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ABSTRACT
The increasing use of electronic health records (EHRs) has transformed healthcare
management, yet data sharing across institutions remains limited due to privacy
concerns. Federated learning (FL) offers a privacy-preserving solution by enabling
collaborative model training without centralized data sharing. However,
non-independent and identically distributed (non-IID) data distributions, where the
data across clients differ in class proportions and feature characteristics, pose a major
challenge to achieving robust model performance. In this study, we propose a hybrid
framework that combines the Federated Proximal (FedProx) algorithm with the
ResNet50 architecture to address non-IID data issues. We artificially partitioned an
IID brain tumor dataset into non-IID subsets to simulate real-world conditions and
applied data augmentation techniques to balance class distributions. Global model
performance is monitored across 100 training rounds with varying regularization
parameters in FedProx. The proposed framework achieved an accuracy of 97.71% on
IID data and 87.19% in extreme non-IID scenarios, with precision, recall, and
F1-scores also demonstrating strong performance. These findings highlight the
effectiveness of combining data augmentation with FedProx in mitigating data
imbalance in FL, thereby supporting equitable and efficient training of
privacy-preserving models for healthcare applications.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Security
and Privacy, Neural Networks
Keywords Federated learning, Data augmentation, Federated proximal, Privacy-preserving model
training, Heterogeneous data, ResNet50 with attention head mechanism

INTRODUCTION
Technological advancements in healthcare have changed medical imaging of brain tumors,
enhancing early and precise disease diagnosis, which is important for proper patient
treatment. Among these innovations, magnetic resonance imaging (MRI)-based imaging
systems have significantly improved the detection and management of critical conditions
such as brain tumors. A timely detection and accurate classification of brain tumors is vital,
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as early detection and classification can save lives and improve patients’ quality of life.
Recent advances in deep learning (DL), particularly convolutional neural networks
(CNNs), have shown great potential to automate brain tumor diagnosis, reducing
diagnostic delays and minimizing the dependency on expert radiologists (Oladimeji &
Ibitoye, 2023; Sharif et al., 2021). However, applying DL in medical imaging, for brain
tumor classification (BTC) also presents significant challenges, especially in terms of data
privacy, security, and uneven distribution of patient data across institutions. Traditional
DL models depend on large, centralized datasets for high performance, but patient data in
medical applications is often distributed across multiple institutions. This challenge
becomes even more pronounced for rare diseases and imbalanced datasets, where the
limited representation of certain tumor types can bias models and compromise their
generalizability. For instance, MRI datasets from different hospitals may exhibit significant
disparities. One institution may have abundant glioma cases, while another predominantly
stores pituitary tumor images. Such variations lead to non-IID data across institutions,
posing a critical challenge in achieving equitable and robust model performance in
healthcare applications.

Federated learning (FL) has become a promising approach to overcoming these
challenges (McMahan et al., 2017). Unlike traditional centralized learning, FL enables
collaborative model training across distributed datasets by transmitting only model
updates to a central server, ensuring patient data remain local. The most widely adopted
baseline in FL is the Federated Averaging (FedAvg) algorithm, which aggregates locally
trained model updates from clients to build a global model without requiring the sharing of
raw data. Although FL improves privacy and security, it introduces new challenges related
to non-IID data. Real-world variations in data collection and storage can exacerbate
dataset imbalances, negatively impacting global model performance. Addressing these
limitations requires strategic methods to balance data distribution and optimize model
training. Most existing studies on FL for medical imaging have been conducted on datasets
that are either IID (Albalawi et al., 2024; Islam et al., 2023) or only mildly non-IID (Viet
et al., 2023), which do not fully capture the extreme divergence often encountered in
real-world clinical settings. In practice, certain institutions may contribute datasets that are
heavily skewed toward specific tumor types, resulting in highly imbalanced local data
distributions. This extreme label-skew scenario represents a particularly challenging form
of non-IID data, which can significantly hinder convergence and degrade global model
accuracy, yet it remains underexplored.

Motivated by these challenges, our study proposes a structured methodology that
integrates data augmentation with the Federated Proximal (FedProx) algorithm to address
data imbalance in FL for BTC using MRI images. Data augmentation is employed to create
more balanced client datasets, ensuring equitable representation of tumor classes (Perez &
Wang (2017). FedProx (Li et al., 2020), an extension of FedAvg, mitigates the adverse
effects of heterogeneous client data by introducing a proximal term in the optimization
process. This reduces client model divergence and enhances global model performance. By
combining FedProx with data augmentation, our work aims to improve the robustness and
accuracy of federated BTC models under realistic and highly non-IID conditions. To
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further enhance classification performance, we adopt transfer learning integrated with
dual-pooling attention mechanism. Various transfer learning architectures are evaluated,
and ResNet50 is selected as the backbone based on its superior performance. The
fine-tuned ResNet50 model with FedProx regularization was rigorously evaluated using
multiple performance metrics to ensure comprehensive assessment.

By addressing dataset imbalances and enhancing fairness in FL, our work seeks to
explore how FL can effectively handle non-IID medical datasets to build
privacy-preserving and unbiased models for BTC. Our findings highlight the potential of
FL to integrate distributed healthcare data into robust artificial intelligence (AI)-based
solutions, thus advancing intelligent and equitable healthcare systems. The source code for
all conducted experiments is available in our GitHub repository at https://github.com/
Sumanth-Siddareddy/FederatedProximal.

Contributions
The main contributions of this study are as follows:

. integration of a dual-pooling attention mechanism within a Residual Network-50
(ResNet50) backbone under an FL framework

. integration of clinically constrained data augmentation to address non-IID medical data

. incorporation of the FedProx algorithm to enhance convergence stability and model
robustness under extreme label skew scenarios

. extensive experimental validation demonstrating improved generalization compared to
existing FL methods

The remainder of this article is structured as follows. The Related Work section reviews
existing literature and groups prior studies thematically. The Methods section describes
the data splitting strategy, the FL algorithms considered (FedAvg and FedProx), model
selection, and the data augmentation strategies employed. The Results section presents the
experimental findings, while the Discussion section provides a detailed analysis and
interpretation of these results. Finally, the Conclusion and Future Work sections
summarize the study and outline potential directions for future research.

