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A novel vortex core identification pipeline is developed based on template matching. Using persistent homology,
a template similarity field is constructed from a sliding window template-target feature space distance. This
scalar field is then used to accentuate localised regions of spanwise vorticity via nonlinear weighting. This
method is successfully applied to track the leading-edge vortex trajectory in a stall flutter starting cycle for a
pitching NACA 63(3)418 aerofoil. Trajectory results are compared with several user-based vortex core identifiers
like local vorticity minimum, local Q-criterion maximum, local swirling strength maximum, and manual
tracking. The results of this comparison are quite satisfactory as the developed method is capable of automati-
cally monitoring the leading-edge vortex core through several critical stages of its lifecycle. The effects of
template size and down sampling are also investigated with respect to the vortex core identification. It is found
that a template radius of r = 0.04c and down sampling factor M = 10 are sufficient for accurate vortex core
monitoring in dynamically stalled flows. In general, this method acts primarily as a field-based filter that can be
useful for isolating highly vortical regions like the leading-edge vortex core in stall flutter or dynamic stall

scenarios.

1. Introduction

Tracking and monitoring of large-scale coherent structures in fluid
flows is a ubiquitous task across various engineering and scientific dis-
ciplines. This is particularly true for vortex dominated flow scenarios
like aerofoil ramp-up motion [1], stall flutter [2], and dynamic stall [3].
In these cases, a strong leading-edge vortex (LEV) is generated due to the
traversal of a separation point upstream followed by the subsequent roll
up of the leading-edge shear layer [4]. This particular vortex structure
has been linked to characteristics such as unsteady lift augmentation,
negative aerodynamic damping, and load hysteresis which can be
regarded as favourable or unfavourable depending on the design
context. For example, the LEV induced lift augmentation is exploited by
birds during perching scenarios to maintain lift at high incidence angles
[5]. For high aspect ratio aeroelastic structures though, this unsteady
loading can cause fatigue and early wear. Within the wind energy
community, many researchers aim to quantify the status of this LEV over
a range of parametric conditions to develop a better understanding of its
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associated flow physics and effects on wind turbine blade integrity. To
do this, it is common to measure the LEV core trajectory using metrics
such as the Q-criterion, swirl criterion, and vorticity, to name a few [1,2,
6,71 . Though, many Eulerian based definitions often suffer from
spurious vortex identification in high Reynolds number flows that can
make vortex monitoring highly challenging and case specific. Often,
time-resolved monitoring of a particular vortex of interest requires an
extended pipeline including methods such as thresholding, filtering, or
clustering.

Several recent advances in the field of vortex core identification/
monitoring have implemented tools like DBSCAN clustering [8], su-
pervised machine learning [6], and computer vision-based techniques
[9] to successfully identify and monitor vortices. A relatively niche so-
lution space to this objective is by using template or pattern matching. In
this case, a template is either identified or generated by the user that
encompasses the approximate composition of a target. This type of
pattern recognition task has roots in image-based segmentation/classi-
fication and is often quantified through a distance or similarity field
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metric. Though, a similar objective can be applied to fluid flows where a
template is provided to identify certain fluid dynamic events. Ebling and
Scheuermann [10], Rodrigues et al. [11], and Heiberg et al. [12] all
utilised vector valued templates corresponding to various scenarios like
shearing, swirling, sinks, etc. to successfully identify and label fluid
structures within a wide range of experimental and numerical case
studies like jets, blood flow, and unsteady vortex shedding. This method
requires the generation of a template library that can be applied indi-
vidually or in superposition to compare with real world flows. In all
cases, the convolution operation was utilised to generate a similarity
measure between the template and target. One potential limitation of
vector valued templates is that grid uniformity is required for the
convolution operation, ideally with a comparable template-target size
[13]. Second, template rotation is typically applied at each sliding
window which can be computationally expensive depending on the
angle resolution. Another template-based method was introduced by
Elsinga et al. [14] that utilised a conditional eddy template of the
average flow associated with a spanwise swirling event for a turbulent
boundary layer via linear stochastic estimation (LSE). A distance map
was then constructed using the cross correlation between this template
and the spanwise swirling strength distribution. Overmeyer [15] utilised
an adaptive template cross-correlation method to automatically monitor
rotor tip vortices in their stereo image pairs. In all cases, the success of
template-target pairing methods is inherently based on how well the
template can objectively capture the target structure whilst minimising
the computational cost.

