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A B S T R A C T

A novel vortex core identification pipeline is developed based on template matching. Using persistent homology, 
a template similarity field is constructed from a sliding window template-target feature space distance. This 
scalar field is then used to accentuate localised regions of spanwise vorticity via nonlinear weighting. This 
method is successfully applied to track the leading-edge vortex trajectory in a stall flutter starting cycle for a 
pitching NACA 63(3)418 aerofoil. Trajectory results are compared with several user-based vortex core identifiers 
like local vorticity minimum, local Q-criterion maximum, local swirling strength maximum, and manual 
tracking. The results of this comparison are quite satisfactory as the developed method is capable of automati
cally monitoring the leading-edge vortex core through several critical stages of its lifecycle. The effects of 
template size and down sampling are also investigated with respect to the vortex core identification. It is found 
that a template radius of r = 0.04c and down sampling factor M = 10 are sufficient for accurate vortex core 
monitoring in dynamically stalled flows. In general, this method acts primarily as a field-based filter that can be 
useful for isolating highly vortical regions like the leading-edge vortex core in stall flutter or dynamic stall 
scenarios.

1. Introduction

Tracking and monitoring of large-scale coherent structures in fluid 
flows is a ubiquitous task across various engineering and scientific dis
ciplines. This is particularly true for vortex dominated flow scenarios 
like aerofoil ramp-up motion [1], stall flutter [2], and dynamic stall [3]. 
In these cases, a strong leading-edge vortex (LEV) is generated due to the 
traversal of a separation point upstream followed by the subsequent roll 
up of the leading-edge shear layer [4]. This particular vortex structure 
has been linked to characteristics such as unsteady lift augmentation, 
negative aerodynamic damping, and load hysteresis which can be 
regarded as favourable or unfavourable depending on the design 
context. For example, the LEV induced lift augmentation is exploited by 
birds during perching scenarios to maintain lift at high incidence angles 
[5]. For high aspect ratio aeroelastic structures though, this unsteady 
loading can cause fatigue and early wear. Within the wind energy 
community, many researchers aim to quantify the status of this LEV over 
a range of parametric conditions to develop a better understanding of its 

associated flow physics and effects on wind turbine blade integrity. To 
do this, it is common to measure the LEV core trajectory using metrics 
such as the Q-criterion, swirl criterion, and vorticity, to name a few [1,2, 
6,7] . Though, many Eulerian based definitions often suffer from 
spurious vortex identification in high Reynolds number flows that can 
make vortex monitoring highly challenging and case specific. Often, 
time-resolved monitoring of a particular vortex of interest requires an 
extended pipeline including methods such as thresholding, filtering, or 
clustering.

Several recent advances in the field of vortex core identification/ 
monitoring have implemented tools like DBSCAN clustering [8], su
pervised machine learning [6], and computer vision-based techniques 
[9] to successfully identify and monitor vortices. A relatively niche so
lution space to this objective is by using template or pattern matching. In 
this case, a template is either identified or generated by the user that 
encompasses the approximate composition of a target. This type of 
pattern recognition task has roots in image-based segmentation/classi
fication and is often quantified through a distance or similarity field 
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metric. Though, a similar objective can be applied to fluid flows where a 
template is provided to identify certain fluid dynamic events. Ebling and 
Scheuermann [10], Rodrigues et al. [11], and Heiberg et al. [12] all 
utilised vector valued templates corresponding to various scenarios like 
shearing, swirling, sinks, etc. to successfully identify and label fluid 
structures within a wide range of experimental and numerical case 
studies like jets, blood flow, and unsteady vortex shedding. This method 
requires the generation of a template library that can be applied indi
vidually or in superposition to compare with real world flows. In all 
cases, the convolution operation was utilised to generate a similarity 
measure between the template and target. One potential limitation of 
vector valued templates is that grid uniformity is required for the 
convolution operation, ideally with a comparable template-target size 
[13]. Second, template rotation is typically applied at each sliding 
window which can be computationally expensive depending on the 
angle resolution. Another template-based method was introduced by 
Elsinga et al. [14] that utilised a conditional eddy template of the 
average flow associated with a spanwise swirling event for a turbulent 
boundary layer via linear stochastic estimation (LSE). A distance map 
was then constructed using the cross correlation between this template 
and the spanwise swirling strength distribution. Overmeyer [15] utilised 
an adaptive template cross-correlation method to automatically monitor 
rotor tip vortices in their stereo image pairs. In all cases, the success of 
template-target pairing methods is inherently based on how well the 
template can objectively capture the target structure whilst minimising 
the computational cost.