RELATED WORK
Deep learning for brain tumor classification
Many studies have leveraged DL models for BTC using centralized datasets. Fathima &
Kumar (2024) applied transfer learning with VGG, InceptionV3, and DenseNet201 for
BTC, achieving 94.73% accuracy with Visual Geometry Group (VGG). Model
performance improved over 25 epochs, but dataset limitations from Kaggle may impact
generalizability. Senan et al. (2022) introduced a hybrid model combining DL (AlexNet,
ResNet-18) with machine learning (SVM) for early brain tumor diagnosis. Achieving a
95.10% accuracy, the approach effectively classifies MRI images while enhancing
sensitivity (95.25%) and specificity (98.50%). However, larger and more diverse datasets
are essential for better generalization, highlighting the need for advanced augmentation

Ghanta et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3396 3/29

https://github.com/Sumanth-Siddareddy/FederatedProximal
https://github.com/Sumanth-Siddareddy/FederatedProximal
http://dx.doi.org/10.7717/peerj-cs.3396
https://peerj.com/computer-science/


techniques and real-world clinical validation to improve practical applicability. Sharif et al.
(2021) developed an automated DL system using Densenet201 and novel feature selection
techniques, Entropy-Kurtosis-based High Feature Values (EKbHFV), and a modified
genetic algorithm (MGA) for multiclass BTC. Achieving over 95% accuracy, the method
demonstrates high precision with the Cubic SVM classifier on the BRATS2018 and
BRATS2019 datasets. However, challenges persist in distinguishing similar tumor types
and managing high-dimensional datasets. Vidyarthi et al. (2022) introduced a machine
learning-assisted methodology for multiclass classification of high-grade malignant brain
tumors, utilizing the novel Cumulative Variance Method (CVM) for feature selection.
Nazir et al. (2024) introduced a customized CNN model for brain tumor prediction using
MRI images, integrating Explainable AI (XAI) techniques such as SHapley Additive
exPlanations (SHAP), Local Interpretable Model Agnostic Explanation (LIME), and
Gradient-weighted Class Activation Mapping (Grad-CAM) to enhance model
interpretability, achieving an accuracy of 94.64%. These studies demonstrate the
effectiveness of DL methods in tumor segmentation but also highlight challenges such as
class imbalance and limited data availability.

Class imbalance and rare tumor types
Deepak & Ameer (2023) on BTC overcomes dataset imbalance using class-weighted focal
loss and deep feature fusion, achieving 95.4% accuracy. Majority voting on classifier
predictions further enhanced performance. However, optimizing class weights remains a
challenge, potentially leading to biased predictions. The research employs K-nearest
neighbor (KNN), multi-class support vector machine (mSVM), and neural network (NN)
classifiers, achieving a peak accuracy of 95.86% with NN. While the method improves
classification precision, gaps remain in studying rare malignant tumors and incorporating
DL approaches for enhanced performance. Khan et al. (2022b) employed a 23-layer CNN
and fine-tuned Visual Geometry Group 16 (VGG16) for binary and multiclass brain tumor
detection, achieving 97.8% accuracy on a Figshare dataset and 100% accuracy on a smaller
dataset. Despite high performance, limitations include the lack of clinical data validation
and challenges in acquiring annotated images, raising concerns about overfitting and
dataset diversity.

Federated learning for privacy-preserving brain tumor classification
To overcome data-sharing restrictions in medical imaging, recent studies have explored
FL. A survey by Podschwadt et al. (2022) examined DL architectures for privacy-preserving
machine learning (PPML) using fully homomorphic encryption (HE), highlighting
computational overhead and usability challenges. They explored techniques such as
polynomial approximations and FL. However, interoperability issues, encryption
complexity, and performance trade-offs remain key limitations. Talukder, Islam & Uddin
(2023) introduces an optimized ensemble DL model for BTC, achieving 91.05% (with FL)
and 96.68% (without FL) accuracy using Grid Search-based Weight Optimization
(GSWO). The research enhances workflow efficiency through image standardization,
pre-processing, and transfer learning modifications, while weight optimization techniques,
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like GSWO, refine predictive accuracy. The study Zhou, Wang & Zhou (2024) on FL for
MRI brain tumor detection ensures data privacy while improving diagnostic accuracy.
Using the FedAvg algorithm and EfficientNet-B0, the model achieved an 80.17% accuracy
across diverse datasets, outperforming existing methods. However, challenges such as data
heterogeneity and institutional variability affect generalization, requiring advanced model
designs for improved interpretability. Ay, Ekinci & Garip (2024) explores FL for
MRI-based BTC while preserving data privacy. By evaluating FedAvg, QFedAvg,
Ft-FedAvg, and Dp-FedAvg, the research highlights FedAvg’s superior accuracy (85.55%
at 10 rounds) and Ft-FedAvg’s robustness (85.80% at 30 rounds). However, the
assumption of balanced data sharing and reliance on centralized communication limits
real-world applicability.

Federated learning under non-IID data
Some studies have considered FL under non-IID scenarios, such as Viet et al. (2023), but
did not provide details about the data splitting strategies or how they managed the non-IID
nature of the data. Another work by Zhang et al. (2023) applied data augmentation to
mitigate data heterogeneity in FL. Although this approach effectively increased the number
of samples in each client, it did not address the extreme divergence scenario between the
client and global models, which limited the overall generalization performance.

Our proposed work effectively addresses the limitations and research gaps identified in
previous studies on BTC using DL and FL. While prior works struggled with data
heterogeneity, class imbalance, and limited generalization across diverse datasets, our
approach mitigates these challenges by integrating advanced data augmentation
techniques and employing the FedProx algorithm. Unlike studies that relied on static
weight optimization or conventional aggregation methods, our use of FedProx enhances
model robustness by adapting to non-IID data distributions, ensuring improved
generalization across fragmented healthcare datasets. In addition to FedProx, alternative
federated optimization methods such as FedNova (Wang et al., 2020) and FedOpt (Reddi
et al., 2020) have been proposed. FedNova primarily addresses the challenge of
heterogeneous local training effort by normalizing client updates when clients perform
varying numbers of local steps.

Since our experimental setup considered uniform local training across clients, the
benefits of FedNova would be limited in our setting. FedOpt, on the other hand, employs
adaptive server-side optimizers to stabilize and accelerate convergence. Although valuable
for improving optimization dynamics, they do not directly mitigate client drift arising
from highly skewed label distributions, which is the central challenge in our work. We
therefore focused on FedProx, which explicitly introduces a proximal term to control drift
under non-IID data, making it particularly suitable for our extreme label-skew scenario,
providing a more practical and scalable solution for real-world clinical applications.

