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Abstract

This thesis explores two distinct but powerful approaches used in theoretical physics and
mathematics to study complex systems: AdS/CFT integrability and Machine Learning.

The first part starts with an introduction to AdS/CFT integrability, reviewing the inte-
grability in AdS5 × S5 and AdS3 × S3 × T4 backgrounds, which is then used to present the
novel kinematical structure of the mixed-flux AdS3 × S3 × T4 background and a previously
unknown solution for the odd part of the dressing factor of the exact worldsheet S-matrix.

The second part applies Machine Learning to two combinatorial problems in Clifford
algebras and error-correcting codes. After a brief introduction of Machine Learning meth-
ods, we explore the potential of network classification and principal component analysis in
the study of Clifford geometric invariants of Coxeter elements in the root systems of ADE
algebras, demonstrating the viability of the computational approach and the potential for
further analytical exploration. We then address the problem of searching for new champion
codes of generalised toric codes. We develop a pipeline that employs a Transformer Deep
Learning architecture and Genetic Algorithm to find new champion codes for F8 generalised
toric codes.
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Chapter 1

Introduction

The holographic principle is based on the idea that combining quantum mechanics and
gravity requires the universe to be an image of data that can be stored on a boundary with
one less dimension. It was originally proposed by Gerard ’t Hooft [1], promoted by Leonard
Susskind [2] and achieved the most successful realisation in a study by Juan Maldacena in
1997 [3].

Maldacena proposed a concrete conjecture that relates the gravity theory in asymptoti-
cally Anti-de Sitter spacetimes (AdS) to conformal field theory (CFT) on the boundary (thus
another name of it – AdS/CFT correspondence). The conjecture has two essential features:
it is a duality between conformal field theory and string theory, and it is a strong-weak du-
ality. The concept of duality in this context refers to the equivalence between specific pairs
of models such that all observable quantities in one theory are the same as those in another.
They describe the same physics, but the languages used to describe these models can be
very different. It is important to note, however, that despite the huge success in many areas
and the plethora of checks conducted over the last 25 years, this duality is still a conjecture.

Maldacena’s conjecture offers a novel approach in the pursuit of quantum gravity. His-
torically, the unification of all quantum theories of forces into a single framework, the Stan-
dard Model, has been very successful, except for one ingredient: gravity. There were many
attempts to quantise gravity, starting from the works of Rosenfeld in 1930 [4] and canonical
quantisation by DeWitt in 1967 [5], and it is still very much in development. In this case,
AdS/CFT can provide access to previously inaccessible regimes and more insights through
string theory as a theory of gravitation. For instance, it helped better understand the quan-
tum nature of black holes [6] and symmetries in gravity [7].

Another application of the AdS/CFT correspondence comes from its strong-weak du-
ality property. This is the property that the results, which are very difficult to compute
on one side of the duality, can be obtained more easily on the other side, and vice versa.
Such a feature was used to investigate the properties of quantum gravity by considering
non-gravitational counterparts, but also in the opposite direction. Focusing on the small
coupling regimes of string theory, where it becomes classical gravity, it is possible to study
strongly coupled theories, such as N = 4 SYM. The latter is one of the simplest examples
of four-dimensional gauge theory. In turn, a better understanding of N = 4 SYM may help
in understanding other gauge theories, such as Quantum Chromodynamics (QCD). Devel-
oped in 1970 to describe strong interactions, QCD is very complicated because of its large
coupling constant at low energies, which renders most standard quantum field theory meth-
ods ineffective because they are perturbative. Unlike N = 4 SYM, QCD is not conformal.
But it is asymptotically free, which means that at high energies, it is close to being conformal
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so that features such as high-energy gluon scattering can be understood by studying gauge
boson amplitudes in N = 4 SYM [8].

One more powerful idea that has the potential to help with the understanding of many
physical theories is integrability1. This is a property of certain theories, such as N = 4
SYM, which allows one to solve them exactly. Roughly speaking, such theories possess an
infinite number of conserved charges, which can be used to describe the behaviour of a
model without actually solving the equations of motion. Therefore, it can be used to study
theories in the nonperturbative regime, as the results obtained by integrability methods hold
for all energy scales. Additionally, it may be compatible with the AdS/CFT correspondence,
so that if one of the dual theories is integrable, the other will be as well. This is potentially
very useful as it allows verification of the correctness of the AdS/CFT correspondence, as
it is a strong-weak or strong-strong duality. In this case, to check that duality really holds,
one needs to compare the results on both sides. The computation of observables on the side
with strong coupling is difficult, and thus, integrability can be employed.

Although these analytical tools, duality and integrability, are powerful, they have limita-
tions. When the solution is derived, it may be too complex, or the solution space may be too
vast. For instance, in string theory, the landscape of possible vacua is enormous [11], [12]
and so is intractable with analytical methods. In such cases, computational approaches are
more feasible. Recently, Machine learning (ML) has emerged as a tool in theoretical sciences
to generate insights where traditional analytical or numerical techniques fall short.

ML technique applications started from investigations of string theory [12], [13], [14],
[15], [16] but quickly spread to other areas of mathematics and theoretical physics. These
methods benefit from both the abundance of data naturally generated in physical and math-
ematical models and the increasing availability of hardware and software for handling large-
scale computations.

In particular, ML techniques have been applied to study theoretical topics such as the
symmetries of physical systems [17], [18], [19], [20] and integrable systems [21], [22], [23],
[24], and even to search for new integrable models [25]. However, the range of applications
is much wider, as one of the distinct features of modern ML techniques is their universality.
ML techniques have been applied in studies ranging from particle detection at the Large
Hadron Collider to cosmological observations [26]. As a result, advancing the methods
applied in one field often leads to progress in other fields.

A particular class of problems that is suitable for ML applications can be coarsely named
as combinatorial. Combinatorics is a vast field with applications ranging from computer
science to statistical physics and logic. There is no formal definition of it, so it is sometimes
defined as a field of mathematics concerned with the study of the arrangement of elements
into discrete, finite sets [27]. These problems are challenging because they typically involve
a large number of configurations, and the space of potential solutions for a given problem
is at least exponential in the size of the element set in the problem [28]. However, this same
feature makes it an ideal playground for ML because of the large dataset requirements.

This thesis presents the necessary background material as well as the author’s contribu-
tions in both of these domains. The first part is devoted to AdS/CFT integrability and cul-
minates in the presentation of a novel kinematical structure and the solution of the odd part
of massive crossing for string theory in AdS3×S3×T4 background supported by mixed flux.
In the second part, we consider the application of Machine Learning to study combinatorial
structures. First, we establish the viability of Machine Learning as a tool for experimental
mathematics for analysing and classifying Clifford geometric invariants of Coxeter elements

1For introduction see [9] and [10].

12



in ADE root systems. Second, we construct an ML pipeline for discovering champion gen-
eralised toric codes, which is potentially applicable to other codes.

Outline

In Chapter 2, we begin with a general review of AdS/CFT integrability. We first consider
the AdS/CFT correspondence conjecture and construct the dualities arising from a stack of
D3-branes and D1-D5 brane systems related to string theory in AdS5×S5 and AdS3×S3×T4

backgrounds, respectively. Then, we consider the integrability of AdS5 × S5 string theory
and derive its exact worldsheet excitation S-matrix, with a focus on the dressing factor. This
is followed by an integrability in AdS3 × S3 × T4 with pure Ramond-Ramond flux, where
we also consider the construction of the exact S-matrix and its dressing factor. Building
on this foundation, we present original results for AdS3 × S3 × T4 mixed Ramond-Ramond
and Neveu–Schwarz-Neveu–Schwarz flux theory in Chapter 3, where we discuss the novel
kinematics and construct a previously unknown solution for the odd part of the dressing
factor, as published in [29].

Chapter 4 introduces the background material on Machine Learning for further appli-
cation to combinatorial problems. We review the necessary techniques, such as Principal
Component Analysis, Neural Networks and Sequence Modelling architectures, and the Ge-
netic Algorithm.

In Chapter 5, we apply Machine Learning to the study of Clifford geometric invariants,
based on the publication [19]. We begin by creating a dataset of Clifford invariants for Cox-
eter elements in the A8, D8, and E8 root systems. Setting the goal to test an experimental
mathematics approach, we perform the analysis including identifying structural patterns in
the invariants, neural network classification and regression of them, followed by gradient
saliency analysis and principal component analysis. The results prepare the background for
further theoretical study.

In Chapter 6, we present a method for discovering new champion generalised toric
codes using Machine Learning, based on work prepared for publication [30]. We propose a
Transformer-based model for the minimum Hamming distance prediction of a given code.
It is then used in a Genetic Algorithm pipeline to efficiently search the space of codes and
identify new champion codes over F8.

Chapter 7 concludes the thesis by summarising the main findings and discussing poten-
tial directions for future research.
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Chapter 2

AdS/CFT Integrability

2.1 AdS/CFT Correspondence

The AdS/CFT correspondence relates string theory on asymptotically Anti-de Sitter space-
times1 to certain conformal field theories. Examples include AdS5 × S52 strings and D = 4
N = 4 supersymmetric Yang–Mills (SYM) theory [31], AdS4 × CP33 superstring and ABJM
Chern-Simons theories [32] and many more [33].

We will use the example of AdS5 × S5 to show its key features. The strongest form of
the AdS5/CFT4 correspondence (or duality) states that D = 4 N = 4 Super Yang-Mills
(SYM) theory with gauge group SU(N) and Yang-Mills coupling constant gYM is dynamically
equivalent to the type IIB superstring theory with string length ls =

√
α′4 and the coupling

constant gs on AdS5 × S5 with radius of curvature L and N units of F(5) flux on S5. The two
free parameters on the field theory side, i.e. gYM and N , are mapped to the free parameters
gs and L/

√
α′ on the string theory side by

g2YM = 2πgs , 2g2YMN = L4/α′2 . (2.1.1)

The duality is difficult to prove for the general values of the free parameters gYM (gs) and
N (L/

√
α′). However, we can take gs ≪ 1 with L/

√
α kept constant, that is, working with

perturbative string theory. On the ’CFT’ side, this maps to gYM ≪ 1 with λ = g2YMN kept
constant, that is, the large N limit for fixed λ (t’Hooft limit). This is a strong form of duality.

The remaining free parameters of both sides are related by

2λ =
L4

α′2 . (2.1.2)

Then, in the weak form of duality, we consider the limit λ → ∞, which is a strong-
coupling field theory, and

√
α′/L → 0, which is the small curvature limit of string theory,

that is, supergravity.
In the next section, we consider these two limits, which are the weak form of duality.

This is the easiest path to motivate the conjecture using the arguments of [3]. For a more
detailed discussion, see the review [33] and book [34].

1Anti-de Sitter spacetime is a maximally symmetric Lorentzian manifold, an exact solution of the Einstein
field equations for an empty universe with negative cosmological constant.

2Product space of 5-dimensional Anti-de Sitter spacetime and 5-dimensional sphere.
3Product space of 4-dimensional Anti-de Sitter spacetime and 3-dimensional complex projective space.
4α′ is the “slope parameter” which appears in front of Nambu-Goto action and determines the string length

or string tension parameters.
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2.1.1 AdS5 from D3 Branes

In Maldacena’s conjecture, string theory is defined on the product spacetime of five-
dimensional Anti-de Sitter space and a five-dimensional sphere, usually denoted as AdS5 ×
S55, and the dual-field theory is a conformally invariant theory residing in a flat (3+1)-
dimensional spacetime.

The duality can be seen arising within the framework of superstring theory by consider-
ing type IIB strings in flat space with a stack of N coincident D3-branes. For convenience,
we assume that the stack of branes extends along the spacetime dimensions x0, x1, x2, x3,
with Neumann boundary conditions along these and Dirichlet boundary conditions along
the rest. This configuration breaks half of the thirty-two supercharges of the IIB string theory
in flat spacetime.

This stack of D-branes can be viewed from the perspective of either closed or open
strings.

Open string perspective

In the open string perspective, D-branes may be viewed as higher-dimensional objects at
which open strings end. While string interactions with a single D-brane are described by
gs, the interaction with a stack of N D-branes has an effective coupling constant given by
gsN . For the current perspective to be valid, the strings should not perturb the background
too much. Therefore, gsN ≪ 1. Additionally, because we consider a weak form of duality,
energies are low E ≪ α′−1/2.

The low-energy limit means that we can only consider massless excitations. For the
open string, these excitations can be grouped into a four-dimensional N = 4 supermultiplet,
which consists of a gauge field Aµ, six real scalar fields ϕi and their fermionic superpartners.
The fact that we have a stack of N coincident D3-branes results in the U(N) gauge group
for the Aµ field because open strings interacting with D-branes are also labelled by U(N)
Chan-Paton factors.

The complete effective action for all massless string modes is

S = Sclosed + Sopen + Sint . (2.1.3)

The Sclosed part is the action of ten-dimensional supergravity plus higher derivative terms
which are suppressed by powers of α′1/2E ≪ 1. If we only preserve the lowest-order contri-
bution in α′ to metric fluctuations in the action, we get

Sclosed = −1

2

�
d10x∂Mh∂

Mh+O(κ) , (2.1.4)

where h is given by g = η + κh and κ is 2κ2 = (2π)7α′4g2s .
The other two terms in (2.1.3), Sopen and Sint, are derived from the Dirac-Born-Infeld ac-

5This spacetime is a supergravity solution. In supergravity, both AdS5 and S5 parts have the same radius
L, although in string theory, they might have different radii.
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tion [35]. At the lowest order in α′, the Dirac-Born-Infeld action can be decomposed into

Sopen = − 1

2πgs

�
dx4Tr

(
1

4
F a
µνF

aµν +
1

2
ηµνDµϕ

iDνϕ
i

−1

4

∑
i,j

[ϕi, ϕj]2 +O(α′)

)
,

Sint = 0 +O(α′) , (2.1.5)

where Fµν is the usual field strength tensor of the non-abelian gauge theory of Aa
µ, Dµ is the

covariant derivative associated withAµ, Aµ = Aa
µTa and ϕi = ϕiaTa are algebra-valued fields.

In the above expressions, all fermionic fields are omitted.
In the low-energy limit Sint ∼ 0, so closed and open strings decouple. Thus, we end up

with the free supergravity in (9+1)-dimensional Minkowski spacetime from Sclosed and N = 4
SYM theory from Sopen provided we identify

2πgs = g2YM . (2.1.6)

If we were to separate one of the branes from the others in x9 direction such that all the
branes are at x9 = 0 and the last one at x9 = r, we would get a system in a Higgs phase with
an expectation value for one of the scalar fields being ⟨ϕ⟩ = r

2πα′ [3], [36]. In this setup, if
we decide to take the limit α′ → 0, we should ensure that all the physical quantities remain
finite, including the expectation value of the scalar fields. Thus, we should be more careful
when taking this limit by demanding

α′ → 0 with U =
r

α′ fixed . (2.1.7)

Closed string perspective

The closed-string perspective is valid when the coupling constant gsN is large. Additionally,
we consider low energies E ≪ α′−1/2.

In this picture, the D-branes can be viewed as solitonic solutions of the supergravity.
The stack of coincident D-branes curves the surrounding background with a characteristic
length L. To ensure the weak curvature and validity of the supergravity approximation,
L/

√
α′ should be large, and because L4/α′2 ∼ gsN , we should also take gsN ≫ 1.

The supergravity solution of N D3-branes preserving SO(3, 1)× SO(6) isometries of R9,1

and half of the supercharges of type IIB supergravity are given by

ds2 = H(r)−1/2

(
−dt2 +

3∑
i=1

dx2i

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
,

e2ϕ(r) = g2s ,

C(4) =
(
1−H(r)−1) dx0 ∧ dx1 ∧ dx2 ∧ dx3 + ... , (2.1.8)

where µ, ν = 0...3; i, j = 4...9 and r2 =
∑9

i=4 x
2
i

The type IIB supergravity equation of motion can be solved to find H(r) and get the
following supergravity metric for the stack of D3-branes [37]

ds2 =
1(

1 + L4

r4

) (−dt2 + 3∑
i=1

dx2i

)
+
(
1 +

L4

r4
) (
dr2 + r2dΩ2

5

)
, (2.1.9)
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where dΩ2
n is the round metric in n dimensions, and r is the associated radial coordinate.

We also know that the flux of F(5) through the S5 should be quantised and should depend
on the number of coincident D3-branes

Q =

�
S5

∗F(5) = N . (2.1.10)

This integral can be evaluated using the solution 2.1.8 and the fact that F(5) = dC(4), to get

L4 = 4πgsNα
′2 . (2.1.11)

Now, looking at (2.1.9), we can identify two regions in this background: small r and large
r. If r ≫ L, then H(r) ∼ 1 and the metric describes a flat Minkowski spacetime. Thus, when
r ≫ L, we obtain a theory of closed strings on a flat 10-dimensional background. However,
if r ≪ L, then H(r) ∼ L4/r4 is large such that we can neglect 1 in H(r). This metric describes
the near-horizon region (or throat) of the stack of D3-branes

ds2 =
L2

z2
(
ηµνdx

µdxν + dz2
)
+ L2ds2S5 (2.1.12)

where we introduced the coordinate z = L2/r and spherical coordinates (r,Ω5) with ds2S5

being the metric on S5 sphere. Therefore, when r ≪ L, we obtain a theory of closed strings
on AdS5 × S5 background.

Finally, we take a low-energy limit E ≪ α′−1/2 and strings in both regions should decou-
ple. This can be observed by examining the energies of the excitations. The energy E of an
excitation at distance r from the horizon is related to the energy of a distant observer by the
redshift factor

E∞ =
√
−g00Er . (2.1.13)

If we compare energies at infinity and the throat, we find

E∞ = lim
r→0

r2

L2
Er . (2.1.14)

Therefore, excitations at infinity have very small energies compared to the excitation at the
throat. Therefore, the observer at infinity sees two different low-energy regions: the super-
gravity modes on a flat Minkowski space-time at infinity and string excitations on AdS5×S5

near the stack of branes.

Comparing perspectives

By comparing the two perspectives, we can conjecture that because the 10-dimensional su-
pergravity part is the same on both sides, type IIB supergravity on AdS5 × S5 is equivalent
to N = 4 SYM theory [3].

The argument above shows only the correspondence of classical supergravity and
strongly coupled N = 4 SYM. However, duality is believed to hold more generally. In par-
ticular, if we relax the low-energy condition, the classical type IIB string theory in AdS5 × S5

should be equivalent to N = 4 SYM theory in (3+1)-dimensions in the planar limit. More-
over, we can relax the condition N ≫ 1 to obtain the strongest form of the duality: N = 4
SYM theory at arbitrary N and λ should be equivalent to IIB theory quantum string theory
on AdS5 × S5 background with arbitrary gs and α′/L2.

This is the strong form of duality that will be useful in the discussion of integrability in
section 2.2.
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2.1.2 AdS3 from D1-D5 Branes

In this section, we consider the D1-D5 brane system for AdS3/CFT2 correspondence, which
was proposed in [3] and further discussed in [33]. Arguments, similar to those for the strings
in AdS5×S5 presented above, will reveal that D1-D5 brane system gives raise to AdS3×S3×T4

supergravity background with pure Ramond-Ramond (R-R) 3-form flux6. For more detailed
discussion, see [3], [33] or lecture notes [38].

We consider a system ofN1 coincident D1-branes together withN2 coincident D5-branes.
The D1-branes extend along two of the dimensions, one in time and one in space, which the
D5-branes span. The other four dimensions along which the D5-branes extend are compact-
ified on a T4. This system is described by a metric [39]

ds2 =
1√
f1f5

(−dt2 + dx21) +
√
f1f5(dr

2 + r2dΩ2
3) +

√
f1
f5

9∑
i=6

dx2i , (2.1.15)

where f1 = 1 + gsα′N1

vr2
, f5 = 1 + gsα′N5

r2
, v =

VT4

(2π)4α′2 , VT4 – volume of T4.
The D1-D5 system couples magnetically and electrically to the R-R field: 3-form flux F (3).

In the near-horizon limit, it is proportional to the volume forms on AdS3 and S3 [40].
In line with the procedure for the D3-branes stack, we take the supergravity limit gsN1 ≫

1, gsN5 ≫ 1. Then, when taking the near-horizon limit α′ → 0, we should ensure all the
physical quantities stay constant, which leads to the following constraints

r

α′ = fixed, v =
VT4

(2π)4α′2 = fixed, g6 =
gs√
v
= fixed. (2.1.16)

After defining new variables

U =
r

α′ and x̃i =
xi
α
, (2.1.17)

and taking r ≪ L and low-energy limit, the D1-D5 system metric reduces to

ds2 = α′

[
U

R2
(−dt2 + dx21) +

R2

U2
dU2 +R2dΩ2

3 +

√
N1

N5

√
v

9∑
i=6

dx̃2i

]
, (2.1.18)

which is the AdS3 × S3 ×T4 metric, with RAdS3 = RS3 = R = gs
√
N1N5, and the volume of T4

proportional to N1

N5
.

Similarly to the discussion in Section 2.1.1, if we look into the bulk by taking the limit
α′ → ∞, we find a 10-dimensional supergravity in the Minkowski spacetime.

More generally, one can obtain a background supported by a mixture of R-R and NS-NS
fluxes. Namely, while the pure R-R flux background comes from the D1-D5 brane system
and the pure NS-NS background comes from the NS5-F1 brane system, the mixed-flux back-
ground can be obtained by considering the near-horizon limit of combination of NS5-F1 and
D1-D5 branes7 [41]. When the AdS3 radius is set to 1, the fluxes can be related to the param-
eters of the background [40] as

F (3) = q̃(Vol(AdS3) + Vol(S3)) H(3) = q(Vol(AdS3) + Vol(S3)) , (2.1.19)
6In general, the fields in the type II string theory action can be grouped into Ramond–Ramond (R–R) and

Neveu–Schwarz–Neveu–Schwarz (NS–NS) sectors. By “Pure Ramond-Ramond” we mean that the NS-NS
charge associated with BNS-NS is put to zero.

7In fact, NS5-F1 brane system is S-dual of the D1–D5 system.
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where q2 + q̃2 = 1. Therefore, it is a one-parameter family of supersymmetric backgrounds.
Then, two important parameters can be defined. The mixed-flux coupling constant

h [40], [42]

h(λ, q) =
q̃
√
λ

2π
+O(

1√
λ
) , (2.1.20)

which enters as an overall normalisation of the central charge, and coupling k of the WZW
model [42]

k = q
√
λ , k ∈ Z . (2.1.21)

Because q2+ q̃2 = 1, we can say that the parameter q controls the relative contribution of R-R
and NS-NS fluxes to the AdS3 background.

Identifying the dual conformal theory to the AdS3 background is a more difficult problem
than in the case of AdS5. Unlike the N = 4 SYM theory, where we only have two free
parameters N and λ, various scalars arise from the open string dynamics on the D1-D5
system which have non-zero expectation values [3].

When q = 1, the AdS3 background is supported by pure NS-NS three-form flux, and the
worldsheet sigma model can be described within the RNS or hybrid formalism, where the
background can be realised as a level-k supersymmetric WZW model [43], [44] (for k > 1).
In that case, the string theory is not dual to a specific CFT but rather to a grand-canonical
ensemble of superconformal field theories (SCFTs) [45], [46]. For k = 1, that is the string
theory on AdS3 × S3 × T4 with (minimal) one unit of NS-NS flux, the spectrum matches the
large N limit of the free symmetric product orbifold CFT SymN (T4)[47], [48].

The q = 0 point is the pure R-R flux background. It was conjectured long ago that the
dual CFT for this setup should be the symmetric product orbifold CFT SymN (T4) [3] which
has a 20-parameter moduli space [49].

The 0 < q < 1 case is the background supported by a mixture of NS-NS and R-R fluxes.
This string theory also has a 20-parameter moduli space [50]. The general argument of [3]
suggests that the dual CFT is some 2d N = (4, 4) superconformal field theory (SCFT). The
recent work [51] proposes that the string theory at k = 1 with a small amount of R-R flux
(whose strength is indicated by h) switched on (h ≪ 1, deforming the theory away from
the tensionless point) should be dual to a perturbation of the symmetric orbifold. In this
work, anomalous dimensions of w-cycle twisted sector operators were computed for the
perturbation of the symmetric orbifold with the operator Φ 8 which potentially allows the
comparison of the spectrum of both sides.

2.2 Integrability in AdS5 × S5

Although duality is believed to hold beyond the original example [52], both sides are studied
mainly within the ’t Hooft limit. In this limit, the rank N of the gauge group U(N) is taken
N → ∞, keeping λ = Ng2 fixed, so only planar diagrams dominate (thus the other name,
the planar limit). They correspond to string theory diagrams in the limit where the string
coupling constant gs = λ/4πN → 0 and string tension g =

√
λ/2π.

One of the reasons this region is well studied is the integrability of the underlying theo-
ries, which significantly facilitates the analysis. Integrability is a property of theories with a
large amount of symmetry, making analytical calculations of many physical quantities pos-
sible. As will be explained below, both AdS5×S5 string theory and N = 4 SYM are integrable

8Φ is the singlet or ‘blow-up’ mode of the orbifold from Z2 twisted sector.
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in the planar limit, allowing us to perform calculations at a strong coupling and test many
consequences of the duality. There is some hope that integrability is present beyond this
limit [53], but well-established results exist mostly within this limit.

In this section, we review integrability in N = 4 SYM and AdS5/CFT4. For more details,
see the general review [31], and [8] for N = 4 SYM integrability in particular.

2.2.1 Integrability in N = 4 SYM

The Super Yang-Mills (SYM) theory has the symmetry group PSU(2, 2|4) – N = 4 su-
perconformal group [54] (see [55] for a review and [56], [57] for a general introduction).
The corresponding superalgebra psu(2, 2|4) has 16 supercharges. Its bosonic subalgebra is
su(2, 2)⊕ su(4) ≡ so(4)⊕ so(6), where the first part is the conformal subalgebra and the sec-
ond is the R-charge. This is in agreement with the string theory symmetries: the AdS5 × S5

spacetime has an isometry group SO(2, 4)× SO(6).
In SYM, all operators belong to some representations of the global symmetry group and

are labelled by 6 Casimir operators

(∆, S1, S2, J1, J2, J3) , (2.2.1)

where Ji are the three angular momenta of SO(6), Si are the spins of SO(2, 4) and ∆ is the
scaling dimension. The latter is also an eigenvalue of the dilatation operator D. In uni-
tary quantum field theories, all operators (apart from identity) have positive scaling dimen-
sions. Operators with the lowest dimension are called primary. By applying the elements of
the symmetry algebra, we can obtain other operators (descendants). The primary operator
and its descendants make up an irreducible representation of PSU(2, 2|4), which is infinite-
dimensional. An important subclass of these operators is the chiral primary operators or
BPS operators. They commute with half of the supercharges, and one can show that their
scaling dimensions are protected from quantum corrections (they cannot have an anomalous
dimension). See [58] for a detailed review.

The scaling dimension mentioned above also determines the two-point correlator, the
form of which is fixed by the conformal symmetry

⟨O(x)O′(y)⟩ ∝ 1

|x− y|2∆
, (2.2.2)

where ∆ = ∆0+γ(λ), ∆0 is the bare (classical) dimension, γ is the anomalous scaling dimen-
sion. The anomalous scaling dimension γ can be computed perturbatively (λ≪ 1) using the
Feynman diagrams for these correlators. From (2.2.2), for γ ≪ ∆0, one can get

⟨O(x)O′(y)⟩ ∝ 1

|x− y|2∆0
(1− γ ln Λ2|x− y|2 + ...) , (2.2.3)

where Λ is the cutoff scale. However, at one loop, quantum corrections introduce operator
mixing and effectively make the dilatation operator non-diagonal. Since operator mixing
preserves the PSU(2, 2|4) symmetry group (and its subgroups), mixing only occurs between
operators with the same R- and Lorentz charges and the same bare dimensions. However,
sometimes we can group operators into smaller sectors, which are completely closed under
the action of dilatation, such as the SU(2) sector, or only up to one-loop, such as the SO(6)
sector. This property will be useful later.

In general, CFTs are fully determined by the scaling dimensions of the primary operators
and three-point correlators. Since SYM is supersymmetric, we should consider primary
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operators, which are superconformal primaries and gauge-invariant. All other observables
can be computed using the operator product expansion (OPE). The collection of all primary
operators Op, characterised by their scaling dimensions ∆p and representations ρp, is the
spectrum of the theory. Together with the set of OPE coefficients (determining the form of
the three-point functions), they constitute the CFT data. The way to construct the gauge-
invariant operators is to take products of traces of the fields that transform covariantly under
the gauge group

O = tr[χ1...χn]tr[χn+1...]... , (2.2.4)

where χi’s are any covariant fields, and these are then used to compute various correlation
functions

⟨O1...On⟩ . (2.2.5)

In the large N limit, such correlation functions factorise

⟨tr[χ1...χn]tr[χn+1...]...⟩ = ⟨tr[χ1...χn]⟩⟨tr[χn+1...]...⟩+O(1/n2) . (2.2.6)

Thus, the dimensions of the product of single-trace operators are given by the sum of their
dimensions; therefore, it is sufficient to study the spectrum of single-trace operators. More-
over, if we first construct the single-trace primaries, we will not need to consider quantum
corrections and can systematically assemble the other operators from these. Therefore, we
can understand this class of operators better if the conformal dimensions of single-trace pri-
maries are known.

This is where one can use the integrability of N = 4 SYM. For example, an equivalence
between the one-loop spectral problem of single-trace operators in the SO(6) sector (the full
set of scalar operators) and an integrable spin chain with nearest-neighbour interactions
can be established [59]. In this case, the one-loop dilation operator can be identified with
the Hamiltonian of an integrable SO(6) spin-chain. When the operators under the trace are
composed of scalar fields with no covariant derivatives, the length L of the spin chain is
given by the total bare dimension of the operators under the trace (or the number of such
operators).

Later, more evidence was found that integrability extends to higher loops9, to the full
psu(2, 2|4) symmetry algebra, and arbitrary loop order [61], [62].

A simpler example of this equivalence can be shown for the SU(2) sector, where operators
are made of two types of scalar fields, Z and X , which have the charges (1,0,0,1,0,0) and
(1,0,0,0,1,0), respectively. The solutions for this spin chain can be obtained using the Bethe
equations [63].

As an example, we can label the X field as spin up (↑) and the Z field as spin down (↓)

O = tr(XXZX...) ↔ |ψ⟩ = | ↑↑↓↑ ...⟩ . (2.2.7)

The SU(2) sector has the Hamiltonian

H =
λ

8π2

L∑
l=1

(1− Pl,l+1) , (2.2.8)

or in terms of spin operators

H =
λ

8π2

L∑
l=1

(
1− S⃗l · S⃗l+1

)
, (2.2.9)

9The interaction range of the corresponding spin chain Hamiltonian increases with loop order [60]
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which is identical to the Heisenberg spin chain with L lattice sites. Because of the sign of
the S⃗l · S⃗l+1 term, the spin-chain is ferromagnetic, and the ground state has all spins aligned,
with total spin L/2

|0⟩ = | ↑↑↑ ... ↑⟩ , (2.2.10)

which corresponds to a chiral primary ΨL = tr[XL].
Now, let us consider the state with one spin down and act on it with the Hamiltonian

H| ↑ ... ↑
l

↓↑ ... ↑⟩ = λ

8π2

(
2| ↑ ... ↑

l

↓↑ ... ↑⟩ − | ↑ ...
l − 1

↓↑↑ ... ↑⟩ − | ↑ ... ↑↑
l + 1

↓ ... ↑⟩
)
. (2.2.11)

From this, one can guess the form of the eigenstate

|p⟩ = 1√
L

L∑
l=1

eipl| ↑ ... ↑
l

↓↑ ... ↑⟩ , (2.2.12)

which turns out to have a nice energy eigenvalue

ϵ(p) =
λ

2π2
sin2 p

2
. (2.2.13)

With a condition on invariance under shifts l → l + L

eipL = 1 ⇒ p =
2πn

L
. (2.2.14)

This state is called a single-magnon state. Because we used a trace operation in the construc-
tion of operators, we also demand the invariance of this spin chain under l → l + 1 shift,
which leaves only the physical but trivial value of the momentum p = 0. The resulting
state is a descendant of a vacuum, given by tr[XL], and is in a BPS multiplet which does not
receive a quantum correction to its bare dimension.

The next state that can be considered has two spins down, and it is the first nontrivial
state. It is not a descendant of the vacuum and thus may have a nontrivial anomalous
dimension. To construct it, we first need to take an infinitely long chain L→ ∞. This allows
us to separate two asymptotically separated magnon states and consider their scattering

|p1, p2⟩ =
∑
l1<l2

eip1l1+ip2l2 |...
l1

↓ ...
l2

↓ ...⟩+ eiϕ
∑
l1>l2

eip1l1+ip2l2 |...
l2

↓ ...
l1

↓ ...⟩ , (2.2.15)

where we assume p1 > p2. The physical interpretation is that one magnon overtakes another
with the phase eiϕ, which is the S-matrix for scattering. For |p1, p2⟩ to be an eigenstate with
the eigenvalue being the sum of the energies of the two magnons, we need to impose an
additional constraint

S12 = eiϕ = −e
ip1+ip2 − 2eip2 + 1

eip1+ip2 − 2eip1 + 1
. (2.2.16)

When we make the spin chain of finite lengthL again, we should impose both the periodicity
l → l+L and trace l → l+1 conditions. The latter restricts the momenta to p1+p2 = 0. When
applying the periodicity condition, we should be able to circulate an individual magnon
around the chain and through another one, which gives an additional phase eiϕ. For the
state to be invariant, we demand

eip1LS12 = 1 . (2.2.17)
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Together with p1 = −p2 condition, we find that p1 = 2πn/(L − 1) and possible eigenvalues
for this state are

γ =
λ

π2
sin2 πn

L− 1
. (2.2.18)

However, the spin chain we considered corresponds to the dilatation operator for SYM,
such that the spin-chain energy eigenvalues correspond to the anomalous dimension of
single-trace operators.

It is possible to solve this problem for an arbitrary number of spin-down states

|p1p2...pl⟩ =
∑

l1<l2<...<lM

eip1l1+ip2l2+...+ipM lM |...
l1

↓ ...
l2

↓ ... · · ·
lM

↓ ...⟩+ ... , (2.2.19)

with p1 > p2 > ... > pM . The last set of dots represents the other possible orderings of
magnons with appropriate phase factors. It is convenient to define the rapidity variable

eipk =
uk + i/2

uk − i/2
. (2.2.20)

Then one can find a simple form for the S-matrix

Sjk =
uj − uk − i

uj − uk + i
, (2.2.21)

and define the dispersion relation for individual magnons

ϵ(u) =
λ

8π2

1

u2 + 1/4
. (2.2.22)

By putting the magnons on a circle of length L, we find the quantisation condition(
uj + i/2

uj − i/2

)L

=
M∏
k ̸=j

uj − uk + i

uj − uk − i
, (2.2.23)

and the trace (zero momentum) condition for the total momentum

M∏
j=1

uj + i/2

uj − i/2
= 1 . (2.2.24)

Together, this gives the energy eigenvalue for this state in the form

γ =
M∑
k=1

ϵ(uk) , (2.2.25)

which is also the 1-loop anomalous dimension of a single-trace operator composed of fields
Z and X .