In this work, we propose and demonstrate the use of a topological 
data analysis (TDA) informed template matching pipeline for tracking 
the LEV core trajectory in stall flutter simulations. The use of TDA within 
the engineering community has seen recent growth, granting a 
refreshing perspective on fluid flow analysis and modelling techniques. 
Suzuki et al. [16] utilised persistent homology to estimate the perme
ability of fracture networks in rocks to estimate flow characteristics 
without the need for fluid dynamic simulations. Likewise, Moon et al., 
[17] were able to infer transport relevant properties of their porous 
media samples such as the permeability, tortuosity, and anisotropy via 
statistical learning of vectorized persistence diagrams. Tymochko et al. 
[18] leveraged sublevel persistent homology to accurately monitor the 
diurnal cycle of a tropical cyclone using satellite images. Smith et al. 
[19] defined a persistent homology informed loss function for modelling 
dynamic stall events in a pitching flat plate. Specifically, it was shown 
that the state trajectory for a pitching flat plate is approximately ho
meomorphic to a unit circle. This is was shown to be useful as a learning 
constraint for data-driven modelling and also as a simplified geometric 
interpretation of the dynamic stall phenomenology. Chen and Lin [20], 
utilized persistent path homology to isolate and track vector field sin
gularities in tropical storms. Different from traditional applications of 
point-cloud persistent homology, this method first requires the con
struction of a two-dimensional directed graph (digraph) for building a 
path-based complex rather than a simplicial one. This type of data 
structure encodes directional relationships rather than high dimensional 
geometric proximity. Furthermore, it was noted that the effects of graph 
resolution on isolating singular events in high-fidelity vector fields is not 
yet fully understood.

In this work, we utilise persistent homology to quantify the feature 
space similarity between a template-target pair via construction of a 
simplicial complex. The logic behind this strategy is that the LEV can 
have a wide range of strengths, sizes, and shapes owing to various dy
namic stall related events. This makes direct ‘image-like’ pairing oper
ations like convolution or RMSE potentially sensitive to template noise, 
orientation, and its absolute distance. Conversely, persistent homology 
provides a mechanism for mapping high-dimensional flow field data to a 
common low dimensional feature space that is both resilient to noise and 
invariant to template/target rotations. This abstraction also does not 
require dimensionality matching or grid uniformity for a direct 
template-target comparison which allows for applications in 

unstructured and non-uniform CFD domains. Finally, this method does 
not require a large template library to be generated, only a single user- 
input sample. To summarize, the primary difference between our pro
posed method and current template-matching techniques is that our 
template-target comparison is computed in a topological feature space 
that encodes the vortex core, rather than relying on vector or spatial 
correspondences. This abstraction makes it simple to implement in 
complex grids and minimises the amount of pre-processing overhead. To 
the best of the author’s knowledge, the vortex identification pipeline 
demonstrated here is the first application of persistent homology for 
direct core identification via simplicial complex construction. It is for 
this reason that a comparison with established vortex core identification 
methods like the Q − criterion [21], vorticity, swirling strength [22] and 
manual identification are utilised to validate its accuracy.

2. Setup

2.1. Numerical data set

Large eddy simulation data for a pitching NACA 63(3)418 aerofoil at 
a chord-based Reynolds number of Rec=100,000, reduced frequency K 
= 0.4, and mean incidence angle, a = 15◦, is used for the current 
investigation. A very fine, C-type grid with cell spacing 1761 × 300 ×
81, in the chord-normal, chord-wise, and span-wise directions was 
generated using Pointwise to sufficiently resolve the aerofoil boundary 
layer. Operating in a rotating reference frame, the pitching motion of the 
aerofoil is modelled by a forced spring mass damper system with 
nondimensional mass moment of inertia, damping, and spring co
efficients set to j*=0.0765 , u*=1000, and k*=0.0490.