METHODS
In this experimental study, we address the challenges posed by non-IID data in BTC using
an FL approach. The primary focus is on the FedProx algorithm, which aims to enhance
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model performance under non-IID data conditions. This study is particularly significant as
it explores the integration of data augmentation techniques to create more uniform data
distributions, a crucial step toward improving the robustness of machine learning models
in medical applications.

Data preparation
Dataset: The dataset used in this work comprises 7,023 brain MRI images categorized into
four classes: glioma, meningioma, pituitary, and no tumor. These images are obtained
from the publicly available Brain Tumor MRI dataset on Kaggle (Nickparvar, 2021). This
dataset is formed by combining three widely used brain tumor MRI datasets such as
Br35H, Figshare, and SARTAJ Figshare to provide a more comprehensive and diverse
collection of MRI scans (Ghanta et al., 2025a).

Non-IID data partitioning and heterogeneity quantification
The dataset was initially in an independent and identically distributed (IID) format, and
Table 1 represents the data distribution of the original dataset. To simulate a realistic and
challenging extreme label-skew FL scenario, we partitioned the dataset across four clients
using a majority-class label-skew non-IID splitting strategy. This setup mimics a
real-world scenario where each client (e.g., a hospital) specializes in a particular
tumor type.

Splitting strategy
Each of the four clients is assigned a majority of images from one of the four classes
(glioma, meningioma, notumor, pituitary) and a small, fixed number of samples from
the other three classes. For example, out of 1,321 training images, Client 1 receives 1,021
images, while the remaining three clients receive 100 images each. This manual assignment

Table 1 Class distribution of the brain tumor MRI dataset under IID format.

Class Training samples Testing samples

Glioma 1,321 300

Meningioma 1,339 306

No tumor 1,595 405

Pituitary 1,457 300

Table 2 Class-wise sample distribution per client for the non-IID setup (train, test samples).

Class Client 1 Client 2 Client 3 Client 4

Glioma (1021, 210) (100, 30) (100, 30) (100, 30)

Meningioma (100, 32) (1039, 210) (100, 32) (100, 32)

No tumor (100, 50) (100, 50) (1295, 255) (100, 50)

Pituitary (100, 50) (100, 50) (100, 50) (1157, 150)

Note:
Bold values indicate the majority class for each client.
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strategy has resulted in a non-IID setup, as detailed in Table 2. The specific images for each
client’s partition are then selected randomly from the main dataset’s pools. To ensure our
experimental setup is fully reproducible, a fixed seed (random_state=42) is used during
this sampling process.

Quantification of data heterogeneity
To formally quantify the degree of non-IID heterogeneity, we calculated the
Jensen-Shannon (JS) divergence (Nielsen, 2020) between the label probability distributions
of each pair of clients. For each client, the label distribution is defined as the proportion of
samples belonging to each class. The pairwise JS divergence values are visualized as a
heatmap in Fig. 1. Higher values in the heatmap indicate greater statistical distance
between client datasets, and thus stronger non-IID heterogeneity. This provides an
objective measure of the heterogeneity introduced by our data splitting strategy.

FL and the challenge of data heterogeneity
FL is a machine learning paradigm that enables multiple decentralized devices or
institutions (clients) to collaboratively train a global model without sharing their private
local data. This approach is particularly beneficial in domains like healthcare, where data
privacy and security are paramount. One of the significant challenges in FL is data
heterogeneity, where the data distributions across clients are non-IID. This heterogeneity
can lead to discrepancies in local model updates, making it difficult to train a robust global
model that generalizes well across all clients.

Figure 1 Jensen-Shannon divergence matrix of the four clients in the non-IID setup.
Full-size DOI: 10.7717/peerj-cs.3396/fig-1
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Federated averaging (FedAvg)
FedAvg is the foundational algorithm for FL. It operates through an iterative process
involving the following steps:

• Initialization: A central server initializes a global model and shares it with all
participating clients.

• Local training: Each client updates the global model using its local data for a specified
number of epochs. This process involves computing gradients based on the client’s local
loss function and adjusting the model weights accordingly.

• Model weight Upload: After local training, clients send their updated model weights back
to the central server.

• Aggregation: The central server aggregates the received updates to form a new global
model. In FedAvg, this aggregation is typically a weighted average of the clients’models,
with weights proportional to the size of each client’s dataset.

wtþ1
k ¼ wt

k � grFkðwt
kÞ (1)

where:

– wt
k: Model weights on client k at iteration t

– g: Learning rate

– rFkðwt
kÞ: Gradient of the loss function for client k

wtþ1 ¼
XK

k¼1

nk
n
wtþ1
k (2)

where:

– K: Total number of clients

– nk: Number of data points on client k

– n ¼PK
k¼1 nk: Total number of data points across all clients

• Iteration: Steps—Local training, model weight upload, and aggregation—are repeated for
multiple rounds until the global model converges or achieves satisfactory performance.

FedAvg is a straightforward approach that serves as a baseline for FL methods.
However, it assumes IID local data and can perform poorly when client data is highly
non-IID (McMahan et al., 2017).

Federated proximal (FedProx)
To address the limitations of FedAvg in the presence of data heterogeneity, the
FedProx algorithm was introduced. FedProx builds upon FedAvg by modifying the local
objective function to include a proximal term, which helps stabilize training when the
client data distributions are vastly different. The steps of the FedProx algorithm are
outlined below:

• Initialization: The central server initializes the global model and shares it with all clients.
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• Local training with proximal term: Clients perform local model updates
by minimizing their augmented local objective function, which includes the proximal
term.

FkðwÞ ¼ fkðwÞ þ l
2
kw� wtk2 (3)

where:

– fkðwÞ: Local loss function on client k

– w: Current local model weights

– wt : Global model weights from the server

– kw� wtk2: proximal term

– l: Proximal regularization parameter

• Model upload: Clients send their updated model parameters back to the server.

• Aggregation: The server aggregates the models using a weighted average, similar to
FedAvg.

• Iteration: Repeat the above steps for multiple rounds.

The proximal term kw� wtk2 mitigates the impact of local updates diverging too far
from the global model, which is common under non-IID data. The proximal regularization
parameter l (or mu) controls the strength of this proximal term, thereby limiting
drastic deviations in local updates that could negatively impact the global model when the
updates are aggregated. By adjusting the regularization parameter l, FedProx allows
control over the trade-off between local optimization and adherence to the global model. A
higher value of l places more emphasis on the proximal term, causing local models to
remain closer to the global model. This can be beneficial when data heterogeneity is high. A
lower l reduces the impact of the proximal term, allowing local models to optimize more
freely based on their local data. Selecting an appropriate l is crucial and often requires
empirical tuning based on the specific dataset and degree of non-IID-ness (Li et al., 2020).
FedProx promises better convergence properties in heterogeneous environments
compared to FedAvg.

