,3 ’
)‘31,1
)‘32,1 >‘Bl,2 —/\Bi13 1:172
Iop
)\3272 = )‘32,3 ’\31,4
=\ 7
32,4 _Z3’] 373
)‘33,1
I32
)‘33,2 = )‘33,3 )
0 = )‘33,4 X

Figure 4.9: The vertex projection of Gy, on plane (1 2(2) | together with the faces projec-
tion.

Bi, 1=1,2,...,v, corresponds to 4 possible vertices, a locally concave vertex B; 1,

two saddle vertices B; o and B; 3 and a locally convex vertex B; 4:

T
Bi,l = (/Ban(ﬁz))Tv Bi72 = (wg)’wg)’Gn(u}g) _Ea’wg))) ’

T T
B = (o) o ot ol ) B (ol 2 o)~ )
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where ¢, is obtained via (4.A.1) by substituting y for x. The two saddle vertices and
the locally convex may coincide. If there is no tie on both coordinates, the two saddle
vertices always coincide, in which case we only refer to the vertex B;2. We project
all the vertices as in Step 3, together with their surfaces, as illustrated in Figure 4.9.
For clarity in presenting the algorithm, we further assign conceptual labels to the
projection of the surfaces, though these notations are purely illustrative. Specifically,
the projected regions 7Z; 1, Z; 2 and Z; 3 use a two-index label, the first aligns with
that of the locally concave vertices B; 1, and the second reflects the normal vector
direction of the corresponding surfaces, as in Figure 4.9. Alternatively, one can also
view that the locally concave vertices B;1 would generate three projected surfaces.

Therefore,

T, TioDg - Lot Do, Los R/ | i) (4.A.2)

1<i<y,1<s<3

forms a partition of R%. In addition, we also give the following lemma, describing

the relative positions of omnidirectional jumps and projections,

Lemma 4.37. For any two omnidirectional jumps B, and B, of Gy, if they are
(1) _ 5@ 2 _ 4?2

discordant, i.e. sgn(ﬁj0 —B; )= —sgn(ﬁj0 —B; ), there must exist an omnidirec-

tional jump of Gy,

g7 = (max(8), 457), max(8)0. 817"

Furthermore, for any two discordant projections, ABm’m and \p to,t1 € {1,2}

Jiity’?
then there must exists a projection Ap;, , = (max()\gfo o’ /\gjl " ),max()\gso tO’)\gﬁ?l " Nt

b )\Bj holds.

151

with ta € {2,4} such that AB;, . = AB; or Ap;

2,82 0-t0 2:t2

For convenience, we define Ag,, , as the successor of both Ag, , and Ap; ,, and
AB;, . as the successor of both Ap, , and Ap,; ,. Conversely, Ap, , and Ap, , are
the predecessors of Ag,, ,, while Ap, , and Ap; , are the predecessors of Ap, ,. For
instance, in Figure 4.9, the successor of Ap,, and Ap,, is Ap,,, and Ap, , is the
predecessor of Ap,, and Ap;,.

Step 5. Compute the distance inf pege poo(Ay, B) for some I =1,...,2(v+v' +
V') and then compute H (Ff,,G¢). Note that in this step, to compute H(FEf,,G%), one
do not need to compute infpege poo(As, B) for each [ =1,...,2(v+v'+/). In fact,

this result can be further simplified in the spirit of Lemma 4.18. In Lemma 4.18, all
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the even vertices that are used to compute the distance are also the vertices that have
the locally furthest distance. Therefore, we only need to compute inf pege poo(Ar, B)

if A; is locally furthest to G¢, i.e. A; € Vioe, where

Uge and [ is odd
Viee =1 A; € d=1,....2(v+v +7)

Lge and [ is even

Then, given an arbitrary projection A4, € Vioe, our goal is to compute the dis-
tance by (4.2.21). Ideally, by Lemma 4.15, one should explicitly find the intersection
E; of line £; defined according to (4.2.20) and the planar curve G¢ and compute
infpege poo(Al, B) = poo(Ar, Ey). However, in the spirit of Lemma 4.23, it suffices
to compute infpege poo (A, B) if we locate which region Z;; the projection A4, falls
into.

In order to find which set in (4.A.2) A4, falls into, we first find the vertices

projections of GY, satisfying
V()\Al) = {/\Bj,t : /\Az _/\Bj,t =0,7=1,...,v,t= 1,2,3,4}.

This is a useful subset since, we expect that there exists Ap, 1, € V(A4,) such that
ABj to>AA;, € Zjt for some j and t. However, set V is quite large. To improve the
searching efficiency, we further consider its subset consists of all the frontier projec-

tions of V(\y,), i.e.

V()\Al) = {)\B]’ € V()‘Al) Y )\Bj,t 75 )\Bjoio S V()\Al)’)\BjO,to % )\Bj,t}‘

0-to

On the one hand, since all the region we have considered in (4.A.2) does not overlap
each other, the set f)()\Al) still keeps the projection Ap; 4, such that Ap; 1, A4, € Zj+.
On the other hand, as a direct consequence Lemma 4.37, only one projection of

Type 1 or 2 could fall in V(-), as formally stated in Proposition 4.38.

Proposition 4.38. For any (z,y) € R?, there does not exists 1 < jo # j1 < v, such

that Ap; . sAB;, ., € V(z,y), where to,t; € {1,2}.

Hence, from the above proposition, the set f/(/\ 4,) would only be one of the
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following 3 cases.

e Case 1. f)(/\Al) is empty. Then Ay, € R%/(UZ;s), thus inf pege poo(As, B) =
3)
’wAl |

e Case 2. There exists jo, such that )\BJ'O»to € V(A4,), where to =1 or 2.
o« Case 3. V(\y,) is not empty and Vj=1,...,v and t = 1,2, AB;, & V(Aa,).

In Case 2 and 3, to compute infpege poo(As, B), we need to further identify the
projection Aj;(A;) sharing the same region in (4.A.2) with A4,. In Case 2, we should

have

/\*B(Al) = AB to = 1,2 where Ap € V()\Al) (4A3)

Jjo»to’ Jo»to

In order to compute infpcge poo(As, B), we additionally require knowledge about
the normal direction of the surface corresponding to the projected region Z;; that

contains A; and Aj(4;), i.e. the second subscript ¢ of Z;;. This can be identified

by the information of Aj;(A4;). When the representative element \;(A;) = Ap,

Jo,1
for some jo, it is clear that both A;, Bj,1 € Zj, 3. When A5(A;) = Ap, ,, both

Tjq if wg,) ) —wgl) < wg) , wfl)

MuABya € .

’ (1 1 2 2

L, if Wh o, ~Wa, > Wh , ~ Wy, -

In Case 3, we should have

Ap(A;) = argmin p5 (AB;,,\a,)- (4.A.4)

)‘Bj,t G?(AAl)

However, it is not sufficient to compute infpege poo (A, B), since we are not clear
about the normal direction of Z;; containing Aj(A;). To obtain this, we need to
further find the predecessors Ag; , and Ap;, , in V(A4,) of AL (4;) in (4.A.4). Since
T+ contains Aj(4;), one of the predecessors Ap; , and Ap; , must fall in A3 (A;).

Such a predecessor is found by

Ap(A)) = argmin Poc(Aa,, A). (4.A.5)

)\E{)\B '1,2’>\Bj

J 2,2

Thus, identifying the normal direction of the region Z;; will be the same as in
(4.A.3).

In summary, we are able to compute inf pege poo (A;, B) by the following lemma.
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Lemma 4.39. When \j;(4;) is determined by (4.A.3) or (4.A.5), and Nj(A;) =

)‘Bjo 0 for some 1 <jo<v andto=1 or 2, then
1 1 1 1 2 2
|w1(41) _wl(Bj)o,to [, if tg#1 and w( ) w1(4[) < wg,) - wgl)
Biélé% Poo(A1, B) = |wffl) —wg_) 0 |, if tp # 1 and wg) wgl) > wggj)o ) wfl)
]wfl) wg’) \, iftg=1

(4.A.6)

Eventually, H(F%,,GS) = max inf po(A;, B). This finishes the description

Alevloc BGGC
of the required algorithm. To compute other alternatives, H(Fy, ;, Gy, ;) i =2,3,4,
one only needs to apply the same procedure above on both samples, using their

corresponding coordinates with opposite signs.

4.B The Expression of the p-values as a Boundary

Crossing Problem

Let us note that IP’(”HInn < q) can be expressed in terms of the probability of a
trajectory GI¢ staying within a corridor between two boundaries. The detailed

computations are given in Appendix 4.B.