The AdS5 × S5 string theory, which is dual to the SYM theory described above, is also in-
tegrable. However, the approach taken to demonstrate this is different, with the worldsheet
S-matrix serving as a key ingredient.
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2.2.2 Integrability in AdS5 × S5

The S-matrix is a powerful tool for studying integrable theories. In particular, one can use
the factorised scattering theory approach to construct an S-matrix and then use integrabil-
ity techniques to study the spectrum of the theory. We illustrate this approach using the
example of AdS5 × S5 strings [64].

String theory in AdS5 × S5 is a maximally supersymmetric type IIB string theory with 32
supercharges. As a dual to N = 4 SYM, it also has a group of isometries PSU(2, 2|4).

This can be seen explicitly in the Metsaev-Tseytlin formulation [65], where it is written
as a sigma-model on the coset superspace

PSU(2, 2|4)
SO(1, 4)× SO(5)

. (2.2.26)

Because the bosonic part of PSU(2, 2|4) is SO(2, 4)× SO(6), we can write that

SO(2, 4)

SO(1, 4)
× SO(6)

SO(5)
≃ AdS5 × S5 . (2.2.27)

It is known that symmetric space coset sigma-models are classically integrable [66], and so
is the string theory in AdS5×S5 [67]. The key property that allows integrability is Z4 grading
of the superalgebra psu(2, 2|4) [68].

While it is known how to rigorously formulate the integrability condition at the classical
level, this is not the case for quantum systems. Therefore, to make progress, one assumes
quantum integrability and investigates the consequences.

The first indications that integrability is present at the quantum level were found on the
gauge theory side in terms of a spin chain [59]. However, it was later realised that an S-
matrix can be a very useful tool to study that [64]: integrability in the large-N AdS/CFT
system is equivalent to factorised scattering of the corresponding hidden elementary excita-
tions. The S-matrix was found on the CFT side [62], [64], [69], and later on the string side [70]
using the Zamolodchikov-Faddeev (ZF) algebra [71]10.

The correspondence was verified at the level of solitonic solutions in the limit of large
spins J for spinning strings [72], yielding the first result interpolating between the weak
and strong-coupling regimes. The analysis relied on the all-loop asymptotic Bethe ansatz
(ABA) framework [73], [74].

One begins with the Green-Schwarz action and quantises it in a uniform light-cone
gauge [75], [76] which results in an integrable Non-linear Sigma Model (NLSM). By
analysing the light-cone Hamiltonian, one can find that although the full superisometry al-
gebra of the string sigma-model is psu(2, 2|4), only the psu(2|2)⊗ psu(2|2) subalgebra leaves
the Hamiltonian invariant [77]. The direct quantisation of the NLSM action is beyond cur-
rent methods and is performed perturbatively by expanding around a given classical solu-
tion in powers of the effective string tension

√
λ. This theory can be considered as a theory on

a cylinder of finite circumference proportional to the light-cone momentum with an infinite
time. Working with it is still hard, but one can consider the decompactification limit, where
the light-cone momentum P+ goes to infinity while keeping the string tension fixed, so that
the cylinder becomes a plane. When it is done, one can apply factorised scattering theory
and the matrix structure of this S-matrix and dispersion relation [69] are uniquely fixed by

10Under the assumption of 2-particle irreducible representations having Hopf algebra structure.
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the centrally extended psu(2|2)⊕psu(2|2)11 symmetry algebra, the Yang–Baxter equation and
the generalised physical unitarity condition [69], [70], [78] up to an overall scalar function
of particle momenta (it is called dressing factor and will be discussed later). Finally, one
can use the resulting S-matrix and techniques such as the Bethe Ansatz to determine the
worldsheet spectrum.

To work with non-decompactified theory, one needs to consider finite-size corrections.
They are related to the wrapping interactions arising from the dynamics of virtual particles
(in finite volume). In particular, the spectrum of the theory on a cylinder is different from
that in the decompactification limit because of the wrapping effects [79]. In the AdS5 ×
S5 theory , they are exponentially suppressed, and one can use the Lüscher approach for
wrapping corrections to account for them [80], [81]. In the AdS3 × S3 case, Lüscher are not
exponentially suppressed due to the presence of massless particles in the spectrum [82].
See [83] for a more detailed review.

Another way to work with non-compactified theory is to perform a double Wick rotation
in the NLSM theory. Then, the problem of determining the spectrum of this QFT (which is
integrable, as mentioned before) is reduced to the study of the mirror theory obtained from
the original NLSM. By doing so, we trade the finite volume (and infinite time direction)
for a finite temperature (and infinite spatial direction). The S-matrix of the new theory is
integrable because it is obtained from the old one by analytic continuation. Then TBA tech-
niques can be used to determine the spectrum [84].

Finally, the state-of-the-art technique for obtaining a full non-perturbative spectrum is
Quantum Spectral Curve (QSC), which generalises integrability-based approaches like Bethe
Ansatz, TBA and Y-system [85], [86]. In this approach, the spectrum is encoded into a set
of analytic functions called Q-functions, which satisfy a finite number of certain functional
relations and analyticity conditions.

2.2.3 Symmetry Algebra

We begin with an overview of the symmetries of AdS5 × S5 strings, which will allow us to
derive the dispersion relation and will be useful in the discussion of the S-matrix. A more
detailed discussion can be found in [87].

The full symmetry algebra of type IIB superstrings in the AdS5 × S5 background in
psu(2, 2|4) however, the use of light-cone gauge-fixing breaks it to psu(2|2) ⊗ psu(2|2) [77].
The letter p in psu stands for projected which removes u(1) factor from su(2|2) making it
a simple algebra. In what follows, we will work with just su(2|2) ⊗ su(2|2) as it does not
change the results for physics.

In a light-cone gauge, string theory becomes an NLSM living on a cylinder of circum-
ference P+ (the light-cone momentum). Additionally, one should impose the Virasoro level-
matching condition, which restricts the allowed physical states: the total world-sheet mo-
mentum pws carried by a state must vanish.

To introduce the concept of world-sheet excitations, one needs to relax the level-matching
condition (i.e. consider “off-shell” theory). Then, to define the asymptotic states and the
world-sheet S-matrix, one unwraps the cylinder of circumference P+ to the plane by taking
the limit P+ → ∞.

If the level-matching condition holds, the su(2|2)⊕su(2|2) algebra is spanned by the usual
generators which commute with the worldsheet Hamiltonian. Giving up the level-matching

11Generally, there are several ways to construct a central extension. Here, we mean a certain central extension
of algebra, where each of the psu(2|2) factors is centrally extended, which is explained in the next section.
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condition leads to a modification of the su(2|2) ⊕ su(2|2) algebra: the algebra receives two
central charges in addition to the Hamiltonian, which are functions of the momentum car-
ried by the one-particle excitations1213 .

We now explain what we mean by central extension precisely. The symmetry algebra
we consider is equivalent to two copies of the centrally extended su(2|2) algebra, with both
copies sharing the same central element, which is a world-sheet light-cone Hamiltonian.
First, we consider the representation of a single su(2|2), and then construct the desired prod-
uct representation.

The centrally extended su(2|2) algebra, which we will denote su(2|2)c.e., consists of the
rotation generators Lab, Rαβ of the two su(2) bosonic subalgebras, the supersymmetry gen-
erators Q a

α , Q
α

a and three central elements H, C and C. Latin indices a, b take values {1, 2},
while Greek indices α, β take values {3, 4}. The action of bosonic generators reads[

L b
a ,Jc

]
= δbcJa −

1

2
δbaJc ,

[
R β

α ,Jγ

]
= δβγJα − 1

2
δβαJγ ,[

L b
a ,J

c
]
= −δcaJb +

1

2
δbaJ

c ,
[
R β

α ,Jγ
]
= −δγαJβ +

1

2
δβαJ

γ ,
(2.2.28)

where J∗ (J∗) is any generator with the Latin or Greek lower or upper index, e.g. Q
α

a would
be acted according to the very first commutation relation. The centrally extended algebra
differs from the non-centrally-extended one by fermionic commutators [69], [70]

{Qαa,Qbβ} = ϵbaRαβ + ϵαβLba + ϵβαϵbaH ,

{Qa
α,Q

b
β} = ϵαβϵ

abC, {Qα

a ,Q
β

b } = ϵabϵ
αβC,

(2.2.29)

The central element H is hermitian and is identified with the world-sheet light-cone Hamil-
tonian, and C and C are two additional central charges.

It is possible to write the conserved currents and charges in terms of bosonic and
fermionic fields of the string sigma-model action in the light-cone gauge and determine the
above supersymmetry algebra commutation relations by studying the Poisson bracket of the
Noether charges of the string sigma-model in the light-cone gauge, which was done in [77].
Additionally, one can find that C can be expressed through the world-sheet momentum P
as follows

C = +
ig

2
ζ(e+iP − 1) , C = − ig

2
ζ̄(e−iP − 1) , (2.2.30)

where ζ is a phase that can be an arbitrary function of the central elements. This is the
reflection of the fact that the algebra has U(1) automorphism

Q → eiξQ, C → e2iξC , (2.2.31)

which can also be referred to as a choice frame (choice of basis).
Before moving further, we need to introduce a representation space where the su(2|2)c.e.

symmetry algebra acts. We can use a basis of the four-dimensional fundamental representa-
tion, which is constructed from fundamental representations of the two su(2) algebras [70]

|eM⟩ =

{
|ea⟩ ,
|eα⟩ ,

(2.2.32)

12This was first argued by Beisert in [69] on the gauge theory side.
13In [77], the enlargement of the su(2|2) ⊕ su(2|2) algebra by a common central element (central charge)

was shown by expanding all supersymmetry generators in powers of fields (equivalently in the inverse string
tension 2π/

√
λ) for strings in AdS5 × S5.
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with the following action of bosonic generators

L b
a |ec⟩ = δbc |ea⟩ −

1

2
δba |ec⟩ R β

α |ea⟩ = 0

L b
a |eα⟩ = 0 R β

α |eγ⟩ = δβγ |eα⟩ −
1

2
δβα |eγ⟩ ,

(2.2.33)

and supersymmetry generators

Q a
α |eb⟩ = aδab |eα⟩ Q

α

a |eb⟩ = cϵabϵ
αβ |eβ⟩

Q a
α |eβ⟩ = bϵαβϵ

ab |eb⟩ Q
α

a |eβ⟩ = dδαβ |ea⟩ ,
(2.2.34)

where coefficients a, b, c and d are the parameters of the representation.
This allows us to find the values of the central charges expressed through the represen-

tation parameters a, b, c, d in the following way

H |eM⟩ = (ad+ bc) |eM⟩ , C |eM⟩ = ab |eM⟩ , C |eM⟩ = cd |eM⟩ . (2.2.35)

For generic values of the parameters a, b, c, d the representation is non-unitary. To obtain a
unitary representation, one should impose the conditions d = ā and c = b̄.

One can check that the relations (2.2.28) and (2.2.29) are consistent with this representa-
tion if

ad− bc = 1 , (2.2.36)

which implies
H2 − 4CC = 1 . (2.2.37)

That is the shortening condition that defines the short multiplet of su(2|2)c.e. [88].
By plugging (2.2.30) into (2.2.37), one can derive the dispersion relation

H =

√
1 + 4g2 sin

(p
2

)2
, (2.2.38)

which has a square-root form. A way to make it a non-square root type is to introduce a
parameterisation in terms of Zhukovsky variables x± [70]

a =
√
hη, b =

√
h
iζ

η

(
x+

x−
− 1

)
, c = −

√
h
η

ζx+
d =

√
h
x+

iη

(
1− x−

x+

)
, (2.2.39)

where

x+ +
1

x+
− x− − 1

x−
=
i

h
,

x+

x−
= eip, η = eip/4

√
i(x− − x+) , (2.2.40)

so that we get

H =
ih

2

(
x− − 1

x−
− x+ +

1

x+

)
. (2.2.41)

2.2.4 The Exact S-matrix

The symmetry algebra of the Hamiltonian implies certain restrictions on the S-matrix. Let
us denote by Ja the operators which generate the symmetry algebra A

[Ja,H] = 0, a = 1, ...,dimA , (2.2.42)
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and let them act on some representation V . In addition to H, the symmetry generators
commute with the total momentum P and number of particles N operators, and all the
higher conserved charges. The Hilbert space is created by the Zamolodchikov–Faddeev
(ZF) operators and carries a linear representation of A. Later, we will define multiparticle
states via the tensor product of V’s.

First, we introduce a vacuum state |Ω⟩ which is invariant under the algebra. Then, intro-
duce a ZF creation operator A†

i (p) which creates a particle out of the vacuum with momen-
tum p and flavour denoted by i.

A†
i (p) |Ω⟩ = |p⟩i (2.2.43)

The hermitian conjugate Ai(p) is the ZF annihilation operator such that

Ai(p) |Ω⟩ = 0 . (2.2.44)

The non-Abelian symmetry algebra A acting on the spectrum of the Hamiltonian implies
a non-trivial constraint on the scattering matrix

Ja · A†
i (p1)A

†
j(p2)|Ω⟩ = Skl

ij (p1, p2)J
a · A†

l (p2)A
†
k(p1)|Ω⟩ , (2.2.45)

and the invariance condition can be written as

S12(p1, p2)J
a
12(p1, p2) = Ja

21(p2, p1)S12(p1, p2) , (2.2.46)

where Ja
12 should act on a tensor product of two one-particle states. If A is a simple Lie

superalgebra with (momentum-independent) structure constants in the one-particle repre-
sentation, then the two-particle states can be identified with the graded tensor product of
two one-particle states. The two-particle symmetry generators are given by the graded ten-
sor product14

Ja
12 = Ja ⊗ 1+ 1g(1⊗ Ja)1g , (2.2.47)

where 1g is the graded identity defined to account for the correct statistics of operators

1g = (−1)ϵiϵjEi
i ⊗ Ej

j , (2.2.48)

and ϵi is parity. It is equal to zero or one, depending on whether the value of i corresponds
to a bosonic or fermionic state, respectively.

However, the symmetry algebra A of the light-cone string sigma model is not of this
type, as it has a non-trivial centre. Now, any representation of J is parameterised by the
momentum of the particle and the values of the Lie algebra central elements. We denote the
generators of J in some representation V as Ja(p; c), where c denotes the values of the central
elements. When we identify V with a one-particle representation in the Fock space, we must
prescribe a fixed value for c, as only the one-particle representation should be characterised
by the particle momentum. In general, we can modify (2.2.47) for the operators in the two-
particle representation

Ja
12 = Ja(p1; c1)⊗ 1+ 1g(1⊗ Ja(p2; c2))1

g (2.2.49)

with arbitrary c1 and c2 depending on the particle momenta p1 and p2.
When we consider how the central charges act on two-particle states, we find that the

result does not give the correct value of the central charge if we consider a trivial coproduct

14Two terms 1 are included because the tensor product sign ⊗ we are using denotes an ordinary tensor
product, while we need to construct a graded tensor product.
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and set ζ = 1 everywhere. It is expected that the central charge of the tensor product of
fundamental representations should be equal to the sum of their charges

C|A†
M1

(p1)A
†
M2

(p2)⟩ =
ig

2
(eiP − 1)|A†

M1
(p1)A

†
M2

(p2)⟩

=
ig

2
(ei(p1+p2) − 1)|A†

M1
(p1)A

†
M2

(p2)⟩ . (2.2.50)

However, if we consider the action of the central charge on the tensor product of the funda-
mental representation explicitly

C12 = c11⊗ 1+ 1g(1⊗ c21)1
g

= (c1 + c2)1⊗ 1 =
ig

2
((eip1 − 1) + (eip2 − 1))1⊗ 1 , (2.2.51)

which does not agree with (2.2.50).
To fix this, we should not fix ζ = 1 everywhere but rather choose [70]

{ζ1 = 1, ζ2 = eip1} or {ζ1 = eip2 , ζ2 = 1} , (2.2.52)

which leads to the modification of (2.2.51)

C12 = c11⊗ 1+ 1g(1⊗ c21)1
g = (c1 + c2)1⊗ 1

=
ig

2
(ζ1(e

ip1 − 1) + ζ2(e
ip2 − 1))1⊗ 1 =

ig

2
(eip1+p2 − 1)1⊗ 1 . (2.2.53)

This means that we must ifer the value of c1 and c2 from these solutions when considering
the tensor product of one-particle states.

Now, we can modify (2.2.45) for the case of algebra with a non-trivial centre and coprod-
uct [70]. The S-matrix commutation relation takes the following form with bosonic

S12(p1, p2)
(
J⊗ 1+ 1⊗ J

)
=
(
J⊗ 1+ 1⊗ J

)
S12(p1, p2) , (2.2.54)

and fermionic generators

S12(p1, p2)
(
J(p1; 1)⊗ 1+ Σ⊗ J(p2; e

ip1)
)

=
(
J(p1; e

ip2)⊗ Σ + 1⊗ J(p2; 1)
)
S12(p1, p2) , (2.2.55)

where Σ is the grading matrix Σ = (−1)ϵiEi
i . These constraints on the S-matrix are sufficient

to bootstrap its matrix form up to an overall scalar function, the dressing factor, which will
be discussed in the next section.

2.2.5 Dressing Factors

The S-matrix is determined up to an overall scalar function σ(p1, p2), the so-called dressing
factor [89], which is not constrained by the conditions imposed by the symmetry algebra,
the Yang–Baxter equation, and the generalised physical unitarity condition. It is anticipated
that further physical requirements will allow for the complete determination of this factor.

In Lorentz-invariant theories, this is done using Lorentz invariance together with cross-
ing symmetry (exchanging particles with antiparticles) [71]. The light-cone gauge-fixed
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sigma model is not Lorentz invariant; however, there is an analogue of crossing symme-
try which can be motivated by considering the process of scattering particles and the same
process with a particle changed to an antiparticle [90].

In Lorentz invariant theories, one can use the argument of [88] to construct a singlet state

|1⟩ ≡
∑
h

|{h, θ}, {h, θ − i}⟩ , (2.2.56)

where h denotes the theory degrees of freedom, θ is the rapidity variable, and θ − i denotes
to particle to anti-particle transformed state. Therefore, the total momentum, energy, and
flavour should be zero. The scattering of a physical particle through such a spurious state is
trivial. This gives us an additional constraint on an S-matrix

Ŝ(θ)Ŝ(θ − i) = 1 , (2.2.57)

which can be turned into the condition on the scalar prefactor of the S-matrix

σ(θ)σ(θ − i) = f(θ) , (2.2.58)

with some function f(θ) determined from the matrix elements of the S-matrix. Although the
string theory in the light-cone gauge is not relativistic, the same reasoning can be applied to
the derivation of crossing (as done in [69]).

An equivalent approach is to employ an underlying Hopf algebra structure to derive
the crossing condition for the nonrelativistic S-matrices relevant to integrable holography,
which was first suggested in [90]. To promote the symmetry algebra A to a Hopf algebra,
we need to introduce a coproduct ∆ : A → A⊗A and an antipode S : A → A15.

Concrete realisation of the Hopf algebra coproduct action on the symmetry algebra A
have the following form [91]

∆(J) =J⊗̂1+ 1⊗̂J ,

∆(Qa
α) =Qa

α⊗̂1+ e
i
2
P⊗̂Qa

α ,

∆(Q
a

α) =Q
a

α⊗̂1+ e−
i
2
P⊗̂Q

a

α ,

(2.2.59)

where J denotes any even generator16. The sign ⊗̂ is the graded tensor product having
property that for any a, b, c, d ∈ A

(a⊗̂b)(c⊗̂d) = (−1)ϵbϵc(ac⊗̂bd) , (2.2.61)

where ϵa = 0 if a is even, and ϵa = −1 if a is odd. A very useful property of the construction
in (2.2.59) is that it preserves the structure of the algebra in (2.2.28). One can notice the
structural similarity of (2.2.59) to what we have seen before in (2.2.49). Additionally, there is
a factor e−

i
2
P which plays a similar role as eiξ in (2.2.52).

The antipode of a Hopf algebra is analogous to charge conjugation and has a physical
interpretation of a particle-to-antiparticle transformation realised as

S(J) = −J, S(Q a
α ) = −e−i/2PQ a

α , S(Q α

a ) = −ei/2PQ α

a . (2.2.62)
15Plus some additional structures associated with a coalgebra and a Hopf algebra. See [91] for more details.
16There is a caveat that these relations hold for generators on the two-particle states in states. For the out

states, we need to use
∆op ≡ P g∆ , (2.2.60)

where P g is the graded permutation operator.
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These can be determined using the consistency relations for the Hopf Algebra (see [87], [91]).
It is possible to reformulate the action of the antipode on algebra elements in terms of

the transformation of specific representations V ⊗ V by introducing the charge conjugation
matrix C.

π(S(A)) = C−1π̄(A)strC , (2.2.63)

where π/π̄ is the particle/antiparticle representation of A (s.t. π(A) = A), and str denotes
the supertransposition.

Finally, for particle-to-antiparticle transformation to be a symmetry of S-matrix, one can
use the Hopf-algebraic conditions for the R-matrix

(S⊗ 1)R = R−1, (1⊗ S−1)R = R−1 . (2.2.64)

These can be rewritten for the S-matrix (found in [90]) so the following condition need to be
satisfied

(C ⊗ 1)St1
12(p̄1, p2)(C

−1 ⊗ 1)S12(p1, p2) = 1⊗ 1 ,

(1⊗ C)St2
12(p1, p̄2)(1⊗ C−1)S12(p1, p2) = 1⊗ 1 ,

(2.2.65)

where the bar over p1 indicates that the first particle should be in the anti-particle representa-
tion. One can interpret the first/second equation as one in which we replace the first/second
particle by an antiparticle by performing the crossing transformation. Under this transfor-
mation, both the Hamiltonian and the momentum change their sign, which can be consid-
ered as the positive energy branch of the dispersion relation (2.2.38) transforming into a
negative one.

By looking at the parametrisation of the dispersion relation (2.2.41) and momenta (2.2.40)
in terms of Zhukowski variables, we can notice how Zhukowski variables should change
under crossing transformation

x±anti−particle =
1

x±particle
. (2.2.66)

However, to correctly implement the action of crossing on the S-matrix, we need to con-
sider one more subtle point. The S-matrix has branches corresponding to the branches of the
dispersion relation and thus should be treated as a function of both the particle momenta
and the particle energies S(p1, H1; p2, H2). Alternatively, it can be parametrised as a function
of Zhukovsky variables S(x+1 , x

−
1 ; x

+
2 , x

−
2 ). The subtlety is that the crossing transformation

should relate the values of the S-matrix on the different branches, so we need to specify the
path γ under which x± = 1

x± to properly define the crossing transformation. We will skip the
details of how to choose this path for the AdS5 case, but will consider AdS3 in more detail in
the following.

Using the parameterisation of S-matrix elements and normalisations choice of [73], it is
possible rewrite (2.2.65) as a condition on dressing factor similar to (2.2.58)

σ(x̃, y)σ(x, y) =
1 + 1

x+y+

1− x−

y−

1− x−

y+

1− 1
x+y−

(2.2.67)

where x̃ denotes that we should perform a crossing transformation of the first particle in the
corresponding dressing factor.
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Perturbative Dressing factor

Initially, the dressing factor was proposed in [89] to fix the discrepancy between the all-
loop asymptotic Bethe ansatz of the gauge and string theory. The functional form of the
dressing phase in terms of the local conserved charges of the model was conjectured [89] by
discretising the finite-gap solutions. The most general form was suggested in [92]

θ(x+1 , x
−
1 , x

+
2 , x

−
2 ) =

∞∑
r=2

∞∑
s>r

r + s =odd

cr,s(g)
[
qr(x

±
1 )qs(x

±
2 )− qr(x

±
2 )qs(x

±
1 )
]
, (2.2.68)

where σ(x±1 , x
±
2 ) = eiθ(x

±
1 ,x±

2 ), qr are conserved charges of the corresponding spin-chain and
are given by

qr(x
−
k , x

+
k ) =

i

r − 1

[(
1

x+k

)r−1

−
(

1

x−k

)r−1
]
. (2.2.69)

This, in turn, implies that there should be a so-called χ-decomposition of it [93]

θ(x+1 , x
−
1 , x

+
2 , x

−
2 ) = χ(x+1 , x

+
2 ) + χ(x−1 , x

−
2 )− χ(x+1 , x

−
2 )− χ(x−1 , x

+
2 ) . (2.2.70)

This will be useful when we formulate the solution in terms of χ’s, as it simplifies the struc-
ture of the solution considerably. Additionally, it tells us that functions χ(x, y) which differ
by a constant of a function of x or y only will lead to the same phase θ. We will rely heavily
on this property in Section 3.3.

The dressing factor explicitly depends on the string tension g and admits a strong-
coupling expansion in powers of 1/g corresponding to an asymptotic perturbative expan-
sion of the string sigma model. In [89], a solution to (2.2.67) was found in the strong-coupling
expansion only at the leading g1 order (AFS-order). The first quantum correction g0 order
(HL-order) was discovered in [94]. The full asymptotic series was proposed in [95]. The
authors of [95] also discovered that the odd crossing relation17 is solved by an HL-order
solution (whose asymptotic series can be summed up), and suggested a solution for the
remaining even part of the crossing equation.

In contrast to the strong-coupling expansion, the gauge theory perturbative expansion of
the dressing factor is in powers of g and has a finite radius of convergence. The dressing fac-
tor suitable for the weak coupling expansion has been found by assuming a certain analytic
continuation of its strong-coupling counterpart, and has the name Beisert-Eden-Staudacher
(BES) dressing factor [73]. This is in agreement with the explicit two-loop sigma model re-
sults [96], [97]. It can be shown that the BES dressing factor satisfies crossing equations for
finite values of the string coupling [98]. Then Dorey, Hofman and Maldacena (DHM) [99]
gave the most useful representation of this phase in terms of a double integral

χ(x, y) =

�
dz

2πi

�
dz′

2πi

1

z − x

1

z′ − y
log

Γ[1 + ih
2
(z + 1/z − z′ − 1/z′)]

Γ[1− ih
2
(z + 1/z − z′ − 1/z′)]

. (2.2.71)

A relatively short and very illustrative way to derive the DHM representation of the
solution of crossing (2.2.67) is to use a half-crossing procedure and shift operators [100].

Additionally, there might be a homogeneous part of the crossing which cannot be deter-
mined from the crossing equation, as it is a solution of the crossing equation with a trivial
RHS (identity) [95], [100]. However, we can demand that only certain poles and zeros, cor-
responding to the expected bound states, and some higher-order poles can be present (we
will discuss this later).

17This will be discussed later in section 2.3.4.
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2.2.6 General S-matrix properties

Before we switch to the discussion of the AdS3 case, it is worth summarising the discussion
above into a set of general principles which can be used to construct an S-matrix.

There are three objects which we will be working with, depending on convenience

Š(p, q) = 1gS(p, q) = ΠR(p, q) , (2.2.72)

where Π is a permutation, 1g is the graded identity, S(p, q) is the standard S-matrix, Š(p, q) is
the graded S-matrix, and R(p, q) is the R-matrix. Some expressions will be simpler with one
object and lengthier with others, so we might change between them in the text.

One may identify a general set of symmetries which the S-matrix should obey. These
include

1. Full off-shell symmetry algebra A

Š12(p, q)J12(p, q)− J12(q, p) Š12(p, q) = 0 , (2.2.73)

where J12(p, q) ∈ A.

2. Physical unitarity. The usual concept of unitarity for an S-matrix(
Š(12)(p, q)

)†Š(12)(p, q) = I ,

3. Braiding unitarity is the consistency relation for factorised two–body scattering

Š(12)(q, p)Š(12)(p, q) = I .

Braiding unitarity supplements the usual physical unitarity condition. The latter states
that S-matrix should be a unitary matrix on the physical sheet. However, the former
is the statement that the S-matrix is exchanging two excitations and thus exchanging
once with Š(12)(p, q) and then back with Š(12)(q, p) must give the identity.

4. Yang-Baxter equation. This is a manifestation of integrability at the quantum level
(assuming that integrable structures extend to the quantum level).

Š(23)(q, r)Š(13)(p, r)Š(12)(p, q) = Š(12)(p, q)Š(13)(p, r)Š(23)(q, r) .

Together, braiding unitarity and the Yang–Baxter equation ensure multi-particle scat-
tering is well-defined when the multi-particle S-matrix is built by factorisation from the
two-body S-matrix. This is efficiently encoded in the Zamolodchikov–Faddeev (ZF) alge-
bra, where both of them serve as consistency (associativity) conditions for the ZF algebra
we introduced in 2.2.4.18

Additionally, there is a list of assumptions on the analytical structure of σ as a function
of complex arguments that fix its functional form.

• Bound states and simple poles/zeros. The position of simple poles in the S-matrix
should correctly reproduce the structure of the bound states. This is usually accounted
for in the normalisation of the S-matrix elements, and the σ(x, y) should not have sim-
ple poles. Unitarity also excludes simple zeros.

18See [101] for a review in the AdS3/CFT2 context.
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• Poles/zeros of higher degree. The only allowed poles of σ(x, y) are double poles from
the exchange of pairs of composite states discovered by Dorey, Hofman, and Malda-
cena [99]. By unitarity, there should be the same number of double zeroes.

• Branch points. We require that the structure of the branch points be as simple as pos-
sible so that only the branch points required by the crossing equations are allowed.

• χ-decomposition. This is a direct consequence of the decomposition of θ(x, y) in terms
of the higher conserved charges. This form is expected for general long-range inte-
grable spin chains [92].

• Asymptotics at infinity. Since the infinite x limit corresponds to zero momenta,
limx→∞ σ(x, y) = 1 as we expect particles to scatter trivially with all zero-momentum
particles.

• Analyticity of χ(x, y) in the physical domain. There should be no poles/branch cuts
for χ in the physical region. Otherwise, they would lead to unphysical singularities in
the description of the scattering of bound states.

We will now switch to the discussion of integrability in strings in AdS3. Many of the
features will be shared with the AdS5, but there will also be some notable differences.

2.3 Integrability in AdS3 × S3

The existence of holography in AdS3/CFT2 systems has long been known [3], but only re-
cently has more progress been made in understanding unprotected quantities.

String theories on AdS3×S3×M4, where M4 equal to K3, S3×S119 or T420, are classically
integrable [102], [103]21. One of the hints that this is indeed the case is the fact that some
giant magnon solutions in AdS5 × S5 are contained in R × S2, which can be embedded in
AdS3 × S3 ×M4 [104]. These findings gave hope that it is possible to generalise what was
done for the AdS5 × S5 string to the AdS3 backgrounds.

However, there are two features that make string theory in AdS3×S3×M4 different from
previous cases. First, string theory in AdS5 × S5 can be supported by Ramon-Ramon (R-R)
charge fields only, while AdS3 backgrounds can be supported by a Neveu-Schwarz-Neveu-
Schwarz (NS-NS) charge or by a combination of NS-NS and R-R charges. The resulting
NLSM remains integrable in all the cases22 [105]. Second, on AdS3 backgrounds (unlike
the two very first examples in AdS5 × S5 and AdS4 × CP3) there are not only massive but
also massless modes . Therefore, the application of integrability techniques developed in
AdS5/CFT4 is not straightforward.

In what follows, we will focus on the AdS3×S3×T4 background and discuss its symmetry
algebra construction, representations, and its application to crossing.

19The radii R+ and R− of the two S3’s in this background are related to the radius R of AdS3 as 1
R2 =

1
R2

+
+ 1

R2
−

.
20When R2

AdS3
= R2

S3

21M4 can also be a Zn orbifold of T4, which gives a blown-down K3, but integrability is less understood and
depends on the moduli.

22Notice that not all combinations of NS-NS and R-R fluxes are allowed, but only those whose coefficients
satisfy a certain constraint.
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2.3.1 Symmetry Algebra

The theory can also be written in a super-coset description

PSU(1, 1|2)L × PSU(1, 1|2)R
SO(1, 2)× SO(3)

, (2.3.1)

for the pure R-R case. However, the coset action requires the use of a particular kappa
gauge, which does not allow for a straightforward quantisation of the massless modes [106].
Therefore, the Green-Schwarz formalism must be used [107], [108], [109].

The quantisation procedure for the Green-Schwarz action follows the lines for AdS5,
where one quantises it in a certain light-cone gauge. The resulting NLSM can be considered
as describing a theory on a cylinder of finite circumference proportional to the light-cone
momentum with infinite time. One then considers the decompactification limit (light-cone
momentum P+ → ∞), where the factorised scattering theory can be applied.

The full superisomtery algebra of the background is [110]

psu(1, 1|2)L ⊕ psu(1, 1|2)R ⊕ u(4)4 , (2.3.2)

where the four u(1) factors originate from the four T4 directions.
The symmetry algebra of the Green–Schwarz action can be computed by considering

the superalgebra spanned by supercurrents truncated at the quadratic order in the fields.
The results are identical to those of the computation in AdS5 for the massive sector [77].
Additionally, there is a massless sector, the computation of which was performed in [110].

In the decompactification limit, u(1) factors are enhanced to so(4), so one can find the
symmetry algebra23

psu(1|1)4c.e. ⊕ so(4) . (2.3.3)

However, the last so(4) factor is only an apparent symmetry of massive excitations in the
quadratic gauge fixed action or decompactification limit, but it is not the true symmetry
of the quantum theory. The algebra of the general quantised sigma model after light-cone
gauge fixing is

psu(1|1)4c.e. . (2.3.4)

One can see that by computing the higher than quadratic gauge-fixed action where so(4)
will no longer be a symmetry [110].

The su(1|1)2c.e. symmetry algebra and its representations

In this section, we will construct the symmetry algebra explicitly from simple components24.
The full symmetry algebra psu(1|1)4c.e. can be constructed as a tensor product of funda-

mental representations of the smaller algebra su(1|1)2c.e.. In turn, su(1|1)2c.e. is equivalent to
centrally extended su(1|1)L ⊕ su(1|1)R

{qL,qL} = hL , {qR,qR} = hR , (2.3.5)

which are coupled via the Hamiltonian and an angular momentum

h = hL + hR , m = hL − hR , (2.3.6)
23Many methods exist for constructing central extensions. What we mean here by c.e. is a central extension

between Left and Right copies of su(1|1), which are then taken twice to get psu(1|1)2c.e. ⊕ psu(1|1)2c.e. =
psu(1|1)4c.e..

24More details can be found in [110].
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and have a central extension of the form

{qL,qR} = c , {qL,qR} = c . (2.3.7)

Here h corresponds to the Hamiltonian and m is a combination of angular momenta in
AdS3 × S3. Supercharges are denoted by q. The labels L or R are inherited from the superi-
sometry algebra psu(1, 1|2)L ⊕ psu(1, 1|2)R.