In this work, we propose and demonstrate the use of a topological
data analysis (TDA) informed template matching pipeline for tracking
the LEV core trajectory in stall flutter simulations. The use of TDA within
the engineering community has seen recent growth, granting a
refreshing perspective on fluid flow analysis and modelling techniques.
Suzuki et al. [16] utilised persistent homology to estimate the perme-
ability of fracture networks in rocks to estimate flow characteristics
without the need for fluid dynamic simulations. Likewise, Moon et al.,
[17] were able to infer transport relevant properties of their porous
media samples such as the permeability, tortuosity, and anisotropy via
statistical learning of vectorized persistence diagrams. Tymochko et al.
[18] leveraged sublevel persistent homology to accurately monitor the
diurnal cycle of a tropical cyclone using satellite images. Smith et al.
[19] defined a persistent homology informed loss function for modelling
dynamic stall events in a pitching flat plate. Specifically, it was shown
that the state trajectory for a pitching flat plate is approximately ho-
meomorphic to a unit circle. This is was shown to be useful as a learning
constraint for data-driven modelling and also as a simplified geometric
interpretation of the dynamic stall phenomenology. Chen and Lin [20],
utilized persistent path homology to isolate and track vector field sin-
gularities in tropical storms. Different from traditional applications of
point-cloud persistent homology, this method first requires the con-
struction of a two-dimensional directed graph (digraph) for building a
path-based complex rather than a simplicial one. This type of data
structure encodes directional relationships rather than high dimensional
geometric proximity. Furthermore, it was noted that the effects of graph
resolution on isolating singular events in high-fidelity vector fields is not
yet fully understood.

In this work, we utilise persistent homology to quantify the feature
space similarity between a template-target pair via construction of a
simplicial complex. The logic behind this strategy is that the LEV can
have a wide range of strengths, sizes, and shapes owing to various dy-
namic stall related events. This makes direct ‘image-like’ pairing oper-
ations like convolution or RMSE potentially sensitive to template noise,
orientation, and its absolute distance. Conversely, persistent homology
provides a mechanism for mapping high-dimensional flow field data to a
common low dimensional feature space that is both resilient to noise and
invariant to template/target rotations. This abstraction also does not
require dimensionality matching or grid uniformity for a direct
template-target comparison which allows for applications in

Computers and Fluids 306 (2026) 106931

unstructured and non-uniform CFD domains. Finally, this method does
not require a large template library to be generated, only a single user-
input sample. To summarize, the primary difference between our pro-
posed method and current template-matching techniques is that our
template-target comparison is computed in a topological feature space
that encodes the vortex core, rather than relying on vector or spatial
correspondences. This abstraction makes it simple to implement in
complex grids and minimises the amount of pre-processing overhead. To
the best of the author’s knowledge, the vortex identification pipeline
demonstrated here is the first application of persistent homology for
direct core identification via simplicial complex construction. It is for
this reason that a comparison with established vortex core identification
methods like the Q — criterion [21], vorticity, swirling strength [22] and
manual identification are utilised to validate its accuracy.

2. Setup
2.1. Numerical data set

Large eddy simulation data for a pitching NACA 63(3)418 aerofoil at
a chord-based Reynolds number of Rec=100,000, reduced frequency K
= 0.4, and mean incidence angle, a = 15°, is used for the current
investigation. A very fine, C-type grid with cell spacing 1761 x 300 x
81, in the chord-normal, chord-wise, and span-wise directions was
generated using Pointwise to sufficiently resolve the aerofoil boundary
layer. Operating in a rotating reference frame, the pitching motion of the
aerofoil is modelled by a forced spring mass damper system with
nondimensional mass moment of inertia, damping, and spring co-
efficients set to j*=0.0765 , u*=1000, and k*=0.0490.