The pitching moment forcing function is computed in time about the 
0.5c location by integrating over the pressure and viscous forces along 
the aerofoil surface. See Martinez et al. [23] for a more detailed 
composition of the simulation setup conditions and grid convergence 
study. Starting from an initially static condition, this computational data 
set consists of field snapshots spanning a segmented window within the 
first aeroelastic pitching cycle indicated by the black dashed lines in 
Fig. 1. This window captures various dynamic stall events including the 
chordwise LEV migration, its detachment, and shedding behaviour at a 
temporal resolution of Δt = 0.05 t U∞

c . Indeed, these events contribute 
to highly nonlinear aerodynamic loading during stall flutter starting 
cycles and transients. The dynamic status of an LEV, which includes 
traits like its size, shape, and relative position, are known to be critical 
indicators of this influence. In general, the current literature attempts to 
consolidate this departure from nominal static values based on various 
stages of the LEV-lifecycle [24]. Thus, dynamically stalled flow during a 
high angle of attack aeroelastic starting cycle is a relevant and important 
case study for of our proposed vortex identification method.

2.2. Persistent homology

In the field of topological data analysis, persistent homology is a tool 

Fig. 1. Aeroelastic starting cycle in pitch degree of freedom. Black dashed lines 
indicate temporal limits where field data is sourced from.
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for identifying the homology groups in a multivariate point cloud [19, 
25]. This allows for a diagnosis of the data ‘shape’ that can be useful for 
modelling, classification, or segmentation purposes. This abstraction 
can be understood graphically through a persistence diagram which is 
constructed by monitoring the persistence, p = birth − death, of un
derlying topological features in the point cloud while varying the 
filtration level, ϵ. More rigorously, persistent homology is formulated 
using simplicial complexes. A simplicial complex is a collection of 
k-simplices such as vertices (0-simplices), edges (1-simplices), triangles 
(2-simplices), and their higher-dimensional analogues that are con
nected along shared faces. k-cycles, which are the subcomponents of this 
simplicial complex forming undirected closed loops, can be grouped into 
equivalence classes called homology groups. These homology groups 
formalize the number of holes in a given dimension of the complex by 
Eq. (1), where Zn is the number of k-cycles and im (∂k+1) denotes the 
image of the boundary operator. 

Hk =
Zk

im(∂k+1)
(1) 

In other words, Hk encodes the essential k-dimensional features of 
the simplicial complex by counting cycles that are not themselves 
boundaries of higher-dimensional simplices. Persistent homology ap
plies this framework to point cloud data by building a nested sequence of 
simplicial complexes (filtration) indexed by a scale parameter and by 
tracking when elements of Hk appear (birth) and disappear (death). 
Here, an example of this construction is given canonically for the case of 
2D point-cloud with noise.

First, a Vietoris-Rips complex is built using the Ripser Python library 
[26]. This procedure consists of initialising spheres of radius ϵ at each 
vertex in the point cloud. These spheres gradually grow, allowing for 
intersections with neighbouring spheres. The intersection of two spheres 
forms an edge between them. More generally, for k +1 intersecting 
spheres, a k-dimensional simplex is formed between the corresponding 
vertices. A representation of the Vietoris-Rips complex is shown in Fig. 2
to demonstrate the vertex connectivity at an arbitrary filtration level, ϵ 
= 0.2,.