To see this, we give the result for kK =1 case and consider the set of points

(z,2) € R? such that inf (A, (x,2)) < q which defines a corridor around the

AeFie Poo
curve FJi¢,

Define the set Z;{anc ={(r—q,2+q): (x,2) € Z/{FTC} (The open set above in Figure
4.10). Similarly, define the set £ e = {(z —q,2+¢q) : (z,2) € } . Thus, the set

UF

FTC
fe UEFTC =R?/{(z,2) : i inf e Poo(A,(2,2)) < q}. Therefore, one can see that

the event {H(E},,GS) > q} is equivalent to the event that at least one of the vertices
B; of Gif falls in the region u e UEch

{%Inn > q|Ryin =mi(m+n), Zmyn}

= {B]T EZ;IFTC UL for at least one j € {1,...,2v}| Ryt = mi(m+n), Zpin}

(4.B.1)

e

From (4.B.1) it follows that,
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= Ei|my(m +n)

5]

—
l At

4[4}-3{’_ X

Figure 4.10: The probability P(H.,,» < ¢) as a double boundary crossing problem

]I{Hjn,n < q’Rm—i-n = ﬂi(m"i_n)a Zm—l—n}

=1 —]I{BJT EZZFLCUEFLC, for at least one j € {1,...,2v}| Rytn = mi(m—+n), Zpin}

(4.B.2)
Substituting (4.B.2) in (4.3.14) we obtain that,
P(Hin,n < q,Zern)
V& (o -
:1_021]1{3]. € Upie UL e, (4.B.3)

for at least one j € {1,...,2v}| R4y, = 7ri(m+n),Zm+n}

4.C Proofs for Chapter 4

This appendix provides proofs to all the statements in Chapter 3. Before we present
some important results, it would be useful to give some auxiliary results and prop-
erties first.

We will start with Lemma 4.40, which is a multivariate generalization of Lemma

3.48.

Lemma 4.40. For any A € R*! and any planar curve F¢ of F that is monotonic
with respect to <, the infimum inf e pe poo (A, B) is always attained. Furthermore, if
infgepe poo(A, B) >0, let By be the crossing point of F¢ and the line passing through
A parallel to the vector OFEy where Eg = (1,...,1,—1)T € Rl then poo(A, By) =
inf gepe poo (A4, B).

Proof. Note that the planar curve defined by (4.2.6) is closed, therefore for an arbi-
trary ¢ the set FCNS(A,infgepe poo(A, B) +¢) is compact. Hence, inf ge pe poo (A, B)

is obtainable.
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In addition, since the vector OFEy is parallel to the vector ABjy, we have

Poo(A, By) = ]w(i) —w(i) | fori=1,...,k+1, where wg),wg) are the i-th component of

(k+1)

the point A and By respectively. Without loss of genreality, we assume that wy ' >

wgfoﬂ). This implies that wg) < wgg()). For any B € RkH, if poo(A, B) < peo(A, By),

we must have |wx) —wg)| < poo(A, By) for every i =1,...,k+1, where wg()) is the

i-th component of the point B. For every z € R¥ when z < zp, = (wgg, wg?)
due to the monotonicity of F, we have F(x) < wj(BkH). Therefore, if x < zp,,
wffJFl) — F(2+4) > poo(A, By). Then any point B such that \wg) —wg)| < poo(A, Bo)
for every i =1,...,k+1, i.e. pso(A,B) < poo(A, By), we have B ¢ F°. O]
4.C.1 Main Results in Chapter 4
Proof of Lemma 4.3. Let us take

C=  max {X(Z Y, i }

1<i<k
1<j<m,1<I<n

Then for any = € R¥, if () > O, then it is easy to show that F,(z) = F,(x +e;e) and
Gn(z) = Gp(x +ese) for any e > 0, where e; = (0,...,0,1,0,...,0)7 € RF is the i-th
standard basis vector of R¥, with 1 appears exactly in the i-th position. Therefore,

if A€ FSN[(RF—(—00,Cl*)x[0,1]] and B € GEN[(R* — (—o0,C*) x [0,1]],

Ateite FSN[(RF —(—o00,C)F) x [0,1]] and B+eft € GEN[(RF —(—o00,C)") x [0,1]]
(4.C.1)
forany t >0 and i =1,...,k, where e} = (e;,0)T € R*+1. Let us decompose both F¢

and G¢ into two parts,

FS N (—00,C1F x [0,1] and F& N [(R* — (=00, C]%) x [0,1]],

G N (—00,C)* x [0,1] and G N [(R* — (—o0,CT*) x [0,1]].

For simplicity, we denote

Fi(C) = Fy N (00,01 x [0,1], F,(C7) = Fg N [(RE — (—o00,C1F) x [0, 1],

GS(C) = G N (—00,C)" x [0,1], GE(CT) = G N [(RF — (—o0,C]F) x [0,1]].
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Clearly, for a fixed M

(M))=max{ sup inf  pso(A,B), sup inf  poo(A,B)}.
A€FS, (M) BeGS, (M) AeGS (M) BEFE, (M)

In order to show (4.2.10), it suffices to show that  sup inf  po(A4,B) =

A€Fs, (M) BEGS (M)
sup inf ps(A,B)and sup inf  pso(A,B)= sup inf ps(A,B) for a suf-
A€Fg, BeGg A€GS (M) BEFg, (M) AeG¢ BEFE,

ficiently large M.

In order to show this, we first note that

sup inf poo(A,B):max{min{ sup inf  poo(4,B), sup inf  p(A,B)},
A€FS, BEGS, A€EFg,(C)BeEGS (C) A€FS (C) BEGS (C™)

min{ sup inf  poo(A,B), sup inf pOO(A,B)}}.
A€Fg (C™) BeGE(C) A€Fg (C7)BEGE(C™)

We can easily verify that the term  sup inf  poo(A,B)and  sup inf  poo(A4,B)

A€F5 (C)BeGs(C) A€F5 (C—)BeGs (C)
diverges. Thus,
sup inf p(A,B) = max{ sup inf  poo(A4,B), sup inf poo(A,B)}.
A€Fg, BeGE, A€FS (C)BeGs(C) A€FS (C—)BEGS(C™)

Then we take My = C+1, for any M > My,

sup inf  poo(A,B)=max { min{ sup inf  poo(A,B),

A€Fg (M) BeGS, (M) A€Fs (C)BEGE(C)
sup inf Poo(A, B)},
A€FY, (C) BEGS (M)-G5(C™)
min { sup inf  poo(A,B),
A€FS, (M)—Fg5,(C—)BeGs (C)
sup inf pOO(A,B)}}.
A€EFS, (M)—Fg,(C~) BEGS (M)—G5,(C™)
Since
sup inf  po(4,B) <1, sup inf Po(A,B) < 1,
AeFyg,(C) BEGE(O) A€Fg (M)—Fg(C~) BEGS(M)—G&(C™)
sup inf Po(A,B) > 1, sup inf  poo(A,B) >1,

A€Fg (C) BEG,(M)—-G5(C) AeFe (M)—F¢, (C—) BeGS(C)
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we have

sup inf  poo(A,B) = max{ sup inf  poo(A,B),

A€FS,(M)BeGS (M) A€Fs (C)BEeGE(C)
sup inf poo(A,B>}}.
A€FS (M)—Fg5 (C~)BeGs (M)—Gs(C™)
Both  sup inf  poo(A,B) and sup inf Poo(A, B)
A€Fg,(C) BEGS(C) A€Fg, (M)—Fg, (C—) BEGS (M)—Gg (C™)

are obtainable, since both Ef (M)AGS (M) and (ES5 (M) — FS(C™)A(GS(M) —
G¢(C™)) are bounded.

Then to show  sup inf  pso(A,B)= sup inf ps(A,B), it remains to

A€FS, (M) BeGS, (M) A€FS BeGS,
show that
sup inf  poo(A,B) = sup inf Poo(A, B).
A€F, (C7)BEGE(CT) A€Fg, (M)—Fg, (C—) BEGS (M)—G¢,(C™)
Since we have
sup inf  poo(A,B) > sup inf Poo(A, B),
A€FS,(C~) BEGE(CT) A€Fe (M)—Fg (C~) BEGS(M)—G&(C™)

we only need to show that strict inequality does not hold, which will be done by

contradiction.

