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Chapter 1

Introduction

1.1 Background

The field of investment management has experienced a profound transforma-

tion over the last half-century. The practice has evolved from one dominated

by qualitative judgment and individual intuition to a discipline increasingly

defined by systematic processes, quantitative analysis, and scientific rigor.

This paradigm shift has been propelled by the exponential growth in com-

putational power and the proliferation of financial data, giving rise to the

domain of mathematical and quantitative finance. The central premise of

this domain is that the application of sophisticated statistical models can

be used to identify and systematically harvest market inefficiencies and risk

premia.

However, this evolution has introduced a new set of formidable chal-

lenges. The sheer volume and complexity of modern financial data present

significant obstacles, including the prevalence of noise, the curse of dimen-

sionality, and non-stationarity in market dynamics. Researchers and practi-

tioners must also contend with the ever-present danger of data mining and

11



overfitting statistical models. In this complex landscape, classical portfo-

lio theories, while foundational, often prove to be insufficient. Specifically,

traditional diversification strategies can falter when faced with the low-rank

nature of financial data, where the returns of thousands of securities are of-

ten driven by a small number of underlying common factors. Furthermore,

static, single-state models of asset returns fail to capture the abrupt and per-

sistent shifts in market behavior, known as ”regimes,” which are empirically

observed throughout economic cycles. The relentless academic and indus-

trial search for predictive signals has also created a factor zoo, a landscape

of hundreds of potential return predictors. This proliferation makes the task

of combining signals into a single, robust investment score a non-trivial chal-

lenge, fraught with the risks of signal redundancy and cancellation.

This thesis argues that overcoming these modern challenges requires a

departure from conventional approaches that analyze securities and signals

in isolation. It posits that more resilient, efficient, and scalable investment

frameworks can be developed by focusing on the identification, modeling, and

exploitation of the market’s latent structures. These underlying structures,

whether they manifest as the implicit risk factors driving a covariance ma-

trix, the unobservable macroeconomic regimes dictating return distributions,

or the fundamental predictive waveforms hidden within noisy data, offer a

more parsimonious and robust foundation for building investment portfolios.

To this end, this thesis presents three distinct essays that leverage innovative

methodologies from fields such as unsupervised machine learning, probabilis-

tic modeling, and electrical engineering to address these critical limitations

in modern portfolio construction.
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1.2 A brief history of quantitative portfolio

management

The field of quantitative portfolio management has undergone a profound

transformation over the past seventy years, evolving from the foundational

principles of modern portfolio theory into a sophisticated discipline that lever-

ages advanced statistical modeling, optimization techniques, and, more re-

cently, machine learning. This evolution has been driven by a continuous

interplay between academic theory and practical application, spurred by the

increasing availability of data, exponential growth in computational power,

and a deeper understanding of market dynamics. This review traces the

chronological development of portfolio construction methodologies, examines

the latest advances over the past few decades, and situates the three essays of

this thesis within the context of specific, pressing challenges in the literature.

The genesis of quantitative portfolio management can be traced to the

seminal work of Markowitz (1952), which introduced the mean-variance op-

timization (MVO) framework. Markowitz’s pivotal contribution was to for-

malize the trade-off between risk and return, demonstrating that portfolio

risk, defined as variance, depends not only on the risk of individual assets but

critically on their covariance. This established the mathematical foundation

for diversification, showing that investors could construct an efficient fron-

tier of portfolios that offer the maximum expected return for a given level of

risk. The development of MVO is widely regarded as the catalyst for modern

financial economics and remains a cornerstone of portfolio management to

this day.

Building on Markowitz’s framework, the 1960s saw the development of

the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner

(1965), which provided a theoretical model for pricing assets based on their

systematic risk, or beta (β). However, the foundational assumptions of MVO
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and CAPM, that investor utility is a quadratic function of returns and that

asset returns are normally distributed—were soon met with skepticism. Early

studies began to question the efficacy of variance as a comprehensive risk

measure, as it penalizes upside volatility equally with downside risk, which

is inconsistent with investor psychology. This led to the exploration of alter-

native risk measures and utility functions throughout the 1970s and 1980s.

The theory of stochastic dominance was introduced to provide a more

general framework for comparing uncertain prospects without relying on spe-

cific utility functions. Concurrently, researchers developed downside risk

measures that focused specifically on the part of the return distribution that

investors are most concerned with. Fishburn (1977) laid the groundwork

for downside risk, leading to the development of measures like semi-variance

(Markowitz et al., 1993) and lower partial moments. The introduction of

Value-at-Risk (VaR) provided a simple, intuitive measure of potential loss,

though its statistical properties were found to be undesirable for optimization

(Jorion, 1997). A significant breakthrough came with the formalization of

Conditional Value-at-Risk (CVaR) by Rockafellar and Uryasev (2002), which

measures the expected loss beyond the VaR threshold. Crucially, CVaR was

shown to be a coherent risk measure (Artzner et al., 1999) and could be opti-

mized using efficient linear programming techniques, making it highly prac-

tical for portfolio construction. Other measures, such as the mean-absolute

deviation (MAD) model (Konno and Yamazaki, 1991), were also developed

to offer computationally simpler, linear-programming-based alternatives to

the quadratic MVO problem.

While foundational theories provided the essential grammar for portfolio

management, their practical implementation revealed significant challenges.

The most critical issue with MVO is its error-maximization property; the

optimizer’s tendency to be hypersensitive to input parameters, where small

errors in estimating expected returns and covariances lead to extreme and
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unstable portfolio weights (Michaud, 1989; Chopra and Ziemba, 1993). The

last two to three decades of research have been largely defined by the search

for solutions to this fundamental problem, leading to several major streams

of innovation.

Robust and Bayesian Methods: One major stream has focused on im-

proving the quality of the inputs. Bayesian techniques offer a natural frame-

work for this, allowing investors to blend historical data with prior beliefs

or theoretical models. The Bayes-Stein shrinkage estimator, first applied to

portfolios by Jorion (1986), shrinks unstable sample means toward a more

stable common mean, such as the mean of the global minimum-variance

portfolio. The Black-Litterman model (Black and Litterman, 1992) became

a widely adopted industry standard by providing a disciplined framework

for combining an investor’s subjective views with market equilibrium re-

turns, resulting in more intuitive and diversified portfolios. More formally,

robust optimization directly tackles parameter uncertainty by optimizing for

a worst-case scenario within a defined uncertainty set for the input parame-

ters, producing portfolios that are less sensitive to estimation errors (Xidonas

et al., 2020). A parallel approach involves regularization, where a penalty

term (e.g., the L1-norm) is added to the optimization objective to enforce

sparsity and constrain portfolio weights, leading to lower turnover and more

stable out-of-sample performance (Brodie et al., 2009; DeMiguel et al., 2009).

Risk-Based Asset Allocation: A second major innovation has been the

shift away from reliance on notoriously difficult-to-estimate expected returns.

Risk-based allocation methods construct portfolios based solely on risk pa-

rameters. The most prominent of these is the Risk Parity (RP) or Equal

Risk Contribution (ERC) portfolio, which weights assets such that each con-

tributes equally to the total portfolio risk (Maillard et al., 2010). Gaining

significant traction after the 2008 Global Financial Crisis for its perceived

resilience, RP seeks to achieve “true diversification” in risk terms, rather
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than capital terms. This approach has been extended to factor risk parity,

where risk is balanced across underlying risk factors rather than asset classes

(Bhansali et al., 2012).

Machine Learning and Artificial Intelligence: The most recent paradigm

shift has been driven by the advent of machine learning (ML) and artifi-

cial intelligence (AI). ML offers a powerful toolkit to address the limitations

of traditional models by capturing complex, non-linear relationships in vast

datasets. The application of ML in portfolio optimization can be broadly

categorized into two stages, mirroring the classic Markowitz framework (Lee

et al., 2023). First, in the parameter estimation stage, supervised learning

models like neural networks and gradient-boosted trees are used to fore-

cast returns and covariance matrices with greater accuracy than traditional

econometric models (Gu et al., 2020). Unsupervised learning techniques like

hierarchical clustering are used to identify data-driven asset classes, pro-

viding more robust inputs for asset allocation (Raffinot, 2017). Second, in

the optimization stage, ML helps solve complex, large-scale, or non-convex

problems that are intractable for traditional solvers, such as portfolios with

cardinality constraints.

Furthermore, advanced ML techniques are beginning to merge the pre-

diction and optimization stages into a unified framework. Decision-focused

learning trains predictive models not to minimize prediction error (e.g., Mean

Squared Error) but to directly minimize the downstream decision loss (or “re-

gret”) of the final portfolio (Butler and Kwon, 2022). End-to-end models,

often using deep learning architectures, bypass parameter estimation entirely,

learning a direct mapping from raw market data to optimal portfolio weights

(Zhang et al., 2020). Reinforcement learning takes this a step further, train-

ing an agent to learn an optimal dynamic trading strategy through trial-and-

error interaction with a market environment, making it naturally suited for

multi-period optimization (Jiang et al., 2017). While still an emerging area,
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these methods hold the potential to revolutionize portfolio construction by

creating truly adaptive and data-driven strategies.

1.3 Research gap

While the evolution to quantitative finance has been transformative, it is not

without its challenges. The sheer volume and complexity of financial data,

coupled with issues of noise, non-stationarity, and the risk of overfitting,

create a landscape where classical portfolio theories often prove insufficient.

This thesis identifies three fundamental problems in modern portfolio con-

struction where conventional approaches falter, revealing significant research

gaps that motivate the subsequent essays.

The Challenge of True Diversification. A central problem is that tradi-

tional diversification strategies may fail when confronted with the low-rank

nature of financial data. These methodologies typically work at the security

level (e.g., equal-weighting or risk parity) and often ignore the powerful un-

derlying common factors that drive portfolio returns and risk. As a result,

allocating capital homogeneously across many securities can be an ineffective

diversification exercise if a single factor dominates their returns. While re-

cent studies have explored using matrix factorizations to diversify across these

implicit factors, a research gap exists between these theoretical ”thought ex-

periments” and practical, implementable methodologies. Few studies have

addressed the outstanding challenges of tradability and stability, as these

methods often produce portfolios with extreme long and short positions and

suffer from instability that leads to excess trading.

The Challenge of Market Non-Stationarity. A second major limitation

of existing models is their static nature. Static, single-state models of as-

set returns fail to capture the abrupt and persistent shifts in market be-

havior, or regimes, that are empirically observed during economic cycles.
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Although the existence of market regimes is well-documented, a research

gap persists in their practical application to large-scale portfolios. Apply-

ing regime-switching models to the portfolios of real-world asset managers,

which can contain hundreds or thousands of stocks, has remained a significant

computational and statistical hurdle. This highlights the need for a scalable

solution that can effectively incorporate time-varying market dynamics into

the construction of large portfolios.

The Challenge of Signal Aggregation. The relentless academic and in-

dustrial search for predictive signals has produced a ”factor zoo” of hundreds

of potential return predictors. This proliferation presents a non-trivial chal-

lenge in combining them into a single, robust investment score, a task fraught

with the risk of signal redundancy and cancellation. The common industry

practice of simple averaging is demonstrably suboptimal, as many of these

signals are both noisy and correlated. This creates a research gap for a more

sophisticated and robust framework for signal aggregation that can system-

atically account for the complex and time-varying interrelationships between

factors to maximize a portfolio’s overall signal-to-noise ratio.

Collectively, these problems demonstrate a need to depart from con-

ventional approaches that analyze securities and signals in isolation. The

research gaps identified in diversification, regime-awareness, and signal com-

bination all point toward the necessity of developing frameworks that can

model and exploit the market’s underlying latent structures.

1.4 Significance of the research

This thesis seeks to advance the theory and practice of quantitative portfolio

management by developing and validating three novel frameworks designed

to address fundamental limitations in conventional investment models. The

research provides a significant contribution to the literature by offering novel,
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robust, and practical solutions to core problems in portfolio management.

Collectively, the work underscores a unified theme: that the path to superior

investment performance lies in a deeper, more structural understanding of

the forces that shape financial markets, enabled by the thoughtful application

of advanced quantitative techniques. By focusing on modeling the underlying

latent structures that govern market dynamics, this research demonstrates

that it is possible to build portfolios that are more intelligently diversified,

more adaptive to changing conditions, and more resilient to market turmoil.

The specific contributions are threefold. First, the thesis addresses the

fundamental challenge of achieving true portfolio diversification by proposing

a novel framework, the Diversified Spectral Portfolio (DSP). This approach

moves beyond traditional heuristics to diversify directly across implicit, data-

driven factors, yielding superior risk-adjusted performance, particularly in

the highly correlated market environments where traditional diversification

is most needed. Second, it tackles the problem of time-varying market dy-

namics by introducing a scalable solution that leverages the low-rank factor

structure of equity returns. This allows for the construction of large-scale,

regime-aware portfolios that can dynamically adapt their posture to changing

market conditions, delivering improved returns and more effective diversifi-

cation compared to static, regime-agnostic baselines. Third, it confronts the

challenge of signal aggregation in the era of the ”factor zoo” by pioneering

an interdisciplinary approach that draws a powerful analogy between com-

bining investment signals and techniques used in electrical engineering. By

applying adaptive beamforming, this framework optimally combines signals

to maximize the portfolio’s signal-to-noise ratio, dramatically outperforming

traditional methods while providing superior resilience and shallower draw-

downs during periods of market stress.

A key contribution of this research is its demonstration of the immense

value of interdisciplinary innovation. The solutions proposed are inspired by
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advances in unsupervised machine learning, probabilistic modeling, and sig-

nal processing, showing that sophisticated toolkits from other quantitative

fields can be adapted to yield powerful financial applications. The practical

implications of this research are therefore significant, offering quantitative

asset managers and hedge funds concrete methodologies for improving diver-

sification, adapting to market regimes, and building more potent multi-factor

models.

1.5 Thesis outline

This thesis builds upon the recent advances described in the previous section

by arguing that more resilient and efficient investment frameworks can be de-

veloped by focusing on the identification, modeling, and exploitation of the

market’s latent structures. Conventional approaches often analyze securities

and signals in isolation, proving insufficient in a landscape characterized by

powerful common factors, non-stationary dynamics, and a proliferation of

noisy signals. These underlying structures, whether they manifest as the

implicit risk factors driving a covariance matrix, the unobservable macroeco-

nomic regimes dictating return distributions, or the fundamental predictive

waveforms hidden within noisy characteristic data, offer a more parsimo-

nious and robust foundation upon which to build investment portfolios. To

this end, this thesis presents three distinct essays that leverage innovative

methodologies, drawing inspiration from fields such as unsupervised machine

learning, probabilistic modeling, and electrical engineering, to address critical

limitations in modern portfolio construction.

The first essay, “Diversified Spectral Portfolios: An Unsupervised Learn-

ing Approach to Diversification,” addresses the fundamental challenge of

achieving true portfolio diversification. It moves beyond traditional security-

level heuristics like equal-weighting and risk parity, which often ignore the

powerful common factors that drive portfolio risk. The essay proposes a novel
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framework, the Diversified Spectral Portfolio (DSP), that uses the Singular

Value Decomposition (SVD) to peer into a portfolio’s “eigenspace” and di-

versify directly across the implicit, data-driven factors. To solve the practical

issues of tradability and stability that plague such methods, it introduces an

unsupervised clustering step that groups securities based on their factor ex-

posures, reducing dimensionality and mitigating the risk of extreme, unstable

allocations. Through extensive Monte Carlo simulations, the essay demon-

strates that this structurally aware approach to diversification yields superior

risk-adjusted performance, particularly in the highly correlated market envi-

ronments where traditional diversification is most needed.

The second essay, “Incorporating Market Regimes into Large-Scale Stock

Portfolios: A Hidden Markov Model Approach,” tackles the problem of time-

varying market dynamics. While the existence of distinct market regimes

(e.g., bull and bear markets) is well-documented, applying regime-switching

models to the large-scale portfolios of real-world asset managers has remained

a significant computational and statistical hurdle. This essay introduces a

scalable solution that leverages the low-rank factor structure of equity re-

turns. Instead of modeling thousands of individual stocks, a Hidden Markov

Model (HMM) is fitted to a parsimonious set of common risk factors to iden-

tify the prevailing market state. It then develops a novel ”Regime-Weighted

Least Squares” (RWLS) methodology to estimate regime-dependent factor

loadings for every stock in the universe. This allows for the construction of

large-scale, regime-aware portfolios that can dynamically adapt their posture

to changing market conditions. The empirical results, based on simulations

calibrated to historical U.S. market data, show that this regime-aware frame-

work delivers improved returns and more effective diversification compared

to a static, regime-agnostic baseline.

The third essay, “Optimal Investment Signal Combination in System-

atic Equity Portfolios: A Beamforming Approach,” confronts the challenge
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of signal aggregation in the era of the ”factor zoo.” With hundreds of poten-

tial factors, many of which are noisy and correlated, the common industry

practice of simple averaging is demonstrably suboptimal. This essay pioneers

an interdisciplinary approach, drawing a powerful analogy between combin-

ing investment signals and the techniques used in electrical engineering to

process signals from an antenna array. It re-frames investment signals as

noisy waveforms and proposes the use of adaptive beamforming, a sophis-

ticated signal processing methodology, to optimally combine them. This

framework dynamically filters, aligns, and weights each signal to maximize

the overall portfolio’s signal-to-noise ratio, systematically accounting for their

complex and time-varying interrelationships. A rigorous historical backtest

shows that this engineering-inspired approach dramatically outperforms a

traditional baseline, delivering substantially higher returns while providing

superior resilience and shallower drawdowns during periods of market stress.

Collectively, these three essays contribute to the literature by providing

novel, robust, and practical solutions to fundamental problems in portfolio

management. They underscore a unified theme: that the path to superior

investment performance lies in a deeper, more structural understanding of

the forces that shape financial markets, enabled by the thoughtful application

of advanced quantitative techniques.
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Chapter 2

Diversified Spectral Portfolios:
An Unsupervised Learning
Approach to Diversification1

2.1 Introduction

Traditional portfolio diversification methodologies focus on either having a

balanced weight profile (aiming at an equal-weighted portfolio) or achiev-

ing a balanced risk contribution profile (aiming at the risk-parity portfolio),

working at the security level and ignoring the interactions of the underlying

factors driving the returns and covariance of the investable universe. To illus-

trate this, the variability of returns of different securities could be dominated

by a single shared underlying factor, making the exercise of allocating homo-

geneously across them very ineffective from the diversification point of view.

This becomes even more pressing when a portfolio manager has the daunt-

ing task of allocating across numerous securities which, given the low-rank

1A version of this chapter has been published as: Ibanez, F. A. (2023). Diversified
Spectral Portfolios: An Unsupervised Learning Approach to Diversification. The Journal
of Financial Data Science, 5(2), 67–83. https://doi.org/10.3905/jfds.2023.1.118.
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nature of financial data, will be mostly driven by very few shared factors.

When it comes to factors in finance, Martellini and Milhau (2017) iden-

tify three commonly adopted definitions. First, factors can be thought of

as profitable systematic strategies that earn a premium in the long run and

are backed by recognized anomalies (e.g., size, value, and momentum, in eq-

uities). Alternatively, factors can refer to time-varying state variables that

can determine the conditional expected return, volatility, and correlations of

asset classes (e.g., dividend yield, forward rates). Finally, factors can point

to common sources of risk that may or may not be rewarded, which can be

explicit in case their values are observable or implicit in case they have to be

extracted from returns. Something the first two definitions have in common

is that they require the user to define, ex ante, a parsimonious set of econom-

ically and statistically relevant factors. However, there is little agreement on

either what these factors are or how many they are, when we analyze datasets

other than the well-studied US equities case. The previous has sparked re-

cent interest in the third definition, giving birth to a series of studies that use

matrix factorizations to identify the underlying implicit factors and diversify

across them. However, few studies have explored the greatest outstanding

challenges of relying solely on these decompositions: the actual tradability of

the resulting portfolios due to their extreme positioning (i.e., extreme long

and short positions). Additionally, the amount of noise that typically sur-

rounds financial data makes its estimation somewhat unstable in the presence

of outliers, which translates into different optimal portfolios in consecutive

rebalances, resulting in excess trading. These challenges have created a gap

between what has so far been a thought experiment and methodologies that

can be implemented while managing real portfolios.