We then consider the tensor product of two copies of the above algebra. We add the su(2)
index “1” to denote that an operator sits in the first space in a tensor product, and the index
“2” if it is in the second space25

Q 1
L = qL ⊗ 1, QL1 = qL ⊗ 1, Q 2

L = Σ⊗ qL, QL2 = Σ⊗ qL,

QR1 = qR ⊗ 1, Q 1
R = qR ⊗ 1, QR2 = Σ⊗ qR, Q 2

R = Σ⊗ qR.
(2.3.8)

The matrix Σ is defined as a diagonal matrix taking the value +1 for bosons and −1 for
fermions. The same should be done to the central elements

H 1
L = hL ⊗ 1, H 2

L = 1⊗ hL, C1 = c⊗ 1, C2 = 1⊗ c,

H 1
R = hR ⊗ 1, H 2

R = 1⊗ hR, C1 = c⊗ 1, C2 = 1⊗ c.
(2.3.9)

To reproduce the property that central charges are not charged under the su(2) algebra,
we make identifications

HL ≡ H 1
L = H 2

L , HR ≡ H 1
R = H 2

R , C ≡ C1 = C2, C ≡ C1 = C2 , (2.3.10)

so we can omit indices 1 and 2 in the following. After that, we get the following central
extension

{Q ȧ
L ,QLḃ} =

1

2
δȧ

ḃ
(H+M), {Q ȧ

L ,QRḃ} = δȧ
ḃ
C,

{QRȧ,Q
ḃ

R } =
1

2
δ ḃ
ȧ (H−M), {QLȧ,Q

ḃ
R } = δ ḃ

ȧ C ,
(2.3.11)

where ȧ, ḃ ∈ {1, 2}, H = HL +HR and M = HL −HR.
Therefore, the central charges are given by the Hamiltonian H, the angular momentum

M, and the central elements C and C†. One can check the expressions for the charges at the
quadratic order in fields explicitly [77], [110]. Additionally, one could find how to express
central charges C and C via the worldsheet momentum

C = +
iξ

2

(
e+iP − 1

)
, C = − iξ

2

(
e−iP − 1

)
. (2.3.12)

Fundamental excitations are expected to transform into two distinct representations for
massive and massless particles, each being 4-dimensional. These representations must be
short26, so the following shortening condition must be satisfied

HLHR = CC , (2.3.13)

which one can recast in the form of a dispersion relation

H2 = M2 + 4CC , (2.3.14)
25Notice that Left supercharges have an upper su(2) index, while for Right supercharges the index is lower.

This is the reflection of the convention that Left supercharges transform in the anti-fundamental representation
of su(2)•, and Right supercharges transform in the fundamental.

26Long representations are at least 16-dimensional.
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where the eigenvalues of M play the role of a mass term. This relation immediately allows
solving for the eigenvalue Ep of the Hamiltonian H using (2.3.12)

Ep =

√
m2 + 4h2 sin2 p

2
. (2.3.15)

Bi-fundamental representations

To construct the physical representations, it is sufficient to consider four inequivalent rep-
resentations of su(1|1)2c.e (found in [111]): ρL, ρR, ρ̃L and ρ̃R. Each is based on two states, one
bosonic |ϕa

p⟩ and one fermionic |ψa
p⟩, where p denotes the physical momentum of the excita-

tion and a ∈ {L,R, L̃, R̃}. Representations with and without the tilde differ by the choice of
the highest weight state.

Representation ρL is constructed from ϕL
p and ψL

p, ρR – from ϕR
p and ψR

p, ρ̃L – from ϕ̃L
p and ψ̃L

p,
ρ̃R – from ϕ̃R

p and ψ̃R
p.

The action of su(1|1)2c.e generators on ρL and ρR states (the most interesting ones for us)

ρL︷ ︸︸ ︷ ρR︷ ︸︸ ︷
QL |ϕL

p⟩ = ap |ψL
p⟩ , QL |ψL

p⟩ = 0,

QL |ϕL
p⟩ = 0, QL |ψL

p⟩ = āp |ϕL
p⟩ ,

QR |ϕL
p⟩ = 0, QR |ψL

p⟩ = bp |ϕL
p⟩ ,

QR |ϕL
p⟩ = b̄p |ψL

p⟩ , QR |ψL
p⟩ = 0.

QR |ϕR
p⟩ = ap |ψR

p⟩ , QR |ψR
p⟩ = 0,

QR |ϕR
p⟩ = 0, QR |ψR

p⟩ = āp |ϕR
p⟩ ,

QL |ϕR
p⟩ = 0, QL |ψR

p⟩ = bp |ϕR
p⟩ ,

QL |ϕR
p⟩ = b̄p |ψR

p⟩ , QL |ψ̄p⟩ = 0.

Eventually, the Left-massive (mass m = 1), the Right-massive (mass m = −1) and the
massless (mass m = 0) modules will be constructed as the following tensor products of
representations2728

Left : ρL ⊗ ρL, Right : ρR ⊗ ρR, massless : (ρL ⊗ ρ̃L)
⊕2 . (2.3.16)

These bi-fundamental representations of su(1|1)2c.e have the following identifications for the
massive states

Y L = ϕL ⊗ ϕL, ηL1 = ψL ⊗ ϕL, ηL2 = ϕL ⊗ ψL, ZL = ψL ⊗ ψL,

Y R = ϕR ⊗ ϕR, ηR
1 = ψR ⊗ ϕR, ηR

2 = ϕR ⊗ ψR, ZR = ψR ⊗ ψR,
(2.3.17)

and the massless ones as

T 1a =
(
ψL ⊗ ψ̃L

)a
, χ̃a =

(
ψL ⊗ ϕ̃L

)a
, χa =

(
ϕL ⊗ ψ̃L

)a
, T 2a =

(
ϕ⊗ ϕ̃L

)a
. (2.3.18)

In the following, we will focus on massive representations. These can be acted on by
the supercharges, as shown in Figure 2.1. The action can be expressed using two complex
coefficients, ap and bp, and their complex conjugates, ap and bp. These coefficients depend
on the momentum p of the excitation and the eigenvalue m of the central charge M in the

27In fact, massless representation can be constructed in four different ways by combining ρ and ρ̃ with either
L or R indices, but all of them are equivalent.

28Notice that for the massless module one has to consider two copies of ρL ⊗ ρL, hence the symbol ⊕2, and
twice as many particles compared to massive Left or Right modules.
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|Y L⟩
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|ZL⟩

Q 1
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1

R
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•

Q 2
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|ηR
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R
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•

QR1,QL1 Q
2

R ,Q
2

L

Figure 2.1: The action of psu(1|1)4c.e. generators in left and right multiplets of two bosons Y L,R, ZL,R

and of two fermions ηL
ȧ, ηR

ȧ.

specific module. By computing anti-commutators of supercharges, we can write the relation
between these coefficients and the eigenvalue of the central charges

M : apāp − bpb̄p = |m| ,

H : apāp + bpb̄p =

√
m2 + 4h2 sin2 p

2
,

C : apbp = h
i

2
(eip − 1) ζ .

(2.3.19)

Here, ζ = e2i ξ is a free parameter of the representation. For one-particle states, it can be taken
to be 1, but, similar to the case of AdS5, it can take only specific values for the multiparticle
states.

A way to solve (2.3.19) is to introduce the Zhukovski parameters x±, which satisfy

x+p +
1

x+p
− x−p − 1

x−p
=

2i |m|
h

,
x+p
x−p

= eip. (2.3.20)

Then, one can take the representation coefficients to be [111], [112]

ap = ηpe
iξ, āp = ηp

(
x+p
x−p

)−1/2

e−iξ, bp = − ηp
x−p

(
x+p
x−p

)−1/2

eiξ, b̄p = − ηp
x+p
e−iξ, (2.3.21)

where we have introduced the function

ηp =

(
x+p
x−p

)1/4√
ih

2
(x−p − x+p ) . (2.3.22)

This parametrisation is convenient in the sense that it eliminates the square root in the dis-
persion relation

E(x±) =
h

2i

(
x+p − 1

x+p
− x−p +

1

x−p

)
. (2.3.23)

The constraints (2.3.20) on x± can be resolved by taking

x±p =
(|m|+ Ep)

2h sin
(
p
2

) e± ip
2 , (2.3.24)
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where the branch of the square root has been chosen such that |x±p | > 1 for real values of
the momentum p, when we consider massive states |m| > 0. For massless states, we have
simply

x±p = sgn(sin p
2
) e±

ip
2 , Ep = 2h

∣∣∣sin p
2

∣∣∣ . (2.3.25)

Two-particle states in pure R-R

When constructing two-particle states, we closely follow Section 2.2.5. The standard method
for defining two-particle states is to use a co-product. Given a one-particle state |X ⟩ and a
charge J with an action

J |X ⟩ = |Y⟩ , (2.3.26)

its action on a two-particle state should be

J12 |X1X2⟩ = (J⊗ 1+ 1⊗ J) |X1X2⟩ = |Y1X2⟩+ |X1Y2⟩ . (2.3.27)

However, as already mentioned after formula (2.3.19), when constructing two-particle
states, we cannot take just the tensor product of one-particle states. One way to see why we
need a deformation is to use the definition of the central charge C = ih

2
(e+iP − 1). We expect

C |X1X2⟩ =
ih

2
(e+i(p1+p2) − 1) |X1X2⟩ . (2.3.28)

However, with the standard co-product, we get

C |X1X2⟩ =
ih

2

(
e2iξ1(e+ip1 − 1) + e2iξ2(e+ip2 − 1)

)
|X1X2⟩ . (2.3.29)

Thus, we cannot set eiξ1 = eiξ2 = 1 and need to consider other values of the parameters of the
representations. To make two equations above agree, we should set {e2iξ1 = 1, e2iξ2 = eip1}
or {e2iξ1 = eip2 , e2iξ2 = 1}.

Another way to think about this is from the point of view of the Hopf algebra described in
Section 2.2.5: the product needs to be deformed relative to the standard product to reproduce
the symmetry algebra at the level of the bialgebra.

The conclusion we have seen for the AdS5 case will also hold for AdS3: we need to
deform the action of all odd generators in the following way

Q(p1, p2) = Q(p1)⊗ 1+ e+
i
2
PΣ⊗Q(p2) ,

Q(p1, p2) = Q(p1)⊗ 1+ e−
i
2
PΣ⊗Q(p2) ,

(2.3.30)

as well as the central charges C and C

C(p1, p2) = C(p1)⊗ 1+ e+iP ⊗C(p2) ,

C(p1, p2) = C(p1)⊗ 1+ e−iP ⊗C(p2) .
(2.3.31)

The action of the rest of the generators, such as Hamiltonian H or angular momentum M,
remains the same.
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2.3.2 The Exact S-matrix

General properties of the S-matrix outlines in Section 2.2.6 remain true in AdS3 as well.
Symmetry algebra A now becomes psu(1|1)4c.e..

Additionally, we will see that there are algebra labels L and R which lead to a new sym-
metry:

• Left-right symmetry. Relabelling L ↔ R should be indistinguishable. In particular,
this relates the LL dressing factor to the R-R one and the LR dressing factor to the RL
one.

We will use the fact that fundamental representations of psu(1|1)4c.e. can be understood
as bi-fundamental representations of psu(1|1)2c.e.. This allows us to rewrite an S-matrix in-
variant under psu(1|1)4c.e. algebra as a tensor product of two copies of psu(1|1)2c.e.-invariant
S-matrices.

Due to the invariance under the action of the generators M and H and integrability, one
can split the psu(1|1)2c.e.-invariant S-matrix into massive, massless, and mixed mass sectors.

In Section 2.3.1 we presented the fundamental representations of su(1|1)2c.e. which we
called ρL, ρR, ρ̃L and ρ̃L, which were then combined into massive left, right and massless
representation. However, we are interested in the scattering of massive excitations and thus
consider the corresponding massive S-matrix below.

In the left-left (LL) sector, we examine the two particles from ρL representations. Their
scattering is restricted by symmetry algebra [111], [113] and is described by Š

LL
. One can

argue [71] that having enough conserved charges (which is the case in integrable theories)
leads to scattering of transmission and reflection type only, which results in the following
non-zero matrix elements (we are sticking to normalisations of [111])

Š
LL |ϕL

pϕ
L
q⟩ = ALL

pq |ϕL
qϕ

L
p⟩ , Š

LL |ϕL
pψ

L
q⟩ = BLL

pq |ψL
qϕ

L
p⟩+ CLL

pq |ϕL
qψ

L
p⟩ ,

Š
LL |ψL

pψ
L
q⟩ = F LL

pq |ψL
qψ

L
p⟩ , Š

LL |ψL
pϕ

L
q⟩ = DLL

pq |ϕL
qψ

L
p⟩+ ELL

pq |ψL
qϕ

L
p⟩ .

(2.3.32)

All coefficients are determined up to an overall factor. The standard convention is to
normalise ALL

pq = 1. By requiring the compatibility of the S-matrix with the symmetry alge-
bra (2.2.73), one can fully fix the values of all other matrix elements

ALL
pq = 1, BLL

pq =

(
x−p
x+p

)1/2
x+p − x+q
x−p − x+q

,

CLL
pq =

(
x−p
x+p

x+q
x−q

)1/2
x−q − x+q
x−p − x+q

ηp
ηq
, DLL

pq =

(
x+q
x−q

)1/2
x−p − x−q
x−p − x+q

,

ELL
pq =

x−p − x+p
x−p − x+q

ηq
ηp
, F LL

pq = −
(
x−p
x+p

x+q
x−q

)1/2
x+p − x−q
x−p − x+q

.

(2.3.33)

The result is written in terms of the Zhukovski variables introduced in Section 2.3.1. It must
hold for any value of the masses |m| that appear in Zhukovski variables, and is also valid
for the scattering of particles of different masses.

In the Right-Right (RR) sector, we would find exactly the same formulas owing to LR
symmetry, which implies that parameterisations coincide in the LL and RR sectors.

For the case of left–right scattering of two particles with equal masses, it turns out that
requiring just invariance under the symmetry algebra together with the unitarity gives two
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physically distinct solutions. One solution gives

(T): ⟨X LYR| Špq |X LYR⟩ = 0 and ⟨X LYR| Špq |YRX L⟩ ̸= 0 , (2.3.34)

and similarly for L↔ R, whereas the other gives

(R): ⟨X LYR| Špq |X LYR⟩ ̸= 0 and ⟨X LYR| Špq |YRX L⟩ = 0 , (2.3.35)

with X and X being two generic excitations. The case indicated by (T) corresponds to pure-
transmission of the target-space chirality, while (R) corresponds to pure-reflection [111]. Com-
patibility with perturbative results then forces us to choose the pure-transmission S-matrix29

Š
LR |ϕL

pϕ
R
q⟩ = ALR

pq |ϕR
qϕ

L
p⟩+BLR

pq |ψR
qψ

L
p⟩ , Š

LR |ϕL
pψ

R
q⟩ = CLR

pq |ψR
qϕ

L
p⟩ ,

Š
LR |ψL

pψ
R
q⟩ = ELR

pq |ψR
qψ

L
p⟩+ F LR

pq |ϕR
qϕ

L
p⟩ , Š

LR |ψL
pϕ

R
q⟩ = DLR

pq |ϕR
qψ

L
p⟩ ,

(2.3.36)

where the scattering elements are parametrised in terms of Zhukovski variables

ALR
pq = ζpq

(
x+p
x−p

)1/2 1− 1
x+
p x−

q

1− 1
x−
p x−

q

, BLR
pq = −2i

h

(
x−p
x+p

x+q
x−q

)1/2
ηpηq
x−p x

+
q

ζpq
1− 1

x−
p x−

q

,

CLR
pq = ζpq , DLR

pq = ζpq

(
x+p
x−p

x+q
x−q

)1/2 1− 1
x+
p x+

q

1− 1
x−
p x−

q

,

ELR
pq = −ζpq

(
x+q
x−q

)1/2 1− 1
x−
p x+

q

1− 1
x−
p x−

q

, F LR
pq =

2i

h

(
x+p
x−p

x+q
x−q

)1/2
ηpηq
x+p x

+
q

ζpq
1− 1

x−
p x−

q

.

(2.3.37)

Here, we have introduced a convenient factor

ζpq =

(
x+p
x−p

)−1/4(
x+q
x−q

)−1/4
(
1− 1

x−
p x−

q

1− 1
x+
p x+

q

)1/2

. (2.3.38)

Similarly, an S-matrix Š
RL

can be obtained by swapping the labels L and R in (2.3.36).
Using LR-symmetry, one arrives at the parametrisation which is the same as above with
ARL

pq = ALR
pq and so on.

The pure R-R S-matrix as a tensor product

From previous sections we know that we can write psu(1|1)4c.e. S-matrix as a tensor product
of two psu(1|1)2c.e.

Š
I J

psu(1|1)4 = S I J
0 Š

I J

su(1|1)2⊗̌Š
I J

su(1|1)2 , (2.3.39)

where I, J = L or R, and ⊗̌ is the graded tensor product

(A⊗̌B)KK′,LL′

MM ′,NN ′ = (−1)ϵM′ϵN+ϵLϵK′AKL
MNBK′L′

M ′N ′ , (2.3.40)

where ϵ takes the value of 1 for fermions and 0 for bosons. The term S I J
0 is a scalar.

29Moreover, only this choice gives an S-matrix that satisfies the Yang-Baxter equation.
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Generally, there might be four different S I J
0 . However, using LR-symmetry we can de-

duce that SLL
0 = SRR

0 and SLR
0 = SRL

0 so we have just two independent factors30.
It is common to normalise these scalar factors. One of the choices is

SLL
0 (x±p , x

±
q ) =

x+p
x−p

x−q
x+q

x−p − x+q
x+p − x−q

1− 1
x−
p x+

q

1− 1
x+
p x−

q

1(
σ••
pq

)2 , (2.3.41)

where σ••
pq is called dressing factor. It cannot be fixed by the symmetry algebra but the crossing

equations, as in the AdS − 5 case in Section 2.2.5. The idea behind this particular normali-
sation is to account for the bound states expected in the spectrum. The existence of a bound
state can be predicted by investigating when the generic long multiparticle representation
becomes short. For psu(1|1)4c.e. this occurs for momenta p and q such that x+p = x−q or x−p = x+q .
In the first case, one can find that |Y L

p Y
L
q ⟩ survives in the tensor product of two left massive

modules. In the second, – |ZL
p Z

L
q ⟩. We expect only one of them to appear in the spectrum,

and we choose it to be |Y L
p Y

L
q ⟩. Thus, we include x+p − x−q to produce a pole and x−p − x+q to

produce a zero in a normalisation. Owing to the LR symmetry, the case of two right massive
excitations is equivalent.

For the scattering of a Left excitation with a Right one, the preferred normalisation is

SLR
0 (x±p , x

±
q ) =

(
x+p
x−p

)1/2(
x+q
x−q

)−1/2 1− 1
x−
p x+

q

1− 1
x+
p x−

q

1(
σ̃••
pq

)2 , (2.3.42)

where a new dressing factor σ̃••
pq is introduced, and again, due to the LR symmetry, the right-

left sector should be the same.
Finally, Unitarity and the Yang-Baxter equation put some constraints on the form of in-

troduced factors σ••
pq and σ̃••

pq

σ••
qp =

(
σ••
pq

)∗
=

1

σ••
pq

, σ̃••
qp =

(
σ̃••
pq

)∗
=

1

σ̃••
pq

. (2.3.43)

We see that the dressing factors in the massive case can be written as exponentials of anti-
symmetric functions of the two momenta, and for physical momenta, they take values on
the unit circle.

2.3.3 Crossing Symmetry and Dressing Factors

Physical region

Before moving further, it is worth briefly considering how crossing transformation trans-
forms the S-matrix in the relativistic case31. In two-dimensional Lorentz-invariant models,
it is possible to express the particle momentum and energy through a rapidity variable θ
parametrising energy and momentum

p = m sinh θ , H = m cosh θ , (2.3.44)

30The two double dots in σ••
pq and σ̃••

pq denote that this dressing factor belongs to the S-matrix responsible for
scattering two massive excitations (massive-massive). One can also define massive-massless σ•◦

pq or massless-
massless σ◦◦

pq factors, but we will not consider them here.
31See [114] for a more detailed discussion.
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so that the relativistic dispersion relation is trivially satisfied

H2 − p2 = m2 . (2.3.45)

For two-particle scattering, the S-matrix is a function of the momenta of two particles,
S(p1, p2). The Lorentz invariance condition forces the S-matrix to be of the difference form
when expressed in terms of rapidities

S(p1, p2) = S(θ1 − θ2) . (2.3.46)

Alternatively, it can be written in terms of the Mandelstam variable

s = (p1 + p2)
2 = 2m2(1 + cosh(θ1 − θ2)) . (2.3.47)

In physical processes, s is real and s > 4m, but it is possible to analytically continue the
S-matrix to the whole complex plane except cuts along s > 4m and s < 032. Furthermore,
we can consider an analytic continuation through the cuts to the next Riemann sheet, which
turns out to correspond to anti-particles33. The region that describes the physical particles is
conventionally chosen to be constrained to the first Riemann sheet by branch cuts. However,
we are free to exchange particle and anti-particle regions without any change of physics, as
they are equivalent mathematically.

Now, the intuition from the Lorentz-invariant theory example should be applied to the
theory at hand.

First, one can notice periodicity in p in all the formulas (2.3.19) and (2.3.15). Therefore,
it is natural to restrict the allowed region for p as 0 ≤ p < 2π. If we look at the plot of the
Zhukovski variables for m = 0, given in figure 2.2, we notice that the m = 0 contour is a
circle, which naturally captures the periodicity of the momentum.

Another observation we can make is that the transformation x± → 1/x± changes the sign
of the energy (2.3.23) and momentum (2.3.20)

p→ p̄ = −p, E → Ē = −E , (2.3.48)

but leaves the constraint on the Zhukovski variables (2.3.20) intact. This suggests that the
contour form = 0 excitations is a branch cut of the S-matrix. Now, there is a choice similar to
the one in Lorentz invariant theory: we can either choose the physical amplitudes for m = 0
excitations to lie just outside or inside the circle. If we decide to use the former, it is natural
to extend the physical region to the entire complex plane outside the circle.

Under the map x → 1
x
, the region inside the circle is entirely equivalent to the region

outside. Therefore, designating one of them as a physical region is merely a matter of con-
vention. The region, dual under this map, is the crossed region.

Crossing transformation

We have seen that under the transformation

x±p → x±p̄ =
1

x±p
, (2.3.49)

32The cut s < 0 comes from the equivalence of the scattering in s- and t-channels relating S(s) = S(4m2 − s).
33In theories with more particle scattering, there may be more than two Riemann sheets. Furthermore, more

general theories (e.g. for the sine-Gordon model) may have infinitely many sheets.
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Figure 2.2: Plots of Zhukovski variables for m = 0 (solid) and m = 1 (dashed) for real momenta
p ∈ [0, 2π]. The variable x+ has positive real part, and x+ has negative real part. The region shaded
in green is the physical region.

momentum and energy transform as

p→ p̄ = −p, E → Ē = −E , (2.3.50)

which corresponds to the particle-to-anti-particle transformation, or in other words, the
crossing transformation. Technically, if we want to perform a crossing transformation on an
expression, we need to analytically continue it in the Zhukovski variable from x to 1/x. In
this process, we might cross different cuts and discontinuities. In particular, for the S-matrix,
we expect cuts along massless Zhukovski contours. One of the choices to go from the phys-
ical region outside the circle to the crossed region inside the circle is depicted in Figure 2.3.
Thus, to be consistent, we need to choose a particular crossing path, so we choose to use the
one in figure 2.3.

Figure 2.3: The crossing transformation path (dashed) for massive variables in the x± planes. Blue
contour corresponds to m = 0 Zhukovski, Cyan contour – m = 1 x+/x− Zhukovski.

For the theory where particles and antiparticles coincide, elements of the S-matrix related
by a particle-to-antiparticle transformation are equivalent up to performing an analytic con-
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tinuation. This transformation exchanges the branches of the dispersion relation, in other
words, changes the sign of energy and momentum. However, this is not true for the theory
we consider. In our case, we should supplement analytic continuation with a map which
sends the particle representation into the antiparticle representation. We have seen this for
the AdS5 strings in section 2.2.5.

To define the crossing equation, such as (2.2.65), we need to define a charge-conjugation
matrix C, which exchanges the Left and Right representations in the su(1|1)2c.e. basis B =
(ϕL, ψL, ϕR, ψR), C can be chosen as

C =


0 0 1 0
0 0 0 −i
1 0 0 0
0 −i 0 0

 ,

where the matrix Σ is defined as a diagonal matrix taking the value +1 for bosons and −1
for fermions. In this way, C2 = Σ and C−1 = C†.

The form of the charge conjugation matrix is not unique. There are several degrees of
freedom which can be reflected in the form of charge conjugation matrix. First, each of the
su(1|1)L/R factors in su(1|1)2c.e. admits a continuous one-parameter family of automorphisms,
that is a U(1) phase rotation acting on the supercharges:

q → eiϕ q , q → e−iϕ q .

Physically, this U(1) symmetry corresponds to a global phase freedom in defining the
fermionic generators. This freedom can be reflected in the charge conjugation matrix C [101]

C =


0 0 ξRL 0
0 0 0 −iξRL

ξLR 0 0 0
0 −iξLR 0 0

 ,

where ξRL = eiϕ and ξLR = e−iϕ. The standard choice is to fix ξLR = ξRL = 1 so that C2 = Σ and
C−1 = C†. Second, there is a basis freedom in su(1|1)2c.e. representations ρL, ρR, ρ̃L and ρ̃R. For
instance, we are free to rescale the basis states as |ϕ⟩ → λ |ϕ⟩ and |ψ⟩ → µ |ψ⟩. In fact, this
basis freedom can offset the action of the U(1) automorphism we have seen above. Finally,
there is a choice of the overall normalisation of C.

However, all of these freedoms are not physical and result in the same crossing equations.
In the basis of psu(1|1)4c.e. representation

{Y L, ηL1, ηL2, ZL} ⊕ {Y R, ηR1, ηR2, ZR} , (2.3.51)

the charge conjugation matrix takes the form

Cp =



0 0 0 0 1 0 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 1 0 0 0 0


. (2.3.52)
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Following [112], crossing equation can be derived using Rpq = ΠŠpq if we notice that the
objects

R−1
pq and Cp(1)R

t1
p̄qC

†
p(1) (2.3.53)

where t1 denotes transposition on the first space, have the same invariance property with
respect to all supercharges q. We can therefore conclude

Cp(1)R
t1
p̄qC

†
p(1) = R−1

pq , (2.3.54)

which is a crossing equation, equivalent to (2.2.65), obtained from the Hopf algebra consid-
erations. This requirement means that the scalar factors σ••

pq and σ̃••
pq are not arbitrary, but

satisfy the analyticity requirements coming from (2.3.54) or its analogue for crossing for q
(by transposing R in the second space). The whole set of equations reduces to equations just
for the dressing factors

(
σ••
pq

)2 (
σ̃••
p̄q

)2
=

(
x−q
x+q

)2
(x−p − x+q )

2

(x−p − x−q )(x
+
p − x+q )

1− 1
x−
p x+

q

1− 1
x+
p x−

q

,

(
σ••
p̄q

)2 (
σ̃••
pq

)2
=

(
x−q
x+q

)2

(
1− 1

x+
p x+

q

)(
1− 1

x−
p x−

q

)
(
1− 1

x+
p x−

q

)2 x−p − x+q
x+p − x−q

.

(2.3.55)

However, there is still some freedom in choosing dressing factors: it is possible to add a
CDD factor – solution to the homogeneous crossing equation [115]

σCDD
pq σ̃

CDD
p̄q = 1 , σCDD

p̄q σ̃
CDD
pq = 1 . (2.3.56)

However, such factors might modify the pole structure of the S-matrix. This is why the
requirements discussed at the end of section 2.2.5 are important; they allow one to fix this
ambiguity. Ultimately, the validity of the assumptions must be tested by comparing the
S-matrix with perturbative calculations.

Originally, a proposal for pure R-R dressing factors was made and checked against per-
turbative computation in [116]. However, it was later modified in [29], [117]. We provide
more details in the next section.

2.3.4 Solution of the crossing equations

In this section, we provide an overview of the crossing equation solution in the pure R-R
case based on [116].

In (2.3.55), we introduce functions g12 and g̃12 which will be useful later

g(x1, x2) = g12 =

(
x−2
x+2

)2
(x−1 − x+2 )

2

(x−1 − x−2 )(x
+
1 − x+2 )

1− 1
x−
1 x+

2

1− 1
x+
1 x−

2

, (2.3.57)

g̃(x1, x2) = g̃12 =

(
x−2
x+2

)2 (1− 1
x+
1 x+

2

)(1− 1
x−
1 x−

2

)

(1− 1
x+
1 x−

2

)2
x−1 − x+2
x+1 − x−2

. (2.3.58)

Then we can define two new functions, called Sum and Difference phases

σ+(x1, x2) = σ••(x1, x2)σ̃
••(x1, x2), σ−(x1, x2) =

σ••(x1, x2)

σ̃••(x1, x2)
, (2.3.59)
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as well as two more functions, called BES and HL phases, defined by the equations

σBES(x1, x2)σ
BES(x̄1, x2) = h(x1, x2) ≡ h12 ≡

x−2
x+2

x−1 − x+2
x−1 − x−2

1− 1
x+
1 x+

2

1− 1
x+
1 x−

2

(2.3.60)

for the BES phase, and

σHL(x1, x2)σ
HL(x̄1, x2) =

√
h12
h1̄2

, (2.3.61)

for the HL phase. Here, we introduce another function h1̄2 = h(x̄1, x2).
This allows us to get an equation for σ+ by using definition of σ+ (2.3.62) and taking the

product the of two lines of (2.3.55)

σ+(x1, x2)
2σ+(x̄1, x2)

2 = g12g̃12. (2.3.62)

Then we notice that using the following equality34

1− 1
x+y+

x− − y−
=

1− 1
x−y−

x+ − y+
, (2.3.63)

using which one can check that

g12g̃1̄2 =
(h12)

3

(h1̄2)
. (2.3.64)

This fact allows us to write the solution for (2.3.62)

σ+
12 =

(σBES
12 )2

σHL
12

, (2.3.65)

that is, σ+ is given in terms of the BES and HL phases (see [116]).
If we take the ratio of the two lines of (2.3.55), we get an equation for σ−

σ−(x1, x2)

σ−(x̄1, x2)2
=
g̃12
g12

=
l−(x+1 , x

−
2 )l

−(x−1 , x
+
2 )

l−(x+1 , x
+
2 )l

−(x−1 , x
−
2 )
, (2.3.66)

where l−(x, y) = (x− y)(1− 1
xy
). Therefore, σ− can be written in terms of χ− (see [116]).

It is convenient to define the dressing phase instead of the dressing factor

σ(x, y) = eiθ(x
±,y±) σ̃(x, y) = eiθ̃(x

±,y±) . (2.3.67)

Similarly to AdS5 case (2.2.70), dressing phases in AdS3 have a very useful representation

θ(x±, y±) = χ(x+, y+) + χ(x−, y−)− χ(x+, y−)− χ(x−, y+) , (2.3.68)

θ̃(x±, y±) = χ̃(x+, y+) + χ̃(x−, y−)− χ̃(x+, y−)− χ̃(x−, y+) . (2.3.69)

34This is derived from the shortening condition for Zhukovski, see [116].
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Odd part of a dressing phase

To reduce (2.3.55) to something simpler, we can perform the following trick.
In (2.3.55), one can perform crossing one more time to obtain additional equations for the

dressing phase (
σ(¯̄x, y)

σ(x, y)

)2

=

(
x+ − y+

x+ − y−
x− − y−

x− − y+

)2

, (2.3.70)

and (
σ̃(¯̄x, y)

σ̃(x, y)

)2

=

(
1− 1/(x−y+)

1− 1/(x+y+)

1− 1/(x+y−)

1− 1/(x−y−)

)2

. (2.3.71)

If we separate dressing phases in the following way

σ(x, y) = σeven(x, y)σodd(x, y), σ̃(x, y) = σ̃even(x, y)σ̃odd(x, y), (2.3.72)

where σeven means that this function is even under double-crossing, i.e. σeven(¯̄x, y) =
σeven(x, y), and σodd is odd under double-crossing, i.e. σodd(¯̄x, y) ̸= σodd(x, y); this allows
us to write crossing equation for odd part of the dressing phase specifically

σodd(x, y)2σ̃odd(x̄, y)2 =

(
x+ − y−

x+ − y+
x− − y+

x− − y−

)
, (2.3.73)

σodd(x̄, y)2σ̃odd(x, y)2 =

(
1/x+ − y+

1/x+ − y−
1/x− − y−

1/x− − y+

)
. (2.3.74)

Such a representation in terms of even and odd phases is especially important for the
mixed-flux case considered in the next chapter.

The full solution

We combine all these pieces to get the all-loop expression for dressing phases in terms of χ

χ = χBES +
1

2
(−χHL + χ−) (2.3.75)

χ̃ = χBES +
1

2
(−χHL − χ−) (2.3.76)

where χBES solves AdS5 × S5 crossing and has a strong-coupling limit expansion (h→ ∞):

χBES = χAFS︸ ︷︷ ︸
∼h0

+χHL︸︷︷︸
∼1/h

+... , (2.3.77)

where χHL is the odd part of the crossing in AdS5 × S5. To separate an odd part of AdS3

crossing, we subtract χHL from χBES

χ = χBES − χHL +
1

2
(χHL + χ−)︸ ︷︷ ︸

odd part

(2.3.78)

χ̃ = χBES − χHL +
1

2
(χHL − χ−)︸ ︷︷ ︸

odd part

(2.3.79)
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where

χHL = (

�
↶ −

�

↶)
dw

4π

1

x− w

(
log(y − w)− log(y − 1

w
)

)
,

χ− = (

�
↶ −

�

↶)
dw

8π

1

x− w

(
log(y − w) + log(1− 1

yw
)

)
− (x↔ y) .

(2.3.80)

To sum up, σBES , σHL and σ− together fully define a solution (2.3.55) according to [116].
However, as mentioned before, this was later modified in [29], [117].

In [117], a new set of variables γ, with properties resembling relativistic rapidity vari-
ables, was introduced, and parity as a symmetry of the dressing factor, which was over-
looked in [116], was considered. The resulting dressing phase differed from the original by
a CDD factor.

A simple modification of (2.3.80) can be made by adding the following term35

δϕ =
1

16π
log

(x+ 1)2

x
log

(y − 1)2

y
− 1

16π
log

(x− 1)2

x
log

(y + 1)2

y
, (2.3.81)

which cancels out the unphysical branch cuts of the odd part of the solution χodd =
1
2
(χHL +

χ−) and χ̃odd = 1
2
(χHL − χ−). This modification was presented in [29]. The result leaves the

contributions crossing unchanged but restores the parity symmetry and makes the entire
solution agree with [117]. It is the odd part of the solution (2.3.78) which gets modified

χ(mod)
odd = χodd + δϕ ,

χ̃(mod)
odd = χ̃odd − δϕ .

(2.3.82)

We can further rewrite in the following form

χ(mod)
odd (x, y) = +

�
↶↶ dz

8π

log (y−z)2

y

x− z
+

1

16π
log

(x+ 1)2

(x− 1)2

(
log

(y + 1)2

y
+ log

(y − 1)2

y

)
,

χ̃(mod)
odd (x, y) = −

�
↶↶ dz

8π

log (y−z)2

y

1
x
− z

− 1

16π
log

(x+ 1)2

(x− 1)2

(
log

(y + 1)2

y
+ log

(y − 1)2

y

)
,

(2.3.83)

where integration is taken along the upper and lower parts unit circle, clockwise for the
lower part and anti-clockwise for the upper part.

For both |x|, |y| > 1, we can deform the circular contours to the real line z ∈ [−1, 1] and
get the following expressions

χ(mod)
odd (x, y) = +

� −1

1

dz

2π

log(y − z)

x− z
+

1

4π
log

x+ 1

x− 1

(
log(y + 1) + log(y − 1)

)
,

χ̃(mod)
odd (x, y) = −

� −1

1

dz

2π

log(y − z)
1
x
− z

− 1

4π
log

x+ 1

x− 1

(
log(y + 1) + log(y − 1)

)
− i

2
sign(Im x) log

(
y − 1

x

)
.