At each filtration level, ϵi, the homology groups Hk are computed for 
the corresponding complex Kϵ. The persistence of these homology 
groups is monitored as birth/death coordinate pairs and plotted as a 
diagram to indicate long-lived k-dimensional holes within the data set. 
This is shown in Fig. 3 corresponding to the point cloud data in Fig. 2. In 

this case, a highly persistent 1-dimensional hole or loop exists within the 
data set as indicated by the isolated H1 data point. This point implicates 
that a loop is born at a filtration level, ϵ = 0.22 and dies at ϵ = 0.96 
which is the longest-lived feature in this 2D point cloud. This example 
serves as a simplified demonstration of persistent homology but follows 
the same intuition when dealing with high dimensional data associated 
with computational fluid dynamic (CFD) simulations.

2.3. Vortex template matching

In this section, we outline a novel post-processing pipeline for 
tracking the LEV core in stall flutter simulations. Starting from a 
developed LEV status, computed velocity components, pressure and 
spanwise vorticity field data u, v, p and ωz are manually sourced within a 
circular region of interest (ROI) with radius r that approximately en
closes the vortical structure core. In this case, the template is defined at 
the location, x,y = (0.8024c, 0.3509c), with a radius, r = 0.04c. These 
sourced field variables are used to describe the LEV in R4.

Next, we compute the persistence diagram for this high-dimensional 
point cloud up to and including the homology dimension, k = 1. Fig. 5
demonstrates the results of this computation given by the blue and or
ange dots (H0 − t0, H1 − t0), indicating a variety of topological features 
ranging between persistent holes and short-lived artifacts. An example 
of the manually identified LEV persistence diagram at a latter timestep, 
t1, is also overlayed as the yellow and purple dots (H0 − t1, H1 − t1) in 
Fig. 5 and exhibits similar topological features. This abstraction serves as 
a single possible LEV template-target pairing between t0 and t1. The 
intuition is that this feature space pairing can be utilised to quantify the 
similarity between the LEV at two different instances. To do this, a 
second ROI of radius r scans over sampling points within the computa
tional domain and computes the persistence diagram. In practice, it is 
not necessary to scan over every point as this is computationally 
expensive, and the attached LEV typically remains within one chord 
length of the aerofoil suction surface. In this work, our interrogation 
region (IR) is defined with radius, R, and has the same centroid as the 
template location.

Grid points outside of R are automatically assigned a maximum 
distance value to enforce incompatibility. The distance between these 
two persistence diagrams can be quantified by the Wasserstein distance 
[27] which is also known as the Earth mover’s distance [28]. Utilising 
the persim python library which is based on work by Adams et al. [29] 
the Wasserstein distance between two persistence diagrams is computed 
up to and including a homology dimension, k = 1. Mathematically, the 

Fig. 2. Vietoris-Rips complex for 2D circular point cloud with noise at filtration 
level, ϵ = 0.2.

Fig. 3. Persistence diagram for point cloud data in Fig. 2 up to and including 
homology dimension k = 1.
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p-Wasserstein distance between two persistence diagrams, D1 and D2, is 
given by Eq. (2) where p is the order of the Wasserstein distance. Here, 
the default value of p = 2 is utilised and φ is a bijection from D1 to D2. 
This operation attempts to find the best possible matching between the 
birth-death multisets by minimising the L∞ norm of x and φ(x) over all 
possible bijections. 

Wp(D1, D2) =

(

inf
φ:D1→D2

∑

xϵD1

||x − φ(x)||p
)1/p

(2) 

This operation, applied to individually to the nth grid point within an 
IR of N possible candidate locations, generates a template similarity field 
(TSF) indicating where the template-target distance is lowest at t1. An 
example of this is shown in Fig. 6 where the ROI radius between two 
arbitrary but successive time steps is set to r = 0.04c. The effects of r will 
be discussed in the following sections. The template-target similarity at 
t1 tends to be the highest in regions of high shear or vortex formation as 
indicated by the blue regions. Conversely, the red coloured regions 
indicate template-target dissimilarity which appears to be present in the 
regions immediately bounding strong fluid shearing or coherence. The 
highest values of Wp are situated about the leading-edge where vortex 
elements have not yet wholly formed.

Finally, this heatmap is then used to weight the out-of-plane vorticity 
field, ωz, at each sampled grid point by Eq. (3). Here, τ is a small positive 
number to avoid division by zero. 