This study aims to fill this gap by presenting a diversification-focused

portfolio construction methodology that takes advantage of the singular value

decomposition (SVD) to identify implicit factors and addresses the challenges
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surrounding its stability and tradability. This chapter is organized as follows.

First, we review the existing literature upon which we build our argument.

Then, we introduce the diversification framework; how it can be used to

understand and diversify the risk taken by a portfolio and the challenges it

has to overcome before being widely implemented. After that, we describe the

features and mathematical formulation of our portfolio modeling approach.

Next, we present the experiment conducted to test the methodology and its

results. Finally, we present our conclusions.

2.2 Related literature

The idea of using matrix decomposition to identify the implicit factors driving

portfolio risk and use these factors to build diversified portfolios is relatively

recent. The first attempt is documented by Partovi and Caputo (2004), who

used the eigendecomposition to translate the portfolio selection problem from

one that chooses correlated assets into one that chooses uncorrelated linear

combinations of them. These combinations are achieved through the change

of basis that rearranges the covariance matrix into its eigenvectors, which

are orthogonal to each other by construction. Given that these vectors are

linear combinations of investable securities, the authors label these implicit

factors as principal portfolio, and argue that they are natural instruments for

portfolio analysis when short sales are allowed, because they are free from

correlations. Attilio Meucci (2009) built upon this idea and uses the eigen-

vectors and eigenvalues of the covariance matrix of assets within a portfolio

to project the capital weights into the principal portfolio weights, which can

then be used to attribute the risk of the portfolio to each of these principal

portfolios. Furthermore, the author suggested measuring the degree of port-

folio risk concentration, by calculating the exponential of Shannon’s entropy

in these implicit factor risk attributions, which he called effective number

of bets (ENB); the higher this metric, the more diversified a portfolio is.
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The use of entropy-related measures when measuring portfolio concentration

is not novel. Rudin and Morgan (2006) proposed to calculate the center

of mass of the eigenvalues of the correlation matrix of the investmentable

set to find a quantitative way to measure the degree of diversification in an

investment portfolio. Similarly, Bera and Park (2008) suggested using cross-

entropy measures on the portfolio weights while optimizing, which would be

equivalent to a shrinkage towards the equal-weighted portfolio. Lohre et al.

(2014) formalized this framework and called it diversified risk parity (DRP).

Their work made two major contributions. First, the authors noted that the

DRP strategy is an inverse volatility strategy along the principal portfolios

that can be computed analytically. Second, they explain that maximizing

the ENB measure does not allow for a unique solution in the absence of

constraints. This diversification framework has been operationalized and ex-

panded across different data sets in Lohre et al. (2012) (US stocks), Bernardi

et al. (2018) (commodities), and Dichtl et al. (2020) (multi-asset), concluding

that it is capable of providing better risk-adjusted return and diversification

than other constructions, such as equal-weighted and risk parity.

However, using eigenvectors as implicit factors and diversifying across

them comes with caveats. The most prevalent is the issue of multiple solution

candidates that maximize the ENB measure. A workaround was suggested

by Deguest et al. (2022), who arbitrarily picked two candidates; the solu-

tion that provided the highest Sharpe ratio and the one that provided the

minimum variance. Another approach to overcome this issue is to simply rel-

egate the ENB from the objective function to a constraint, as demonstrated

in Martellini and Milhau (2017), who empirically found that imposing a min-

imum ENB as a constraint while optimizing is an effective way to improve

the diversification of implicit factor exposure. Another caveat of this frame-

work is the lack of interpretability of the factors. Meucci et al. (2015) state

that working with the principal component is suboptimal, as they are purely

statistical entities that are not related to the investment process. The au-
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thors try to remedy this by introducing the minimum-torsion bets, which

are the uncorrelated basis of the factors closest to the factors the portfo-

lio manager is familiar with, significantly improving the interpretability of

the results obtained from the analysis. With similar intent, Kamauchi and

Yokouchi (2021) explores the use of Gram-Schmidt orthonormalization to

extract uncorrelated and understandable risk sources. In an empirical exer-

cise using equity and bond indices from 2000 to 2016, the authors showed

that their results are easier to interpret than other competing methodologies

while showing a similar volatility profile. Finally, another challenge of the

framework is the inability of the eigendecomposition to account for higher

distribution moments, which are relevant in the case of security return data.

Lassance et al. (2022) attempts addressing this by using the independent

component analysis (ICA) instead, which is the rotation of the principal

components that are maximally independent.

2.3 Diversification in eigenspace

2.3.1 Singular value decomposition

An alternative to theoretically defining a set of factors on an ex ante basis

would be to infer the factor structure from the securities themselves. We can

resort to one of the many matrix decompositions in numerical linear algebra

to do so. Within these factorizations, Stewart (1993) argues that the singular

value decomposition (SVD) assumes a special role, as it is an ideal vehicle for

discussion of the geometry (in our case, the factor structure) of the n-space,

it is stable to small perturbations, and it can provide an optimal low-rank

approximation to the original data set. The decomposition is particularly

useful in finance, as it can be applied to non-squared matrices, such as data

sets of t×n security returns. Zhang (2015) argues that the SVD has become

particularly relevant due to recent developments in machine learning, data
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mining, and theoretical data science, making matrices a language of data

science. For these reasons, we propose using the SVD as a completely data-

driven way of identifying the relevant implicit factors of a given investable

universe.

Let us assume that we are interested in analyzing the implicit factor

structure of Z ∈ Rtxn, which contains the aligned t historical returns of the n

assets that are part of the investable universe (where t >> n). Aligning the

data2 is of the utmost importance for SVD. Brunton and Kutz (2019) explain

that the SVD rank explodes when objects in columns translate (nonzero

historical return), rotate, or scale (variance different from 1). The economy-

sized singular value decomposition of Z is then given by

Z = USV T (2.1)

where U is a tall-and-skinny t×n matrix that contains the eigenvectors

of ZZT , S is a diagonal n × n matrix with the singular values of Z in

diagonal terms arranged in descending order, and V is n×n matrix with the

eigenvectors of ZTZ. The information related to the cross-sectional implicit

factors of our returns data set is described along the columns of V . The

eigenvector of V associated with the first (largest) value in S represents the

most prevalent factor dynamic in the data set, continuing in decreasing order,

until the variability of the set is completely explained.

2Aligning the data involves centering (i.e., subtracting its mean) and scaling (i.e.,
dividing by its standard deviation)

28



2.3.2 Spectral risk contribution

The variance of a portfolio, when expressed in terms of its correlation matrix

(R) and capital weights (w), is given by

σ2
p = wTDRDw (2.2)

where

D =


σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σn


n×n

and σi is the volatility of security i, before aligning. Given that the Z

matrix is aligned, ZTZ is proportional to R, so can rewrite Equation (2.2)

as

σ2
p = wTDZTZDw (t− 1)−1 (2.3)

replacing (2.1) in (2.3) we get

σ2
p ∝ wTDV STSV TDw (2.4)

29



The importance of expression (2.4) lies in defining portfolio risk as a lin-

ear combination of eigenvectors and values, allowing us to move from capital

weights and risk framework to spectral weights and spectral risk framework.

wTDV STS︸︷︷︸
Spectral risk

Spectral weights︷ ︸︸ ︷
V TDw

We can manipulate (2.4) to construct the vector φ ∈ Rn×1, which con-

tains the percentage of spectral risk that can be mapped to each implicit

factor,

φ := diag
(
V TDw

)
STSV TDw

(
wTΣw(n− 1)

)−1
(2.5)

Under this framework, we expect that the more uniformly distributed

the contribution to spectral risk φ, the more diversified the portfolio.

As discussed in the literature review, different attempts have been made

to find a sufficient statistic that measures the degree of homegenity in a vector

like φ, and maximize it to find the most diversified portfolio. This concept is

better illustrated in Exhibit 2.1. In the left panel, we can observe the capital

allocation (w) of two different portfolios; an equal-weighted portfolio (EW)

that distributes capital in equal amounts across 13 ETFs tracking different

US equity sectors, and a second portfolio with heterogeneous long and short

positions, which we call Maximum Entropy (ME) in this example. In the

right panel, we can see the contribution to the spectral risk (φ) coming from

each of these portfolios, which is the projection of the capital allocation of the

left panel into the implicit factor space. Although the EW portfolio appears
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to be very well diversified in capital terms, its spectral risk contribution

comes almost entirely from the first eigenvector, which represents the most

dominant risk in the analyzed set. This result is sensible, as all 13 ETFs

follow distinct sectors of the same market, making the risk of the equity

market the most dominant risk in the sample. On the other hand, we have

the very disperse capital allocation of the ME portfolio, which is able to

provide a very homogeneous spectral risk profile. There is no doubt that,

under this framework, the ME offers much better diversification than the

EW portfolio.

2.3.3 Challenges of the framework

The implementation of this diversification framework in a real-life portfolio

setting presents several challenges that, if not overcome, make this framework

no more than a thought exercise.

To introduce the first challenge, let us look again at Exhibit 2.1. The

portfolio resulting from equalizing the spectral risk contribution relies on be-

ing able to take very extreme positioning (i.e., large long and short positions

in very few assets, with small weights everywhere else). This is problematic,

as having the ability to freely take short positions is rather rare in the indus-

try, with many pension funds, mutual funds, and retail investors partially or

totally restricted from shorting securities. In addition, becoming a borrower

within a securities lending program can be costly. Third, relying on taking

short positions on assets with a positive expected return can be detrimental

to long-term portfolio performance.

The second challenge to overcome is the non-unique set of portfolios that

yield maximum diversification in this framework. This happens because the

signs of the eigenvectors are arbitrary and their only relevant aspect is the

direction in which they point. In other words, if vi is an eigenvector of ZTZ,

−vi is also an eigenvector of ZTZ and is associated with the same eigen-
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Figure 2.1: Spectral risk contribution of equal-weighted (EW) and
maximum entropy (ME) portfolios

This figure illustrates the core concept of spectral risk diversification by
comparing two distinct portfolios constructed from 13 U.S. equity sector ETFs.
The left panel displays the capital allocation (portfolio weights) for an Equal-
Weighted (EW) portfolio and a Maximum Entropy (ME) portfolio, which features
heterogeneous long and short positions. The right panel shows the corresponding
contribution to portfolio risk from each underlying implicit factor (eigenvector).
The figure demonstrates that while the EW portfolio appears diversified in terms
of capital allocation, its risk is almost entirely concentrated in the first and most
dominant eigenvector. In contrast, the ME portfolio, despite its dispersed capital
weights, achieves a highly uniform distribution of risk across all eigenvectors,
representing superior diversification under this framework.
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Figure 2.2: Maximimum diversification with and without constraints

This figure visualizes the solution space for maximizing the Effective Num-
ber of Bets (ENB) in a three-asset portfolio, illustrating the challenge of
non-unique solutions. Panel A (Unconstrained) shows the ENB surface when long
and short positions are permitted. The surface exhibits multiple peaks, indicating
that several different portfolio weight combinations can achieve the maximum
level of diversification, consistent with the findings of Lohre et al. (2014). Panel B
(Positivity Constrained) shows the ENB surface when short selling is prohibited.
The imposition of a positivity constraint reduces the number of local optima
and leads to an overall lower maximum achievable ENB value, highlighting the
trade-offs introduced by real-world investment constraints.
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value. The resulting set of portfolios can be dramatically different in terms of

capital allocations and risk-return characteristics. This is better illustrated

in Panel A of Exhibit 2.2, which shows the resulting ENB coming from differ-

ent combinations of three ETFs3, allowing for long and short positions, and

assuming a fully invested portfolio4. The first observation that we can make

is the multiple optimal combination of weights that maximize the objective

function, which is consistent with the observation of Lohre et al. (2014). We

can also note that when a positivity constraint is in place, the number of

local optima is reduced (in this case, to two), which is also highlighted by

Deguest et al. (2022), and these optimal combinations of assets yield a much

lower ENB value. To address this multiple-optimal issue, the authors opted

for picking only two out of the 2n−1 candidate solutions: the one that pro-

duces the maximum Sharpe ratio within the set and the one that achieves the

minimum variance. The authors also explore the alternative of setting an-

other objective function, such as portfolio variance minimization, and setting

a floor for the ENB measure as one of the optimization constraints. We be-

lieve that both approaches rely greatly on heuristics and arbitrary decisions,

making the systematic implementation of the methodology difficult.

A third challenge comes in the form of collinearity. Given that it was al-

ready established that trying to achieve maximum diversification under this

framework will possibly result in extreme portfolios and multiple solutions,

one might want to incorporate constraints into the optimization problem,

increasing its complexity. If this is the case, the optimizer will try to homog-

enize the contribution of spectral risk in (2.5) by loading more heavily on

securities that have a high correlation with underweighted eigenvectors. If

two (or more) securities are significantly correlated to the same eigenvector,

the optimizer might see them as interchangeable. In practice, interchange-

ability could mean that, given small changes in the input data Z, the op-

3U.S. Technology, U.S. Consumer Goods, U.S. Consumer Services
4w3 = 1− w1 − w2
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Figure 2.3: Correlation between assets and their first and second
eigenvectors

This polar plot illustrates the issue of collinearity by showing the correla-
tion between 31 different ETFs and the first two implicit factors (eigenvectors)
of the system. Each point on the plot represents an asset. Red circles indicate
the correlation with the first principal component (eigenvector), while green ’x’
markers show the correlation with the second. The plot reveals that multiple
securities can be highly correlated with the same underlying factor. For example,
”U.S. Industrial” and ”U.S. Consumer Services” are almost perfectly correlated
with the first eigenvector, while various Treasury ETFs are highly correlated
with the second. This collinearity can make the securities interchangeable in an
optimization, leading to high portfolio turnover.
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timizer could allocate between these securities in different rebalances over

time, significantly increasing the turnover of the portfolio and transaction

costs associated with excess trading. The collinearity issue is illustrated in

Exhibit 2.3, where the correlation between 31 ETFs and the first and second

eigenvectors of this system is plotted. It can be easily observed that securi-

ties such as U.S. Industrial and U.S. Consumer Services are almost perfectly

correlated to the first eigenvector (seemingly related to the equity risk pre-

mium), while the Treasury related ETFs are highly correlated to the second

eigenvector (probably related to rates). We would expect the aforementioned

securities to be the most susceptible to the interchangeability problem.

Unfortunately, the three challenges explored previously are not the only

pitfalls of the framework. Other interesting discussion points include the

sensitivity of the SVD results to outliers (common in financial data) and the

noisiness and instability in the estimation of the eigenvectors associated with

the smallest eigenvectors over time. Given that these points are related to

the implementation of the SVD in financial data, rather than to the portfolio

construction itself, they fall outside the scope of this study. Consequently,

we will focus on addressing the three aforementioned challenges through the

proposed portfolio construction methodology.

2.4 Building diversified spectral portfolios

2.4.1 Security clustering

In order to address the collinearity and extreme positioning issues, we propose

bucketing the many securities of the investable universe into a few clusters,

based on their correlation to the implicit factors. The expected benefits are

twofold. First, it directly tackles the collinearity issue by collapsing securi-

ties that are susceptible to being interchanged into one, avoiding swapping

allocations in consecutive rebalances, and reducing turnover. Second, it re-
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duces the dimensionality of the problem, making the optimization problem

more straightforward to solve in large investible universes (e.g., single-name

equities).

To group investable securities in a manner that is consistent with the

problem at hand, we need to estimate the correlation between these and

their principal components (i.e., implicit factors). Given that Z is aligned

(i.e., mean of 0 and standard deviation of 1), the correlation between each

security and the standardized principal components ZV S−1
√
t− 1 is given

by

1

t− 1
ZTZV S−1

√
t− 1 (2.6)

replacing (2.1) in (2.6) we get

1

t− 1
V SUTUSV TV S−1

√
t− 1

and given that V TV = I and UTU = I we finally obtain

1√
t− 1

V S (2.7)

which is a n × n matrix that contains the correlation between each in-

vestable asset and the principal components. By measuring the cosine dis-

tance between each pair of row vectors in (2.6), we can identify securities

with a similar correlation pattern with implicit factors and therefore sus-
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ceptible to interchangeability during the optimization process. These cosine

distances are stored in a distance matrix which will be used to group the

securities based on them.

To perform the clustering, we propose hierarchical agglomerative cluster-

ing, which is a well-established technique in unsupervised machine learning.

As Müllner (2011) explains, this technique starts by partitioning the data

set into singleton nodes (one per security in the investable universe), and

step by step merges the pair of the closest nodes into a new node, until there

is only one final node left, which comprises all the data. The result of the

algorithm is illustrated in Exhibit 2.4 as a graphical dendrogram. Using the

distance matrix built on (2.7), the algorithm looks for the closest pair (i.e.,

the cosine distance between their respective vectors) of securities in the set,

which in this example would be U.S. Financial Sector and U.S. Financial

Services, and merges them into a new vector, which is then paired with its

closest neighbor (in this case, U.S. Real Estate). The process will be re-

peated across the investible universe in a stepwise manner, moving up in the

dendrogram until all the nodes are integrated and the tree is complete.

Although the methodology is able to hierarchically organize and relate

the data set, the user has to determine which of the subtrees are actual clus-

ters and which are just part of another cluster, as explained by Bar-Joseph

et al. (2001). In practice, this is done by setting a distance threshold below

which every connected (merged) node will be considered a cluster. For this

reason, the final number of clusters to be found in the set is inversely related

to the chosen distance threshold, and the most appropriate threshold will

depend on the data set on which the cluster is performed. For example, in

Exhibit 2.4, setting a distance threshold of 0.6 would give us four clusters;

Precious metals, Treasury and asset-backed securities, corporate and munici-

pal bonds, and global equities and high-yield bonds, along with one singleton

ETF. Setting a higher distance threshold, such as 0.7, would result in the
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Figure 2.4: Agglomerative clustering of a sample investable universe

This figure displays a dendrogram, the graphical output of a hierarchical
agglomerative clustering algorithm applied to a universe of 31 ETFs. The
algorithm groups securities based on the similarity of their correlation patterns
with the underlying implicit factors, with the vertical axis representing the cosine
distance between clusters. The dendrogram shows how individual assets (at the
bottom) are progressively merged into larger clusters as the distance threshold
increases. For instance, at a distance threshold of 0.6, the algorithm identifies
four distinct clusters labeled A, B, C, and D, effectively bucketing assets with
similar risk factor exposures to address the collinearity problem.
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merging of clusters B, C, and D with the singleton; three clusters in total.

In the case of a given investable universe of size n, we can collapse it into

k clusters, where k << n, using agglomerative clustering. Thus, we can then

redesign the optimization problem, from one that chooses n security capital

weights (w) to minimize the objective function, to one that chooses k cluster

capital weights (θ). Therefore, we can express portfolio capital weights as

the following linear transformation

w = WCθ (2.8)

where

W =


ω1 0 . . . 0

0 ω2 . . . 0
...

...
. . .

...

0 0 . . . ωn


n×n

is a n×n matrix that contains predetermined fixed allocations (ω1, ω2, . . . , ωn)

for each asset in the investable universe in the diagonal entries,

C =

 | | |
c1 c2 . . . ck

| | |


n×k

is a n× k boolean matrix that indicates if the security i belongs to the
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cluster j with an entry of 1 and an entry of 0 otherwise, and finally θ is a

k × 1 vector containing the cluster weights, which scales the fixed security

allocations in C.

The linear transformation (2.8) effectively takes the weights of the given

cluster in θ, linearly maps these values from the cluster space to the security

space through C, and propagates these scaling factors through fixed security

allocations (ω1, ω2, . . . , ωn). The question of how to define W is discussed

later in the study.