(2.3.84)

Notice the additional term at the end of the expression for χ̃(mod). The source for it is the pole
we pick up at 1/x whose residue depends on which half-plane x is in.

35This was suggested in an unpublished work by Andrea Cavaglia and Simon Ekhammer.
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The form of the solution may differ. For instance, the solution in [117] is equivalent to the
one above but has a significantly different form. One of the ways to see their equivalence
is to look at large x and y expansions, which should be of the form (2.2.68). If the solutions
are the same, the coefficients in this expansion should be the same. One can check that the
expansion of (2.3.84)36 has the following form

χ(mod)
odd =

1

4π

∞∑
m,n=1

x−my−n

mn

[
m− n

m+ n

(
1− (−1)n+m

)
+ (−1)m − (−1)n

]
,

χ̃(mod)
odd = +

1

4π

∞∑
m,n=1
m̸=n

x−my−n

mn

[
n+m

n−m

(
1− (−1)m−n

)
+ (−1)n − (−1)m

]

+
1

2π

∞∑
n=1

1− (−1)−n

n2
y−n ,

(2.3.85)

which agrees with that of [117] up to terms not relevant in the full phase (2.2.70).
Now, we shall generalise it for the mixed-flux case in the next chapter.

36This was computed by Suvajit Majumder and Bogdan Stefanski in an unpublished work.
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Chapter 3

Integrability in AdS3 × S3 × T4 with
mixed-flux

In this chapter, we discuss the worldsheet S-matrix for AdS3 × S3 × T4 with mixed flux,
focusing on its dressing factors. We start from the known facts about the symmetry algebra
and its representations, which is then followed by a presentation of elements of the novel
mixed-flux kinematics and construction of the previously unknown odd part of the massive
dressing phase1.

3.1 The su(1|1)2c.e. Symmetry Algebra for the mixed-flux

In this section, we briefly consider how the symmetry algebra and its representations are
modified compared to the pure R-R theory, and how it changes the kinematics of the theory.

The symmetry algebra for the mixed-flux theory can be obtained in the near-plane-wave
limit from supercurrents truncated at the quadratic order in the fields. It has the same form
as the pure R-R one obtained in section 2.3.1, but the coefficients in the supercurrent expres-
sions are deformed. The construction of su(1|1)2c.e. representations, and then the product of
two su(1|1)2c.e. representations into psu(1|1)4c.e. one mostly repeats the case of pure R-R.

In the pure R-R case, the left and right representations are equivalent. This is not the case
for the mixed-flux theory, where the left and right representations are different. Namely, the
representation coefficients used in the expressions for the central charges (2.3.19) are mod-
ified [40]. Additionally, representation coefficients are no longer the same for the left and
right su(1|1)2c.e. representation, so we need to keep indices L and R everywhere. However,
there is still a symmetry in choosing the label for the left or right representation, meaning
we can interchange all left labels L with right labels R without the change of physics2. This
is usually referred to as left–right symmetry (LR symmetry).

Central charges have the following expressions [40]

M =


m+ k-p left,

−m+ k-p right,
k-p massless,

(3.1.1)

1The material in this section is based on the collaborative study [29]. The author of the thesis is the main
contributor to the analysis presented in section 3.3.

2Provided we change M → −M where needed.
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H =


√

(m+ k-p)2 + 4h2 sin2(p
2
) left,√

(m− k-p)2 + 4h2 sin2(p
2
) right,√

k-2p2 + 4h2 sin2(p
2
) massless,

(3.1.2)

C = ζ
ih

2
(eip − 1) ,

C = −ζ ih
2
(e−ip − 1) ,

(3.1.3)

where k- = k
2π

. It will be useful sometimes to use k-I defined as k-L = k- and k-R = −k-.
This leads to modifications of the dispersion relation derived from the shortening condi-

tion (2.3.14)

EI(p) =

√
(m+ k-Ip)2 + 4h2 sin2

(p
2

)
, I ∈ {L,R} , (3.1.4)

The shortening condition of Zhukovski also changes

x+I p
x−I p

= eip, x+I p +
1

x+I p
− x−I p −

1

x−I p
=

2i (|m|+ k-Ip)

h
, I ∈ {L,R} . (3.1.5)

These equations can be solved for x±I by setting

x±I p =
(|m|+ k-Ip) + EIp

2h sin(p
2
)

e±
i
2
p , I ∈ {L,R} , (3.1.6)

with m = ±1, 0.
In terms of Zhukovski variables, the dispersion relation takes the form

EI(p) = − ih
2

(
x+I − 1

x+I
− x−I +

1

x−I

)
, I ∈ {L,R} . (3.1.7)

The major difference from the pure R-R case is that p is no longer confined to the region
(0, 2π) because the dispersion relation in (3.1.4) is not periodic in p. Therefore, there is no
reason not to take p ∈ R. The plot x+L for different values of m is shown in Figure 3.13.
We label the contours by the value of charge M, which we call mass m, and the number of
momentum regions, which can be p ∈ (2πn, 2π(n+ 1)), for n ∈ Z.

One can notice that the dispersion relation (3.1.4) has the following periodicity property

m→ m+ k ⇐⇒ p→ p± 2π (3.1.8)

for the left and right representations, respectively. This periodicity property was first con-
sidered in [118] for the relativistic limit of the theory and later discussed in detail for the full
theory in [29].

In the context of Zhukovsky variables, such periodicity is realised as equivalence be-
tween every line of mass m+ k with momentum p ∈ [0, 2π] and every line with mass m and
momentum p ∈ [2π, 4π].

On a physical level, this feature can be interpreted as the existence of a singlet state,
which implies the equivalence of the m = k + 1 bound states with momentum p and m = 1
states with momentum p+2π. It can be demonstrated that the trivial scattering of such states

3We are using parameters k- = 5
2π and h = 2 for the plots everywhere in this work.
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Figure 3.1: Plot of x+L (on the left) and x+R (on the right) contours for different values of masses and
momenta in the [0, 2π] region. The dashed line is the m = 0 contour, the solid line is for m = 1, the
light grey line below the dashed m = 0 line is for m = −1, and the light grey lines above m = 1 are
m = 2, 3, . . . contours.

leads to crossing equations. Additionally, the existence of such a singlet state ensures that
once we continue the momenta to the entire real line, the number of physical excitations is
not inflated by an infinite number of identically charged states [29].

Furthermore, looking at (3.1.4), we can see that from the perspective of representations,
the m = k − 1 left bound state at momentum p − 2π is indistinguishable from m = 1 right
excitation with momentum p. Thus, we can choose the left or right description depending
on which is more convenient.

3.2 The Crossing Transformation

The application of the crossing transformation should change signs of the central
charges (3.1.1)-(3.1.3). This can be achieved by

p→ p̄ = −p, Ep → Ep̄ = −Ep , (3.2.1)

together with switching L and R indices. By looking at (3.1.7), one can notice how Zhukovski
should transform

xI(p) →
1

xI(p̄)
=

1

xI(−p)
=

1

x̄I(p)
, (3.2.2)

where I = L,R, and the bar over I means we should change L to R and vice versa. In the
last equality we used (3.1.6) to replace xI(−p) with x̄I(p).

To completely define a crossing transformation, we also need to identify the physical
region.

However, identifying the physical region for the general value of momentum is more
difficult than in the R-R case. If previously we choose the physical region outside the unit
circle, which is a region where the Zhukovski variable can take values for physical m = 0
excitation, now, figure 3.1 contains only a part of the m = 0 contour with p ∈ (0, 2π). If
we continue it to p > 2π, we should end up on another sheet with p ∈ (2π, 4π) where
m = 0 contour will be at the same location as m = k contour (m = 2 for figure 3.1) from
p ∈ (0, 2π). For p ∈ (4π, 6π), m = 0 contour will be at the same location as m = 2k contour
(m = 4 for figure 3.1) and so on. The same process can be repeated if moving in the opposite
direction in the momentum or considering Right Zhukovski instead of Left. Different sheets
corresponding to different momenta regions are connected to each other via the log branch
cut along the negative real axis (see [29] for more detailed discussion). Overall, there should
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be an infinite number of separate sheets of x±L /x±R with momentum p ∈ [2πn, 2π(n + 1)
labelled by n ∈ Z ∪ {0}, each with its own Zhukovski contours.

Using the intuition from the pure R-R case, the contours x±L /x±R with m = 0 should create
a natural boundary for the physical and crossed regions. For instance, figure 3.2 shows x±L
with m = 1 in p ∈ (0, 2π) and its crossed counterpart in subfigure (a); x±L with m = 1 in
p ∈ (−2π, 0) and its crossed counterpart in subfigure (b). Other values of masses (m > 1)
and other momentum regions give a similar picture.

(a) Momentum region p ∈ (0, 2π). (b) Momentum region p ∈ (−2π, 0).

Figure 3.2: Plot of Zhukovski variable x+L (blue dashed) and x−L (red dashed), and the crossed
Zhukovski variable 1

x+
R

(blue) and 1
x−

R
(red). We refer to the solid black contour in the left subfig-

ure as the Scallion (SL), and the solid black contour on the right subfigure as the Kidney (KL).

Figure 3.3: Plot of Zhukovski variable x+R (blue dashed) and x−R (red dashed), and the crossed
Zhukovski variable 1

x+
L

(blue) and 1
x−

L
(red) in momentum region p ∈ (0, 2π). We refer to the solid

black contour as the Kidney (KR).

The choice of the physical region in the regions with p > 0 and p < −2π is rather simple.
We can choose it to be the outside of the left scallion for p > 0 and outside the right scallion
for p < −2π. The region −2π < p < 0 is more subtle. It can be observed that the composite
states can have their constituent states crossed for some values of momenta (see discussion
in [29]). If this occurs, the crossed constituents will decrease the composite state energy
to such an extent that it becomes lighter than the fundamental excitation4 in other regions.

4By fundamental excitation, we mean the lightest state from which every other state can be constructed.
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Therefore, there is no obvious choice for a fundamental excitation in the −2π < p < 0 region.
This is natural because the fundamental states for p > 0 and p < −2π regions are the Left
m = 1 state and Right m = 1 states, respectively, so that region −2π < p < 0 interpolates
between them. However, this raises the question of which part of this region is physically
obscured (see [29] for more details).

In the momenta region p ∈ [0, 2π], we can choose the crossing path to be the one depicted
in figure 3.4 (resembling the one we have seen for pure R-R case, see figure 2.3). Importantly,
this contour should also cross one of the branch cuts of EL/R(p) in the p-plane.

The crossing transformation in other regions can be defined in the following way: one
need to continue x±L /x±R to the momenta region p ∈ [0, 2π], perform crossing as defined
above, and then go back to the original momenta region.

Transition between different regions is done by crossing the m = 0 contours and log-cuts
along the negative real axis. For example, the transition form region p ∈ [0, 2π] to p ∈ [2π, 4π]
for x±L can be done by taking x±L inside the scallion, through the log cut and then moving out
of the scallion again.

Figure 3.4: The crossing transformation path (blue dashed) for massive variables in the x±L planes for
the momentum range p ∈ [0, 2π]. The red contour corresponds to m = 0 Left Zhukovski contour in
[0, 2π] momenta, and the red dashed contour corresponds to the m = 0 Left Zhukovski contour in
[−2π, 0]. Light grey contours correspond to x+L /x−L and 1

x+
R

/ 1
x−

R
in momenta region [0, 2π].

In the later section, we will construct the mixed-flux dressing factors by generalising the
pure R-R solution, which is given by the odd part (2.3.78) and the even part in terms of the
DHM integral (2.2.71). Both parts are expressed in terms of an integral over the boundary
of the physical region, which is a circle in the pure R-R case. The expectation is that the
expression for the mixed flux should also have an integration over the boundary of the
physical region.

However, this creates a problem if one tries to write the solution in the form (2.2.71) 5

or (2.3.78). If one naively includes massless Zhukovski contours for all possible values of
momenta, the resulting dressing phases would have an infinite number of branch cuts in
the Zhukovski region outside the scallion (which is chosen as the physical region).

We propose to use the minimal integration contour consisting of the Scallion and the
Kidney contours, depicted in figure 3.2. Both the Scallion and the Kidney have a branch

5BES phase, part of the full dressing phase which is believed to be universal and contains double poles,
which is a common property of string theories in AdS5 and AdS3 [99].
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point on the real line, whose location we denote as s and −1/s, which will play an important
role later.

3.3 Solution of the crossing equations

The construction of the physical representation of psu(1|1)4c.e. follows the same way as the
pure R-R one. Furthermore, because the symmetry algebra is the same, the matrix part of
the exact S-matrix is unchanged. Therefore, we can proceed to the unknown part – dressing
factors.

Crossing equations for the massive sector are the same as for the pure R-R case, except
for the addition of L and R indices [40]

(σ••
LL (x, y))

2 (σ̃••
RL (x̄, y))

2 =

(
y−L
y+L

)2
(x−L − y+L )

2

(x−L − y−L )(x
+
L − y+L )

1− 1
x−

L y+L

1− 1
x+

L y−L

, (3.3.1)

(σ̃••
LR (x, y))

2 (σ••
RR (x̄, y))

2 =

(
y−R
y+R

)2 (1− 1
x+

L y+R
)(1− 1

x−
L y−R

)

(1− 1
x+

L y−R
)2

x−L − y+R
x+L − y−R

, (3.3.2)

where a bar over x denotes that we crossed the expression in that variable.
We can identify even and odd parts of the full dressing phase in the same manner we did

in section 2.3.4

σodd
LL (x, y)2σodd

RL (x̄, y)2 =

(
x+L − y−L
x+L − y+L

x−L − y+L
x−L − y−L

)
, (3.3.3)

σodd
LL (x̄, y)2σodd

RL (x, y)2 =

(
1/x+R − y+L
1/x+R − y−L

1/x−R − y−L
1/x−R − y+L

)
. (3.3.4)

In this work, we restricted our attention to the odd part of the massive mixed-flux dress-
ing phase.

One of the simplest guesses for the mixed-flux solution is to write it to be very similar to
the pure R-R one (2.3.84), with only contour integration modified

χodd
LL (x, y) = +

�
SL+KL

dz

2π

log(y − z)

x− z

+
1

4π
log

x+ 1/s

x− s

(
log(y + 1/s) + log(y − s)

)
,

χodd
RL (x, y) = −

�
SR+KR

dz

2π

log(y − z)

1/x− z

− 1

4π
log

x+ s

x− 1/s

(
log(y + 1/s) + log(y − s)

)
,

(3.3.5)

where we integrate over the Scallion and the Kidney contours (see figures 3.2 and 3.3), which
are natural boundaries that generalise a circular contour from the pure R-R case.

However, the expressions in (3.3.5) are merely guesses at this point. Due to the complex
kinematics of the theory, it does not seem possible to solve the crossing equation directly
following the procedures developed for AdS5 or pure R-R AdS3 such as in [100]. However,
in addition to the crossing equations (3.3.1), we can use various consistency conditions to
construct the solution:

56



• general properties expected from the dressing phase described in 2.2.5;

• agreement of the possible solution with the pure R-R limit solution (2.3.84);

• agreement of the possible solution with the relativistic limit described in [118];

We have seen in the previous chapters how AdS5 solution, given in terms of the BES
phase [73], was modified with (χHL−χ−) term (2.3.78) to produce the solution for the dress-
ing factor of AdS3 with pure R-R [116]. This was then modified to account for parity with the
Cavaglia-Ekhammer term (2.3.81), which can be motivated by the fact that the original solu-
tion [116] had unphysical branch cuts. Following this approach, we had looked for a modifi-
cation of the ’guess’ solution (3.3.5) and tested many aspects of it, including consistency with
the crossing equation, pure R-R and relativistic limits, strong-coupling expansion, absence
of unphysical branch cuts and others.

The most useful of all was the strong-coupling expansion, which we consider in the next
section.

3.3.1 Strong-coupling expansion

As argued in section 2.2.5, one of the important properties of the dressing phase is the de-
composition in terms of local charges (2.2.68) (expansion in terms of powers of x and y).
This is expected to hold for general integrable spin chains [92], for strings in AdS5 [89], and
is expected to hold in AdS3.

To take this limit, we rescale the particle momenta p → p/h and take h → ∞. This
corresponds to taking large h and large Zhukovski variables x and y (so it is sometimes
called large x and y expansion).

In this section, we focus on the large x and y expansion of the massive Left-Left odd
dressing phase σ••

LL . This allows us to motivate the modification of the pure-R-R-inspired
guess (3.3.5).

It is known that the leading term in the expansion should be proportional to δr+1,s, while
the subleading term should reproduce the perturbative S-matrix (see [119] for a discussion
of the AdS3 case). In the current form, there is a problem with (3.3.5). As we will see later, it
does not have a valid large x and y expansion.

We start with a simplified analysis of (3.3.5). Up to some not important functions of x or
y only, the integral over the Left Scallion can be simplified to

�
SL

dz

4π

1

x− z
log(y − z) . (3.3.6)

The crucial difference compared to the pure R-R case is the integration over the Scallion
SL, which extends to infinity6. Upon inspection, we find that there are terms which do not
have a well-defined large x and y expansion. Not well-defined in this case means that apart
from the combination of powers of 1

x
and 1

y
(which are expected from the general form of the

expansion (2.2.68)), we get terms of the form x
y
. These terms also raise the question of the

overall convergence of the expansion, which will be dependent on the relative magnitude of
x and y.

6Such an infinite integration contour makes the integral divergent compared to the pure R-R case. However,
the divergent part of the expression can be regularised, and the resulting divergent terms depend solely on
either x or y, but not both. Consequently, they are cancelled in the full phase (2.3.68).
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One of the ways to produce a large x and y expansion is to first expand the integrand and
then separately integrate the terms of the resulting series. Ultimately, we want to consider
a large (but still finite) x and y expansion. In pure R-R, it was sufficient to expand the
integrand under this assumption and perform integration. However, in mixed flux, we need
to consider the contour which extends to complex infinity, which makes the analysis more
subtle.

For the analysis in this section, we assume that both x and y are fixed and located outside
the integration contour, such that we can deform it to the real line

� −∞+iϵ

s+iϵ
. Here s is the

endpoint of the contour SL on a real line which can be obtained from (3.1.6) by taking m = 0
and the limit p→ 0+

s =
k- +

√
h2 + k-2

h
. (3.3.7)

To expand the integrand, it is necessary to split the integration contour into three regions

• large z ⇒
∣∣x
z

∣∣ , ∣∣y
z

∣∣ < 1 ,

• small z ⇒
∣∣ z
x

∣∣ , ∣∣∣ zy ∣∣∣ < 1 ,

• intermediate z ⇒
∣∣x
z

∣∣ < 1,
∣∣y
z

∣∣ > 1 for |x| < |y| or
∣∣x
z

∣∣ > 1,
∣∣y
z

∣∣ < 1 for |x| > |y| .

For convenience, we define zx as a point on the integration contour SL where |z| = |x| and
zy as a point on the integration contour SL where |z| = |y|, which we will call intermediate
points. If |x| < |y|, we have

�
SL

dz
1

z − x
log(z − y) =

� zx

s

dz
−1

x

1

1− z/x
[log(−y) + log(1− z/y)] +

� zy

zx

dz
1

z

1

1− x/z
[log(−y) + log(1− z/y)]

+

� −Λ

zy

dz
1

z

1

1− x/z
[log(z) + log(1− y/z)] , (3.3.8)

where Λ is a regularisation parameter that we can take to infinity at the end.
First, we need to determine whether this expression depends on the intermediate points

zx and zy. It is unclear a priori, however, we do not expect this dependence to be present in
the final expression. For now, we discard the corresponding terms and investigate them in
the next section. Without these, we have

− log y
∞∑
n=0

zn+1

(n+ 1)xn+1
|...
s
+

∞∑
n=0,m=1

1

m(n+m+ 1)

zn+m+1

xn+1ym
|...
s

+ (log z)2 |−∞

...
+

∞∑
n=1

xn
[
− 1

n

log z

zn
|−∞

...
+

1

nzn+1
|−∞

...

]
+ y log z|−∞

...
+

∞∑
n=1

−1

n

y

zn
|−∞

...

+
∞∑

m=2

−1

m(m− 1)

ym

zm−1
|−∞

...
+

∞∑
n=1,m=2

−1

m(m+ n− 1)

xnym

zn+m−1
|−∞

...
(3.3.9)

where the first line comes from the first integral of (3.3.8), and the other two from the last one
of (3.3.8). Dotted points denote terms which depend on zx and zy and are to be considered
later.
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Second, we need to check the convergence of the expressions. The last two lines are
either 0 in the limit Λ → −∞, or diverge. The divergent terms are functions of only one of
the variables x or y and thus drop out in the full phase (2.3.68).

Finally, one can check that the first line of (3.3.9) reproduces a part of the large x and y
expansion of [116] if s = 1, as expected.

Intermediate points contributions

Let us now look at the contributions in the integral (3.3.8) from the intermediate points zx
and zy. There are two cases to consider: |x| > |y| or |x| < |y|. We will consider the case
|x| < |y| in detail and only state the results for the other case, as the derivation is very
similar.

In the integral (3.3.8), the following terms depend on zx or zy

Sinterm = − log(−y)
∞∑
n=1

zn

nxn
+

∞∑
n=1,m=1

1

m(n+m)

zn+m

xnym
|zx
...

+ log(−y) log(z − x)−
∞∑
n=0

∞∑
m=1

m̸=n

1

m(m− n)

(x
z

)n(z
y

)m

+ log(z) log(1− x

y
)|zy

zx

− 1

2
(log z)2 + log z log(z − x) +

∞∑
n=1

1

n2

(y
z

)n
−

∞∑
n=1

1

n2

(x
z

)n
+

∞∑
n=1,m=1

1

m(m+ n)

xnym

zn+m
|...
zy

(3.3.10)

where the dotted integration limits denote other parts of the expression that do not depend
on zx and zy.

We expect cancellations of the terms containing zx and zy to occur, but this is not obvious
at present. Computing these sums is non-trivial, so we differentiate the expressions under
the sum sign with respect to y and evaluate the sums. After that procedure, we find

∂ySinterm =
log(−x)− log(−y)

x− y
, (3.3.11)

which can be integrated back with respect to y (using identities for dilogarithm along the
way)

Sinterm = log

(
x− y

x

)
(log(−y)− log(−x))− Li2

(
x

y

)
− 1

6
π2 − 1

2
log

(
−x
y

)
. (3.3.12)

We see that all zx and zy dependent terms are cancelled. There could be other constants or
divergent terms dependent only on x or y, but these should also cancel at the level of the full
dressing phase.

There is one more caveat here. In the above, when we differentiate with respect to y, we
should also consider the y dependence of zy. This is equivalent to adding two new group of
terms: a z derivative of the second line of (3.3.10) (with a plus sign because of the zy in the
upper limit) and a z derivative third line of (3.3.10) (with a minus sign because of the zy in
the lower limit), both multiplied by dzy

dy
. It is easy to check that the resulting terms can be

re-summed and the result is zero (up to functions of either x or y only, which should cancel
in the full phase).
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Similar computations can be performed for the case |x| > |y|. The result will again be
independent of zx and zy, and the form of the expression will be the same up to a constant7.

Combining all parts of (3.3.8) and dropping all constants and divergent terms yields

�
SL

dz
1

z − x
log(z − y) = log y

∞∑
n=1

sn

nxn
−

∞∑
n,m=1

1

m(n+m)

sn+m

xnym︸ ︷︷ ︸
same as pure R-R if s = 1

− log(x) log(−y)− log

(
1− x

y

)
log

(
x

y

)
− Li2

(
x

y

)
, (3.3.13)

where the last line contains all terms (relevant in the full phase) arising from the intermediate
point contributions in (3.3.8).

The derivation presented above is complicated if one tries to generalise it to complex
contours and complex x and y. However, this is necessary if we want to work with the
dressing phase. To verify the validity of the results, we regularise the integral (3.3.8) by
introducing a cutoff and then check the expressions numerically.

Regularisation

Assuming that both x and y are fixed and located outside the integration contour, we can
deform it to the real line

� −∞+iϵ

s+iϵ
and introduce a cut-off Λ

� −Λ

s

dz
1

z − x
log(z − y) . (3.3.14)

We still need to evaluate the intermediate point contributions, so we demand Λ is large
but finite such that Λ > |x|, |y|. Our approach again relies on differentiating with respect to y
to evaluate the sums first and then integrating them back. Therefore, the results are derived
up to constants and functions of x or y only.

As a result, we do not obtain all the necessary terms and are forced to guess (by trial and
error numerically) the missing terms. The resulting expression is the following

� −Λ

s

dz
1

z − x
log(z − y) = S1 + S2 + S3 + S4 , (3.3.15)

where

S1 =
1

2
log Λ log Λ− log(−1) log Λ +

1

2
log(−1)2 + log Λ log

(
1− x

−Λ

)
− log(−1) log

(
1− x

−Λ

)
,

S2 = −Li2
( x

−Λ

)
+

∞∑
m,n=1

1

m(n+m)

(
x

−Λ

)n(
y

−Λ

)m

+ Li2

(
y

−Λ

)
,

7Some sums are convergent for |x| < |y|, but divergent for |x| < |y|. E.g.
∑∞

n=1
1
n

xn

yn = − log(1 − x
y ) is

well-defined for |x| < |y|, but not for |x| < |y|. Nevertheless, we still formally write the sum in the latter case
as − log(1− x

y ) to demonstrate that the result has the same form.
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S3 = +

(
− log(−y) log(1− s/x)−

∞∑
m,n=1

1

m(n+m)

sn+m

xnym

)
,

S4 = π2/6 + 1/2 log(−y)2 − log(−x) log(−y) + log(1− x/y) log(−y)
− log(1− x/y) log(−x)− Li2(x/y) .

The terms grouped into S1 diverge in the Λ → ∞ limit. However, all of them are func-
tions of either x or y only or reduced to these in the Λ → ∞ limit. By requiring the solution
to be evaluated in the principal value prescription, we can make these cancel between χ’s
in the full θ (2.3.68). The terms grouped into S2 vanish in the Λ → ∞ limit and can be dis-
carded. The terms grouped into S3 are part of the large x and y expansion, and reduce to
the known pure R-R large x and y expansion in the limit s → 1. The terms grouped into S4,
which are intermediate point contribution terms, are equivalent to those in the second line
of (3.3.13), up to terms irrelevant in the full phase θ.

Numerical checks were performed in multiple ways, evaluating x or y derivatives of the
expressions to obtain missing terms. We compared expression in terms of sums, complex
contour integrals and integrals with contours deformed to the real line. To compute the
contour integrals numerically, we used the NIntegrate function in Wolfram Mathematica.

Overall, the numerical tests show good agreement between the expressions, matching
almost everywhere up to 10−10 when restricted to the first 40 terms in the sums. Figures 3.6
and 3.5 demonstrate the difference between expressions when compared in different ways8.
For the region inside the contour, one should compare analytically continued expressions.

Figure 3.5: The difference between the numerical integral over SL contour and its expansion where x
varied in the complex plane and y fixed. The real part is shown in orange, the complex part is shown
in blue.

One should be careful with the branch cuts of log terms. In particular, terms like the
difference of two logarithms can sometimes be valid for x and y in the upper or lower half
plane only. For other regions, we need to add i, −i between the logarithms

log(a(s− x))− log(a(s− y)) , (3.3.16)

where a can be −1,i or −i. The choice of a is dictated by the requirement of the absence of the
log cut in the desired region for x and y. The way to achieve that is to rotate the log-branch
cut (by choosing a) and make sure that arg(x)− arg(y) never crosses the log cut when x or y
is varied in the desired region.

8The exception is the region of x (analogously for y) close to zero, depicted in 3.6(c), where the large
Zhukovski expansion in x and y is no longer valid.
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(a) y(q) fixed with q = 2π/3 and
x(p) is varied along the m = 1
Zhukovski contour.

(b) x(p),y(q) varied on m = 1
Zhukovskis.

(c) x varied in the complex plane
and y(q) fixed at q = π/3,m = 2.

Figure 3.6: The difference between the large x/y expansion and the corresponding linear contour.
The real part is depicted in orange, and the complex part in blue.

3.3.2 Modification of the mixed-flux solution.

Once we understood the problem with the strong-coupling expansion, we can cure the issue
with the strong-coupling expansion by subtracting the unwanted terms in S4 above

χodd
LL (x, y) = +

�
SL+KL

dz

2π

log(y − z)

x− z
+

1

4π
log

x+ s

x− s−1

(
log(y + s−1) + log(y − s)

)
+2

1

2π

(
log(−x) log(−y) + log

(
1− x

y

)
log

(
x

y

)
+ Li2

(
x

y

))
,

(3.3.17)

where the last line has a factor of 2, as the same term comes from SL from both x+ and x−

parts. We assume that all expressions written in terms of integrals over the Left or the Right
Scallion SL/R and Kidney KL/R are valid for momenta in the region outside the Left and Right
Kidneys.

The above expression can be rewritten in a more concise form. First, we can transform
the present integration contours using the relations

�
SL

+

�
KL

→ 2

� −1/s

s

−2

� 0

−∞
for χLL ,

�
SR

+

�
KR

→ 2

� −s

1/s

−2

� ∞

0

for χRL ,

(3.3.18)

where the contours on the right are deformed to be placed on the real line. Second, we can
rewrite the subtracted terms in (3.3.17) using the identity

� 0

−∞
dz

log(y − z)

x− z
= log(−x) log(−y) + log

(
1− x

y

)
log

(
x

y

)
+ Li2

(
x

y

)
. (3.3.19)

Combining the two together, we rewrite (3.3.17)

χodd
LL (x, y) = +

� −1/s

s

dz

2π

log(y − z)

x− z

+
1

4π
log

x+ s

x− s−1

(
log(y + s−1) + log(y − s)

)
.

(3.3.20)
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Similar process can be performed for χodd
RL

χodd
RL (x, y) = −

� −s

1/s

dz

2π

log(y − z)
1
x
− z

− 1

4π
log

x+ s

x− s−1

(
log(y + s−1) + log(y − s)

)
− i

2
sign(Im x) log

(
y − 1

x

)
.

(3.3.21)

The only procedural difference for χodd
RL is the inclusion of the term on the last line arising

from the pole at 1/x during the deformation of the Scallion and Kidney contours to the real
line.

Finally, expressions for χodd
LR and χodd

RR can be obtained from those above using LR sym-
metry. All of these expressions are valid for momenta in the region outside the left and right
kidneys, that is, for pL ∈ (0, 2π) and pR ∈ (−2π, 0).

We can now check that the large x and y expansions of the above have the desired prop-
erties, namely, they contain only terms with inverse powers of x and y as intended
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∞∑
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∞∑
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+ (−1)ns−n−m − (−1)msn+m

]
,

(3.3.22)

where we omitted terms which are irrelevant in the full phase. For χRL, we first deformed the
[1/s,−s] integration contour to a semicircular one, depicted in Figure 3.7, which is outside
the Right Kidney. This allowed us to eliminate the term proportional to sign(Im x) and take
large x and y limits safely.

Figure 3.7: Mixed-flux odd dressing phase contours.

We shall now look back at the rest properties outlined in Section 3.3 and ensure that they
are satisfied for (3.3.20) and (3.3.21).

• Agreement with pure R-R solution can be established by comparing the large x and y
expansions (2.3.85) and (3.3.22) and taking the s→ 1 limit in the latter.
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• Relativistic limit studied in [118] can be obtained by taking the limit h → 0 and ex-
panding the momentum around

pL = −2πm

k
+ ϵ(h) sinh θ , pR =

2πm

k
+ ϵ(h) sinh θ ,

where ϵ = 4πh
k

∣∣sin (mπ
k

)∣∣ and θ is the rapidity parameter.

To check the agreement of (3.3.20) and (3.3.21) with the relativistic limit [118], it is
necessary to continue left momenta to (−2π, 0) region and right momenta to (0, 2π)
region. Then, assuming that the even phase trivialises in the relativistic limit, it is
possible to match the analytical expressions for the derivative of the relativistic dress-
ing phases with respect to the rapidity parameter θ of [118] (written in terms of the
Barnes G-function) and the same θ derivative of our proposal. Alternatively, it is easy
to compare both expressions numerically, similar to what we did in Section 3.3.1. In
fact, it is the intermediate point contribution terms that are matched with the expres-
sions of [118] while the rest is either cancelled in the full phase θ or trivialised in the
relativistic limit.

• Similarly, our odd dressing phase can be matched numerically to the odd part of the
phase of [120] (published shortly after our work [29]), where a full solution was pro-
posed. Their solution was formulated as a deformation of the DHM-type integral for
the even part and as a generalisation of the Barnes-G-function expression from [118]
for the odd part.

• A property found for the pure R-R QSC [121], which is expected to hold for the mixed
flux as well, is an absence of the monodromy around infinity. In our case, it is the
property of the solution that if one completes a circle in the x-plane far enough from
the origin (avoiding any cuts), one should not change the solution. The final form of
the odd dressing phase (3.3.20) and (3.3.21) is formulated in terms of the finite contour
integral. Additionally, the non-integral term cancels the branch cuts that would be
present in the expression without it. Therefore, our solution satisfies the absence of the
monodromy property.

Finally, it is easy to check that the phases (3.3.20) and (3.3.21) solve the odd part of the
crossing equations (3.3.3) and (3.3.4). For example, we simply pick up a Sokhotski–Plemelj
term when crossing the integration contours (figure 3.7) from outside the Scallion to inside
the Kidney.

3.4 Summary and Outlook

In this chapter, we have focused on the S-matrix massive sector of AdS3 × S3 × T4 with a
mixed R-R and NS-NS flux. Using the results for the pure R-R case from Section 2.3, we
demonstrated how the representation of the su(1|1)2c.e. algebra should be deformed in the
mixed-flux case. This led to very different kinematics with non-periodic momenta for the
excitations and an infinite number of sheets for the Zhukovski variables.

Such a kinematical structure makes finding dressing factors distinct from the AdS5 and
AdS3 pure R-R cases. We analysed the structure of Zhukovski sheets to define the crossing
procedure. Then, starting from the ansatz inspired by the pure R-R solution and using the
requirements of a well-behaved strong-coupling expansion, we constructed the solution for
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the odd part of the massive dressing phase for mixed flux. The resulting solution agrees
with the known solutions in the pure R-R and relativistic limits.

The dressing phase solution for the odd part of the massive dressing factor we obtained
agrees with the odd part of the solution presented in [120], [122] published later. However,
there are several points for disagreement for with our work. First, kinematics, in particular
the identification of the physical region, is noticeably different. Second, a CDD factor re-
quired for the fusion procedure proposed in our [29] (not discussed here) is rejected in [122].
Thirdly, the final form of the solution in [122] does not have the absence of monodromy
property discussed above. All of them require further investigation.

Once the full solution for massive modes is found, the next step is to find the dressing
phases for the massless modes, which were also proposed recently [123].

When the full dressing factor is known, one can use the resulting S-matrix to understand
the spectrum of the theory using techniques such as the Thermodynamic Bethe Ansatz [84]
or Quantum Spectral Curve (QSC) [86]. While the TBA was constructed [123], the QSC
remains to be derived.

The mixed flux strings in AdS3 should interpolate between two very different regimes
of string theory, having a WZW description for the pure NS-NS and an RNS description for
pure R-R limits, and thus have the potential to bridge the gap between the two descriptions.

