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Abstract
We give some criteria for the Lie algebra HH1(𝐵) to be
solvable, where 𝐵 is a 𝑝-block of a finite group algebra,
in terms of the action of an inertial quotient of 𝐵 on a
defect group of 𝐵.
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1 INTRODUCTION

The Lie algebra structure of the first Hochschild cohomology of a block of a finite group algebra
sits at the crossroads of the representation theory of a block as a part of the wider theory of rep-
resentations of finite-dimensional algebras and the fusion systems and their invariants that can
be associated with block algebras. This Lie algebra is therefore one of the ingredients that has the
potential to feed into an understanding of the connections between the global and local structure
of block algebras. The purpose of this paper is to contribute to investigating this connection.
Let 𝑝 be a prime number and 𝑘 a field of characteristic 𝑝. A block of a finite group algebra

𝑘𝐺 is an indecomposable direct factor 𝐵 of 𝑘𝐺 as an algebra. A defect group of a block 𝐵 of
𝑘𝐺 is a maximal 𝑝-subgroup 𝑃 of 𝐺 such that 𝑘𝑃 is isomorphic to a direct summand of 𝐵 as a
𝑘𝑃-𝑘𝑃-bimodule. The results in this paper are a contribution to the broader theme investigating
connections between Hochschild cohomology and fusion systems of blocks. More precisely, the
main results of this paper relate the Lie algebra structure ofHH1(𝐵), notably the solvability of this
Lie algebra, to the action of an inertial quotient 𝐸 on a defect group of the block.
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article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
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For 𝑃 a finite 𝑝-group, we denote by Φ(𝑃) the Frattini subgroup of 𝑃; this is the smallest
normal subgroup of 𝑃 such that 𝑃∕Φ(𝑃) is elementary abelian. If 𝐸 is a finite group act-
ing on 𝑃, then this action induces an action of 𝐸 on 𝑃∕Φ(𝑃). In this way, we can regard
𝑃∕Φ(𝑃) as an 𝔽𝑝𝐸-module. If in addition 𝐸 has order prime to 𝑝, then 𝑃∕Φ(𝑃) is a semisim-
ple 𝔽𝑝𝐸-module. The following results have in common that the property of this module being
multiplicity free is the key ingredient for the first Hochschild cohomology to be solvable as a Lie
algebra.

Theorem 1.1. Let 𝐺 be a finite group, and assume that 𝑘 is large enough for the subgroups of 𝐺.
Let 𝐵 be a block of 𝑘𝐺 with a non-trivial abelian defect group 𝑃 and a non-trivial inertial quotient 𝐸
acting freely on 𝑃 ⧵ {1}. If the 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity free, then the Lie algebra HH1(𝐵)

is solvable. The converse holds if 𝑝 is odd.

In the course of the proof we will describe more precise results on the Lie algebra structure of
HH1(𝐵). One key ingredient is a stable equivalence of Morita type between the block 𝐵 and the
semidirect product 𝑘(𝑃 ⋊ 𝐸), due to Puig. Another key ingredient is the next result which investi-
gates the Lie algebra structure of HH1(𝑘𝑃)𝐸 . We denote by [𝑃, 𝐸] the subgroup of 𝑃 generated by
the set of elements of the form (𝑒𝑢)𝑢−1, where 𝑢 ∈ 𝑃 and 𝑒 ∈ 𝐸 (this is the hyperfocal subgroup
in 𝑃 of 𝑃 ⋊ 𝐸).

Theorem 1.2. Let 𝑃 be a non-trivial finite abelian 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃.
Suppose [𝑃, 𝐸] = 𝑃.

(i) Every 𝐸-stable derivation on 𝑘𝑃 has image contained in the Jacobson radical 𝐽(𝑘𝑃).
(ii) If the 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity free, then HH1(𝑘𝑃)𝐸 is a solvable Lie algebra. The

converse holds if 𝑝 is odd.

The two theorems above will be proved in Section 6. When the acting 𝑝′-group 𝐸 is abelian
as well, we can be more precise. See Section 4 for the notation and basic facts on twisted group
algebras. The following result will be proved in Section 7.

Theorem1.3. Let𝑃 be a non-trivial finite abelian𝑝-group and𝐸 an abelian𝑝′-subgroup ofAut(𝑃).
Let 𝛼 ∈ 𝑍2(𝐸; 𝑘×) inflated to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸. Suppose [𝑃, 𝐸] = 𝑃.

(i) Every class in HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) is represented by a derivation on 𝑘𝛼(𝑃 ⋊ 𝐸) with image
contained in the Jacobson radical 𝐽(𝑘𝛼(𝑃 ⋊ 𝐸)).

(ii) If the 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity free, then the Lie algebraHH1(𝑘𝛼(𝑃 ⋊ 𝐸)) is solvable.
The converse holds if 𝑝 is odd.

If one replaces twisted group algebras by group algebras of corresponding central extensions,
then Theorem 1.3 admits an equivalent reformulation, in which the acting group 𝐸 need not act
faithfully and need not be abelian so long as its image inAut(𝑃) is abelian; see Theorem 7.4 below.
We illustrate the above results in conjunction with the structure theory of normal defect blocks
in Theorem 6.2 and Corollary 7.7, and we determine under what circumstances the Lie algebra
HH1(𝐵) is simple or solvable for blocks 𝐵 with elementary abelian defect of rank 2 and abelian
inertial quotient in Example 8.4.
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 3 of 23

2 BACKGROUNDMATERIAL

Let 𝑘 be a field. Let 𝐴 be an associative unital 𝑘-algebra. A derivation on 𝐴 is a 𝑘-linear map
𝑓 ∶ 𝐴 → 𝐴 satisfying the Leibniz rule 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑏 + 𝑎𝑓(𝑏), for all 𝑎, 𝑏 ∈ 𝐴. The Leibniz rule
implies that any derivation 𝑓 on 𝐴 vanishes at all central idempotents; in particular, 𝑓(1) = 0.
The set Der(𝐴) of all derivations on 𝐴 is a Lie subalgebra of End𝑘(𝐴) with Lie bracket [𝑓, g] =
𝑓◦g − g◦𝑓, for all 𝑓, g ∈ End𝑘(𝐴). If 𝑐 ∈ 𝐴, then the map [𝑐, −] sending 𝑎 ∈ 𝐴 to the addi-
tive commutator [𝑐, 𝑎] = 𝑐𝑎 − 𝑎𝑐 is a derivation. The derivations of this form are called inner
derivations on 𝐴, and the subspace IDer(𝐴) of inner derivations is an ideal in the Lie algebra
Der(𝐴).
For 𝑀 an 𝐴-𝐴-bimodule, regarded as an 𝐴⊗𝑘 𝐴

op-module, the Hochschild cohomology
of 𝐴 with coefficients in 𝑀 is the graded 𝑘-module HH∗(𝐴;𝑀) = Ext∗

𝐴⊗𝑘𝐴
op(𝐴;𝑀). We set

HH∗(𝐴) = HH∗(𝐴;𝐴). Then HH∗(𝐴) is a graded-commutative algebra, and HH∗(𝐴;𝑀) is a
graded right HH∗(𝐴)-module. We have canonical identifications HH0(𝐴) ≅ Z(𝐴) and HH1(𝐴) ≅

Der(𝐴)∕IDer(𝐴); see, for instance, Weibel [26, Lemma 9.2.1]. If 𝑓 is a derivation on 𝐴 and 𝛼 a
𝑘-algebra automorphism of 𝐴, then 𝛼−1◦𝑓◦𝛼 is a derivation on 𝐴, and if 𝑓 is an inner derivation,
then so is 𝛼−1◦𝑓◦𝛼. Thus, if𝐸 is a group acting on𝐴 by 𝑘-algebra automorphisms, then this action
induces an action of 𝐸 on HH1(𝐴) by Lie algebra automorphisms, and the subspace HH1(𝐴)𝐸 of
𝐸-fixed points in HH1(𝐴) is a Lie subalgebra of HH1(𝐴). We will need the following well-known
facts.

Lemma 2.1 (cf. [18, Lemma 3.1]). Let 𝐴 be a finite-dimensional associative unital 𝑘-algebra. For
every derivation 𝑓 on 𝐴, we have 𝑓(𝑍(𝐴)) ⊆ 𝑍(𝐴).

Lemma 2.2 (cf. [19, Lemma 2.4]). Let 𝐴 be a finite-dimensional associative unital 𝑘-algebra. Sup-
pose that 𝐴 has a separable subalgebra 𝐶 such that 𝐴 = 𝐶 ⊕ 𝐽(𝐴). Every class in HH1(𝐴) has a
representative 𝑓 ∈ Der(𝐴) satisfying 𝐶 ⊆ ker(𝑓).

We note that in [19, Lemma 2.4, Proposition 2.8] the algebra 𝐴 is assumed to be split, but the
proof there shows that this is not needed so long as in the previous Lemma 𝐴 is assumed to have
a separable subalgebra 𝐶 satisfying 𝐴 = 𝐶 ⊕ 𝐽(𝐴). By the Malcev–Wedderburn Theorem, this is
equivalent to requiring𝐴∕𝐽(𝐴) to be separable, inwhich casewe have𝐶 ≅ 𝐴∕𝐽(𝐴). If𝑓 is a deriva-
tion on 𝐴 which vanishes on 𝐶 and sends 𝐽(𝐴) to 𝐽(𝐴)𝑚 for some positive integer𝑚, then in fact
Im(𝑓) ⊆ 𝐽(𝐴)𝑚. The following proposition is a slight variation of [19, Proposition 2.8], with essen-
tially unchanged proofs, making repeatedly use of the Leibniz rule.We denote by 𝓁𝓁(𝐴) the Loewy
length of 𝐴; this is the smallest positive integer𝑚 such that 𝐽(𝐴)𝑚 = 0.