2.4.2 Cost function

In the spectral risk framework, diversifying a portfolio involves equalizing the

vector of contribution to spectral risk φ. We propose the following alternative

way of diversifying (equalizing) the spectral risk contribution.

||SV TDw − 1n||22 (2.9)

When not restricted, minimizing the expresion (2.9) has a well-known

analytical solution. However, as Boyd and Vandenberghe (2004) noted, when

linear inequality constraints (such as no short selling, in our case) are added,

there is no longer a simple analytical solution.

We can rearrange the expression (2.9) into the quadratic program (QP)

form and expand it to incorporate the additional model specifications. We

can take advantage of (2.8) to reformulate this optimization problem, from

one that chooses n security weights to one that chooses k cluster weights (θ).

Finally, we can generalize for the case of different constraints imposed by a

given investment policy, and we arrive at the following cost function that will

yield our Diversified Spectral Portfolios (DSP):
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argmin
θ

1

2
θTPθ + qTθ

s.t. Gθ ≤ h

1T
nWCθ = 1

(2.10)

where

P = CTWDV STSV TDWC

q = −CTWDV S1n

and the matrices G and h help to generalize different capital weight

constraints, originating from investment policy (internal) or market liquidity

(external). For instance, in the case of lower and upper bounds for security

allocation, these matrices can be accommodated in the following way:

G =

−WC

WC


2n×k

, h =

−l

u


2n×1

Where l and u are n × 1 vectors containing the weight floors and caps

for each investable security, respectively. The matrices G and h can also

be modified to accommodate weight constraints at the sector or asset class

level, if needed.

We have not yet addressed the definition of predetermined fixed allo-

cations W . The intention of defining the capital weight of the security in

advance simplifies the optimization problem by reducing the number of de-

cision variables from n securities to k clusters, where k << n. Given that
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the diagonal elements in W must be set before trying to solve (2.10), it

can be the result of a previous optimization step or it could be given by an

optimization-free naive portfolio construction methodology. The optimiza-

tion problem (2.10) would then scale up and down these weights by choosing

different values for the vector θ. We suggest setting

W = D−1

for two reasons. First, it offers a more balanced initial allocation in risk

terms; securities with higher volatility will get a smaller capital allocation,

preventing them from dominating the overall risk of the portfolio. Second,

we notice that P and q also get reduced to the following expressions:

P = CTV STSV TC

q = −CTV S1n

further simplifying the implementation of the DSP.

2.5 Simulation

2.5.1 Out-of-sample backtesting

A commonly accepted way to test the effectiveness and properties of the

DSP methodology presented in this study would be to choose a specific set

of securities, a particular historical sample, and perform a backtest. As Bai-
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ley et al. (2014) notes, a backtest is considered realistic when the in-sample

performance is consistent with the out-of-sample performance. Furthermore,

the authors argue that it is relatively simple to overfit and investment strat-

egy so that it performs well in-sample, thanks to data snooping (observe

the results, and modify the parameters and/or security universe to improve

the results). Similar conclusions were drawn by López de Prado (2016) and

López de Prado (2018), who outline a novel framework to test the efficacy

of trading rules; describe the stochastic process that generates the return

stream coming from a trading rule, find the optimal parameters using histor-

ical data, and perform multiple backtests using Monte Carlo simulations5.

We borrowed this concept and extended it to simulate a large number of

correlated securities and tested the effectiveness of our portfolio construction

methodology using Monte Carlo simulations.

2.5.2 Benchmark constructions

The Diversified Spectral Portfolios (DSP) developed in the previous section

will be contrasted with two other diversification-driven portfolio construction

methodologies. The first benchmark will be the equally weighted portfolio.

As mentioned above, this naive construction is capable of beating several

optimization-driven methodologies, in risk-adjusted terms, due to the fact

that it does not rely on noisy estimates of expected returns and the covariance

matrix. The second benchmark will be the equal-risk contribution (ERC)

portfolio, also called risk parity, which is achieved by the combination of

weights that equalize the marginal risk contribution of each asset in the

portfolio. We follow the specification detailed in Maillard et al. (2010) to

construct this benchmark. With these two constructions as benchmarks, we

compare the proposed methodology with equal allocation in both capital and

risk terms.

5López de Prado (2018) dubbed the term ”backtesting on synthetic data”.
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2.5.3 Experiment design

The objective of our experiment is to test and analyze the effectiveness of the

DSP under a large number of dire market scenarios, without simply relying

on historical returns data, for which we resort to Monte Carlo simulations.

Each iteration of the simulation experiment is meant to represent one year

of managing a portfolio of 50 securities. At the beginning of the iteration,

a random 50 × 50 correlation matrix is generated and remains unchanged

throughout the iteration. Using this matrix and the mathematical frame-

work that will be discussed later, we generate daily return streams for 50

securities over a 3-year window (756 observations). Given that two of the

three methodologies to be contrasted rely on the estimation of either the

sample covariance matrix or the SVD, we use a rolling estimation window

of 2 years (756 observations) to perform these calculations. Consequently,

the first portfolio rebalancing takes place at the end of the second year, and

the consequent rebalances are performed monthly (every 21 observation), re-

sulting in one year of out-of-sample performance. On each rebalance day,

we not only calculate the target weights for the DSP, but also for the two

benchmark constructions, to make the results directly comparable.

The previous process will be repeated 10,000 times, giving us 10,000

years of out-of-sample data, which would not be possible just using historical

stock market data. On top of that, the number of simulated observations

will also be helpful in analyzing not only the effectiveness of our DSP, but

also under which circumstances they perform the best.

2.5.4 Mathematical framework and parameter setting

Let us assume a market in which asset price dynamics can be described

by the following stochastic differential equation (SDE), under the physical

probability measure P:

45



dS(t)

S(t)
= µdt︸︷︷︸

Drift

+ σdW (t)︸ ︷︷ ︸
Diffusion

+ dJ(t)︸ ︷︷ ︸
Jump

(2.11)

where S(t) is the price of the security modeled at time t, µ and σ are the

unconditional mean and variance, respectively, of its return stream. W (t)

is a Wiener process and J(t) is a compound Poisson process. The first two

terms of (2.11) are helpful in describing a well-known geometric Brownian

motion process, assuming normality in returns, while the third term in the

equation gives the overall process the flexibility to also describe nonnormal

price discontinuities observed in financial data.

To simulate a portfolio construction and study its features, we will need

additional assets to include in the out-of-sample portfolios. Assuming a sys-

tem composed of N securities with a correlation matrix R, we can transform

(2.11) into an SDE system that describes the dynamics of N correlated assets:

Ṡ = µdt + DLW + J (2.12)

where D is a diagonal matrix that has the standard deviation of the

returns of the assets in the diagonal entries and zero everywhere else, L is

the lower triangular matrix coming from the Cholesky decomposition of R,

and Ṡ, W , J are the vectors of the security returns, Wiener processes and

compound jump processes, respectively.

To make the securities comparable, we set the same values of expected

returns and volatility for each of them at 5% and 10%, respectively. As a

result of this, the difference will come from the realizations of W and J . For
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the latter, we need to define two parameters; the frequency of the jumps and

their intensity. Setting the frequency parameter at 0.15, we should expect to

observe approximately three jumps in a given month. Regarding the size of

the jump, these values will be drawn from a normal distribution with mean

−5% and standard deviation 7.5%.

In addition to the above, we will also simulate different correlation struc-

tures at the beginning of each iteration. These correlation matrices will be

generated randomly, following the numerically stable algorithm described in

Davies and Higham (2000). To construct these matrices, it is necessary to

specify a collection of eigenvalues (50 in our case), which will be drawn from

an exponential distribution, simulating a system where the first few implicit

factors are capable of explaining most of the risk; a common case in financial

markets.

Finally, we have to set the distance threshold that controls how many

clusters are found on each rebalance date. Although we recognize that re-

fining and tailoring this number to the data set with which the investment

manager is working should yield better results, we believe that finding a sys-

tematic and statistically sound way to choose this parameter falls outside the

scope of this study. For this reason, we set the clustering threshold at 0.5,

as it is the middle point of this cosine distance’s range, which should provide

enough clusters to address the collinearity issue and leave enough degrees of

freedom in the system to allow the optimizer to work with.

2.5.5 Results

The Monte Carlo simulation exercise described in the previous section gives

us 10,000 years of data for the Diversified Spectral Portfolios (DSP) and the

other two chosen benchmarks; equal-weighted (EW), and equal risk contri-

bution (ERC) portfolios. Exhibit 2.5 shows the Sharpe ratio distributions

estimated with the simulation results. The cumulative distributions shown in
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Table 2.1: Two-sample one-sided Kolmogorov-Smirnov (KS) test

This table reports the statistical results of a two-sample, one-sided Kolmogorov-
Smirnov (KS) test for first-order stochastic dominance. The test compares the
cumulative distribution of Sharpe ratios from the Diversified Spectral Portfolio
(DSP) strategy against those of the Equal Risk Contribution (ERC) and Equal-
Weighted (EW) strategies from the 10,000 Monte Carlo simulation trials. This
provides strong statistical confirmation for the visual observation from Figure 2.5
that the DSP strategy stochastically dominates the two benchmarks.

FDSP > FERC FDSP > FERC

KS Statistic 0.18 0.30
One-tailed p-value 0.00 0.00

the second panel hint at the first-order stochastic dominance of DSP over the

two. As highlighted in Schmid and Trede (1996) the two-sample one-sided

Kolmogorov-Smirnov test is among the most widely used tests for first-order

stochastic dominance. We report the results of this test in Exhibit 2.1. The

reported p-values seem to confirm our observation of stochastic dominance

at a 5% confidence level.

The 10,000 trials were generated using an equal number of randomly

generated correlation matrices. We can dissect these trails on the basis of

the level of risk concentration of the manifested correlation structure. This is

particularly interesting because one of the most commonly observed features

of bear markets is a sudden spike in cross-asset correlations, which dimin-

ishes any diversification benefits that might be observed in bull markets. We

choose to measure this risk concentration by calculating the Shannon entropy

of the distribution of the eigenvalue matrix of the correlation matrix. Highly

concentrated systems should have low entropy, since most of these ”proba-

bilities” will be concentrated in one or few elements, making the systems less

uncertain.
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Figure 2.5: Density of simulated Sharpe ratio (10,000 simulations)

This figure presents the results of a 10,000-iteration Monte Carlo simula-
tion comparing the out-of-sample performance of the proposed Diversified
Spectral Portfolios (DSP) against two benchmarks: an Equal-Weighted (EW)
portfolio and an Equal Risk Contribution (ERC) portfolio. The top panel shows
the probability density functions of the annualized Sharpe ratios for the three
strategies. The bottom panel displays the corresponding cumulative distribution
functions (CDFs). The visual evidence from the CDFs suggests that the DSP
strategy exhibits first-order stochastic dominance over both the EW and ERC
benchmarks, implying a preferable risk-adjusted return profile across all outcomes.
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The previous exercise can also be used to contrast the DSP with its

two benchmarks in these challenging diversification scenarios. Exhibit 2.6

provides three different angles from which to view the results, using joint

distributions to visualize the results. Within each joint distribution, a 45-

degree line was added to facilitate comparison and serves as an ”indifference”

line. The first column of the exhibit depicts a similar picture as in Exhibit

2.5; DSP seems to be preferable to the other two constructions because both

the center of the distribution and most of the joint probability mass fall in

the lower triangular area, right to the indifference line. Interesting conclu-

sions can be drawn from the least and most concentrated cases, which are

plotted in the second and third columns, respectively. Here, we can see that

the difference between these pairs of portfolio construction methodologies

maximizes in the cases where the correlation structure is most concentrated,

having most of the mass of the joint densities on the right of the indiffer-

ence line. In the cases where the investable set exhibits the least correlation

among the trials, the difference between the pairs is less noticeable, although

still favorable for DSP.

2.6 Conclusion

The question of how to diversify an investment portfolio has many candidate

answers. We depart from conventional wisdom, and instead of diversifying

a portfolio by leveraging the correlation matrix, we seek to balance out the

risk attributed to its eigenvectors. Our Diversified Spectral Portfolio frame-

work can be particularly useful when we are looking to construct diversified

portfolios in a purely data-driven way or as a complementary approach to

expand an already implemented portfolio optimization framework.

The out-of-sample results of our Monte Carlo simulation on a system

of stochastic differential equations show that DSP is able to provide better

risk-adjusted performance than competing, industry standard, portfolio di-
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Figure 2.6: Joint density of simulated Sharpe ratio (10,000 simula-
tions)

This figure provides a deeper analysis of the Monte Carlo simulation re-
sults by plotting the joint distributions of Sharpe ratios for the DSP strategy
versus the two benchmarks under different market conditions. The plots are
divided into three columns: the complete simulation, the scenarios with the
most concentrated correlation structures (low entropy), and the scenarios with
the least concentrated structures (high entropy). In each plot, the 45-degree
line serves as an indifference line. The concentration of the probability mass to
the right of this line indicates superior performance for DSP. The figure reveals
that the outperformance of the DSP methodology is most pronounced in highly
concentrated market environments, which are characteristic of bear markets and
crises.
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versification methodologies such as equal-weighted and risk parity. A closer

look at the results of the simulation shows that this improved performance

seems to come from better protection in the context of highly concentrated

correlation structures, a characteristic of contractionary markets.

Although we are satisfied with the results from the out-of-sample method-

ology, there is still room for further developments. We can think of three main

areas of improvement. First, the singular value decomposition, the backbone

of the presented methodology, is sensitive to large non-normal outliers in the

data, which are very common in financial data. Having a more robust way

to estimate the eigenvectors and values of a set of stock returns would result

in more reliable portfolios generated by our methodology. Second, given that

the eigenvectors associated with the largest values are associated with the

main dynamic driven by the data, the ones associated with the smallest val-

ues are usually driven by noise. Compressing the data by identifying and then

dropping the eigenvectors that are potentially affected by this should increase

the out-of-sample robustness of the methodology. Finally, one missing piece

of our portfolio construction methodology is the expected return dimension.

The introduction of the expected return associated with each eigenvector

could improve the risk-adjusted performance of our spectral portfolios.
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Chapter 3

Incorporating Market Regimes
into Large-Scale Stock
Portfolios: A Hidden Markov
Model Approach

3.1 Introduction

Financial markets often exhibit abrupt changes in behavior that persist for

extended periods, which often correspond to significant economic shifts, regu-

latory changes, or policy alterations, and secular changes (Ang and Timmer-

mann, 2012). Empirical evidence strongly supports the presence of regimes

in equity markets data, associating distinct return-generating distributions

for different states. These regimes are closely tied to economic conditions

with, for example, a high volatility and low growth regime being associated

with deep recessions such as the Great Depression and the 2008 financial cri-

sis (Yang, 2023). Uncertain environments like the aforementioned relatively

favor demand-inelastic firms as non-essential spending declines, while eco-

nomic expansions boost the earnings of procyclical companies via increased
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discretionary spending. Consequently, the equity market develops a regime-

dependent behavior as investors attempt to anticipate the trajectory of the

business cycle.

The impact of this phenomenon in the context of portfolio construction

cannot be ignored, as these regime dynamics can explain and model the time-

varying behavior of return volatility and correlations, together with other

stylized facts of financial time series such as volatility clustering, gain/loss

asymmetry, and excess kurtosis. Consequently, the incorporation of regime

dynamics into asset allocation and portfolio construction has been of partic-

ular interest in the last couple of decades, and several studies have explored

the benefits of implementing dynamic allocation strategies within a regime-

aware framework over static approaches (see, e.g., Ang and Bekaert, 2002a;

Guidolin and Timmermann, 2007; Guidolin and Timmermann, 2008; Kritz-

man et al., 2012; Sheikh and Sun, 2012; Nystrup et al., 2015; Mulvey and

Liu, 2016; Reus and Mulvey, 2016; Nystrup et al., 2019; Costa and Kwon,

2019; Kelliher et al., 2022).

While the potential benefits of regime-aware investing are evident and

well-documented, challenges remain in the practical implementation of such

strategies. The estimation of regime-switching processes can be computa-

tionally demanding (Janczura and Weron, 2012) and prone to overfitting

(Chen and Bunn, 2014), particularly in high-dimensional settings. This is

the case of real-world equity portfolios, which can be significantly large, as

sufficient diversification might be achieved only by combining hundreds of

stocks (Statman, 2004), and modern systematic trading firms can potentially

hold thousands of stocks in their books. In this context, the implementation

of a regime-aware portfolio framework would be very challenging, and poten-

tially unfeasible, due to the quadratic growth of parameters in the number

of states (Bulla et al., 2011).
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However, the low-rank nature of equity data offers a potential solution

to this challenge by allowing the user to select a handful of statistically

meaningful risk factors which can decently explain the variation in stock

returns instead, to reduce the dimensionality and potentially the estimation

error. Employing parsimonious factor models to simplify the complexity

of large-scale portfolio optimization and risk modeling has been extensively

studied in the academic literature (see, e.g., Perold, 1984; Jacobs et al., 2005;

Deng et al., 2024) and has also become common practice in the financial

industry. In this study, we leverage this approach to model the regime-

dependent behavior of potentially hundreds of stocks.

The main contribution of this chapter is two-fold. First, we propose a

regime-weighted least-squares method to estimate conditional regime-aware

factor loadings based on the Hidden Markov Model (HMM) to obtain forward-

looking factor loadings for a sizable universe of stocks. Second, we use these

conditional factor loadings to construct large-scale stock portfolios that can

be used to systematically manage investments in a regime-aware manner.

Both our framework and its empirical application results expand on the cur-

rent state of the literature by providing a way of implementing regime model-

ing in the context of a large-scale portfolio, and allowing its implementation

in a real-world setting. We expect these results to be particularly interesting

for quantitative asset managers and stock-focused hedge funds, who manage

portfolios with hundreds or even thousands of stocks. The remainder of the

chapter is organized as follows. In Section 2, we briefly analyze the related

literature and highlight our contributions to it. In Section 3, we outline our

regime-weighted least-squares methodology and how it can be leveraged to

construct large-scale stock portfolios. In Section 4, we report the results of

Monte Carlo simulations to show the out-of-sample performance of our ap-

proach, and contrast its performance against a regime-agnostic benchmark.

Section 5 concludes.
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3.2 Related literature

The literature on regime-switching models in finance is vast, with applications

ranging from interest rate modeling (see, e.g., Ang and Bekaert 2002b, Bansal

and Zhou 2002, Dai et al. 2007) and monetary policy and macro analysis

(see, e.g., Owyang and Ramey 2004, Hamilton 2005, Sims and Zha 2006,

Hamilton 2010 Baele et al. 2015) to option pricing (see, e.g., Chan 2014,

Siu 2014). The incorporation of regime dynamics into asset allocation and

portfolio construction has been of particular interest during the last couple of

decades, expanding the related literature in multiple directions. Literature

relevant to our methodology sits in the intersection of studies on the regime-

dependent behavior of equity factors and applications of HMM in portfolio

construction.

Relevant studies that have implemented HMMs to manage a portfolio

include Bulla et al. (2011), who implement an HMM with t-distributions

to model regime-switching in asset allocation, finding two regimes; a high-

variance regime of relatively short duration, and a low-variance regime. Their

strategy involves full investment in an index or risk-free asset based on pre-

dicted states. Their dataset consists of daily returns of five major interna-

tional broad indices for over 20 years, starting in January 1976. The authors

show that their strategy can lead to improved Sharpe ratios, mainly driven

by lower overall portfolio risk. Along similar lines, Bae et al. (2014) fits a

multivariate Gaussian HMM on three-dimensional input data; the S&P500,

the 10-year US Government bond, and the GSCI Commodity Index to un-

cover four distinct market regimes: two extremely positive market conditions

for the equity market, a transition period, and market crashes. Their results

show that their framework outperforms other benchmarks but does especially

outstanding during crash periods by avoiding risk during left-tail events. The

authors use daily frequency observations from January 1980 to June 2012 and

a stochastic programming framework to dynamically optimize portfolios.
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Among studies that have analyzed the regime behavior of traditional eq-

uity factors we can find Guidolin and Timmermann (2008), who use a regime-

switching model to analyze the joint distribution of returns on market, SMB,

and HML portfolios, originally introduced in Fama and French (1993), and

four regimes; Bear state, Bull state with low volatility, Bull state with pos-

itive returns, and a Volatile state with high returns. The authors consider

monthly returns on US stock portfolios from December 1927 to December

2005, including six equity portfolios formed by intersecting two size portfo-

lios and three book-to-market portfolios. Accounting for these regimes in

portfolio strategy leads to better performance compared to single-state mod-

els. Separately, Costa and Kwon (2020) develop a regime-dependent portfolio

framework, based on a univariate Gaussian HMM, that consistently outper-

forms its nominal and robust counterparts by achieving lower volatility and

higher returns after 15 years of out-of-sample experiments. Using monthly

market excess return data from January 1973 to June 2018, and the Bayesian

information criterion (BIC), they identify two market regimes: bullish and

bearish1. They use the 24 most recent observations corresponding to the

most recent dominant market regime to estimate the factor loading of the

Fama-French three-factor model parameters for 30 assets (sector portfolios).

