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1 | INTRODUCTION

The Lie algebra structure of the first Hochschild cohomology of a block of a finite group algebra
sits at the crossroads of the representation theory of a block as a part of the wider theory of rep-
resentations of finite-dimensional algebras and the fusion systems and their invariants that can
be associated with block algebras. This Lie algebra is therefore one of the ingredients that has the
potential to feed into an understanding of the connections between the global and local structure
of block algebras. The purpose of this paper is to contribute to investigating this connection.

Let p be a prime number and k a field of characteristic p. A block of a finite group algebra
kG is an indecomposable direct factor B of kG as an algebra. A defect group of a block B of
kG is a maximal p-subgroup P of G such that kP is isomorphic to a direct summand of B as a
kP-kP-bimodule. The results in this paper are a contribution to the broader theme investigating
connections between Hochschild cohomology and fusion systems of blocks. More precisely, the
main results of this paper relate the Lie algebra structure of HH!(B), notably the solvability of this
Lie algebra, to the action of an inertial quotient E on a defect group of the block.
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20f23 | LINCKELMANN and WANG

For P a finite p-group, we denote by ®(P) the Frattini subgroup of P; this is the smallest
normal subgroup of P such that P/®(P) is elementary abelian. If E is a finite group act-
ing on P, then this action induces an action of E on P/®(P). In this way, we can regard
P/®(P) as an F,E-module. If in addition E has order prime to p, then P/®(P) is a semisim-
ple F,E-module. The following results have in common that the property of this module being
multiplicity free is the key ingredient for the first Hochschild cohomology to be solvable as a Lie
algebra.

Theorem 1.1. Let G be a finite group, and assume that k is large enough for the subgroups of G.
Let B be a block of kG with a non-trivial abelian defect group P and a non-trivial inertial quotient E
acting freely on P \ {1}. If the F ,E-module P /®(P) is multiplicity free, then the Lie algebra HH!(B)
is solvable. The converse holds if p is odd.

In the course of the proof we will describe more precise results on the Lie algebra structure of
HH'(B). One key ingredient is a stable equivalence of Morita type between the block B and the
semidirect product k(P X E), due to Puig. Another key ingredient is the next result which investi-
gates the Lie algebra structure of HH!(kP)”. We denote by [P, E] the subgroup of P generated by
the set of elements of the form (‘u)u~!, where u € P and e € E (this is the hyperfocal subgroup
inPof PXE).

Theorem 1.2. Let P be a non-trivial finite abelian p-group and E a finite p’-group acting on P.
Suppose [P,E] = P.

(i) Every E-stable derivation on kP has image contained in the Jacobson radical J(kP).
(i) If the F,E-module P/®(P) is multiplicity free, then HH'(kP)F is a solvable Lie algebra. The
converse holds if p is odd.

The two theorems above will be proved in Section 6. When the acting p’-group E is abelian
as well, we can be more precise. See Section 4 for the notation and basic facts on twisted group
algebras. The following result will be proved in Section 7.

Theorem 1.3. Let P be a non-trivial finite abelian p-group and E an abelian p’-subgroup of Aut(P).
Let a € Z*(E; k*) inflated to P X E via the canonical surjection P X E — E. Suppose [P,E] = P.

(i) Every class in HH!(k,(P X E)) is represented by a derivation on k,(P X E) with image
contained in the Jacobson radical J(k (P X E)).

(ii) If the F,E-module P /®(P) is multiplicity free, then the Lie algebra HH!(k (P X E)) is solvable.
The converse holds if p is odd.

If one replaces twisted group algebras by group algebras of corresponding central extensions,
then Theorem 1.3 admits an equivalent reformulation, in which the acting group E need not act
faithfully and need not be abelian so long as its image in Aut(P) is abelian; see Theorem 7.4 below.
We illustrate the above results in conjunction with the structure theory of normal defect blocks
in Theorem 6.2 and Corollary 7.7, and we determine under what circumstances the Lie algebra
HH'(B) is simple or solvable for blocks B with elementary abelian defect of rank 2 and abelian
inertial quotient in Example 8.4.
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS 30f23

2 | BACKGROUND MATERIAL

Let k be a field. Let A be an associative unital k-algebra. A derivation on A is a k-linear map
f : A > Asatistying the Leibniz rule f(ab) = f(a)b + af(b), for all a, b € A. The Leibniz rule
implies that any derivation f on A vanishes at all central idempotents; in particular, f(1) = 0.
The set Der(A) of all derivations on A is a Lie subalgebra of End; (A) with Lie bracket [f, g] =
fog —gof, for all f, g € End;(A). If c € A, then the map [c,—] sending a € A to the addi-
tive commutator [c,a] = ca — ac is a derivation. The derivations of this form are called inner
derivations on A, and the subspace IDer(A) of inner derivations is an ideal in the Lie algebra
Der(A).

For M an A-A-bimodule, regarded as an A ®, A°°-module, the Hochschild cohomology
of A with coefficients in M is the graded k-module HH*(A4; M) = Extj@k op(As M). We set
HH*(A) = HH*(A; A). Then HH*(A) is a graded-commutative algebra, and HH*(A4; M) is a
graded right HH*(A)-module. We have canonical identifications HH’(A) = Z(A) and HH'(A) =
Der(A)/IDer(A); see, for instance, Weibel [26, Lemma 9.2.1]. If f is a derivation on A and « a
k-algebra automorphism of A4, then a~'o foa is a derivation on A, and if f is an inner derivation,
thensoisa~'ofoa. Thus, if E is a group acting on A by k-algebra automorphisms, then this action
induces an action of E on HH'(A) by Lie algebra automorphisms, and the subspace HH'(A)* of
E-fixed points in HH!(A) is a Lie subalgebra of HH'(A). We will need the following well-known
facts.

Lemma 2.1 (cf. [18, Lemma 3.1]). Let A be a finite-dimensional associative unital k-algebra. For
every derivation f on A, we have f(Z(A)) C Z(A).

Lemma 2.2 (cf. [19, Lemma 2.4]). Let A be a finite-dimensional associative unital k-algebra. Sup-
pose that A has a separable subalgebra C such that A = C @ J(A). Every class in HH'(A) has a
representative f € Der(A) satisfying C C ker(f).

We note that in [19, Lemma 2.4, Proposition 2.8] the algebra A is assumed to be split, but the
proof there shows that this is not needed so long as in the previous Lemma A is assumed to have
a separable subalgebra C satisfying A = C @ J(A). By the Malcev-Wedderburn Theorem, this is
equivalent to requiring A /J(A) to be separable, in which case we have C = A/J(A).If f isa deriva-
tion on A which vanishes on C and sends J(A) to J(A)™ for some positive integer m, then in fact
Im(f) € J(A)™. The following proposition is a slight variation of [19, Proposition 2.8], with essen-
tially unchanged proofs, making repeatedly use of the Leibniz rule. We denote by £#(A) the Loewy
length of A; this is the smallest positive integer m such that J(A)"™ = 0.

Proposition 2.3. Let A be a finite-dimensional associative unital k-algebra. For m > 1, denote by
Der,,(A) the subspace of Der(A) consisting of all derivations f : A — A such that Im(f) C J(A)™.
The following hold.

(i) For any positive integers m, n, we have [Der,, (A), Der, (A)] CDer,,,,,_;(A).
(ii) The space Der,(A) is a Lie subalgebra of Der(A), and for any positive integer m, the space
Der,,,(A) is a Lie ideal in Der; (A).
(iii) The space Der,(A) is a nilpotent ideal in Der, (A). More precisely, if ££(A) < 2, then Der,(A) =
0, and if €€(A) > 2, then the nilpotency class of Der,(A) is at most ££(A) — 2.
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40f23 | LINCKELMANN and WANG

Corollary 2.4. With the notation and hypotheses of Proposition 2.3, the following hold.

(i) If [Der;(A), Der;(A)] C Der,(A), then Der;(A) is a solvable Lie algebra.

(ii) If[Der;(A), Der;(A)] C Der,(A) + IDer(A), then the image of Der,(A) in HH (A) is a solvable
Lie algebra.

(iii) If the canonical map Der,(A) — HH!(A) is surjective, and if [Der; (A), Der;(A)] C Der,(A) +
IDer(A), then HH!(A) is a solvable Lie algebra.

(iv) Ifthe canonical map Der,(A) — HH!(A) is surjective, then the image of Der,(A) is a nilpotent
ideal in HH'(A). Furthermore, suppose HH'(A) = L + D, where L is a Lie subalgebra and D,
is the image of Der,(A), then HH'(A) is solvable if and only if L is solvable.