Another interesting research direction is the study of the k = 1 and small h limits, where
it is possible to compare with the results of [47], [48], [51] to better understand the dual
symmetric-product orbifold CFT of T4. Furthermore, the generalisation of the considered
integrability approach to other AdS3 backgrounds might be possible. These include a long-
known AdS3 × S3 × S3 × S1 background and more recent cases of integrable deformations of
AdS3 × S3 × T49.

9See [124] for a recent review.
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Chapter 4

Machine Learning and Optimisation
Methods

The rapid growth in computational power over the last few decades has made many
resource-intensive statistical methods practical for implementation. This has allowed the
development and application of a diverse set of techniques known as Machine Learning (ML).

Machine Learning is a subfield of artificial intelligence (AI) that enables computers to learn
from data and improve their performance over time. More intuitively, learning can be de-
scribed as a process of fitting a mathematical model to the observed data.

ML methods have proven to be effective across a diverse range of fields. Within mathe-
matics and mathematical physics research, a growing number of ML techniques have re-
cently appeared, yet many opportunities for new applications and insights remain. An
overview of the potential of ML in theoretical sciences can be found in [125]. Furthermore,
reviews [126], [127] illustrate how AI can be used to discover patterns and relationships
between mathematical objects, leading to new structures, conjectures, and theorems. An-
other significant ML application, situated between geometry and mathematical physics, is
the study of the string theory landscape. This field adopted the application of ML first and
continues to see active development [128].

The following chapters of the thesis explore the application of ML to complex problems
in combinatorics, where, on the one hand, vast search spaces make traditional approaches
less effective or intractable, but on the other hand, make the application of ML possible.
In this chapter, we review some ML and optimisation techniques that will be subsequently
applied to two specific challenges: first, the analysis and classification of Coxeter invariants
of Clifford algebras, and second, the search for new champion generalised toric codes.

4.1 Genetic Algorithms

Genetic Algorithms (GA) are stochastic optimisation algorithms developed in the
1950s [129], [130], and later formalised in [131], [132]. This method is still in active use,
and a review of modern techniques can be found in [133]. It is an optimisation and search
algorithm that uses biologically inspired operations, such as selection, crossover, and muta-
tion, which conceptually imitate the corresponding processes in nature.

The overall goal is to find a maximum x0 of a function f(x) defined on a spaceX . In many
practical problems, this is almost impossible because of features such as combinatorially
large search spaces or non-convexity of the function f . However, a near-optimal solution x
is often sufficient in practice. To perform the search, one assumes that there exists a space
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of strings S and an injective map c : X → S (encoding function). An inverse map c−1 :
S → X (decoding function) can be defined, but it does not necessarily need to be injective,
as multiple strings can sometimes decode to the same solution.

In this setting, a string s is referred to as an individual, and the corresponding x = c−1(s)
is a candidate solution. Map c encodes a candidate solution as a string of characters (genes)
from a finite alphabet, and c−1 performs the inverse transformation. Function f is called a
fitness function and maps a solution to a fitness score, indicating the quality of the solution.

The GA is initialised by creating an initial population P0 of size npop often drawn ran-
domly. The initial population is iteratively updated Pi → Pi+1, for i = 0, 1, ..., ngen − 1, using
the evolutionary process (described below).

The process is terminated when a specified criterion is met or the maximum number of
iterations (sometimes referred to as generations) ngen is completed.

The evolutionary process Pi → Pi+1 consists of the following procedures:

• Selection: select individuals for reproduction from Pi;

• Crossover: create offspring from selected individuals;

• Mutation: randomly change some individuals;

Selection is a mechanism for selecting individuals (strings) for reproduction according to
their fitness (objective function value). Usually, a probability function is defined for selecting
individuals. The outcome of the selection should be random, however, individuals with a
high fitness score are more likely to be selected. It is common to draw npop parents from the
population, which are then randomly paired for further crossover1. This selection process
is typically performed with replacement so that an individual can be selected several times
and paired with several other individuals. Further details of the selection process depend
on the exact approach used.

Crossover is a procedure of combining two selected individuals (parents) into two new
individuals (offspring). Most often, this is performed by exchanging the subparts of the
strings of the parents. For each pair selected at the selection stage, a pair of offspring is
created, resulting in npop individuals which form a temporary population P̃i+1.

Mutation is a way to diversify the resulting population by randomly changing some
genes in individuals. A common strategy is to consider all genes in P̃i+1 independently to
have some probability r of being altered. The resulting population forms the next generation
Pi+1.

A modification, which we will see used later, called elitism, can be added to ensure that
the best solution quality does not decrease throughout the evolution process. When this
modification is used, some number nelite of individuals are carried over directly to the next
generation, while the remaining npop − nelite members of the new generation are formed by
applying selection, crossover, and mutation steps to the parent population Pi.

In Chapter 6, we will use a GA in conjunction with a neural network model to search
for champion toric codes. The next section defines the neural network and reviews other
relevant concepts.

1Assuming two offsprings per a pair of parents.
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4.2 Machine Learning

In this section, we review the relevant concepts from the vast field of Machine Learning. For
a general introduction to the subject, standard textbooks can be used [134], [135], or a more
concise introduction to ML for physicists can be found in [136].

In contrast to GA, which is a general search algorithm, ML focuses on the different task
of fitting mathematical models to observed data. It can be categorised into Supervised,
Unsupervised, and Reinforcement learning, depending on the type of data available.

Supervised learning operates on labelled data, which contains both the input x and out-
put y we expect the model to learn. The task is to learn a mapping f : x → y or a probability
distribution p(y|x) (if x and y are treated as random variables). This type of learning can be
subdivided into two primary tasks: classification, which involves predicting a discrete label,
and regression, which involves predicting continuous values. One or the other is chosen de-
pending on the nature of y. Feedforward neural networks and recurrent neural networks
are two prominent examples of supervised ML algorithms.

Unsupervised learning operates on unlabelled data where the objective is to discover
patterns and relationships within the data. Common goals include clustering (grouping
data) and dimensionality reduction (finding a more compact representation of the data).
Principal Component Analysis (PCA) is an example of the latter.

Reinforcement learning works with data in the form of feedback, such as rewards and
penalties generated by an environment. In this case, the goal of the ML model is to learn the
optimal actions to maximise rewards and minimise penalties in the long term. The learned
mapping from a state s in the set of states S to an action a in the action space A is known as
a policy and is usually denoted as π(a|s). This last type of learning will not be used in the
present study.

We now proceed to review the relevant supervised and unsupervised learning tech-
niques which will be encountered in the subsequent sections.

4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised ML technique, a linear dimensional-
ity reduction method. This is achieved by learning the orthogonal linear transformation of
data, where it is possible to find high-variance directions, which in most cases represent the
most relevant information in the data.

Consider a set of points x⃗(i) ∈ RN , i = 1 . . . ,M , which can be written as a matrix x ∈
RM×N . Without loss of generality, we can assume that they have a zero empirical mean∑M

i=1 x⃗
(i)/M = 0.

The sample covariance matrix associated with x is

Var[x] =
1

M − 1
xTx . (4.2.1)

Then, we can find a representation of the data c = DTx, such that Var[c] is diagonal, and find
directions associated with the highest variance.

This task is usually performed using Singular Value Decomposition (SVD). Recall that
a real matrix x can be decomposed into UΣW T , where U ∈ RM×M and W ∈ RN×N are
orthogonal matrices, Σ ∈ RM×N is a rectangular diagonal matrix with non-negative numbers
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Figure 4.1: An example of application of PCA to two-dimensional data. Red arrows denote two
principal directions.

on the diagonal. Then

Var[x] =
1

M − 1
xTx =

1

M − 1

(
UΣW T

)T
UΣW T = (4.2.2)

W

(
Σ2

M − 1

)
W T = WΛW T , (4.2.3)

where Λ is a diagonal matrix with eigenvalues λi. From here, we can see that the right
singular vectors of x (i.e. the columns of W ) are the principal directions of Var(x), while the
singular values of x are related to the non-zero elements si of matrix Σ as λi = s2i /(M − 1).

Figure 4.1 depicts the result of applying PCA to two-dimensional data described by a
skewed Gaussian distribution. Direction 1 is the principal direction with the largest vari-
ance, whereas direction 2 has a smaller variance and is thus less important.

To reduce the dimensionality of the data from N to N ′ < N , we can construct a matrix
W ′ by selecting the principal components (columns of W ) corresponding to the N ′ largest
singular values λi. Matrix W′ can be thought of as performing the encoding of data x′ = xW’.
The inverse transformation should be given by x ≃ x′W′T . The approximate equivalence
sign indicates that the decoding is not exact.

One can consider a reconstruction function r(x) = xW’W’T . It can be shown that the
encoding matrix W’ can also be chosen by minimising the reconstruction error measured by
the Frobenius norm

D∗ = argmin
D

√∑
i,j

(
x
(i)
j − r(x(i))j

)
, subject to DTD = I. (4.2.4)

4.2.2 Neural Networks

A neural network (NN) is a versatile computational model used in all three subfields of ML
problems. It consists of connected nodes called neurones, which loosely model the brain’s
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neurones. It can be represented as a function that maps an input x⃗ ∈ Rdin to an output
y⃗ ∈ Rdout , where din and dout are the dimensions of the input and output, respectively. We
denote the components of x⃗ as xi, i = 1, . . . , din, and the components of y⃗ as yj, j = 1, . . . , dout.

The building block of an NN is a neuron. It is a function that takes an input x⃗, which
is acted upon linearly by a vector of weights W⃗ and a bias b. The resulting number is then
passed to a non-linear ‘activation’ function σ, producing the neuron output

z = σ
(
W⃗ · x⃗+ b

)
, (4.2.5)

In practical applications, σ is commonly chosen to be hyperbolic tangent (tanh) or ReLU

σReLU(x) = max(0, x) , σtanh(x) = tanh(x) , (4.2.6)

in regression tasks, while sigmoid and softmax

σsoftmax(x)i =
exp(xi)∑
j exp(xj)

, σsigm(x) =
1

1 + exp(−x)
, (4.2.7)

are frequent in classification problems. It is important to distinguish that sigmoid, tanh, or
ReLU are applied element-wise, whereas softmax operates on an entire vector.

An individual neuron is a function from Rdin to R. Neurons can be arranged into a layer
such that the output of each neuron in the layer gives a component of the output vector y⃗.
This can be written in matrix notation if we collect the weight vectors of all the neurons W⃗
into a matrix W and the bias terms into a vector of biases b⃗. Then

z⃗ = σ
(
Wx⃗+ b⃗

)
. (4.2.8)

These layers can be stacked by treating the output of the previous layer as the input for the
next layer. That is, the input vector x⃗ is passed to each neuron in the first layer (called the
input layer), then the output of each neuron at the first layer is combined into the vector h⃗(1)

which is passed to the second layer and so on until the final layer (called the output layer)
produces the output.

Let us denote the parameters of kth out of nl neurons in layer l as W(l) and b⃗(l), let the
input be x⃗ = h⃗(0) and the output be y⃗ = h⃗

(L)
i . Then, for the layers l = 1, . . . , L

h⃗(l) = σ
(
W(l)h⃗(l−1) + b⃗(l)

)
. (4.2.9)

In other words, the transformation performed by the NN on the input is equivalent to the
iterative application of the same function (with different parameters W and b⃗) many times.

There is a lot of flexibility in this construction as one can vary the input x⃗ and output
y⃗ dimensions, the number of layers in between the input and output layer (such layers are
called hidden layers), and many choices for the functions σ can be made. Values W(l) and
b⃗(l) are parameters of the NN that define what function it represents. In the following, we
will collectively denote the parameters {W(l), b⃗(l) for l = 1, . . . , L} of the NN as θ, and the
function that the NN approximates as f , so we can write the action as

y⃗ = f(x⃗; θ) . (4.2.10)

Figure 4.2 depicts an example of a simple neural network, a feed-forward neural network
(FFNN), also known as a multi-layer perceptron (MLP). Each circle in the input layer denotes
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a component of an input vector xi = (x1, x2), which is taken to produce values fed into the
i-th neuron in the hidden layer

h⃗ = σ
(
W(1)x⃗+ b⃗(1)

)
. (4.2.11)

After that, h⃗ is used to compute the output

y⃗ = σ
(
W(2)h⃗+ b⃗(2)

)
. (4.2.12)

Figure 4.2: Scheme of a one hidden layer neural network.

NNs are one of the most powerful tools for supervised, unsupervised, and reinforcement
learning problems. They can capture complex nonlinear dependencies, which is ensured by
their versatility as universal approximations. The latter is an exact mathematical statement –
a width version of the universal approximation theorem, that proves that for any continuous
function, there exists a network with one hidden layer that can approximate any continuous
function on a compact subset of Rn to arbitrary accuracy [137], [138]2. However, finding the
parameters of an NN which will fit a given taks is nontrivial. We will discuss this in the case
of supervised learning problems in the next section.

4.2.3 Loss Function and Training

The training dataset in supervised learning consists of some number N input/output pairs
{x(i), y(i) for i = 1, . . . , N}. Here, x(i) and y(i) may be vectors or scalars, depending on the
problem. To quantify how well the NN approximates the relationship between the input
and output data, one can introduce the loss function L(θ). Typically, a lower loss indicates
a better approximation. One of the most popular loss functions for regression tasks is Mean
Squared Error (MSE) loss

L(θ) =
1

N

N∑
i=1

(
f(x(i); θ)− y(i)

)2
, (4.2.13)

2There is also a depth version of the universal approximation theorem stating that there exists a network
with ReLU activation functions and at least Di+4 hidden units in each layer that can approximate any specified
Di-dimensional Lebesgue integrable function to arbitrary accuracy if it has enough hidden layers.
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while in (binary) classification tasks (y(i) ∈ {0, 1}) binary cross-entropy loss is common

L(θ) =
N∑
i=1

[
−(1− y(i)) log

(
1− σsigm(f(x

(i); θ))
)

−y(i) log
(
σsigm(f(x

(i); θ))
)]
. (4.2.14)

Both functions above, along with most others used in practice, have a minimum reaching
which would indicate that the model learned the dataset perfectly.

Initially, the parameters of the network are initialised with random numbers sampled
from uniform or normal distributions. Then, by gradually changing the parameters of the
model according to some optimisation algorithm, the loss is decreased. This process is
termed model fitting, training, and learning.

The goal of an optimisation algorithm is to find the parameters θ that minimise the loss:

θ̂ = argminL(θ) . (4.2.15)

There are many families of optimisation algorithms, but most are based on the concept
of gradient descent (GD). The idea is to iteratively update the parameters using the derivative
of the loss function

θnew = θ − η
∂L

∂θ
, (4.2.16)

where η is the parameter called the learning rate, which defines how fast we change the
model’s parameters. However, there is no practical way to choose it for a particular problem
analytically and Therefore, it must be selected empirically through a random or grid search.

The sizes of modern datasets are so large that it becomes computationally expensive to
compute the full loss function. One of the simplest modifications of GD is the stochastic
gradient descent (SGD). The idea is to use only a small random fraction, called a batch, of data
entries at each training step in the sum of the loss function

θt+1 = θt − η
∂Lbatch

∂θt
. (4.2.17)

Each batch is obtained by randomly sampling from the full training dataset without replace-
ment, so that the dataset is split into groups of data points (batches) that do not overlap. One
full pass through the entire training dataset is referred to as epoch. Once all the batches are
used once during one epoch, they might be re-sampled to be used during the next epoch.

Another difficulty is that the loss functions for most nonlinear models are non-convex.
For instance, there might be numerous local minima to which the optimisation algorithm
can be attracted. Alternatively, the loss function may have saddle points, which can signifi-
cantly slow down the optimisation process. This motivates a modification of the stochastic
gradient descent called the stochastic gradient descent with momentum (SGDM) [139], [140].
This method updates the parameters with a weighted combination of the gradient com-
puted from the current batch and an exponentially decaying moving average of the past
gradients as follows:

mt+1 = β ·mt + (1− β)
∂Lbatch

∂θt
, (4.2.18)

θt+1 = θt − η ·mt+1 , (4.2.19)
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where β controls the degree to which the gradient is smoothed over time, and mt is the term
that accumulates past gradients.

Modern optimisation algorithms such as AdaGrad, RMSProp, Adam and AdamW im-
plement SGDM, as well as other techniques such as an adaptive learning rate and weight
decay. Although there is no universal method that works best for all tasks, AdamW [141] is
considered the standard, and we will mostly employ it in the experiments.

To approximate more complicated functions, the number of parameters can be increased
by adding more hidden layers, increasing the depth of the network, or by increasing the
number of neurons in the hidden layers, increasing the width of the network. In practice,
moderately deep networks have an advantage in representation efficiency over shallow net-
works [142]. That is, deeper networks can model more complicated relations while having
the same or fewer numbers of parameters compared to ’shallow’ networks. However, as
we make the network deeper, that is, add more hidden layers, training becomes more dif-
ficult, and problems such as dying/exploding gradients, overfitting, and others arise. To
mitigate these issues, more complicated architectures than FFNNs are used. Examples in-
clude Convolutional Neural Networks (CNNs) for image and spatial data and Recurrent
Neural Networks (RNNs) for sequential data (e.g. time series). The latter is relevant to this
discussion and is described later.

4.2.4 Sequence Modelling

A particular type of data used in supervised learning is sequential data. It consists of an or-
dered sequence of input/output pairs xt, yt, t ∈ [0, N ]. An example of such a sequence could
be stock market prices in dollars at various moments in time t, which could be predicted in
the future.

A sequence model in ML is a model which can work with sequential data, such as audio
and text. Depending on the number of input and output elements, one can distinguish
many-to-many, many-to-one, one-to-many, and other types of models.

One of the simplest approaches to handling sequential data is Recurrent Neural Network
(RNN). Unlike a feed-forward network, it maintains a hidden state that is passed forward
through time, allowing it to “remember” information from previous time steps. Formally,
at each time step t, the hidden state ht depends on the current input xt as well as the previ-
ous hidden state ht−1. The simplest realisation of this idea is the (Elman) Recurrent Neural
Network (RNN). Given a sequence of inputs (x1, .., xT ), it computes an auxiliary sequence
h1, ..hT of hidden states

ht = σ
(
W ihxt +W hhht−1

)
, (4.2.20)

which is then used to produce an output yt

yt = W hoht , (4.2.21)

for a many-to-many form, or
y =W hohT , (4.2.22)

in a many-to-one form. Here, ht is the hidden state at step t, andW ih,W hh,W ho are the input-
to-hidden, hidden-to-hidden, and hidden-to-output weight matrices, respectively. This re-
cursive use of the hidden state provides RNNs with the ability to capture sequential patterns
in data.

However, this architecture has poor performance when used with long sequences. The
repeated multiplication of the same weight matrix W hh many times to process an output
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yt causes gradients to vanish or explode during backpropagation, which hinders the ability
of the network to learn long-term dependencies. To address such gradient issues, a spe-
cial type of RNN, Long-Short Term Memory (LSTM) [143], was proposed. LSTMs capture
longer dependencies more effectively by introducing a cell state that can carry information
over many time steps with minimal modifications via three gates: the forget gate, which
determines what information is no longer relevant and should be discarded; the input gate,
which selects which new information will be added to the cell state; and the output gate,
which determines the part of the cell state that is propagated to the hidden state. Figure 4.3
shows a schematic representation of the LSTM.

Figure 4.3: Structural scheme of LSTM cell where Xt: input at time step t, ht: output, Ct: cell state.
Operations inside circles are pointwise.

LSTMs have been successfully applied in language modelling and machine transla-
tion [144], [145], [146]. However, the sequential approach to data processing is a major
limitation in terms of processing time. Moreover, despite significant improvements over
RNNs, LSTMs still have the same issues with gradients, but now with longer sequences.
This eventually led to the development of another technique, Transformers, which we dis-
cuss in the next section.

4.2.5 Transformers

One of the most powerful architectures currently available in ML is the Transformer archi-
tecture[147], which is the state-of-the-art approach for sequence modelling tasks used in
Natural Language Processing (NLP) tasks such as chatbots [148], sentiment analysis [149]
and others.

The key component of the transformer architecture is the attention mechanism. It was
originally proposed [145] to improve RNN on language translation of long sentences, and
only later it was realised that attention can be used on its own [147].

We shall now discuss the main elements of the Transformer when it is used in NLP tasks,
which will be generalised later to other tasks.

Attention

A self-attention block3, which we will denote sa(...), takes a sequence of N inputs x⃗1, ..., x⃗N ,
and outputs N vectors of the same size. Its action can be divided into several parts.

3A version of attention we describe is called self-attention. A modification of it called cross-attention, in
which queries (to be described below) are computed using another sequence. We will not consider it in this
work.
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First, a set of values, queries, and keys are computed for each input using a linear transfor-
mation

v⃗m = Wvx⃗m + b⃗v , (4.2.23)

q⃗m = Wqx⃗m + b⃗q , (4.2.24)

k⃗m = Wkx⃗m + b⃗k , (4.2.25)

where {Wv, b⃗v}, {Wq, b⃗q}, {Wk, b⃗k} are the weight matrix and bias vector for values, queries
and keys, respectively, which are the same for all inputs.

To produce an output, a weighted sum of the value vectors v⃗1, ..., v⃗N is computed. The
nth output of the attention layer is

san(x⃗1, ..., x⃗N) =
N∑

m=1

a(x⃗m, x⃗n)v⃗m , (4.2.26)

where a(x⃗m, x⃗n) is a scalar factor which depends on the inputs x⃗m and x⃗n. These factors sum
to one and represent the relative importance of the input vector x⃗m to x⃗n, or vice versa.

Finally, the computation of the factors a(x⃗m, x⃗n) is done by computing a dot product
between the query and key, and the results is passed through a softmax function

a(x⃗m, x⃗n) = softmax′(k⃗Tmq⃗n) = (4.2.27)

exp
(
k⃗Tmq⃗n

)∑N
m′=1 exp

(
k⃗Tmq⃗n

) , (4.2.28)

where softmax′ is computed only along the dimension denoted by index m, which is explic-
itly written in the second line of (4.2.27). The coefficients a(x⃗•, x⃗n) can be interpreted as the
relative similarities between the nth query and all keys, and we will refer to them as attention
weights.

Assuming that the input vectors x⃗n have dimension din, we can group them into din ×N
matrix x. Doing the same for values, queries and keys, we get v, q and k, which can be used
to write down the action of the attention layer as

Sa(x) = V (x) · softmax′(k[x]Tq[x]
)
. (4.2.29)

In this formula, we explicitly include the dependence of the values, queries, and keys on the
input x, which makes it clear that the output is a non-linear function of the inputs despite
the absence of non-linear activation.

Thus, the attention mechanism allows the exchange of information between elements of
the sequence, allowing the output tokens in different parts of the sequence to be dependent
on each other.

Compared to the original realisation, modern versions have several modifications:

• The dot products in the attention are scaled by the factor of 1/
√
Dq, where Dq is the

dimension of queries and keys such that

Sa(x) = V (x) · softmax′(k[x]Tq[x]√
Dq

)
. (4.2.30)

This is done to scale the product so that it has a unit standard deviation, assuming that
the queries and keys also have a unit standard deviation.
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• In the original formulation (4.2.29), no information about the position of the input
element x⃗n is preserved. To bring this information back, a matrix Π is added to x.
Matrix Π can be chosen manually or learned during training. A version that we will
see used later is sinusoidal positional encoding [147]. Matrix Π has the same dimensions
as x and have the following components

Π2i,p = sin
( p

100002i/din

)
, (4.2.31)

Π2i+1,p = cos
( p

100002i/din

)
. (4.2.32)

• Usually, multiple self-attention mechanisms are applied in parallel. This is called multi-
head self-attention. Each head h out of H heads has its own set of weights and biases to
compute the value, query, and key, which are then combined using (4.2.29) to produce
Sah(x). They are concatenated into the attention layer output Sa(x) in the end.

Transformer mechanism

The attention layer is only one part of the transformer mechanism suggested in [147]. The
actual model contains a multi-head self-attention layer, followed by a fully connected NN.
The intuition is that after the important information is extracted in the self-attention layer, it
should be further transformed in a task-specific way by an NN.

In addition, there are two more components used to make the training of the transformer
more robust

• To keep the gradients during backpropagation finite, after both the attention layer and
a following NN, a layer normalisation (LayerNorm) is applied. It computes the empiri-
cal mean m and the standard deviation s of the output sequence, which are then used
to rescale and shift the output h

h→ h′ =
h−m

s+ ϵ
, (4.2.33)

where ϵ is a small constant that prevents division by zero. Then, the normalised se-
quence is rescaled using two learnable parameters γ and δ

h′ → γh′ + δ . (4.2.34)

• LayerNorm alone is not enough for stable training of deep networks. Another com-
mon technique is residual or skip connections [150]. It is achieved by adding the input to
each network layer f(. . . ) back to the output

hn+1 = hn + fn(hn) . (4.2.35)

That way, the output of the network changes the input additively

Xn = Xn−1 + Fn−1(Xn−1) = (4.2.36)

= X1 +
n−1∑
k=1

Fk(Xk) , (4.2.37)

therefore, even if some layers have vanishing gradients, the entire network training
will not be spoiled.
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Tokenisation

Working with text data requires first transforming it into a form suitable for mathematical
operations. This can be done by splitting it into small pieces, which can be anything from
individual letters to words that form a vocabulary. Each item in the vocabulary is assigned a
number-position in the vocabulary. This process is called tokenisation, and the chosen build-
ing blocks of the text are referred to as tokens.

It was found that the most efficient way to tokenise text is to use sub-word size groups of
letters, which can sometimes be identified with linguistic morphemes. This way, the size of
the vocabulary is reduced compared to using the whole words as tokens, while these larger
chunks of words carry more information than individual letters.

Embeddings

Tokens naturally have structure in the sense that they carry some meaning as parts of the
words and also have some notion of closeness, as some of them might be related via con-
cepts. Therefore, their representation in terms of a single number is not useful.

One way to introduce more structure into the representation of tokens is to map the
elements of the input sequence to vectors called embeddings. Such representation allows us
to use concepts from vector algebra, such as dot product, orthogonality, or projection to
operate with the tokens. For example, the closeness of token meaning can be measured by
the dot product.

Pooling layer

In the standard transformer architecture, the number of elements in the output sequence is
equal to the number of elements in the input sequence. However, for classification tasks,
a single fixed-size output vector is required for each sequence. This can be considered as
eliminating the time dimension T from the output, which can be achieved by a pooling layer.
There are many variants in the literature, but the simplest are as follows:

• BERT-like pooling – introduce the special classification token [CLS] in the input, and
then use the output at [CLS] for classification,

• average pooling – simply take the average of all outputs along the T dimension and
use for classification,

• attention pooling – applying an attention mechanism to compute a weighted sum of
sequence elements.

It was shown [151] that the latter two are somewhat better than the first approach and thus
will be used later in this work.

Output

Before the output, there is usually a linear classification layer that projects from the embed-
ding space to the output vector. Subsequently, a softmax function is applied to produce the
probabilities of classes p⃗, which are used to sample the output tokens.
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Loss functions

Because the output should be a label of the next token in a sequence, we need a way to
measure the error between the predicted class and the ground truth label. This can be done
by using a generalisation of the binary cross-entropy loss from (4.2.14) information – a Cross-
Entropy loss

L = −
M∑
c=1

yc log(pc) , (4.2.38)

where M is the number of classes, yc is a binary indicator (0 or 1) if class c is the correct class,
and pc is the predicted probability for class c.

Overall structure

The above-described elements are combined into a transformer model in many ways, de-
pending on the task.

Figure 4.4 visualises these elements as a block scheme.

Figure 4.4: Transformer architecture.
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Chapter 5

Machine Learning Clifford Invariants of
ADE Coxeter Elements

This chapter presents a study of Clifford geometric invariants of Coxeter transformations
in the A8, D8 and E8 root systems in the experimental mathematics approach. The combi-
natorially large number of such invariants makes the application of Machine Learning and
Data Science essential. We therefore employ these techniques to analyse the structure of
the invariants, perform neural network classification and regression of them to provide an
empirical foundation for further theoretical investigation1.

5.1 Motivation and summary

Orthogonal transformations, such as rotations, and their invariants have important applica-
tions in engineering, such as moving cameras, robots and so on. Typically, such linear trans-
formations are described by matrices, and their invariants are given by the determinant and
trace, which appear in the highest and lowest coefficients of the characteristic polynomial.

An alternative description of orthogonal transformations can be provided using Clifford
algebras introduced in [152]. In Clifford algebras, algebraic objects have a clearer geometric
interpretation than in the standard matrix approach.

A particular type of invariants arising in this setup are Clifford geometric invariants.
They are systematically related to geometric invariant spaces of the linear transformation
and the coefficients in the characteristic polynomial, and the Cayley-Hamilton theorem. Cal-
culating Clifford geometric invariants, which are expressed as multivectors, can be done
systematically via simplicial derivatives, which we describe later. Recent works studied
them from a practical [153], [154] and theoretical [154], [155], [156], [157] points of view.
These types of transformations are also rotations and are particularly interesting because of
their symmetry structures. In this work, we will study Clifford geometric invariants in the
context of root systems2, focusing on so-called called ‘Coxeter elements’ or ‘Coxeter trans-
formations’. These are a particular type of orthogonal transformation in reflection/Coxeter
groups [159]. They are the group elements of the highest order (called the ‘Coxeter num-
ber’, h) and are all conjugate to each other. High-dimensional root systems are notoriously
difficult to visualise, and projection into a distinguished plane (called a ‘Coxeter plane’) is a

1The work presented in this chapter is based on the collaborative study in [19]. The author of the thesis is
responsible for the frequency analysis and ML classification work presented in Sections 5.3.2 and 5.5.1.

2See [158] for a detailed introduction to root systems and Clifford algebras.
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common way of visualising the geometry. In these planes, the Coxeter elements just act by
h-fold rotations. Root systems are determined by a subset called the ‘simple roots’, which act
as a basis for the vector space and each determines a ‘simple reflection’ in the hyperplane to
which they are orthogonal3. A Coxeter element is then just given by multiplying each of the
simple reflections once in some permutation order, which at the versor level is just encoded
by multiplying together the root vectors in the Clifford algebra directly, doubly covering the
orthogonal transformation. This set of permutations giving rise to a set of Coxeter versors
will be the focus of this paper, as these allow us to calculate the full set of invariants from
them, which we will refer to as the set of characteristic multivectors (SOCM).

In this work, an experimental mathematics approach was adopted: first, a dataset of al-
gebraic data was generated using computational algebra techniques and high-performance
computing (HPC); this dataset was then mined by applying the standard data science toolkit
in order to find patterns that were not obvious from an analytical perspective. This approach
was previously explored in works [160], [161], [162], [163], [164], [165]. Mathematicians of-
ten calculate examples of interest by hand to formulate or test hypotheses. Essentially, this
computational algebra approach automates and scales up such an approach, and turns the
problem into a data analysis task4. One can either calculate a very large number of exam-
ples and analyse these statistically via ‘data analysis’; or in other cases of interest, it may be
possible to calculate all the cases exhaustively and analyse the patterns that emerge, which
can help with hypothesis formulation and theorem proving.

We consider the three 8-dimensional root systems A8, D8 and E8, which are of wider in-
terest in terms of exceptionalE8 and ADE patterns [167], [168], [169]. The number of Coxeter
elements grows factorially with the dimension of the root system. Eight dimensions allow
8! = 40320 permutations of the simple roots, which can all be explicitly calculated with HPC,
this is large enough for data science techniques to be practically effective. They give rise to
linear transformations (Coxeter transformations) whose simplicial derivatives can be taken
in an automated way, and whose characteristic multivectors are computed as the output. Of
course, the actual number of Coxeter versors will be fewer, firstly because of the fact that
the simple roots can be decomposed into two sets that are mutually orthogonal within sets
(leading to a k! reduction whenever k orthogonal simple roots are grouped together), but
secondly because such roots are also more widely orthogonal to other roots outside of the
sets, as given by the adjacency in the Dynkin diagram such that two roots are orthogonal
if there exists no edge between them. So in practice, there will be some degeneracy in the
mapping from the permutations to the Coxeter versors, which will result in a significantly
reduced set of invariants.

We organise this work as follows. In Section 5.2, we introduce some details on the afore-
mentioned Clifford simplicial derivatives and invariants, as well as root systems and Cox-
eter transformations. We then discuss in Section 5.3 what datasets we are mining, and how
they were generated using computational algebra. This section also contains an exploratory
data analysis around the number of distinct invariants as well as the connectivity structure
of the bivector invariants. We then move on to Machine Learning in Section 5.5; in particu-
lar, we discuss predictive performance as well as ternary classification tasks, before moving
on to gradient saliency sensitivity on the input and Principal Component Analysis. We con-

3The existence of the Coxeter plane relies on the simple roots admitting a separation into two sets that are
mutually orthogonal within each set, often visualised as a bipartite (alternating) colouring of the corresponding
Dynkin diagram.

4Clifford algebra multivector computations can easily be performed in such a python HPC setup using the
galgebra package [166].

80



clude in Section 5.7. Computer code scripts and data can be found on GitHub5.

5.2 Background

A detailed introduction to root systems and Clifford algebras is available in [158], so here we
will be brief. A root system lives in the arena of a vector space with a scalar product (which
immediately allows one to consider the corresponding Clifford algebra). It is a collection of
vectors (called ‘roots’, and customarily denoted α) in that vector space which is invariant
under all the reflections in the hyperplanes to which the root vectors are perpendicular. We
will only consider root systems with roots of the same length, which can be assumed to be
normalised6. Such reflections in the normal hyperplanes are given by x → x − 2(x · n)n,
where x is the vector to be transformed and n is a unit normal to the hyperplane.

A subset called ‘simple roots’ is sufficient to write all roots as (in our case) integer linear
combinations of this basis of simple roots, whilst their corresponding reflections, the ‘sim-
ple reflections’, generate the reflection group. Taking these simple reflections all exactly once
leads to interesting types of group elements called ‘Coxeter elements’. They are of the same
order h (the ‘Coxeter number’) and have invariant planes, called ‘Coxeter planes’, which are
useful for visualising root systems in any dimension (via projection into these planes). These
reflection groups have interesting integer – in fact, prime – invariants that are characteristic
of the geometry, called ‘exponents’m. This name derives from the fact that Coxeter elements
act on different invariant planes by h-fold rotations by m times 2π/h, which is usually inter-
preted as a complex eigenvalue of the Coxeter element (even though we are, by assumption,
in a real vector space). The root system geometry can also be encoded in diagrammatic form
(called ‘Coxeter-Dynkin diagram’), where each simple root corresponds to a node and or-
thogonal nodes are not linked, whilst roots at 2π/3 angles are connected with a link (we will
only be considering such ‘simply-laced’ examples, see Figure 5.1). Likewise, our simply-
laced examples are tree-like and admit an alternate colouring (or ‘bipartite’, e.g. black and
white). This effectively means that all black roots are orthogonal to each other, and likewise
for the white roots. This colouring means that there are distinguished types of Coxeter ele-
ments where first all the black reflections are taken, and then all the white (or the other way
round). We will call these ‘bipartite’ Coxeter elements. This bipartite colouring also implies
the existence of the Coxeter plane via a more complex argument, the details of which we will
omit here, but which relies on the adjacency matrix of the Dynkin diagram having a distin-
guished largest eigenvalue and corresponding eigenvector, the Perron-Frobenius eigenvec-
tor (which will make an appearance below). In our labelling of the 8 simple roots for A8, D8

and E8, α1 to α7 make one long string. The different diagrams arise depending on where the
8th root α8 attaches: at the terminal node α7 for A8 (leading to bilateral symmetry), at the
penultimate node α6 for D8 (leading to permutation symmetry of the terminal nodes), or α5

for E8
7.