Differences between FedAvg and FedProx
In FedProx, the l value acts as a regularization parameter to control the divergence
between local models and the global model. For example, setting l ¼ 0:4 adds a proximal
term to the loss function, penalizing local updates that deviate significantly from the global
model, while l ¼ 0 reduces FedProx to the standard FedAvg algorithm. FedAvg works
well when client data distributions are IID and computational capabilities are uniform.
FedProx is designed for non-IID settings and client heterogeneity by adding the proximal
term to the local objective, which restricts the extent to which local models diverge from
the global model. Table 3 summarizes some main differences between FedAvg and
FedProx.
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Model selection
In this research, we selected transfer learning approaches such as ResNet50, VGG19,
ResNet18, MobileNetV2, and Efficient-B0 models with an attention module, as they are
well-suited for the BTC problem. These models are known for their strong capability in
pattern recognition within medical images (Ghanta, Thiriveedhi & Pradhan, 2024),
making them effective choices for this task. ResNet models help process deep features
efficiently, while VGG19 provides a structured approach for learning important details.
The attention mechanism further improves the focus on tumor regions, ensuring better
accuracy even with diverse data in an FL setup. We provide a brief discussion of these
models below.

ResNet50
ResNet50 is a deep CNN with a 50-layer architecture, introduced as part of the Residual
Network (ResNet) family by He et al. (2016). The key innovation of ResNet is the
introduction of residual learning through skip connections or shortcut connections, which
help mitigate the problem of vanishing gradients in very deep networks. The significance
of it is that, by using residual connections, ResNet50 alleviates the degradation problem
found when training deep networks. It achieved state-of-the-art results on the ImageNet
dataset, winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
2015. It is widely used as a backbone in various computer vision tasks due to its strong
feature extraction capabilities (Veeramreddy et al., 2024).

ResNet18
ResNet18 is another architecture from the ResNet family, with an 18-layer architecture.
Utilizes Basic residual blocks with two layers each. It is characterized by fewer parameters,
lower computational requirements, and shallower depth compared to ResNet50. It is
suitable for applications with limited computational resources or where faster inference is
required and is often used as a benchmark model to evaluate new techniques due to its
simplicity (Tang & Teoh, 2023).

VGG19
VGG19 is a deep CNN model, part of the VGG architectures developed by Simonyan &
Zisserman (2014), with a 19-layer architecture. Uses small 3 � 3 convolutional filters
throughout the network. Consists of sequential convolutional layers followed by max

Table 3 Comparison of FedAvg and FedProx.

FedAvg FedProx

1. Fewer parameters, simpler tuning, and faster to implement 1. Requires tuning of the proximal regularization parameter (l)

2. Computationally efficient 2. Increased computational cost

3. No proximal term, performs standard averaging of client updates 3. Adds a proximal term and improves stability in convergence under
heterogeneity

4. Less robust and performance can degrade with non-IID
(heterogeneous) data

4. More stable local updates and handles non-IID data better due to the
proximal term

5. May diverge in heterogeneous settings 5. Better at handling divergence issues
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pooling layers, culminating in fully connected layers. It achieved top results in the ILSVRC
2014 competition, and its significance lies in the use of small, consistent convolutional
filters, which makes the architecture straightforward to implement and understand.
Pre-trained versions of VGG19 are widely used for transfer learning in various image
recognition tasks (Simonyan & Zisserman, 2014).

MobileNetV2

MobileNetV2 is a lightweight CNN architecture designed for efficient performance on
mobile and embedded devices, introduced by Howard et al. (2017). Its core innovation lies
in the use of inverted residual blocks with linear bottlenecks, which significantly reduce the
computational cost while preserving representational power. This design enables
MobileNetV2 to achieve a good balance between accuracy and efficiency, making it
suitable for real-time applications where resources are constrained. It has been widely
adopted as a backbone for tasks such as image classification, object detection, and semantic
segmentation due to its fast inference speed and low parameter count (Ghanta et al.,
2025b).

EfficientNet-B0
EfficientNet-B0 is the baseline model of the EfficientNet family, proposed by Tan & Le
(2019), which introduced a novel compound scaling method to uniformly scale depth,
width, and resolution of CNNs. Unlike prior models that scale these dimensions
arbitrarily, EfficientNet applies a principled approach that leads to better accuracy and
efficiency trade-offs. EfficientNet-B0, in particular, achieves strong performance on
ImageNet while requiring significantly fewer parameters and FLOPs compared to earlier
architectures. Its efficiency and scalability make it a popular backbone for a wide range of
computer vision tasks.

Impact of model architecture on performance

In our work, we consider these model architectures to evaluate their suitability for BTC in
an FL setup. Each client is trained on its respective non-IID dataset using the above
architectures to determine standalone performance. The chosen architectures represent a
range of complexity levels commonly used in image classification tasks. Comparing the
results across four clients, ResNet50 achieved the highest standalone performance, while
ResNet18 and MobileNetV2 had competitive results. VGG19 and EfficientNet-B0 trailed
in both accuracy and F1-score. Table 4 presents the performance metrics of each client
across model architectures. Based on these results, ResNet50, ResNet18, and MobileNetV2
are selected for further evaluation in the FL setup, whereas VGG19 and EfficientNet-B0 are
excluded due to their relatively lower performance. After comparing the FedAvg results of
FL from Fig. 2, ResNet50 is selected as the most suitable model for our FL setup.

The differences in performance across the evaluated architectures can be explained by
their design characteristics and adaptability to FL. ResNet50 achieved the best results due
to its residual connections and sufficient depth, which improve gradient flow and stability
during optimization, allowing the model to generalize effectively across heterogeneous
client datasets. ResNet18 and MobileNetV2 performed competitively but have lower
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representational capacity compared to ResNet50, which limited their ability to extract
more complex features in this setup. VGG19, despite its depth, lacks residual connections
and contains a large number of parameters, making it prone to gradient vanishing and
overfitting on clients with limited non-IID data. EfficientNet-B0 also underperformed, as
its compound scaling strategy and reliance on stable batch normalization make it more
sensitive to small batch sizes and heterogeneous client distributions. Overall, ResNet50
provided the best balance between depth, optimization stability, and generalization ability,
making it the most suitable model for our FL setup.