Proof. The statements (i) and (ii) follow from Proposition 2.3(iii) and the assumptions. Statement
(iii) are immediate consequences of (ii). As for statement (iv), suppose HH!(A) = L + D, as in the
statement. If L is not solvable, then HH!(A) is not solvable. Suppose L is solvable, and L(n) = 0
for some positive integer n, where L(n) denotes the nth derived Lie algebra of L. Since D, is an
ideal, it follows that for any i > 1 we have HH'(A)(i) C L(i) + D,. Thus, HH'(A)(n) C D,. The
statement follows since D, is nilpotent. O

We denote by [A, A] the subspace spanned by the set of additive commutators [a, b] = ab — ba,
where a, b € A. Since [a, b]c = abc — bac = abc — acb + acb — bac = a[b,c] + [ac, b] for all a,
b, c € A, we have [A, A]A = A[A, A], and this is the smallest ideal such that the corresponding
quotient of A is commutative.

Lemma 2.5. Let A be a finite-dimensional associative unital k-algebra. Every derivation on A pre-
serves the subspace [A, A] and the ideal [A, A]A, and induces a derivation on A/[A, A]A. Under
this correspondence, an inner derivation on A is mapped to zero. In particular, this correspondence
induces a Lie algebra homomorphism HH!(A) — HH(A/[A, A]A).

Proof. If f is a derivation on A, then f([a,b]) = f(a)b + af(b) — f(b)a — bf(a) =[f(a),b] +
[a, f(b)], and hence f preserves the subspace [A, A] and hence also the ideal [A, A]A, using the
Leibniz rule. Thus f induces a derivation on A/[A, A]A. If f is inner, then the image of f is
contained in [A, A], and the rest follows easily. O

Suppose now that k has prime characteristic p. If A = kG for some finite group G, then the
largest commutative quotient of kG is kG /G’, where G’ is the commutator subgroup of G. Thus,
[kG, kG1kG = I(kG")kG. One can verify this also directly by noting the relation between additive
and multiplicative commutators xyx~'y~! —1 =[x, y]x~'y~! forall x, y € G. Thus, Lemma 2.5

specialises to the following observation.

Lemma 2.6. Let G be a finite group. Denote by G’ the commutator subgroup. Every derivation
on kG induces a derivation on kG/G’', and every inner derivation on kG induces the zero map
on kG/G'. Through this correspondence, the canonical surjection G — G /G’ induces a Lie algebra
homomorphism HH'(kG) — HH' (kG /G").

Proof. This is a special case of Lemma 2.5, using the equality [kG, kG]kG = I(kG’)kG mentioned
above. O
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS | 50f23

We use without further comment the standard fact that for P a finite p-group the augmen-
tation ideal I(kP) in kP is equal to the Jacobson radical J(kP). We denote by ®(P) the Frattini
subgroup of P; this is the smallest normal subgroup of P such that the quotient P/®(P) is ele-
mentary abelian, with the convention ®(P) = 1 if P = 1. The following is well known; we sketch
a proof for convenience.

Lemma 2.7. Let P be a finite p-group and E a subgroup of Aut(P). The map sending y € P to
y — 1 € J(F,P) induces an isomorphism of F ,E-modules

P/®(P) = J(F,P)/J(F,P)*.

Proof. SetJ =J(F,P). Letx,y € P. Then (x —1)(y — 1) € J?.Since (x —1)(y —1) = (xy — 1) —
(x —1) — (y — 1), it follows that xy — 1 and (x — 1) + (y — 1) have the same image in J /J?. Thus,
the map x — x — 1 induces a surjective group homomorphism P — J/J2. Since the right side is
an abelian group, the kernel of this group homomorphism contains the commutator subgroup
of P, and since [, has characteristic p, the kernel contains also x? for all x € P. Thus, the map
x — x — 1yields a surjective group homomorphism P/®(P) — J /J?. Both sides are easily seen to
have the same dimension, equal to the rank of the elementary abelian p-group P/®(P). O

Note that the unit element of P/®(P) is mapped to the zero element in J ([FpP) /J ([FpP)2 in the
Lemma 2.7. We will further need the following observation regarding the hyperfocal subgroup
[P,E]of P X Ein P.

Lemma 2.8. Let P be a finite p-group and E a finite group of order prime to p which acts on P. The
following are equivalent.

(i) We have [P,E] = P.

(ii) We have [P/®(P),E] = P/®(P).
(iii) TheF pE-module J(F ,P) JI(F pP)2 has no non-zero trivial direct summand.
(iv) The kE-module J(kP)/J(kP)? has no non-zero trivial direct summand.

Proof. Clearly [P/®(P), E] is the image of [P, E] under the canonical surjection P — P/®(P), so (i)
implies (ii) trivially. If [ P, E] is a proper subgroup of P, then so is its image in P/®(P) since ®(P) is
the intersection of all maximal subgroups of P. Thus (ii) implies (i). By standard facts on coprime
group actions, we have P/®(P) = [P/®P(P),E] X Cp /@(P)(E), thus (ii) is equivalent to the statement
Cp/o(p)(E) = 1. Under the isomorphism P/®(P) = J(F,P)/J(F pP)2 from Lemma 2.7 this is equiv-
alent to (iii). Since J(kP) = k ®¢, 7 (F,P) and similarly for J(kP)?, we have J(kP) /J(kP)* = k ®,
J(F pP) yal ([FpP) as kE-modules. Setting U = J ([FpP) YAl ([FPP)Z, the equivalence of (iii) and (iv)
follows from the canonical isomorphisms k ®[Fp UF >k ®[Fp Homyp g (Fp,, U) =Homy p(k, k ®[Fp
U)=(k ®[Fp U)E, where for the second isomorphism we make use of the well-known fact [15,
Corollary 1.12.11] on scalar extensions of homomorphism spaces. I

For convenience we draw attention to the following obvious fact.

Lemma 2.9. Let P be a finite p-group and E a finite group of order prime to p which acts on P.
Every element in HH' (kP)F has a representative in Der(kP)F.
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6 of 23 | LINCKELMANN and WANG

Proof. The canonical surjection Der(kP) — HH!(kP) is E-stable, so remains surjective upon
taking E-fixed points as E is a p’-group. O

We will need the following fact from [11].
Lemma 2.10 (cf. [11, Lemma 5.1]). Let P be a finite p-group and a an automorphism of P with
no non-trivial fixed point. Then the kP-module (kP),, with u € P acting on x € P by uxa(u)™!,

is projective.

Proof. The hypothesis on « implies that if u runs over all elements of P, then so does ua(u)™!.
Thus, the given action of P on itself is transitive because the P-orbit of 1 is P. The lemma
follows. O

3 | THE KUNNETH FORMULA AND SOLVABILITY OF HH'

Let k be a field. For A an associative unital k-algebra and m a positive integer, we denote as before
by Der,, (A) the space of derivations on A with image contained in J(A)™. Given two algebras A, B,
the solvability of HH!(A) and HH'(B) does not necessarily imply the solvability of HH!(A ®, B).
The following observation implies that the slightly stronger condition from Corollary 2.4(iii) does
extend to tensor products.

Proposition 3.1. Let A, B be two associative unital k-algebras. Suppose that the canonical
maps Der;(A) — HH!(A) and Der, (B) — HH!(B) are surjective. Then the map Der,(A ®, B) —
HH'(A ® B) is surjective. Suppose further that [Der; (A), Der; (A)] C Der,(A) + IDer(A) and that
[Der, (B), Der;(B)] C Der,(B) + IDer(B). Then
[Der; (A ®; B), Der; (A ®; B)] C Der,(A ®; B) + IDer(A ®y B).
In particular, the Lie algebra HH'(A ®), B) is solvable.
The proof of this proposition is based on the Kiinneth formula
3.2.
HH'(A ® B) = Z(A) ® HH'(B) ® HH'(A) ® Z(B),
where we use the canonical identifications HH(A) = Z(A) and HH°(B) = Z(B). This for-
mula extends in the obvious way to tensor products of more than two algebras. The Kiinneth

isomorphism 3.2 is induced by with the map sending z ® g to the derivation

a®br az® g(b)

onA ®, B,wherea € A,b €B,z € Z(A)and g isaderivation on B, together with the map sending
f ® w to the derivation

a®br f(a)®bw
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS | 7 of 23

on A ® B, where f is a derivation on A and w € Z(B). A trivial verification shows that if g =
[d, —] for some d € B is an inner derivation on B, then the derivation on A ®, B corresponding
to z ® g is inner, equal to [z ® d, —]. Similarly, if f = [c, —] for some ¢ € A is an inner derivation
on A, then the derivation on A ®; B corresponding to f ® w is inner, and equal to [c ® w, —].

The Lie bracket can be followed through the Kiinneth isomorphism as follows. Given two
derivations g, ¢’ on B and z, z’ € Z(A), the Lie bracket of the derivations corresponding to z ® g,
z' ® ¢’ is given by

3.3.
[z2®9.2 ®¢']1=22®lg, 9],
or explicitly, the right side is the map
a®bw azz' @[y, g'I(b).