Suppose the strict inequality holds, then there should exist € > 0, such that

sup inf  poo(A,B) > sup inf Poo(A,B)+e.
A€Fg,(C7) BEGR(CT) A€Fg, (M)—Fg, (C—) BeGS (M)—GS (C™)

Therefore, we can always find A* € FS,(C™) such that

inf  poo(A*,B)> sup inf  ps(A,B)—¢/2 >
BeG(CT) ( ) AeFc (C—)BeGS(C) ( )=l

sup inf Poo(A,B)+e/2
AEFS, (M)—Fg (C™) BEGH (M) -G (C™)

By Lemma 4.40, we can also find B* € G5(C7), such that p.(A*,B*) =

inf pege (0-) Poo (A", B). Thus,

Poc(A*,B¥) > sup inf Poc(A,B)+¢/2. (4.C.3)
AeFS, (M)—Fg, (C~) BEGE (M)-GR(C7)
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Due to (4.C.1), we should always find A* € F¢$(M)—F¢$(C~) and B* €
G¢ (M) — G5 (C7), such that peo(A*™, B*™) = poo(A*, B*). This contradicts (4.C.3).

Therefore we have  sup inf  pso(A,B) = sup inf po(A,B) for M > M.

AeFe (M) BEGS (M) A€Fe BeGe
Due to the symmetry of F), and G¢, we also have sup inf  po(4,B) =
A€EGS (M) BEFS, (M)
sup inf poo(A,B). Hence (4.2.10) follows. O

AEGS BEFS,
Proof of Lemma 4.4. According to Lemma 4.3, there exists A* € FS (M), B* €
G, (M) such that pe(A*, B*) = sup ¢ pe infpece poo(A, B) for an sufficiently large
M >0, where Ff,(M) and G¢ (M) are defined in (4.C.2). By Lemma 4.40, we also
have poo (A%, B*) =inf gcre poo(A, B*). Thus, we have

sup inf A,B) < sup inf A, B).
AE%BeGg’Om( )_Beg%AeF%poo( )

Similarly, by applying Lemmas 4.3 and 4.40, we can also show that

sup inf A,B)> sup inf A, B).
Ae]%BeGgpoo( )_Be(l;)%AeFﬁlpOO( )

Thus, sup e pe inf e pPoo(A, B) = suppege infacrg, poo (4, B). O

Let us note that the core of the proof relies on Lemma 4.40 and the boundedness
G. Therefore, Lemma 4.4 is generally true for the planar curves of two functions
monotonic with respect to < with a compact region between them, which is impor-
tant for us to prove Lemma 4.15.

The proof of the Theorem 4.5 relies on Lemma 4.40 and the expression of the

Hausdorff distance given by Sendov and Beer (2012), i.e.
H(Fy,,Gy) =inf{e: Fy, C S(0O,2¢) & G5, Gy, C S(0,2¢) @ F, }.

This proof is similar to the proof of Lemma 3.8, with the additional consideration
of Lemma 4.3 to ensure that there exists A* € F, and B* € Gf, such that the vector

A*B* being parallel to OEy and po, (A*, B*) = dy is obtainable, thus will be omitted.

Proof of Theorem 4.6. In order to prove (4.2.14), it suffices to show that for any

e >0, when poo(X;, X;) < fori=1,...,m and poo(Yj,f/j) <egfor j=1,...,n,

H(FS,FS) < 2e, H(GS,GS) < 2. (4.C.4)

myT m
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This will be trivial since when poo(X;, X;) < ¢ for i =1,...,m and poo(Yj,Y/j) <e
for j=1,...,n, F,% C FS,®S5(0,¢) and é% C G @ S(0,2¢). Hence by Theorem 4.5,
(4.C.4) holds. O

Proof of Lemma 4.15. In order to show (4.2.21), according to the triangular inequal-

ity, it suffices to show that
H(ES,G:) = maX{Biné Poo(A1,B),l=1,...,2v}
S€

when G is compact. This statememt may seems not to be direct. Alternatively,
for an arbitrary € > 0, we can always find a continuous GecC (RF) being strictly
monotonic with respect to =<, such that its planar curve G¢ C G¢ & S(0,¢) and the
region between F¢ and G¢, G(FS,G), is compact. Since G¢ C G¢ @ S(0,¢), we

should have

|H(F7$L7G;:’L)_H(FT(7:Laéc)’ <g,
(4.C.5)
and | inf pOO(Al’B)_Biéle;C Poo(A,B)| <e, forl=1,...,2v.

BeGe
Since G is monotonic with respect to < and G (Fﬁl,@) is compact, by Lemma

4.4, we have

H(FS,G% = sup inf poo(A,B). (4.C.6)
ACF¢ BeG

By (4.C.5), (4.C.6) and the arbitrariness of ¢, it remains to show that

sup inf poo(A, B) = max{ inf pso(A;,B),l=1,...,2v}. (4.C.7)
A€eFgs, BeG BedG

m

To show this, we first consider A € F¢, that is locally flat, i.e. Ag= (z4,, Fin(Ta,))?,
74, € RF and there exists § > 0 such that ¥V x € {z: pi (z,24,) <0}, Fn(z) =
Fr(z4,), where pi is ps restricted on R*. Therefore, we can always find A; =
(ay,24,)T, As = (24,,24,)T € FS, such that x4, < x4, <74, and z4, = 24, = 24,

Since G is strictly monotonic with respect to <, we should have either

inf poo(Ao,B) > inf poo(A1,B) or inf poo(Ag,B) > inf poo(Az,B)
BeGe BeGe! BeGe BeGe!

to be true. Therefore the supremum cannot be achieved at Ay. Similarly, for Af at
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the vertical part of FS, if A{ is at the interior, we can also find A} and A}, such
that T =T =T but zar < Zzay < Zzap, once again by the strict monotonic of G,

either

inf poo(Af,B) > inf poo(A},B) or inf py(Aj, B) > inf poo(A5, B)
BeGe BeGe: BeGe BeGe:

should be true. Therefore, the supremum cannot be achieved at Ag. By using the
same reasoning, the supremum is neither achieved at saddle points. However, since
g (Fﬁl,é) is compact, the supremum is achievable. Therefore, the supremum can

only be achieved at A;, [ € 1,...,2v. Hence, (4.C.7) should hold. O

Proof of Theorem 4.19. Consider the vertices Ay, As,..., Ao, and By, Bo,..., By, of
the curves Ff5 and G¢ respectively. Let us fix an arbitrary vertex Agg, k =
0,1,2,...,v.

Let us take the straight line with points {(z,z): z — % = Zjm — &}, passing
through the vertex Agy, with coordinates (z %), where z, ,,, is the realization of
the k-th order statistic, X () of the random sample X,.

It is easy to see that the intersection of the sets G¢ and {(z,z): 2z — % =Tpm—T}

consists of only one point which we denote by Py, i.e. Py =GSN{(z,2):2— £

Thm — T}

Let us consider the two cases:

1. Py on the vertical line {(xy,,2) : 2 € R}. In this case it is easy to see that

Poo(A2k7P2k) < |Fm($k,m) - Gn(xk,m” (4'0'8)

k
— |- = Gulwkm)

From (4.C.8), we obtain that

k
poo(A2k7P2k:) < sup ’7 - Gn<$k,m)|a (409)

1<k<n T

for k=1,...,m. Therefore, we have from (4.C.9) that

k
SUP  poc(Aak, Pok) < sup [— — Gp(zm)| (4.C.10)
1<k<m 1<k<m MM
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Next, we provide an auxiliary lemma that we apply to the left-hand side of

(4.C.10).
Lemma 4.41. We have

SUP  poo( Aok, Par) = H(F},,G})
1<k<m

Now, from Lemma 4.41 and equality (4.C.10), we can see that

k
H(F,Gh) < sup | ——=Gn(wpm)| = sup  [Fn(z) = Go(z)| = Dimpn
1<k<m M —00<T <00

2. Let us now consider the second case, i.e. Py on the horizontal line {(z, %)}

On the other hand, Py € z — % = Zpm — . Therefore, % — % =Thm —T =

l

n’

ie. Py = (xk:,m“_ % —L L)

_ k
$—$k7m+ﬁ_ n’n

Let us now evaluate H (Agy, Por). We have h(Agk, Por) = max(|zg,m + % — % —

Thm) s \% — % )= \% — %\ = |Fp(k,m) — Gn(@k,m)|. Therefore,
sup poo(A2k7P2k) = Ssup ‘Fm(mk,m) - Gn(xk,m”
1<k<m 1<k<m
= sup |Fp(z)—Gn(x)|=Dmn,
—oo<r <400

which completes the proof of inequality (4.2.25).