These parameters are then used to estimate the asset-level mean and covari-

ance matrix, so they can be used in traditional mean-variance optimization

(MVO) and minimum variance optimization. The authors argue that their

framework allows for the construction of large, realistic portfolios at no ad-

ditional computational cost during optimization.

There has also been a growing trend in employing non-parametric al-

ternatives to HMMs (see, e.g., Nystrup et al., 2020; Zheng et al., 2021; Shu

et al., 2024). The most relevant to our work is Aydınhan et al. (2024) who

departs from traditional HMMs with discrete state sequences to a continuous

1The authors also note that, despite the two-regime model having the lowest BIC, the
three- and four-regime models are not poor choices given their comparable BIC.
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jump model that follows a Markov process on the probability simplex. The

authors argue that a probabilistic approach provides more informative and

valuable insights than labeling each time period with the most likely regime.

In their simulations and an empirical exercise using daily data for the Nasdaq

Composite index, the proposed continuous jump model outperforms both the

HMM and discrete jump models.

This study builds upon the aforementioned literature that has imple-

mented HMMs to incorporate regime-dependent estimates to manage in-

vestment portfolios. In particular, we present a regime-dependent portfolio

framework that extends the work of Costa and Kwon (2020). In a similar

fashion, we fit an HMM on a parsimonious set of factors rather than the

whole investable set of assets, and use regression estimates to project back

these estimates into asset space. However, instead of relying on a univariate

Gaussian HMM, we expand it into a multivariate one by including other rele-

vant factors besides the market risk premium while identifying equity market

regimes. We also use weighted least squares to estimate regime-aware factor

loadings by using the whole available history, rather than just the most re-

cent observations. We believe the combination of these allows us to come up

with richer regime-dependent estimates for stocks’ expected returns and co-

variance matrix estimations that can be used in the optimization of a sizable

portfolio. Additionally, we take the probabilistic approach of Aydınhan et al.

(2024) to estimate continuous regime-dependent estimates, rather than just

discretionarily labeling each observation with the most likely regime in order

to capture the uncertainty associated with regime assignment. We leverage

this probabilistic approach not only for regime identification, but also for the

estimation of forward-looking factor loadings used in the stocks’ expected

returns and covariance matrix estimates.
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3.3 Methodology

Although the advantages of considering market regimes in investment strate-

gies are well-documented, the sheer complexity and high-dimensional na-

ture of actual stock portfolios, particularly those managed through quantita-

tive methods, could potentially make it unfeasible to directly apply regime-

switching models on such vast datasets. A promising avenue for addressing

these challenges lies in leveraging the low-rank structure inherent in stock

return data. Instead of fitting a regime-switching model on thousands of

stocks, we can instead focus on a parsimonious set of statistically significant

common risk factors that substantially explain stock return variation; this

way significantly reducing the dimensionality and potentially bringing down

the estimation error. The application of factor models to simplify portfo-

lio optimization and risk management is a well-established practice in both

academic research (e.g., Perold, 1984; Jacobs et al., 2005; Deng et al., 2024)

and the investment industry. Consequently, while the direct implementation

of regime-switching models at the individual stock level may be impractical,

fitting these models to a reduced set of factors offers a potentially viable

alternative.

We begin by defining the relationship between a stock’s excess return

and a finite set of common risk factors, so the regime framework can be

incorporated into this relationship. Taking a simple conditional asset pricing

model framework, such as the one in Smith and Timmermann (2021) , we

can linearly decompose the excess return x of any particular stock as follows:

xt+1 =
K∑
k=1

bk,tλk,t+1 + ϵt+1 (3.1)

where bk,t and λk,t are respectively the time-varying factor loading of the

stock and the associated conditional risk premium, corresponding to factor
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k in the model, and

ϵt+1 =
K∑
k=1

bk,t (zk,t+1 − Et[zk,t+1]) + ut+1

is an unpredictable component of the stock’s excess return and ut+1 is a

stock-specific idiosyncratic shock with zero mean. As pointed out by the

authors, the return predictability in this context can arise either from the

conditional factor loadings or from time-varying risk premia.

3.3.1 Regime-conditional risk premia

Let us assume that the common risk premiums that drive stock returns

are governed by an unobservable stochastic process s which can assume

a finite collection of states {s1, s2, . . . , sM} of length M . Within each of

these states, factor returns are drawn from a distinct state-dependent joint

Gaussian distribution with an unconditional mean of the excess returns

λs ∈ RK×1 := E[z | s], and covariance matrix Ωs ∈ RK×K := Cov[z | s].

Rather than relying on a discrete identification of the dominant regime

at each point in time to dictate the marginal joint distribution to be used,

we assume a probability simplex instead, which linearly combines the con-

ditional joint distribution corresponding to each regime. This approach is

also sensible from the empirical point of view as the marginal distribution of

financial assets might not be properly described by a single probability dis-

tribution but rather by a combination of densities. In fact, modeling stock

returns as a mixture of Gaussian components can describe the so-called styl-

ized facts of financial time series (Rydén et al., 1998). Representing and

modeling an overall population distribution as a combination of M densities

is known as a mixture model. In this context, the regime-dependent behavior

of the common factor risk premia can be better described as an m-component
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Gaussian mixture model,

f̂ (zt|Ψ) =
M∑
s=1

γs,tϕ (λ|λs,Ωs) (3.2)

where f̂ is the estimated distribution of λt; ϕ is the multivariate Gaussian

probability density function. Ψ is the set of unknown parameters (γt, λ1, ...,

λM , Ω1, ...,ΩM), where γt := (γ1,t, γ2,t, . . . , γM−1,t) is the mixing distribution

that stores the weight assigned to each state’s density function, which satisfies

∀γs,t ≥ 0 and
∑M

s=1 γs,t = 1. In the context of a regime-switching framework,

each element in λs and Ωs is directly associated with a different state in s.

Similarly, the mixing distribution γs takes the form of a simplex that contains

the probabilities of observing each regime in s at time t. Something worth

mentioning is that in the context of (3.2), despite the identification of λ and Ω

being static irrespective of the time period, the time variation of the factor’s

risk premium λt comes primarily from the conditional mixing distribution γt,

which continuously combines the unconditional joint densities differently on

each observation t.

It is only sensible to expect that the probabilities associated with each

state of s ∈ {s1, s2, . . . , sM}, γt, will change in time reflecting the current

stock market environment. One of the simplest approaches commonly taken

to model these dynamics is to assume that the hidden process s evolves

over time in an equally spaced sequence, forming a homogeneous first-order

discrete-time Markov chain (DTMC). A process is said to be a DTMC if it

satisfies the so-called Markovian property :

P (st+1 | st, st−1, . . . , s0) = P (st+1 | st)

where the future state of the underlying stochastic process (i.e., the market

regimes in our case) depends only on its current state. The collection of the
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probabilities of transitioning from and to every state in s is organized and

stored in the so-called one-steptransition matrix Π ∈ RM×M ,

Π =


π11 π12 . . . π1M

π21 π22 . . . π2M

...
. . .

...

πM1 πM2 . . . πMM


M×M

where P (st+1 = j | st = i) = πij.

One sensible approach to extracting the underlying state-dependent den-

sities of the common risk factor, while modeling the dynamics of the hid-

den process s through time as a DTMC, is the Gaussian variant of the

well-received HMM. Formally, HMMs are double-stochastic discrete pro-

cesses within the family of generative machine learning algorithms, which

can be considered an extension of mixture models along the temporal axis

(Bouguila et al., 2022). A Gaussian HMM of M hidden states can be com-

pletely determined by the parameter set {Π, γ(0),Γ,λ,Ω}. The parameters

Π, γ(0) ∈ RM×1 are the previously introduced one-step-ahead transition ma-

trix, and the set of initial state probabilities, respectively. λ = {λ1, . . . , λM}
and Ω = {Ω1, . . . ,ΩM} are the collection of state-dependent vectors of means

and covariance matrices that describe the regime-dependent distributions of

the common risk factors in each of M unobservable market regimes, where

λs ∈ RK×1 and Ωs ∈ RK×K are the joint distribution means and covariances of

the K risk factors in regime s. Finally, Γ is the mixing matrix, which contains

the posterior probabilities of the observable variables being emitted by state

s ∈ {s1, . . . , sM}, along the rows, conditional on the information available at

time t, Ft, and it is also true that Γ is row-stochastic (i.e.,
∑M

s=1 γs,t = 1).

We proceed to fit a multivariate Gaussian HMM on the set of common

risk factors. Let Z ∈ RT×K := (z1, . . . zK), where zk be the sequences of
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T historical returns of the K common risk factors. The priors for both the

collection of initial state probabilities γ(0) ∈ RM×1 and the transition matrix

Π can be drawn from a Dirichlet distribution, favoring a transition matrix

where most of the probability mass is concentrated on a small number of

state transitions, while the priors for the state-dependent density parame-

ters λ and Ω can be determined through, for example, k-means clustering.

Once the parameters are initialized, an iterative Expectation-Maximization

(EM) algorithm is used to arrive at the most likely initial state probabilities,

transition matrix, and state-dependent density parameters. The posterior

probability matrix Γ is computed through the Forward-Backward algorithm.

With respect to the state-dependent covariance matrices Ωs, we restrict the

non-diagonal elements to be zero, as risk factors tend to be uncorrelated. On

top of being rooted in economic foundations, this assumption will also reduce

the number of parameters to be estimated by HMM, potentially reducing the

estimation error and simplifying the math and computation.

We can now leverage the regime-dependent parameters estimated by

the HMM to arrive at our time-varying risk premia. Let γt ∈ R1×M :=

(γ1,t, γ2,t, . . . , γM,t) be the filtered state probabilities at time t, conditioned on

all the information available as of t (i.e., the last row of Γ) and γ̂t+1 ∈ R1×M :=

(γ̂1,t+1, γ̂1,t+1, . . . , γ̂M,t+1) be the one-period-ahead forecasted state probabil-

ities. The n-step-ahead state probabilities can be defined as γ̂t+n = γtΠ
n,

given that the homogeneous Markov chain satisfies the Chapman–Kolmogorov

equations. With this in hand, our forecast for the one-step-ahead time-

varying factor loadings will be given by

Et[λt+1|Ft] =
M∑
s=1

γ̂s,t+1λs

V art[λt+1|Ft] =
M∑
s=1

γ̂s,t+1

(
Ωs + λsλ

T
s

)
− γ̂s,t+1λ

2
s

(3.3)
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3.3.2 Regime-conditional factor loadings

As already pointed out in Equation (3.1), the return predictability is also a

product of the conditional factor loadings. Nested within the same frame-

work, given Ft let the time-varying factor loadings of stock i to factor k be

defined as

bik,t =
M∑
s=1

γs,tbik,s (3.4)

where bik,s is the state-dependent factor loading of stock i associated with fac-

tor k, and γs,t is the filtered probability corresponding to state s, previously

defined. It can be seen in (3.4) that, within each regime, the state-dependent

factor loadings are constant over time and their conditionality is solely driven

by the dynamics of the probability simplex γs,t which linearly combines these

M sets of state-conditional factor loadings. We propose modeling this be-

havior by leveraging the matrix of posterior probabilities Γ estimated while

fitting the HMM on Z, to weight the historical observations of the com-

mon risk factors to estimate the state-specific factor loadings, and aggregate

them accordingly to obtain the conditional factor loadings at the stock level.

To estimate the regime-dependent factor loadings θs ∈ (αs, b1s, b2s, . . . , bKs),

consider the following weighted least squares problem:

argmin
θs

0∑
t=−T

γs,t

(
xt −

(
αs +

K∑
k=1

bk,szk,t

))2

(3.5)

where xt is the excess return of a particular stock at time t, bs = (b1,s, b2,s, . . . , bk,s)
T

is the state-conditional (but time-invariant) factor loadings associated with

each of the K common risk factors, and αs is the state-conditional intercept

of the regression when the dominant market regime is s. Repeating the (3.5)

for each s ∈ {s1, . . . , sM} we obtain the collection of state-dependent factor
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loadings across the M unobservable regimes:

θ = (θ1, θ2, . . . , θM) =


α1 α2 . . . αm

b1,1 b1,2 . . . b1,m
...

...
. . .

...

bK,1 bK,2 . . . bK,M


K×M

(3.6)

The result of this process represents a regime-weighted least squares

(RWLS) estimator, which serves as the foundation of our methodology for

obtaining regime-aware means and covariances of large-scale stock portfolios.

3.3.3 Building regime-aware stock portfolios

Consider an investable universe constituted by N stocks (where N is signifi-

cantly large) whose returns can be explained by a set of K observable common

risk factors (where K << N). We also assume that the dynamics of these K

factors can be characterized by a finite set of M unobservable market regimes

that evolve in time following a DTMC and can be modeled through the lens

of a multivariate Gaussian HMM. The most accessible approach to construct

stock portfolios when Gaussian returns are assumed, is to implement a tradi-

tional MVO or a minimum variance portfolio, as in Costa and Kwon (2020).

However, we opt for moving away from these traditional approaches, as we

believe that collapsing the M state-dependent joint distributions into one

Gaussian to perform the optimization exercise would discard rich information

provided by the multiple and distinct densities. For this reason, we instead

follow Luxenberg and Boyd (2024), who introduced a portfolio construction

approach that assumes asset returns that follow a Gaussian mixture distri-

bution which is able to capture the information yielded by different densities

belonging to different market states. Despite the apparent benefits of such

an approach, implementing this framework requires estimating the expected

return and covariance matrix of the N stocks in the universe in each of the
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M regimes which, as previously stated, might result in significantly challeng-

ing and potentially infeasible if the investable universe is significantly large.

Leveraging the regime-dependent densities and factor loadings developed in

this section to obtain state-dependent factor risk premia and covariance es-

timates and project them back into stock space.

Equation (3.1) can be expanded to describe the behavior of the whole

investable universe of N stocks through the regime-dependent behavior of

the K common risk factors. Let Xt+1 ∈ RN×1 := (x1,t+1, x2,t+1, . . . , xN,t+1)
T

be a vector of excess returns over the next period for each of the N stocks in

the investable universe. Then,

Xt+1 =
M∑
s=1

γ̂T
s,t+1 (Θsλs + ϵs) (3.7)

where

Θs =


θ1,s

θ2,s
...

θN,s


N×K+1

and θi,s = (αi,s, b1i,s, . . . , bki,s) ∈ R1×K+1 is the vector of state-dependent in-

tercept and factor loadings corresponding to stock i in the investable universe

when the market is in regime s. In order to understand the expected behav-

ior of the investable universe in each of the regimes, let us assume that at

time t we have complete certainty that the returns of the common risk factor

are drawn from the multivariate Gaussian density corresponding to regime

s. In this case, the expected return of our investable set of stocks, and its
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state-conditional corresponding covariance matrix will be given by:

Et[Xt+1|Ft, s] = µs,t+1 = Θsλs

V art[Xt+1|Ft, s] = Σs,t+1 = ΘT
s ΩsΘs + ηs

(3.8)

where λs and Ωs are the state-dependent factor risk premia and factor co-

variance matrix, given that the market is in regime s, and

ηs =


σ2
1,s 0 . . . 0

0 σ2
2,s . . . 0

...
...

. . .
...

0 0 . . . σ2
N,s


N×N

and

σ2
i,s =

1

T

(
xi −

(
αi,s +

K∑
k=1

bik,sλk,s

))2

(3.9)

is the idiosyncratic variance corresponding to each stock i in the investable

universe, yielded by the RWLS.

In the light we have state-dependent estimates of the stock-level vector

of means and covariance matrix, µs,t+1, and Σs,t+1, we can follow Luxenberg

and Boyd (2024) and choose the portfolio w that maximizes the expected

exponential utility function:

Uφ(wTX ) = 1 − exp
(
−φwTX

)
(3.10)

where wTX is the portfolio return, and φ is a constant risk aversion param-

eter. The authors argue that Et[Uφ] can be maximized by minimizing the
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cumulant generating function:

argmin
w

log

(
M∑
s=1

exp

(
log γ̂s,t+1 − φµT

s,t+1w +
φ2

2
wTΣs,t+1w

))
(3.11)

where γ̂s,t+1 is the one-period-ahead forecasted state probabilities of landing

in regime s, µs,t+1 and Σs,t+1 state-dependent estimates for the expected re-

turn and covariance matrix of these stocks in regime s, given Ft. Finally,

the authors mention that Equation (3.11) is not only convex, but also conve-

niently collapses to the traditional MVO when the number of states is equal

to one.

In the next section, we empirically assess the validity and practical ben-

efits of this proposed framework; we turn next to an extensive Monte Carlo

simulation exercise. Section 4 describes the design and results of this empiri-

cal analysis, demonstrating how effectively the RWLS methodology captures

regime dynamics and improves portfolio performance relative to traditional

approaches.

3.4 Experiments

This empirical section provides quantitative evidence, derived entirely from

Monte Carlo simulations, supporting the advantage of implementing the pro-

posed RWLS methodology for portfolio construction over traditional single-

regime approaches. Our analysis is structured as follows: First, we delineate

the characteristics of the dataset employed to calibrate the simulation pa-

rameters. Second, leveraging this calibration data, we determine the optimal

number of distinct market regimes and characterize the joint distribution of

the corresponding regime-dependent factor loadings. Third, we generate syn-

thetic security and factor returns through extensive Monte Carlo simulation

and conduct a parameter recovery exercise to ascertain the efficacy of retriev-

68



ing the underlying, known regime-dependent factor loadings from the simu-

lated data streams. Finally, utilizing this controlled, synthetic environment,

we rigorously compare the performance metrics of large simulated equity

portfolios constructed via the RWLS framework against benchmark port-

folios generated using the conventional single-regime methodology, thereby

isolating the contribution of explicitly modeling market regimes.

3.4.1 Data

In this chapter, we make use of a dataset comprising common stocks traded

in the United States equity markets. The selection of the US market is

motivated by its significant size, the large number of listed companies, high

liquidity, and extensive data availability. We source monthly adjusted prices

for common stocks listed on the NYSE, AMEX, and NASDAQ from the

Center for Research in Security Prices (CRSP) database. The sample period

spans from July 1963 to December 2024. Additionally, we collect the number

of shares outstanding for each stock within our universe to compute daily

market capitalization.

As the set of observable processes for our regime-switching model, we

adopt the five-factor model proposed by Fama and French (2015). This model

extends the seminal three-factor framework of Fama and French (1993),

which includes the market excess return (Mkt − Rf), size (SMB), and

value (HML) factors by incorporating profitability (RMW ) and investment

(CMA) factors. Furthermore, given its well-documented empirical signif-

icance in asset pricing, we augment this set with the momentum factor

(UMD). Monthly return data for these six factors, along with the risk-free

rate necessary for calculating stock excess returns, were obtained from Ken-

neth French’s data library, covering the period from July 1963 (the earliest

common availability for all factors) to December 2024.

The initial data set comprises 3,806 stocks actively traded as of De-
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cember 2024, having valid adjusted returns and market capitalization data

for that date. We apply sequential filtering criteria to refine this sample.