Similarly, given two derivations f, f’ on A and w, w’ € Z(B), and identifying f ® w with the
derivation a ® b = f(a) ® bw, the Lie bracket of the derivations f ® w, f’ ® w’ is given by

3.4.
[f@w. f @uw']l=[f,f]®wu,
or explicitly, the right side is the map
a®bw [f, f'1(a) ® bww'.

The formulas 3.3 and 3.4 show that the two summands in the Kiinneth decomposition 3.2
are both Lie subalgebras. Applied with w = w’ = 15 and z = z’ = 1 ,, these formulas show that
HH!(A) and HH!(B) are isomorphic to Lie subalgebras of HH'(A ®, B), so if one of HH'(A),
HH!(B) is not solvable, then neither is HH'(A ®; B). Note though that the solvability of both
HH'(A), HH'(B) need not imply the solvability of HH'(A ®), B). By Lemma 2.1 we have f(z) €

Z(A) and g(w) € Z(B). We denote by z - f (resp. w - g) the derivation on A (resp. on B) given by
(z- f)a) =zf(a) (resp. (w - g)(b) = wg(b)). The Lie bracket [f ® w, z ® g] is given by

3.5.
[fOwWzQgl=fE@®w-g—z-f® gw),
or equivalently, the right side is the map
a®b ~ flaz) @ wg(b) — f(a)z @ g(bw) = af(z) @ wy(b) — zf(a) ® bg(w).
In particular, we have

[f®1Lz®gl=f(2)®yg.
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8of23 | LINCKELMANN and WANG

Indeed, the first formula uses the Leibniz rule applied to the terms f(az) and g(bw), followed by
cancelling two terms, and the last formula follows from applying this to w = 1 and using g(1) = 0.
The formula 3.5 shows that the two summands in the Kiinneth formula do not necessarily com-
mute, so thisis not, in general, a direct product of Lie algebras. We note the following consequence
of this formula, used in the proof of Proposition 3.1.

Lemma 3.6. Let A, B be finite-dimensional associative unital k-algebras, and z € Z(A), w € Z(B),
f aderivation on A, and g a derivation on B. Suppose Im(f) C J(A) and Im(g) C J(B). Then [f ®
w, z  g), regarded as a derivation on A ®;, B, has image contained in J(A ®, B)>.

Proof. The hypotheses and formula 3.5 imply that the image of the derivation [f ® w,z ® g] on
AA ®), B is contained in J(A) ® J(B) C (J(A) ® B)(A ® J(B)) CJ(A ®, B)*. O

Proof of Proposition 3.1. Given a derivation f on A with image contained in J(A) and an element
w € Z(B), the derivation on A ®,, B corresponding to f ® w has image contained in J(A) ®, B C
J(A ®, B). Similarly, given a derivation ¢ on B and z € Z(A), the derivation on A ®, B corre-
sponding to z ® g has image contained in J(A ®, B). The Kiinneth formula 3.2 implies the first
statement. The second statement follows from combining the formulas 3.4, 3.3 and Lemma 3.6.
The solvability of HH'(A ®, B) follows from Corollary 2.4. O

Lemma3.7. Let A, B be finite-dimensional associative unital k-algebras. Suppose that the canonical
map Der,(B) — HH!(B) is surjective. Then the space

Z(A) ®, HH'(B) & HH'(A) ®; J(Z(B)),

identified to its image in HH'(A ®), B), is a Lie ideal in HH'(A ®, B). In particular, if HH'(A) is
non-zero, then HH' (A ®, B) is not a simple Lie algebra.

Proof. This follows from the formulas 3.4 and 3.3, together with the fact that if ¢ is a derivation
on B with image contained in J(B), then, by Lemma 2.1, g sends Z(B) to Z(B) nJ(B) = J(Z(B)).
If HH!(A) # 0, then the space displayed in the statement does not contain HH'(A) ® 1, so this
is a proper ideal. Ll

If the algebra B is separable, then the Kiinneth formula yields an isomorphism
3.8.

HH'(A ®, B) @ HH'(A) ®, Z(B).

We will need one further special case of the Kiinneth formula for finite group algebras. Given
finite groups G, H, a kG-module U and a kH-module V, we have a natural graded k-linear
isomorphism

3.9.

H*(G x H;U ®, V) = H*(G; U) ®, H*(H; V),

a'9 'S202 ‘0SL697T

wouy

1IPUOD PUe SWB | 841 89S *[9202/T0/20] U0 A1 auIuo AJIM * UopuoT JO A1SAIN ‘S 861099 15 ANID - Wes | Suoieoliand Aq 20v02 SWlZTTT 0T/10pwod Ao 1m

o

NIPUCD-pL

25190111 SUOWLLIOD AATES10 3[Geol|dde aU) A PauBA0B 312 SPILE O 98N J0 SoNJ 0} ARIIT BUIO ABIIM U0



ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS | 9 of 23

where the grading on the right side is the total grading. Explicitly, for any positive integer n, we
have

3.10.
H'(GxH;U @, V) = & H(G:U) ®, H(H;V),

where (i, j) runs over all pairs of non-negative integers such that i + j = n. See, for instance, [,
Theorem 3.5.6]. For n = 1, this yields an isomorphism

3.11.
H'(GXxH;UQ®, V)= U°Q, H(H;V) & H'(G;U) ®, V°.

Under this isomorphism an element in U® ®, H'(H; V) given by u ® 7 for some u € U® and
some 7 € Z'(H;V) corresponds to the element in H'(G x H; U ®, V) given by the 1-cocycle
(x,y) = u ® t(¥). The analogous statement holds for elements in the second summand.

4 | CALCULATIONS IN TWISTED GROUP ALGEBRAS

One of the standard tools for calculating the Hochschild cohomology of a finite group algebra is
the centraliser decomposition, which is shown in [25, Lemma 3.5] to carry over to crossed prod-
ucts, and in particular therefore to twisted group algebras. We review very briefly what we will
need in this paper; for more background material, see for instance [15, Section 1.2].

Let G be a finite group and let k be a field. Let « € Z%(G; k). The twisted group algebra kG
has a k-basis {§ | ¢ € G}in bijection with the elements of G. The multiplication in kG is given by
f]ﬁ =a(g, h)gﬁl, for g, h € G, extended bilinearly to k,G. The identity elementin kG is a(1, 1)1,
and hence, for ¢ € G, the inverse of § in kG is given by

4.1.

i =a, D alg, g g,
where g~ is the inverse of g in G. The isomorphism class of kG depends only on the class of « in
H?(G; k*), and we may therefore assume that « is normalised; that is, a(g,1) = 1 = a(1, ¢) for all
g € G. This is equivalent to requiring that 1 remains the identity element in k,G. We note that if

o is normalised, then the inverse of § in kG is equal to §~* = a(g, ¢~ 1)~1g-1. A short calculation
shows that the conjugation action in kG is given by

4.2,
"h=ghy" = Mg, W)7h,
where g, h € G and where A(g, h) € k* is given by the formula

g, h) = a(g, a(gh, g Halg, g~ H a@, 1)
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10 of 23 | LINCKELMANN and WANG

In particular, we have A(1, h) = 1 = A(g, 1). If N is a normal subgroup of G and a € Z*(G/N; k*)
inflated to G via the canonical surjection, still denoted by ¢, and if we assume in addition that «
is normalised, then for ¢ € N and h € G the above formula yields A(g, h) = 1, hence in that case
we have

4.3.

—

Ih =9h.
For M a k,G-k,G-bimodule, we have a standard adjunction isomorphism

4.4.
HH*(k,G; M) = H*(G; M),

where g € G acts on m € M by 9m = gm§~!, having checked that this is well defined. Note that
while M is considered as a kG-module, the cohomology H*(G; M) still depends on «, even though
a does not explicitly appear in the notation. In particular, with M = kG, the group G acts on
k.G with g € G acting by conjugation with §, and we have a graded isomorphism HH*(k,G) =
H*(G; k,G), which is the first step towards the centraliser decomposition of HH*(k,G) in the proof
of 25, Lemma 3.5]. We will need the isomorphism 4.4 in degree 1, where this is given explicitly as
follows.

Lemma 4.5. Let G be a finite group, k a field and a € Z*(G; k*). Let M be a k_G-k,G-bimodule.
Letd : k,G - M be a k-linear map and v : G — M a map such that d(§) = t(g)§ forall g € G.
Then d is a derivation if and only if T is a 1-cocycle. Moreover, the correspondence T — d induces an
isomorphism H'(G; M) ~ HH!(k,G; M).
Proof. Let g, h € G. We have
d(gh) = a(g, Wd(gh) = a(g, h)r(gh)gh = t(gh)gh
and
d(@h + §d(h) = ©(9)dh + gr(h = (z(9) + Iz(h))dh.