To show that (4.2.26) holds, recall that from Lemma 4.4, we have

H(FS,Gy) =max | sup inf ps(A,B), sup inf ps(4,B)
AeFe BeGe BEGS ACFE,

= sup inf po(A,B)= sup inf po(A,B)
AeFe BEGE BeGs AcFe,

Equality (4.2.26) follows noting that, if condition (4.2.27) holds, we have

poo(A,B) =max{|za —zp|,|ya —ys|} = lya —yB|

Therefore H(Ff,,GS) = sup  |Fn(r) —Gn(z)] O
—oo<z<+00
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Proof of Lemma 4.23. Let us note,
H (1‘121717721) = poo(Aat, Bar), (4.C.11)

the geometric interpretation of the latter distance, pso (AQ[,EQZ), is the side of the
square. In order to prove (4.3.6), we will consider the two possible ways in which the

curves Fﬁl and G?L may be positioned with respect to each other, which corresponds

to either ¢ being odd, i.e. the segment [Bi_l,BZ}, crossed by the line £;, being

horizontal, or ¢ being even, i.e., [Bi_l,éz} being vertical.

Case 1, i =2p+1 odd, ie., [Bi_l,Bi] horizontal. The case is illustrated in

AZL
N
\
N,
N \
\
i NN
25+2 AN \
N \
A N N N
2s N N N
N\ \\ \\
N\
AN N N N
N N N N
N \ N N\
N \ N\ N
N \ N N
N \ N N
N N N N
N N \ N ~
B. E a BZp+1
2p 2t

Figure 4.11: Graphical illustration of Case 1, i =2p+1 odd, i.e., [B;_1, B;] horizontal

Figure 4.11, from where one can see that the maximum, in (4.3.6) is achieved in the
last vertex, Ao of the batch A;. This holds, because, by contruction of the curve
Fec

., its consecutive vertices flgj, j=s,s+1,...,t, deviate further away from the

horizonal segment [B;_1, B;| of the curve G¢

¢, as j increase to t. Setting j =1 in

(4.C.11), the projection A4, , on the Ox axis, of the vertex, A (34 g, b )T,
is /\Azt = 22:1(&16 + Ek)
From the above considerations, we can write that
max inf pe(4,B)= max inf Poo(;bj,B)
AcA; BeGg, s<j<t BeGe,
=poo(A2t, Eat) = y 4, — Ui,

t B t B P B
Zzbk—ygzp :Zbk_zdk
k=1 k=1

k=1
Case 2, i =2(s+1) even, i.e., [B;_1,B;] vertical. This case is illustrated in

Figure 4.12, from where one can see that the maximum in (4.3.6) is achieved in

the first vertex, A, of the batch A;. This holds, because, by construction of the
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‘7 Bapin

Y Eas
Bypia

Figure 4.12: Graphical illustration of Case 2, i = 2(p+1) even, i.e., [B;_1,B;] vertical

curve FC, its consecutive vertices, /12]-, j=s,s+1,...,t, are positioned closer to
the vertical segment [Bi_l,Bi] of the curve éfl, as j increases to t. Setting j = s in
(4.C.11), the projection, A 5, on the Oz axis, of the vertex, Ao (S5 an, X5 b7,
is Az, = Yhen (@k +b).
Following from the above considerations, we can write that
max inf po(A4,B)= max inf pu(Azj, B)
A€A; BeGe s<j<t BeGg

=poo(Ags, Eas) = w4, —xp,

p+1 p+1
=T By T Zak —aﬁ—ch—Zak = ch—Zak
k=1 k=1 k=1
This completes the proof of the lemma. O

The proof of Theorem 4.24 will be given after the proof of Theorem 4.28.

Lemma 4.42. When X,,, comes from distribution F' and'Y,, comes from distribution

G, we have
mn ,
ig}g e (Epmgn(t) — (\/ nBo(F(t)) +/nBy(G( ))' —0a.s.

(4.C.12)
as m+n — oo and - — 1, under norm 1°°, where Bo(F') and By(G) are indepen-
dent Brownian bridges. Furthermore, when Ry, is uniformly distributed, we also

have

P{ [\ (Gh0) = Bnan®) | Zos

= —n)BO(E(t))} 1 (413
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w . . . . . .
where the weak convergence — is considered over the indicator functions of intervals

of R, i.e. {1(5,("):—00<x<y< +oo}.

Proof. The proof of (4.C.12) is a natural extension of Theorem 3 and Corollary of
Komlés et al. (1975), thus will be omitted. Since the class {1, (-): —00 <z <y <
+oo} has a square integrable envelope function 1r with respect to measure pup and
pa, ie. [13dup = [13dpg =1 < 0o, where F and G are the probability measure
of the distribution F' and G, (4.C.13) follows by applying Theorem 3.8.2 in van der
Vaart and Wellner (2023). O

Proof of Theorem 4.28. Since metric H coincides with the Levy metric, according

to the definition of the Levy metric (see in Remark 4.22)

Ml = igf{s CEl(t—e)—e <Gl (t) <l (t+e)+e, for all t}

Hence,
mn Himsz{g:—gg mn {G;(t)—F;(t—e/ mn )]
m-+n ’ € m-+n m-+n
and /W{G;(t)—F,L(tJre/,/ mn ﬂ <e, for allt}
m—+n m-+n
Thus
IP){,/ mn ’H,Tnn>me+n}:]P’{Ve<a:,EItOE]R,such that
m-+n ’
UL eY) —FT( _ m”)} _ 4.C.14
m—i—n[Gn(tO) lto—¢e/ " < —eor (4.C.14)
mn t B T( mn) }
’/m—kn[G”(to) FE! t0+€,/m+n > e Zmin
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Note that Ef (t) — Epyn(t) = =2 (Fl (t) — GI(t)). Then

m+n

et - F (- )]

m-+n
00 (o) )
(Bnnlt) = ) + (B (t=e/ 0 ) = B (=25 ))

m-+n m—+n
+E(t)—E<t—5/ mmfn”

_l’_

For simplicity, let X (t,h) = [ L, 14p)d[\/MBo(F)++/1—nBo(G)], therefore sup,cg X (t,h)
is the modulus of continuity of the Brownian Bridge \/nBo(F") 4+ +/1—nBo(G). Since
both F' and G are uniformly continuous, by Lévy’s modulus of continuity theorem,

we have sup;cgp X (¢,h) — 0 almost surely as h — 0. According to (4.C.12) in Lemma

4.42, we have
mn mn mn
AL (Em+n(t) _E()+E (t—e/ m+n) — Epin (t—e/, /mM)) S0as,

In addition, since F' and G have bounded densities, we have

33%" mmfn (E(t)—E(t—¢/, /mmfn)) — &5~ (t)] — 0.

Thus given the pooled sample Z,, .,

mn

sup
teR

(Em+n(t)—Em+n <t—5/ mn >) —55—@)’ 0, (4C.15)

m-+n m-+n

almost surely. Additionally, by the continuity of E and (4.C.13), we have

IP’{[ mn (GL(t)—Em+n(t)+

m-+n
Em+n(t—s/ mn )_F:n(t_g/ mn ))‘me

m-+n m-+n

% BO<E<t>>} =1
(4.C.16)
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By arranging (4.C.14), (4.C.15) and (4.C.16), we obtain

[ mn
}P’{ m+nHi”’”>$

—P{Ve<a,3t, —e >Byo E+ce(t), or ByoE—ce(t) >¢}

Zern}

=P {3ty €[0,1],Ve <z, —e—ce (B~ (t0)) > Bo(to) or Bo(to) > ¢ +c¢ (E7\(to)) }
:IP’{EI to € [O,l],gir<1£ [—e—se (E_l(to)” > By (tg) or By(tg) > sup [6—1—66 (E_l(to))} }

e<x

=P {30 € 0,1],~z(1+ (B~ (to))) > Bo(to) or Bo(to) > 2[1+ (B~ (t0))]}

Therefore, we have

lim P{,/ mn H;'nn>x}
m,n%oo,miﬂﬁn m-+n ’

:]P’{H to€[0,1],—a [1 —i—e(E’l(to))} > Bo(to) or By(to) >z [1+6(E’1(t0))}}

=1-P{-af[1+e(E" ()| <B() <z [1+e(E 7 (t)], YOSt <1}

This finishes the proof of the required theorem. O

Proof of Theorem 4.24. In order to show (4.3.11) holds under the condition of The-
orem 4.24, according to the Portmanteau Theorem (cf. Theorem 1.3.4 in van der