Proposition 2.3. Let 𝐴 be a finite-dimensional associative unital 𝑘-algebra. For 𝑚 ⩾ 1, denote by
Der𝑚(𝐴) the subspace of Der(𝐴) consisting of all derivations 𝑓 ∶ 𝐴 → 𝐴 such that Im(𝑓) ⊆ 𝐽(𝐴)𝑚.
The following hold.

(i) For any positive integers𝑚, 𝑛, we have [Der𝑚(𝐴), Der𝑛(𝐴)] ⊆Der𝑚+𝑛−1(𝐴).
(ii) The space Der1(𝐴) is a Lie subalgebra of Der(𝐴), and for any positive integer 𝑚, the space

Der𝑚(𝐴) is a Lie ideal in Der1(𝐴).
(iii) The spaceDer2(𝐴) is a nilpotent ideal inDer1(𝐴). More precisely, if 𝓁𝓁(𝐴) ⩽ 2, thenDer2(𝐴) =

0, and if 𝓁𝓁(𝐴) > 2, then the nilpotency class of Der2(𝐴) is at most 𝓁𝓁(𝐴) − 2.
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4 of 23 LINCKELMANN and WANG

Corollary 2.4. With the notation and hypotheses of Proposition 2.3, the following hold.

(i) If [Der1(𝐴), Der1(𝐴)] ⊆ Der2(𝐴), then Der1(𝐴) is a solvable Lie algebra.
(ii) If [Der1(𝐴), Der1(𝐴)] ⊆ Der2(𝐴) + IDer(𝐴), then the image ofDer1(𝐴) inHH1(𝐴) is a solvable

Lie algebra.
(iii) If the canonical mapDer1(𝐴) → HH1(𝐴) is surjective, and if [Der1(𝐴), Der1(𝐴)] ⊆ Der2(𝐴) +

IDer(𝐴), thenHH1(𝐴) is a solvable Lie algebra.
(iv) If the canonical mapDer1(𝐴) → HH1(𝐴) is surjective, then the image ofDer2(𝐴) is a nilpotent

ideal inHH1(𝐴). Furthermore, supposeHH1(𝐴) = 𝐿 + 𝐷2 where 𝐿 is a Lie subalgebra and 𝐷2

is the image of Der2(𝐴), thenHH1(𝐴) is solvable if and only if 𝐿 is solvable.

Proof. The statements (i) and (ii) follow from Proposition 2.3(iii) and the assumptions. Statement
(iii) are immediate consequences of (ii). As for statement (iv), supposeHH1(𝐴) = 𝐿 + 𝐷2 as in the
statement. If 𝐿 is not solvable, then HH1(𝐴) is not solvable. Suppose 𝐿 is solvable, and 𝐿(𝑛) = 0

for some positive integer 𝑛, where 𝐿(𝑛) denotes the 𝑛th derived Lie algebra of 𝐿. Since 𝐷2 is an
ideal, it follows that for any 𝑖 ⩾ 1 we have HH1(𝐴)(𝑖) ⊆ 𝐿(𝑖) + 𝐷2. Thus, HH1(𝐴)(𝑛) ⊆ 𝐷2. The
statement follows since 𝐷2 is nilpotent. □

Wedenote by [𝐴,𝐴] the subspace spanned by the set of additive commutators [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎,
where 𝑎, 𝑏 ∈ 𝐴. Since [𝑎, 𝑏]𝑐 = 𝑎𝑏𝑐 − 𝑏𝑎𝑐 = 𝑎𝑏𝑐 − 𝑎𝑐𝑏 + 𝑎𝑐𝑏 − 𝑏𝑎𝑐 = 𝑎[𝑏, 𝑐] + [𝑎𝑐, 𝑏] for all 𝑎,
𝑏, 𝑐 ∈ 𝐴, we have [𝐴,𝐴]𝐴 = 𝐴[𝐴,𝐴], and this is the smallest ideal such that the corresponding
quotient of 𝐴 is commutative.

Lemma 2.5. Let 𝐴 be a finite-dimensional associative unital 𝑘-algebra. Every derivation on 𝐴 pre-
serves the subspace [𝐴,𝐴] and the ideal [𝐴,𝐴]𝐴, and induces a derivation on 𝐴∕[𝐴,𝐴]𝐴. Under
this correspondence, an inner derivation on 𝐴 is mapped to zero. In particular, this correspondence
induces a Lie algebra homomorphismHH1(𝐴) → HH1(𝐴∕[𝐴,𝐴]𝐴).

Proof. If 𝑓 is a derivation on 𝐴, then 𝑓([𝑎, 𝑏]) = 𝑓(𝑎)𝑏 + 𝑎𝑓(𝑏) − 𝑓(𝑏)𝑎 − 𝑏𝑓(𝑎) =[𝑓(𝑎), 𝑏] +

[𝑎, 𝑓(𝑏)], and hence 𝑓 preserves the subspace [𝐴,𝐴] and hence also the ideal [𝐴,𝐴]𝐴, using the
Leibniz rule. Thus 𝑓 induces a derivation on 𝐴∕[𝐴,𝐴]𝐴. If 𝑓 is inner, then the image of 𝑓 is
contained in [𝐴,𝐴], and the rest follows easily. □

Suppose now that 𝑘 has prime characteristic 𝑝. If 𝐴 = 𝑘𝐺 for some finite group 𝐺, then the
largest commutative quotient of 𝑘𝐺 is 𝑘𝐺∕𝐺′, where 𝐺′ is the commutator subgroup of 𝐺. Thus,
[𝑘𝐺, 𝑘𝐺]𝑘𝐺 = 𝐼(𝑘𝐺′)𝑘𝐺. One can verify this also directly by noting the relation between additive
and multiplicative commutators 𝑥𝑦𝑥−1𝑦−1 − 1 = [𝑥, 𝑦]𝑥−1𝑦−1 for all 𝑥, 𝑦 ∈ 𝐺. Thus, Lemma 2.5
specialises to the following observation.

Lemma 2.6. Let 𝐺 be a finite group. Denote by 𝐺′ the commutator subgroup. Every derivation
on 𝑘𝐺 induces a derivation on 𝑘𝐺∕𝐺′, and every inner derivation on 𝑘𝐺 induces the zero map
on 𝑘𝐺∕𝐺′. Through this correspondence, the canonical surjection 𝐺 → 𝐺∕𝐺′ induces a Lie algebra
homomorphismHH1(𝑘𝐺) → HH1(𝑘𝐺∕𝐺′).

Proof. This is a special case of Lemma 2.5, using the equality [𝑘𝐺, 𝑘𝐺]𝑘𝐺 = 𝐼(𝑘𝐺′)𝑘𝐺 mentioned
above. □
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We use without further comment the standard fact that for 𝑃 a finite 𝑝-group the augmen-
tation ideal 𝐼(𝑘𝑃) in 𝑘𝑃 is equal to the Jacobson radical 𝐽(𝑘𝑃). We denote by Φ(𝑃) the Frattini
subgroup of 𝑃; this is the smallest normal subgroup of 𝑃 such that the quotient 𝑃∕Φ(𝑃) is ele-
mentary abelian, with the convention Φ(𝑃) = 1 if 𝑃 = 1. The following is well known; we sketch
a proof for convenience.

Lemma 2.7. Let 𝑃 be a finite 𝑝-group and 𝐸 a subgroup of Aut(𝑃). The map sending 𝑦 ∈ 𝑃 to
𝑦 − 1 ∈ 𝐽(𝔽𝑝𝑃) induces an isomorphism of 𝔽𝑝𝐸-modules

𝑃∕Φ(𝑃) ≅ 𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)
2.

Proof. Set 𝐽 = 𝐽(𝔽𝑝𝑃). Let 𝑥, 𝑦 ∈ 𝑃. Then (𝑥 − 1)(𝑦 − 1) ∈ 𝐽2. Since (𝑥 − 1)(𝑦 − 1) = (𝑥𝑦 − 1) −

(𝑥 − 1) − (𝑦 − 1), it follows that 𝑥𝑦 − 1 and (𝑥 − 1) + (𝑦 − 1) have the same image in 𝐽∕𝐽2. Thus,
the map 𝑥 ↦ 𝑥 − 1 induces a surjective group homomorphism 𝑃 → 𝐽∕𝐽2. Since the right side is
an abelian group, the kernel of this group homomorphism contains the commutator subgroup
of 𝑃, and since 𝔽𝑝 has characteristic 𝑝, the kernel contains also 𝑥𝑝 for all 𝑥 ∈ 𝑃. Thus, the map
𝑥 ↦ 𝑥 − 1 yields a surjective group homomorphism 𝑃∕Φ(𝑃) → 𝐽∕𝐽2. Both sides are easily seen to
have the same dimension, equal to the rank of the elementary abelian 𝑝-group 𝑃∕Φ(𝑃). □

Note that the unit element of 𝑃∕Φ(𝑃) is mapped to the zero element in 𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)
2 in the

Lemma 2.7. We will further need the following observation regarding the hyperfocal subgroup
[𝑃, 𝐸] of 𝑃 ⋊ 𝐸 in 𝑃.

Lemma 2.8. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite group of order prime to 𝑝 which acts on 𝑃. The
following are equivalent.

(i) We have [𝑃, 𝐸] = 𝑃.
(ii) We have [𝑃∕Φ(𝑃), 𝐸] = 𝑃∕Φ(𝑃).
(iii) The 𝔽𝑝𝐸-module 𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)2 has no non-zero trivial direct summand.
(iv) The 𝑘𝐸-module 𝐽(𝑘𝑃)∕𝐽(𝑘𝑃)2 has no non-zero trivial direct summand.