As mentioned above, Clifford algebras can be constructed when one is working in an n-
dimensional vector space with an inner product, giving rise to a 2n-dimensional algebra of
‘multivectors’. The scalar product is given as the symmetric part of the geometric product,
i.e. a·b = 1

2
(ab+ba)8. Substituting this in the reflection formula above results in a cancellation

5https://github.com/DimaDroid/ML_Clifford_Invariants.git
6Note this is different from the normalisation convention used in Lie theory.
7Note that attaching to other roots is symmetry-equivalent to the options just mentioned except attaching

to α4, which leads to something called affine E7, or Ẽ7.
8The outer product a∧ b = 1

2 (ab− ba) is the antisymmetric part, is a bivector and determines the plane that
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α1 α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7

α8

α1 α2 α3 α4 α5 α6 α7

α8

Figure 5.1: The diagrams of the 8-dimensional simply-laced root systems A8, D8 and E8 (vertically
downwards respectively), along with our labelling for the simple roots and a bipartite colouring.

which leads to the uniquely simple ‘sandwiching’ reflection formula in Clifford algebras

x→ x− 2(x · n)n = −nxn. (5.2.1)

Both n and −n doubly cover the same reflection. Via the Cartan-Dieudonné theorem, or-
thogonal transformations are just products of such reflections, so that one can build up

x→ ±nk · · ·n1xn1 · · ·nk = ±ÃxA (5.2.2)

such transformations via defining multivectors that are the products of normal vectors
which encode the reflection hyperplanes, A = n1 · · ·nk (called ‘versors’), and a tilde de-
notes reversing the order of these vectors in the product. These versors again doubly cover
the transformation.

We discuss here for a moment how this applies when the orthogonal transformation is
a Coxeter element. In traditional root system notation, the simple reflections are denoted
si such that a Coxeter element is denoted w = s1 · · · sn. In the above versor framework,
the reflections are encoded by the root vectors themselves (as a double cover), whilst the
multivectors W that one gets from multiplying the simple roots together α1 · · ·αn doubly
cover w

wx→ ±αk · · ·α1xα1 · · ·αk = ±W̃xW. (5.2.3)

We return now to the setting of linear transformations in Clifford algebras more gen-
erally. Let us denote this linear transformation by f(x). In order to calculate the desired
invariants of this linear transformation (the SOCM), we define the concept of ‘simplicial
derivatives’.

First, let {ak}, k = 1, . . . , n denote a frame, i.e. a basis. Often we use either a Euclidean
basis ei or the basis of simple roots, αi. We denote by {ak} its reciprocal frame such that
ai · aj = δij . In a Euclidean basis, this is effectively the basis itself; for a basis of simple
roots, the reciprocals are more commonly known as co-roots (up to a different conventional
normalisation factor). We also define bk = f(ak) as the transformation acting on the basis
frame vectors. The rth simplicial derivative is then essentially defined as a combinatorial
object

∂(r)f(r) =
∑

(ajr ∧ · · · ∧ aj1)(bj1 ∧ · · · ∧ bjr) (5.2.4)

two vectors generically span.
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with sum over 0 < j1 < · · · < jr ≤ n 9. These simplicial derivatives are invariants of the
linear transformation and are therefore ‘characteristic multivectors’ with geometric signifi-
cance.

Now [152] showed that it is the scalar parts of these geometric invariants (denoted by
∂(s) ∗ f(s)) that constitute the coefficients in the Cayley-Hamilton theorem

Cf (λ) =
m∑
s=0

(−λ)m−s∂(s) ∗ f(s)

(where ∂(0) ∗ f(0) is interpreted as 1) and the characteristic polynomial

m∑
s=0

(−1)m−s∂(s) ∗ f(s)fm−s(a) = 0

for any vector a (where f 0(a) is interpreted as a).
One can explicitly verify this for our examples. Using the galgebra package, one can

perform calculations in the 256-dimensional multivector algebra, calculating Coxeter ver-
sors from permutations of the simple roots, and from that simplicial derivatives and geo-
metric invariants. We will refer to the simplicial derivatives ∂(r)f(r) as the invariant of order
r or Invr (and to the full set as SOCM).

Since we are considering an even orthogonal transformation in an 8-dimensional space,
we get some interesting structure in these invariants (see Table 5.1): firstly, we note that
only even multivectors occur (in principle, this allows us to reduce the length of the 256-
dimensional multivectors by half). Secondly, the lowest order invariant only has a scalar
part (trivially), the next picks up a bivector term, the next one a quadrivector term, the
next a sextivector, till finally Inv4 (generically) has a pseudoscalar term. Then it decreases
again. Thirdly, in our case, we have a certain ‘mirror symmetry’, where the top half of the
Table is equal to the bottom half, though this is not generally the case. In fact, all these
pieces, which we could denote by Invkr , are separately invariant under the Coxeter versor:
W̃ Invkr W = Invkr . So these Invkr are eigenmultivectors of the Coxeter element of grade k, but
they do not have to be k-blades (i.e. be able to be written as the outer product of k vectors10).

Subinvariant
Invariants by Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 X
Inv1 X X
Inv2 X X X
Inv3 X X X X
Inv4 X X X X X
Inv5 X X X X
Inv6 X X X
Inv7 X X
Inv8 X

Table 5.1: Structure of the characteristic multivectors: non-zero grades are indicated by an X.

9This is due to the original notion of a multivector derivative essentially being equivalent to a projection.
10This was also noticed in the example in [153].
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So among other multivector components, e.g. for E8, we in particular have 4 invariant
bivectors from the invariants. It turns out that these are orthogonal. The Coxeter element
also acts on 4 invariant orthogonal bivectors (giving planes, and they are blades by con-
struction) via the Coxeter plane construction, so there is an immediate question of how our
characteristic multivectors relate to exponents and degrees. In fact, we will say here already
that for E8 one can show that the two sets of 4 orthogonal eigenvectors (from the SOCM
and the Coxeter construction) span the same 4d-subspace of the 28d bivector space. Reflec-
tion groups can also have other interesting invariant subspaces, such as two H4-invariant
subspaces in E8 [170], [171].

5.3 Datasets

We choose dimension 8 because of the following compromise: 8! = 40320 gives us something
resembling ‘big data’ which is accessible to data science techniques, whilst being computa-
tionally tractable11. It is also the last dimension in which there are three simply-laced root
systems, with the exceptional E8 adding some variety to the An and Dn families that exist
in arbitrary dimensions. So we select A8, D8 and E8, as this gives us scope for three-way
(ternary) classification tasks, and ADE patterns are of course of wider interest.

The input vectors are the set of permutations in 8 elements, e.g. (0,1,2,3,4,5,6,7), labelling
the simple roots α1 through to α8 and encoding in which order the simple roots are taken
in for computing the Coxeter versor. The outputs are the 9 invariants {Inv0, . . . , Inv8} as
multivectors.

input = (0, 1, 2, 3, 4, 5, 6, 7) = α1 . . . α8 → {Inv
0
, . . . , Inv

8
} = SOCM = output (5.3.1)

In 8 dimensions, the multivector invariants have 256 components (some of which are triv-
ial12).

5.3.1 Data Generation

The computational algebra approach followed here used python with the galgebra pack-
age for multivector computations [166]. Exploratory analysis for single permutations was
performed in Jupyter notebooks, but once parallelised, the computations were run on clus-
ters at Queen Mary, University of London, City, University of London, and University of
Leeds. Data and Code can be found on GitHub. We performed computations both in a
Euclidean basis13, which is a bit more straightforward, and the basis of simple roots via the
multivector basis that it induces, which is more meaningful geometrically and less depen-
dent on the choice of simple roots in the Euclidean basis. According to our earlier discussion
around Table 5.1, we can also extract different grades of these invariants (e.g. scalar, bivector,
etc), which we refer to as ‘subinvariants’ Invkr , from the full set (SOCM).

11With the caveat that there is degeneracy in the permutations leading to the same or similar Coxeter ele-
ments and thus invariants, reducing the true number of different output vectors. Although it was not obvious
from the beginning, especially for E9 and D8.

12Since the odd components are typically 0, one could reduce this if needed, but for completeness and
generalizability, we haven’t.

13Roots in the root system are often defined as columns of components in the Euclidean orthonormal basis
in some higher-dimensional space. However, since the set of simple roots can generate the root system via
addition, we can also take simple roots as a basis, although not orthonormal. While this may seem more
complicated, it is more meaningful geometrically because everything we compute in geometric algebra using
simple roots can be eventually expressed in the basis of simple roots.
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5.3.2 Frequency Analysis

As was mentioned previously, for each of the A8, D8 and E8 root systems, there are 8! =
40320 permutations of 8 root vectors from which we can construct the corresponding Coxeter
elements and the 9 geometric invariants.

Each invariant is a sum of 8 subinvariants written in terms of the wedge product of a
different number of basis vectors for the 8-dimensional vector space. These 8 subinvariants
are scalar, vector, bivector, trivector, quadrivector, and so on up to 8-vector pseudoscalar.
The components for each of the subinvariants can be written down in a chosen basis, e.g. in
terms of simple roots. This allows us to compare SOCMs corresponding to different Coxeter
elements, or invariants of a chosen order, or focus on subinvariants within the invariant of a
chosen order.

These exhaustive computational algebra calculations already show interesting results.
On the highest level, we compare components of SOCMs and find that, although there are
40320 SOCMs we can construct, only 128 are distinct, and this is the same number for each of
the algebras. We can think of these as ‘classes’ of SOCMs with the same components. Each
class has a certain number of representatives14 in it, which we call frequency. Although the
number of classes for each of the algebras is the same, the frequencies of individual classes
differ, see Figure 5.2.

(a) A8 (b) D8

(c) E8

Figure 5.2: Sorted multiplicities of the 128 unique SOCMs, for each root system considered: A8, D8,
E8 respectively. A8 is mostly quadruplets, E8 mostly doublets and D8 half-and-half.

In the following, we will be using two types of operations on permutations:

14They have a different order of roots in a permutation encoding Coxeter versor.
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• Inversion – we say that two permutations are related by inversion if the order of simple
roots for these permutations is reversed relative to each other, e.g. (0,1,2,3,4,5,6,7) and
(7,6,5,4,3,2,1,0).

• B ↔ W – following the bipartite colouring of black roots and white roots, we can
reduce (with some degeneracy) a permutation to a black and white ‘barcode’. For
example, (2,4,6,8,1,3,5,7) becomes ‘• • • • ◦ ◦ ◦ ◦’. We say that two permutations are
related by B ↔ W if we replace black roots with white roots and vice versa.

There are some common features among all three algebras:

• The frequency values come in groups of 2, 4 or 8 classes, which have the same fre-
quency. We call these groups of classes with the same frequency as Doublets, Quadru-
plets and Octuplets, respectively;

• The highest frequencies appear in Doublets;

• For Doublets, permutations of the class elements in one class are related by inversion
to permutations of the class elements in another class. Quadruplets are essentially two
Doublets with the same frequency, and Octuplets are two Quadruplets with the same
frequency.

Some other features which are different:

• For A8:

– Frequencies of all classes are odd numbers;

– There is a Doublet with the lowest frequency equal to 1 (i.e. two unique invari-
ants). Classes in this doublet are represented by permutations (0,1,2,3,4,5,6,7) and
(7,6,5,4,3,2,1,0)15;

– There is a Doublet with the highest frequency equal to 1385. This Doublet consists
of two invariants which are given by bipartite Coxeter elements: one of them is
given by a Coxeter element with first 4 black roots with increased root number
and then 4 white ones with increased root number as well; the second one is
very similar and has first 4 white roots and then 4 black ones with increased root
number in both subsets;

– For Quadruplets, there are pairs of classes that are related by inversion. In ad-
dition, these pairs within the Quadruplet are related to each other by B ↔ W .
Presumably, having inverse barcodes signifies similar combinatorial properties
that result in the same frequency.

– As was mentioned before, in Doublets, two classes within it are related by inver-
sion. In addition, the two classes are related to each other by B ↔ W symmetry:
if we assign a black or white colour to every simple root according to Figure 5.1,
we get a black and white ‘barcode’ for a permutation encoding a Coxeter element.
One can check that the barcode for the first class is the inversion (change black to
white and vice versa) of the barcode for the other class within the Doublet, i.e. the
Doublets are self-dual under B ↔ W .

15One might call them ‘maximally non-commuting permutations’, where none of the roots adjacent in the
permutation are orthogonal.
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– In some Quadruplets, there is even more B ↔ W inversion symmetry: B ↔ W
symmetry between the pairs of classes that are related by inversion is enriched by
the B ↔ W symmetry within the pairs. This is because the barcode mapping is
degenerate, i.e. non-equivalent permutations can give rise to the same barcode;

– An Octuplet appears as two Quadruplets with the same frequency;

– There are 8 Doublets, 26 Quadruplets and 1 Octuplet in total.

• For D8:

– All frequencies are even numbers;

– There are no unique invariants, a Doublet with a frequency equal to 2, and a
Doublet with the highest frequency equal to 1582;

– No signs of B ↔ W symmetry;

– There are 20 Doublets and 22 Quadruplets.

• For E8:

– All frequencies are odd numbers;

– There are no unique invariants, a Doublet with the lowest frequency equal to 3
and a Doublet with the highest frequency equal to 1511;

– No signs of B ↔ W symmetry;

– There are 58 Doublets and 3 Quadruplets.

On the level of subinvariants within the invariants, one can perform the same analysis
and find frequencies given in Tables 5.2 and 5.3. The tables for A8 and E8 are identical; all
three groups have the same frequencies for bivector and quadrivector subinvariants. Empty
cells denote the fact that all subinvariants for this order of invariants are trivially zero (some
are also less-trivially zero).

Another interesting thing to look at is the frequencies of invariants and subinvariants
with the identification of objects that differ up to an overall minus sign. We find that this
modification does not alter the frequencies of the full invariants, however, it does change the
frequencies of subinvariants, see Tables 5.4, 5.5 and 5.6. We see that frequencies for bivector
and sextuvector (and pseudoscalar for A8) subinvariants for A8 and D8 are halved, meaning
that half of these subinvariants differ from the other half by a minus sign. At the same
time, scalar and quadrivector subinvariants are unchanged. The picture is different for E8,
where bivector, quadrivector and sextuvector frequencies change non-trivially under sign
identification.

The idea behind these observations is to understand the symmetries of the root system.
The frequency of multiplicities for the three algebras should be determined by the permuta-
tion of these symmetries. It is rather simple to determine the number of unique invariants
and explain the existence of Doublets and Quadruplets for the A8 algebra due to its simple
Dynkin diagram, but much harder for the D8 and E8 algebras.
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Subinvariant
Invariant Order scalar bivector quadrivector sextuvector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 1 128 64
Inv3 1 128 64 128
Inv4 1 128 64 128 2
Inv5 1 128 64 128
Inv6 1 128 64
Inv7 1 128
Inv8 1

Table 5.2: Frequencies of subinvariants for A8/E8 group. Empty cells denote the fact that all subin-
variants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextuvector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 0 128 64
Inv3 0 128 64 32
Inv4 0 128 64 32 0
Inv5 0 128 64 32
Inv6 0 128 64
Inv7 1 128
Inv8 1

Table 5.3: Frequencies of subinvariants for D8 group. Empty cells denote the fact that all subinvari-
ants for this order of invariants are trivially zero. But there are also some non-trivial zeroes to do
with the D8 geometry, in which the factorisation of the Coxeter element into orthogonal eigenspaces
contains two true reflections, also signalled by having two exponents of h/2.

5.4 Bivector Subinvariants

Now we are restricting our focus to the bivector parts of the invariants, which, as subin-
variants, are of particular interest since bivectors generate planes for rotation (such as the
Coxeter plane central to the study of these root systems). Each of the bivector subinvari-
ants has 28 entries, corresponding to the

(
8
2

)
combinations that form a basis for the bivector

subspace, whether this is in a Euclidean basis or the basis of simple roots. Here, we will
be working in the basis of simple roots. Each bivector subinvariant hence takes the form:∑8

i,j=1|i<j cij(αi∧αj), for the 8 simple root basis vectors αi, and general coefficients cij , which
turn out to be even integers. This is motivated by the observation that, rather intriguingly,
the bivector part of the bipartite E8 Coxeter element gives precisely rise to the E8 diagram,
etc.
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Subinvariant
Invariant Order scalar bivector quadrivector sextuvector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 1 64 64
Inv3 1 64 64 64
Inv4 1 64 64 64 1
Inv5 1 64 64 64
Inv6 1 64 64
Inv7 1 64
Inv8 1

Table 5.4: Frequencies of subinvariants for A8 group up to an overall minus sign. Empty cells denote
the fact that all subinvariants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextuvector pseudoscalar

Inv0 1
Inv1 1 40
Inv2 1 40 64
Inv3 1 52 48 36
Inv4 1 64 64 64 1
Inv5 1 52 48 36
Inv6 1 40 64
Inv7 1 40
Inv8 1

Table 5.5: Frequencies of subinvariants for E8 group up to an overall minus sign. Empty cells denote
the fact that all subinvariants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextuvector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 0 64 64
Inv3 0 64 64 16
Inv4 0 64 64 16 0
Inv5 0 64 64 16
Inv6 0 64 64
Inv7 1 64
Inv8 1

Table 5.6: Frequencies of subinvariants for D8 group up to an overall minus sign. Empty cells denote
the fact that all subinvariants for this order of invariants are trivially zero. But there are also some
non-trivial zeroes to do with the D8 geometry, in which the factorisation of the Coxeter element into
orthogonal eigenspaces contains two true reflections, also signalled by having two exponents of h/2.
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5.4.1 Interpretation as Graphs

From each bivector subinvariant, one can construct a graph. This is done by associating
a vertex to each simple root, and including the edge between vertices i and j if cij ̸= 0.
This construction method manifestly creates undirected unweighted simple graphs (with no
loops as cii = 0 ∀i, and at most one edge between any pair of vertices). The generated graph
is practically constructed via a symmetric adjacency matrix, with binary entries, such that
cij is taken as the upper triangle of a symmetric matrix with any non-zero entries converted
to 1. Since the adjacency matrices are symmetric their eigenvalues are all real, and one can
begin to analyse their eigenspectra16.

The Perron-Frobenius theorem [172], [173] asserts that square matrices with positive in-
teger coefficients have a unique largest real eigenvalue. In particular, for undirected graph
adjacency matrices, this maximum eigenvalue takes value in the range (0, n− 1], for graphs
with n vertices17. Furthermore, it turns out that the A, D, & E Dynkin diagrams are partic-
ularly special in the space of undirected graphs, in that they are the only connected graphs
whose maximum eigenvalue < 2 by Smith’s theorem [174]. In fact, the Coxeter elements of
bipartite form were observed to just give the Coxeter-Dynkin diagrams of the A8, D8 and
E8 root systems. Since bivector graphs can be more generally induced by all forms of Cox-
eter elements, this motivates the study of the maximum eigenvalues for all the respective
undirected graphs.

Returning to our databases, except for the trivial zero invariant formed from the bivector
subinvariant of Inv0 and Inv8, an initial unanticipated observation is that each of the graphs
constructed from each of the bivector subinvariants across the 3 databases is connected. In
addition to this, there is no overlap of bivector subinvariants between algebras (excluding
the trivial zero invariant). Also, there is no overlap of bivector subinvariants between the
orders of invariants they come from, within each of the algebras. However, there is a small
repetition of adjacency matrices (i.e. after reducing non-zero entries to 1), and also graphs.
Specifically, there are A8: (0, 38, 12), D8: (0, 1, 6), E8: (0, 0, 25) repeated (subinvariants,
adjacencies, graphs) between orders 1 to 4, for each algebra respectively.

Analysing the multiplicities of the bivector subinvariants, for (A8, D8, E8), there are (513,
513, 513) distinct subinvariants across all orders for each algebra, respectively. When consid-
ering the undirected adjacency matrices constructed from these (out of 228 ∼ 2.7 × 109 pos-
sible undirected adjacency matrices), these bivector subinvariants reduce to (219, 256, 251)
distinct adjacency matrices respectively. These matrices then further reduce to respectively
(88, 144, 137) non-isomorphic graphs (out of 11117 possible non-isomorphic graphs [175])18.

Now, in examining the distribution of the maximum eigenvalues, we first note that the
trivial zero invariant, which is equivalent to the empty graph, has all eigenvalues zero,
so it is omitted in the following analysis. To set a baseline for comparison, we sample as
many random connected adjacency matrices as non-zero bivector subinvariants occur in
each dataset (282240), compute their maximum eigenvalues, and plot the respective his-
togram of multiplicities in Figure 5.3. The maximum eigenvalues for the adjacency matrices
constructed from each bivector subinvariant were then computed for each algebra’s dataset,

16Note that one may also create a directed weighted graph by setting the adjacency matrix upper triangle to
be cij ; however as the matrix is antisymmetric, eigenvalues are complex, and hence cannot be sorted sensibly
for analysis.

17The upper bound is saturated by the complete graph on n vertices.
18Noting that the trivial zero invariant (all 28 coefficients cij = 0) contributes a subinvariant, an adjacency

matrix, and an empty graph to the counts for each algebra.

90



Figure 5.3: Distributions of the maximum eigenvalues for 282240 random connected matrices (of
which 282086 are unique matrices, overall having 9741 unique eigenvalues).
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Figure 5.4: Distributions of the maximum eigenvalues for each of the bivector subinvariants for each
of the considered algebras: A8, D8, E8, respectively. Data includes all 282240 non-empty bivector
subinvariants, coloured according to which order invariant they correspond to.

and histograms of their distributions for each algebra are shown in Figure 5.4, coloured ac-
cording to the invariant order that they came from. In each class corresponding to invariant
orders 1 to 4 (i.e. Inv1 to Inv4), there are A8: [36, 34, 18, 11], D8: [43, 41, 24, 36], E8: [54, 49,
18, 30] distinct eigenvalues respectively with multiplicities as shown in the plots. Note that
all these multiplicities reduce to 1 when considering the unique non-isomorphic graphs at
each order.

From the plots, it can be seen that the distributions do appear to roughly follow a par-
tition according to the order of the invariant they come from. This is perhaps hinting at
how these different order subinvariants span different subspaces of the full space of subin-
variants, as dictated by their eigendecompositions. Additionally, the actual A8, D8, and E8

graphs occur as bivector subinvariant graphs for a large number of the Inv1’s only in each
respective root system’s dataset (the point with maximum eigenvalue below 2 in the A8 plot
is the A8 graph of Figure 5.1, etc). Presumably, these are due to Coxeter elements in bipartite
form and are in accordance with Smith’s theorem.

5.4.2 Eigenvector Centrality

The maximum eigenvalue of a non-negative matrix has a corresponding eigenvector with
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(c) E8 Subinvariants

Figure 5.5: The multiplicities that each of the 8 graph nodes (i.e. simple roots αi) exists as the most
central node in a bivector subinvariant graph, for all graphs across all invariant orders for each of the
considered root systems: A8, D8, E8 respectively.

exclusively non-negative entries, as also dictated by the Perron-Frobenius theorem. One can
then associate each of these normalised non-negative entries with a centrality score for the
graph node with the corresponding index. This is known as eigenvector centrality [176].

For these bivector subinvariant graphs, there are 8 nodes (corresponding to the simple
roots) and hence 8 respective centrality scores which can be computed for each graph for
each invariant order across each root system. Since the centrality scores are normalised,
when examining the distribution of measures across the nodes, it is most interesting to con-
sider: (1) the most central node with the highest score; as well as (2) the score distribution
variance. Respectively, these then indicate which parts of the graph are most important
to the connectivity (and hence the most significant bivector contribution to its graph struc-
ture); and the extent to which this significance is polarised towards the requirement on this
most central node to ensure connectivity. For instance, for the D8 and E8 Dynkin diagrams,
the triply connected simple root is 6 and 5 respectively, so we would expect these to have
the highest centrality. Likewise, the middle roots 4 and 5 in A8 should be the most central.
But these Dynkin diagrams are in some way minimal, and other bivector diagrams will be
‘more fully connected’, so we expect centrality of different roots to change for more general
Coxeter elements.

To examine this behaviour in the root systems considered, the eigenvector corresponding
to the previously studied largest eigenvalue was computed for each bivector subinvariant
across all invariant orders for each root system. The node index of the most central node was
then identified, and the variance of the centrality measure distribution was calculated. The
multiplicity distributions of these centrality distribution measures are shown in Figure 5.5
for the node index of the most central node, and Figure 5.6 for the variance in centrality
scores across each bivector subinvariant.

The results in Figure 5.5 show some consistency in which nodes are the most central
between the root systems. In all cases, the order 1 invariants (Inv1) have the most skewed
distributions, with the first 2 nodes never being the most central, whilst the last nodes are the
most central infrequently19. From this one can deduce that the basis invariants {a4, a5, a6}
are most significant to the Inv1’s graph’s connectivity, as in our labelling of the simple roots
{a1, a2, a3} are the start of a long string, and are thus somewhat less central. But the relative
multiplicities between the nodes can be used to differentiate the root systems. Within the
set of each root system’s Inv1 invariants, the Dynkin diagrams themselves are included as
graphs. It is hence not surprising to see that the D8 and E8 most central nodes have indeed
maximum multiplicity as the most central node for a6 and a5 respectively, where the Dynkin

19We note here that graph nodes have no intrinsic order; the one chosen here matches the basis order.
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Figure 5.6: The multiplicities of the variances across the distribution of eigenvector centrality scores
for each bivector subinvariant graph. These variances were computed for each graph across all in-
variant orders for each of the considered root systems: A8, D8, E8 respectively.

diagram nodes have degree 3. Equivalently, the A8 Inv1 invariants have a more symmetric
distribution of the most central node, with the highest multiplicity for a4 (and with some
numerical differences, a5) matching theA8 Dynkin diagram. These results corroborate nicely
the similarity of the graphs within each order and our earlier assertion that the graphs for
higher order invariants ‘become more connected’.

Considering the higher-order bivector subinvariant graphs, the range of multiplicities
is noticeably lower. However, range does not strictly decrease as order increases. Order
2 graphs have a similarly noticeable skew towards more nodes closer to the middle of the
basis order being more central, which either does not occur or is not significant enough to
conclude for orders 3 and 4. For A8 and E8, the order 3 and 4 graphs have a somewhat
consistent distribution of which node is the most central.

In a similar manner, the variances of the centrality measures shown in Figure 5.6 are
larger for the order 1 bivector subinvariants Inv21, extending the analysis of Figure 5.5 to the
consideration of all the nodes’ centrality scores (not just the most central one). The overlap
in variance values for the higher orders indicates that their respective graphs have similar
connectivity properties, although there are potential bounds which could separate some
order 2 invariants (Inv2), particularly for the A8 and E8 algebras.

Overall, the analysis of the bivector subinvariant graphs’ eigenvector centralities indi-
cates that the order 1 graphs are distinctly different to those coming from higher order in-
variants. The Inv1 invariants tend to be more consistently structured (with the same basis
elements creating the most central node) and more skewed in centrality, with central nodes
more dominantly central. Generally, going to higher-order invariants increases the connec-
tivity, at least for A8 and E8, with some reasonably well-separated clustering of the orders.
For D8, the Inv3 invariants seem the most connected; this is likely due to the unique geom-
etry of D8, manifested e.g. also by the non-trivially zero scalar and pseudoscalar terms in
Table 5.3.

5.5 Machine Learning

5.5.1 Binary Classification of Invariants: real vs fake data

It is expected that geometric invariants can be constructed, via some formula, from Coxeter
elements that carry information about the root system. So one might hope to find specific
features of invariants that depend on the root system/Lie algebra. In this section, we train
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a neural network classifier to check whether there are such features which the a network is
able to learn. High performance of the model would indicate a presence of such features.

The dataset used consists of 3 subsets, one for each of the algebrasA8/E8/D8, with 40320
entries and 2304 components in each subset. To further enlarge the amount of data, we
generated a ‘fake’ dataset for each of the A8/E8/D8 algebras. In the first iteration, ‘fake’
datasets were generated by constructing empirical distributions for each of the 2304 com-
ponents from all available invariants for the corresponding algebra and then sampling from
this distribution to create 40,000 unique elements in new datasets. One can notice that in the
‘real’ data, the number of zeros in each entry is constant and specific for different algebras20.
We implemented this feature in the fake datasets we used by eliminating fake data entries
which do not satisfy this condition.

We started with one of the simplest supervised learning approaches, binary classification
by a dense neural network, with the idea to train 3 NNs to distinguish invariants for one
of the algebras from other algebras and ‘fake’ invariants. Overall, we have 6 datasets of
geometric invariant components for A8, D8, and E8 algebras, as well as ‘fake’ datasets for
each. From these, three final training/test datasets were constructed, one for each algebra,
where we labelled ‘real’ A8 or D8 or E8 algebra invariant components with 1, two remaining
‘real’ algebras invariant components with 0, and 3 ‘fake’ datasets labelled as 0 as well. This
is what we will imply when we say that we create training/test datasets to distinguish one
of the A8, D8, and E8 invariants from other ‘real’ invariants and the ‘fake’ ones.

One should notice, however, that training NNs to distinguish one of the A8,D8 or E8 in-
variants from others and fake invariants using all datasets is invalid. For all three of them,
the prediction on test datasets would be 100% accurate because, as described in section 5.3.2,
there are only 128 unique invariants for each of the ADE datasets, leading to a large repe-
tition of them (although with unequal frequencies). Hence, there is a high chance that in
a randomly chosen training subset, we would find all 128 unique invariants. This would
make the test stage biased, as it likely contains repetitions of the training data. Effectively,
these NNs are learning to reproduce this dataset of invariants perfectly, but would not be
able to generalise beyond it.

A more meaningful problem is to remove degeneracy in datasets for ‘real’ A8,D8 or E8

invariants, leaving just 128 elements in each. Then, we can mix original and fake invariants,
which ensures that we have some real invariants in the training set and others in the test
set only. The proportion of data in training and test datasets was again set to 80% and 20%.
However, this makes the whole dataset skewed as there are around 40000 fake invariants
and only 3× 128 real invariants. We kept data unbalanced in the training set, but in the test
set, to make it easier to interpret results, we cut the number of fake invariants to be the same
as the number of real invariants, meaning we had 3×{128/k real and 128/k fake} invariants.

In this setup, we tried NN with architectures varying from 1 hidden layer with 32 units to
2 hidden layers with 256 units in each. In all of them, the ReLU activation function was used.
During training, we used the Adam optimiser (with a learning rate of 0.001) to optimise the
log-loss function. The train and test datasets represented an 80% / 20% split of the total
data. The best performance was demonstrated by 1 hidden layer 64, 128 and 256 units NNs
with accuracies in the range of 0.90-0.92. From this, one might speculate that there should
be some relatively simple invariant quantity (similar to the genus of a surface) that was
learned by the NNs to distinguish real invariants coming from different algebras and fake
invariants.

201942 for E8, 2083 for D8 and 1805 for A8.
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5.5.2 Regressing Invariants from Permutations

As introduced in Section 5.2, Clifford algebras and the simplicial derivatives/characteris-
tic multivectors provide us with a systematic way of computing the geometric invariants
(SOCM) occurring, e.g. in the Cayley-Hamilton theorem. In particular, this depends on the
permutation order of the simple reflections in a Coxeter element. It is, therefore, expected
that there is an analytical formula that directly predicts the corresponding geometric invari-
ant from the order of the permutation of the simple reflections. Since making conjectures or
derivations from scratch is challenging in this task, in the spirit of experimental mathemat-
ics, we hope that the use of supervised learning algorithms, which train on labelled datasets
to make predictions, can shed some light on this expected relation.

In this paper, we used dense NNs coded in python where the input is the (one-hot
encoded [177]) permutation and the output is the coefficients of the invariants. For clearer
results, we first partitioned each dataset for A8, D8, E8 into 9 subdatasets for each of the
9 invariant orders, and then looked at the coefficients of both the full invariant and each
subinvariant for each order subdataset, i.e., the scalar, bivector, quadrivector, sextivector,
and pseudoscalar for each invariant order Inv0-Inv8 (SOCM). The NN model includes four
dense layers of 256 units with ReLU activation function. In training, we used the Adam
optimiser (with learning rate 0.001) to minimise a mean-squared error loss. 5-fold cross-
validation was also used, with the test data subset being 20% of the full dataset. To calculate
accuracy, predictions were rounded to the nearest integer, and a prediction was considered
correct if all of its coefficients were predicted correctly after rounding.

Our ML results are summarised in Tables 5.7 to 5.9 for the A8, D8, E8 data in the sim-
ple root basis. The results show near-perfect prediction of all invariants and subinvariants
across all algebras. The trivial scalar invariants are unsurprisingly all learnt perfectly, but
in many other cases, there is perfect learning also. The lowest performance occurs for the
sextivectors, where there is less data to learn from. These results indicate that the NNs are
capable of well approximating the complicated algorithm carried out to compute these in-
variants, as well as accommodating for the basis permutations.

5.5.3 Gradient Saliency Analysis

To better interpret the decision-making of our NN models – which are black-box models –
we also performed gradient saliency analysis [178]. In general, the magnitude of the ele-
ments in a weight vector in the model tells us the importance of the corresponding input
element for a particular output. We can extend this to consider the sensitivity of the en-
tire NN function to the inputs by computing the gradient of a given output with respect
to the input via backpropagation. The magnitude of the gradient indicates how sensitive
the output is to a change in the input variable. The results for the average gradient mag-
nitudes across the test sets (and 100 cross-validation runs) are shown in Figure 5.7 for the
multi-classification investigation equivalent to Section 5.5.1 but without considering the fake
data (performance was equivalently perfect), and Tables A.1, A.2, A.3 in appendix A for the
subinvariant regression in Section 5.5.2.

The Figure 5.7 gradient saliency barcode maps show the relative importance of the subin-
variant inputs for algebra classification; hence the bivector
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Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9996

Inv2 0.9996 1.0000 0.9999 0.9999

Inv3 0.9980 1.0000 0.9973 0.9480 0.9999

Inv4 0.9958 1.0000 0.9999 0.9999 0.9117 0.9596

Inv5 0.9986 1.0000 0.9995 0.9999 1.0000

Inv6 1.0000 1.0000 0.9948 0.9999

Inv7 0.9999 1.0000 1.0000

Inv8 1.0000 1.0000

Table 5.7: Summary of the final test accuracy (Acc) for the full invariants and each subinvariant of
the 9 invariants for A8 simple root data.

Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9955

Inv2 1.0000 1.0000 0.9912 0.9999

Inv3 0.9993 1.0000 0.9995 0.9999 1.0000

Inv4 0.9995 1.0000 0.9988 0.9891 0.9998 1.0000

Inv5 0.9995 1.0000 0.9986 1.0000 1.0000

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9999

Inv8 1.0000 1.0000

Table 5.8: Summary of the final test accuracy (Acc) for the full invariants and each subinvariant of
the 9 invariants for D8 simple root data.

Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 1.0000

Inv2 0.9999 1.0000 1.0000 1.0000

Inv3 0.9994 1.0000 0.9906 0.9999 0.9891

Inv4 0.9969 1.0000 1.0000 0.9963 0.9793 0.9223

Inv5 0.9994 1.0000 0.9996 0.9999 0.9990

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9998

Inv8 1.0000 1.0000

Table 5.9: Summary of the final test accuracy (Acc) for the full invariants and each subinvariant of
the 9 invariants for E8 simple root data.

cients are represented by 70 vertical lines. Note the trivial scalar as well as the pseudoscalar
subinvariants are omitted, and the remaining plots approximately satisfy the observed mir-
ror symmetry between invariant orders (i.e. Inv21 ∼ Inv27, Inv

4
3 ∼ Inv45, etc.).

For Inv21 and Inv27, the NNs rely almost exclusively on the final components of the coeffi-
cient vector, with a similar skewed behaviour for Inv22 and Inv26 towards the final coefficients
implying the span of these final coefficient values is most disparate between the algebras and
thus can be used for classification. The Inv23, Inv

2
4, Inv

2
5 and Inv63, Inv

6
4, Inv

6
5 barcodes have less
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(a) Inv21 (b) Inv22 (c)Inv42 (d) Inv23 (e)Inv43

(f) Inv63 (g) Inv24 (h)Inv44 (i) Inv64 (j) Inv25

(k)Inv45 (l) Inv65 (m) Inv26 (n)Inv46 (o) Inv27

Figure 5.7: Gradient saliency maps (barcodes) for ternary classification NN model. The NN function
takes as input the coefficients of the subinvariant and outputs one-hot encoded: A8, D8, or E8. The
saliency hence, represents the relative importance of each input coefficient (i.e. combination of simple
roots) to determining the classification output. Lighter colours indicate larger gradients and greater
importance.

discernible patterns, but in each case do appear to prioritise specific coefficient entries, em-
phasising that the entries in the subinvariant coefficients vectors are not equally important
as one may naively assume. The Inv2 (and Inv5) quadrivector maintains the Inv2 bivector
bias towards reliance on the final coefficient entries, however, the other quadrivector bar-
codes have a smoother spread of importance and a more complicated (NN-approximate)
function differentiable structure.

These results provide insight into the relative importance of each coefficient to uniquely
identifying the respective algebra, and continues to guide our analytical study of these
subinvariants in our companion paper by indicating which subinvariants have the most
clear coefficient dependence (Inv1 and Inv7 bivector, and Inv2 quadrivector) for us to focus
on, in revealing the underlying behaviour of these invariants.

In Tables A.1, A.2, A.3, the saliency barcodes probe the NN learning of the subinvariants
explicitly from the Coxeter element root permutation (i.e. the order of the 8 roots in the
Coxeter element) – hence having 8 bars in each barcode. Satisfyingly, the mirror symmetry
between opposite order invariants is again approximately obeyed for each of the 3 algebras
considered.

The trivial order 0 and 8 full invariants (with only scalar part such that they start with a
single 1 followed by 255 0s), as well as all the scalar invariants, are, as expected, perfectly
learned and have random saliency behaviour since the learning of a constant function is
trivial and independent of the inputs. One may expect perfectly equal barcodes, but the
rounding of the outputs allows the final neuron output to vary, so the stochastic search of
the optimiser has a large range of functions which give perfect results, that it will be random
walking in the function space throughout the training. This makes the final function fairly
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arbitrary in this class of suitable functions, and hence the barcodes are random, providing
some measure of the level of noise in the learning.

Conversely, the pseudoscalar for the order 4 invariants has different saliency properties
between the algebras, with focus on different parts of the permutation vector; where the A8,
D8, E8 order 4 invariant pseudoscalars, respectively, are computed primarily from the end,
middle, and start of the permutation vector. Note that the pseudoscalar component is 0 for
D8 and therefore that barcode is essentially noise, alike the scalar barcodes.

The remaining barcodes all have similar behaviour across the algebras. This is for the
bivector, quadrivector and sextivector subinvariants, which dominate the full invariant co-
efficient vector and thus unsurprisingly lead to similar behaviour for the full invariant. This
behaviour puts focus on both ends of the permutation barcodes, indicating that the infor-
mation about which roots are positioned at the ends of the Coxeter element is the most
important for determining the structure of each of these respective subinvariants (as well as
the full invariant).

Intuition one may extract from this is that at the ends of the permutation vectors the
roots have only one direction they can be permuted, and thus the root they are adjacent to is
paramount to determining whether that root can commute further into the permutation vec-
tor without changing the Coxeter element; as dictated by whether the roots are connected
in the Dynkin diagram. How the 40320 permutation orders split into the 128 Coxeter ele-
ments for each algebra may then be well correlated with the end roots of the permutation,
providing the NNs with important primary information in directing the first steps of their
functional algorithm for information flow through their architecture, leading to correct cal-
culations of the invariants. Further analytic analysis with a focus on permutation partitions
grouped by their end roots should help to reveal the dominant factors for the distributions
of these invariants.

5.6 Unsupervised: PCA

Principal component analysis (PCA) is a widely used ML technique for dimensionality re-
duction and exploratory data analysis [179]. In short, one computes the principal compo-
nents, which are linear combinations of the initial variables, and performs a change of basis
on the data. One then projects the data onto only the first few principal components to
obtain a lower-dimensional data representation.

The first principal component is the normalised linear combination of initial variables
that explains the largest variance in the data. The second principal component is uncorre-
lated with (i.e. perpendicular to) the first principal component and explains the next highest
variance, and so on. The computation of the principal components can be broken down into
the following steps:

1. The covariance matrix is computed. This is a symmetric matrix whose entries are the
covariances associated with all possible pairs of variables.

2. The next step is to compute the eigenvectors and eigenvalues of the covariance matrix.
These eigenvectors are the principal components, and the eigenvalues describe the
amount of variance carried in each principal component.

Note that often in general data science, an extra step 0 is included whereby one standardises
the variables so that each contributes equally, which is especially important when different
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input features have different units of measurement. However, since all variables are unit-
less and take values in a similar range, we don’t standardise here. By ranking the eigen-
vectors in order of their eigenvalues, highest to lowest, one gets the principal components
in order of significance. Finally, to transform the data into the new representation, one per-
forms a change of basis on the standardised data using the principal components, followed
by projection.

Using the Coxeter element invariant data in the simple root basis as described in Sec-
tion 5.3.1, we perform PCA on the 9 order invariants both individually and combined, for
A8, D8 and E8. With this, we plot the data in the first two principal components. The re-
sults for the 9 individual invariants of A8, D8 and E8 are shown in Figures B.1, B.2 and B.3
respectively and the PCA results on the combined invariant data are shown in Figure 5.8.
We can see clearly from Figures B.1-B.3, that Inv0 and Inv8 just give the trivial invariant, and
furthermore Inv1 matches Inv7, Inv2 matches Inv6 and Inv3 matches Inv5. This aligns with
the connection we made earlier in Section 5.2. Comparing the individual plots for A8, D8

and E8 we see that the plots for D8 and E8 roughly align, while the plots for A8 are different.
In D8, E8, for example, the plots for Inv3, Inv4 and Inv5 share a gap in the middle and all
the data points are roughly scattered on either side. On the other hand, the Inv4 plot for A8

presents a circular pattern around the centre, and whilst separated down the middle, the
data points in the Inv3 and Inv5 plots of A8 are tightly clustered. For the A8 plots, there ap-
pears to be a 2-fold reflection symmetry in the Inv1 − Inv7 plots, with the Inv1 and Inv7 plots
having a second orthogonal 2-fold reflection symmetry. For D8 and E8, there is instead an
approximate 2-fold rotational symmetry.

Figure 5.8 shows the 2-dimensional PCA projections when fitting the principal compo-
nents for all the invariant orders considered together. The orders form distinct clusters, and
the two 2-fold reflection symmetries of A8 and 2-fold rotation symmetries of D8 and E8 are
approximately preserved. Figure 5.10a also shows the elbow plot of the PCA ratios against
the number of principal components for PCA performed on the combined dataset of all or-
ders. The explained variance ratio is a measure of the proportion of the total variance in
the original dataset that is explained by each principal component. This is equal to the ratio
of its eigenvalue to the sum of the eigenvalues of all the principal components. The x-axis
in Figure 5.10a is the order number of the first principal components, and the y-axis is the
log of the explained variance ratio. For A8 and E8, we see a characteristic sharp drop in the
ratio at around the 100th principal component and for D8 at around the 75th principal com-
ponent. This means that in all cases the 256-dimensional vectors describing the invariants
(of which, of course, only 128 are not trivially zero) in fact can be reduced whilst preserving
the majority of information. Furthermore, it is interesting that D8 requires fewer principal
components than the other two, which may be related to the vanishing pseudoscalar as well
as some scalar parts in this case, and a quarter as many unique sextivector parts also, as
shown in Table 5.3.

As we saw in Section 5.3.2, the 40320 permutations give rise to only 128 unique Coxeter
elements for A8, D8 and E8 and the frequency of these 128 vary greatly. The frequency of
invariants will have a significant effect on the PCA results, and therefore, for comparison,
we repeat the PCA but on the reduced dataset of 128 invariants. Again, we perform the
analysis on the 9 orders of invariant individually and combined. The individual PCA plots
are shown in Figures B.4-B.6 and the combined plots are given in Figure 5.9. Figure 5.10b
also shows the elbow plot of the explained variance ratios for the combined PCA.

The discussed reflection and rotation symmetries of Figures B.1-B.3 become clearer to
see in Figures B.4-B.6, as presumably uneven multiplicities no longer weight the projections
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(a) A8 (b) D8 (c) E8

Figure 5.8: PCA plots of all 9 order invariants (SOCM) simultaneously for A8, D8 and E8. Note that
labels 5-8 don’t appear, as these invariants are mirror symmetric. This plot and analysis are a good
check of this fact.

(a) A8 (b) D8 (c) E8

Figure 5.9: PCA plots of reduced datasets (with duplicates deleted) of all 9 order invariants (SOCM)
simultaneously for A8, D8 and E8.

asymmetrically. Also for the A8 and D8 algebras, the Inv4 invariant projections become very
nearly identical to the respective Inv3 / Inv5 projections, emphasising a negligible impact of
the inclusion of the pseudoscalar between these invariant orders on the first two principal
components (which turns out to be 0 for D8 but not A8, see Tables 5.2 and 5.3). This, sur-
prisingly, does not happen for E8, indicating the pseudoscalar contribution to the principal
components is more significant here.

Whereas we saw distinct clustering of the different orders in the combined PCA plots in
Figure 5.8, we do not see this in the equivalent plots in Figure 5.9 from PCA on the combined
datasets with duplicates deleted. Comparing the combined plots to the unique plots for
the reduced datasets, we see the patterns from the unique order plots in Figures B.4-B.6
emerging in the combined plots in 5.9. It appears as if all the unique plots have simply been
overlaid on top of one another. This suggests that principal components for all the 9 orders
are the same and also match the principal components from the combined PCA.

The elbow plot in Figure 5.10b matches almost identically that in Figure 5.10a, and the
same conclusions hold.

5.7 Summary and Outlook

The experimental mathematics paradigm explored in this work combines an HPC compu-
tational algebra approach, generating a significant amount of algebraic data with a data sci-
ence analysis of the resulting dataset. Performing exhaustive calculations opens up a new
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(a) (b)

Figure 5.10: Elbow plot of explained variance ratio against principal component number for (a) full
A8, D8 and E8 datasets and (b) the reduced A8, D8 and E8 datasets with duplicates removed.

angle to conjecture formulation and theorem proving, and sheds light on the new geomet-
ric invariants for the important class of examples of Coxeter transformations. This detailed
example can be used as a foundation to explore the behaviour of invariants in other dimen-
sions or with different types of linear transformations. It was expected that there would be a
large degeneracy in the mapping between input permutations, resulting in a smaller number
of unique elements in the dataset. This assumption was verified through the application of
data analysis techniques. Moreover, many unexpected features were discovered, such as the
equality of the number of unique invariants among all three algebras. The relatively small
size of the unique output invariants dataset in this example made it perfectly suited to ML
tasks, which perform very impressively. One can, of course, go to an arbitrary dimension to
get larger data sets for An and Dn, but at the expense of missing out on the E-type. The pat-
terns observed in the reduced set of Coxeter elements, invariant bivectors, and some other
approaches discussed in [19] have certainly pointed in the direction of analytical results that
generalise these computational observations here, some of which we have mentioned above
and some to be investigated in further work.
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Chapter 6

Machine Learning Discovery of New
Champion Codes

In this chapter, we present a novel method for discovering champion generalised toric codes
(linear codes achieving or exceeding the best known minimum Hamming distance)1. The
parameter search space is combinatorially large, making the brute-force search computation-
ally intractable. To overcome this challenge, we train a transformer to predict the minimum
Hamming distance of a class of linear codes and pair it with a genetic algorithm to search
the parameter space. This approach successfully identified several new champion codes.

6.1 Motivation and summary

Coding theory is at the heart of modern communication. Error-correcting codes – used to
detect and correct errors in data transmitted over Wi-Fi or LAN networks [180], under
transatlantic waters [181], and across deep space [182], [183], [184] – are a key part of coding
theory. Thus, the search for more efficient error-correcting codes is of great importance.

The minimum Hamming distance is one of the crucial parameters that determines the
error-correcting capabilities of the code. Codes with the largest minimum distance among
those with the same other parameters are called champion codes. Determining this for general
toric codes is a computationally challenging task as the code parameters grow [185]. In
particular, it was demonstrated that it is an NP-hard problem for binary codes [186].

A type of codes for which powerful theoretical predictions are possible are the toric codes
defined by Hansen [187]. It is a class of error-correcting linear codes constructed from mono-
mials on toric varieties. These codes offer a rich algebraic structure and are connected to
algebraic geometry and commutative algebra, allowing us to set upper theoretical bounds
on the minimum distance [188]. Several studies have explored linear codes in general [189]
and specific families of toric over Fq for various q [190], [191]. New champion codes have
been discovered [192], [193]. In particular, in [193] the search for new champions was per-
formed systematically by a brute-force calculation of the minimum distance of all possible
generalised toric codes over fields from F3 to F7 (and partially F8) [193]. For relatively small
codes over fields up to F7, this was possible due to the current availability of computational

1The work presented in this chapter is based on the collaborative study [30]. The author of the thesis is the
main contributor to the design, implementation, and experiments with the transformer model for minimum
distance prediction, the development of the base of the core genetic algorithm code, and the data processing
pipeline.
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resources. However, the vast number of possible generalised toric codes over Fq makes a
systematic search infeasible for larger values of q.

In this study, we use ML techniques to approximate the minimum Hamming distance of
generalised toric codes over F8 and provide a methodology to discover new champion lin-
ear codes. We follow the tradition of applying data science and machine learning techniques
to purely mathematical data. This tradition has origins in the study of string theory and al-
gebraic geometry [12], and has developed to other areas of mathematics; for example [125],
[194], [195], [196], [197], [198], [199]. Although machine learning does not guarantee opti-
mal solutions to all problems, our investigation shows a successful application of machine
learning to an NP-hard problem [200] and a new methodology for discovering champion
codes.

We begin by creating a sequence model which performs classification using the generator
or parity-check matrix of the generalised toric code as an input and outputs the Hamming
minimum distance of the code. We trained these models on datasets of codes over F7 and
measured and compared each model’s performance. The best models were then paired with
a genetic algorithm to achieve the largest minimum distance of a generalised toric code over
F7 for each dimension k as in [193]. This provided a proof of concept for our exploration of
F8, where we discovered possible champion linear codes and verified several of them. In
particular, we discovered new champion linear codes over F8, which are listed in Table C.4
(Appendix C).

6.2 A Primer on Codes

In this section, we provide some rudiments of coding theory that will be used in this chapter.
The most common (error-correcting) codes are linear codes defined over a subspace C of

the vector space Fn
q . Mathematically, a linear code is a k-dimensional linear subspace C of

the vector space Fn
q over a finite field with q elements. The vectors in C are codewords of block

length n, and the size is the number of possible codewords, which is equal to qk. The weight
of a codeword is the number of its non-zero elements (vector components), and the distance
between two codewords is the Hamming distance between them, that is, the number of
elements in which they differ. The distance d of a linear code is the minimum weight of its
non-zero codewords or, equivalently, the minimum distance between distinct codewords.
Altogether, the three main parameters of a linear code C are denoted as [n, k, d]q. A general
reference for coding theory is [201], and one can find theoretical upper and lower bounds on
the highest minimum distance for a given n and k with the https://codetables.de/ [202].

We can characterise the code CV (Fq) with two matrices, the generator matrix GV (Fq) and
its parity-check matrix PV (Fq), defined as follows:

Definition 1. Suppose C is a linear code with block length n and dimension k.

• The generator matrix G of C is a k × n matrix whose rows form a basis for the code, such that
any codeword c is in the row-span and thus can be expressed as c = m · G for some length-k
vector m.

• The canonical form for the generator matrix G is G = [Ik|H], where Ik is the k × k identity
matrix and H is a k × (n− k) matrix.

• The dual generator matrix G⊥ of G is any matrix whose rows form a basis for the dual code
C⊥, where

C⊥ = {y ∈ Fn
q : y · c = 0 for all c ∈ C}.
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The parity-check matrix P of G is then the (n− k)×n matrix satisfying GP T = 0. Because P
satisfies GP T = 0 and its rows generate C⊥, P is typically taken as the dual generator matrix.

Likewise, given the canonical form of the generator matrix, the canonical form of the
parity-check matrix P is [−HT |In−k]. Thus, there is no ambiguity when considering the
equivalent generator and parity check matrices of a linear code C. From now on, we will as-
sume the canonical form when discussing the generator and parity check matrices. Indeed,
when the context is clear, we may write the linear code, its generator matrix, its parity-check
matrix, and its minimum Hamming distance by CV , GV , PV , and dV respectively, with the
understanding of the underlying field Fq. We say that V is the set of vertices of the gener-
alised toric code CV .

The minimum distance dV is a measure of the potential of the code for error correction.
It is equal to the minimum of a Hamming distance between any two codewords, while the
Hamming distance is defined as the number of unequal elements in two vectors. An impor-
tant task is to seek codes with a minimum Hamming distance d that is as large as possible
for a given n and k; this is sometimes referred to as “the main coding theory problem” [201].
In particular, we refer to any code with a larger minimum distance than the currently known
lower bounds as a champion code, as in [193].

To calculate this minimum distance, one can use an algorithm known as the Brouwer-
Zimmermann (BZ) algorithm [203], which is also described in [189]. Despite several im-
provements by [189], the BZ algorithm is computationally expensive; it has polynomial in k
and exponential in q complexity [204].

Toric codes are a class of codes introduced by J. Hansen in [187], which serves as a valu-
able source for constructing the linear codes. As we will see in Section 6.3, toric codes (we
will refer to them as non-generalised to avoid any ambiguity) and generalised toric codes
are defined in the same terms, the only difference being that the non-generalised toric codes
are built from a set of vertices belonging to a certain lattice polytope, while generalised toric
codes can be built from any set of vertices on a lattice2. Therefore, the set of non-generalised
toric codes is contained in the set of generalised toric codes. As we will see later, working
with generalised toric codes is easier in our case and, at the same time, allows us to infer
knowledge about toric codes.

It is important to emphasise that the term toric codes is also used in quantum computing
by Kitaev [206]. However, this is entirely different. Moreover, while Hansen defined toric
codes using toric varieties and polytopes, they can also be described within the framework
of evaluation codes. We need not delve into the details of defining toric codes here because
we will now introduce the generalised version by J. Little [192], which has proven useful in
identifying champion codes [191].

6.3 Generalised Toric Codes

In this study, we focus on generalised toric codes. This comes at the cost of losing certain
geometric results specific to toric codes, such as the Minkowski length [190]. We will address
this trade-off in detail later; for now, we begin by introducing the generalised toric codes.

Consider the planar lattice grid [0, q − 2]2 over the field Fq for a prime power q 3 and

2See [205] for more details.
3It is possible to work with non-prime q. In this case, there is, technically, no primitive element ξ which is an

integer. However, one can introduce an object α and demand that raising it to consecutive powers generates
all the non-zero elements of Fq . We will see it used later with the F8 field.
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primitive element ξ ∈ Fq (i.e. the primitive (q − 1)-th root of unity in the multiplicative
subgroup F∗

q). For all 0 ≤ i, j ≤ q − 2, we define Pi,j = (ξi, ξj) ∈ (F∗
q)

2, and for each
u = (u1, u2) ∈ [0, q − 2]2, we define the mapping

e(u) : F∗
q × F∗

q −→ Fq

Pi,j = (ξi, ξj) −→ e(u)(Pi,j) = (ξi)u1(ξj)u2 . (6.3.1)

Then, we have

Definition 2. Let V = {(x1, y1), . . . , (xm, ym)} be a set of vertices from [0, q − 2]2. We define the
corresponding generalised toric code CV (Fq) over the field Fq associated to V as the linear code of
block length n = (q − 1)2 and dimension k = dimCV (Fq) spanned by the vectors in{

(e(u)(Pi,j))0≤i,j≤q−2 = (ξiu1+ju2)0≤i,j≤q−2 : u ∈ V

}
. (6.3.2)

Note that the dimension k of our code may differ from the number of vertices m. As
with any linear code, the minimum Hamming distance d = dV (Fq) of CV (Fq) is defined as
the minimum distance between any two codewords of CV (Fq). We can then describe CV (Fq)
as an [n, k, d]q-linear code. Sometimes, we also use mV to reference the number of vertices m
for the code CV .

Example: It is expedient to give an example here. If q = 3, then the primitive element is
ξ = 2 (since in F3 ≃ {0, 1, 2}, the multiplicative group is F∗

3 ≃ {1, 2}, and both are powers of
2 modulo 3), and we have a [0, 1]2 lattice grid over F3. Notice that:

e(0, 0)(Pi,j) = 1

e(0, 1)(Pi,j) = 2j

e(1, 0)(Pi,j) = 2i

e(1, 1)(Pi,j) = 2i+j . (6.3.3)

Consider V = {(0, 0), (0, 1), (1, 0), (1, 1)}. Then, the generalised code CV is spanned by
the following vectors:

(1, 1, 1, 1), (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1)

Then, the generator matrix GV and parity check matrix PV of CV are:

GV =

1 0 0 2
0 1 0 1
0 0 1 1

 , PV =
(
1 2 2 1

)
Note that the dimension of this code is not equal to the number of vertices. By compu-

tation with a brute-force algorithm (i.e. the Brouwer-Zimmermann algorithm), we calculate
that the minimum Hamming distance dV is 2. Hence, CV is a [4, 3, 2]-code.

Non-generalised toric codes are constructed by ensuring that the set of vertices forms a
convex polytope over [0, q − 2]2.

If we consider only non-generalised toric codes, we gain access to geometric methods by
connecting them to toric varieties, as described in [207]. In particular, many have used the
theory of toric varieties, their cohomology, and intersection theory to obtain upper and lower
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bounds for the minimum Hamming distance of associated toric codes of certain shapes, as
seen in [207], [190], and [188]. Although there are more tools to access by restricting to
non-generalised toric codes, we decided to consider generalised toric codes instead because
generating datasets for generalised toric codes is computationally cheaper than for non-
generalised toric codes.

6.4 Machine Learning the Minimum Hamming Distance

In this section, we investigate whether ML can predict the minimum Hamming distance
dV of a generalised toric code CV (Fq) from its generator matrix. We initially consider the
problem over F7, as all the champion codes are known there, to develop a methodology for
use in the F8 case.

Existing research on ML applications to toric codes primarily focuses on the study of
existing quantum error-correcting codes within the framework of Kitaev’s toric codes [208],
[209], [210]. At the same time, there is no literature on the application of ML to Toric codes
defined by Hansen or the search for new champion codes, which is the aim of our work.

A generalised toric codeC, represented by a generatorG or parity-check matrix P , can be
viewed as a sequence of rows of length (q− 1)2, where the number of rows is the dimension
k of the code. Thus, the problem can be formulated as the prediction of the Hamming
minimum distance of that code, which can take integer values between 0 and (q − 1)2, from
the input sequence S of length k (dimension of the code) of code rows, with each being a
vector of length (q − 1)2.

This type of ML task is called sequence modelling. There are several ML architectures
suitable for these types of tasks: Convolutional Neural Networks, Recurrent Neural Net-
works, and Transformers. The important property of the latter two is that they are naturally
suited to work with the inputs on any dimension4

Furthermore, the problem of computing the Hamming minimum distance of a code is
an NP-hard problem, which suggests using the most powerful available approaches cur-
rently in use in the ML community, that is, transformers [147], which are the state-of-the-art
approach for sequence modelling tasks used in Natural Language Processing (NLP) tasks.
Transformers were most famously used in the ChatGPT chatbot [148] by OpenAI, but also
in tasks such as sentiment analysis [149]. The latter is a conceptually similar task to what we
consider here: given a sequence of elements (sequence of text tokens or rows of the code), a
class needs to be predicted (sentiment of a given text or a Hamming minimum distance). In
the following, we sometimes refer to codes with a certain minimum distance as class.

Some experiments were conducted with Recurrent Neural Networks (RNNs); see Ap-
pendix D.1.3 for details. However, we ultimately decided to build our model based on the
Transformer, as it was the architecture with the most potential. Computer code scripts and
data can be found on GitHub5.

6.4.1 Toric Codes Datasets

We aim to train an ML model to predict the minimum distance given a code, therefore, our
dataset consists of tuples of code generator matrices G, generator matrices of dual codes P
(parity-check matrix), and a corresponding minimum distance d.

4Though the transformers have a limit on the maximum length of an input.
5https://github.com/QTVLe/MachineLearningGeneralisedToricCodes
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The rows of our generator matrices are calculated from the coordinates of the set vertices,
as defined in Definition 2. However, the resulting matrix is not in canonical form; its row
order may vary with the order of the vertices, and two non-equivalent sets of vertices may
produce the same code. To resolve this, after generating the initial generator matrix, we
bring them to the canonical form using the functionality of the SAGEMATH [211] or the
MAGMA [212] systems. Thus, we can generate toric codes corresponding to a certain set of
vertices V .

Generating a balanced dataset in which all minimum distances are equally represented
is a nontrivial task. This is because, although the minimum distance d of code C gener-
ally decreases as the dimension of the code k increases, there is a considerable variation in
this value. Similarly, the calculation of the minimum distance d usually takes longer when
the generator matrix G and base of the field q are larger; however, it can vary significantly
for individual codes. We chose to generate an equal number of codes for each number of
vertices.

In the case of codes over F7, the generation of 100’000 codes for each number of vertices
from 5 to 31 is a quick and easy task, and we performed this generation6. However, in the
case of codes over F8, we were able to generate 100’000 codes only for the number of vertices
between 4 and 36, while the number of vertices from 37 to 49 took too long, therefore, we
decided to reduce the number of generated codes to 1’000.

The dataset generated for the codes over F7 contained 2’700’000 examples. In figure 6.1,
a significant variation in the frequencies of different minimum distances, ranging from two
to more than 600’000, can be observed. The dataset is highly unbalanced, and some classes
have 300’000 times more representatives than others. Therefore, randomly splitting the data
into training and test sets would be inadequate. Therefore, we split subsets with equal
minimum distance into train and test sets separately and merged them into full train and
test sets with oversampling to 500 or downsampling to 50’000 if necessary, and re-shuffling
afterwards. The resulting dataset of size around 550’000 was used for training with 9:1
train/test split.

Figure 6.1: Histograms of the F7 codes dataset. The left histogram shows how often the codes with
a specific minimum occur within the dataset. The right histogram shows how frequent generator
matrices of various lengths (code dimensions) occur within the dataset. Each bar represents the
frequency of codes with a specific minimum distance value (left histogram) or a particular generator
dimension (right histogram).

6See Appendix D for more details.
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For the F8 case, we were able to generate only a smaller dataset with 1’584’099 examples.
The complexity of the prediction for the codes over F8 is expected to be larger than that for
F7, but the amount of data we managed to collect was notably smaller than that for F7. To
mitigate this, we used a two-stage training procedure with the idea of training the model to
extract useful features of codes on common examples in stage I and then generalising this
knowledge to all classes in stage II. Stage I training was performed on a larger dataset with
approximately 300’000 examples, which included classes with more than 10’000 examples.
Then, in stage II training, we used all the classes, down-sampling or over-sampling all avail-
able classes to 600, with a total dataset length of 20’000 examples. We used a 9:1 train/test
split in both stages.

Figure 6.2: Histograms of the F8 codes dataset, analogous to histograms on figure 6.1. The left his-
togram is the distribution of minimum distances, the right one is the distribution of generators’ di-
mensions.

Interested readers may find more details about the datasets in Appendix D.1.

6.4.2 Model Architecture

We cast the prediction of the minimum distance as an NLP-style sequence classification task:
the input sequences come from interpreting the canonical generator of a code as a sequence
of rows S ∈ Fk×(q−1)2

q of length (q − 1)2, where the number of rows is the dimension k of the
code; and the class label is the minimum Hamming distance d ∈ {0, . . . , (q − 1)2}. Distances
of (q − 1)2 occur only for trivial single-row codes and are negligible, so we limit classes
to {0, . . . , (q − 1)2 − 1}.

Our model is based on a code available at [213], which is a simplified version of the
OpenAI GPT-2 model [214]. The original model was designed for sequence-to-sequence
tasks; therefore, we made some changes to enable it to work for sequence classification. The
main structural elements of the model are

• embedding of the elements of the field Fq: elements of F7 treated as integers, elements
of F8 were cast into four-dimensional vectors via learnable representation and further
concatenated7,

• sinusoidal positional encoding of rows,

7This is done to accommodate for the noninteger primitive element α of F8 field.
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• 2 layers of attention blocks, each with masked self-attention8 followed by a feed-
forward neural network,

• masked attention to eliminate the sequence length dimension in the output (attention
pooling),

• softmax transformation to produce the probabilities of classes (minimum distances).

See tables D.2 and D.3 for hyperparameters used, figure 4.4 for general structure of the
network9, and Appendix D for a more detailed description of the model.

6.4.3 Training and performance

To measure performance, we report the proportion of estimates falling within a 3-unit range
(dV ± 3) of the actual minimum distance (which we will call accuracy for short), alongside
the mean absolute error (MAE) and mean squared error (MSE) per class.

For F7, the model’s training set MAE was 1.04, and the accuracy within a tolerance (dV ±
3) was 91.9%. On the test set, which consisted of approximately 61,000 examples, the model’s
MAE was 1.05, and the accuracy within a tolerance (dV ± 3) was 91.6%. Figure 6.3 shows
the per-class metrics. Note that the MAE for all classes is less than 3, and most MSEs are
roughly squares of MAEs, indicating that only a few large errors is present in the model’s
predictions.

Figure 6.3: Losses on a test set for F7 codes with different minimum distances for the Transformer
model.

For F8, the model’s Stage II training achieved an MAE 1.09 and 93.4% accuracy within a
tolerance (dV ± 3) on the training set and an MAE 1.21 and an accuracy 92.4% on the test set.
Figure 6.4 shows the per-class results. The results here are visibly worse than those for the
F7 case. The MAEs for d = 14 are larger than 3, and the MSEs for d = 7, 14, 20, 21 and 28 are
noticeably larger than the squared MAE, indicating that there are a considerable number of
large prediction errors.

8Masking need to be used to be able to process the codes of different dimension in parallel.
9The only difference of the used architecture compared to the figure 4.4 is that we use Masked Multi-head

attention instead of general version.
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Figure 6.4: Losses on a testset for F8 codes with different minimum distances.

6.5 Genetic Algorithms

Once we have a model to approximate the minimum distance of a code, we search for cham-
pion codes. However, performing a full brute-force scan of the entire space of codes is com-
putationally intractable as there are 2(7−1)2 ≃ 7 · 1010 possible configurations of vertices for
F7 codes and 2(8−1)2 ≃ 6 · 1014 configurations for F8 codes. Inspired by the methodology
of [198], we employ a Genetic Algorithm (GA), which enables us to perform the search more
efficiently.

The GA search procedure is the following.
Fix a number n and a field Fq, and consider a population of subsets of n vertices {Vi},

treating each n-vertex set Vi as a chromosome and each vertex (xi, yi) as a gene. With the
fitness function of our genetic algorithm10 using the predicted minimum distance of our
model, each generation proceeds as follows:

1. Selection: Stochastic universal sampling picks 200 parents from a population of 300,
prioritising candidates with a higher fitness function value.

2. Crossover: Flatten each parent’s vertex set {(x1, y1), . . . , (xn, yn)} into a list
[x1, y1, . . . , xn, yn]. A random crossover split point made between vertex pairs swaps
the tails; offspring with duplicate vertices are discarded, and we repeat with other
parents.

3. Mutation: With 10% probability, a vertex is replaced by a new, unused one, preserv-
ing n vertices.

4. Elitism: The best 30 solutions with the highest fitness function value carry forward
unchanged, with the rest discarded.

This was repeated for 200 generations.
Note that we evolve vertex sets rather than generator matrices because there is no clear

way to mutate the generator matrices and preserve the type of linear code (in this case,
generalised toric code), except to mutate the parameters from which they arise.

10The code for the genetic algorithms used can be found here, [215].
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We target champion codes of dimension k by searching only k-vertex sets and penalising
candidates whose dimensions drift from k. Additional penalties11 prevent rediscovering
codes found in earlier runs. This leads to the fitness function Algorithm 1, used both over F7

and F8.

Algorithm 1 Fitness Function

Require: Target dimension k, set of k vertices V , set of sets of k vertices Sk corresponding
to codes found by the genetic algorithm so far.

Ensure: Fitness function f which implements the penalties described above.

1. If V ∈ Sk, return fitness score of f = 10.

2. Else, calculate the dimension kV = dimCV (Fq).

3. Predict minimum distance of code dapprox using model.

4. Return fitness score of f = 300 + dapprox − |kV − k|.

During the GA search, we predicted each code’s distance with our model (dapprox) and
then confirmed promising candidates with the expensive BZ brute-force algorithm. Since
distance evaluation is the bottleneck of the exploration, and verification is affordable over F7

but much costlier for F8, we apply the BZ check more selectively over F8.

6.5.1 Finding Best Codes in F7

We apply our F7 model to rediscover the best generalised toric codes over F7 from [193]
using Algorithm 2.

We ran the genetic algorithm 757 times, and the number of runs required to reach the
best code of a given dimension is presented in Table C.1 (Appendix C). As shown, the ge-
netic algorithm discovered codes with the best minimum Hamming distance in a single run
for most dimensions. For dimensions such as 12 and 15, many more runs appear to be re-
quired. For dimension 19, after 501 runs of the genetic algorithm, it was unable to find a
code with the best minimum Hamming distance after 501 runs. This points to either a rarity
of [36, 19, 12] generalised toric codes or very poor accuracy of the ML model at this minimum
distance.

Comparing Tables C.1 and C.2 shows a loose correlation: dimensions that contain a big-
ger number of the best codes in the dataset usually require fewer GA runs to rediscover
them. This pattern fades at the smallest and largest dimensions, where optimal codes are
naturally easier to locate than those in the 12–28 range. This partially explains why finding
the best code over dimensions 12, 15, and 19 took far longer than for other dimensions: the
dataset held few optimal-code examples at those sizes (this is amplified for dimensions 19
and 28 by the rarity of examples in the training set). Notably, although there were no best
codes of dimension 12 in the training and testing datasets, our method still found the best
generalised toric code of dimension 12. We see this more apparently over F8, where we
discover new champion codes.