Vaart and Wellner, 2023), one only needs to prove that

P (1 [t < q> SP{B@)| <z[1+eE@)]. vo<t<1)  (4.017)

when X, and Y}, come from nF'(z)+(1—n)G(z). Note that when the pooled sample

Zmin=1{X1,..., Xm,Y1,...,Y,} come from the pooled distribution E,

mn

gy Binen = E) = Bo(E) (4.C.18)

under norm [*°. Therefore, we have

T (G(t) = Bmn(t))) % (1= n)Bo(E(2)) (4.C.19)

m-+n

over the class {1, (-) : —oo <z <y < 400}, which is equivelent to (4.C.16) with

respect to respect to F,, and G,. Therefore, the required convergence (4.C.17) is
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obtained by arranging (4.C.14), (4.C.15) and (4.C.16) with respect to Fy,, G,. O
Proof of Theorem 4.25. Under the contiguous alternative, since pc1(F,G) = o(1),
we have sup, |f(z) —e(z)| — 0. We can show that (4.C.19) still holds (although

(4.C.18) no longer holds).
For a fixed z, let b =P{|B(¢)| < z[1+ f(F~1(t))], VO <t < 1} and let sequences

Umynk = { m+n}

when X, and Y,, correspondingly come from F' and G(;k),

Hmn—

by :P{uaa(m <z [1+ek(E,;1(t))] Vo<t< 1},

where Ey(z) =nF(x)+ (1—n)G(z;k) with density e;. Therefore, to show (4.3.13),
it suffices to show that a,, ,n, — b as m,n — oo. Note that pci(F,G(;k)) — 0,
pci (F,Ey) — 0, by the property of Brownian bridge, we have by, — b. By Theorem

— — 1. Therefore, it remains

to show that an, p 1 — bi unlformly as m,n — oo and "= — 1, or equivalently that

P
the convergence in (4.C.13) is uniform.

To show (4.C.13) is uniform convergence, we need to show that (i) the speed
of convergence in (4.C.13) does not depend on k for a finite subset Fy C F and
(ii) the left-hand side process of (4.C.13) is stochastic equicontinuity over the class
F={1(34(:): moo <z <y < +oo} and uniformly with respect to k.

In fact, (i) is ensured by the existence of a square-integrable envelope function
1g(-) of F. To show (ii), we further denote Fsr. = {f—g: f,g € F, [(f —g)?dE) < &}
and Fs={f—g:f,g€F,[(f—g)*dE < §}. Since pc1 (F,G(;k)) — 0, for any € > 0,
there exists K, such that for any k > K, F5 C F(14¢)s.- Note that F has an envelope
function 1 that is square-intergrable with respect to each measure pg(x) and pp,

by the inequalities established on page 508 van der Vaart and Wellner (2023), we

have

Zm+n S

{bup /fd Lt = HZpin)

ress (4.C.20)
( l;g% / deF] (1- n)/nE Lcsgpé / fdZax)

)
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for almost every Z, 1, where Zp and Zg(,;,) are tight Brownian processes, Pt is
the empirical measure corresponding to X, and Cy is a universal constant that
does not depend on the measures F' and G. Based on that pci(E, Ey) — 0 and that
Zg(;k) have continuous sample paths with respect to the semi-metric L?(E}), one
can easily show that both Zp and Zg(,) have uniformly continuous sample paths

with respect to the semi-metric L?(E). Therefore, the RHS of (4.C.20) converges

—0asdl0. In

to 0 when 6 | 0. Therefore E [supfe]_-é Jfd(pgt =120 )| Zmtn

addition, according to the fact that Fjy C F(14¢)5 holds for sufficiently large k, one

Zowa| =0

Then by Theorem 1.5.4 and Lemma 1.5.9 of van der Vaart and Wellner (2023),

can show that

lim sup < E | sup /fd t = Zin
40 k,m,n{ Lcefa,k (’uXm Hms )

Therefore (ii) holds.

one can show that the weak convergence in (4.C.13) holds over F when (i) finite
convergence and (ii) stochastic equicontinuity satisfy. In addition, we have shown
that both the finite convergence and stochastic equicontinuity do not depend on
k. Therefore, we can show that a,,,j — by uniformly in k. Hence, the theorem

follows. O

Lemma 4.43. For a fized x, let X,,, come from F and let Y, come from a contigous

alternative G(x;n) = F(x)+ ﬁ(s(x), 0 € C(R), we have

g (\/mﬂTszn = x) = 1-P{|B(t)+vné(t)| < z[1+e(E~'(1)], VO <t <1}
(4.C.21)

Proof. We have

Gty Bt e [ )]

m-+n m-+n

= | (G (t) = Gtin)) + (Ft—e/ | — ) = F(t—e/ | ——
m-+n m-+n m+n

—I—G(t;n)—F(t—s/ mn )}

m-+n
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We can show that

IR [(Gn(w—a(t;n)w(zr <t—5/ m"n) (t—s/ ))} By (F)
(4.C.22)

almost surely. In addition, we have
I [G(t;n) (- e/Mﬂ s () +ef(8) (4.0.23)

According to (4.C.12) in Lemma 4.42 and that § € C(R), we can also show that the
convergence in (4.C.22) and (4.C.23) are uniform convergence. Therefore, (4.C.21)
follows. O

Proof of Theorem 4.26. For a fixed null, by (4.3.11) and definitions of ¢*, it is not
difficult to show that (4.3.12) holds. Therefore, we only need to prove (4.3.13).

For a fixed p and fixed alternative, it is easy to show that both ¢ and ¢* are
M mn >€) — 1, therefore (4.3.13)

bounded from above, and for any £ >0, P(,/.” +n

follows.

Under a contiguous alternative pc1(F,G(n)) = O(n~'/?), (4.3.13) follows by

applying Lemma 4.43 and Theorem 4.25. O

Proof of Theorem 4.32. For simplicity, denote by

1 — 1y and B, — 1 — 1

Am = Qxt (1) = Qxt (¥2) ny(%) Qyi(1h2)

Given Z,,4+n, the number of observations N xi (¢) in X that are less than

E;H—n

n,|mi|,m). By the law of large numbers, F,,(E; .} (¥)) = Nyt (¥)/m 5 1. There-

m+n

(1) follows a hypergeometric distribution, i.e. N+ ()= Hypergeometric(m +

fore given Z,, 1,

T - P
@k, ()~ Bl ()] < ClIN g (0)/m—l 4 1) Boo.
Hence, we have Q}m (¥) LA E7?L+n(¢), which then imply Q1 (¥1) — Q5+ (¥2) E
E,, +n(¢1) E., +n(¢)2). By the continuous mapping theorem, given Z,,.,,, we have

Ap— 1~ % 0 The same result holds with respect to B,. Thus, given
m+n(¢1) m+n(w2)
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Zm+na

Y1 — 12 P
0 4.C.24
Bl ) B (tC24

By the Glivenko-Cantelli theorem, sup, |Fy,(t) — F(t)] = 0 and sup,|Gp(t) —

max (A, Bn) —

G(t)| — 0 almost surely. Therefore, it is clear that sup;|Epn+n(t) — E(t)| — 0 almost
surely. Hence, for an arbitrary 9 € (0,1), one have E, .} () — E~'(z) almost

m+n

surely. Therefore by continuous mapping theorem, —— b=t LN 0p. Thus,
Eern(wl)*EmjLn("/}Q)

max (A, By) 5 59, and (4.4.7) follows.

To prove (4.4.8), it suffices to show that anﬂn(a*) - an’n(O'[)) % 0 since we have

I a(00) — @ (00) 5o by applying Theorem 4.24.

qm,n
For any 01,02 € R, according to Theorem 4.5 and following the proof of Theorem

4.6, given Z,4n, it is not difficult to show that

Hhn(01) = Hi (09)] € 4@z, () +1Qz,, (1= )] o1 — 2] 422,

so does their quantiles, i.e.

‘%Tn,n(al) —CIIn,n(Uz)‘ <4(|Q2zpsn ()| +|Q2Zpy (1 —€)]) |01 — 02| + 28,

When the support of F'and G are both bounded, sup,), ,, (1Qz,,,.(€)| +|Qz,,..(1—<)])
is bounded for any . When the support of F is unbounded, we can always find &
that is sufficiently small such that e(E~!(1—¢)) > 0. By continuity of e, we can find
c1,c2 > 0 such that e(x) > cp for any z € (E~1(1—¢) —c1, E71(1—¢)+¢1). Then by

considering Dvoretzky—Kiefer—Wolfowitz inequality, we have

P{Qz, .(1—¢) > E_1(1—6)+01}

<P (Sup |Emin(z) — E(z)] > 0102> < 9p—2(m+n)cics
T

Therefore for any § > 0, we can pick ¢ and Ny such that 2e—2Noctes < 5. Therefore,

for any d > 0, there exists C' > 0 and Ny such that

sup P{Qz,,.,.(1—¢)>C} <9, (4.C.25)
m+n>Ng

which holds true regardless of the support set of F' and G. Similarly, we can also
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show that (4.C.25) holds true with respect to |Qz,, ., (¢)|. Then for any n >0,

P (|gh,0(0") = ahon(00)| > ) <
P(4Co" ~00| + 22 > n) + P{|Qz,.... ()| +1Qz,,.,(1—€)| > C}.
Then we pick e <n, C = |E~1(1—¢)|+|E~1(e)], then by (4.4.7) and (4.C.25), we

can find Ny, such that when m,n > 4§, P{|Qz,,..(e)|+|Qz, . (1—¢)| > C} <6 and
P(4C|o* — 09| +2e > n) < §. Therefore, we have

P (]qfn,n(ff*) - an,n(Ob)’ >n) <3,

for sufficiently large m and n, ie. ¢ , (c*)—q} . (o) Eo. Therefore, the result

m,n m,n

follows. O

In order to prove Theorem 4.36, we need to start with the following lemma.