Proof. Clearly [𝑃∕Φ(𝑃), 𝐸] is the image of [𝑃, 𝐸] under the canonical surjection𝑃 → 𝑃∕Φ(𝑃), so (i)
implies (ii) trivially. If [𝑃, 𝐸] is a proper subgroup of 𝑃, then so is its image in 𝑃∕Φ(𝑃) sinceΦ(𝑃) is
the intersection of all maximal subgroups of 𝑃. Thus (ii) implies (i). By standard facts on coprime
group actions,we have𝑃∕Φ(𝑃) = [𝑃∕Φ(𝑃), 𝐸] × 𝐶𝑃∕Φ(𝑃)(𝐸), thus (ii) is equivalent to the statement
𝐶𝑃∕Φ(𝑃)(𝐸) = 1. Under the isomorphism 𝑃∕Φ(𝑃) ≅ 𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)

2 from Lemma 2.7 this is equiv-
alent to (iii). Since 𝐽(𝑘𝑃) = 𝑘 ⊗𝔽𝑝

𝐽(𝔽𝑝𝑃) and similarly for 𝐽(𝑘𝑃)2, we have 𝐽(𝑘𝑃)∕𝐽(𝑘𝑃)2 ≅ 𝑘 ⊗𝔽𝑝

𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃) as 𝑘𝐸-modules. Setting 𝑈 = 𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)
2, the equivalence of (iii) and (iv)

follows from the canonical isomorphisms 𝑘 ⊗𝔽𝑝
𝑈𝐸 ≅ 𝑘 ⊗𝔽𝑝

Hom𝐹𝑝𝐸(𝔽𝑝,𝑈) ≅Hom𝑘𝐸(𝑘, 𝑘 ⊗𝔽𝑝

𝑈) ≅ (𝑘 ⊗𝔽𝑝
𝑈)𝐸 , where for the second isomorphism we make use of the well-known fact [15,

Corollary 1.12.11] on scalar extensions of homomorphism spaces. □

For convenience we draw attention to the following obvious fact.

Lemma 2.9. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite group of order prime to 𝑝 which acts on 𝑃.
Every element inHH1(𝑘𝑃)𝐸 has a representative in Der(𝑘𝑃)𝐸 .
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6 of 23 LINCKELMANN and WANG

Proof. The canonical surjection Der(𝑘𝑃) → HH1(𝑘𝑃) is 𝐸-stable, so remains surjective upon
taking 𝐸-fixed points as 𝐸 is a 𝑝′-group. □

We will need the following fact from [11].

Lemma 2.10 (cf. [11, Lemma 5.1]). Let 𝑃 be a finite 𝑝-group and 𝛼 an automorphism of 𝑃 with
no non-trivial fixed point. Then the 𝑘𝑃-module (𝑘𝑃)𝛼 , with 𝑢 ∈ 𝑃 acting on 𝑥 ∈ 𝑃 by 𝑢𝑥𝛼(𝑢)−1,
is projective.

Proof. The hypothesis on 𝛼 implies that if 𝑢 runs over all elements of 𝑃, then so does 𝑢𝛼(𝑢)−1.
Thus, the given action of 𝑃 on itself is transitive because the 𝑃-orbit of 1 is 𝑃. The lemma
follows. □

3 THE KÜNNETH FORMULA AND SOLVABILITY OF𝐇𝐇𝟏

Let 𝑘 be a field. For𝐴 an associative unital 𝑘-algebra and𝑚 a positive integer, we denote as before
byDer𝑚(𝐴) the space of derivations on𝐴with image contained in 𝐽(𝐴)𝑚. Given two algebras𝐴,𝐵,
the solvability ofHH1(𝐴) andHH1(𝐵) does not necessarily imply the solvability ofHH1(𝐴 ⊗𝑘 𝐵).
The following observation implies that the slightly stronger condition from Corollary 2.4(iii) does
extend to tensor products.

Proposition 3.1. Let 𝐴, 𝐵 be two associative unital 𝑘-algebras. Suppose that the canonical
maps Der1(𝐴) → HH1(𝐴) and Der1(𝐵) → HH1(𝐵) are surjective. Then the map Der1(𝐴 ⊗𝑘 𝐵) →

HH1(𝐴 ⊗𝑘 𝐵) is surjective. Suppose further that [Der1(𝐴), Der1(𝐴)] ⊆ Der2(𝐴) + IDer(𝐴) and that
[Der1(𝐵), Der1(𝐵)] ⊆ Der2(𝐵) + IDer(𝐵). Then

[Der1(𝐴 ⊗𝑘 𝐵), Der1(𝐴 ⊗𝑘 𝐵)] ⊆ Der2(𝐴 ⊗𝑘 𝐵) + IDer(𝐴 ⊗𝑘 𝐵).

In particular, the Lie algebraHH1(𝐴 ⊗𝑘 𝐵) is solvable.

The proof of this proposition is based on the Künneth formula

3.2.

HH1(𝐴 ⊗𝑘 𝐵) ≅ Z(𝐴) ⊗𝑘 HH
1(𝐵) ⊕ HH1(𝐴) ⊗𝑘 Z(𝐵),

where we use the canonical identifications HH0(𝐴) ≅ Z(𝐴) and HH0(𝐵) ≅ Z(𝐵). This for-
mula extends in the obvious way to tensor products of more than two algebras. The Künneth
isomorphism 3.2 is induced by with the map sending 𝑧 ⊗ g to the derivation

𝑎 ⊗ 𝑏 ↦ 𝑎𝑧 ⊗ g(𝑏)

on𝐴⊗𝑘 𝐵, where𝑎 ∈𝐴, 𝑏 ∈𝐵, 𝑧 ∈ Z(𝐴) and g is a derivation on𝐵, togetherwith themap sending
𝑓 ⊗ 𝑤 to the derivation

𝑎 ⊗ 𝑏 ↦ 𝑓(𝑎) ⊗ 𝑏𝑤
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 7 of 23

on 𝐴⊗𝑘 𝐵, where 𝑓 is a derivation on 𝐴 and 𝑤 ∈ Z(𝐵). A trivial verification shows that if g =

[𝑑,−] for some 𝑑 ∈ 𝐵 is an inner derivation on 𝐵, then the derivation on 𝐴⊗𝑘 𝐵 corresponding
to 𝑧 ⊗ g is inner, equal to [𝑧 ⊗ 𝑑,−]. Similarly, if 𝑓 = [𝑐, −] for some 𝑐 ∈ 𝐴 is an inner derivation
on 𝐴, then the derivation on 𝐴⊗𝑘 𝐵 corresponding to 𝑓 ⊗ 𝑤 is inner, and equal to [𝑐 ⊗ 𝑤,−].
The Lie bracket can be followed through the Künneth isomorphism as follows. Given two

derivations g , g ′ on 𝐵 and 𝑧, 𝑧′ ∈ Z(𝐴), the Lie bracket of the derivations corresponding to 𝑧 ⊗ g ,
𝑧′ ⊗ g ′ is given by

3.3.

[𝑧 ⊗ g , 𝑧′ ⊗ g ′] = 𝑧𝑧′ ⊗ [g , g ′],

or explicitly, the right side is the map

𝑎 ⊗ 𝑏 ↦ 𝑎𝑧𝑧′ ⊗ [g , g ′](𝑏).

Similarly, given two derivations 𝑓, 𝑓′ on 𝐴 and 𝑤, 𝑤′ ∈ Z(𝐵), and identifying 𝑓 ⊗ 𝑤 with the
derivation 𝑎 ⊗ 𝑏 ↦ 𝑓(𝑎) ⊗ 𝑏𝑤, the Lie bracket of the derivations 𝑓 ⊗ 𝑤, 𝑓′ ⊗ 𝑤′ is given by

3.4.

[𝑓 ⊗ 𝑤, 𝑓′ ⊗ 𝑤′] = [𝑓, 𝑓′] ⊗ 𝑤𝑤′,

or explicitly, the right side is the map

𝑎 ⊗ 𝑏 ↦ [𝑓, 𝑓′](𝑎) ⊗ 𝑏𝑤𝑤′.

The formulas 3.3 and 3.4 show that the two summands in the Künneth decomposition 3.2
are both Lie subalgebras. Applied with 𝑤 = 𝑤′ = 1𝐵 and 𝑧 = 𝑧′ = 1𝐴, these formulas show that
HH1(𝐴) and HH1(𝐵) are isomorphic to Lie subalgebras of HH1(𝐴 ⊗𝑘 𝐵), so if one of HH1(𝐴),
HH1(𝐵) is not solvable, then neither is HH1(𝐴 ⊗𝑘 𝐵). Note though that the solvability of both
HH1(𝐴), HH1(𝐵) need not imply the solvability of HH1(𝐴 ⊗𝑘 𝐵). By Lemma 2.1 we have 𝑓(𝑧) ∈
𝑍(𝐴) and g(𝑤) ∈ 𝑍(𝐵). We denote by 𝑧 ⋅ 𝑓 (resp. 𝑤 ⋅ g) the derivation on 𝐴 (resp. on 𝐵) given by
(𝑧 ⋅ 𝑓)(𝑎) = 𝑧𝑓(𝑎) (resp. (𝑤 ⋅ g)(𝑏) = 𝑤g(𝑏)). The Lie bracket [𝑓 ⊗ 𝑤, 𝑧 ⊗ g] is given by

3.5.

[𝑓 ⊗ 𝑤, 𝑧 ⊗ g] = 𝑓(𝑧) ⊗ 𝑤 ⋅ g − 𝑧 ⋅ 𝑓 ⊗ g(𝑤),

or equivalently, the right side is the map

𝑎 ⊗ 𝑏 ↦ 𝑓(𝑎𝑧) ⊗ 𝑤g(𝑏) − 𝑓(𝑎)𝑧 ⊗ g(𝑏𝑤) = 𝑎𝑓(𝑧) ⊗ 𝑤g(𝑏) − 𝑧𝑓(𝑎) ⊗ 𝑏g(𝑤).

In particular, we have

[𝑓 ⊗ 1, 𝑧 ⊗ g] = 𝑓(𝑧) ⊗ g .
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8 of 23 LINCKELMANN and WANG

Indeed, the first formula uses the Leibniz rule applied to the terms𝑓(𝑎𝑧) and g(𝑏𝑤), followed by
cancelling two terms, and the last formula follows from applying this to𝑤 = 1 and using g(1) = 0.
The formula 3.5 shows that the two summands in the Künneth formula do not necessarily com-
mute, so this is not, in general, a direct product of Lie algebras.We note the following consequence
of this formula, used in the proof of Proposition 3.1.