ωz,scaled =
1

(W + τ)2 ∗ ωz (3) 

This operation acts as both a form of error correction and filtration 
for regions of template dissimilarity. The LEV core location can be 
recovered as the local vorticity minimum in the TSF weighted vorticity 
field via thresholding. An example of this operation is presented in 
Fig. 7, where the TSF is utilised to weight the raw spanwise vorticity 
field at t1 (Fig. 7a). Figs. 7b and 7c represent a visual comparison of the 
vortex core when the TSF weighting is withheld and applied, respec
tively. For both figures, a threshold is applied between − 100 ≥ ωz ≥ −

20 to highlight candidate core locations. It can be seen that the vortex 
core is more clearly depicted in Fig. 7c as most of the background 
vorticity is suppressed in regions where the template similarity field has 
a high Wasserstein distance. A schematic overview of this pipeline is 
given in Fig. 8 where additional smoothing, filtering, or thresholding 
methods can be added as auxiliary support for more precise LEV core 
identification and tracking.

3. Results

3.1. Effects of template radius

In this section, we explore the influence of the template size on 
vortex core identification during stall flutter simulations. More specif
ically, r is varied parametrically between 0.02c and 0.06c to quantify 
how accurately the TSF is able to discriminate between the LEV core and 
background noise. For this analysis, the immediate LEV vicinity is only 
considered such that R = 0.4c. Additionally, three successive but non- 
consecutive timestamps are used to assess the generality of this para
metric study for identifying the LEV core. The template vortex used in 
this study is the same region that was sourced in Fig. 4 and is referenced 
as t0. The manually identified vortex core is set as x, y = (0.8024c,
0.3509c). The IR also has a fixed centroid at this same location. As a 

preliminary assessment, Fig. 9 demonstrates the effect of varying the 
template size between r = 0.02c and r = 0.06c at t1. For a small template 
radius, the TSF weighted vorticity field permits a wide distribution of 
vorticity. This implicates that the manually defined template is insuffi
cient for differentiating between a vortex core and the smaller eddy 
structures.

As such, the TSF exhibits a large degree of similarity (low Wasser

stein distance) that acts to apply an approximately uniform weighting. 
In contrast, by using a template with r = 0.06c, the background vorticity 
tends to be suppressed. This is due to a high localised dissimilarity in the 
TSF that accentuates the vortex core. Thus, it can be expected that the 
scaled vorticity distribution at low radii has a high variance. Conversely, 
as the ideal template size is approached, the distribution should narrow 
about zero. To test this supposition, we compute the probability distri
bution of the TSF weighted vorticity field at three successive timestamps 

Fig. 4. ωz field with manually defined LEV template source. ωz range set be
tween − 50 ≤ ωz ≤ 50.

Fig. 5. Persistence diagram comparison between template sourced data and 
candidate core location at t1.

Fig. 6. Template similarity field with set between 0 ≤ Wp ≤ 15.
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using a logistic distribution fit. The spatial distribution mean, μ, and 
variance, σ2, are monitored over the parametric range, r =

[0.02 : 0.01 : 0.06], and utilising the same previously defined template 
and IR. The results of this study are presented in Fig. 10 where ti in
dicates the successive field snapshots. As expected, the weighted 
vorticity distribution tends to approach a mean value, μωz 

= 0 when r is 
varied between 0.02c and 0.06c across all cases. This is because more of 
the background vortical structures and noise are being suppressed due to 
a favourable template-target pairing. The variance also appears to shrink 
with r as per a larger disparity in vortex core candidate locations and 
noise. For both metrics, the change in distribution sensitivity appears to 
decrease dramatically at r = 0.04c. Beyond this template radius, the 
respective distributions between t1, t2, and t3 are closely aligned.

An important consideration here, is that the construction of a 
Vietoris-Rips complex has a complexity of O(2n) where n is the number 
of data points sourced within r. Thus, the computational time and 
memory scaling for an ideal template is exponential in n and constant 
with the data dimension, Rd [30].