Thus, d is a derivation if and only if 7 is a 1-cocycle. We have 7(g) = m — 9m for some m € M if
and only if d(§) = t(g)§ = mg — 9m§ = mgj — gm = [m, §]. Thus, d is an inner derivation if and
only if 7 is a 1-coboundary. The result follows. [l

By standard facts on group cohomology, this lemma implies that if N is a normal subgroup of
G of index invertible in k, then, using [3, Proposition I11.10.4] and the isomorphism 4.4 with N
instead of G, we have an isomorphism

4.6.

HH*(k,G; M) = HH* (k,N; M)°/N =~ H*(N; M)°/N,
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS | 11 of 23

where we use the same letter « for the restriction of a to N X N. The action of G/N on the last
two terms is induced by the conjugation action of G on kN, on N, and on M, where we note
that N acts as identity on HH*(k,N; M). (This is just the version for twisted group algebra of the
arguments in the proof of [20, Theorem 3.2]). If M = kG and if « is the inflation to G X G of a
2-cocycle in Z2(G/N; k), then k,G = kN @ k,(G \ N), and hence, still assuming that the index
of N in G is invertible in k, the first isomorphism in 4.6 specialises to

4.7.
HH*(k,G) = HH*(kN)°/N @ HH*(kN; k(G \ N)°/N,

which shows in particular that HH'(kN)®/N is a Lie subalgebra of HH'(k,G).

In what follows, we will frequently identify the elements in G to their images in k,G. In that
case, for two elements ¢, h € G, we will denote by gh the product in the group and by ¢ - h the
product in k,G.

5 | DERIVATIONS ON k(P X E) AND E-STABLE DERIVATIONS ON
kP

Let p be a prime and k a field of characteristic p. We will apply the above calculations in twisted
group algebras to groups of the form P X E for some finite p-group P, some p’-subgroup E of
Aut(P) and some a € Z?(E; k) inflated to P X E via the canonical surjection P X E — E. The
resulting 2-cocycle in Z2(P X E; k*) will abusively again be denoted by the same letter . That is,
foru,v € P and x, y € E we have

a(ux,vy) = a(x,y).

If we assume in addition that « is normalised, then a(x,y) is equal to 1 if one of x, y is trivial.
Note that this implies in particular that kP is a subalgebra of k,(P X E) and that k,(P X E) is
isomorphic to k(P X E) as a kP-kP-bimodule (cf. [15, Corollary 5.3.8]). The conjugation action of
E on kP and on k_(P X E) induces an action of E on HH*(kP; k(P X E)).

Lemma 5.1. Let P be a finite p-group and E a p’-subgroup of Aut(P). Let a € Z*(E; k) inflated
to P X E via the canonical surjection P X E — E.

(i) We have canonical graded isomorphisms

HH*(k,(P X E)) = (HH*(kP; ko (P X E))®

= HH*(kP)" @ (®,cp\yn; HH*(kP;kP - €))”.

(ii) If E is abelian, then E stabilises every summand in the last direct sum in (i), and we have
canonical graded isomorphisms

HH*(k,(P X E)) & @®,cp HH*(kP;kP -e)f =~ @, H*(P;kP - e)F.
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12 of 23 | LINCKELMANN and WANG

(iii) IfE acts freely on P \ {1}, then for all positive integers n we have
HH"(k,(P X E)) ~ HH"(kP)~.
Forn = 1, this is a Lie algebra isomorphism.

Proof. Since E is a p’-group, the statements (i) and (ii) follow from the isomorphism 4.6. Statement
(iii) is well-known (see e.g. [11, Proposition 5.2] or [20, Theorem 3.2]) and follows from (i) and
together with the fact that H"(P; kP - e) = 0 for e # 1 by Lemma 2.10, for any positive integer
n. ]

For the sake of completeness, we show that the Lie algebra embedding of HH!(kP) into
HH!(k,(P X E)) is induced by a canonical map at the level of derivations.

Proposition 5.2. Let P be a finite p-group and E a finite p’-group acting on P. Let « € Z*(E; kX),
inflated to P X E via the canonical surjection P X E — E.

(i) Every E-stable derivation f on kP extends uniquely to a derivation f onk,(P X E)withk,E C
ker(f).
(ii) The correspondence f +— f induces an injective Lie algebra homomorphism HH'(kP)E —
HH!(k, (P X E)).
(iii) IfE acts freely on P \ {1}, then the Lie algebra homomorphism in (ii) is an isomorphism.

Proof. We may assume that « is normalised; that is, «(1, x) =1 =a(x, 1) for x € P X E. Since « is
inflated to P X E via the canonical surjection it follows that foru € Pand y € E we have a(u,y) =
1 = a(y,u). Equivalently, the image in k(P X E) of the product uy (resp. yu) in P X E is equal to
the product u - y (resp. y - u) in k(P X E).

Let f € Der(kP)". Define a linear map f on k(P X E) by setting

Juy)=f@)-y,

where uy is the product in P X E and where the right side is the product taken in k, (P X E).
This defines f uniquely as a linear map on k,(P X E) which extends f and vanishes on k_E. The
Leibniz rule implies that if there is a derivation on k(P X E) which extends f and which vanishes
on k,E, then it must be equal to f. It remains to check that f is indeed a derivation.

Letu,v € Pandy, z € E. Calculating in k(P X E) and using that « is normalised and inflated
to P X E, we have

(uy) - (vz) = uyvza(uy,vz) = uCv)yza(y,z) = uCv) -y - z.
Thus,
f(w) - (y2)) = fuCv) - y-2) = fuCv) -y -z

We need to show that this is equal to f(uy) - vz 4+ uy - f(vz). Using that f is E-stable as well as a
derivation, together with the comments preceding this proposition, we have
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS | 13 of 23

fwy)-vz+uy - fz)=fW-y-vz+uy  f©)-z=f@C0)-y-z+uCf©)-y-z=

f@Cv)-y-z+ufCv)-y-z=flv)-y-z,

which implies that f is a derivation on k(P X E). The construction of f implies that the assign-
ment f + f is a Lie algebra homomorphism Der(kP)? — Der(k,(P X E)). If f is inner, hence
equal to [c, —] for some ¢ € kP, then f(uy) = f(u)y = [c, u]y. The E-stability of f implies [c, u] =
[Yc,Yu]. This holds for all u € P, and hence [c,—] and [Y¢,—] have the same restriction to kP,
which is equal to f. Thus, we may replace c by ﬁTr‘lE (¢),and then f = [c, —], showing that f isan

inner derivation. Conversely, if f is an inner derivation, then f = [d, —] for some d € k,(P X E)
which centralises k,E. Writing d = ), c.e for some c, € kP, one sees that f = [c;,—], so f
is inner. This, together with Lemma 2.9, shows that the assignment f ~ f induces an injec-
tive Lie algebra homomorphism HH!(kP)¥ —HH!(k,(P X E)). The last statement follows from
Lemma 5.1(iii). O

Remark 5.3. With the notation of Proposition 5.2, if E acts freely on P \ {1}, then P X E is a Frobe-
nius group. The structural properties of Frobenius groups, as described in [7, Theorem 10.3.1],
imply that if k is algebraically closed, then H?(E; k) is trivial. Thus, @ may be chosen to be 1 in
that case.

Lemma 5.4. Let P be a finite p-group and E a finite p’-group acting on P. Set Q = ®(P).

(i) The canonical surjection P — P/Q induces a Lie algebra homomorphism HH!(kP) —
HH!(kP/Q).
(i) IfPisabelian, thenJ(kQ) CJ(kP)P, and the canonical surjection P — P /Q induces a surjective
Lie algebra homomorphism HH'(kP) —HH' (kP /Q) with nilpotent kernel.
(iii) If P is abelian, then the Lie algebra homomorphism from (ii) induces a surjective Lie algebra
homomorphism HH!(kP)E — HH'(kP/Q)* with nilpotent kernel.

Proof. Since Q contains the commutator subgroup P’ of P, the algebra homomorphism kP —
kP/Q factors through the algebra homomorphism kP — kP/P’. By Lemma 2.6, this homomor-
phism induces a Lie algebra homomorphism HH'(kP) -—HH'(kP/P’). Thus, we may assume
that P is abelian. The kernel of the canonical algebra homomorphism kP — kP/Q is equal to
J(kQ)kP. Since P is abelian, the subgroup Q consists of all elements of the for x?, with x € P.
Thus, J(kQ) is spanned by the set of elements of the form x? — 1 = (x — 1)P. In particular, J(kQ) C
J(kP)P, which is the first statement in (ii). Since P is abelian, any derivation f on kP satis-
fies f((x —1)?) = p(x — 1)P~! f(x) = 0. Thus, the kernel of f contains J(kQ). The Leibniz rule
implies that f preserves the ideal J(kQ)kP. Thus, f induces a derivation on kP /Q. This shows (i).