Lemma 3.6. Let𝐴, 𝐵 be finite-dimensional associative unital 𝑘-algebras, and 𝑧 ∈ Z(𝐴),𝑤 ∈ Z(𝐵),
𝑓 a derivation on 𝐴, and g a derivation on 𝐵. Suppose Im(𝑓) ⊆ 𝐽(𝐴) and Im(g) ⊆ 𝐽(𝐵). Then [𝑓 ⊗

𝑤, 𝑧 ⊗ g], regarded as a derivation on 𝐴⊗𝑘 𝐵, has image contained in 𝐽(𝐴 ⊗𝑘 𝐵)
2.

Proof. The hypotheses and formula 3.5 imply that the image of the derivation [𝑓 ⊗ 𝑤, 𝑧 ⊗ g] on
𝐴𝐴⊗𝑘 𝐵 is contained in 𝐽(𝐴) ⊗ 𝐽(𝐵) ⊆ (𝐽(𝐴) ⊗ 𝐵)(𝐴 ⊗ 𝐽(𝐵)) ⊆ 𝐽(𝐴 ⊗𝑘 𝐵)

2. □

Proof of Proposition 3.1. Given a derivation 𝑓 on 𝐴 with image contained in 𝐽(𝐴) and an element
𝑤 ∈ Z(𝐵), the derivation on𝐴⊗𝑘 𝐵 corresponding to 𝑓 ⊗ 𝑤 has image contained in 𝐽(𝐴) ⊗𝑘 𝐵 ⊆

𝐽(𝐴 ⊗𝑘 𝐵). Similarly, given a derivation g on 𝐵 and 𝑧 ∈ Z(𝐴), the derivation on 𝐴⊗𝑘 𝐵 corre-
sponding to 𝑧 ⊗ g has image contained in 𝐽(𝐴 ⊗𝑘 𝐵). The Künneth formula 3.2 implies the first
statement. The second statement follows from combining the formulas 3.4, 3.3 and Lemma 3.6.
The solvability of HH1(𝐴 ⊗𝑘 𝐵) follows from Corollary 2.4. □

Lemma3.7. Let𝐴,𝐵 be finite-dimensional associative unital𝑘-algebras. Suppose that the canonical
map Der1(𝐵) → HH1(𝐵) is surjective. Then the space

𝑍(𝐴) ⊗𝑘 HH
1(𝐵) ⊕ HH1(𝐴) ⊗𝑘 𝐽(𝑍(𝐵)),

identified to its image in HH1(𝐴 ⊗𝑘 𝐵), is a Lie ideal in HH1(𝐴 ⊗𝑘 𝐵). In particular, if HH1(𝐴) is
non-zero, thenHH1(𝐴 ⊗𝑘 𝐵) is not a simple Lie algebra.

Proof. This follows from the formulas 3.4 and 3.3, together with the fact that if g is a derivation
on 𝐵 with image contained in 𝐽(𝐵), then, by Lemma 2.1, g sends 𝑍(𝐵) to 𝑍(𝐵) ∩ 𝐽(𝐵) = 𝐽(𝑍(𝐵)).
If HH1(𝐴) ≠ 0, then the space displayed in the statement does not contain HH1(𝐴) ⊗ 1𝐵, so this
is a proper ideal. □

If the algebra 𝐵 is separable, then the Künneth formula yields an isomorphism

3.8.

HH1(𝐴 ⊗𝑘 𝐵) ≅ HH1(𝐴) ⊗𝑘 Z(𝐵).

We will need one further special case of the Künneth formula for finite group algebras. Given
finite groups 𝐺, 𝐻, a 𝑘𝐺-module 𝑈 and a 𝑘𝐻-module 𝑉, we have a natural graded 𝑘-linear
isomorphism

3.9.

H∗(𝐺 × 𝐻;𝑈 ⊗𝑘 𝑉) ≅ H∗(𝐺;𝑈) ⊗𝑘 H
∗(𝐻;𝑉),
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 9 of 23

where the grading on the right side is the total grading. Explicitly, for any positive integer 𝑛, we
have

3.10.

H𝑛(𝐺 × 𝐻;𝑈 ⊗𝑘 𝑉) ≅ ⊕(𝑖,𝑗) H
𝑖(𝐺;𝑈) ⊗𝑘 H

𝑗(𝐻;𝑉),

where (𝑖, 𝑗) runs over all pairs of non-negative integers such that 𝑖 + 𝑗 = 𝑛. See, for instance, [1,
Theorem 3.5.6]. For 𝑛 = 1, this yields an isomorphism

3.11.

H1(𝐺 × 𝐻;𝑈 ⊗𝑘 𝑉) ≅ 𝑈𝐺 ⊗𝑘 H
1(𝐻;𝑉) ⊕ H1(𝐺;𝑈) ⊗𝑘 𝑉

𝐺.

Under this isomorphism an element in 𝑈𝐺 ⊗𝑘 H
1(𝐻;𝑉) given by 𝑢 ⊗ 𝜏 for some 𝑢 ∈ 𝑈𝐺 and

some 𝜏 ∈ 𝑍1(𝐻;𝑉) corresponds to the element in H1(𝐺 × 𝐻;𝑈 ⊗𝑘 𝑉) given by the 1-cocycle
(𝑥, 𝑦) ↦ 𝑢 ⊗ 𝜏(𝑦). The analogous statement holds for elements in the second summand.

4 CALCULATIONS IN TWISTED GROUP ALGEBRAS

One of the standard tools for calculating the Hochschild cohomology of a finite group algebra is
the centraliser decomposition, which is shown in [25, Lemma 3.5] to carry over to crossed prod-
ucts, and in particular therefore to twisted group algebras. We review very briefly what we will
need in this paper; for more background material, see for instance [15, Section 1.2].
Let 𝐺 be a finite group and let 𝑘 be a field. Let 𝛼 ∈ 𝑍2(𝐺; 𝑘×). The twisted group algebra 𝑘𝛼𝐺

has a 𝑘-basis {ĝ | g ∈ 𝐺} in bijection with the elements of 𝐺. The multiplication in 𝑘𝛼𝐺 is given by
ĝ ℎ̂ = 𝛼(g , ℎ)ĝℎ, for g ,ℎ ∈ 𝐺, extended bilinearly to 𝑘𝛼𝐺. The identity element in 𝑘𝛼𝐺 is𝛼(1, 1)−11̂,
and hence, for g ∈ 𝐺, the inverse of ĝ in 𝑘𝛼𝐺 is given by

4.1.

ĝ−1 = 𝛼(1, 1)−1𝛼(g , g−1)−1ĝ−1,

where g−1 is the inverse of g in𝐺. The isomorphism class of 𝑘𝛼𝐺 depends only on the class of 𝛼 in
𝐻2(𝐺; 𝑘×), and we may therefore assume that 𝛼 is normalised; that is, 𝛼(g , 1) = 1 = 𝛼(1, g) for all
g ∈ 𝐺. This is equivalent to requiring that 1̂ remains the identity element in 𝑘𝛼𝐺. We note that if
𝛼 is normalised, then the inverse of ĝ in 𝑘𝛼𝐺 is equal to ĝ−1 = 𝛼(g , g−1)−1ĝ−1. A short calculation
shows that the conjugation action in 𝑘𝛼𝐺 is given by

4.2.

ĝ ℎ̂ = ĝ ℎ̂ĝ−1 = 𝜆(g , ℎ)ĝℎ,

where g , ℎ ∈ 𝐺 and where 𝜆(g , ℎ) ∈ 𝑘× is given by the formula

𝜆(g , ℎ) = 𝛼(g , ℎ)𝛼(gℎ, g−1)𝛼(g , g−1)−1𝛼(1, 1)−1.
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10 of 23 LINCKELMANN and WANG

In particular, we have 𝜆(1, ℎ) = 1 = 𝜆(g , 1). If𝑁 is a normal subgroup of 𝐺 and 𝛼 ∈ 𝑍2(𝐺∕𝑁; 𝑘×)

inflated to 𝐺 via the canonical surjection, still denoted by 𝛼, and if we assume in addition that 𝛼
is normalised, then for g ∈ 𝑁 and ℎ ∈ 𝐺 the above formula yields 𝜆(g , ℎ) = 1, hence in that case
we have

4.3.

ĝ ℎ̂ = ĝℎ.

For𝑀 a 𝑘𝛼𝐺-𝑘𝛼𝐺-bimodule, we have a standard adjunction isomorphism

4.4.

HH∗(𝑘𝛼𝐺;𝑀) ≅ H∗(𝐺;𝑀),

where g ∈ 𝐺 acts on𝑚 ∈ 𝑀 by g𝑚 = ĝ𝑚ĝ−1, having checked that this is well defined. Note that
while𝑀 is considered as a 𝑘𝐺-module, the cohomologyH∗(𝐺;𝑀) still depends on 𝛼, even though
𝛼 does not explicitly appear in the notation. In particular, with 𝑀 = 𝑘𝛼𝐺, the group 𝐺 acts on
𝑘𝛼𝐺 with g ∈ 𝐺 acting by conjugation with ĝ , and we have a graded isomorphism HH∗(𝑘𝛼𝐺) ≅

H∗(𝐺; 𝑘𝛼𝐺), which is the first step towards the centraliser decomposition ofHH∗(𝑘𝛼𝐺) in the proof
of [25, Lemma 3.5]. We will need the isomorphism 4.4 in degree 1, where this is given explicitly as
follows.