Namely, first we exclude stocks with a market capitalization below $300 mil-

lion to mitigate potential biases associated with micro-cap stocks, such as

low liquidity, price distortions, and limited market representativeness. This

step reduces the sample to 2,378 stocks. Second, we impose a requirement

that stocks must possess at least 20 years of continuous monthly adjusted

return data as of December 2024. This criterion ensures the inclusion of mul-

tiple economic cycles, including significant recessions and periods of market

stress, which is crucial for robust market regime identification. While a more

stringent historical data requirement might enhance regime characterization,

it would substantially reduce the sample size, potentially compromising the

representativeness of the findings. Applying this second filter yields a final

sample of 1,132 stocks. Notably, this final sample collectively represents over

90% of the total US stock market capitalization as of the end of the sample

period.

3.4.2 Market regime calibration and factor loadings

identification

The initial step involves determining the optimal number of market regimes,

represented as hidden states within a HMM, that most effectively captures

the dynamics inherent in the six-factor model dataset. To achieve this, we

employ a grid search procedure, evaluating integer values for the number of

states (M) ranging from 1 to 5. Specifying more than 5 regimes is generally

considered excessive and lacks substantial support in the existing literature,

and introduces significant estimation challenges due to the increased number

of parameters relative to the available time-series observations.

We iteratively fit a multivariate Gaussian HMM to the complete time

series of the six factors (sourced from Kenneth French’s data library, span-
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ning July 1963 to December 2024), varying the number of hidden states

s ∈ {1, 2, . . . , 5}, in each iteration. For each fitted model corresponding to

a specific number regime, we compute the Bayesian Information Criterion

(BIC) and the Akaike Information Criterion (AIC) to assess model suitabil-

ity. As illustrated in Figure 3.1, analysis of these criteria reveals that the

AIC reaches its minimum value when M = 3 states are specified, while the

BIC is minimized at M = 2 states. The divergence between these criteria

stems from the BIC imposing a more stringent penalty for model complexity

(i.e., the number of parameters).

Based on these findings, and prioritizing model parsimony as indicated

by the BIC, we select M = 2 as the optimal number of hidden states to char-

acterize the dynamics within our factor sample. This choice aligns with a

significant body of financial literature that identifies distinct market regimes,

often characterized as periods of high volatility/negative returns versus low

volatility/positive returns, influencing asset return behavior. This deter-

mined number of states (M = 2) remains fixed throughout the subsequent

recursive out-of-sample forecasting experiments detailed later in this study.

While not essential for implementing our framework, an economic inter-

pretation of the two regimes may be of interest. One approach is to examine

the resulting regime-dependent distributions of each of the six factors, as

shown in Table 3.1. We can observe that the Mkt − Rf factor is charac-

terized by a strong positive return, accompanied by low market volatility.

On top of the previous, we also see that in this regime the HML factor of-

fers relatively low risk premia, hinting at a negligible difference between the

performance of ”value” and ”growth stocks”. Something similar is observed

in the CMA factor, where companies that are more ”conservative” when it

comes to investments offer similar ”aggressive” companies. When it comes

to the UMD factor, we observe a relatively high Sharpe ratio, as this factor

is expected to perform the best in tranquil and persistent environments, as
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Figure 3.1: Determining the number of market regimes

We plot the information criteria resulting from a search grid designed to
find the optimal number of hidden states to use in our exercise. Fitting an HMM
on any dataset requires a pre-stablished number of densities to be identified from
the set of observable (emmitted) variables as input. Using the training sample
window, and the five factor dataset, we iteratively fit an HMM with multivariate
Gaussian emissions to a grid of possible integer values ranging from 1 to 5 regimes,
and register the Bayesian information criterion (BIC) and the Akaike information
criterion (AIC) obtained by using that particular number of regimes. The results
suggest that an optimal number of regimes to use for our dataset sits between 2
and 3 hidden states, which seems to be in line with the financial literature.
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the momentum signal has a relatively long lookback (12 months, skipping

the most recent one). These are characteristic features of positive trending

market states, commonly known as bull regimes. Conversely, Market Regime

2 represents the opposite extreme. This regime is characterized by a strong

negative return and high volatility in the Mkt − Rf factor. Furthermore,

value stocks and companies with conservative and robust profiles outper-

form their counterparts, as they offer some protection during this turbulent

regime and outperform weaker counterparts. The UMD factor exhibits a

stark contrast to its performance during Regime 1, which is expected due

to ”momentum crashes” experienced in highly volatile and negative equity

markets, documented by Daniel and Moskowitz (2016). Because of recently

described behaviors, we label this negative trending market state as a bear

regime. This interpretation is further supported by the Markov transition

matrix that governs the evolution of the hidden process and the transition

between these two regimes over time, illustrated in Panel B of Table 3.1. The

two states are highly persistent; Regime 1 has a probability of 95.2% of stay-

ing in the same market regime within a month horizon, while Regime 2 has

78.9% of doing the same. The excess persistence of Regime 1 over Regime

2 confirms the intuition built in the previous analysis, as bull regimes tend

to be stickier than bear regimes, and by consequence last longer, which is

confirmed by empirical data.

3.4.3 Factor loading recovery exercise

A critical component of our empirical validation involves a parameter re-

covery exercise designed to assess the capability of the RWLS methodol-

ogy to accurately identify known parameters within a controlled simulation

environment. Leveraging the HMM previously calibrated on the extensive

historical market dataset, we generate a synthetic dataset comprising 1,000

independent simulation paths. Each path spans 600 observations, repre-

senting 50 years of monthly frequency data. For each path, we simulate
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Table 3.1: Regime-conditional distributions

The table below presents the estimated regime-dependent distributions of
six asset pricing factors under a two-state HMM, selected as optimal based
on the Bayesian Information Criterion (BIC). Panel A reports the conditional
risk premia (λ) and their corresponding standard deviations (σ). Regime 1 is
characterized by positive market excess returns and lower volatility, consistent
with a ”bull market” interpretation, while Regime 2 reflects a high-volatility,
negative-return environment, indicative of a ”bear market” regime. Panel B
displays the estimated one-step-ahead transition probabilities between regimes.
Both regimes exhibit high persistence, with Regime 1 showing a notably higher
self-transition probability (95.2%) compared to Regime 2 (78.9%), aligning with
empirical evidence that bull markets tend to be more enduring than bear markets.

Panel A: Regime-Conditional Factor Distribution

Regime 1 Regime 2

λ σ λ σ

Mkr-Rf 9.57% 12.68% -4.35% 24.42%
SMB 1.57% 8.63% 5.90% 17.06%
HML 1.90% 7.79% 9.64% 18.09%
RMW 3.32% 5.22% 3.85% 14.70%
CMA 1.34% 5.68% 10.75% 12.14%
UMD 10.22% 9.64% -5.45% 27.03%

Panel B: Transition Matrix

To

From Regime 1 Regime 2

Regime 1 95.2% 4.8%
Regime 2 21.1% 78.9%
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sequences of regime-smoothed probabilities corresponding to the two mar-

ket regimes identified in the prior section, ensuring consistency with the

transition dynamics empirically observed in the six-factor dataset. Concur-

rently, we simulate the factor returns for the identical 600-observation period.

To establish the ”ground truth” parameters for this exercise, we draw spe-

cific vectors of regime-dependent factor loadings for each simulated security

from the empirical joint distribution characterized earlier. These known,

true loadings are then combined with the simulated factor returns to gen-

erate synthetic individual stock return series across the full 600-observation

horizon for each path. Subsequently, utilizing only the simulated factor re-

turns and the derived synthetic stock returns as inputs mimicking the data

available in a practical estimation setting, we apply the RWLS procedure

to infer the latent regime states and estimate the corresponding stock-level

regime-weighted factor loadings inherent in the simulated data. Our findings

indicate that, contingent upon the assumption that the data generating pro-

cess aligns with the HMM specification, the RWLS methodology successfully

retrieves the underlying regime-weighted factor loadings. The accuracy of

this retrieval process is visually substantiated in Figure 3.2, which depicts

the close alignment between the estimated loadings and their known ground

truth counterparts across the simulations.

3.4.4 Portfolio simulation

Evaluating the empirical efficacy of any investment framework necessitates

a rigorous simulation environment that closely mimics real-world conditions.

As discussed in Bailey et al. (2014), a backtest is only considered meaningful

when in-sample performance is consistent with out-of-sample behavior, cau-

tioning against the ease of overfitting due to data snooping and parameter

tweaking. López de Prado (2016, 2018) formalizes this concern by introduc-

ing a Monte Carlo simulation-based methodology, commonly referred to as

”backtesting on synthetic data”, where strategy robustness is assessed across
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Figure 3.2: Monte Carlo simulation results assessing parameter
recovery accuracy

Subplots show estimated versus true values for the parameters associated
with the six factors: (a) Mkt-Rf, (b) SMB, (c) HML, (d) RMW, (e) CMA, and
(f) UMD. Data points are generated under two distinct regimes (Regime 0 and
Regime 1). The close alignment to the identity line and congruent marginal kernel
density estimates validate the estimation procedure’s effectiveness for all factors
across both regimes.
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numerous return paths generated from known stochastic processes. More re-

cently, Ibanez (2023) applies a similar simulation framework using stochastic

differential equations to examine the resilience of diversified portfolios un-

der severe market conditions. Motivated by these studies, we implement a

controlled Monte Carlo simulation exercise to benchmark the performance of

our proposed RWLS framework.

Assuming that equity-market behavior can be represented by a multi-

variate Gaussian HMM, we employ the model fitted in the factor-loading

recovery exercise to carry out 5,000 Monte Carlo simulations to test the ef-

ficacy of our model while managing a large portfolio of 500 stocks. For each

trial, the HMM first draws a pair of successive hidden-state realizations fol-

lowing the calibrated one-step transition matrix. The first state identifies the

regime prevailing at the rebalancing date (t), whereas the second captures

the regime anticipated to govern returns over the following one-month hold-

ing period (t+ 1). Conditional on this regime sequence, the HMM simulates

contemporaneous paths for the six systematic risk factors, ensuring that the

draws respect the regime-specific multivariate distribution inferred from his-

torical data. In parallel to the factor simulation, we sample vectors of regime-

dependent factor loadings for each of the 500 constituent securities from the

joint distributions recovered in the earlier estimation exercise. This step is

repeated for every replication, so that each Monte Carlo path is paired with

an internally consistent cross-section of 3,000 factor loadings (500 stocks by 6

factors), all drawn from the empirically estimated regime-conditional distri-

butions, just as in the previous section. Combining these loadings with the

simulated factor returns corresponding to t+1 yields synthetic, regime-aware

one-month excess-return vectors for the full cross-section of 500 hypothetical

stocks. The resulting data-generating process provides a controlled envi-

ronment in which to benchmark the proposed RWLS framework against a

single-regime baseline, thereby isolating the incremental benefit of explicitly

modeling regime dynamics when constructing large-scale equity portfolios.
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In each of these trials, we construct a regime-aware portfolio by solv-

ing (3.11). We estimate the one-period-ahead forecasted state probabilities

of landing in regime s, γ̂s,t+1, by premultiplying the regime transition ma-

trix by the first hidden-state realization; the prevailing market regime at

the rebalancing date. Instead of choosing only one constant risk aversion

parameter, we define a grid of possible values between 1 and 50, to have a

comprehensive view of the resulting portfolios. As a baseline comparison,

we define a regime-agnostic framework by ignoring the regime dynamics and

assuming unconditional factor loadings and factor distributions. To obtain

these unconditional estimates, we collapse the pairs of regime-aware loadings

and risk premia distribution parameters using the limiting distribution of

the Markov chain (i.e., limn→∞ Πn). As previously mentioned, solving the

problem (3.11) for the case of a single regime is equivalent to solving a tra-

ditional mean-variance optimization problem. In the case of both the RWLS

framework and the baseline comparison, we impose a long-only constraint

(i.e., ∀w ≥ 0).

Figure 3.3 presents the results of a Monte Carlo simulation exercise de-

signed to assess the out-of-sample performance of the proposed RWLS portfo-

lio construction methodology relative to a regime-agnostic baseline. The sim-

ulation comprises 5,000 trials of a portfolio containing 500 stocks. Panel (a)

demonstrates that the RWLS framework achieves higher average simulated

returns across all levels of risk aversion considered, with the performance dif-

ferential being most pronounced at lower levels of the constant risk aversion

parameter φ. In addition to improved returns, the RWLS methodology con-

sistently produces portfolios with higher entropy, reflecting more diversified

allocations under the Shannon entropy measure. Panel (b) illustrates the

empirical cumulative distribution functions of monthly portfolio returns for

both methods at a fixed risk aversion level of φ = 25. The RWLS distribution

stochastically dominates the baseline, and a one-tailed Kolmogorov–Smirnov

test confirms that this improvement is statistically significant at the 1% level.
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Figure 3.3: Monte Carlo Simulated Portfolio Performance

The figure below summarizes the results of a Monte Carlo simulation study
evaluating portfolio performance under the proposed Regime-Weighted Least
Squares (RWLS) framework relative to a regime-agnostic baseline. The analysis
is based on 5,000 simulated trials of a portfolio composed of 500 stocks. Panel
(a) reports average simulated returns (top) and portfolio entropy (bottom) across
varying levels of the risk aversion parameter (φ). The RWLS approach consistently
outperforms the baseline in terms of expected return, while also yielding portfolios
with higher entropy, indicating greater diversification as measured by Shannon
entropy of the portfolio weights. Panel (b) displays the cumulative distribution
function (CDF) of simulated monthly portfolio returns for both methods under a
fixed risk aversion level (φ = 25). The empirical CDF for RWLS stochastically
dominates that of the baseline, and a one-tailed Kolmogorov–Smirnov test
confirms with 99% confidence that the RWLS methodology significantly improves
performance.

0.5%

1.0%

1.5%

A
v
g
.

S
im

u
la

te
d

R
et

u
rn

1 5 25 50

ϕ

0.5

1.0

1.5

P
or

tf
ol

io
E

n
tr

op
y

Baseline

RWLS

(a) Simulated Portfolio Performance

−5% 0% 5% 10%

Simulated Monthly Performance

0%

20%

40%

60%

80%

100%

P
ro

p
o
rt

io
n

Baseline

RWLS

(b) Performance CDF (φ = 25)

79



These results also hold for every value tested for the risk aversion parameter.

These findings suggest that incorporating regime information into the

portfolio optimization process yields more robust and diversified outcomes,

particularly in risk-averse settings.

3.5 Conclusions

This study introduces a novel RWLS methodology designed for estimat-

ing conditional means and covariance matrices in large-scale stock portfo-

lios through the integration of market regime dynamics using a HMM. The

proposed approach addresses significant limitations inherent in traditional

mean-variance optimization, particularly those associated with dimensional-

ity and estimation complexity in constructing extensive regime-aware equity

portfolios.

Our empirical results, derived from rigorous out-of-sample forecasting

experiments through comprehensive Monte Carlo simulations, demonstrate

that portfolios constructed using the RWLS framework consistently out-

perform traditional regime-agnostic strategies. Specifically, our approach

achieves better risk-adjusted returns and enhanced diversification, reflected

in higher portfolio weights entropy across varying levels of investor risk aver-

sion.

By effectively capturing regime-dependent behaviors of systematic risk

factors, our framework significantly contributes to practical asset manage-

ment, enabling quantitative asset managers and hedge funds to systemati-

cally adapt their portfolio strategies to prevailing market conditions. Fur-

thermore, our results underscore the importance of explicitly modeling regime

dynamics, which leads to materially improved investment performance, par-

ticularly during periods characterized by market stress and volatility.
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While our findings provide compelling evidence in favor of incorporating

regime-awareness into portfolio management, several avenues remain open

for future research. Particularly promising is the integration of endogenous

regime-switching models that respond dynamically to market innovations.

Further exploration of regime characteristics across different economic cycles

and markets could enhance the robustness and applicability of the framework,

expanding its relevance across diverse investment contexts. This ongoing

research promises further valuable insights and improvements in the strategic

management of large-scale investment portfolios. This is part of an ongoing

research agenda.
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Chapter 4

Optimal Investment Signal
Combination in Systematic
Equity Portfolios: A
Beamforming Approach

4.1 Introduction

The investment management industry, specially in the case of equity-focused

funds, has experienced a significant transformation since the turn of the

millennium. Previously, investment decisions relied heavily upon individual

experience, skill, and intuition. In recent years, however, these subjective

methods have increasingly been supplanted by rigorous, scientific, and repli-

cable processes characterized by the systematic design and implementation of

rules-based investment strategies. These contemporary strategies primarily

rely on empirical evidence rather than traditional seasoned judgment.

The widespread adoption of systematic investment methodologies is note-

worthy. Harvey et al. (2017) estimated that, by 2014, approximately 26%

of total assets under management (AUM) were already systematically man-
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aged. It is reasonable to infer that this proportion has grown substantially

over the past decade, given the significant expansion observed among hedge

funds; the primary users of systematic strategies. Indeed, hedge fund AUM

has dramatically increased from roughly $200 billion around the year 2000

(Sullivan, 2020) to over $5 trillion nowadays. This rapid expansion highlights

the growing preference for systematic approaches within the industry, under-

scoring their effectiveness, scalability, and appeal to institutional investors.

In quantitative investment funds, researchers identify, distill, and curate

certain stock characteristics (e.g., book-to-price, market capitalization, etc.)

that are statistically proven to be positively correlated with the future ex-

cess return of the stock. Such characteristics, also called investment signals,

typically come either from peer-reviewed journals or in-house research. Once

these individual signals are identified, a common practice in the systematic

equity trading industry is to aggregate them into one single score (Novy-

Marx, 2015), and based on this score a portfolio is constructed where stocks

with a high aggregate signal are bought (or overweighted with respect to a

given benchmark) while stocks scoring relatively low on the aggregate signal

are sold (or underweighted).

The academic literature in finance has witnessed a proliferation of fac-

tors purported to explain the cross-section of expected stock returns, a phe-

nomenon often described as a ”factor zoo” (Cochrane, 2011). The sheer

volume of discoveries is extensive, with Harvey et al. (2016) documenting

over 300 significant return predictors. This figure has continued to grow

since, encompassing over 450 anomalies in comprehensive replications like

that of Hou et al. (2020). This rapid explosion of factors has led to sig-

nificant concerns about data mining; the implications of this intense search

for significant characteristics, together with the well-known publication bias

effect, make it likely that many of these findings are spurious. Indeed, Har-

vey et al. (2016) suggests that most claimed research findings in financial
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economics are likely false after adjusting for multiple testing. Underscoring

the vastness of the search space, Yan and Zheng (2017) constructed a uni-

verse of over 18,000 potential fundamental signals from financial statements,

finding that many still exhibited predictive power even after accounting for

overfitting. A crucial issue complicating this landscape is that these numer-

ous factors are not independent; many are correlated with one another, a

point emphasized by Arnott et al. (2019). However, this correlation does not

necessarily imply redundancy. Kozak et al. (2020) argues that there is not

enough redundancy among the dozens of known anomalies to allow for a par-

simonious, characteristics-sparse factor model to adequately summarize the

cross-section of returns, challenging the sufficiency of popular three-, four-,

or five-factor models.

Given this crowded and correlated factor landscape, the challenge for

portfolio construction becomes paramount. The dubious statistical signifi-

cance of many signals, highlighted by the high t-statistic hurdles proposed

by Harvey et al. (2016) and the widespread replication failures documented

by Hou et al. (2020), means that many factors have overstated historical

performance that is unlikely to persist. Furthermore, even for factors that

appear robust, their return streams are often characterized by significant

noise and non-normality, including fat tails and larger-than-expected draw-

downs (Arnott et al., 2019). This combination of issues, correlation that

undermines naive diversification, questionable predictive power, and adverse

tail risk, makes the method by which signals are combined critically impor-

tant. A simple approach of selecting a few historically successful factors is

likely to be suboptimal. Instead, as suggested by Kozak et al. (2020), ro-

bust methods such as imposing economically motivated priors that shrink

the contributions of noisy signals are required to distill the true predictive

information from the vast and complex cross-section of factors. The focus

thus shifts from discovering individual factors to developing a robust stochas-

tic discount factor that can effectively combine information from a large set
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of predictors.