For the surjectivity statement in (ii), one can either play this back to the case where P is cyclic
via the Kiinneth formula, and then show by direct verification that every derivation on kP/Q is
induced by a derivation on kP. Or one can use the formula HH!(kP) kP ®, H'(P, k) from [8],
with the analogous formula for P/Q and the fact that H'(P; k) = H'(P/Q; k), since Hom(P, k) can
be identified with Hom(P/Q, k).

It remains to show in (ii) that the kernel of the map HH'(kP) — HH!(kP/Q) is nilpotent. Let
f be a derivation on kP inducing the zero map on kP/Q. Then the image of f is contained in
J(kQ)kP, and by the above this is contained in J(kP)P. The result follows from Proposition 2.3
(applied with C = k - 1, which is in the kernel of every derivation on kP). This shows (ii).
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14 of 23 | LINCKELMANN and WANG

Since E is a p’-group, statement (iii) is an immediate consequence of (ii). O

Proposition 5.5. Let P be a finite p-group and E a finite p’-group acting on P. Suppose [P,E] =
P. Let e € Z(E). Then kPe is an E-stable kP-kP-bimodule summand of k(P X E), and for every
derivation f : kP — kPe which is E-stable we have Im(f) C J(kP)e.

Proof. SetJ = J(kP). Clearly kPe is a kP-kP-bimodule summand of k(P X E), and it is E-stable
because e € Z(E). Since f is a derivation, we have f(J?) C Je, which in turn is in the kernel of the
augmentation map kPe — k. Since J is E-stable, it follows that the restriction of f to J is an E-
stable map, as is the composition with the augmentation map e : kPe — k. Thus, themapeof|; :
J — k sends J? to zero, hence factors through the canonical surjection J — J /J?. We therefore get
a commutative diagram of kE-modules

fls

J——————kPe

l 3

200
T/ - k

Since [P, E] = P, it follows from Lemma 2.8 that J /J? has no non-zero trivial summand as a kE-
module. Since J/J? is also semi-simple as a kE-module this implies that g is zero, hence that f
sends kP to Je. O

Corollary 5.6. Let P be a finite p-group and E a finite p’-group acting on P. Suppose [P,E] = P.
For every E-stable derivation f : kP — kP we have Im(f) C J(kP).

Proof. This follows from Proposition 5.5 applied to e = 1. O

Statement (ii) in the following corollary is the special case of Theorem 1.3(i) with « the trivial
2-cocycle.

Corollary 5.7. Let P be a finite p-group and E a finite abelian p’-group acting on P. Suppose
[P,E]=P.

(i) For every E-stable derivation f : kP — k(P X E) we have Im(f) C J(k(P X E)).
(ii) Every class in HH'(k(P X E)) is represented by a derivation f : k(P X E) — k(P X E) which
vanishes on kE, and any such derivation f satisfies Im(f) C J(k(P X E)).

Proof. Since E is a p’-group, the algebra kE is separable, and hence we have J(k(P X E)) =J(kP) -
k(P X E)). Since E is abelian, by Lemma 5.1, f is the sum of E-stable derivations kP — kPe, with
e € E, and hence (i) follows from Proposition 5.5. We have k(P X E) = kE @ J(k(P X E)), and
thus, by Lemma 2.2, every class in HH! (k(P X E)) is represented by a derivation f which vanishes
on kE. The Leibniz rule implies that f is then a kE-kE-bimodule endomorphism of k(P X E).
Thus, f is determined by its restriction f|,p : kP — k(P X E). It follows from (i) that f sends kP
to J(k(P X E)). Since f is in particular a right kE-homomorphism, f sends kPe to J(k(P X E)) for
all e € E, whence (ii). O
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Lemma 5.8. Let P be a non-trivial finite abelian p-group, and set J = J(kP). Denote by Der, (kP)
the Lie subalgebra of Der(kP) = HH'(kP) of derivations which preserve J. Set n = dim, (J /J?). The
canonical map

Der, (kP) — End,(J/J?) = gL, (k)

is a surjective Lie algebra homomorphism. The kernel of this homomorphism is the nilpotent ideal
Der,(kP) of derivations with image contained in J>.

Proof. By Lemma 5.4, we may assume that P is elementary abelian. Since # is the rank of P (cf.
Lemma 2.7), we may write P = Hl.":l(xi). For any two i, j such that 1 < i, j < n there is a unique
derivation d; ; on kP which sends x; —1to x; — 1 and x; — 1 to 0, where i’ # i, 1 < i’ < n. Since
the image of the set {x; — 1}, ., in J /J? is a k-basis, the first statement follows, and the second
statement follows from Proposition 2.3. O

Lemma 5.9. Let P be a non-trivial finite abelian p-group, and set J = J(kP). Let E be a finite p’-
group acting on P such that [P, E] = P. Then Der(kP)* = Der,(kP)F. Write

Sn;

1S j !

T = @/

with pairwise non-isomorphic simple kE-modules S; and positive integers n; (1< j <r). Then
F; = End;, (S j) is a finite-dimensional commutative extension field of k, where 1 < j < r, and the
canonical map Der,(kP) — End, (J /J?) induces a surjective Lie algebra homomorphism

Der(kP)* — Endiz(7/7%) = [ | al,, (F).

j=1
The kernel of this Lie algebra homomorphism is the nilpotent ideal Der,(kP)F of E-stable derivations
on kP with image in J?.

Proof. By Lemma 5.6 we have Der(kP)F = Der, (kP)F. The surjective map Der, (kP) — End, (J /J?)
from Lemma 5.8 remains surjective upon taking E-fixed points since E has order prime to p. Thus
this map induces a surjective Lie algebra homomorphism Der(kP)¥ — End,(J/J?) with a nilpo-
tent kernel as stated. The rest follows from decomposing the semisimple kE-module J/J? as a
direct sum of its isotypic components. [l

Lemma 5.10. Let P be a non-trivial finite p-group and E a finite p’-group acting on P. The
kE-module J(kP)/J(kP)? is multiplicity free if and only if the F,E-module P /®(P) is multiplicity
free.

Proof. Since J(kP)/J(kP)* =~ k ®¢, T (F,P)/J(F,P)?, it follows from standard properties of coef-
ficient extensions (e.g. [9, Theorem 9.21.(b)], or [6, Chapter I, Theorem 19.4], or [4, (30.33)]) that
the F,E-module J(F,P)/(J(F,P)* is multiplicity free if and only if the kE-module J(kP)/J(kP)>
is multiplicity free. Thus, Lemma 2.7 implies the result. [
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6 | PROOF OF THEOREM 1.1 AND THEOREM 1.2

Proof of Theorem 1.2. Let P be a finite abelian p-group and E a finite p’-group acting on P such
that [P, E] = P.SetJ = J(kP). By Lemma 5.10, P/®(P) is multiplicity free as an F ,E-module if and
only if J/J? is multiplicity free as a kE-module. Since P is abelian, we have HH' (kP) = Der(kP),
hence HH!(kP)? = Der(kP)F. By Lemma 5.6, all E-stable derivations on kP have image in J(kP);
that is, Der(kP)¥ =Der, (kP)®, where the notation is as in Lemma 5.9. It follows from Lemma 5.9
that HH!(kP)F is solvable if and only if Der, (kP)¥ /Der,(kP)* is a solvable Lie algebra.

If J /J? is multiplicity free as a kE-module, then Lemma 5.9 implies

r

Der, (kP)" /Dery(kP)* = [ ] al1(F))
j=1

for some commutative extension fields F j of k, and hence this Lie algebra is abelian, which implies
that HH' (kP)F is solvable.

If J/J? is not multiplicity free, then Der, (kP)? /Der,(kP)F has a direct factor isomorphic to
gl,,(F) for some extension field F of k and some integer n > 2. Thus, if p is odd, then g[, (F) is not
solvable, hence neither is HH!(kP)E. This completes the proof of Theorem 1.2. O

In order to complete the proof of Theorem 1.1, we summarise the results in the case of a free
p’-action on an abelian p-group.

Theorem 6.1. Let P be a non-trivial finite abelian p-group and E a p’-subgroup of Aut(P) acting
freely on P \ {1}. Then the following hold.

(i) We have HH! (k(P X E)) ~ HH!(kP)F as Lie algebras.
(ii) Suppose E is non-trivial. Every class in HH' (k(P X E)) is represented by a derivation on k(P X
E) with image contained in the Jacobson radical J(k(P X E)).
(iii) Suppose E is non-trivial. If the F,E-module P/®(P) is multiplicity free, then the Lie algebra
HH'(k(P X E)) is solvable. The converse holds if p is odd.