The pitching moment forcing function is computed in time about the
0.5c¢ location by integrating over the pressure and viscous forces along
the aerofoil surface. See Martinez et al. [23] for a more detailed
composition of the simulation setup conditions and grid convergence
study. Starting from an initially static condition, this computational data
set consists of field snapshots spanning a segmented window within the
first aeroelastic pitching cycle indicated by the black dashed lines in
Fig. 1. This window captures various dynamic stall events including the
chordwise LEV migration, its detachment, and shedding behaviour at a
temporal resolution of At = 0.05Z= . Indeed, these events contribute
to highly nonlinear aerodynamic loading during stall flutter starting
cycles and transients. The dynamic status of an LEV, which includes
traits like its size, shape, and relative position, are known to be critical
indicators of this influence. In general, the current literature attempts to
consolidate this departure from nominal static values based on various
stages of the LEV-lifecycle [24]. Thus, dynamically stalled flow during a
high angle of attack aeroelastic starting cycle is a relevant and important
case study for of our proposed vortex identification method.

2.2. Persistent homology

In the field of topological data analysis, persistent homology is a tool
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Fig. 1. Aeroelastic starting cycle in pitch degree of freedom. Black dashed lines
indicate temporal limits where field data is sourced from.
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for identifying the homology groups in a multivariate point cloud [19,
25]. This allows for a diagnosis of the data ‘shape’ that can be useful for
modelling, classification, or segmentation purposes. This abstraction
can be understood graphically through a persistence diagram which is
constructed by monitoring the persistence, p = birth — death, of un-
derlying topological features in the point cloud while varying the
filtration level, e. More rigorously, persistent homology is formulated
using simplicial complexes. A simplicial complex is a collection of
k-simplices such as vertices (0-simplices), edges (1-simplices), triangles
(2-simplices), and their higher-dimensional analogues that are con-
nected along shared faces. k-cycles, which are the subcomponents of this
simplicial complex forming undirected closed loops, can be grouped into
equivalence classes called homology groups. These homology groups
formalize the number of holes in a given dimension of the complex by
Eq. (1), where Zn is the number of k-cycles and im (dy,;) denotes the
image of the boundary operator.

Zy

Hy = ———
T im ()

@

In other words, Hy encodes the essential k-dimensional features of
the simplicial complex by counting cycles that are not themselves
boundaries of higher-dimensional simplices. Persistent homology ap-
plies this framework to point cloud data by building a nested sequence of
simplicial complexes (filtration) indexed by a scale parameter and by
tracking when elements of Hy appear (birth) and disappear (death).
Here, an example of this construction is given canonically for the case of
2D point-cloud with noise.

First, a Vietoris-Rips complex is built using the Ripser Python library
[26]. This procedure consists of initialising spheres of radius ¢ at each
vertex in the point cloud. These spheres gradually grow, allowing for
intersections with neighbouring spheres. The intersection of two spheres
forms an edge between them. More generally, for k +1 intersecting
spheres, a k-dimensional simplex is formed between the corresponding
vertices. A representation of the Vietoris-Rips complex is shown in Fig. 2
to demonstrate the vertex connectivity at an arbitrary filtration level, ¢
=02,

At each filtration level, ¢;, the homology groups Hy are computed for
the corresponding complex K.. The persistence of these homology
groups is monitored as birth/death coordinate pairs and plotted as a
diagram to indicate long-lived k-dimensional holes within the data set.
This is shown in Fig. 3 corresponding to the point cloud data in Fig. 2. In

1.5
1.0 1
0.51,
> 0.0
—0.51
RS 2%
[ *
° L
ik , . ol . S
-1.5 -1.0 0.5 0.0 0.5 1.0 1.

Fig. 2. Vietoris-Rips complex for 2D circular point cloud with noise at filtration
level, e = 0.2.