While the optimal method for combining signals is an ongoing debate

among academics and financial engineers, the challenge of aggregating noisy

signals has long been a central focus of other disciplines, notably signal pro-

cessing and electrical engineering. Feng and Palomar (2016) argue that while

financial engineering and electrical engineering may appear to be unrelated

fields, they are built upon the same mathematical foundations. The core

of both disciplines relies on the statistical modeling and analysis of systems

to make predictions and optimize strategies. Financial engineering focuses

on the statistical analysis of numerical time series to model the behavior of

financial markets, which allows for the systematic optimization of investment

strategies. In a similar vein, electrical engineering, particularly in areas like

wireless communications, employs statistical signal processing to model com-

munication channels to optimize transmission strategies. This fundamental

parallel suggests that optimizing an investment strategy in a financial mar-

ket is conceptually equivalent to optimizing a signal transmitted from an

antenna. The recognition of this shared mathematical framework opens up

the possibility for both fields to benefit from methodologies that were often

developed independently (Feng and Palomar, 2016). For instance, the Au-

toregressive Moving Average (ARMA) model, a popular tool for modeling

financial time series (Tsay, 2010), is also a foundational rational or pole-zero

model in signal processing (Manolakis et al., 2005). In the realm of risk

management, robust covariance matrix estimation is critical. The financial

practice of ”shrinking” a sample covariance matrix (Ledoit and Wolf, 2004) is

mathematically identical to the ”diagonal loading” technique used for robust

adaptive beamforming in signal processing for decades (Abramovich, 1981,

Carlson, 1988, Cox et al., 1987). Furthermore, the problem of designing a

minimum variance portfolio (Markowitz, 1952) is mathematically identical

to the design of a filter or beamformer in signal processing (Monzingo et al.,

2011; Zhang et al., 2013).

85



This chapter bridges an interdisciplinary gap by applying a proven method-

ology from signal processing to address this central problem in quantitative

finance. We argue that the challenge of combining noisy investment signals

is mathematically equivalent to the problem of combining signals from an

antenna array in wireless communications (as in Feng and Palomar, 2016).

We implement adaptive beamforming, a methodology used by electrical engi-

neers for decades, as a robust framework for optimally combining investment

signals. This approach moves beyond static weighting schemes to a dynamic

system that maximizes the portfolio’s signal-to-noise ratio. The remainder of

this chapter is organized as follows: Section 3.2 reviews the academic litera-

ture on combining investment signals and the challenges posed by the ”factor

zoo”. Section 3.3 introduces our proposed methodology, establishing the the-

oretical link between financial engineering and signal processing and detailing

the multi-stage beamforming framework for signal combination. Section 3.4

presents a comprehensive empirical backtest of this framework, where we

apply the methodology to a set of seven distinct value and momentum sig-

nals using historical U.S. equity data. We compare its performance against

a baseline strategy that reflects common industry practice. Finally, Section

3.5 concludes and discusses the implications of our findings for systematic

portfolio managers.

4.2 Related literature

In empirical asset pricing, factors are systematic drivers that explain the

co-movement and expected returns of securities. This concept, rooted in the

Arbitrage Pricing Theory of Ross (1976), posits that the cross-section of stock

returns is driven by securities’ covariances with these underlying factors. In

practice, factor portfolios are constructed not by directly measuring these ab-

stract betas, but by sorting stocks based on observable firm characteristics.

The most widely accepted factors, which have demonstrated persistent ab-
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normal returns over long periods, include size (market capitalization), value

(e.g., book-to-market), momentum (past returns), profitability (e.g., return

on equity), and low volatility/low beta.

The persistent outperformance associated with these characteristics is

often referred to as investment anomalies, as they cannot be explained by

traditional general equilibrium-based models such as the Capital Asset Pric-

ing Model (CAPM), and has provided considerable evidence against the tra-

ditional efficient market hypothesis. For example, value stocks are defined

as those with high fundamentals-to-price ratios, and the extensive literature

on the value anomaly shows that these stocks have historically tended to

outperform glamour stocks, which exhibit low fundamental-to-price ratios.

These findings led to the development of multifactor asset pricing models,

most notably the Fama and French three-factor model (Fama and French,

1993) and the later five-factor model (Fama and French, 2015). These models

have become standard benchmarks for evaluating investment performance.

However, even these influential models face scrutiny. Blitz et al. (2018) iden-

tify several concerns with the five-factor model, including its retention of the

disputed CAPM relation between beta and return, its inability to explain

the momentum premium, and the questionable robustness of its new factors.

Over recent decades, there has been a dramatic proliferation in the num-

ber of factors and anomalies identified in asset pricing literature, with dis-

coveries accelerating sharply to approximately eighteen new factors per year

recently, up from just one per year in earlier periods (Harvey et al., 2016).

This rapid growth, driven by enhanced data availability, computational ca-

pacity, and extensive data mining, poses significant statistical and practical

challenges. Firstly, replication issues have become acute, as evidenced by

Hou et al. (2020), who found that around 65% of 452 tested anomalies failed

rigorous statistical replication procedures, with the failure rate rising to ap-

proximately 82% after correcting for multiple testing. Moreover, Arnott et al.
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(2019) emphasized practical pitfalls such as factors losing their profitabil-

ity due to crowding, data mining-induced overfitting, and the complexity

of managing nonnormal distributions and time-varying correlations, espe-

cially in stressed market conditions. Additionally, Yan and Zheng (2017)

documented pervasive data mining within fundamental signals, underscor-

ing the difficulty in distinguishing genuine predictors from random chance.

Addressing this complexity, Kozak et al. (2020) advocated methodologies

like shrinkage techniques and principal component analysis, aiming to effec-

tively reduce the dimensionality of this growing factor zoo (Cochrane, 2011).

Consequently, the exponential growth in discovered factors necessitates in-

creasingly rigorous empirical validation and innovative analytical methods to

ensure robust and economically meaningful investment strategies.

While individual factors have historically earned return premiums, they

have all experienced periods of underperformance, and crucially, these peri-

ods have not always occurred at the same time. This cyclicality creates an

opportunity for diversification. By combining multiple factors, investors can

create more stable portfolios and potentially achieve more consistent returns.

Furthermore, a simple single-factor approach can lead to significant and often

undesirable exposures to other factors. A portfolio targeting one factor in

isolation may inadvertently hold securities with low or even negative scores

on other important factors. For example, Blitz and Vidojevic (2019) shows

that generic factor strategies often invest a substantial portion of their port-

folio (around 20% or more) in stocks with negative implied market-relative

returns due to poor characteristics on other factors. Small-cap stocks, for in-

stance, are often ”junky” and have poor quality characteristics that detract

from their returns. A multifactor approach helps mitigate this dilution, as

it accounts for the cross-sectional interactions of factors. Combining factors

can also have other benefits due to the inadvertent interaction between char-

acteristics. Asness et al. (2018) argues that the well-documented weakness of

the size premium is an artifact of the strong negative correlation between firm

88



size and quality. The authors show that by controlling for a firm’s ”junk”

characteristics, a significant and robust size premium that is stable over time

and across international markets is resurrected.

The inherent low correlation between these factors and investment anoma-

lies offers interesting avenues to construct efficient stock portfolios. Combin-

ing multiple factors provides considerable diversification benefits, reducing

vulnerability to factor-specific underperformance (Bender and Wang, 2016).

Such diversification allows multifactor portfolios to offer higher risk-adjusted

returns compared to single-factor strategies. Firoozye et al. (2023) high-

lights the value of combining signals by illustrating how Canonical Corre-

lation Analysis (CCA) helps identify optimal combinations of assets and

predictive signals, improving performance and offering theoretical grounding

for practical implementation. Furthermore, Pätäri et al. (2018) argues that

multicriteria decision-making methods effectively aggregate various value and

momentum indicators, enhancing portfolio stability and performance.

The literature on combining investment signals and factors into multi-

factor portfolios highlights two primary methodological approaches: portfolio

blending (top-down) and signal blending (bottom-up), each with distinct the-

oretical foundations and practical implications. Clarke et al. (2016) assert

that portfolios built directly from individual securities (signal blending) gen-

erally exhibit greater mean-variance efficiency compared to portfolios con-

structed from factor subportfolios (portfolio blending). They demonstrate

empirically that signal blending captures a larger portion of the potential

improvement in the Sharpe ratio relative to the market portfolio, attributed

primarily to broader latitude in leveraging cross-sectional variation in fac-

tor exposures. Conversely, Ghayur et al. (2018) suggests a nuanced view,

finding that portfolio blending provides superior risk-adjusted returns at

low-to-moderate levels of tracking error, whereas signal blending outper-

forms at higher tracking error levels. This finding implies practical con-
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siderations for investors depending on their risk tolerance and investment

constraints. Leippold and Rueegg (2018), however, present a skeptical per-

spective, suggesting that prior findings favoring integrated (signal blending)

approaches over mixed (portfolio blending) approaches might be statistical

artifacts. Their rigorous analysis indicates negligible empirical differences

between these methods once robust testing frameworks are employed. Lester

(2019) provides theoretical support for signal blending, demonstrating ana-

lytically that bottom-up multifactor portfolios can significantly outperform

top-down constructions, especially when factors are orthogonal or exhibit

low correlations. This theoretical underpinning is supported by empirical

results indicating higher expected returns and improved information ratios

from bottom-up portfolios. Amenc et al. (2017, 2018) critically evaluate

both methodologies, emphasizing the merits of simplicity, transparency, and

ease of attribution in top-down approaches. They highlight that bottom-

up portfolios, despite potentially higher factor exposures, often incur higher

implementation costs due to greater turnover and concentration risks. Nev-

ertheless, they acknowledge that a carefully executed top-down method that

accounts for cross-factor interactions can deliver comparable efficiency. Fi-

nally, Bender and Wang (2016) strongly advocates for bottom-up multifactor

portfolio construction, arguing that it captures beneficial interactions at the

security level that top-down methods might overlook. Their empirical re-

sults support the bottom-up approach, indicating meaningful enhancements

in portfolio efficiency arising from security-level interactions of factors.

One of the ongoing debates when it comes to combining signals is the case

of negatively correlated factors. Value and momentum are two prominent

anomalies in financial markets, each individually providing robust return pre-

miums. However, combining them effectively in portfolio strategies presents

distinct challenges due to their consistently observed negative correlation.

Early foundational work by Asness (1997) highlights this critical interaction,

demonstrating that value strategies perform strongest among stocks with
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weak recent performance (low momentum), whereas momentum strategies

excel particularly among expensive (low-value) stocks. This fundamental in-

teraction requires careful consideration when these strategies are combined.

Further research supports this negative correlation and underscores its impli-

cations. Asness et al. (2015) reiterates that integrating these two factors into

a single portfolio can significantly enhance overall risk-adjusted returns by

harnessing their diversification benefits. However, Grobys and Huhta-Halkola

(2019) emphasize that the negative correlation between value and momentum

appears predominantly driven by growth stocks, making strategic integration

nuanced. They find notably similar returns between winner stocks that are

value or growth stocks, implying that the negative correlation is not uniform

across all market segments. The combination methodologies themselves in-

troduce further complexity. Fisher et al. (2016) and Cooper and Jiao (2024)

delve into the operational details, demonstrating that simultaneous integra-

tion of value and momentum signals at the security level, rather than com-

bining separate portfolios afterward, significantly reduces transaction costs

and leverages unfavorable signals more efficiently. Particularly, Fisher et al.

(2016) find that directly incorporating momentum and value signals in a sin-

gle portfolio not only enhances cost efficiency but better utilizes available

information, highlighting the advantage of a more integrated approach over

independent strategies. Addressing risk, Barroso and Santa-Clara (2015)

highlight the inherent volatility and crash risk associated with momentum

strategies. They suggest that volatility-targeted (risk-managed) momentum

strategies significantly mitigate momentum’s severe downturns, thus poten-

tially stabilizing the combination of momentum with value, which typically

exhibits lower volatility. Li (2018) further provides theoretical grounding

by proposing a unified, investment-based framework explaining how distinct

risks underlie momentum and value strategies. This research indicates that

momentum captures short-term productivity shocks, whereas value strate-

gies reflect longer-term risks, thus justifying their negative correlation and
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advising nuanced integration. Moreover, Pani and Fabozzi (2021) introduce

an innovative approach, incorporating trends within fundamental metrics,

which enhances the value component when combined with momentum, again

underscoring the importance of nuanced methodological details. Addition-

ally, Wang and Kochard (2012) propose employing a z-score approach for

blending momentum and value, emphasizing the need for precise method-

ologies to navigate their negative interaction effectively. Effectively combin-

ing negatively correlated stock characteristics such as value and momentum

strategies is intricate, demanding careful consideration of their negative cor-

relation, volatility management, methodological integration, and theoretical

underpinnings. Successful integration requires sophisticated techniques, risk

controls, and a nuanced understanding of how these factors interplay across

different market environments and stock characteristics.

The literature above illustrates substantial debate and complexity in in-

tegrating multiple investment signals, particularly when signals exhibit nega-

tive correlation, such as value and momentum. Research demonstrates theo-

retical and empirical advantages in the bottom-up signal blending approach,

especially due to enhanced factor exposures and reduced transaction costs.

Nevertheless, achieving efficient integration is challenging, particularly with

negatively correlated factors, due to potential dilution effects and increased

volatility. In this study, we extend the existing literature by exploring ef-

ficient bottom-up signal blending methodologies through the application of

techniques commonly employed in the signal processing field of electrical

engineering. Our objective is to optimize the combination of investment sig-

nals, managing their intrinsic correlations and volatility dynamically, thus

enabling robust portfolio construction even in the presence of strongly neg-

atively correlated factors.

92



4.3 A signal processing framework for invest-

ment signals

4.3.1 From financial engineering to electrical engineer-

ing: establishing the analogy

While the challenges inherent in systematic investing, such as identifying pre-

dictive signals, managing risk, and constructing optimal portfolios, are often

considered unique to finance, the underlying mathematical problems are not.

Other quantitative disciplines, notably signal processing within electrical en-

gineering, have long focused on a conceptually identical task: extracting a

desired signal from a noisy, multi-source environment. As Feng and Palomar

(2016) argues, financial engineering and signal processing, while appearing

to be unrelated fields, are built upon the same mathematical foundations,

allowing for a powerful cross-pollination of ideas and techniques.

The core of both disciplines relies on the statistical modeling of complex

systems to make predictions and optimize strategies. This fundamental par-

allel is not merely abstract; it manifests in the direct equivalence of specific,

foundational models used in both fields. The parallels highlighted by Feng

and Palomar (2016) are shown in Table 4.1, which notably include:

• Time-series modeling: The Autoregressive Moving Average (ARMA)

models, which are standard tools for modeling financial time series

(Tsay, 2010), are mathematically identical to the pole-zero models that

form the basis of filter design in signal processing (Manolakis et al.,

2005).

• Robust risk management: In finance, robust covariance matrix es-

timation is critical for portfolio construction. The common practice of

shrinking a sample covariance matrix toward a more structured tar-
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get to improve its stability, popularized by Ledoit and Wolf (2004),

is a technique known as diagonal loading in signal processing, where

it has been used for decades to achieve robust adaptive beamforming

(Carlson, 1988; Cox et al., 1987).

• Portfolio optimization: Most directly, the problem of designing

a minimum-variance portfolio as formulated by Markowitz (1952) is

mathematically equivalent to the design of an optimal filter or beam-

former in signal processing (Monzingo et al., 2011). Both seek to find an

optimal set of weights to combine multiple input streams to minimize

variance (noise) for a given level of signal strength (return).

This shared mathematical framework allows us to re-conceptualize the

central task of a quantitative portfolio manager. In this view, optimizing

an investment strategy is analogous to optimizing a signal received by an

array of antennas. Individual investment factors (e.g., Value, Momentum)

act as the separate antennas, each receiving a noisy version of the desired

information (alpha). The portfolio construction process, therefore, becomes

a beamformer, an algorithm designed to intelligently combine these inputs

to amplify the true signal while canceling out the uncorrelated noise and

interference. Recognizing this shared foundation opens the door for finance

to benefit from robust methodologies that have been developed and refined

independently over decades in engineering.

4.3.2 Investment signals as noisy data streams

In electrical engineering, a signal is defined as a function of one or more in-

dependent variables that conveys information about a physical phenomenon,

encompassing everything from speech and audio to biomedical, seismic, and

radar signals. These phenomena typically manifest as variations over time

or space and can be represented in various mathematical forms, including

discrete, continuous, or digital signals (Sundararajan, 2023, Anand, 2022).
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Table 4.1: Financial engineering and signal processing
In Feng and Palomar (2016), the authors show that both fields focus on
extracting signals from noisy data. In finance, this involves detecting trends in
unstable market data. This similarity enables interdisciplinary applications, where
signal processing techniques such as beamforming, filter design, and random
matrix theory can be applied to financial challenges like risk management,
statistical arbitrage, and market impact modeling, potentially enhancing the
accuracy and efficiency of financial strategies.

Connections between financial engineering and signal processing

Financial Engineering Signal Processing

Modeling Autoregressive moving av-
erage (ARMA)

Rational/Pole-zero model

Robust covari-
ance matrix es-
timation

Shrinkage sample covari-
ance matrix estimator

Diagonal loading in beam-
forming

Asymptotic
analysis

Large-dimensional general
asymptotics

Random matrix theory

Optimization Mean-variance portfolio
optimization

Filter/Beamforming de-
sign

Sparsity Index tracking Sparse signal recovery

However, signals encountered in practical applications are often contami-

nated by noise, unwanted disturbances that obscure or alter the intended

information. Noise can manifest as random variations or structured inter-

ference, often reducing the effectiveness of communication and measurement

systems. Sources of noise are diverse and can include thermal fluctuations in

electronic components (Johnson-Nyquist noise), electromagnetic interference

from external devices, environmental conditions such as atmospheric distur-

bances, mechanical vibrations, and inherent physical limitations of measure-

ment systems such as sensor inaccuracies or quantization errors (Tan and

Jiang, 2019). Understanding and mitigating these noise sources is crucial to
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enhancing the fidelity and reliability of signals across various engineering and

technological applications.

Consequently, the quality of a signal processing system is indicated by

the Signal-to-Interference-and-Noise Ratio (SINR); defined as the ratio be-

tween the power of the desired signal and the power of background noise

(Sundararajan, 2023), which is usually measured in decibels (dB). A higher

SINR implies a clearer and more distinguishable signal, directly correlat-

ing with improved performance in communication systems, signal detection,

and accurate information retrieval. This makes SINR an essential parameter

in optimizing signal processing techniques for noise reduction, ensuring the

reliability and efficiency of various electronic and digital systems.

A visual representation of this core challenge is provided in Figure 4.1.

The top panel illustrates a raw, noisy signal, analogous to the return stream

of a single investment factor where the underlying predictive information is

obscured by high-frequency volatility and random market fluctuations. The

bottom panel shows the same signal after a filtering process has been applied,

stripping away the noise to reveal the cleaner, more fundamental waveform.

This act of isolating a true signal from a contaminated data stream is the

fundamental objective of signal processing and serves as the conceptual basis

for our portfolio construction methodology.

In the landscape of financial engineering, an investment signal, often

referred to as an alpha signal, is an empirical regularity in which a firm’s ob-

servable characteristics are statistically correlated with its future excess stock

returns. These signals represent market anomalies that are not explained by

classical asset pricing models like the Capital Asset Pricing Model (CAPM).