Data augmentation
Before training, all images in the dataset underwent several pre-processing steps. To ensure
uniformity, each image is resized to a consistent input dimension of 224� 224 pixels to
match the input requirements of the ResNet50 architecture. The pixel values of the images
are then normalized to a range of ½0; 1�.

A significant challenge in our non-IID federated setup is the severe class imbalance
present in each client’s local dataset. To address this, we employed data augmentation with
two primary goals: to increase the diversity of the training data for better model
generalization and to implement a targeted oversampling strategy (Khan et al., 2022c). To
preserve the diagnostic integrity of medical images, augmentation parameters are
carefully constrained to moderate ranges, selected based on previous studies

Figure 2 Comparison of ResNet50, ResNet18, and MobileNetV2 performance in the FL setup using
FedAvg. Full-size DOI: 10.7717/peerj-cs.3396/fig-2

Table 4 Accuracies of individual clients on different DL models using non-IID data.

Model Client 1 (%) Client 2 (%) Client 3 (%) Client 4 (%) Avg. (%) Avg. F1_score

ResNet50 88.63 72.39 62.85 80.47 76.09 0.7588

ResNet18 75.82 70.86 65.37 84.59 74.16 0.7319

VGG19 77.04 61.40 69.41 70.25 69.53 0.6467

MobileNetV2 84.36 62.47 73.30 80.47 75.15 0.7395

EfficientNet-B0 67.58 67.35 60.26 62.62 64.45 0.5998
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(Mumuni & Mumuni, 2022; Khan et al., 2022b), ensuring that the augmented images
remain clinically realistic while improving class balance. The following geometric
augmentation techniques are applied, with any new pixels generated by the
transformations filled using the nearest value (fill_mode="nearest"):

. Shear range: �20%

. Zoom range: �20%

. Rotation range: �90�

. Width and height shift range: �10%

. Channel shift range: �10%

. Horizontal and vertical flips: Applied randomly.

The goal of our augmentation strategy is to standardize the number of samples for each
class across all clients, ensuring that each class contributes an equal amount of data to the
overall FL process. This is implemented as follows: First, we identified the global maximum
sample count for each of the four classes by examining the data distributions across all four
clients, separately determining this maximum for both the training and testing sets. This
count then served as the target number for that class. For each client, if a class contained
fewer images than the target number, the augmentation techniques are applied exclusively
to that class to generate augmented images until its sample count matches the target.
Classes that already contain the maximum number of samples are not augmented. To
provide a concrete example, Client 1 contained the maximum number of glioma training
images (1,021 samples). Consequently, the glioma training sets for Clients 2, 3, and 4 are
oversampled to also contain 1,021 images. This same process is repeated for all classes
across both training and testing sets. The resulting balanced class distribution for all four
clients after this standardization process is presented in Table 5. The dataset distribution
among the four clients before and after data augmentation is shown in Fig. 3. Following
augmentation, each client is a balanced set of all tumor classes to simulate IID data. This
intentional realignment led to identical class distributions across clients. As a result, the JS
Divergence between any pair of clients becomes zero, confirming the removal of
heterogeneity among the clients.

Proposed model architecture
Our proposed model, illustrated in Fig. 4, is a deep CNN that employs a transfer
learning strategy for multi-class brain tumor classification. The architecture is composed

Table 5 Class-wise sample distribution per client for the augmented IID setup (Train, Test samples).

Class Client 1 Client 2 Client 3 Client 4

Glioma (1021, 210) (1021, 210) (1021, 210) (1021, 210)

Meningioma (1039, 210) (1039, 210) (1039, 210) (1039, 210)

No tumor (1295, 255) (1295, 255) (1295, 255) (1295, 255)

Pituitary (1157, 150) (1157, 150) (1157, 150) (1157, 150)
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of three primary stages: (1) a pre-trained ResNet50 backbone for robust feature extraction,
(2) a custom Multi-Layer Perceptron (MLP) head for classification, and (3) a novel
dual-pooling Attention Head designed to refine the feature representation before the final
prediction.

The model is designed to process 2D slices of brain MRI scans, which are resized to an
input dimension of 224� 224� 3. The final output is a four-element probability vector
generated by a Softmax activation function, corresponding to the four target classes. The
data propagates through the network sequentially. The input image is first processed by the
ResNet50 model, pre-trained on the ImageNet dataset. We utilize the model as a powerful
feature extractor by removing its original top classification layer (by setting
include_top=False). The feature maps from the ResNet50 backbone are aggregated by
a GlobalAveragePooling2D layer, which produces a single, flattened feature vector. The
feature vector is then passed through a sequence of four fully connected (Dense) layers
with 1,024, 512, 256, and 128 neurons, respectively. Each of these layers uses the Rectified
Linear Unit (ReLU) activation function to introduce non-linearity. For regularization and
to mitigate overfitting, a Dropout layer with a rate of p ¼ 0:5 is also applied. The resulting
128-dimensional feature vector is processed by our custom Attention Head. It is first
reshaped into a 4D tensor of shape ð1; 1; 128Þ to be compatible with 2D pooling layers.
This tensor is then processed in parallel by GlobalMaxPooling2D and
GlobalAveragePooling2D operations. The outputs are combined using a Concatenate
layer, resulting in a richer 256-dimensional feature vector. In the output layer, this final
256-dimensional vector is fed into a Dense layer with four neurons and a Softmax
activation function to produce the final probability distribution over the classes.

Figure 3 Dataset distribution among the four clients: (A) before augmentation, (B) after augmentation.
Full-size DOI: 10.7717/peerj-cs.3396/fig-3
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The core novelty of our architecture lies in the dual-pooling attention head. By
processing the feature vector through parallel max and average pooling streams, the head
captures two complementary aspects of the learned features: the peak feature activations
(using max pooling) and the overall feature context (using average pooling).
Concatenating these two distinct representations provides the final classification layer with
a more comprehensive feature set, enhancing the model’s ability to focus on both subtle,
localized details and broader contextual patterns within the MRI scans.

Figure 4 Proposed model architecture integrating a ResNet50 backbone with a dual-pooling
attention head for brain tumor classification, illustrating the feature extraction and
attention-based classification components. Full-size DOI: 10.7717/peerj-cs.3396/fig-4
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FedProx-based FL training
The FedProx implementation is presented in Algorithm 1 and the proposed FL
architecture is outlined in Fig. 5. The FL process is conducted for a total of 100
communication rounds. In each round, participating clients trained their local models for
one epoch on their respective datasets. The global model’s performance is evaluated, and
the model state is saved after every 10-round segment. To avoid overfitting and
unnecessary computation, we employed an early stopping mechanism with a patience of
20 rounds, which monitored the validation loss. The model with the best-performing
validation loss is preserved at the end of each segment. The core hyperparameters for our
experiments are summarized in Table 6.