11The number 300 in the formula is simply a way to offset the other two terms and make the output of the
formula positive as required by the PyGAD library we used [216].
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Algorithm 2 Discovering Best Codes over F7 for Dimensions 3 ≤ k ≤ 34

Require: Total number of runs so far, T ; list of best known minimum Hamming distances
for generalised toric codes over F7, Lb; list of the best found distances discovered by ge-
netic algorithm so far for each dimension, Ld = (d1, d2, . . . , d36); set of discovered codes of
dimension i, Si.

Ensure: Recurring algorithm to discover the best generalised toric codes over F7.

1. If T = 0, then Ld and Si (3 ≤ i ≤ 34) are empty. For 3 ≤ i ≤ 34, apply a genetic algo-
rithm to generate codes of dimension i. Place codes into Si, calculate their Hamming
distances, place the best-discovered minimum distances into Lk, and increase T by 1.

2. If T ̸= 0, then consider 3 ≤ i ≤ 34.

3. If Lk[i] ̸= Lb[i], then apply genetic algorithm to generate codes of dimension i. Place
codes in S, calculate their minimum distances, and update Ld if required.

4. Increase T by 1.

6.5.2 Finding Champion Codes in F8

Compared to the exploration in F7, the highest possible minimum Hamming distance for
generalised toric codes over F8 remains unknown for most dimensions. Therefore, as we
are seeking champion codes in F8, we use the known lower bounds in [202] to provide a
safe upper bound for the verification of our codes. We will denote the lower bound for the
dimension k as bk.

During the search, we use an additional criterion to discard codes with a low min-
imum distance found by the GA. For a code C of dimension k, we call MAGMA’s
VerifyMinimumDistanceLowerBound(C, bk). If the routine (which uses the BZ algo-
rithm) shows dC < bk, we discard C immediately; otherwise, we keep it for a full distance
check. This filter saves considerable computation by focusing only on codes that could beat
the current records. Thus, we use Algorithm 3.

Algorithm 3 Discovering New Champion Codes over F8 for Dimensions 3 ≤ k ≤ 46

Require: Total number of runs so far, T ; list of lower bounds for minimum Hamming dis-
tances of champion codes over F8, Lb; set of discovered codes of dimension i, Si.

Ensure: Recurring algorithm to search for champion generalised toric codes over F8.

1. Begin with Si (3 ≤ i ≤ 46) as empty sets.

2. For 3 ≤ i ≤ 46, apply genetic algorithm to generate codes of dimension i.

3. Place codes into Si, verify whether they are possible champion codes or not, tag the
possible champion codes, and increase T by 1.

4. Repeat until you wish to finish.

5. Once finished, for tagged possible champion codes, apply the BZ algorithm to com-
pute their minimum distances.

6. Verify possible champion codes against known bounds.

112



We performed one run1213 of the above algorithm. Despite this, we found over 700 pos-
sibly new champion codes.

As with F7, we compare these results with the number of champion codes found in the
dataset, as shown in Table C.3 (Appendix C).

Once again, champion codes were discovered at the lowest and highest dimensions for
reasons similar to those over F7. Surprisingly, we achieved champion codes in dimensions
18, 22, and 38, which had no champion codes in their datasets, in just a single run. Through
explicit calculation compared with the best-known codes in [202], we see that all codes of
dimensions 18, 22, and 38 that had been discovered are, in fact, novel. The results are pre-
sented in Table C.4 (Appendix C).

6.6 Summary and Outlook

In this study, we demonstrated a promising synergy between ML and genetic algorithms in
constructing error-correcting codes with the highest Hamming distance. In particular, our
investigation into generalised toric codes over finite fields was two-fold: first, we approxi-
mated the computationally expensive task of determining the minimum Hamming distance
using a transformer architecture, and then paired this predictive model with a genetic algo-
rithm to construct champion codes.

Our experiments were conducted over both F7 and F8 fields.
For F7, we constructed a large dataset comprising over 2.5 million code examples, with

each instance consisting of a canonical generator matrix, its corresponding parity-check ma-
trix, and the minimum Hamming distance computed using the BZ algorithm. The trans-
former architecture stood out as a possible choice for predicting the minimum Hamming
distance. Pairing this transformer model with a genetic algorithm, we observed that for
most dimensions, the best-known generalised toric codes over F7 as described in [193] were
found in only a few runs, while other dimensions (e.g. 12, 15, and 19) required much more
exploration.

We then extended our approach to F8, where the computational challenges regarding the
BZ algorithm became even more pronounced. Despite the more limited dataset sizes (due
to the increased computation times for the minimum distance calculation), our approach
yielded over 700 potential champion codes in a single run. After calculating the minimum
Hamming distances of these codes, we discovered new champion codes in many dimen-
sions, including previously unknown codes in dimensions 18, 22, and 38.

Our method can be improved on several fronts. Larger and more balanced datasets
would provide predictive models with richer coverage, particularly at rare distances.
Broader hyperparameter searches for the transformer model including optimisers, other loss
functions, alternative row/field encodings could further improve accuracy.

Beyond F7 and F8, the same framework can progress over to higher fields of prime pow-
ers (F9, F11, F13), expand to non-generalised toric codes that can exploit algebraic and ge-
ometric properties arising from their underlying toric varieties [185], [187], [190]. More-
over, our procedure can, in principle, be generalised to any space of linear codes such as
generalised toric codes, Bose-Chaudhuri-Hocquenghem (BCH) [217], [218], Reed-Muller

12We ran the algorithm twice for vertices between 20 and 29. In this search, we discovered a champion code
of dimension 22, as shown in Table C.4 (Appendix C). Upon discovery, we saved this code. Due to a file error,
we were unable to save the corresponding dataset that included this code.

13This is due to time and computational constraints.
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(RM) [219], [220] or Algebraic-Geometry (AG) [221], [222] codes, that can be explored by
a genetic algorithm14. Then, one can proceed by generating a dataset consisting of the gen-
erator matrices, their minimum distances, etc. The dataset is then used to train a model.
After some calibration, a genetic algorithm with minimum distance as a fitness function can
be applied to perform a search and find possible new champion codes.

14The requirement is that the space of codes should be amenable to genetic algorithms/with an evolvable
(can be subjected to a GA) parameter space or a way to explore the space of linear codes. Such properties exist
for toric codes because of the description in terms of polytopes (or sets of vertices for generalised toric codes).
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Chapter 7

Summary and Conclusions

This thesis explored two directions, Integrability and Machine Learning, which are two very
different sets of tools applicable to a wide range of problems in theoretical physics and math-
ematics. Despite this difference, the two are united by the common goal of extracting struc-
tured information from complex systems, whether from the symmetries of quantum field
theory or the high-dimensional data of a combinatorial task. We advanced the understand-
ing of string theory in AdS3 background using integrability and developed new ML tech-
niques to approach problems of a combinatorial nature, demonstrating the complementary
power of traditional and computational methods.

In Chapter 2, we considered the AdS/CFT correspondence and integrability for string
theories in AdS5 × S5 and AdS3 × S3 × T4 backgrounds. Section 2.1 motivated the AdS/CFT
conjecture using brane constructions for both backgrounds. Then, in Section 2.2, we consider
a well-understood case of AdS/CFT in AdS5 × S5 background. After reviewing the dual
N = 4 SYM CFT properties, we switched to the string side of the duality and discussed
the symmetry algebra psu(2|2)2c.e. and its representations, which allowed us to construct the
S-matrix for AdS5 × S5 superstring. We concluded this section by considering the crossing
transformation and the dressing factor.

Section 2.3 was devoted to the integrability in AdS3 × S3 × T4 background with pure
Ramond-Ramond flux. This theory shares many features with the AdS5 × S5 case, but also
has notable differences, such as the presence of massless modes and fewer supersymmetries.
Guided by the example of AdS5, we considered the symmetry algebra psu(1|1)4c.e. and its
representations, and constructed an S-matrix and dressing factors which are known in the
literature.

Based on the intuition built in the previous chapter, we presented new findings for the
less understood mixed-flux AdS3 × S3 ×T4 strings in Chapter 3. We reviewed the symmetry
algebra psu(1|1)4c.e. and its deformed, compared to pure R-R case, representations. Despite
the same symmetry algebra as in the pure RR case, the deformed representation leads to
a distinct kinematical structure of the worldsheet excitations. We then analyse the strong-
coupling limit along with other constraints to derive the odd part of the massive dressing
phase for the exact S-matrix.

The kinematics and odd part of the dressing phase considered in Chapter 3 are the step-
ping stones to the construction of the full exact S-matrix and complete control over the
mixed-flux AdS3 × S3 × T4 background. Such control will facilitate a further understand-
ing of the WZW and RNS descriptions of string theory, which appear in the pure NS-NS
and pure R-R limits of the mixed-flux theory. At the same time, the AdS/CFT correspon-
dence potentially allows us to map the knowledge of string theory to the symmetric-product
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orbifold CFT of T4 and understand it better as well.
We then switched our focus to the Machine Learning application to combinatorial struc-

tures, where the abundance of data makes the application of ML a viable, if not the only
available option, to make progress on the problem. The work presented here includes the
study of Clifford invariants of ADE Coxeter elements and the search for champion toric
codes.

Chapter 4 provided an overview of the Machine Learning techniques used in the subse-
quent chapters.

In Chapter 5, we studied the Clifford invariants of Coxeter elements in ADE algebra root
systems. After introducing the geometric algebra language, we described the dataset gener-
ation and proceeded to investigate the general patterns and symmetries present in the data,
and applied neural networks for their classification, yielding a high accuracy. The purpose
of this study was to explore the possibility of applying Data Science and Machine Learn-
ing to the study of Clifford algebras. As a result, we found a range of patterns that might
guide further theoretical studies of ADE root systems and their Clifford invariants. There
is a potential to use this to generate conjectures based on the patterns, either in an experi-
mental mathematics approach or using symbolic ML approaches. However, the question of
whether the high predictive accuracy of machine learning can be converted into theoretical
insights remains.

Chapter 6 presents an application of Machine Learning to the search for new cham-
pion toric codes. Building on previous work which exhausted the brute-force computation
method, we present an approach to bypass the computational complexity of the problem
using deep learning. We created a model based on a transformer architecture, which was
trained on a limited dataset to predict the Hamming minimum distance of a code. The
resulting model is then coupled with a genetic algorithm, which searches for codes with
the largest Hamming minimum distance. The obtained champion codes are then validated
using conventional algorithmic computation, revealing several new champion codes. This
approach can be generalised to other types of codes, such as BCH and RM codes.

More broadly, both works employing ML are among the first of their kind in their re-
spective areas of mathematics and aim to probe new ways for such applications.

Overall, both the analytical approach and AI-assisted methods have their strengths and
are best suited to different contexts. By applying one or the other, or integrating them syn-
ergistically, the frontiers of theoretical physics and mathematics can be pushed more effec-
tively than relying on either approach in isolation.
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Appendix A

NN Gradient Saliency Results

The gradient saliency results, showing the relative importance of the input parts of the Cox-
eter element permutation for predicting the subinvariants at each order, are presented in the
subsequent Tables A.1, A.2, A.3.

Invi Inv0i Inv2i Inv4i Inv6i Inv8i
Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table A.1: Summary of gradient saliency analysis for each invariant and subinvariant for A8 simple
root data. The NN function takes as input the permutation performed on the original Coxeter element
and outputs the coefficients of the respective subinvariant. The saliency barcodes, hence, represent
the relative importance of each root in the permutation for computing the subinvariant coefficients.
Lighter colours indicate larger gradients and greater importance.
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Invi Inv0i Inv2i Inv4i Inv6i Inv8i
Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table A.2: Summary of gradient saliency analysis for each invariant and subinvariant for D8 simple
root data. The NN function takes as input the permutation performed on the original Coxeter element
and outputs the coefficients of the respective subinvariant. The saliency barcodes, hence, represent
the relative importance of each root in the permutation for computing the subinvariant coefficients.
Lighter colours indicate larger gradients and greater importance.
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Invi Inv0i Inv2i Inv4i Inv6i Inv8i
Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table A.3: Summary of gradient saliency analysis for each invariant and subinvariant for E8 simple
root data. The NN function takes as input the permutation performed on the original Coxeter element
and outputs the coefficients of the respective subinvariant. The saliency barcodes, hence, represent
the relative importance of each root in the permutation for computing the subinvariant coefficients.
Lighter colours indicate larger gradients and greater importance.
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Appendix B

PCA Results

The 2-dimensional PCA projections for each dataset of invariants at each order for each
root system A8, D8, E8 are shown in Figures B.1, B.2, and B.3 respectively, whilst the 2-
dimensional PCA projections for the same partitioning of invariants into orders and types
– however now reducing the datasets to unique invariants – are shown in Figures B.4, B.5,
and B.6 respectively.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.1: PCA plots of the 9 orders of invariant (SOCM) for A8. The observed mirror symmetry is
a good consistency check.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.2: PCA plots of the 9 orders of invariant for D8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.3: PCA plots of the 9 orders of invariant for E8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.4: PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of invariant for
A8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.5: PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of invariant for
D8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Figure B.6: PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of invariant for
E8.
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Appendix C

Champion codes found over F8

Table C.4: Champion codes found over F8, with block length n = 49, dimension k, and best minimum
distance found d, and number of such codes discovered N .

k d N Example Vertices

3 42 231 (1, 0), (2, 3), (6, 3)

4 40 66 (0, 5), (2, 6), (6, 0), (6, 4)

6 36 3 (0, 0), (0, 6), (2, 4), (2, 5), (4, 6), (6, 4)

7 35 1 (0, 3), (2, 5), (4, 6), (5, 0), (5, 1), (6, 0), (6, 3)

8 34 1 (0, 4), (0, 6), (2, 3), (3, 4), (4, 0), (5, 1), (5, 3), (6, 0)

18 21 4 (0, 1), (0, 2), (0, 3), (0, 5), (1, 0), (1, 1), (1, 5), (1, 6), (3, 2),
(3, 3), (3, 5), (3, 6), (4, 3), (4, 4), (5, 1), (5, 3), (5, 5), (6, 4)

22 18 1 (0, 0), (0, 6), (1, 0), (1, 3), (1, 4), (1, 5), (2, 0), (2, 5), (2, 6),
(3, 2), (3, 3), (3, 5), (3, 6), (4, 2), (5, 0), (5, 3), (5, 4), (6, 0),
(6, 1), (6, 3), (6, 4), (6, 5)

38 7 1 (0, 1), (0, 3), (0, 4), (0, 6), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(1, 6), (2, 0), (2, 1), (2, 3), (2, 4), (2, 6), (3, 0), (3, 1), (3, 3),
(3, 4), (3, 5), (3, 6), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(4, 6), (5, 0), (5, 1), (5, 3), (5, 4), (5, 5), (5, 6), (6, 0), (6, 1),
(6, 2), (6, 5)

40 6 94 (0, 0), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 1), (1, 2), (1, 5),
(1, 6), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 0),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 4),
(4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 0),
(6, 1), (6, 4), (6, 5), (6, 6)

(Continued on next page)
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(Continued from previous page)

k d N Example Vertices

41 6 3 (0, 0), (0, 1), (0, 2), (0, 4), (0, 5), (0, 6), (1, 0), (1, 2), (1, 3),
(1, 4), (1, 5), (1, 6), (2, 0), (2, 1), (2, 2), (2, 4), (2, 6), (3, 0),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 0), (4, 1), (4, 4),
(4, 6), (5, 0), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (6, 0), (6, 1),
(6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

44 4 100 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (1, 1),
(1, 3), (1, 4), (1, 5), (1, 6), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 0), (3, 1), (3, 4), (3, 5), (3, 6), (4, 0), (4, 1),
(4, 2), (4, 3), (4, 4), (4, 6), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4),
(5, 5), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

46 3 235 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (1, 1),
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 6), (4, 0),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3),
(5, 4), (5, 5), (5, 6), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5),
(6, 6)
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Dimension No. of Runs
3 1
4 1
5 1
6 1
7 2
8 1
9 20

10 1
11 3
12 54
13 1
14 2
15 81
16 1
17 1
18 20
19 N/A
20 1
21 22
22 18
23 1
24 30
25 1
26 1
27 1
28 43
29 1
30 1
31 1
32 1
33 1
34 1

Table C.1: Dimension of code over F7 vs. Number
of runs to find the best minimum Hamming dis-
tance

Dimension No. of Best
3 98
4 332
5 23446
6 4023
7 115
8 564
9 27
10 2482
11 124
12 0
13 411
14 16
15 1
16 11838
17 1951
18 66
19 0
20 1094
21 39
22 57
23 336
24 5
25 45714
26 21432
27 4215
28 80
29 2420
30 33302
31 10713
32 0
33 0
34 0

Table C.2: Dimension of code vs. Number of best
codes in the dataset over F7
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Dim No. of Champs
1 0
2 0
3 16464
4 31091
5 0
6 1034
7 216
8 28
9 3

10 11
11 1
12 144
13 1
14 0
15 146
16 1

Dim No. of Champs
17 0
18 0
29 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0

Dim No. of Champs
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 6138
41 357
42 0
43 0
44 5177
45 0
46 16464
47 0
48 1176

Table C.3: Dimension of code vs. Number of champion codes in the training and testing datasets
over F8.
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Appendix D

Machine Learning Experiments for
Generalised Toric Codes

This appendix expands the description of the ML experiments from Section 6.4.

D.1 Datasets

In this section, we give more details on how the dataset was generated and prepared for
training.

D.1.1 F7 dataset

To obtain a representative dataset, we generated a dataset of 100’000 tuples of the form
(V,GV , dV )

1 for each number of vertices m ∈ [5, 31]. For a fixed m, we followed an algo-
rithm 4. The resulting dataset is shown in Figure 6.1.

Algorithm 4 Generating datasets of size up to 100’000 over Fq, for number of vertices m

Require: A positive integer m ≤ (q − 1)2

Ensure: A dataset S∗ of 100’000 distinct tuples of the form (V,GV , PV , dV ) for |V | = m ver-
tices.

1. Generate a set S of 100’00 distinct uniformly random subsets of [0, q − 2]2 of size m.

2. Take V ∈ S, a set of m vertices of [0, q − 2]2.

3. Define CV , using the order defined in 3.1.

4. Calculate GV in standard form, and dV .

5. Return the tuple (V,GV , dV ) in a dataset, S∗.

6. Repeat for each V ∈ S.

7. Return S∗.

Note that the total number of subsets in our lattice grid is 2(q−1)2 and the number of

1The initial investigation showed that the generator matrices GV and dual generator matrices PV con-
tain essentially the same information; therefore, we continued to generate datasets as a collection of tuples
(V,GV , dV ).
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subsets of size m is
(
(q−1)2

m

)
. Thus, only for 5 ≤ m ≤ 31 there may exist more than 100’000

distinct codes over F7.
Generating the F7 dataset using Magma, which can perform commutations in parallel,

on a computer cluster node with 96 Intel Xeon Gold 6442Y processors (48 cores, 96 threads,
2.6-4.0 GHz) took approximately 24 h.

The resulting dataset of codes over F7 contains 2’700’000 examples. As illustrated in
Figure 6.1, there is considerable variation in the frequencies associated with different mini-
mum distances, with counts for individual minimum distances ranging from as few as two
instances to over 600’000.

Training on such an unbalanced dataset requires additional steps beyond simply parti-
tioning the data into train and test sets randomly. Specifically, it is important to split each
subset of the dataset with the same minimum distance into train and test sets separately,
merging them into full train and test sets with re-shuffling afterwards. Furthermore, class
imbalance can be further mitigated through the application of oversampling/downsam-
pling of the minority/majority classes. As will be described below, the model trained for
codes over F7 uses cross-entropy loss, which also allows for down-weighting the losses for
oversampled and up-weighting downsampled classes.

The final dataset for F7 codes contained around 550’000 and was used for training with
a 9:1 train/test split. The subsets with fewer than 500 elements were oversampled with re-
placement to 500 elements, and the subsets with more than 50’000 examples were downsam-
pled to 50’0002. The only class with fewer than 10 elements, corresponding to a minimum
distance of 13, was used in the test set only.

It is important to note that the dimension of code CV (the number of rows of the genera-
tor) can be equal to or smaller than the number of vertices from which the code is generated.
This occurs when the rows of the linear code are not linearly independent. Conversely, the
dimension can be larger than the number of vertices for the dual codes.

D.1.2 F8 dataset

In the case of codes over F8, we were able to generate 100’000 codes only for the number of
vertices 4-17, following an algorithm similar to 4. Due to the computation time required to
calculate the minimum distances of codes of higher dimensions, we cut the number of gener-
ated codes for the number of vertices 17-39 to 1’000, with a limit on the computation time of 1
minute. An additional 20’000 codes were generated for the vertex numbers m = 2, 3, 40− 47
afterwards. As can be seen in the figure 6.23, for m = 2, 3, the number of existing codes is
smaller than 20’000 examples. A similar situation occurred with m = 47. The variation in
the number of examples by minimum distance in the region m = 17 . . . 40 is caused by the
limit on the minimum distance computation time we set in Magma, demonstrating the com-
plexity of the procedure in this region. The resulting dataset contained 1’584’099 examples.

Generating the F8 dataset using Magma on a computer node with 96 Intel Xeon Gold
6442Y processors (48 cores, 96 threads, 2.6–4.0 GHz) took around 48 hours.

An unexpected feature of the codes over F8, compared to F7 codes, is that the dimensions
of codes are always equal to the number of vertices from which these codes were generated.

2The goal was to get a moderately imbalanced dataset with the smallest classes being no smaller than 1%
of the biggest classes.

3The outlier at m = 42 is a result of a mistake when handling the data: 20’000 data points for m = 41 were
added twice, and 20’000 for m = 42 were never added to the dataset. It was spotted after all the experiments
were completed. The results are presented as is because it would be very time-consuming to repeat all the
processes.
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The minimum distance prediction task for the codes over F8 is expected to be more com-
plicated than for F7, but the amount of data we managed to collect was marginally smaller
than for F7. To compensate for this data limitation, we developed a two-stage training pro-
cedure. A pre-training stage was done on a larger dataset with approximately 300’000 ex-
amples, which included subsets (codes with the same minimum distance) with more than
10’000 examples; subsets with more than 20’000 examples were downsampled to 20’000.
Then, in the training stage, all the subsets were used, with down-sampling or over-sampling
to 600.

In goal was to train the model to extract useful features of codes on the common ex-
amples in the pre-training and then generalise this knowledge to all subsets in the training
stage. In the latter had a 10 times smaller learning rate was used to change the weights on a
smaller scale than in pre-training to avoid losing any learned features.

The resulting performance is described in Section 6.4.3. Here we will point out a couple
of features of the found results.

Figure 6.3 reveals a notable trend: the model exhibits inferior performance for codes with
minimum distances d = 2, 14, 22, and 27. However, a worse performance can be explained
by the scarcity of training examples only for d = 7, 14 and 27. In contrast, the minimum dis-
tance d = 2 and 22 codes are well-represented in the dataset. These performance variations
may indicate a different structure of the codes with these minimum distances from others.

Figure 6.4 reveals a similar pattern for the F8 case. The codes with minimum distances
d = 7, 14, 21 and 28 codes are more difficult for the model to predict accurately. This be-
haviour cannot be attributed to data scarcity, which may again indicate that these codes are
different structurally from those with other minimum distances.

D.1.3 LSTM for Codes over F7

In Section 6.4, we mentioned several architectures suitable for the sequence classification
problem we consider. We started our experiments with a smaller dataset and used an LSTM
model to produce a baseline to compare with future experiments.

Initially, generated dataset of 100’000 tuples (V,GV , PV , dV ) were generated by drawing
a random number m ∈ [3, 28] of vertices and then selecting random vertex coordinates. See
figure D.1.

The result is an imbalanced dataset with many minimum distances not being repre-
sented, which demonstrates the complexity of generating a representative dataset for all
minimum distances. For instance, a rare minimum distance d = 2, which appears only once,
originates from the code with dimension k = 22. There were 3755 codes with dimension
k = 22, and the majority (88%) of them had a minimum distance d = 6. Codes with dimen-
sion k = 23 may seem more likely to produce a code with a minimum distance d = 2, but
there were no such examples in the generated dataset.

This initial 100′000 codes dataset was randomly split into training and test sets in a 9:1 ra-
tio. Because the dataset was very unbalanced and no measures to rebalance it were taken, the
test set was missing minimum distances of 2, 7, 17, and 36 compared to the whole dataset.

The model takes as input generator matrices 4 in batches. The target outputs d in the
dataset were rescaled to be in region [0, 1] using a formula d̃ = (d − µ)/σ, where µ = (30 +
3)/2 = 16 and σ = (30− 3)/2 = 13.5.

The model consisted of two layers of stacked LSTM. After the second layer, the hidden

4Without any encoding. To be discussed later.
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Figure D.1: Distributions of Minimum distances d and dimensions of codes k (equal to the number
of rows in generator matrix G) in the initial dataset of 100’000 codes over F7. Generated by drawing
a random number m ∈ [3, 28] of vertices and then choosing random vertex coordinates.

and cell states were extracted, concatenated, and passed to a linear layer projecting the out-
put onto one continuous variable. The hyperparameters are presented in Table D.1.

Hyperparameter Type Parameter Description Value

Input dimension 36

Network architecture Hidden dimension 128

Number of layers 2

Batch size 4

Optimizer AdamW

Training parameters Learning rate 1 · 10−5

Epochs 200

Table D.1: LSTM architecture and training hyperparameters for F7 codes minimum distance predic-
tion.

On a training set, the model’s MAE was 2.72 and the accuracy within a tolerance (dV ±3)
was 93.0%. In the test set, the model’s MAE was 3.02 and the accuracy within a tolerance
(dV ±3) was 91.2%. See figure D.2 for per-minimum-distance metrics. The model performed
better for the lower part of the minimum distance spectrum and worse for the upper part.
This model serves as a proof of concept that it is possible to learn to predict the minimum
distance of a code, and the model has a generalisation capability for unseen data.

Ultimately, the goal of the model is to be an estimator of the minimum distance, to be
used in conjunction with the Genetic algorithm (GA) in Section 6.5. During our experiments
with GA, we observed that the final population after the GA run was somewhat noisy –
that is, the dimensions of the resulting codes’ minimum distances were distributed in some
regions around the maximum value. The range between the smallest and the largest mini-
mum distance typically varies from 3 to more than 10. As a result, the model does not need
to be 100% accurate to be efficient in this context; a MAE error within a reasonable range

134



Figure D.2: Losses on a test set for F7 codes with different minimum distances for the LSTM model.

would still be sufficient for practical use.

D.1.4 Toric Transformer

As mentioned in Section 6.4.2, recent advances in NLP are driven by the transformer archi-
tecture, which has demonstrated high effectiveness on various sequence processing tasks. It
is therefore reasonable to test it in the current setting, which can be viewed as a sequence
classification task.

Compared to NLP transformers, there are several architectural changes compared we
implement for this task:

• input encoding of the field elements (for F8),

• masking to prevent padding from affecting results,

• attention pooling to produce a sequence length independent output,

which we discuss below in the description of the architecture5.
The general structure of the model is depicted in Figure 4.4 and is shared by both models

for F7 and F8 codes.

Input

The input of the model was composed of a code tensor and a length vector. The code tensor
is a PyTorch tensor containing a batch of generator matrices, padded with zeros to standard-
ise their dimensions. This tensor had three dimensions denoted as (B, T, C), where

• B – batch dimension (i.e. the number of examples in a batch),

• T – time dimension, corresponding to the maximum number of rows in the generator
matrices (i.e. (q − 1)2)6

• C – number of channels, corresponding to the length of each row in the generator
matrix (i.e. (q − 1)2 as well).

5Short architecture description was given in 6.4.2 as well.
6For individual generator matrices, this dimension has a size equal to the code dimension k, but when

padded and packed in the code tensor, it is equal to (q − 1)2.
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The length vector stores the actual number of rows (i.e., the code dimension k) of each gen-
erator matrix in the batch. It can be used to distinguish where the true generator matrix
rows and the padding within the code tensor.

Input embedding

The input sequence of the rows of the generator matrix in a batch is passed through an em-
bedding layer. Embedding is a useful technique originating from NLP. The idea is to map
the elements of the input sequence into some higher-dimensional space. In NLP, text data
is first split into elementary building blocks of the sequence – tokens, which are then repre-
sented as vectors in a higher-dimensional vector space, allowing the ML model to process
them effectively. In our setting, the rows of the generator and parity-check matrices are
already in a vector form with entries of the vectors being elements of the Fq field. However,

• elements of F7 field are numbers in the range [0, 6] and thus the rows can be used as an
input “as is”;

• elements of F8 field cannot be written as integers because F8 field does not have a mul-
tiplicative generator. If we introduce α as a notation for the primitive element, then the
elements of the F8 field can be written as 0, 1, α, α2, . . . , α6, α7 = 1. This representation
was used in the Magma CAS. However, these elements are not linearly independent,
and although one-hot encoding was found to be efficient in the F7 case, using it is not
reasonable. The alternative we used was to include an embedding layer with learnable
representation, which is less efficient7 compared with a one-hot representation.

Attention blocks

The attention mechanism in the Transformer architecture and embedding align naturally
with the structure of the problem of predicting the minimum distance. By passing the rows
of the generator matrix to the model, it will first represent them as some vectors via the
learned representation layer. These representations can then be compared in attention heads
with each other, and useful information for the prediction of the minimum distance can be
extracted.

In our model, after the addition of positional encoding, the result was passed through
an encoder-only set of self-attention blocks, each containing an attention layer and a feed-
forward neural network.

Pooling layer

In standard transformer architecture, the number of dimensions of the input, which is of
shape (B, T, C) in our case, is preserved on all the stages. But for classification tasks, a single
fixed-size vector per sequence is needed, so we must eliminate the time dimension T in the
output, i.e. introduce a pooling layer. There are many variants in the literature, but the
simplest are:

• BERT-like pooling – introduce the special classification token [CLS] in the input, and
then use the output at [CLS] for classification,

7In the sense that training to the same level of loss generally takes more epochs for a learnable embedding
layer.
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• average pooling – simply take the average of all outputs along the T dimension and
use for classification,

• attention pooling – applying an attention mechanism to compute a weighted sum of
sequence elements.

However, it was shown [151] that the latter two are somewhat better than the first approach,
so we used them in our model.

• We used average pooling in F7 case, and it demonstrated promising results despite
being a very loose form of summarisation. The reason for this might be that within
the attention layers, the rows of the generator matrix exchange information with each
other and form more or less similar representations of the code;

• we expected the F8 case to be more complicated, so the attention pooling was imple-
mented. The idea is essentially to do a transformation v → softmax(vTM)v with a
learnable square matrix M . It can reproduce the mean when M is proportional to the
identity matrix and, therefore, should provide results that are not worse than the sim-
ple mean.

Output

After that, a linear classification layer, projecting from the embedding space to the output
vector of dimension (q − 1)2 (the number of possible minimum distances treated as (q − 1)2

independent classes), is added on top of the pooled output. Finally, a softmax function
was applied to get probabilities of classes vector p⃗, which were then used to compute the
expectation of the minimum distance as E[d] = p⃗·⃗iwhere i⃗ is the class labels (target minimum
distances) vector.

Since we were working with padded data, we had to implement masking to prevent
padding elements from influencing the results in the attention blocks and pooling layers.

Loss functions

Since we are computing the expectation of the minimum distance, we could have used
just the mean square error loss between the expectation and the true minimum distance.
However, this loss would discard all the information about the individual probabilities of
the classes. To use this information, one can use Wasserstein loss (or distance) or a Cross-
Entropy loss.

Wasserstein loss, sometimes referred to as Earth Mover’s Distance, has more applications
with Generative Adversarial Networks. It measures the distance defined between probabil-
ity distributions using some metric (we choose just Euclidean distance). On the other hand,
Cross-Entropy loss measures the difference between two probability distributions, but it is
not a symmetric metric. It is more suitable for classification problems and thus has more use
in NLP.

The current task naturally suggests using Wasserstein loss to bring the model’s output
distribution to a point-mass distribution, which we did for the F7 case. However, experi-
ments demonstrated a superior performance of Cross-Entropy loss, which we continued to
use for F8 codes.
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Hyperparameters

See Table D.2 and D.3 for the hyperparameters of transformer models for codes over F7 and
F8, respectively.

Hyperparameter Type Parameter Description Value

Embedding No

Input dimension 36

Network architecture Embedding dimension 200

Attention heads 10

Transformer layers 2

Dropout 0.2

Loss function Wasserstein-2

Batch size 32

Optimizer AdamW

Training parameters Learning Rate 3 · 10−4

Epochs 22

Table D.2: Transformer architecture and training hyperparameters for F7 codes minimum distance
prediction.

Improvements

We used the models described above to search for champion codes using a genetic algo-
rithm. We started experiments with the F7 codes model, iteratively improving it, at both the
architecture and training procedure. These experiments showed that a number of modifica-
tions can be made to improve performance.

We found that instead of using the rows of the generator matrix as it is, it is more efficient
to encode elements of rows using one-hot encoding. That is, we replaced entries in the input
row by vectors of length seven containing zeros everywhere except one position unique to
each of the numbers 0-6 (and flattened afterwards). As a result, the input vector of length 36
is replaced by a vector of length 36 · 7 = 252.

As described in 6.4.3, we used an oversampling technique to rebalance the dataset. To
avoid biases in the model’s output distribution caused by duplicated examples, we down-
weighted the oversampled examples during training.

Using attention pooling instead of average pooling also demonstrated improved results.
Finally, in the case of F7, we used the whole dataset divided into training and test sets.

But unless we oversample some classes by a factor of thousands, the datasets remain ex-
tremely unbalanced. To overcome this problem, we introduced the two-stage training pro-
cedure:

• in the pre-training stage, we used classes which has many representatives (more than
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Hyperparameter Type Parameter Description Value

Embedding Learnable embedding

Input dimension 49

Network architecture Embedding dimension 196

Attention heads 7

Transformer layers 2

Dropout 0.2

Loss function Cross-entopy

Batch size 128

Optimizer AdamW

Training parameters Learning Rate pre-training 3 · 10−6

Learning Rate potty-training 3 · 10−7

Epochs pre-train 120

Epochs post-train 120

Table D.3: Transformer architecture and training hyperparameters for F8 codes minimum distance
prediction.

10’000 for F7), and trained a model to learn general patterns useful for minimum dis-
tance prediction;

• in the training stage, we aimed to have all available classes represented, so we down-
sampled classes with many representatives (to 500 for F7), and upsampled classes with
not enough representatives (to 500 for F7), and trained the pre-trained model on the
resulting dataset. The second training stage after the pre-training has a relatively small
dataset (14’000 for F7), so the model is prone to overfitting, so early stopping should
be used.

Overall, this showed excellent results for F7 codes with the next iteration of the model
(not used with GA), achieving Cross-Entropy loss of 0.61 on the pre-train dataset and 1.26
on the train set, accuracy within a tolerance (dV ± 3) of 84.8% on the train set and 90.3% on
test set8.

The application of this methodology for F8, however, demonstrated less inspiring results.
Already at the pre-training stage with plenty of data (the dataset was roughly the same in
size as for the F7 model with two-stage training), the model was prone to overfitting after
120 epochs.

In general, there are two ways to deal with it: increase the dataset size or decrease the
number of parameters in the model. Knowing that the task of predicting minimum distance
for F8 is more complicated than for F7, decreasing the model size is not an option. Therefore,

8A counter-intuitive higher accuracy on the test than one the training set is caused by the fact that the
training set has oversampled classes.
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one might hope to improve the results by increasing the dataset size, but data generation is
very computationally expensive for F8 codes.
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