The vast majority of these signals operate cross-sectionally, a crucial concept

meaning that the absolute value of a characteristic is less important than

its rank or value relative to other companies in the investable universe. For
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Figure 4.1: Illustration of a noisy signal and its filtered counterpart

This figure visually represents the core challenge in signal processing. The
top panel shows a ”noisy signal,” where a clean, underlying waveform is con-
taminated by random, high-frequency disturbances. This is analogous to a raw
investment factor’s return series, which contains both a predictive ”signal” (alpha)
and significant market ”noise.” The bottom panel displays the ”clean signal” after
a filtering process has been applied to remove the unwanted noise, revealing the
core informational waveform.
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instance, in the case of the value anomaly, a company with a book-to-market

ratio of 0.5 might be considered a value stock in a growth-dominated market

environment, yet it could be classified as a growth stock during a period of

deep economic distress where average valuations are much lower. This relativ-

ity is precisely why quantitative practitioners typically de-mean and re-scale

raw characteristic data through a process known as z-scoring. This trans-

formation converts the often-meaningless absolute value into a standardized,

relative score, which serves the dual purpose of identifying a stock’s standing

within its peer group and creating a common unit of measurement, allow-

ing for the direct comparison and subsequent combination of heterogeneous

signals, such as value and momentum. However, this common practice is

a linear and static transformation that implicitly assumes each normalized

signal contributes equally and independently to a final composite score, an

assumption that fails to capture the complex, dynamic interplay between

factors.

The academic literature is replete with hundreds of potential investment

signals, creating a ”factor zoo” that presents both opportunities and chal-

lenges for investors (Cochrane, 2011). The sheer volume of discoveries has led

to valid concerns about data mining, with many findings failing to replicate

out of sample or requiring an exceptionally high statistical hurdle (e.g., a

t-statistic greater than 3.0) to be considered significant (Harvey et al., 2016).

While a comprehensive cataloging of this factor zoo is beyond the scope of

this chapter, we can classify most robust signals into two intuitive categories

based on their underlying economic rationale. The first category is ”conver-

gency” signals, which identify mispricings that are expected to correct over

time, pointing to a company’s market price moving closer to an estimate of

its intrinsic value. Factors such as book-to-market, earnings-to-price, and

dividend yield fall into this category, as they are based on the premise that

market prices will eventually revert to a mean dictated by fundamental value.

The second category is ”divergency” signals, which capture trends or behav-
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ioral biases that are expected to persist, pointing to a stock’s price continuing

to move away from a prior reference point. Price momentum is the canonical

example, betting on the continuation of a recent trend often attributed to

investor underreaction to information. Other signals, like asset growth, can

also be viewed as divergencies, as they often capture extrapolative expec-

tations from investors. This taxonomy is useful because these two types of

signals are often driven by different economic and behavioral forces, leading

them to have distinct risk profiles and, frequently, a negative correlation.

A critical property of these signals is that a company’s exposure to them

is dynamic and changes over time. Figure 4.2 illustrates this for Walmart Inc.

from 1985 to 2025. The company’s book-to-market ratio fluctuates through

long cycles; it entered a period of deep relative undervaluation in the early

2000s before its market capitalization surged, driving the ratio down into

”growth” territory for much of the subsequent decade. A similar pattern

is observed for its price momentum, which experiences periods of strong,

persistent price appreciation followed by corrections. This cyclicality is not

random noise but a structured, periodic behavior, directly analogous to the

sinusoidal waveforms that represent acoustic or electromagnetic signals, as

depicted in Figure 4.1. Given the documented association of these signals

with future returns, a stock’s performance is expected to be strongest when

its signal is at a peak. However, the critical challenge for portfolio construc-

tion is that these signal ”waveforms” are often out of phase. As Figure 4.2

clearly shows, the peaks for Walmart’s value and momentum signals often

occur at different times, a firm-level example of the well-documented negative

correlation between these two factors. A naive, static combination method,

such as simple averaging, would see these powerful but opposing signals effec-

tively neutralize each other during extended periods. Therefore, any robust

portfolio construction methodology must move beyond simple signal aggre-

gation and instead employ a framework that can explicitly model and adapt

to these complex temporal and cross-serial correlations. It must behave less
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like a simple mixer and more like a sophisticated signal processor, capable

of understanding when signals are reinforcing and when they are interfering.

This is precisely the problem that adaptive beamforming is designed to solve.

4.3.3 The beamforming approach to signal combina-

tion

In both communications and radar systems, a phased array is a collection

of individual antennas, often called elements, that work in concert. These

elements, typically simple omnidirectional antennas, are arranged in a specific

geometry, such as a line or a grid. By electronically coordinating the signals

received by each element, the array can achieve performance far superior to

that of a single antenna. In financial engineering, we can conceptualize a

collection of individual investment signals (e.g., Value, Momentum, Quality)

as a financial ”array”. Each signal acts as a sensor, providing a unique, albeit

noisy, perspective on the market.

A beamformer is the signal processing operation that transforms the

multiple inputs from an antenna array into a single, optimized output. It

functions as a spatial filter, enhancing signals from a desired direction while

suppressing unwanted interference and noise from all other directions. This

is achieved by applying a set of complex weights, or coefficients, to the signal

from each element before they are summed together. By precisely manip-

ulating these weights, the beamformer can ”steer” a highly sensitive beam

toward a target signal, effectively increasing the SINR of the desired infor-

mation. The process of forming and directing these sensitivity patterns gives

the technique its name: beamforming.

Central to beamforming is the concept of the steering vector. This vector

mathematically describes how a signal from a specific direction arrives at

each element of the array with a unique time and phase delay relative to the
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Figure 4.2: The dynamic nature of value and momentum signals for
Walmart Inc.

The chart displays the time-varying, z-scored book-to-market (value) and
12-1 month momentum signals for Walmart Inc. from 1985 to 2024. The signals
exhibit cyclical, sine-wave-like behavior and are often out of phase, illustrating
the challenge of static signal combination.
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others. For a simple uniform linear array (ULA), the steering vector, s, can

be expressed as a function of the signal’s angle of arrival, θ, and the distance

between elements, d:

s(θ) =



1

e−2jπd sin(θ)

e−2jπd(2) sin(θ)

...

e−2jπd(Nr−1) sin(θ)



This vector provides the precise phase adjustments needed to align the

signals from a desired direction, causing them to add together constructively.

In essence, the steering vector is the blueprint for pointing the array’s focus.

While conventional beamformers use the steering vector to simply maxi-

mize gain in a known direction, adaptive beamforming techniques adjust the

weights based on the statistical properties of the received signals themselves.

A powerful and widely used adaptive method is the Minimum Variance Dis-

tortionless Response (MVDR), also known as the Capon Beamformer. The

objective of MVDR is to maintain a perfect, distortionless response (a gain

of one) in the direction of the desired signal while simultaneously minimizing

the total output power, or variance, from all other sources. Since the desired

signal’s gain is fixed, minimizing the total output power is equivalent to min-

imizing the power of all interfering signals and noise. This makes MVDR a

”statistically optimal” beamformer for maximizing the SINR. The optimal

weight vector for the MVDR beamformer is calculated as:

102



ωmvdr =
R−1s

sHR−1s

Here, s is the steering vector for the desired signal, and R is the spatial

covariance matrix of the received signals. This matrix captures the corre-

lation structure between the signals received at each antenna element. The

crucial step is the inversion of this covariance matrix (R−1), which allows the

beamformer to systematically place deep nulls in the directions of interfering

signals.

Figure 4.3 provides a detailed block diagram of a multi-channel adaptive

beamformer, illustrating the sequential processing steps required to trans-

form multiple noisy inputs into a single, optimized output. In this basic

illustration, the process begins where an array of 3 antennas receives the

incoming wavefronts, capturing 3 distinct, spatially-sampled versions of the

same input signal. The core of the adaptive beamforming occurs in the next

two stages, where a complex weight, comprising a phase shift (∆ϕk) and an

amplitude adjustment (ωk), is applied to each signal path. The phase shift

is calculated to align the desired signal components from all channels, while

the amplitude weight is determined by an adaptive algorithm to strategically

suppress sources of interference. Finally, all individually processed signals

are coherently summed at a combination point, resulting in an output signal

where the desired components have been constructively reinforced and the in-

terference and noise have been destructively canceled, yielding a significantly

higher SINR.

Translating this to financial engineering, while we do not have physical

antennas, we have an array of investment signals. The physical ”interference”

an engineer seeks to nullify becomes the statistical correlation between these

investment signals. A strong value signal, for example, can be ”interfered
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Figure 4.3: Block Diagram of a Basic Beamformer and Its Financial
Analogy

This figure illustrates the core components of a beamformer. An incoming
signal is received by an array of antennas (the individual investment signals).
Each signal is then passed through an attenuator that applies a specific weight
(ωi) and a phase shifter that applies a delay (∆ϕi). In our financial framework,
this combined weighting and phasing process is equivalent to the optimal capital
allocation determined by the portfolio construction algorithm. These individually
processed signals are then summed together to produce a single, optimized output
signal with a higher signal-to-noise ratio (the final multifactor portfolio with an
enhanced Information Ratio).
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with” by a simultaneous, negatively correlated momentum signal. Instead of

measuring signal power in watts, we can measure the risk premia associated

with each signal. The MVDR framework thus provides a rigorous methodol-

ogy for constructing a composite portfolio. It uses the covariance matrix of

the factor returns to understand their interrelationships (the ”interference”)

and a steering vector (representing the desired alpha source) to enhance the

target premium while systematically canceling out the detrimental effects of

correlated factor exposures.

4.3.4 A Beamforming Approach to Investment Signals

Aggregation

Our proposed methodology translates the principles of adaptive beamform-

ing from signal processing into a rigorous, multi-stage framework for con-

structing systematic equity portfolios. The process, illustrated in Figure 4.4,

is designed to systematically receive, amplify, filter, and optimally combine

multiple noisy investment signals into a final, robust portfolio. Each stage

has a direct counterpart in the engineering world, allowing us to leverage a

sophisticated and proven toolkit to address the unique challenges of financial

data.

The process begins at each monthly rebalance date with the reception

of raw investment signals for all stocks in the investable universe (1). Given

the cross-sectional and relative nature of these signals, we first perform an

amplification and normalization step to make them comparable and robust

(2). Each raw signal is cross-sectionally transformed using a non-parametric

quantile transformation, which maps the data to a standard normal dis-

tribution. This process, unlike simple z-scoring, is robust to outliers and

effectively handles non-linear relationships in the data. In addition to this

cross-sectional normalization, we also standardize each stock’s signal time

series in the longitudinal dimension. We implement a Kalman filter to esti-
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mate the conditional mean and volatility of each stock’s signal exposure over

time. This step ensures that the signal is standardized relative to its own

history, mitigating the impact of structural breaks or time-varying volatility

in a firm’s characteristics. The output of this stage is a set of amplified,

robustly normalized signals ready for further processing.
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Figure 4.4: Block Diagram of the Proposed Investment Process

The diagram shows the signal flow for k investment signals in our proposed methodology. Each signal is
received, amplified, filtered, and then optimally phase-shifted and weighted before being combined to produce a
final, enhanced output that informs portfolio construction.
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With the amplified signals in hand, the next stage is to separate the

underlying predictive trend from high-frequency noise. We move the signal

from the time domain into the frequency domain using a Fast Fourier Trans-

form (FFT) (3). The FFT decomposes the time series of each signal into a

sum of sinusoidal waves of different frequencies and amplitudes. This allows

us to analyze the signal’s power spectrum, as shown in the periodogram in

Figure 4.5, which illustrates this procedure using the 12-1 month momentum

signal for Walmart Inc. as a case study. The volatile time-domain signal

(Panel A) is first decomposed into its constituent frequencies using a Dis-

crete Fourier Transform. In the frequency domain (Panel B), we identify the

low-frequency components that represent the persistent, underlying trend

of the signal, while discarding the higher-frequency components, which are

treated as noise. These selected, powerful frequencies are then used to re-

construct the final, filtered signal (Panel C), which is a smoothed and more

robust representation of the original investment characteristic.

This crucial filtering step ensures that our beamforming algorithm is

fed with cleaner, more reliable inputs, thereby improving the stability and

efficacy of the final portfolio construction. In the frequency domain, we

apply a k-means clustering method to isolate the most relevant frequencies.

We posit that the persistent, predictive component of an investment signal

resides in its lower-frequency components, which represent secular trends.

The higher-frequency components, conversely, are treated as transient market

noise and are discarded by setting their amplitudes to zero. By taking the

inverse FFT of only the selected low-frequency components, we transform

the signal back into the time domain, resulting in a smoothed, ”cleaned”

representation that is a more robust proxy for the true underlying economic

anomaly.

One of the most critical steps in beamforming is the alignment of sig-

nals, or phasing (5). Just as an engineer must adjust the phase of signals
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Figure 4.5: Frequency Domain Filtering of the Momentum Signal

This exhibit illustrates the process of filtering an investment signal using a
Discrete Fourier Transform (DFT), with the 12-1 month momentum signal for
Walmart Inc. as an example. Panel A displays the raw, amplified momentum sig-
nal in the time domain, exhibiting significant volatility. Panel B shows the signal’s
periodogram, which decomposes the time-series into its constituent frequencies
and their corresponding power. The strongest, low-frequency components, iden-
tified as the true underlying ”signal” (red dots), are selected for reconstruction,
while the weaker, higher-frequency components are discarded as ”noise”. Panel
C displays the final ”filtered signal” (black line), reconstructed by summing the
sinusoidal waveforms (the Fourier basis, shown in gray) corresponding only to
the selected components. This process effectively isolates the persistent trend
from short-term noise, creating a cleaner input for the beamforming combination
algorithm.
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from different antennas to ensure they add constructively, we must align the

cyclical peaks of our different investment signals. This step is of the utmost

relevance for combining factors with a persistent negative correlation, such

as value and momentum. By analyzing the cyclical properties of our cleaned

signals, we apply a dynamic phase shift to align their peak exposures. This

ensures that when we combine a value signal that is peaking with a momen-

tum signal that may be in a trough, the combination algorithm can correctly

interpret their opposing states rather than allowing them to simply cancel

each other out. This alignment is crucial for building a composite signal that

benefits from the diversification of negatively correlated factors instead of

being diluted by it.

With the signals filtered and aligned, we proceed to the final weighting

and combination stage. In beamforming, the attenuator weights (ωk) (6)

are calculated to maximize the SINR. To do this in our financial context,

we require robust, forward-looking estimates of both the ”signal power” (ex-

pected risk premia) and the ”interference” (the dynamic covariance of the

signals). First, we estimate the time series of the risk premia for each of

our seven signals by running monthly Fama-MacBeth regressions across the

entire CRSP/Compustat universe. This provides a historical record of the

reward for each factor. We then fit a Vector Autoregressive (VAR(1)) model

to this system of seven risk premia time series. The one-step-ahead forecast

from this VAR model serves as our dynamic estimate of the expected signal

power for each factor.

Next, we model the interference using a Dynamic Conditional Correla-

tion (DCC) GARCH model on the residuals from the VAR(1) system. To

ensure the stability of this process, particularly given the high dimension-

ality, we first compute the unconditional covariance matrix of the residuals

using the robust shrinkage estimator of Ledoit and Wolf (2004). This tech-

nique produces a well-conditioned covariance matrix by optimally combining
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the sample covariance matrix with a highly structured target (the identity

matrix). This approach is conceptually identical to the ”diagonal loading”

technique used in signal processing to stabilize covariance estimates for an-

tenna arrays. We then transform this static, shrunk covariance matrix into

a dynamic one by replacing the unconditional volatility estimates on its di-

agonal with the conditional volatility forecasts from individual GARCH(1,1)

models fitted to each residual series. With these dynamic estimates of the ex-

pected risk premia (signal) and the signal covariance matrix (interference),

we compute the optimal attenuator vector, ωk, that maximizes the SINR.

This vector provides the dynamic weights used to combine the seven invest-

ment signals into a final composite score at the combination step (7). The

resulting ”output signal” (8) is a single, robust score for each stock. This

aggregate score then serves as the basis for portfolio construction. Stocks

with a positive composite score are assigned to the long leg of the portfolio,

while those with a negative score constitute the short leg. Within each leg,

individual stock weights are set to be proportional to the absolute value of

their composite scores. Finally, the weights in both the long and short legs

are scaled to sum to 100%, creating a self-financed, dollar-neutral portfolio

with a total leverage of 2.

4.3.5 Beamforming in the Context of Modern Factor

Aggregation Methods

The proliferation of return-predictive signals, famously dubbed the “factor

zoo” (Cochrane, 2011), has shifted the central challenge in empirical asset

pricing from factor discovery to factor aggregation. With hundreds of doc-

umented anomalies, many of which fail rigorous replication or are highly

correlated, the task for a systematic manager is no longer simply to find new

signals but to robustly combine existing ones into a single, effective portfolio.

In response, the academic literature has proposed several sophisticated sta-

tistical and machine-learning frameworks to “tame the factor zoo.” Situating
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our beamforming approach within this ongoing debate highlights its novelty

and motivates the turn to electrical engineering for solutions.

Contemporary methods for managing the factor zoo can be broadly cat-

egorized into three groups. The first approach employs shrinkage and eco-

nomic priors to discipline high-dimensional models. Kozak et al. (2020) ar-

gue that while the stochastic discount factor (SDF) is driven by a few latent

sources of risk, these sources have dense loadings across a large number of

firm characteristics. Consequently, a parsimonious model with only a few

factors is misspecified. Their solution is to build a reduced-form SDF us-

ing a large cross-section of characteristic-managed portfolios and then apply

Bayesian shrinkage, which is guided by an economically motivated prior on

the maximum achievable Sharpe ratio. This prevents the model from plac-

ing extreme weights on noisy, in-sample correlations, leading to more robust

out-of-sample performance.

A second approach focuses on high-dimensional model selection to iden-

tify the most potent and non-redundant return predictors. Feng et al. (2020)

introduce a new testing methodology that provides a formidable statistical

hurdle for any newly proposed factor. Their framework accommodates time-

varying factor loadings and builds a benchmark model from a large set of

existing factors, against which the marginal contribution of a new factor is

tested. This helps distinguish true predictive power from statistical noise. In

a similar vein, Freyberger et al. (2020) employ a non-parametric methodol-

ogy using adaptive group LASSO. Their approach avoids the constraints of

linear factor models by allowing for complex, non-linear relationships and in-

teractions between firm characteristics, selecting the most relevant predictors

without pre-specifying a functional form.

The third approach centers on factor timing. Rather than focusing on

which factors to include, Neuhierl et al. (2023) we investigate when to in-
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vest in them. They document significant time-series predictability in the

premia of well-known anomaly factors, driven by macroeconomic conditions

and factor-specific attributes like valuation spreads. Their findings suggest

that a dynamic strategy that times factor exposures can dramatically out-

perform a static combination, highlighting the importance of capturing the

time-varying nature of expected returns.

Our proposed beamforming framework offers a novel alternative that

differs from these methods in its conceptual foundation and operational me-

chanics. Unlike model selection techniques (Feng et al., 2020; Freyberger

et al., 2020), beamforming is fundamentally an aggregation, not a selection,

methodology. It does not seek to identify a sparse subset of “best” factors.

Instead, it assumes a set of potentially valuable signals is given and focuses

on optimally combining all of them, dynamically adjusting their weights to

maximize the clarity of the final composite signal.

Furthermore, beamforming is disciplined by an engineering prior, not an

economic one. Whereas Kozak et al. (2020) use priors on the plausible mag-

nitude of the Sharpe ratio to regularize their model, beamforming’s objec-

tive is to maximize the Signal-to-Interference-and-Noise Ratio (SINR). This

concept, rooted in physics and information theory, provides a powerful and

orthogonal motivation. It explicitly reframes the statistical cross-correlation

between investment signals as “interference”, an unwanted disturbance to be

actively nulled out. This is a distinct conceptualization from standard port-

folio optimization, where covariance is a component of risk to be managed

rather than an interference pattern to be canceled. The inversion of the sig-

nal covariance matrix in the MVDR beamformer is specifically designed to

achieve this cancellation, attenuating the contributions of interfering signals.

Finally, beamforming provides a more holistic form of dynamic adapta-

tion than factor timing models. While Neuhierl et al. (2023) focus on the
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predictability of the first moment (expected returns), our framework, through

its use of VAR(1)-DCC-GARCH modeling, simultaneously forecasts the en-

tire signal environment: time-varying risk premia (the “signals”), volatili-

ties (“noise”), and correlations (“interference”). The optimal combination

weights are derived from this complete, forward-looking view of the signals’

joint distribution. This ability to adapt to the full, time-varying covariance

structure is a key differentiator and a primary motivation for looking to sig-

nal processing. By reframing the factor aggregation challenge as a problem

of information processing, beamforming provides a robust, data-driven, and

highly adaptive solution that directly confronts the core task of isolating

alpha from a noisy, crowded, and interference-prone environment.