Computers and Fluids 306 (2026) 106931

1 T T T T 7
L4 7’
,
,
,
0.8 1 P ’ 1
,
,
,
,

= 0.6 1 L’ 1

] 2

=) % ”
04r o J
] I
[ ]
o9 ‘, ‘
0.2 'W ]
& e HO
, » e HI1
0 . . . .

0 0.2 0.4 0.6 0.8 1

Birth

Fig. 3. Persistence diagram for point cloud data in Fig. 2 up to and including
homology dimension k = 1.

this case, a highly persistent 1-dimensional hole or loop exists within the
data set as indicated by the isolated H1 data point. This point implicates
that a loop is born at a filtration level, ¢ = 0.22 and dies at ¢ = 0.96
which is the longest-lived feature in this 2D point cloud. This example
serves as a simplified demonstration of persistent homology but follows
the same intuition when dealing with high dimensional data associated
with computational fluid dynamic (CFD) simulations.

2.3. Vortex template matching

In this section, we outline a novel post-processing pipeline for
tracking the LEV core in stall flutter simulations. Starting from a
developed LEV status, computed velocity components, pressure and
spanwise vorticity field data u, v, p and @, are manually sourced within a
circular region of interest (ROI) with radius r that approximately en-
closes the vortical structure core. In this case, the template is defined at
the location, x,y = (0.8024c, 0.3509c), with a radius, r = 0.04c. These
sourced field variables are used to describe the LEV in R*.

Next, we compute the persistence diagram for this high-dimensional
point cloud up to and including the homology dimension, k = 1. Fig. 5
demonstrates the results of this computation given by the blue and or-
ange dots (HO — to, H1 — to), indicating a variety of topological features
ranging between persistent holes and short-lived artifacts. An example
of the manually identified LEV persistence diagram at a latter timestep,
t1, is also overlayed as the yellow and purple dots (HO — t;, H1 — t;) in
Fig. 5 and exhibits similar topological features. This abstraction serves as
a single possible LEV template-target pairing between t, and t;. The
intuition is that this feature space pairing can be utilised to quantify the
similarity between the LEV at two different instances. To do this, a
second ROI of radius r scans over sampling points within the computa-
tional domain and computes the persistence diagram. In practice, it is
not necessary to scan over every point as this is computationally
expensive, and the attached LEV typically remains within one chord
length of the aerofoil suction surface. In this work, our interrogation
region (IR) is defined with radius, R, and has the same centroid as the
template location.

Grid points outside of R are automatically assigned a maximum
distance value to enforce incompatibility. The distance between these
two persistence diagrams can be quantified by the Wasserstein distance
[27] which is also known as the Earth mover’s distance [28]. Utilising
the persim python library which is based on work by Adams et al. [29]
the Wasserstein distance between two persistence diagrams is computed
up to and including a homology dimension, k = 1. Mathematically, the
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p-Wasserstein distance between two persistence diagrams, D; and Do, is
given by Eq. (2) where p is the order of the Wasserstein distance. Here,
the default value of p = 2 is utilised and ¢ is a bijection from D; to Ds.
This operation attempts to find the best possible matching between the
birth-death multisets by minimising the L., norm of x and ¢(x) over all
possible bijections.

1/p
Wy(D1, Dy) = < inf ZIIX(/)(X)II") @

#D1-Dajcpy

This operation, applied to individually to the n" grid point within an
IR of N possible candidate locations, generates a template similarity field
(TSF) indicating where the template-target distance is lowest at t;. An
example of this is shown in Fig. 6 where the ROI radius between two
arbitrary but successive time steps is set tor = 0.04c. The effects of r will
be discussed in the following sections. The template-target similarity at
t; tends to be the highest in regions of high shear or vortex formation as
indicated by the blue regions. Conversely, the red coloured regions
indicate template-target dissimilarity which appears to be present in the
regions immediately bounding strong fluid shearing or coherence. The
highest values of W,, are situated about the leading-edge where vortex
elements have not yet wholly formed.

Finally, this heatmap is then used to weight the out-of-plane vorticity
field, w,, at each sampled grid point by Eq. (3). Here, 7 is a small positive
number to avoid division by zero.