The values for the FedProx proximal regularization parameter, l, are deliberately
chosen to systematically probe the effect of the regularization strength on model
performance in our highly non-IID environment. As l controls the contribution of the
proximal term kw� wtk2, it serves as a hyperparameter that requires tuning for

Figure 5 Overview of the proposed FL model architecture and its workflow.
Full-size DOI: 10.7717/peerj-cs.3396/fig-5

Algorithm 1 FedProx algorithm.

1: Input: Number of clients K, number of rounds niter, regularization parameter µ, local epochs E, global
model wt

2: for each round t ¼ 1 to niter do
3: for each client k ¼ 1 to K in parallel do
4: Initialize local model wt

k  wt

5: for each epoch e ¼ 1 to E do
6: Compute gradient: rFkðwt

kÞ ¼ rfkðwt
kÞ þ lðwt

k � wtÞ
7: Update local model: wtþ1

k  wt
k � grFkðwt

kÞ
8: end for
9: end for
10: Aggregate models: wtþ1  PK

k¼1
nk
nw

tþ1
k

11: end for
12: Output: Global model wniter
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different datasets and levels of data heterogeneity. The selection process of l is structured
as follows:

. Baseline comparison: The value l ¼ 0 is selected as a critical baseline, as this
configuration makes the FedProx algorithm mathematically equivalent to the standard
FedAvg algorithm.

. Spectrum of regularization: The values 0:1 (weak), 0:4 and 0:7 (intermediate), and 1:0
(strong) are chosen as representative points to map out the impact of increasing
regularization strength on client drift and model convergence. In this context, a smaller l
value makes the penalty for drifting weaker, which is why it is considered weak
regularization, while a larger value imposes a stronger constraint.

This manual selection gave us a clear view of the trade-off between local model
adaptation and global convergence, while avoiding the high computational cost of an
exhaustive hyperparameter search in FL.

All experiments are carried out using an NVIDIA DGX server (RTX 3060 GPU) on an
Acer laptop with Windows 11 OS, 16 GB of RAM, and Jupyter Notebook, along with
PyTorch and TensorFlow libraries.

RESULTS
To assess the performance of the proposed model, a hold-out validation strategy is
employed. A separate test set is used to evaluate the performance of the global model. This
held-out test set remains constant and is not subjected to resampling or k-fold partitioning.
In this way, it distinguishes our approach from cross-validation-based evaluation.
Performance is evaluated using key classification metrics such as accuracy, precision,
recall, F1-score, and loss (Thiriveedhi et al., 2025).

The evaluation focused on the global model’s performance trained over 100
communication rounds under various settings of the FedProx regularization term l.
Tables 7 and 8, along with Figs. 6–10, provide a comprehensive overview of how different l
values influenced the model’s performance over 100 rounds. Among all configurations,

Table 6 Key hyperparameters used for the FL experiments.

Parameter Value

FL algorithm FedProx

FL communication rounds 100

Local training epochs 1

Optimizer SGD (Stochastic gradient descent)

Loss function Sparse categorical cross-entropy

Learning rate 1� 10�4

Early stopping patience 20 rounds

Batch size 32
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l ¼ 1:0 consistently outperformed other values across nearly all metrics, achieving the
highest accuracy (87.19%), lowest loss, and superior precision, recall, and F1-score. This
result confirms that l ¼ 1:0 strikes the best balance between personalization and
regularization, effectively addressing client drift and variability in non-IID data. To
quantify variability, we conducted a statistical analysis, and the results are presented in
Fig. 11. The standard deviation of 3.2070 and the relatively narrow 95% confidence interval

Table 7 Comparison of classification performance metrics obtained at different l.

l Metric Round 10 Round 20 Round 30 Round 40 Round 50 Round 60 Round 70 Round 80 Round 90 Round 100