Lemma 4.5. Let 𝐺 be a finite group, 𝑘 a field and 𝛼 ∈ 𝑍2(𝐺; 𝑘×). Let𝑀 be a 𝑘𝛼𝐺-𝑘𝛼𝐺-bimodule.
Let 𝑑 ∶ 𝑘𝛼𝐺 → 𝑀 be a 𝑘-linear map and 𝜏 ∶ 𝐺 → 𝑀 a map such that 𝑑(ĝ) = 𝜏(g)ĝ for all g ∈ 𝐺.
Then 𝑑 is a derivation if and only if 𝜏 is a 1-cocycle. Moreover, the correspondence 𝜏 ↦ 𝑑 induces an
isomorphismH1(𝐺;𝑀) ≅ HH1(𝑘𝛼𝐺;𝑀).

Proof. Let g , ℎ ∈ 𝐺. We have

𝑑(ĝ ℎ̂) = 𝛼(g , ℎ)𝑑(ĝℎ) = 𝛼(g , ℎ)𝜏(gℎ)ĝℎ = 𝜏(gℎ)ĝ ℎ̂

and

𝑑(ĝ)ℎ̂ + ĝ𝑑(ℎ̂) = 𝜏(g)ĝ ℎ̂ + ĝ𝜏(ℎ)ℎ̂ = (𝜏(g) + g𝜏(ℎ))ĝ ℎ̂.

Thus, 𝑑 is a derivation if and only if 𝜏 is a 1-cocycle. We have 𝜏(g) = 𝑚 − g𝑚 for some 𝑚 ∈ 𝑀 if
and only if 𝑑(ĝ) = 𝜏(g)ĝ = 𝑚ĝ − g𝑚ĝ = 𝑚ĝ − ĝ𝑚 = [𝑚, ĝ]. Thus, 𝑑 is an inner derivation if and
only if 𝜏 is a 1-coboundary. The result follows. □

By standard facts on group cohomology, this lemma implies that if 𝑁 is a normal subgroup of
𝐺 of index invertible in 𝑘, then, using [3, Proposition III.10.4] and the isomorphism 4.4 with 𝑁

instead of 𝐺, we have an isomorphism

4.6.

HH∗(𝑘𝛼𝐺;𝑀) ≅ HH∗(𝑘𝛼𝑁;𝑀)𝐺∕𝑁 ≅ H∗(𝑁;𝑀)𝐺∕𝑁,
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 11 of 23

where we use the same letter 𝛼 for the restriction of 𝛼 to 𝑁 ×𝑁. The action of 𝐺∕𝑁 on the last
two terms is induced by the conjugation action of 𝐺 on 𝑘𝛼𝑁, on 𝑁, and on 𝑀, where we note
that 𝑁 acts as identity on HH∗(𝑘𝛼𝑁;𝑀). (This is just the version for twisted group algebra of the
arguments in the proof of [20, Theorem 3.2]). If 𝑀 = 𝑘𝛼𝐺 and if 𝛼 is the inflation to 𝐺 × 𝐺 of a
2-cocycle in 𝑍2(𝐺∕𝑁; 𝑘×), then 𝑘𝛼𝐺 = 𝑘𝑁 ⊕ 𝑘𝛼(𝐺 ⧵ 𝑁), and hence, still assuming that the index
of 𝑁 in 𝐺 is invertible in 𝑘, the first isomorphism in 4.6 specialises to

4.7.

HH∗(𝑘𝛼𝐺) ≅ HH∗(𝑘𝑁)𝐺∕𝑁 ⊕ HH∗(𝑘𝑁; 𝑘𝛼(𝐺 ⧵ 𝑁)𝐺∕𝑁,

which shows in particular that HH1(𝑘𝑁)𝐺∕𝑁 is a Lie subalgebra of HH1(𝑘𝛼𝐺).
In what follows, we will frequently identify the elements in 𝐺 to their images in 𝑘𝛼𝐺. In that

case, for two elements g , ℎ ∈ 𝐺, we will denote by gℎ the product in the group and by g ⋅ ℎ the
product in 𝑘𝛼𝐺.

5 DERIVATIONS ON 𝒌𝜶(𝑷⋊ 𝑬) AND 𝑬-STABLE DERIVATIONS ON
𝒌𝑷

Let 𝑝 be a prime and 𝑘 a field of characteristic 𝑝. We will apply the above calculations in twisted
group algebras to groups of the form 𝑃 ⋊ 𝐸 for some finite 𝑝-group 𝑃, some 𝑝′-subgroup 𝐸 of
Aut(𝑃) and some 𝛼 ∈ 𝑍2(𝐸; 𝑘×) inflated to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸. The
resulting 2-cocycle in 𝑍2(𝑃 ⋊ 𝐸; 𝑘×) will abusively again be denoted by the same letter 𝛼. That is,
for 𝑢, 𝑣 ∈ 𝑃 and 𝑥, 𝑦 ∈ 𝐸 we have

𝛼(𝑢𝑥, 𝑣𝑦) = 𝛼(𝑥, 𝑦).

If we assume in addition that 𝛼 is normalised, then 𝛼(𝑥, 𝑦) is equal to 1 if one of 𝑥, 𝑦 is trivial.
Note that this implies in particular that 𝑘𝑃 is a subalgebra of 𝑘𝛼(𝑃 ⋊ 𝐸) and that 𝑘𝛼(𝑃 ⋊ 𝐸) is
isomorphic to 𝑘(𝑃 ⋊ 𝐸) as a 𝑘𝑃-𝑘𝑃-bimodule (cf. [15, Corollary 5.3.8]). The conjugation action of
𝐸 on 𝑘𝑃 and on 𝑘𝛼(𝑃 ⋊ 𝐸) induces an action of 𝐸 on HH∗(𝑘𝑃; 𝑘𝛼(𝑃 ⋊ 𝐸)).

Lemma 5.1. Let 𝑃 be a finite 𝑝-group and 𝐸 a 𝑝′-subgroup of Aut(𝑃). Let 𝛼 ∈ 𝑍2(𝐸; 𝑘×) inflated
to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸.

(i) We have canonical graded isomorphisms

HH∗(𝑘𝛼(𝑃 ⋊ 𝐸)) ≅ (HH∗(𝑘𝑃; 𝑘𝛼(𝑃 ⋊ 𝐸))𝐸

≅ HH∗(𝑘𝑃)𝐸 ⊕ (⊕𝑒∈𝐸⧵{1} HH
∗(𝑘𝑃; 𝑘𝑃 ⋅ 𝑒))𝐸.

(ii) If 𝐸 is abelian, then 𝐸 stabilises every summand in the last direct sum in (i), and we have
canonical graded isomorphisms

HH∗(𝑘𝛼(𝑃 ⋊ 𝐸)) ≅ ⊕𝑒∈𝐸 HH∗(𝑘𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸 ≅ ⊕𝑒∈𝐸 H∗(𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸.
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12 of 23 LINCKELMANN and WANG

(iii) If 𝐸 acts freely on 𝑃 ⧵ {1}, then for all positive integers 𝑛 we have

HH𝑛(𝑘𝛼(𝑃 ⋊ 𝐸)) ≅ HH𝑛(𝑘𝑃)𝐸.

For 𝑛 = 1, this is a Lie algebra isomorphism.

Proof. Since𝐸 is a𝑝′-group, the statements (i) and (ii) follow from the isomorphism 4.6. Statement
(iii) is well-known (see e.g. [11, Proposition 5.2] or [20, Theorem 3.2]) and follows from (i) and
together with the fact that 𝐻𝑛(𝑃; 𝑘𝑃 ⋅ 𝑒) = 0 for 𝑒 ≠ 1 by Lemma 2.10, for any positive integer
𝑛. □

For the sake of completeness, we show that the Lie algebra embedding of HH1(𝑘𝑃)𝐸 into
HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) is induced by a canonical map at the level of derivations.

Proposition 5.2. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃. Let 𝛼 ∈ 𝑍2(𝐸; 𝑘×),
inflated to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸.

(i) Every 𝐸-stable derivation 𝑓 on 𝑘𝑃 extends uniquely to a derivation 𝑓 on 𝑘𝛼(𝑃 ⋊ 𝐸)with 𝑘𝛼𝐸 ⊆

ker(𝑓).
(ii) The correspondence 𝑓 ↦ 𝑓 induces an injective Lie algebra homomorphism HH1(𝑘𝑃)𝐸 →

HH1(𝑘𝛼(𝑃 ⋊ 𝐸)).
(iii) If 𝐸 acts freely on 𝑃 ⧵ {1}, then the Lie algebra homomorphism in (ii) is an isomorphism.

Proof. Wemay assume that 𝛼 is normalised; that is, 𝛼(1, 𝑥) = 1 =𝛼(𝑥, 1) for 𝑥 ∈ 𝑃 ⋊ 𝐸. Since 𝛼 is
inflated to 𝑃 ⋊ 𝐸 via the canonical surjection it follows that for 𝑢 ∈ 𝑃 and 𝑦 ∈ 𝐸 we have 𝛼(𝑢, 𝑦) =
1 = 𝛼(𝑦, 𝑢). Equivalently, the image in 𝑘𝛼(𝑃 ⋊ 𝐸) of the product 𝑢𝑦 (resp. 𝑦𝑢) in 𝑃 ⋊ 𝐸 is equal to
the product 𝑢 ⋅ 𝑦 (resp. 𝑦 ⋅ 𝑢) in 𝑘𝛼(𝑃 ⋊ 𝐸).
Let 𝑓 ∈ Der(𝑘𝑃)𝐸 . Define a linear map 𝑓 on 𝑘𝛼(𝑃 ⋊ 𝐸) by setting

𝑓(𝑢𝑦) = 𝑓(𝑢) ⋅ 𝑦,

where 𝑢𝑦 is the product in 𝑃 ⋊ 𝐸 and where the right side is the product taken in 𝑘𝛼(𝑃 ⋊ 𝐸).
This defines 𝑓 uniquely as a linear map on 𝑘𝛼(𝑃 ⋊ 𝐸)which extends 𝑓 and vanishes on 𝑘𝛼𝐸. The
Leibniz rule implies that if there is a derivation on 𝑘𝛼(𝑃 ⋊ 𝐸)which extends 𝑓 andwhich vanishes
on 𝑘𝛼𝐸, then it must be equal to 𝑓. It remains to check that 𝑓 is indeed a derivation.
Let 𝑢, 𝑣 ∈ 𝑃 and 𝑦, 𝑧 ∈ 𝐸. Calculating in 𝑘𝛼(𝑃 ⋊ 𝐸) and using that 𝛼 is normalised and inflated

to 𝑃 ⋊ 𝐸, we have

(𝑢𝑦) ⋅ (𝑣𝑧) = 𝑢𝑦𝑣𝑧𝛼(𝑢𝑦, 𝑣𝑧) = 𝑢(𝑦𝑣)𝑦𝑧𝛼(𝑦, 𝑧) = 𝑢(𝑦𝑣) ⋅ 𝑦 ⋅ 𝑧.