1

. 3
(W+1)2*w ®

@z scaled =

This operation acts as both a form of error correction and filtration
for regions of template dissimilarity. The LEV core location can be
recovered as the local vorticity minimum in the TSF weighted vorticity
field via thresholding. An example of this operation is presented in
Fig. 7, where the TSF is utilised to weight the raw spanwise vorticity
field at t; (Fig. 7a). Figs. 7b and 7c represent a visual comparison of the
vortex core when the TSF weighting is withheld and applied, respec-
tively. For both figures, a threshold is applied between —100 > w, > —
20 to highlight candidate core locations. It can be seen that the vortex
core is more clearly depicted in Fig. 7c as most of the background
vorticity is suppressed in regions where the template similarity field has
a high Wasserstein distance. A schematic overview of this pipeline is
given in Fig. 8 where additional smoothing, filtering, or thresholding
methods can be added as auxiliary support for more precise LEV core
identification and tracking.

3. Results
3.1. Effects of template radius

In this section, we explore the influence of the template size on
vortex core identification during stall flutter simulations. More specif-
ically, r is varied parametrically between 0.02c and 0.06¢ to quantify
how accurately the TSF is able to discriminate between the LEV core and
background noise. For this analysis, the immediate LEV vicinity is only
considered such that R = 0.4c. Additionally, three successive but non-
consecutive timestamps are used to assess the generality of this para-
metric study for identifying the LEV core. The template vortex used in
this study is the same region that was sourced in Fig. 4 and is referenced
as to. The manually identified vortex core is set as x,y = (0.8024c,

0.3509c). The IR also has a fixed centroid at this same location. As a
preliminary assessment, Fig. 9 demonstrates the effect of varying the
template size betweenr = 0.02c and r = 0.06c¢ at t; . For a small template
radius, the TSF weighted vorticity field permits a wide distribution of
vorticity. This implicates that the manually defined template is insuffi-
cient for differentiating between a vortex core and the smaller eddy
structures.

As such, the TSF exhibits a large degree of similarity (low Wasser-
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LEV template

Fig. 4. w, field with manually defined LEV template source. @, range set be-
tween — 50 < w, < 50.
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Fig. 5. Persistence diagram comparison between template sourced data and
candidate core location at t;.

Fig. 6. Template similarity field with set between 0 < W, < 15.

stein distance) that acts to apply an approximately uniform weighting.
In contrast, by using a template withr = 0.06c, the background vorticity
tends to be suppressed. This is due to a high localised dissimilarity in the
TSF that accentuates the vortex core. Thus, it can be expected that the
scaled vorticity distribution at low radii has a high variance. Conversely,
as the ideal template size is approached, the distribution should narrow
about zero. To test this supposition, we compute the probability distri-
bution of the TSF weighted vorticity field at three successive timestamps
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b)

Fig. 7. a) Raw w;, field with strong LEV present during high amplitude starting
cycle. b) w;, field with threshold applied between — 100 > w, > — 20. ¢) TSF
weighted w, field with threshold applied between — 100 > @, > — 20.

using a logistic distribution fit. The spatial distribution mean, y, and
variance, ¢2, are monitored over the parametric range, r =
[0.02:0.01 : 0.06], and utilising the same previously defined template
and IR. The results of this study are presented in Fig. 10 where t; in-
dicates the successive field snapshots. As expected, the weighted
vorticity distribution tends to approach a mean value, y,, = 0 whenr is
varied between 0.02c and 0.06c across all cases. This is because more of
the background vortical structures and noise are being suppressed due to
a favourable template-target pairing. The variance also appears to shrink
with r as per a larger disparity in vortex core candidate locations and
noise. For both metrics, the change in distribution sensitivity appears to
decrease dramatically at r = 0.04c. Beyond this template radius, the
respective distributions between t;, tz, and t3 are closely aligned.

An important consideration here, is that the construction of a
Vietoris-Rips complex has a complexity of O(2") where n is the number
of data points sourced within r. Thus, the computational time and
memory scaling for an ideal template is exponential in n and constant
with the data dimension, RY [30].