Lemma 4.44 (Lemma 3 of Abrahamson 1967). Let Zy),Zéi),... be independent
sequences of independent random variables Z@W i =1,2. Let the mean of the first |
observations in the ith sample be Zl(i). Let ¢;(t) = E(etz(i)).

Suppose there exists a positive number T in the interior of

Ty ={t:p1(t/m)p2((—t)/(1—n)) < oo} (4.C.26)

such that, for a given number € >0, € > E[Z(l) — Z(2)],

P (m/n)/e1(r/n) —ph(=7/(1=n))/pa(—7/(1=n)) =¥, (4.C.27)
and let
p = [or(r /)] fpa(=7) /(1 =)~ (4.C.28)
Then
P{Z() — 2D > e} <ptm, (4.C.29)
and
mlrllrgoo e log]P’{Zg) — 72 > e} =logp (4.C.30)

where m,n — oo in such a way that m/(m+n)=r/k=n.
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Proof of Theorem 4.36. Similarly to proving Theorem 3.41, in order to prove The-
orem 4.36, we only need to prove that
H(F5,Go)= lim Hpn(o) a.s.,

m,n—00

(4.C.31)

_fa,n(Q) = lim IOgP(Hm,n >q) as.

mmn—oo m—+n

The proof of the first equation of (4.C.31) is similar to proving the first equation
of (3.A.33), thus will be omitted. Let us prove the second equation of (4.C.31).

For a given x, G, () is the mean of m independent copies of the random vari-

ables, which we denote as V(1) that follow the Bernoulli distribution. Then
0a(t) =E(eV") = B(z)e! +1— E(z) (4.C.32)

Similarly, for a fixed x and ¢, F,,(x+ q) is also the mean of n independent copies of

the random variables V()| with

E(etV(Q)) = E(x+q)et +1—E(x+q) = pa(t+9q). (4.C.33)

Let 1,7 be functions of x and ¢ implicitly defined by (4.5.3). Then by applying
(4.C.30) of Lemma 4.44, we have

i logP{ P = g) ~ Gn(w) > 4} =

mog(ee(" D) — )+ (1 - ) tog(oe(“ED) (2 g)g
I e logP{G(x) — Fu(z+4q) > ¢} =

mog(e (D) 1) 4 (1= oL ) — ot gl

when —™— — 7). Since, it is not difficult to show that P(Hm, (o) > q) > P(Fn(x —

m-+n
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q) — Gn(z) > q) and P(Hmn(0) > q) 2 P(Gu(7) — Fn(z+4q) > q)

lim inf
1nﬂrﬁooG#$;—w7ﬁl%-n

logP (Hmn > q) >

—71(7,q)q,

<‘Tff”;f)>>

) (o)

sup max {nlog(%(ﬁ(:;’ 2 ) =)+ (1—n)log(ps

O<x<1
—ﬁj($,Q)
n

nlog(ez( )+q)+ (1 —n)log(pa(

= _fa,n(Q)

Then it remains to show that liminf,,, . m HnﬁlogP(Hm,RZq) <

—fon(@). The remaining technical part is similar to proving Theorem 3.41, thus

will be omitted. O

4.C.2 Results in Section 4.A

In order to prove Lemma 4.37, let us first introduce an auxiliary lemma.

Lemma 4.45. When there are no ties in the sample, for two vertex projections
)‘Bjo,to and )\le 1, where to,t; € {1,2}, if they are discordant, their corresponding

omnidirectional jumps must also be discordant.

Proof. To prove Lemma 4.45, it suffices to show that two concordant omnidirectional
jumps (3, and ;, must have concordant vertex projections A Bjy to and A Bjyt15 Lo, T1 €

{1,2}. For simplicity, let us assume that g, < 3;,.
o Case 1. tg =t;. This is trivial since if 8, < Bj,, Gn(Bj,) < Gn(Bj1)-

o Case 2. tog#t1. Since G,(Bj,) < Gn(Bj,), it is obvious that Ap, o =<

7072
ABj,,1- On the other hand, G (Bj,) > Gn(B;,) + L thus Gn(wgz _Eo’w/(ii) =

Gn(wgi ,w(ﬁi —£0) > Gn(Bj,) — 2 > G, (B),). Therefore we have ABj, 1 2 AB;, 2

Jo>

O

Proof of Lemma 4.37. For any two omnidirectional jumps f; and 3; of Gy,
Ga(B™) = Gu(B) + Gu(B)) — Gu(B™™) + L0 1(B™in < X; < fma%), where
prmin — (min(ﬁl-(l),B§2)),min(ﬁf2),ﬁ§-2))). When they are discordant, for g € R de-
fined in (4.A.1) and ¢;, i = 1,2,

> Gn(Bi) — Gu(Bi —e0ei) + Gn(ﬁj) - Gn(ﬁj —€0€i) — (Gn(ﬁmm) - Gn(ﬁmm —€06€i))-
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Due to the continuity of F and G, G,(B8™") — Gn(B™" —epe;) = 0.  Thus,
Gr (™M) — G (B™* —egpe;) > 0 for i = 1,2. Therefore, 5™ is also an omnidi-
rectional jump of G,. For two discordant projections A Big.to and Ap, , , according
to Lemma 4.45, their corresponding jumps 3, and [3;, also must be discordant.

Then we consider one of two cases

o Case 1. Gn(B™9%) = Gn(Bjy) = Gn(B™**) — Gyn(B),) =  for i =1,2. Then there
must exists an omnidirectional jump f;, = (max(ﬁj0 ,le ),max(ﬂjo (2))) of

G,, with corresponding projections

1 1 2 2
ABj, 2 = (max()\sgjo’l,)\( ) ),maX()\ng )\ng)l,l))a

0.1’

1 1 2 2
Ap,,a = (max(Ay) AW ) max(AE) A8 ).

Clearly Ap;, 4 =2 (max()\g; ,Ag}l’tl),max()\g} 7)\('§j)lvt1))’ for to,t; € {1,2}.

0-to 0-to

o Case 2. G,(B8M®) — Gp(Bj,) # + or Gn(B™*) —Gn(B),) # +. Without loss of
generality, let us assume that G,,(8™%) —G,(3;,) > + and BJ(»;) < ﬁj(-ll). The

n

case of ﬁj(-;) > ﬁj(ll) will be omitted, as it is similar to that when Bj(;) < ,8](11).

(a) Gn(Bj,) < Gn(Bj,)- Since no tie is appeared in the sample, there always

exists Yy € {reR?: 2 < M g £ B, }. Clearly, Yj is also an omnidi-

rectional jump which is discordant to ;,. Denote by @-{ = (ﬁj(»;),Yj(,z)).
1

Gn (™) —Gn(Bj,) > Gn(Bji) —Gr(Bj,). Therefore, there must exists

~ 1
Vi € {x € R? 12 < B x £ B, } such that G,(B;<) — Gn(Bj,) = e

where Bj* = (,6]( ) Y(Q)) Since Y« is discordant with f;,, Bj* must be an

0 )

omnidirectional jump of G,, with G, (Bj )= (6]-1) + L Thus, we select
Bjo = Bj*' Clearly, )‘B 2= (/8(1 +Gn (B]l) +G (/831)) = >‘le,1 and
)\BjQ 4 )\le 2. In addition, we have
2 2 1
Vi 4 Gu(B3) < B3+ Cn(B) —

due to that Yj(g) < Bj(g) and that Gn(Bj,) < Gn(Bj,). Therefore when

to=1,2,t1 =1, i.e. )\ijto and >‘Bz‘oy1 are discordant, there exists )\Bj272 =<
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1 1 2 2
(max()\sgj()’to,)\sgj)l,tl),max()\sgjo’to,)\gj)l,tl)). When to=1,2, t; =2, and

. 1 1 2 2
there exists Ap; 4 < (max()‘%;o,to’)\533‘)1,t1)’max()‘5930,t0’>\§3j)1,t1))'

(b) Gn(Bj,) > Gn(Bj,). Therefore G,,(8™%) — Gy (Bj,) > L. This is similar
to the case when Gn(8j,) < Gn(Bj,). Thus we can either select A\p; 2 =

A,

0ol O ABj, 4 22 AB;, 2.