Thus,

𝑓((𝑢𝑣) ⋅ (𝑦𝑧)) = 𝑓(𝑢(𝑦𝑣) ⋅ 𝑦 ⋅ 𝑧) = 𝑓(𝑢(𝑦𝑣)) ⋅ 𝑦 ⋅ 𝑧.

We need to show that this is equal to 𝑓(𝑢𝑦) ⋅ 𝑣𝑧 + 𝑢𝑦 ⋅ 𝑓(𝑣𝑧). Using that 𝑓 is 𝐸-stable as well as a
derivation, together with the comments preceding this proposition, we have
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 13 of 23

𝑓(𝑢𝑦) ⋅ 𝑣𝑧 + 𝑢𝑦 ⋅ 𝑓(𝑣𝑧) = 𝑓(𝑢) ⋅ 𝑦 ⋅ 𝑣𝑧 + 𝑢𝑦 ⋅ 𝑓(𝑣) ⋅ 𝑧 = 𝑓(𝑢)(𝑦𝑣) ⋅ 𝑦 ⋅ 𝑧 + 𝑢(𝑦𝑓(𝑣)) ⋅ 𝑦 ⋅ 𝑧 =

𝑓(𝑢)(𝑦𝑣) ⋅ 𝑦 ⋅ 𝑧 + 𝑢𝑓(𝑦𝑣) ⋅ 𝑦 ⋅ 𝑧 = 𝑓(𝑢(𝑦𝑣)) ⋅ 𝑦 ⋅ 𝑧,

which implies that 𝑓 is a derivation on 𝑘𝛼(𝑃 ⋊ 𝐸). The construction of 𝑓 implies that the assign-
ment 𝑓 ↦ 𝑓 is a Lie algebra homomorphism Der(𝑘𝑃)𝐸 → Der(𝑘𝛼(𝑃 ⋊ 𝐸)). If 𝑓 is inner, hence
equal to [𝑐, −] for some 𝑐 ∈ 𝑘𝑃, then𝑓(𝑢𝑦) =𝑓(𝑢)𝑦 = [𝑐, 𝑢]𝑦. The𝐸-stability of𝑓 implies [𝑐, 𝑦𝑢] =
[𝑦𝑐, 𝑦𝑢]. This holds for all 𝑢 ∈ 𝑃, and hence [𝑐, −] and [𝑦𝑐, −] have the same restriction to 𝑘𝑃,
which is equal to 𝑓. Thus, wemay replace 𝑐 by 1

|𝐸|Tr
𝐸
1
(𝑐), and then 𝑓 = [𝑐, −], showing that 𝑓 is an

inner derivation. Conversely, if 𝑓 is an inner derivation, then 𝑓 = [𝑑,−] for some 𝑑 ∈ 𝑘𝛼(𝑃 ⋊ 𝐸)

which centralises 𝑘𝛼𝐸. Writing 𝑑 =
∑

𝑒∈𝐸 𝑐𝑒𝑒 for some 𝑐𝑒 ∈ 𝑘𝑃, one sees that 𝑓 = [𝑐1, −], so 𝑓

is inner. This, together with Lemma 2.9, shows that the assignment 𝑓 ↦ 𝑓 induces an injec-
tive Lie algebra homomorphism HH1(𝑘𝑃)𝐸 →HH1(𝑘𝛼(𝑃 ⋊ 𝐸)). The last statement follows from
Lemma 5.1(iii). □

Remark 5.3. With the notation of Proposition 5.2, if 𝐸 acts freely on 𝑃 ⧵ {1}, then 𝑃 ⋊ 𝐸 is a Frobe-
nius group. The structural properties of Frobenius groups, as described in [7, Theorem 10.3.1],
imply that if 𝑘 is algebraically closed, then 𝐻2(𝐸; 𝑘×) is trivial. Thus, 𝛼 may be chosen to be 1 in
that case.

Lemma 5.4. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃. Set 𝑄 = Φ(𝑃).

(i) The canonical surjection 𝑃 → 𝑃∕𝑄 induces a Lie algebra homomorphism HH1(𝑘𝑃) →

HH1(𝑘𝑃∕𝑄).
(ii) If𝑃 is abelian, then 𝐽(𝑘𝑄) ⊆ 𝐽(𝑘𝑃)𝑝, and the canonical surjection𝑃 → 𝑃∕𝑄 induces a surjective

Lie algebra homomorphismHH1(𝑘𝑃) →HH1(𝑘𝑃∕𝑄) with nilpotent kernel.
(iii) If 𝑃 is abelian, then the Lie algebra homomorphism from (ii) induces a surjective Lie algebra

homomorphismHH1(𝑘𝑃)𝐸 → HH1(𝑘𝑃∕𝑄)𝐸 with nilpotent kernel.

Proof. Since 𝑄 contains the commutator subgroup 𝑃′ of 𝑃, the algebra homomorphism 𝑘𝑃 →

𝑘𝑃∕𝑄 factors through the algebra homomorphism 𝑘𝑃 → 𝑘𝑃∕𝑃′. By Lemma 2.6, this homomor-
phism induces a Lie algebra homomorphism HH1(𝑘𝑃) →HH1(𝑘𝑃∕𝑃′). Thus, we may assume
that 𝑃 is abelian. The kernel of the canonical algebra homomorphism 𝑘𝑃 → 𝑘𝑃∕𝑄 is equal to
𝐽(𝑘𝑄)𝑘𝑃. Since 𝑃 is abelian, the subgroup 𝑄 consists of all elements of the for 𝑥𝑝, with 𝑥 ∈ 𝑃.
Thus, 𝐽(𝑘𝑄) is spanned by the set of elements of the form 𝑥𝑝 − 1 = (𝑥 − 1)𝑝. In particular, 𝐽(𝑘𝑄) ⊆
𝐽(𝑘𝑃)𝑝, which is the first statement in (ii). Since 𝑃 is abelian, any derivation 𝑓 on 𝑘𝑃 satis-
fies 𝑓((𝑥 − 1)𝑝) = 𝑝(𝑥 − 1)𝑝−1𝑓(𝑥) = 0. Thus, the kernel of 𝑓 contains 𝐽(𝑘𝑄). The Leibniz rule
implies that 𝑓 preserves the ideal 𝐽(𝑘𝑄)𝑘𝑃. Thus, 𝑓 induces a derivation on 𝑘𝑃∕𝑄. This shows (i).
For the surjectivity statement in (ii), one can either play this back to the case where 𝑃 is cyclic

via the Künneth formula, and then show by direct verification that every derivation on 𝑘𝑃∕𝑄 is
induced by a derivation on 𝑘𝑃. Or one can use the formula HH1(𝑘𝑃) ≅𝑘𝑃 ⊗𝑘 H

1(𝑃, 𝑘) from [8],
with the analogous formula for 𝑃∕𝑄 and the fact thatH1(𝑃; 𝑘) =H1(𝑃∕𝑄; 𝑘), sinceHom(𝑃, 𝑘) can
be identified with Hom(𝑃∕𝑄, 𝑘).
It remains to show in (ii) that the kernel of the map HH1(𝑘𝑃) → HH1(𝑘𝑃∕𝑄) is nilpotent. Let

𝑓 be a derivation on 𝑘𝑃 inducing the zero map on 𝑘𝑃∕𝑄. Then the image of 𝑓 is contained in
𝐽(𝑘𝑄)𝑘𝑃, and by the above this is contained in 𝐽(𝑘𝑃)𝑝. The result follows from Proposition 2.3
(applied with 𝐶 = 𝑘 ⋅ 1, which is in the kernel of every derivation on 𝑘𝑃). This shows (ii).
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14 of 23 LINCKELMANN and WANG

Since 𝐸 is a 𝑝′-group, statement (iii) is an immediate consequence of (ii). □

Proposition 5.5. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃. Suppose [𝑃, 𝐸] =
𝑃. Let 𝑒 ∈ 𝑍(𝐸). Then 𝑘𝑃𝑒 is an 𝐸-stable 𝑘𝑃-𝑘𝑃-bimodule summand of 𝑘(𝑃 ⋊ 𝐸), and for every
derivation 𝑓 ∶ 𝑘𝑃 → 𝑘𝑃𝑒 which is 𝐸-stable we have Im(𝑓) ⊆ 𝐽(𝑘𝑃)𝑒.

Proof. Set 𝐽 = 𝐽(𝑘𝑃). Clearly 𝑘𝑃𝑒 is a 𝑘𝑃-𝑘𝑃-bimodule summand of 𝑘(𝑃 ⋊ 𝐸), and it is 𝐸-stable
because 𝑒 ∈ 𝑍(𝐸). Since 𝑓 is a derivation, we have 𝑓(𝐽2) ⊆ 𝐽𝑒, which in turn is in the kernel of the
augmentation map 𝑘𝑃𝑒 → 𝑘. Since 𝐽 is 𝐸-stable, it follows that the restriction of 𝑓 to 𝐽 is an 𝐸-
stablemap, as is the compositionwith the augmentationmap 𝜖 ∶ 𝑘𝑃𝑒 → 𝑘. Thus, themap 𝜖◦𝑓|𝐽 ∶
𝐽 → 𝑘 sends 𝐽2 to zero, hence factors through the canonical surjection 𝐽 → 𝐽∕𝐽2. We therefore get
a commutative diagram of 𝑘𝐸-modules

Since [𝑃, 𝐸] = 𝑃, it follows from Lemma 2.8 that 𝐽∕𝐽2 has no non-zero trivial summand as a 𝑘𝐸-
module. Since 𝐽∕𝐽2 is also semi-simple as a 𝑘𝐸-module this implies that g is zero, hence that 𝑓
sends 𝑘𝑃 to 𝐽𝑒. □

Corollary 5.6. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃. Suppose [𝑃, 𝐸] = 𝑃.
For every 𝐸-stable derivation 𝑓 ∶ 𝑘𝑃 → 𝑘𝑃 we have Im(𝑓) ⊆ 𝐽(𝑘𝑃).