This potentially incurs significant computational challenges when
automating the vortex core tracking in high fidelity simulations or
particle image velocimetry (PIV) data. In some cases, the marginal in-
crease in identification accuracy from utilising a larger template radius
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Fig. 8. Persistent homology-based template matching pipeline for LEV core
identification.
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Fig. 9. TSF weighted w, field comparison for r = 0.02c (left) and r = 0.06c (right). Both cases utilise an IR of R = 0.4c and have the range set between

— 50 <w, <50.
may not warrant the computational overhead.
3.2. Effects of down sampling

To address the computational challenges associated with persistent
homology, it is common to apply down sampling to the sourced point-
cloud data. While an intuitive strategy to simplify the complex genera-
tion and filtration process, this ultimately changes the point-cloud to-
pology and further complicates the feature space template/target
‘definition’ of a vortex core at each timestamp. A potentially important
consideration is how the template/target data is down sampled (uni-
form, random, directional bias) to account for the vortex shape and
spatial distribution. An alternative method is to simply apply down
sampling to the prospective template/target ROI centroids as this does
not alter its respective point cloud topologies, only the TSF spatial res-
olution which can be managed easily through interpolation. As such, we
consider the effects of a uniform down sampling factor, M, within a fixed
IR of R = 0.3c on the vortex core identification.

For this test, down sampling is applied to the target snapshot by
uniformly skipping over candidate centroid locations within the IR. All
computations were conducted utilising an Intel i5 processor with 2.40
Ghz and multithreading over four physical cores. The Wasserstein dis-
tance at skipped locations is assigned by using a linear interpolation
scheme on the unstructured grid. This ensures that the dimension of the
TSF and vorticity field are the same. Finally, the vortex core is recovered
here as the local minimum weighted vorticity within an IR that is cen-
tred by the template centroid location. Fig. 11 demonstrates the iden-
tified vortex core locations by varying the down sampling factor within
the range, M = [0 : 5 : 35]. The template used here is defined at x,y =
(0.8024¢, 0.3509c¢), with r = 0.04c.

It can be seen that the vortex core location is largely insensitive to the
effects of down sampling as these predictions are contained within a
range of +0.02c from the baseline case, M = 0. Though, these pre-
dictions tend to exhibit nonlinear behaviour as M = 10 and M = 20 yield
the closest matches to our baseline definition. In general, down sampling
appears to offer a significant advantage as the computational cost de-
creases dramatically when M > 10 (see Fig. 12). Furthermore, this
advantage incurs a nominal decrease in prediction accuracy making it a
suitable practice to implement in this vortex tracking pipeline.

3.3. Leading-edge vortex tracking

Utilising the developed vortex identification pipeline and a template
definition with x,y = (0.8024c, 0.3509¢), r = 0.04c, and M = 10, the
LEV trajectory is monitored during an aeroelastic starting cycle for a
NACA 63(3)418 aerofoil.

As a preliminary demonstration, an IR with R = 1c is used to provide
a global comparison of the vortex core identification with and without
the TSF weighting scheme. For this assessment, four successive but non-
consecutive timestamps are considered. Both the TSF weighted and
unweighted vorticity fields are computed and limited between — 100 <
w, < — 20. Spatial regions that satisfy this threshold criteria are then
clustered together to highlight potential vortex candidate locations. For
Fig. 13a, conventional thresholding of the raw spanwise vorticity field
still yields significant noise at four distinct stages within the LEV life-
cycle. This complicates the goal of vortex identification and tracking as
there are many possible candidate core locations owing primarily to
fluid shear interactions. When the TSF weighting scheme is applied
though (Fig. 13b), we observe a significant filtration of these spurious
vortex core locations. The leading-edge shear layer is still present at
these timestamps but appears to be largely diminished compared to the
conventional thresholding method. Finally, four vortex clusters are
easily identifiable when the TSF weighting is applied. It is clear that this
method provides an advantage in vortex core identification as it acts to
filter out most of the turbulent background noise. This allows for a better
qualitative and quantitative interpretation of the LEV dynamics during
stall flutter.