Proof. The first statement follows from Lemma 5.1(iii) or Proposition 5.2. The hypothesis E #
1 in (ii) and (iii) together with the free action of E on P \ {1} imply [P, E] = P. The remaining
statements follow from Theorem 1.2. O

Proof of Theorem 1.1. With the notation and hypotheses of Theorem 1.1, by a result of Puig [21,
6.8] (see also [16, Theorem 10.5.1]) there is a stable equivalence of Morita type between B and
k(P X E). By [12, Theorem 10.7], this implies that there is a Lie algebra isomorphism HH!(B)
HH!(k(P X E)). Thus, Theorem 1.1 follows from Theorem 6.1. O

The following observation is a combination of some of the above results in conjunction with
the structure theory of blocks with a normal defect group, slightly generalising [11, Proposition
5.2], [20, Theorem 3.2]. We state this here for context and for future reference.

Theorem 6.2. Let G be a finite group and B a block with a non-trivial normal defect group P and
inertial quotient E. Suppose that k is large enough for B. Then HH'(kP)* is canonically isomorphic
to a Lie subalgebra of HH'(B). If in addition E acts freely on P \ {1}, then HH'(kP)F ~ HH!(B).
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Proof. Let B be a block of a finite group algebra kG with a non-trivial defect group P which is
normal in G. Suppose that k is large enough for B. Then, by [14, Theorem A] (see [16, Theorem
6.14.1] for an exposition of related material) the block B is Morita equivalent to a twisted group
algebra of the form k(P X E), where E is a p’-subgroup of Aut(P) and « €Z*(E, k*), inflated to
P X E via the canonical surjection P X E — E. Thus HH(B) &~ HH!(k,(P X E)) as Lie algebras.
Theorem 6.2 follows from Lemma 5.1 or Proposition 5.2. O

Remark 6.3. Since the Lie algebra HH!(B) of a block B of a finite group algebra kG is preserved
under stable equivalences of Morita type (cf. [12, Theorem 10.7]), it follows that the conclusion
of Theorem 6.2 holds if there is a stable equivalence of Morita type between B and its Brauer
correspondent; this includes inertial blocks (these are blocks which are Morita equivalent to their
Brauer correspondents via bimodules with endopermutation source; cf. [22, 2.16]).

7 | PROOF OF THEOREM 1.3 AND RELATED RESULTS

Proof of Theorem 1.3. Let P be a non-trivial finite abelian p-group and E an abelian p’-subgroup of
Aut(P) with [P, E] = P. Let a € Z*(E; k*) inflated to P X E via the canonical surjection P X E —
E. We may assume that o is normalised.

Note that the condition [P, E| = P forces |P| > 3. Since E is an abelian p’-group, by Lemma 5.1,
we have a canonical isomorphism

HH'(k,(P X E)) = HH'(kP)" @ @ H!(P;kP - e)E.
ecE\{1}

Again by Lemma 5.1, for each f € H'(P; kP - e)F, the corresponding element in HH!(k, (P X E))
under this isomorphism is represented by d ; € Der(k,(P X E)) such that foreach g € P, d f( g) =
f(g) - g and d; vanishes on E.

Fix a non-identity element e € E. Set T = Cp(e) and F = [P, {e)]. Since e # 1, it follows that
the group F is non-trivial. Since P is abelian, by [10, Theorem 4.34] or by [7, Theorem 5.2.3], we
have P = T x F. Using Formula 4.3 and that P is abelian, we get that conjugation action by g € P
on kP - e is equal to left multiplication with ¢(°¢)~!. Thus, T acts trivially on kP - ¢ and F acts
freely on P - e. Using that F is non-trivial, this implies HI(F; kP - e) = 0. Furthermore, kP - e can
be viewed as a k(T x F)-module k ®,. kP - e where k is the trivial kT-module, and kP - e is the
free kF-module for the conjugation action of F on kP - e. By the Kiinneth formula 3.11, we have

H!(P;kP -e) @ HY(T X F; k ®; kP - e) =~ H(T; k) ® H'(F; kP - ¢) ® H'(T; k) ®, H(F; kP - e)

~ HY(T; k) ® H(F;kP - e) =~ H(T; k) ® (kP - e)F'.

Any orbit in P - e under the conjugation action of F isequal to {ta - e : a € F},wheret € T. Thus,
(kP - e)f' is spanned by the set {¢(}. .- a)-e : t € T}. It follows that the map ¢ — t(Qper @) -e
induces an isomorphism

aeF

kT = (kP - e),

where we note that P acts trivially by conjugation on both sides. Since E is abelian, the direct
product decomposition P = T X F is stable under the action of E. Thus, the condition [P, E] = P
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implies [T,E] =T and [F, E] = F, so neither T nor F has order 2. Since F is non-trivial, so has
order at least 3, it follows that the socle element Y, .. a of kF is contained in J (kF)?. Thus,
(kP - e)f C kT -J(kF)?-e C J(kP)? - e. It follows that every class in HH!(kP; kP - e)” has a rep-
resentative with image contained in J(kP)? - e. Let D, denote the image of Der,(k,(P X E)) in
HH!(k,(P X E). By the above, we have @eeE\{l} H'(P; kP - e)¥ C D,. Thus,

7.1.
HH!(k, (P X E)) = HH'(kP)F + D,.

Theorem 1.2 implies therefore that every class in HH! (k, (P X E)) is represented by a derivation
with image contained in J(k,(P X E)). Equivalently, the map Der, (k,(P X E)) — HH!(k,(P X
E)) is surjective. By Corollary 2.4(iv),

7.2. We have that HH! (k, (P X E)) is solvable if and only if HH!(kP)* is solvable.

Note that the action of E on HH!(kP) by taking conjugation in the twisted group algebra does
not depend on « by Statement 4.3. Thus, this action on HH!(kP) coincides with the action of E
induced by the usual conjugation of E on P. The rest follows from Theorem 1.2. 1

Remark 7.3. The proof above can be refined to give a slightly stronger result. Using an isomor-
phism from [5, section 3.4], for e a non-trivial element in E, we have H(T; k) ®; (kP - e)f' =
H!(T; (kP - )F'). By the above proof, this is isomorphic to H'(T; kT) ~ HH!(kT). By Lemma 5.6,
every class in HH!(kT)F has a representative d with image in J(kT), that is, every class in
H(T;kT)F is represented by a 1-cocycle f € Z'(T; kT) with image contained in J(kT). Mapping
f to the corresponding 1-cocycle f” in Z!(T; (kP - e)I'), the proof above shows that the image of f’
is contained in J(kT)J(kF)? - e CJ(kP)? - e.

As mentioned in the Introduction, Theorem 1.3 admits the following equivalent reformulation.

Theorem 7.4. Let P be a non-trivial finite abelian p-group and E be a p’-group acting on P.
Suppose [P,E] = P, Cy(P) < Z(E) and that E/Cg(P) is abelian. Every class in HH'(k(P X E)) is
represented by a derivation on k(P X E) with image contained in the Jacobson radical J(k(P X E)).
If the semisimple F ,E-module P/®(P) is multiplicity free, then the Lie algebra HH!(k(P X E)) is
solvable. The converse holds if p is odd.

One way to prove Theorem 7.4 would be to play it back to Theorem 1.3 via the standard corre-
spondence between second cohomology and central group extensions. For convenience, we will
present a self-contained proof which directly translates the proof of Theorem 1.3 to the situation
of Theorem 7.4.

Proof of Theorem 7.4. Let P be a non-trivial finite abelian p-group and E be a p’-subgroup act-
ing on P. Set C = Cy(P). Suppose [P,E] = P, C < Z(E) and that E/C is abelian. In particular,
since C acts trivially on P, C also lies in the centre of P X E. As before, we will use the canonical
isomorphisms HH! (k(P X E)) = H'(P X E; k(P X E)) ~H'(P; k(P X E))*. As a kP-module with
respect to the conjugation action, we have k(P X E) & @,y kP - e. Thus, we get HH!(k(P X E))
HY(P;®,cp kP - e)F Since C is a central p’-subgroup of P X E, and since for every ¢ € C we
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have kP - ¢ = kP as a kP-module, it follows that H!(P; kP x C) = H(P; kP) ®) kC. This space
is E-invariant, with E acting trivially on kC, and hence

H!(P; k(P x C))f = H!(P; kP)* ®, kC ~ HH'(kP)! ®, kC.
Using the isomorphism 4.7 (with trivial «) it follows that
HH'(k(P X E)) = HH'(kP)" ®, kC @ (®,cp\c HH'(kP; kP - €))".