0.0 Accuracy 64.91 73.68 76.51 79.33 80.85 80.70 83.22 83.75 84.13 85.51

Precision 0.6586 0.7439 0.7754 0.7911 0.8057 0.8231 0.8395 0.8345 0.8385 0.8523

F1-score 0.6518 0.7325 0.7656 0.7886 0.8064 0.8052 0.8312 0.8336 0.8377 0.8518

Recall 0.6491 0.7368 0.7651 0.7933 0.8085 0.8070 0.8322 0.8375 0.8413 0.8551

Loss 1.0776 1.0031 0.9802 0.9512 0.9365 0.9324 0.9121 0.9087 0.8982 0.8901

0.1 Accuracy 69.41 70.33 78.87 79.33 80.93 81.62 81.92 83.52 83.37 72.77

Precision 0.6913 0.7410 0.7841 0.7899 0.8038 0.8135 0.8173 0.8391 0.8456 0.7866

F1-score 0.6922 0.7094 0.7840 0.7902 0.8008 0.8091 0.8139 0.8342 0.8301 0.7043

Recall 0.6941 0.7033 0.7887 0.7933 0.8093 0.8162 0.8192 0.8352 0.8337 0.7277

Loss 1.0394 1.0294 0.9582 0.9451 0.9325 0.9321 0.9223 0.9049 0.9071 1.0097

0.4 Accuracy 69.57 73.76 75.44 78.79 78.79 81.24 82.84 83.07 85.13 84.52

Precision 0.6924 0.7368 0.7612 0.7815 0.7882 0.8079 0.8251 0.8268 0.8488 0.8454

F1-score 0.6927 0.7315 0.7509 0.7748 0.7787 0.8074 0.8231 0.8212 0.8480 0.8451

Recall 0.6957 0.7376 0.7544 0.7879 0.7879 0.8124 0.8284 0.8307 0.8513 0.8452

Loss 1.0490 1.0014 0.9819 0.9595 0.9621 0.9256 0.9166 0.9132 0.8993 0.8944

0.7 Accuracy 70.33 70.10 74.98 78.11 79.41 79.86 82.38 83.37 82.23 84.44

Precision 0.7064 0.7172 0.7519 0.7823 0.7901 0.8006 0.8202 0.8311 0.8182 0.8415

F1-score 0.6981 0.7064 0.7488 0.7793 0.7880 0.7988 0.8158 0.8274 0.8116 0.8420

Recall 0.7033 0.7010 0.7498 0.7811 0.7941 0.7986 0.8238 0.8337 0.8223 0.8444

Loss 1.0394 1.0272 0.9849 0.9580 0.9532 0.9414 0.9259 0.9132 0.9157 0.9039

1.0 Accuracy 69.26 74.37 79.48 81.16 82.07 83.30 84.13 85.58 83.60 87.19

Precision 0.7011 0.7615 0.7903 0.8130 0.8167 0.8321 0.8402 0.8554 0.8390 0.8734

F1-score 0.6950 0.7441 0.7916 0.8098 0.8154 0.8323 0.8398 0.8543 0.8255 0.8716

Recall 0.6926 0.7437 0.7948 0.8116 0.8207 0.8330 0.8413 0.8558 0.8360 0.8719

Loss 1.0405 0.9980 0.9492 0.9336 0.9227 0.9102 0.8999 0.8904 0.9020 0.8774

Note:
Bold values indicate the best performance for each metric.

Table 8 Classification performance of the proposed model at l = 1.0.

Precision (%) Recall (%) F1-score (%)

Glioma 89.02 78.33 83.33

Meningioma 75.38 80.07 77.65

No tumor 92.60 95.80 94.17

Pituitary 90.76 91.67 91.21
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([81.70–85.25]) for the global model’s classification accuracy indicate that the results are
consistent across rounds, suggesting stable performance of the proposed method. FedAvg
(l ¼ 0) provided decent baseline results, but is outperformed by l ¼ 1:0, indicating that
the regularization avoids overfitting to local distributions and provides enhanced
generalization in the global model. A paired t-test is performed to statistically validate the
observed performance differences between FedAvg and the proposed FedProx approach,.
The test yielded a significant result (t ¼ 4:1243, p ¼ 0:0026). The value of p less than 0.05

Figure 6 Comparison of global model accuracy across training rounds under different mu values.
Full-size DOI: 10.7717/peerj-cs.3396/fig-6

Figure 7 Comparison of global model F1-score across training rounds under different mu values.
Full-size DOI: 10.7717/peerj-cs.3396/fig-7
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confirms that the improvement achieved by FedProx over FedAvg is statistically
significant.

Importantly, the observed accuracy of 87.18% under extreme non-IID settings is a direct
consequence of significant divergence in client data distributions, which is quantitatively
supported by the JS divergence values computed across clients. The high JS divergence
reflects substantial statistical differences in class distributions and feature spaces among
client datasets, leading to model inconsistency and learning instability. This heterogeneity

Figure 8 Comparison of global model precision across training rounds under different mu values.
Full-size DOI: 10.7717/peerj-cs.3396/fig-8

Figure 9 Comparison of global model recall across training rounds under different mu values.
Full-size DOI: 10.7717/peerj-cs.3396/fig-9
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introduces conflicting gradient updates during aggregation, thereby making global
convergence more challenging and reducing the overall classification performance.

In contrast, under IID conditions, the proposed model achieved a final accuracy of
97.71% and a minimal test loss of 0.0628. The confusion matrices in Figs. 12 and 13 further
highlight classification strengths and weaknesses across tumor categories. Experiments
with direct IID data demonstrated markedly better convergence behavior and
generalization performance, as shown in Fig. 14. The substantial performance gap between
IID and non-IID scenarios underscores the strong influence of client data heterogeneity on
FL outcomes. To the best of our knowledge, no previous study has evaluated FL
performance across such extreme-divergence client datasets while achieving this level of

Figure 10 Comparison of global model loss across training rounds under different mu values.
Full-size DOI: 10.7717/peerj-cs.3396/fig-10

Figure 11 Statistical analysis of the proposed approach.
Full-size DOI: 10.7717/peerj-cs.3396/fig-11
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classification accuracy. These results establish a new baseline for divergence-aware FL in
medical imaging and demonstrate that careful tuning of the FedProx regularization
parameter can substantially mitigate the negative effects of statistical heterogeneity, even
under challenging real-world data conditions.

DISCUSSION
Without FL
The results of our proposed model, which utilized FL with non-IID data, demonstrate its
ability to handle decentralized and heterogeneous data while maintaining competitive
performance. This stands in contrast to prior works that relied on models trained with IID
data and centralized learning. For instance, Vidyarthi et al. (2022) achieved an accuracy of
95.86% using a neural network classifier with a cumulative variance feature extraction
method on the Kaggle dataset; similarly, Khan et al. (2022a) developed a hierarchical DL
model (HDL2BT) with 92.13% accuracy. Other studies, such as Senan et al. (2022) and
Nazir et al. (2024), explored AlexNet-SVM and explainable AI approaches, obtained
94.64% and 95.10% accuracy, respectively. While these studies reported good performance,
their reliance on IID data and centralized learning limits their applicability to real-world
decentralized scenarios. In contrast, our FL approach addresses these challenges by
enabling collaboration across distributed clients with non-IID data, achieving comparable

Figure 12 Confusion matrix of proposed model on non-IID data.
Full-size DOI: 10.7717/peerj-cs.3396/fig-12
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results despite the complexities of the FL paradigm. This highlights the robustness and
practicality of FL in handling real-world data distributions while maintaining strong model
performance. The comparison of existing works without using FL is summarized in
Table 9.

Figure 13 Confusion matrix of proposed model results on IID data.
Full-size DOI: 10.7717/peerj-cs.3396/fig-13

Figure 14 Accuracy of proposed model on IID data. Full-size DOI: 10.7717/peerj-cs.3396/fig-14

Ghanta et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3396 23/29

http://dx.doi.org/10.7717/peerj-cs.3396/fig-13
http://dx.doi.org/10.7717/peerj-cs.3396/fig-14
http://dx.doi.org/10.7717/peerj-cs.3396
https://peerj.com/computer-science/


With FL and using IID and non-IID data
Compared to existing literature, our proposed model demonstrates a robust solution.
Specifically, it employs the ResNet50 attention model in an FL setting with IID data, and
when extended with data augmentation and the FedProx algorithm in a non-IID setting, it
effectively handles decentralized, heterogeneous data distributions. Previous works, such
as Ay, Ekinci & Garip, 2024, utilized the FedAvg algorithm and achieved an accuracy of
85.55%, using FL with IID data. Similarly, Talukder, Islam & Uddin, 2023 achieved 91.05%
accuracy using a voting ensemble of six transfer learning models with FL on the Kaggle
dataset, also assuming IID data distributions. Zhou, Wang & Zhou, 2024 explored FL with
EfficientNetB0 and ResNet50 on the SARTAJ dataset, achieved accuracy rates of 80.17%
and 65.32%, respectively, again under IID assumptions. Table 10 presents a comparison of
the results of the existing and proposed works. As expected, the model performed better in
an ideal and perfectly balanced IID setting. This is because our realistic non-IID setup
causes “client drift”, where each client’s biased data pulls the shared global model in
conflicting directions, making it harder to learn. While our oversampling strategy helped
counter this, it came with a trade-off. Augmenting images adds quantity but doesn’t
introduce new, unique patient cases or biological patterns. This lack of true diversity in the
original data helps explain the performance ceiling we observed (87.19% accuracy),
highlighting the challenge of training with real-world, heterogeneous data.