To perform automated vortex tracking, an adaptive IR with R = 0.2¢c
is constructed based on the identified vortex core location. More spe-
cifically, the IR centroid at t;;; is updated as the vortex core location, (x67
Ye), at ;. Fig. 14 presents the results of this LEV tracking study where the
different trajectory traces correspond to the TSF weighting, local Q-
criterion maximum, local vorticity minimum, local swirling strength
maximum, and manual core definition methods respectively. The latter
four methods all require user input whereas the blue trace (TSF) is
completely automated aside from the template initialisation and first IR
assignment. Note that all trajectories were smoothed using a sliding
window filter of three timestamps. It can be seen that the TSF based
tracking method is quite satisfactory in monitoring the core trajectory
during its suction side migration and eventual severance when
compared to the local @, min, local swirl strength maximum, manual core
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Fig. 10. Template size sensitivity analysis based on the TSF weighted w, dis-
tribution. a) distribution mean as a function of r. b) distribution variance as a
function of r. Different colour plots correspond to the respective distribution at
successive timestamps within the pitching cycle.

identification traces. The local Q-criterion maximum trace appears to
exhibit stronger variations in the LEV core trajectory, especially in the
vicinity leading up to LEV detachment. This suggests that TSF moni-
toring scheme is less sensitive to localised truncations of the flow field
than the Q-criterion for the case study presented here.

Overall, the dynamic stall regime captured by these respective traces
generally corresponds to a mature LEV status where the vortex structure
is coherent and easily compatible with our chosen template. A distinct
changepoint near £ = 0.9 is captured in all trajectories. This trajectory
shift away from the aerofoil has been previously linked to a trailing edge
interaction with the LEV that is responsible for the LEV detachment and
subsequent dynamic lift stall [2,31]. Thus, accurately identifying this
tendency further demonstrates the capability of our method for moni-
toring the LEV as it progresses through various critical stages of its
lifecycle. Overall, the TSF proves to be an effective tool for vortex core
identification and monitoring in dynamically stalled flows.
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Fig. 11. Vortex core identification varied parametrically by a uniform down
sampling factor, M. In all cases, the vortex core is quantified by the global
minimum TSF weighted spanwise vorticity within the IR (black
dashed boundary).
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Fig. 12. Wall-clock time as a function of down sampling factor, M. All tests
were conducted on a computer utilising an Intel i5 processor with 2.40 Ghz.
Grid scanning is parallelised over 4 physical cores.

4. Conclusion

A novel vortex identification post-processing pipeline has been
developed that leverages persistent homology for topology informed
template matching. This pipeline has been successfully applied to the
case study of a pitching NACA 63(3)418 aerofoil for the LEV detection
and monitoring within a single pitching cycle. We have demonstrated
that the TSF weighted vorticity field is quite effective at filtering out
spurious vortex cores and background turbulent noise. This allows for a
simpler interpretation of the dynamically stalled flow field when
attempting to identify the LEV. We have demonstrated that the
template-target pairing at various temporal snapshots is highly sensitive
to the ROI radius when r < 0.04c. Though, larger templates incur a
significant computational cost when computing persistent homology.
This can be offset by utilising a uniform down sampling factor on the
candidate core grid locations. It is shown that the computational time
drops when M > 10 without significantly compromising the vortex core
identification accuracy. Future work considers the application of this
method to tracking multiple simultaneous vortices. This likely requires
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Fig. 13. a) Potential vortex core candidate locations clustered based on an
applied threshold, — 100 < w, < — 20, to the raw w, field. b) Potential vortex
core candidate locations clustered based on an applied threshold, — 100 <
w, < — 20, to the TSF weighted w, field. Four successive temporal snapshots
are utilised within the first starting cycle.
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Fig. 14. TSF automated vortex core trajectory (blue) compared with several
user-in-the-loop monitoring strategies. Trajectories are computed starting from
the vortex state illustrated by the w, contour. Contour range is set between
— 50 < w, <50.
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integration with current state-of-the-art tracking techniques like clus-
tering or machine vision methodologies.
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