In particular, HH! (kP)F ®), kC is a Lie subalgebra of HH!(k(P X E)). In order to analyse, the sec-
ondsummandlete € E\ C.SetT = Cp(e)and F =[P, {e)].Sincee & C, it follows that the group F
isnon-trivial. Since P is abelian, by [10, Theorem 4.34] or by [7, Theorem 5.2.3],we have P = T X F.
Notice that for every g € P, the conjugation action of g on kP - e is equal to left multiplication with
g(¢g)~L. Thus, T acts trivially on kP - e and F acts freely on P - e. Using that F is non-trivial, this
implies H'(F; kP - e) = 0. Furthermore, kP - e can be viewed as a k(T X F)-module k ®; kP - e
where k is the trivial kT-module, and kP - e is the free kF-module for the conjugation action of F
on kP - e. Just as in the proof of Theorem 1.3, by the Kiinneth formula 3.11, we have

HY(P; kP - e) =~ H\(T; k) ®, (kP - &),

and the map ¢t — t(} . @) - e induces an isomorphism

aceF
kT = (kP - e)f'.

Since E/C is abelian, or equivalently, since the image of E in Aut(P) is abelian, it follows that the
direct product decomposition P = T X F is still stable under the action of E. An obvious adaptation
of the last part of the proof of Theorem 1.3 yields that [F, E] = F # 1 has order at least 3, so as
before the socle element ), . a of kF is contained in J (kF)?,whence (kP - e)¥ CkT -J(kF)*-e C
J(kP)? - e. It follows that every class in H!(P; kP - ¢) has a representative with image contained in
J(kP)? - e, so the same holds for H'(P; @,cp\c kP - €)F. Thus, every class in HH'(kP; ®,cp\c kP -
e)F has a representative with image contained in J(kP)? - e. Let D, denote the image of Der, (k(P X
E)) in HH' (k(P X E). By the above, we have HH' (kP; @,cp\c kP - €)¥ C D,, hence

7.5.
HH!(k(P X E)) = HH'(kP)! ®, kC + D,.

Theorem 1.2 implies therefore that every class in HH!(k(P X E)) is represented by a derivation
with image contained in J(k(P X E)). Equivalently, the map Der, (k(P X E)) — HH!(k(P X E)) is
surjective. By Corollary 2.4 (iv),

7.6. We have that the Lie algebra HH(k(P X E)) is solvable if and only if HH'(kP)* ®, kC
is solvable.

The formula 3.4 implies that this is the case if and only if HH' (kP)F is solvable. The rest follows
from Theorem 1.2. O

Corollary 7.7. Let G be a finite group, B a block with a non-trivial abelian defect group P and an
abelian inertial quotient E such that there is a stable equivalence of Morita type between B and its
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Brauer correspondent. Assume that k is large enough. Suppose [P, E] = P. IftheF ,E-module P / ®(P)
is multiplicity free, then HH'(B) is a solvable Lie algebra. The converse holds if p is odd.

Proof. Since the Lie algebra HH!(B) of a block B of a finite group algebra kG is preserved under
stable equivalences of Morita type (cf. [12, Theorem 10.7]), we may assume that P is normal
in G. Arguing as before, by [14, Theorem A] the block B is Morita equivalent to k (P X E) for
some a €Z%(E,k*), inflated to P X E via the canonical surjection P X E — E. Thus HH!(B)
HH!(k,(P X E)) as Lie algebras. The result follows from Theorem 1.3. O

We remark that Broué’s abelian defect group conjecture predicts that there should always be a
derived equivalence between a block with an abelian defect group and its Brauer correspondent,
so in particular there should always be a stable equivalence of Morita type in that situation.

8 | EXAMPLES

Example 8.1. Let k be a field of prime characteristic p. Let P be a non-trivial cyclic p-group and
E a p’-subgroup of Aut(P). Then E is cyclic of order dividing p — 1 and acts freely on P \ {1}. It
follows for instance from [19, Example 5.7] as well as explicit calculations in [20, section 3] that
HH!(k(P X E)) is solvable if and only if E # 1 or if p = 2, and HH!(k(P X E)) is simple if and
only if [P| = p > 3 and E = 1. It is easy to see that this follows also from combining the results
of this paper. If E # 1, then HH!(k(P X E)) is solvable by Theorem 1.3, or also by Theorem 1.1. If
|P| = p > 3, then HH'(kP) is a simple Witt Lie algebra, if |[P| = p = 2, then HH' (kP) is a solvable
non-abelian 2-dimensional Lie algebra, and if P has order p® for some a > 2, then HH'(kP) is
not simple, by Lemma 5.4, in conjunction with the fact that HH!(kP) has dimension |P|. Note
that this describes the Lie algebra structure of HH!(B) for B a block of a finite group algebra kG
with a non-trivial cyclic defect group P and inertial quotient E, with k sufficiently large. Indeed,
there is a stable equivalence of Morita type between B and k(P X E) (see e.g. [16, Theorem 11.1.2]),
and hence HH'(B) ~ HH!(k(P X E)) by [12, Theorem 10.2]. One can show this, of course, also by
making use of the fact, due to Rickard [23], that B and k(P X E) are in fact derived equivalent.

Example 8.2. Let p be an odd prime and P a finite abelian p-group of rank r > 1. Let E be a group
of order 2, acting on P, with the non-trivial element of E acting by inversion. This action of E on
P\ {1} is free, so P X E is a Frobenius group, and hence we have a Lie algebra isomorphism

HH'(F ,(P X E)) = Der(F ,P)".

Set J = J(F,P). The non-trivial element of E acts as inversion on P, hence also on P/®(P), and
therefore as multiplication by —1 on J /J? via the isomorphism from Lemma 2.7. Since this action
is in the centre of Endg (J/J 2), it follows that Endg p(J/7 )= Ende (J/7 2). Lemma 5.9 implies
that the canonical Lie algebra homomorphism

HH'(F ,(P X E)) = Der(F ,P)" — End[FpE(J/Jz) = gl (F,)

is surjective. In particular, if > 2, then the Lie algebra HH! ([Fp(P X E)) is not solvable, while for

r = 1 this is a solvable Lie algebra of dimension —'Plz_l.
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Example 8.3. Let P be a finite elementary abelian p-group of rank r > 1, and let E be a p’-
subgroup of Aut(P). Suppose that P is split semisimple as an -, E-module. Then P has an E-stable
decomposition P = [];_,(x;), where the x; all have order p; in particular, E is abelian. If the
subgroups Cp(x;), with 1 < i < r, are pairwise distinct proper subgroups of E, then the simple
F,E-modules (x;) are pairwise non-isomorphic non-trivial. In that case, setting E; = E/Cg(x;),
each E; is non-trivial, and the canonical surjections E — E; induce an isomorphism E = [];_, E;.
Note that each E; can be identified with a non-trivial cyclic subgroup of Aut({x;)), and hence
P X E =[]'_,(x;) X E;. In particular, P is multiplicity free as an F,E-module, and P = [P, E].
Thus, Theorem 1.2 implies that HH!(kP)F is a solvable Lie algebra. In fact, since P X E is a
direct product of Frobenius groups, one can, using the Kiinneth formula, even conclude that
HH!(k(P X E)) is solvable; see Example 8.5 below.

Example 8.4. Let k be an algebraically closed field of characteristic p, let G be a finite group and
B ablock of kG with an elementary abelian defect group P = C,, X C, of order p? and an abelian
inertial quotient E. We identify E with a subgroup of GL,(F,) when convenient.

The Brauer correspondent block with defect group P is source algebra equivalent to k(P X E)
for some a € Z%(E; kX). By a result of Rouquier [24, 6.3] (see [17, Theorem A.2] for a proof for
non-principal blocks), there is a stable equivalence of Morita type between B and k(P X E), and
hence, by [12, Theorem 10.2], we have an isomorphism of Lie algebras

HH!(B) ~ HH!(k (P X E)).

If E = 1, or equivalently, if the block B is nilpotent, then HH'(B) =~ HH'(kP) is a simple Witt
Lie algebra (see [18, Theorem 1.1] and the references in that paper for background).

IfE # 1 and E < Z(GL,(p)), then p is odd, we have [P, E] = P, and P is a direct sum of two iso-
morphic simple F,E-modules. Hence, in that case, HH!(B) has a quotient isomorphic to al,(F)p),
so is non-solvable and non-simple, where we use Lemma 5.9.

IfE #1and[P,E] < P,then P X E = Q X (R X E), where Q = Cp(E) and R = [P, E] both have
order p and E is cyclic of order dividing p — 1 (so p is odd and « is trivial). Since HH(kQ) is a
simple Witt Lie algebra and every class in HH!(k(R X E)) is represented by a derivation of k(R X
E) with image contained in J(k(R X E)), it follows from Lemma 3.7 that HH!(B) is neither simple
nor solvable in that case.