J0°
(¢) Gn(Bj;) = Gn(Bj,). The existence of jo also directly follows if ¢y = ¢;.
If they are not equal, let us assume that tg =1 and t; = 2, i.e. )‘Bjovl

and A B;, 2 are discordant. Following a similar argument, we can find 3;,
such that 810 = 817 and 87 > 5 > ) with G, (8;,) = Ga(Bj,) + L.
Then we have Ag, 4 = (65 + Gu(8),) — 1.8 + Ga(Bj) — 1) = Ap,, 2.
Note that Ag, 1 = (B](-j) +Gn(ﬁj0)7ﬁj('§) +Gn(Bjo)), 53(22) +Gn(Bjy) =5 <
ﬁj(-f) +Gr(Bj,). Thus we are able to find A Bj, 4 meet the requirement.

Therefore, the existence of A Bj, b2 follows. O

To prove Lemma 4.39, we first introduce the following auxiliary lemma.

Lemma 4.46. For any (z,y) € R?, if V(x,y) is not empty, there always erists
A€ V(x,y) and Ly, such that \, (x,y) € L, ;.

Proof. 1f V(z,y) is not empty, it is clear that (x,y) € Z;; must hold for some j and

t. Since (z,y) € Z;, there must exists (x1,y1), (x2,y2) € Z;; such that

(z1,91) =2 (2,9) =2 (22, 92)- (4.C.34)

Therefore, there should at least exists A, one vertices of Z;;, such that A € V(x,y).
Additionally, since the set in (4.A.2) are non-overlapping, at least one vertices of
Z;, should further fall in V(x,y). Otherwise, for any (xo,0) € Zj 4, (x,y) 2 (v2,12),
which contradicts (4.C.34). O

Proof of Lemma 4.39. We consider two cases of Aj(A4;).

o Case 1. \j;(4;) is determined by (4.A.3). Therefore, A\p.

orto € V(\4,), for some

jo and tg = 1 or 2. By the definition of V(\4,), we have \§(A4;) < Aa,.

(a) to =1. It is trivial to show that region Zj, ; contains Ay4,, which cor-

responds to the surface with the normal direction parallel to the axis
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Oz. By the definition of Fj, the projection of E; and A; along the di-
rection OFy should coincide. Therefore, the surface with projection cor-

responding to the region Zj, 3 should contain the point Ej. Therefore,

we have wg’l) = ng)o ,» where Ej is the intersection of line £; and the

planar curve G¢, defined in Lemma 4.15. Additionally, by the property

of E;, we have ]wgl) - wgl)] = \wgl)

infBEGfL poo(AlaB):poo(AlaEl): |w,(§))_wg) ‘

1 Jjo-to

—wfl)\ = Iwg’l) - wfl)|, thus we have

(b) to=2. This is the case when either Z;, ; or Z;, » contains A4,. This can be

further specified by checking whether ngo ,— wfjl) < wg}g , w%) holds.

If ng)oﬂ —wgl) < ng)oﬂ —wfl), then Ag; , € Zj,,1. Similarly, we have

1 1 . 1 1
wiy) = wh) . Thus infpecs poo(Ar, B) = poo(A1, Br) = [wy) —wly) |.

The case when Ap, , € Zj, 2 is similar.

o Case 2. M\5(4;) is determined by (4.A.5). Therefore, V(\4,) is not empty
and Vj=1,...,vand t=1,2, A\p,, ¢ V(\4,). Our first step is to show that
A5(A;) defined in (4.A.4) fall in the same region as A4, i.e. N5(A4;), 4, €
Z;; for some j and t. By Lemma 4.46, we could always find A € f/()\Al),
such that A\, \a, € Z;;. Thus, it suffices to show that if \j, 4 # Aj,4 € V(Aa,),
Poo(Nj1 45 A4,) > Poo(Nja a5 A4,), then Aj; 4 € T;,. This can be shown graphically
by Figure 4.13. Since poo(Aj, 4,A4;) > Poo(Ajpa,A4,), it is clear that A falls

2(2) Poo (s Aji )= oo (X Aj.4)

’
’
.
4

P ()‘7)‘3'1,4) < poo()"v,)‘jzA)

v
’

.
z

Ajia - T oo (N A1 a) > poo(X Ay a)

21

Figure 4.13: Regions where poo (X Aj; 1) > Poo(A Ajs 4) O poo (A A 14) < Poo(A, Ay a) for
A= Aj, 4, Ay 4, with the boundary poo (A, Aj;,4) = pPoo(A, Ajy,4) shown as a
blue dashed line.

in the light green region of Figure 4.13. Additionally, the equidistant line
Poo (A Aj14) = poo(A, Ajy.a) s of 45 degrees. By the shape of 7.5 and Z. 3, it is
clear that Aj, 4 ¢ Z;;. Thus Aj(A4;) defined in (4.A.4) should be in the same

region as A4,. By the shape of regions in (4.A.2), it is also easy to show that
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A5(4;) in (4.A.5) also stays in the same set in (4.A.2) as Ag,. Therefore,

(4.A.6) can also prove to be true by using the same step as in Case 1(b)).

In summary, (4.A.6) holds. O

4.D Accuracy and Speed Comparisons

In this appendix, we compare the speed and accuracy of the C++ implementation
of the projection and the transformation method in Section 4.3.1 for computing the
Hausdorff distance, H(F¢,,G¢). The reported CPU times are obtained running the
related C++ code on a machine with a 2.20 GHz Intel Core i7-14650HX processor
with 16GB RAM, running Windows 11.

We separately consider cases n =m =20, 50, 100, 500, 1000, 5000, 10000, and
50000. In each case of sample sizes, we generate two random samples from the
uniform distribution U(0,1) and then compute the H(FS,,GS). To further evalu-
ate the accuracy, we further round each observation in both samples to 6 decimal
places. Thus, although the statistical value H(Ff,,G¢,) is sample dependent (there-
fore random), in the view of Lemma 4.23, the real value of H(F},,G¢) must be an
integer multiple of the value 10~%. With this available, we provide the run time for

computing H(FY,,GS) 1000 times, as well as their precision, in Table 4.2. Clearly,

m=mn Algorithm H(FS,,G%) Rel.Err CPU time Relative time
20 P 0.15000000000000000 0 0.0057 0.98
Tr 0.15000000000000000 0 0.0058 1
50 P 0.08000000000000000 0 0.0098 1.04
Tr 0.07999999999999990 1.22x10~  0.0094 1
100 P 0.04000000000000000 0 0.0184 1.18
Tr 0.04000000000000000 0 0.0157 1
500 P 0.02526300000000000 0 0.2455 2.47
Tr 0.02526300000000090 0 0.0994 1
1,000 P 0.01600000000000000 0 0.9185 3.91
Tr 0.01600000000000020 1.27x10~* (0.2348 1
5,000 P 0.00901700000000005 5.33x10~ 1 20.0851 13.9
Tr 0.00901699999999918 9.10x10714  1.4468 1
10,000 P 0.00639999999999996 6.22x10~1°  83.3945 26.0
Tr 0.00640000000000377 5.89x10~13  3.2110 1
50,000 P 0.00165999999999999 6.00x10~ ™ 2002.7778 87.9
Tr 0.00165999999997949 1.24x10~'t  22.7778 1

Table 4.2: The computed distance H(FS,,GS) with the corresponding relative error and
the CPU time for 1000 times repeated evaluations using C++ implementation
of projection (P) and Transformation (Tr) approach
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the projection approach usually provide 16 correct digits, in contrast to the trans-
formation approach, which typically provides 14 correct digits. This is at a cost
of higher run time, since the former approach is 1-87 times slower than the latter,

which further grows as sample sizes increase.



Chapter 5

Conclusions and Further

Developments

5.1 Summary of Potential Extensions

In Chapter 2, we have given recursive formulae (2.2.11) and (2.2.23) for the comput-
ing of the exact p-values of the KS tests and Kuiper tests with arbitrary weights for
data samples coming from discontinuous distributions. In principle, these recursive
formulae potentially can be generalized to the multivariate KS or Kuiper tests with
appropriate definitions.