AlthoughMuntaqim & Smrity (2025) reported a higher accuracy of 98.24%, claiming to
have considered non-IID data, the actual heterogeneity in their setup was very low. To
more precisely quantify the heterogeneity in our dataset, we computed the Jensen–

Table 9 Comparison of classification accuracy in existing works without FL.

Reference Approach Accuracy
(%)

Khan et al. (2022a) Hierarchical DL based BTC (HDL2BT) 92.13

Vidyarthi et al. (2022) NN Classifier with cumulative variance method for feature extraction 95.86

Nazir et al. (2024) CNN along with explainable AI 94.64

Senan et al. (2022) AlexNet-SVM 95.10

Table 10 Comparison of classification accuracy with existing FL works using IID data.

Reference Approach Accuracy (%)

Talukder, Islam & Uddin (2023) Ensemble DL model using grid search-based weight
optimization (GSWO)

91.05

Zhou, Wang & Zhou (2024) ResNet50 and EfficientNetB0 65.32

80.17

Ay, Ekinci & Garip (2024) FedAvg 85.55

Ft-FedAvg 85.8

Proposed work ResNet50-Attention model (IID) 97.71

ResNet50-Attention model + DA+ FedProx (non-IID) 87.19

Note:
Values for the proposed work are shown in bold.
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Shannon Divergence (JSD) between clients. Table 11 presents the JSD matrix from the
aforementioned study (Muntaqim & Smrity, 2025) and our proposed work. In Muntaqim
& Smrity (2025), the client distributions were considerably more homogeneous, as
reflected by significantly lower divergence values; the highest divergence reported is
0.0258, whereas our setup reaches a maximum divergence of 0.533, an extremely high
value, highlighting the substantial heterogeneity in our case. This pronounced
heterogeneity, particularly the extreme class imbalance across clients, is the primary reason
for the relatively lower performance of our model. Such an imbalance significantly impacts
the global model’s ability to generalize. Nevertheless, despite these challenges, our
approach demonstrated promising results under more realistic and complex data
conditions.

CONCLUSION
This study successfully demonstrated the application of FL for BTC using a non-IID
dataset, addressing the critical challenge of data heterogeneity. The use of the FedProx
algorithm, with its proximal regularization term (l), proved an effective method in
mitigating clients’ divergence and enhancing model stability in non-IID settings. Data
augmentation also played a crucial role in ensuring uniform performance across all clients,
enabling fair and effective FL. We considered a range of values for the FedProx proximal
regularization term (l ¼ 0; 0:1; 0:4; 0:7; and 1:0) and tuned them in our experimental
setting. Among these, l ¼ 1:0 outperformed the others, achieving a global model accuracy
of 87.19% and an F1-score of 87.16%. This indicates the significance of proximal
regularization in achieving robust model convergence. Even when the loss values remained
around 0.8 for both FedAvg and l ¼ 1:0, the superior performance with l ¼ 1:0
underscores the importance of regularization in enhancing stability and performance in
non-IID federated scenarios. The primary motivation of this work is to investigate the
feasibility and impact of implementing the FedProx algorithm in highly non-IID
environments, where client data divergence poses major challenges to convergence and
accuracy. Due to the complexity of training with non-IID data in terms of computational
resources and time, transfer learning is adopted to ensure manageable training cycles while
retaining sufficient capacity for meaningful classification. The framework achieved

Table 11 JSD matrices for clients in existing work and our proposed work.

Work Client C1 C2 C3 C4

Existing work (Muntaqim & Smrity, 2025) C1 0.0000 0.0160 0.0206 0.0232

C2 0.0160 0.0000 0.0258 0.0333

C3 0.0206 0.0258 0.0000 0.0203

C4 0.0232 0.0333 0.0203 0.0000

Proposed work (Ours) C1 0.0000 0.483 0.515 0.499

C2 0.483 0.0000 0.518 0.501

C3 0.515 0.518 0.0000 0.533

C4 0.499 0.501 0.533 0.0000
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compelling results, establishing a practical baseline for future work in federated medical
imaging. The practical implications of this work are significant, offering a path to
democratize diagnostic expertise for smaller clinics and improve consistency by serving as
a decision support tool for radiologists.

FUTURE WORK
While this study demonstrates the efficacy of FedProx in addressing non-IID data
challenges, it also highlights areas for further exploration. Future work may explore
different combinations of augmentation techniques to better understand their specific
contributions to mitigating non-IID bias in FL. The achieved accuracy, while promising,
suggests scope for improvement in optimizing model performance. Looking ahead, future
work to bridge the performance gap in non-IID settings could focus on exploring
Personalized FL (PFL) to create client-specific models. The geometric augmentation (e.g.,
rotation, flipping, scaling) only slightly alters existing images; they cannot create entirely
new, realistic variations, which may limit model generalization. Employing advanced data
synthesis, such as Generative Adversarial Networks (GAN), overcomes the limitations of
geometric augmentation. Developing adaptive algorithms to dynamically tune the
regularization parameter (l) could allow the model to automatically explore optimal
values, potentially improving performance and reducing the need for manual parameter
selection. Future research could explore incorporating blockchain technology to establish a
secure and transparent framework for managing model updates and participant
contributions, thereby enhancing trust and traceability in decentralized settings. Incentive
mechanisms, potentially built on blockchain-based smart contracts, could further
encourage sustained and honest participation from diverse clients. We would like to
extend our work to other medical image analysis tasks. Expanding the study to larger, more
diverse datasets and evaluating real-world deployment scenarios would also help validate
the scalability and robustness of the approach, potentially paving the way for secure,
privacy-preserving AI applications in healthcare.
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