Proof. This follows from Proposition 5.5 applied to 𝑒 = 1. □

Statement (ii) in the following corollary is the special case of Theorem 1.3(i) with 𝛼 the trivial
2-cocycle.

Corollary 5.7. Let 𝑃 be a finite 𝑝-group and 𝐸 a finite abelian 𝑝′-group acting on 𝑃. Suppose
[𝑃, 𝐸] = 𝑃.

(i) For every 𝐸-stable derivation 𝑓 ∶ 𝑘𝑃 → 𝑘(𝑃 ⋊ 𝐸) we have Im(𝑓) ⊆ 𝐽(𝑘(𝑃 ⋊ 𝐸)).
(ii) Every class in HH1(𝑘(𝑃 ⋊ 𝐸)) is represented by a derivation 𝑓 ∶ 𝑘(𝑃 ⋊ 𝐸) → 𝑘(𝑃 ⋊ 𝐸) which

vanishes on 𝑘𝐸, and any such derivation 𝑓 satisfies Im(𝑓) ⊆ 𝐽(𝑘(𝑃 ⋊ 𝐸)).

Proof. Since 𝐸 is a 𝑝′-group, the algebra 𝑘𝐸 is separable, and hence we have 𝐽(𝑘(𝑃 ⋊ 𝐸)) = 𝐽(𝑘𝑃) ⋅
𝑘(𝑃 ⋊ 𝐸)). Since 𝐸 is abelian, by Lemma 5.1, 𝑓 is the sum of 𝐸-stable derivations 𝑘𝑃 → 𝑘𝑃𝑒, with
𝑒 ∈ 𝐸, and hence (i) follows from Proposition 5.5. We have 𝑘(𝑃 ⋊ 𝐸) = 𝑘𝐸 ⊕ 𝐽(𝑘(𝑃 ⋊ 𝐸)), and
thus, by Lemma 2.2, every class inHH1(𝑘(𝑃 ⋊ 𝐸)) is represented by a derivation 𝑓which vanishes
on 𝑘𝐸. The Leibniz rule implies that 𝑓 is then a 𝑘𝐸-𝑘𝐸-bimodule endomorphism of 𝑘(𝑃 ⋊ 𝐸).
Thus, 𝑓 is determined by its restriction 𝑓|𝑘𝑃 ∶ 𝑘𝑃 → 𝑘(𝑃 ⋊ 𝐸). It follows from (i) that 𝑓 sends 𝑘𝑃
to 𝐽(𝑘(𝑃 ⋊ 𝐸)). Since 𝑓 is in particular a right 𝑘𝐸-homomorphism, 𝑓 sends 𝑘𝑃𝑒 to 𝐽(𝑘(𝑃 ⋊ 𝐸)) for
all 𝑒 ∈ 𝐸, whence (ii). □
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 15 of 23

Lemma 5.8. Let 𝑃 be a non-trivial finite abelian 𝑝-group, and set 𝐽 = 𝐽(𝑘𝑃). Denote by Der1(𝑘𝑃)
the Lie subalgebra of Der(𝑘𝑃) = HH1(𝑘𝑃) of derivations which preserve 𝐽. Set 𝑛 = dim𝑘(𝐽∕𝐽

2). The
canonical map

Der1(𝑘𝑃) → End𝑘(𝐽∕𝐽
2) ≅ 𝔤𝔩𝑛(𝑘)

is a surjective Lie algebra homomorphism. The kernel of this homomorphism is the nilpotent ideal
Der2(𝑘𝑃) of derivations with image contained in 𝐽2.

Proof. By Lemma 5.4, we may assume that 𝑃 is elementary abelian. Since 𝑛 is the rank of 𝑃 (cf.
Lemma 2.7), we may write 𝑃 =

∏𝑛
𝑖=1⟨𝑥𝑖⟩. For any two 𝑖, 𝑗 such that 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛 there is a unique

derivation 𝑑𝑖,𝑗 on 𝑘𝑃 which sends 𝑥𝑖 − 1 to 𝑥𝑗 − 1 and 𝑥𝑖′ − 1 to 0, where 𝑖′ ≠ 𝑖, 1 ⩽ 𝑖′ ⩽ 𝑛. Since
the image of the set {𝑥𝑖 − 1}1⩽𝑖⩽𝑛 in 𝐽∕𝐽2 is a 𝑘-basis, the first statement follows, and the second
statement follows from Proposition 2.3. □

Lemma 5.9. Let 𝑃 be a non-trivial finite abelian 𝑝-group, and set 𝐽 = 𝐽(𝑘𝑃). Let 𝐸 be a finite 𝑝′-
group acting on 𝑃 such that [𝑃, 𝐸] = 𝑃. Then Der(𝑘𝑃)𝐸 = Der1(𝑘𝑃)

𝐸 . Write

𝐽∕𝐽2 ≅ ⊕𝑟
𝑗=1 𝑆

⊕𝑛𝑗
𝑗

with pairwise non-isomorphic simple 𝑘𝐸-modules 𝑆𝑗 and positive integers 𝑛𝑗 (1 ⩽ 𝑗 ⩽ 𝑟). Then
𝔽𝑗 = End𝑘𝐸(𝑆𝑗) is a finite-dimensional commutative extension field of 𝑘, where 1 ⩽ 𝑗 ⩽ 𝑟, and the
canonical map Der1(𝑘𝑃) → End𝑘(𝐽∕𝐽

2) induces a surjective Lie algebra homomorphism

Der(𝑘𝑃)𝐸 → End𝑘𝐸(𝐽∕𝐽
2) ≅

𝑟∏
𝑗=1

𝔤𝔩𝑛𝑗 (𝔽𝑗).

The kernel of this Lie algebra homomorphism is the nilpotent idealDer2(𝑘𝑃)𝐸 of𝐸-stable derivations
on 𝑘𝑃 with image in 𝐽2.

Proof. ByLemma 5.6we haveDer(𝑘𝑃)𝐸 =Der1(𝑘𝑃)
𝐸 . The surjectivemapDer1(𝑘𝑃) →End𝑘(𝐽∕𝐽

2)

from Lemma 5.8 remains surjective upon taking 𝐸-fixed points since 𝐸 has order prime to 𝑝. Thus
this map induces a surjective Lie algebra homomorphismDer(𝑘𝑃)𝐸 → End𝑘𝐸(𝐽∕𝐽

2)with a nilpo-
tent kernel as stated. The rest follows from decomposing the semisimple 𝑘𝐸-module 𝐽∕𝐽2 as a
direct sum of its isotypic components. □

Lemma 5.10. Let 𝑃 be a non-trivial finite 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃. The
𝑘𝐸-module 𝐽(𝑘𝑃)∕𝐽(𝑘𝑃)2 is multiplicity free if and only if the 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity
free.

Proof. Since 𝐽(𝑘𝑃)∕𝐽(𝑘𝑃)2 ≅ 𝑘 ⊗𝔽𝑝
𝐽(𝔽𝑝𝑃)∕𝐽(𝔽𝑝𝑃)

2, it follows from standard properties of coef-
ficient extensions (e.g. [9, Theorem 9.21.(b)], or [6, Chapter I, Theorem 19.4], or [4, (30.33)]) that
the 𝔽𝑝𝐸-module 𝐽(𝔽𝑝𝑃)∕(𝐽(𝔽𝑝𝑃)2 is multiplicity free if and only if the 𝑘𝐸-module 𝐽(𝑘𝑃)∕𝐽(𝑘𝑃)2
is multiplicity free. Thus, Lemma 2.7 implies the result. □
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16 of 23 LINCKELMANN and WANG

6 PROOF OF THEOREM 1.1 AND THEOREM 1.2

Proof of Theorem 1.2. Let 𝑃 be a finite abelian 𝑝-group and 𝐸 a finite 𝑝′-group acting on 𝑃 such
that [𝑃, 𝐸] = 𝑃. Set 𝐽 = 𝐽(𝑘𝑃). By Lemma 5.10, 𝑃∕Φ(𝑃) ismultiplicity free as an 𝔽𝑝𝐸-module if and
only if 𝐽∕𝐽2 is multiplicity free as a 𝑘𝐸-module. Since 𝑃 is abelian, we have HH1(𝑘𝑃) = Der(𝑘𝑃),
henceHH1(𝑘𝑃)𝐸 = Der(𝑘𝑃)𝐸 . By Lemma 5.6, all 𝐸-stable derivations on 𝑘𝑃 have image in 𝐽(𝑘𝑃);
that is, Der(𝑘𝑃)𝐸 =Der1(𝑘𝑃)

𝐸 , where the notation is as in Lemma 5.9. It follows from Lemma 5.9
that HH1(𝑘𝑃)𝐸 is solvable if and only if Der1(𝑘𝑃)𝐸∕Der2(𝑘𝑃)𝐸 is a solvable Lie algebra.
If 𝐽∕𝐽2 is multiplicity free as a 𝑘𝐸-module, then Lemma 5.9 implies

Der1(𝑘𝑃)
𝐸∕Der2(𝑘𝑃)

𝐸 ≅

𝑟∏
𝑗=1

𝔤𝔩1(𝔽𝑗)

for some commutative extension fields 𝔽𝑗 of 𝑘, and hence this Lie algebra is abelian, which implies
that HH1(𝑘𝑃)𝐸 is solvable.
If 𝐽∕𝐽2 is not multiplicity free, then Der1(𝑘𝑃)

𝐸∕Der2(𝑘𝑃)
𝐸 has a direct factor isomorphic to

𝔤𝔩𝑛(𝔽) for some extension field 𝔽 of 𝑘 and some integer 𝑛 ⩾ 2. Thus, if 𝑝 is odd, then 𝔤𝔩𝑛(𝔽) is not
solvable, hence neither is HH1(𝑘𝑃)𝐸 . This completes the proof of Theorem 1.2. □

In order to complete the proof of Theorem 1.1, we summarise the results in the case of a free
𝑝′-action on an abelian 𝑝-group.