4.4 Empirical Exercise

4.4.1 Sourcing and Data Preparation

We work with a US-centric dataset, due to the size of this market, the num-

ber of companies listed, its high liquidity, and data availability. The histori-

cal performance of our investable universe is made up of US-based common

stocks and is sourced from the monthly return files of the Center for Re-

search in Security Prices (CRSP) database. We select all securities identified

as common stock (share codes 10 or 11) listed on the NYSE, AMEX, and

NASDAQ (exchange codes 1, 2, 3, 31, 32, and 33). For each of these stocks,

we collect daily returns starting in July 1963, and ending in December 2024.

We adjust these returns in the case of stock delisting in the same way as

described in Shumway (1997), also explained in Bali et al. (2016). From

these returns, we subtract the risk-free rate from Kenneth French’s website

to compute the excess returns. In addition, for each of the stocks in the uni-

verse, we also collect time series of daily closing prices (field PRC), number

of shares outstanding (field SHROUT), to calculate each stock’s market cap-
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italization. Finally, we obtain the Global Industry Classification Standard

(GICS) codes from COMPUSTAT, and link them to our return dataset.

The number of stocks used in the dataset used for the iterative back-

testing ranges from 3,608 to 5,071 stocks, averaging 4,122 during the sample.

For the purpose of the empirical exercise to be described below, we subset

the complete dataset based on data availability in order to arrive at our in-

vestable universe. We define the investable universe on a given date as every

stock in the dataset with valid returns, market capitalization, and industry

classification entries on that particular day.

4.4.2 Investment signals

For each one of these companies, on each observation, we compute a set of

investment signals to test the proposed signal combination framework. Given

the wide body of knowledge supporting the existence and robustness of value

and momentum anomalies, we select the following set of investment signals:

• Book-to-market: A valuation ratio that compares a company’s book

value of equity to its market value of equity (market capitalization). It

is calculated as

BM =
Book Value of Equity

Market Capitalization

A high book-to-market ratio is often associated with value stocks, which

have historically tended to outperform growth stocks (those with low

ratios). This is commonly known as the value anomaly.

• Cash-flow-to-price: A valuation ratio that measures a company’s

cash-flow relative to its stock price (market capitalization). It’s calcu-
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lated as

CP =
Operating Cash Flow

Market Capitalization

Like the book-to-market ratio, a high cash-flow-to-price ratio can indi-

cate that a stock is undervalued.

• Sales-to-price: A valuation ratio that compares a company’s total

sales (revenue) to its market capitalization, calculated as

SP =
Total Annual Sales

Market Capitalization

It is the reciprocal of the more common Price-to-Sales ratio. A high

sales-to-price ratio might suggest a company is undervalued relative to

its sales generation, and it’s particularly useful for valuing companies

that are not yet profitable.

• Earnings-to-price: This ratio, also known as the earnings yield, com-

pares a company’s earnings per share (EPS) to its market price per

share. It is the reciprocal of the Price-to-Earnings (P/E) ratio:

EP =
Income Bef Extraord Items - Depreciation & Amortization

Market Capitalization

A high earnings yield suggests that an investor is getting more earnings

for each dollar invested and may signal an undervalued stock.
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• 12-minus-1 price momentum: A momentum indicator that cap-

tures an asset’s performance over the past year, but crucially excludes

the most recent month. It is calculated as the cumulative return from

12 months ago to one month ago:

MOM12−1 =
Pt−1

Pt−12

− 1

where Pt is the price at the end of month t. The most recent month

is excluded to avoid the short-term reversal effect, where very recent

top performers tend to underperform in the immediate future. The

momentum anomaly is the tendenzillow cy for assets with high past

returns to continue performing well.

• 6-minus-1 price momentum: A shorter-term version of the price

momentum signal. It measures the asset’s cumulative return over the

past six months, again excluding the most recent month. The calcula-

tion is

MOM6−1 =
Pt−1

Pt−12

− 1

This signal also aims to capture the medium-term persistence in stock

returns.

• Residual price momentum: A more sophisticated measure of mo-

mentum that isolates the portion of a stock’s return that is not ex-

plained by common systematic risk factors (like market, size, and value).

It is the firm-specific excess return, or alpha, obtained from a fac-
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tor model regression (e.g., the Fama-French three-factor model) over

a given look-back period. The goal is to capture momentum that is

unique to the company itself, rather than momentum driven by broad

market or factor trends. For the sake of this exercise use the CAPM to

residualize the monthly excess returns.

The fundamental data used in the computation of the value-related sig-

nals is sourced from the Compustat database, while the excess returns used

in the technical signals are sourced from CRSP, and the risk-free and market

returns were obtained from Ken French’s database.

4.4.3 Backtesting

At the end of each month, we deem as investable any stock that has valid

values for each of these seven investment signals. In an effort to mitigate the

possible distortive influence of exceedingly small stocks, which are catego-

rized under the micro-cap classification, we exclude from consideration those

companies that fall within the lowest one percentile of the overall market

capitalization spectrum. This leaves us with an investable universe with an

average of 2,230 stocks during the validation sample window, ranging from

1,671 to 2,943 companies, covering at least 83% of the total capitalization

of the US stock market at each point in time, and averaging nearly 90% of

market capitalization coverage during the backtesting period.

To assess the efficacy of our proposed beamforming approach, we estab-

lish a baseline comparison portfolio that reflects a common methodology for

signal combination in the investment management industry. At each monthly

rebalance, we first cross-sectionally normalize each individual investment sig-

nal into a z-score to ensure comparability across different metrics. Following

a widely adopted heuristic, these normalized scores are then combined into a

single composite signal for each stock using a simple average. This aggregate

score serves as the basis for portfolio construction; stocks with a positive
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composite score are assigned to the long leg of the portfolio, while those with

a negative score constitute the short leg. Within each leg, the individual

stock weights are set to be proportional to the absolute value of their re-

spective composite signal scores. Finally, the weights in both the long and

short legs are scaled to sum to 100%, creating a self-financed, dollar-neutral

portfolio with a total leverage of 2.

In contrast to the heuristic baseline, our proposed methodology employs

a sophisticated and dynamic framework derived from signal processing to op-

timally combine investment signals. At each monthly rebalance date, we ob-

serve the seven normalized investment signals for all stocks in the investable

universe, with the objective of constructing an optimal steering vector that

intelligently aggregates these signals into a single composite score. To es-

timate the predictive ”signal power” of each of the seven ”antennas,” we

adopt a robust estimation procedure. Leveraging the full historical CRSP

and Compustat database, we first run monthly Fama-MacBeth regressions

to derive the time series of the seven factor risk premia. We then model the

dynamics of this system by fitting a Vector Autoregressive model of order

one, VAR(1), whose one-step-ahead forecast serves as our sophisticated mean

model for expected signal intensity. To model the ”interference” among the

signals, we construct a dynamic conditional covariance matrix. We begin by

taking the residuals from the VAR(1) system and applying the robust shrink-

age estimator of Ledoit and Wolf (2004) to the unconditional covariance ma-

trix. To capture time-varying volatility, we then fit a GARCH(1,1) model to

each of the seven residual series, integrating these conditional volatility fore-

casts to produce a fully dynamic and robust estimate of the signal covariance

structure. With these rigorous estimates for both expected signal and inter-

ference, we construct the optimal steering vector by maximizing the Signal-

to-Interference-and-Noise Ratio (SINR). This resulting vector provides the

dynamic weights used to combine the seven investment signals into a final

composite score. This approach systematically accounts not only for the pre-
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dictive power of each individual signal but also for the complex, time-varying

correlations and interference among them, resulting in a far more robust and

efficient aggregation than is possible with simple averaging. The weights are

then computed in a similar fashion as in the baseline approach.

4.4.4 Results

The empirical results reveal a stark contrast between the adaptive beam-

forming methodology and the traditional baseline approach, with the former

demonstrating superior performance across nearly every dimension of return

and risk. A visual inspection of the strategies’ long-term performance in

Figure 4.6 provides a clear narrative. The top panel, which plots cumulative

returns on a logarithmic scale, shows that the beamforming portfolio con-

sistently compounds wealth at a significantly higher rate than the baseline.

While both strategies begin at a similar point, the beamforming approach

begins to separate itself decisively after the 2008 Global Financial Crisis and

continues to widen its lead over the subsequent decade, indicating a more

efficient and robust engine for capital growth.

However, the most compelling visual evidence lies in the analysis of draw-

downs, shown in the bottom panel of Figure 4.6. The beamforming method-

ology exhibits a structurally more resilient risk profile. During periods of

significant market stress, such as the 2008 crisis and the COVID-19 crash of

2020, the baseline portfolio suffers from profoundly deep and prolonged draw-

downs. In contrast, the beamformer’s drawdowns are consistently shallower

and its recoveries are markedly swifter. This superior downside protection

suggests that the adaptive nature of the signal combination is not merely

enhancing returns during favorable periods but, more critically, is providing

a robust defense during market turmoil.

The quantitative metrics detailed in Table 4.2 provide rigorous validation

for these visual observations. The beamforming strategy delivers a substan-
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Figure 4.6: Cumulative Returns and Drawdowns of Beamforming
vs. Baseline Strategies

The chart displays the cumulative returns (log scale) and historical draw-
downs for the proposed Beamformer strategy and the traditional Baseline
strategy from 2004 to 2024. The Beamformer demonstrates both superior
long-term growth and significantly more contained drawdowns during periods of
market stress.
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tially higher Annualized Return of 35.97% compared to the baseline’s 24.14%.

Remarkably, this significant outperformance is achieved with a lower Annu-

alized Volatility (18.44% vs. 19.93%). This combination of higher return

and lower risk leads to a dramatically improved risk-adjusted performance,

as captured by the Sharpe Ratio, which stands at 1.95 for the beamformer

versus 1.21 for the baseline. The outperformance on a risk-adjusted basis is

even more pronounced when focusing solely on downside risk; the Sortino

Ratio of 2.33 is nearly double that of the baseline’s 1.39. The drawdown

data quantifies the resilience seen in the chart, with the beamformer’s Max

Drawdown limited to -32.47% compared to the baseline’s severe -53.54%.

Furthermore, the Max Drawdown Duration is less than half that of the base-

line (15 months vs. 34 months), confirming its ability to recover capital far

more rapidly.

A deeper analysis of the risk profile reveals that the beamforming ap-

proach offers superior protection against extreme events. At both the 5% and

1% levels, the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

are consistently lower for the beamforming portfolio, indicating a more con-

trolled tail risk profile. The only notable trade-off for this substantially im-

proved performance and risk profile is a higher One-Way Portfolio Turnover

(879.72% vs. 514.76%). This is an expected outcome of the methodology’s

adaptive nature; the higher turnover reflects the model’s dynamic response

to the changing statistical properties and interrelationships of the investment

signals. While this implies a greater consideration for transaction costs in a

live implementation, the overwhelming improvements across all other met-

rics suggest that the benefits derived from this sophisticated, adaptive signal

combination process far outweigh its implementation costs. In essence, the

beamforming methodology successfully translates a more rigorous signal pro-

cessing framework into tangible portfolio benefits, delivering not just higher

returns, but a structurally more robust and resilient investment strategy.
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Table 4.2: A comparison of performance and risk metrics for two
trading strategies

The table provides a detailed statistical comparison of the Baseline and
Beamforming strategies. The Beamforming approach shows superior metrics
across returns, risk-adjusted returns (Sharpe, Sortino, Calmar), and tail risk
measures (VaR, CVaR), albeit with higher portfolio turnover.

Metric Baseline Beamforming

Annualized Return 24.14% 35.97%
Annualized Volatility 19.93% 18.44%
Sharpe Ratio 1.21 1.95
Sortino Ratio 1.39 2.33
Calmar Ratio 0.45 1.11
Downside Volatility 17.38% 15.43%
Max Drawdown -53.54% -32.47%
Max Drawdown Duration (Months) 34 15
Hit Ratio 71.67% 76.67%
Skewness -1.15 -1.09
Kurtosis (Excess) 3.64 3.63
VaR (5%) -8.03% -6.81%
CVaR (5%) -13.57% -11.12%
VaR (1%) -14.26% -11.91%
CVaR (1%) -20.57% -17.85%
One-Way Portfolio Turnover 514.76% 879.72%

4.5 Conclusions

The primary objective of this chapter was to introduce and validate a novel

framework for combining investment signals by drawing upon the well-established

principles of adaptive beamforming from signal processing. We began by es-

tablishing the strong theoretical parallels between the two fields, arguing

that the challenge of extracting alpha from noisy, correlated financial factors

is mathematically analogous to an antenna array isolating a desired signal

from a field of interference. By re-framing investment signals as noisy wave-
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forms with distinct properties, we demonstrated how techniques like Fourier

analysis can be used to filter and prepare these signals for a more robust

combination.

Our proposed methodology replaces the heuristic and often suboptimal

industry practice of simple signal averaging with a dynamic, adaptive system.

The beamforming approach systematically models both the predictive power

of each individual signal and, critically, the complex, time-varying covari-

ance structure between them. This allows the model to intelligently amplify

strong, independent signals while mitigating the detrimental effects of noise

and interference, such as the persistent negative correlation between value

and momentum.

The empirical backtest provided compelling evidence for the efficacy of

this approach. In a direct comparison, the beamforming portfolio deliv-

ered substantially higher absolute and risk-adjusted returns than a baseline

strategy representing traditional industry methods. More importantly, it

exhibited a structurally more resilient risk profile, with significantly shal-

lower drawdowns and faster recovery times during periods of market stress.

This demonstrates that the benefits of the methodology are not confined

to return enhancement but also extend to robust risk management. While

the adaptive nature of the beamforming strategy results in higher portfolio

turnover, the dramatic improvements in performance and risk metrics sug-

gest that the rewards of this sophisticated signal combination process far

outweigh the potential implementation costs. In essence, by bridging the

gap between financial engineering and signal processing, we have outlined a

superior framework for translating the theoretical promise of alpha signals

into a tangible and resilient investment strategy.
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Chapter 5

Conclusion

This thesis has advanced the theory and practice of quantitative portfolio

management by developing and validating three novel frameworks, each de-

signed to address a fundamental limitation in conventional investment mod-

els. The central argument connecting these distinct essays is that more ro-

bust, scalable, and high-performing investment strategies can be constructed

by moving beyond the analysis of individual securities and signals to instead

model the underlying latent structures that govern market dynamics. This

work has demonstrated that by identifying and exploiting these structures,

whether they are the implicit factors of a covariance matrix, unobservable

market regimes, or the predictive essence of noisy signals, we can build port-

folios that are more intelligently diversified, adaptive to changing conditions,

and resilient to market turmoil.

5.1 Findings and Contributions

The research presented herein critically synthesizes findings across three dis-

tinct but related fronts, situating each within the mainstream portfolio man-
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agement literature that motivated the research.

The first essay, “Diversified Spectral Portfolios”, confronted the chal-

lenge of achieving true diversification in a market where returns are often

driven by a few dominant, implicit factors. It moved beyond traditional

heuristics like equal-weighting, which can be misleading, and established

that effective diversification must occur not at the level of capital weights

but in the eigenspace of underlying risk factors. By employing unsupervised

machine learning to cluster securities based on their factor exposures, we

developed a practical and scalable methodology that overcomes the tradabil-

ity and stability issues plaguing purely statistical portfolios. The resulting

Diversified Spectral Portfolios demonstrated superior risk-adjusted perfor-

mance, particularly in the highly correlated environments where traditional

methods falter. A key limitation of this work, however, is its reliance on his-

torical covariance data, which can be susceptible to estimation error and may

not fully capture future risk dynamics, especially during unforeseen market

shocks. Furthermore, the framework is agnostic to expected returns, focusing

solely on risk-based diversification.

The second essay, “Incorporating Market Regimes”, addressed the crit-

ical issue of non-stationarity in financial markets. It introduced a scalable

framework for regime-aware investing capable of handling large-scale equity

portfolios. By applying a Hidden Markov Model to a parsimonious set of

risk factors rather than thousands of individual stocks, it became possible

to construct portfolios that dynamically adjust their posture to prevailing

market conditions. This approach proved highly effective, with the result-

ing regime-aware portfolios consistently outperforming their static, regime-

agnostic counterparts. The primary limitation here lies in the ex-post nature

of regime identification; while the model adapts to shifts, it inherently lags

in recognizing a new regime until sufficient data has accumulated. This can

expose the portfolio to losses in the early stages of an abrupt market tran-
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sition. Additionally, the model is constrained to the number of pre-defined

states, which may not capture the full spectrum of market behaviors.

Finally, the third essay, “Optimal Investment Signal Combination”, tack-

led the “factor zoo” by drawing a novel and powerful analogy to electrical

engineering. We reframed the problem of combining multiple, often noisy and

correlated, investment signals as one of optimal signal processing. By treat-

ing signals as data streams and applying adaptive beamforming techniques,

we developed a method to systematically account for their time-varying cor-

relations and interference. The result was a strategy with vastly superior per-

formance and downside protection compared to traditional signal-averaging

techniques. This engineering-inspired approach, however, comes with its

own limitations. The adaptive nature of the beamforming algorithm leads to

higher portfolio turnover, which would incur greater transaction costs in a

real-world implementation. The model’s efficacy also depends on the stability

of the relationships between signals; a structural break in these relationships

could temporarily degrade the model’s performance.

5.2 Implications and Future Research

A common thread woven through all three essays is the immense value of in-

terdisciplinary innovation. The solutions proposed were inspired by advances

in unsupervised machine learning, probabilistic modeling, and signal process-

ing, demonstrating that many of finance’s most challenging problems have

conceptual analogs in other quantitative fields. The practical implications of

this research are significant, offering asset managers concrete methodologies

for improving diversification, adapting to market regimes, and building more

potent multi-factor models.

From a broader policy perspective, these findings hold relevance for sys-

temic risk and financial stability. The spectral diversification and regime-
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switching frameworks offer tools that could help regulators and large institu-

tional investors better understand and manage portfolio concentrations that

might contribute to systemic vulnerability during market crises. By promot-

ing a deeper understanding of latent risk factors and market states, these

models can encourage more robust risk management practices, potentially

enhancing overall market efficiency and stability.

Despite the compelling results, this research represents a step, not a final

destination. Its limitations open several promising avenues for future inquiry.

The frameworks presented, while powerful, could be extended and integrated.

For instance, the Diversified Spectral Portfolio methodology could be en-

hanced by incorporating forward-looking risk estimates or by using more

robust estimators for the covariance matrix that are less sensitive to outliers.

The regime-switching framework could be expanded to explore endogenous

models where regime transitions are influenced by macroeconomic variables,

providing a more forward-looking signal. The beamforming approach could

be evolved to explicitly incorporate transaction cost optimization within its

objective function.

A particularly exciting direction lies in integrating these frameworks.

One could construct a portfolio that is both spectrally diversified and regime-

aware, where asset clusters are allocated dynamically based on the identified

market state. Similarly, the beamforming signal combination technique could

itself be made regime-dependent, employing different optimal weights dur-

ing bull and bear markets. Such a synthesis could lead to a truly holistic

investment model, one that is structurally sound, dynamically adaptive, and

optimally constructed.

Finally, it must be acknowledged that the applications in this thesis are

largely U.S.-centric. Broadening the scope of this research to global markets

would be a crucial next step. Testing these frameworks across different mar-
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ket structures, regulatory environments, and economic cycles would signifi-

cantly strengthen both the generality and the relevance of the contributions.

In closing, the increasing complexity of modern financial markets de-

mands a continuous evolution in our tools and techniques. The research in

this thesis contributes to this evolution by advancing a unified perspective

focused on uncovering and leveraging the market’s hidden structures. By

continuing to look beyond the surface of security prices and embracing a

more profound, structurally aware, and interdisciplinary approach, the field

of quantitative finance is poised to develop the next generation of truly in-

telligent investment strategies.
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