If E is a non-trivial abelian but not a central subgroup of GL,(F,), such that [P, E] = P, then
P is either simple as an F,E-module or the sum of two non-isomorphic simple F,E-modules,
and hence HH!(B) is solvable in that case, by Theorem 1.3. For instance, if E = C, X C, and «
is non-trivial, then the Brauer correspondent of B is Morita equivalent to the quantum complete
intersection described in Example 8.6 below. Another instance arises as follows. By identifying P
with the additive group of I >, one sees that the cyclic group [F;;2 of order p? — 1 acts regularly
on P\ {1}. Let m > 3 be a divisor of p + 1 coprime to p — 1, and let C,,, a cyclic group of order m
acting freely on the non-identity elements of P. Then [P, E] = P and P is a simple F,E-module,
hence HH!(k(P X E)) ~ HH!(kP)" is a solvable Lie algebra by Theorem 6.1.

Example 8.5. Theorem 6.1 can be extended to direct products of Frobenius groups, using the Kiin-
neth formula. For 1 < i < nlet P; be anon-trivial finite abelian p-group and let E; be a p’-subgroup
of Aut(P;) acting freely on P; \ {1}. By Proposition 5.2 we have HH!(k(P; X E;)) = HH!(kP,)¥i, so
by Lemma 5.6 the canonical map Der; (k(P; X E;)) — HH!(k(P; X E;)) are surjective.
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Set P = H?Zl P, and E = H:’zl E;. Proposition 3.1, applied repeatedly, implies that the map
Der, (k(P X E)) — HH!(k(P X E)) is surjective. Suppose in addition that P/®(P) is multiplicity
free as an F ,E-module, or equivalently, that each P;/®(P;) is multiplicity free as an F ,E;-module,
for 1 < i < n. Lemma 5.9 implies

[Der, (k(P X E)), Der, (k(P X E))] C Der,(k(P X E)) + IDer(k(P X E)),

and in particular, that HH!(k(P X E)) is a solvable Lie algebra. In the case where E is abelian, this
follows also from Theorem 1.3.

Example 8.6. Suppose that p is an odd prime. Consider the algebra
A =k(x,y|xP =y? =0, xy + yx =0).

This algebra, which has dimension p?, arises as basic algebra of the non-principal block of k(C » X
C,) X Qg, with defect group C,, X C,, and inertial quotient C, X C,. It is shown in [2, Theorem 1.1]
amongst other statements on the structure of the Lie algebra HH!(A) that HH!(A) is a solvable
Lie algebra. Theorem 1.3 provides an alternative proof of this fact.

Example 8.7. Let k be an algebraically closed field of prime characteristic p, let G be a finite
group, N a normal subgroup such that G/N is a p-group, and let b be a G-stable block of kN.
Set C = kNb. Then B = kGb is a block of kG. Let P be a defect group of B, and set Q = PN N.
Suppose that P is abelian and that Q has a complement R in P. If p is odd or if R has rank at least
2, then HH!(B) is not solvable. Indeed, by a theorem of Koshitani and Kiilshammer in [13] (see [16,
Theorem 10.4.2] for an expository account), we have a k-algebra isomorphism B kR ®;, C, so by
the Kiinneth formula 3.2, HH'(B) has a Lie subalgebra isomorphic to HH' (kR), which in turn has
a Lie algebra quotient HH'(kR/®(R)). If p is odd or if R has rank at least 2, then HH' (kR /®(R))
is a simple Witt Lie algebra.

ACKNOWLEDGEMENTS
The authors acknowledge support from EPSRC grant EP/X035328/1.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Jialin Wang © https://orcid.org/0000-0002-1872-6518

REFERENCES

1. D. J. Benson, Representations and cohomology, Vol. I: Cohomology of groups and modules, Cambridge studies
in advanced mathematics, vol. 30, Cambridge University Press, Cambridge, 1991.

2. D. Benson, R. Kessar, and M. Linckelmann, On blocks of defect two and one simple module, and Lie algebra
structure of HH', J. Pure Appl. Algebra 221 (2017), 2953-2973.

3. K. S. Brown, Cohomology of groups, Graduate Texts Math., vol. 87, Springer-Verlag, New York, 1982.

a'9 'S202 ‘0SL697T

wouy

1IPUOD PUe SWB | 841 89S *[9202/T0/20] U0 A1 auIuo AJIM * UopuoT JO A1SAIN ‘S 861099 15 ANID - Wes | Suoieoliand Aq 20v02 SWlZTTT 0T/10pwod Ao 1m

o

NIPUCD-pL

25190111 SUOWLLIOD AATES10 3[Geol|dde aU) A PauBA0B 312 SPILE O 98N J0 SoNJ 0} ARIIT BUIO ABIIM U0


https://orcid.org/0000-0002-1872-6518
https://orcid.org/0000-0002-1872-6518

ON THE SOLVABILITY OF THE LIE ALGEBRA HH!(B) FOR BLOCKS OF FINITE GROUPS 23 0f23

. C. W. Curtis and I. Reiner, Methods of representation theory, Vol. I, John Wiley and Sons, New York, London,

Sydney, 1981.

. L. Evens, The cohomology of groups, Oxford Science Publications, The Clarendon Press, Oxford University

Press, New York, 1991. xii+159pp.

. W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland

Publishing Company, Amsterdam, 1982.

7. D. Gorenstein, Finite groups, Chelsea Publishing Company, New York, 1980.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. T. Holm, The Hochschild cohomology of a modular group algebra: the commutative case, Comm. Algebra 24

(1996), 1957-1969.

. 1. M. Isaacs, Character theory of finite groups, Dover, New York, 1994.
10.

1. M. Isaacs, Finite group theory, Graduate studies in mathematics, vol. 92, American Mathematical Society,
Providence, RI, 2008.

R. Kessar and M. Linckelmann, On blocks with Frobenius inertial quotient, J. Algebra 249 (2002), 127-146.
S.Konig, Y. Liu, and G. Zhou, Transfer maps in Hochschild (co)homology and applications to stable and derived
invariants and to the Auslander-Reiten conjecture, Trans. Amer. Math. Soc. 364 (2012), 195-232.

S. Koshitani and B. Kiilshammer, A splitting theorem for blocks, Osaka J. Math. 33 (1996), 343-346.

B. Kiilshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147-168.
M. Linckelmann, The block theory of finite group algebras I, London Math. Soc. Student Texts, vol. 91,
Cambridge University Press, Cambridge, 2018.

M. Linckelmann, The block theory of finite group algebras II, London Math. Soc. Student Texts, vol. 92,
Cambridge University Press, Cambridge, 2018.

M. Linckelmann, Trivial source bimodule rings for blocks and p-permutation equivalences, Trans. Amer. Math.
Soc. 361 (2009), 1279-1316.

M. Linckelmann and L. Rubio y Degrassi, Block algebras with HH! a simple Lie algebra, Q. J. Math. 69 (2018),
1123-1128.

M. Linckelmann and L. Rubio y Degrassi, On the Lie algebra structure of HH' (A) of a finite-dimensional algebra
A, Proc. Amer. Math. Soc. 148 (2020), 1879-1890.

W. Murphy, The Lie algebra structure of the degree one Hochschild cohomology of the blocks of the sporadic
Mathieu groups, J. Group Theory 26 (2023), 161-191.

L. Puig, Une correspondance de modules pour les blocs a groupes de défaut abéliens, Geom. Dedicata 37 (1991),
no. 1, 9-43.

L. Puig, Nilpotent extensions of blocks, Math. Z. 269 (2011), 115-136.

J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303-317.

R. Rouquier, Block theory via stable and Rickard equivalences, Modula representation theory of finite groups,
deGruyter, Berlin, 2001, pp. 101-146.

S. J. Witherspoon, Products in Hochschild cohomology and Grothendieck rings of group crossed products, Adv.
Maths. 185 (2004), 136-152.

C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., vol. 38, Cambridge
University Press, Cambridge, 1994.

a'9 'S202 ‘0SL697T

wouy

1IPUOD PUe SWB | 841 89S *[9202/T0/20] U0 A1 auIuo AJIM * UopuoT JO A1SAIN ‘S 861099 15 ANID - Wes | Suoieoliand Aq 20v02 SWlZTTT 0T/10pwod Ao 1m

o

e

1pUO:

25190111 SUOWLLIOD AATES10 3[Geol|dde aU) A PauBA0B 312 SPILE O 98N J0 SoNJ 0} ARIIT BUIO ABIIM U0



	On the solvability of the Lie algebra for blocks of finite groups
	Abstract
	1 | INTRODUCTION
	2 | BACKGROUND MATERIAL
	3 | THE KÜNNETH FORMULA AND SOLVABILITY OF 
	4 | CALCULATIONS IN TWISTED GROUP ALGEBRAS
	5 | DERIVATIONS ON AND -STABLE DERIVATIONS ON 
	6 | PROOF OF THEOREM 1.1 AND THEOREM 1.2
	7 | PROOF OF THEOREM 1.3 AND RELATED RESULTS
	8 | EXAMPLES
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