We have further shown that the weight function suggested by Biining (2001)
can significantly improve the power of the KS test when samples come from purely
discrete distributions. The use of some particular weight functions of the KS test
has been thoroughly explored for continuous data samples; however, it remains to be
seen how to systematically select weight functions in the more general case, which
will be interesting to investigate in the future.

In addition, we have shown that the recursive formula (2.2.23) is efficient only
if the sample sizes m and n have a small least common multiple and is extremely
time-consuming if m and n are coprime. This computational inefficiency can be
addressed by two possible directions: one is to give a bound of the approximation
error arising from replacing m’ &~ m,n’ &~ n so that it can be reasonably controlled,
the other is to further give a universal recursion formula without relying on the least
common multiple.

Potential extensions arising from Chapter 3 are given in Section 5.2.

In Chapter 4, we introduced the two-sample statistic based on the Hausdorff
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distance in the general case of dimension k£ > 1 and developed a numerical method
to compute it when k£ < 2. However, the computation complexity of the latter
method increases with k increasing, since it relies on searching and sorting the
onmidirectional jumps in the empirical cdfs F),, and G,, whose numbers grow at
rates m* and nF respectively. Therefore, a potential further extension would be
to find an efficient method that evaluates the distance between empirical cdfs in
high dimensions with lower computational complexity. Furthermore, it would be
informative to conduct more systematic power comparisons against the existing test
statistics in high dimensions.

Another interesting extension of the results in Chapter 4 would be to consider
possibly dependent data and develop statistics for testing (conditional) indepen-
dence based on the Hausdorff distance. In particular, Kim et al. (2022) propose a
general framework for conditional independence testing based on local permutations
in the sample. This line of work has been extended further by Neykov et al. (2024),
who construct Wasserstein-type statistics for conditional independence and obtain
several fruitful results, where smoothness assumptions play a crucial role. We be-
lieve that this framework could be further generalized to construct independence
test statistics based on the Hausdorff metric, relying on the Lipschitz continuity

properties established in Theorem 4.6.

5.2 New Metrics and Statistics

In Chapter 3, we have investigated the properties of the Hausdorff statistic and its
scaled version H,(0). We have particularly highlighted its connections to the KS
statistic and shown in Theorem 3.17 that it can be rewritten in the form of the KS
test. We would like to highlight that this approach can be extended to introducing a
new metric in analogy to the Kuiper test. Following (3.2.7), which is the functional

form of the Hasudorff metric, we define the distance H' between cdfs F' and F}, as

H'(F,F,) =supinf max (|z — y|, F(x) — F,(y)) 4+ supinf max (|z — y|, F,,(y) — F(x)).
y @ oy
(5.2.1)
It is not difficult to show that H'(F,F,,) can be expressed as

H'(F¢, Fy) = sup| K (t) — K (t)] - inf[Kn () — K (1)],
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similarly as in Theorem 3.17, where K,, and K are defined in Example 3.16. Since
Abrahamson (1967) has shown that the Bahadur exact slope of the Kuiper test is
higher than that of the KS test, following the similar logic, one should expect that
the statistic based on the metric H' may have higher Bahadur efficiency compared

with the Hausdorff metric, i.e., it has higher power.

Based on the Proposition 3.34, the values of H,(c) can be interpreted as the
vertical side of the largest rectangle among all rectangles with ratio of sides equal to
o, inscribed between F'¢ and F¢. Consequently, the values of H,, (o) across different
o are not directly comparable. A more natural normalisation is to consider %”H%(a)
or ﬁ?—ln(a) which both represent the area of that largest rectangle. In particular,

%7—[”(0) can be meaningfully compared across different o.

Since different choices of o emphasise different aspects of the deviation between

F¢ and Fy¥, a statistic that aggregates all such information can be defined as

o - rg;ié({w(a) UEH”((;)F} HP, = /0 (o) [\%Hn(a)]pda,

where w(co) is an appropriately chosen weight function on o € (0,00) guaranteeing

that both statistics are well defined, i.e., HP < oo and H?

Pa int < 00. More im-

portantly, since %’Hn(a) represents the area, it is not difficult to show that any
and H?

rescaling with respect to F' and F,, does not affect the p-values of HP int-

max
When w(o) =1, the value H2,,, has the simple geometric interpretation of being

the area of the largest rectangle inscribed between F“ and F}:.

Furthermore, combining the reasoning based on Section 3.3.2 and the rule
(3.3.11), when 1y ~ by &~ 1, (3.3.11) reduces to o = f(F~1(3))). Substituting this

reparametrisation into HY

yields

P _ . 1 - :
Hint_/o () [f(F—l(w))Hn (f (F IW)))} dy,

where w(1)) is a weight function with respect to ¢ € (0,1).

Intuitively, W?—M (f (F~1(¥))) is the statistic that are sensitive around
the 1 quantile of F. Therefore, by choosing w(¢)) to take larger values when
is close to 0 or 1, one can construct a statistic that is simultaneously sensitive to

deviations in both the left and right tails of the null distribution, regardless of the
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shape of F'. This stands in contrast to the original H,, (o), for which it is impossible
to tune o so as to achieve simultaneous left- and right-tail sensitivity when F is
purely concave or purely convex. However, all of the above statistics effectively
introduce new metrics on the space of distribution functions and therefore require
systematic investigation. For instance, one can show that when w(c) =1, H2,,, is

well defined (i.e. finite) for any distribution function F' satisfying

+o0 0
/ i —F(t)]dt+/ F(t)dt < oc.
0 —00

However, in general, H2, . need not be finite for arbitrary F, and it may fail to

T
define a well-defined metric on the full class of distributions.

In Chapter 4, we have also highlighted the connection between the Hausdorff
metric and the Levy-Prokhorov metric. Another interesting investigation will be to
extend the existing methods and theoretical results for the Hausdorff metric to the
statistic constructed based on the Levy-Prokhorov metric, i.e. prp(ux,,, 1y, ), which
again is scale-dependent but robust to mild perturbations. We should highlight that
Alexander (1974) has investigated a statistic based on the Prokhorov metric and
applying rank transformation. However, as we have similarly argued in Remark 3.24
and Section 4.4, such a rank-statistic is less appealing since it does not take into
account the information contained in each observation and violates many robustness
properties. We still believe the approach to tune scale rather than applying the
ranking transformation gives potential to develop more powerful tests against the
Wasserstein test and more flexibility to develop locally sensitive tests.

We also believe this statistic will be particularly powerful for (two-sample) high-
dimensional statistics since it does not rely on any specific definitions of the empir-
ical cdf and thus is independent of the relative ordering in R*. In addition, Garel
and Massé (2009) have shown in their Lemma 5 that the exact Prokhorov distance
between finite-support probability measures can be obtained by solving an optimiza-
tion problem through the simplex method. The latter requires the knowledge of the
distances between different data points and thus the complexity does not grow as
the dimension grows, in contrast to the H statistic.

For the purpose of computing the p-values of prp(ux,, ,ty, ), one will need the

permutation version prp(u xt 7“Y*) and the theory regarding their p-value differ-
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ences, similar to Theorem 4.24. It may be possible to extend Theorem 4.24 to the
univariate prp(ux,, .y, ) through the following route. First, we consider the class
€%, which denotes the collection of unions of finite (at most k) intervals, then one can
extend the weak convergence in (4.C.13) of Lemma 4.42 over the indicator functions
1o, C € &, since € has finite Vapnik—Chervonenkis dimension. Therefore one can
extend Theorem 4.24 to the statistic prp(ux,, , iy, ; €;) and its permutation version.

Second, if it is possible to establish a bound

mn
\/ - @) < a(k), ¥
m+n!pr(uXm,uYn) prp(px,,: 1y, €k)| < a(k), Vm,n

where a(k) — 0 as k — oo under certain regularity conditions of the underlying
distributions F' and G, Theorem 4.24 can then be extended to prp(pux,,, 1y, )-
Furthermore, we emphasise that, unlike the Hausdorff metric, which is only
quasi-convex with respect to the probability measures, the Prokhorov metric is gen-
uinely convex. This makes Prokhorov-based constructions particularly attractive in
global sensitivity analysis and variable-importance measures, where convexity un-
derlies several other desirable properties Borgonovo et al. (2025a). In addition, as
already mentioned, the Prokhorov distance could be tuned to emphasise different
features of the distributions, in close analogy with the Hausdorff metric. Therefore,
we expect that, in the context of variable-importance analysis, Prokhorov-based in-
dices would systematically reveal how the distribution of the output responds to

perturbations in each input.
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