This potentially incurs significant computational challenges when 
automating the vortex core tracking in high fidelity simulations or 
particle image velocimetry (PIV) data. In some cases, the marginal in
crease in identification accuracy from utilising a larger template radius 

Fig. 7. a) Raw ωz field with strong LEV present during high amplitude starting 
cycle. b) ωz field with threshold applied between − 100 ≥ ωz ≥ − 20. c) TSF 
weighted ωz field with threshold applied between − 100 ≥ ωz ≥ − 20.

Fig. 8. Persistent homology-based template matching pipeline for LEV core 
identification.
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may not warrant the computational overhead.

3.2. Effects of down sampling

To address the computational challenges associated with persistent 
homology, it is common to apply down sampling to the sourced point- 
cloud data. While an intuitive strategy to simplify the complex genera
tion and filtration process, this ultimately changes the point-cloud to
pology and further complicates the feature space template/target 
‘definition’ of a vortex core at each timestamp. A potentially important 
consideration is how the template/target data is down sampled (uni
form, random, directional bias) to account for the vortex shape and 
spatial distribution. An alternative method is to simply apply down 
sampling to the prospective template/target ROI centroids as this does 
not alter its respective point cloud topologies, only the TSF spatial res
olution which can be managed easily through interpolation. As such, we 
consider the effects of a uniform down sampling factor, M, within a fixed 
IR of R = 0.3c on the vortex core identification.

For this test, down sampling is applied to the target snapshot by 
uniformly skipping over candidate centroid locations within the IR. All 
computations were conducted utilising an Intel i5 processor with 2.40 
Ghz and multithreading over four physical cores. The Wasserstein dis
tance at skipped locations is assigned by using a linear interpolation 
scheme on the unstructured grid. This ensures that the dimension of the 
TSF and vorticity field are the same. Finally, the vortex core is recovered 
here as the local minimum weighted vorticity within an IR that is cen
tred by the template centroid location. Fig. 11 demonstrates the iden
tified vortex core locations by varying the down sampling factor within 
the range, M = [0 : 5 : 35]. The template used here is defined at x,y =
(0.8024c, 0.3509c), with r = 0.04c.

It can be seen that the vortex core location is largely insensitive to the 
effects of down sampling as these predictions are contained within a 
range of ±0.02c from the baseline case, M = 0. Though, these pre
dictions tend to exhibit nonlinear behaviour as M = 10 and M = 20 yield 
the closest matches to our baseline definition. In general, down sampling 
appears to offer a significant advantage as the computational cost de
creases dramatically when M ≥ 10 (see Fig. 12). Furthermore, this 
advantage incurs a nominal decrease in prediction accuracy making it a 
suitable practice to implement in this vortex tracking pipeline.

3.3. Leading-edge vortex tracking

Utilising the developed vortex identification pipeline and a template 
definition with x, y = (0.8024c, 0.3509c), r = 0.04c, and M = 10, the 
LEV trajectory is monitored during an aeroelastic starting cycle for a 
NACA 63(3)418 aerofoil.

As a preliminary demonstration, an IR with R = 1c is used to provide 
a global comparison of the vortex core identification with and without 
the TSF weighting scheme. For this assessment, four successive but non- 
consecutive timestamps are considered. Both the TSF weighted and 
unweighted vorticity fields are computed and limited between − 100 ≤

ωz ≤ − 20. Spatial regions that satisfy this threshold criteria are then 
clustered together to highlight potential vortex candidate locations. For 
Fig. 13a, conventional thresholding of the raw spanwise vorticity field 
still yields significant noise at four distinct stages within the LEV life
cycle. This complicates the goal of vortex identification and tracking as 
there are many possible candidate core locations owing primarily to 
fluid shear interactions. When the TSF weighting scheme is applied 
though (Fig. 13b), we observe a significant filtration of these spurious 
vortex core locations. The leading-edge shear layer is still present at 
these timestamps but appears to be largely diminished compared to the 
conventional thresholding method. Finally, four vortex clusters are 
easily identifiable when the TSF weighting is applied. It is clear that this 
method provides an advantage in vortex core identification as it acts to 
filter out most of the turbulent background noise. This allows for a better 
qualitative and quantitative interpretation of the LEV dynamics during 
stall flutter.

To perform automated vortex tracking, an adaptive IR with R = 0.2c 
is constructed based on the identified vortex core location. More spe
cifically, the IR centroid at ti+1 is updated as the vortex core location, 

(
xc,

yc
)
, at ti. Fig. 14 presents the results of this LEV tracking study where the 

different trajectory traces correspond to the TSF weighting, local Q- 
criterion maximum, local vorticity minimum, local swirling strength 
maximum, and manual core definition methods respectively. The latter 
four methods all require user input whereas the blue trace (TSF) is 
completely automated aside from the template initialisation and first IR 
assignment. Note that all trajectories were smoothed using a sliding 
window filter of three timestamps. It can be seen that the TSF based 
tracking method is quite satisfactory in monitoring the core trajectory 
during its suction side migration and eventual severance when 
compared to the local ωz,min, local swirl strength maximum, manual core 

Fig. 9. TSF weighted ωz field comparison for r = 0.02c (left) and r = 0.06c (right). Both cases utilise an IR of R = 0.4c and have the range set between 
− 50 ≤ ωz ≤ 50.
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identification traces. The local Q-criterion maximum trace appears to 
exhibit stronger variations in the LEV core trajectory, especially in the 
vicinity leading up to LEV detachment. This suggests that TSF moni
toring scheme is less sensitive to localised truncations of the flow field 
than the Q-criterion for the case study presented here.

Overall, the dynamic stall regime captured by these respective traces 
generally corresponds to a mature LEV status where the vortex structure 
is coherent and easily compatible with our chosen template. A distinct 
changepoint near x

c = 0.9 is captured in all trajectories. This trajectory 
shift away from the aerofoil has been previously linked to a trailing edge 
interaction with the LEV that is responsible for the LEV detachment and 
subsequent dynamic lift stall [2,31]. Thus, accurately identifying this 
tendency further demonstrates the capability of our method for moni
toring the LEV as it progresses through various critical stages of its 
lifecycle. Overall, the TSF proves to be an effective tool for vortex core 
identification and monitoring in dynamically stalled flows.

4. Conclusion

A novel vortex identification post-processing pipeline has been 
developed that leverages persistent homology for topology informed 
template matching. This pipeline has been successfully applied to the 
case study of a pitching NACA 63(3)418 aerofoil for the LEV detection 
and monitoring within a single pitching cycle. We have demonstrated 
that the TSF weighted vorticity field is quite effective at filtering out 
spurious vortex cores and background turbulent noise. This allows for a 
simpler interpretation of the dynamically stalled flow field when 
attempting to identify the LEV. We have demonstrated that the 
template-target pairing at various temporal snapshots is highly sensitive 
to the ROI radius when r < 0.04c. Though, larger templates incur a 
significant computational cost when computing persistent homology. 
This can be offset by utilising a uniform down sampling factor on the 
candidate core grid locations. It is shown that the computational time 
drops when M ≥ 10 without significantly compromising the vortex core 
identification accuracy. Future work considers the application of this 
method to tracking multiple simultaneous vortices. This likely requires 

Fig. 10. Template size sensitivity analysis based on the TSF weighted ωz dis
tribution. a) distribution mean as a function of r. b) distribution variance as a 
function of r. Different colour plots correspond to the respective distribution at 
successive timestamps within the pitching cycle.

Fig. 11. Vortex core identification varied parametrically by a uniform down 
sampling factor, M. In all cases, the vortex core is quantified by the global 
minimum TSF weighted spanwise vorticity within the IR (black 
dashed boundary).

Fig. 12. Wall-clock time as a function of down sampling factor, M. All tests 
were conducted on a computer utilising an Intel i5 processor with 2.40 Ghz. 
Grid scanning is parallelised over 4 physical cores.
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integration with current state-of-the-art tracking techniques like clus
tering or machine vision methodologies.
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