Theorem 6.1. Let 𝑃 be a non-trivial finite abelian 𝑝-group and 𝐸 a 𝑝′-subgroup of Aut(𝑃) acting
freely on 𝑃 ⧵ {1}. Then the following hold.

(i) We haveHH1(𝑘(𝑃 ⋊ 𝐸)) ≅ HH1(𝑘𝑃)𝐸 as Lie algebras.
(ii) Suppose 𝐸 is non-trivial. Every class inHH1(𝑘(𝑃 ⋊ 𝐸)) is represented by a derivation on 𝑘(𝑃 ⋊

𝐸) with image contained in the Jacobson radical 𝐽(𝑘(𝑃 ⋊ 𝐸)).
(iii) Suppose 𝐸 is non-trivial. If the 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity free, then the Lie algebra

HH1(𝑘(𝑃 ⋊ 𝐸)) is solvable. The converse holds if 𝑝 is odd.

Proof. The first statement follows from Lemma 5.1(iii) or Proposition 5.2. The hypothesis 𝐸 ≠

1 in (ii) and (iii) together with the free action of 𝐸 on 𝑃 ⧵ {1} imply [𝑃, 𝐸] = 𝑃. The remaining
statements follow from Theorem 1.2. □

Proof of Theorem 1.1. With the notation and hypotheses of Theorem 1.1, by a result of Puig [21,
6.8] (see also [16, Theorem 10.5.1]) there is a stable equivalence of Morita type between 𝐵 and
𝑘(𝑃 ⋊ 𝐸). By [12, Theorem 10.7], this implies that there is a Lie algebra isomorphism HH1(𝐵) ≅

HH1(𝑘(𝑃 ⋊ 𝐸)). Thus, Theorem 1.1 follows from Theorem 6.1. □

The following observation is a combination of some of the above results in conjunction with
the structure theory of blocks with a normal defect group, slightly generalising [11, Proposition
5.2], [20, Theorem 3.2]. We state this here for context and for future reference.

Theorem 6.2. Let 𝐺 be a finite group and 𝐵 a block with a non-trivial normal defect group 𝑃 and
inertial quotient 𝐸. Suppose that 𝑘 is large enough for 𝐵. ThenHH1(𝑘𝑃)𝐸 is canonically isomorphic
to a Lie subalgebra ofHH1(𝐵). If in addition 𝐸 acts freely on 𝑃 ⧵ {1}, thenHH1(𝑘𝑃)𝐸 ≅ HH1(𝐵).
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 17 of 23

Proof. Let 𝐵 be a block of a finite group algebra 𝑘𝐺 with a non-trivial defect group 𝑃 which is
normal in 𝐺. Suppose that 𝑘 is large enough for 𝐵. Then, by [14, Theorem A] (see [16, Theorem
6.14.1] for an exposition of related material) the block 𝐵 is Morita equivalent to a twisted group
algebra of the form 𝑘𝛼(𝑃 ⋊ 𝐸), where 𝐸 is a 𝑝′-subgroup of Aut(𝑃) and 𝛼 ∈𝑍2(𝐸, 𝑘×), inflated to
𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸. Thus HH1(𝐵) ≅ HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) as Lie algebras.
Theorem 6.2 follows from Lemma 5.1 or Proposition 5.2. □

Remark 6.3. Since the Lie algebra HH1(𝐵) of a block 𝐵 of a finite group algebra 𝑘𝐺 is preserved
under stable equivalences of Morita type (cf. [12, Theorem 10.7]), it follows that the conclusion
of Theorem 6.2 holds if there is a stable equivalence of Morita type between 𝐵 and its Brauer
correspondent; this includes inertial blocks (these are blocks which areMorita equivalent to their
Brauer correspondents via bimodules with endopermutation source; cf. [22, 2.16]).

7 PROOF OF THEOREM 1.3 AND RELATED RESULTS

Proof of Theorem 1.3. Let 𝑃 be a non-trivial finite abelian 𝑝-group and 𝐸 an abelian 𝑝′-subgroup of
Aut(𝑃)with [𝑃, 𝐸] = 𝑃. Let 𝛼 ∈ 𝑍2(𝐸; 𝑘×) inflated to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 →

𝐸. We may assume that 𝛼 is normalised.
Note that the condition [𝑃, 𝐸] = 𝑃 forces |𝑃| ⩾ 3. Since 𝐸 is an abelian 𝑝′-group, by Lemma 5.1,

we have a canonical isomorphism

HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) ≅ HH1(𝑘𝑃)𝐸 ⊕
⨁

𝑒∈𝐸⧵{1}

H1(𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸.

Again by Lemma 5.1, for each 𝑓 ∈ H1(𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸 , the corresponding element in HH1(𝑘𝛼(𝑃 ⋊ 𝐸))

under this isomorphism is represented by 𝑑𝑓 ∈ Der(𝑘𝛼(𝑃 ⋊ 𝐸)) such that for each g ∈ 𝑃, 𝑑𝑓(g) =
𝑓(g) ⋅ g and 𝑑𝑓 vanishes on 𝐸.
Fix a non-identity element 𝑒 ∈ 𝐸. Set 𝑇 = 𝐶𝑃(𝑒) and 𝐹 = [𝑃, ⟨𝑒⟩]. Since 𝑒 ≠ 1, it follows that

the group 𝐹 is non-trivial. Since 𝑃 is abelian, by [10, Theorem 4.34] or by [7, Theorem 5.2.3], we
have 𝑃 = 𝑇 × 𝐹. Using Formula 4.3 and that 𝑃 is abelian, we get that conjugation action by g ∈ 𝑃

on 𝑘𝑃 ⋅ 𝑒 is equal to left multiplication with g(𝑒g)−1. Thus, 𝑇 acts trivially on 𝑘𝑃 ⋅ 𝑒 and 𝐹 acts
freely on 𝑃 ⋅ 𝑒. Using that 𝐹 is non-trivial, this implies H1(𝐹; 𝑘𝑃 ⋅ 𝑒) = 0. Furthermore, 𝑘𝑃 ⋅ 𝑒 can
be viewed as a 𝑘(𝑇 × 𝐹)-module 𝑘 ⊗𝑘 𝑘𝑃 ⋅ 𝑒 where 𝑘 is the trivial 𝑘𝑇-module, and 𝑘𝑃 ⋅ 𝑒 is the
free 𝑘𝐹-module for the conjugation action of 𝐹 on 𝑘𝑃 ⋅ 𝑒. By the Künneth formula 3.11, we have

H1(𝑃; 𝑘𝑃 ⋅ 𝑒) ≅ H1(𝑇 × 𝐹; 𝑘 ⊗𝑘 𝑘𝑃 ⋅ 𝑒) ≅ H0(𝑇; 𝑘) ⊗𝑘 H
1(𝐹; 𝑘𝑃 ⋅ 𝑒) ⊕ H1(𝑇; 𝑘) ⊗𝑘 H

0(𝐹; 𝑘𝑃 ⋅ 𝑒)

≅ H1(𝑇; 𝑘) ⊗𝑘 𝐻
0(𝐹; 𝑘𝑃 ⋅ 𝑒) ≅ H1(𝑇; 𝑘) ⊗𝑘 (𝑘𝑃 ⋅ 𝑒)𝐹.

Any orbit in 𝑃 ⋅ 𝑒 under the conjugation action of 𝐹 is equal to {𝑡𝑎 ⋅ 𝑒 ∶ 𝑎 ∈ 𝐹}, where 𝑡 ∈ 𝑇. Thus,
(𝑘𝑃 ⋅ 𝑒)𝐹 is spanned by the set {𝑡(

∑
𝑎∈𝐹 𝑎) ⋅ 𝑒 ∶ 𝑡 ∈ 𝑇}. It follows that the map 𝑡 ↦ 𝑡(

∑
𝑎∈𝐹 𝑎) ⋅ 𝑒

induces an isomorphism

𝑘𝑇 ≅ (𝑘𝑃 ⋅ 𝑒)𝐹,

where we note that 𝑃 acts trivially by conjugation on both sides. Since 𝐸 is abelian, the direct
product decomposition 𝑃 = 𝑇 × 𝐹 is stable under the action of 𝐸. Thus, the condition [𝑃, 𝐸] = 𝑃
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18 of 23 LINCKELMANN and WANG

implies [𝑇, 𝐸] = 𝑇 and [𝐹, 𝐸] = 𝐹, so neither 𝑇 nor 𝐹 has order 2. Since 𝐹 is non-trivial, so has
order at least 3, it follows that the socle element

∑
𝑎∈𝐹 𝑎 of 𝑘𝐹 is contained in 𝐽(𝑘𝐹)2. Thus,

(𝑘𝑃 ⋅ 𝑒)𝐹 ⊆ 𝑘𝑇 ⋅ 𝐽(𝑘𝐹)2 ⋅ 𝑒 ⊆ 𝐽(𝑘𝑃)2 ⋅ 𝑒. It follows that every class in HH1(𝑘𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸 has a rep-
resentative with image contained in 𝐽(𝑘𝑃)2 ⋅ 𝑒. Let 𝐷2 denote the image of 𝐷𝑒𝑟2(𝑘𝛼(𝑃 ⋊ 𝐸)) in
HH1(𝑘𝛼(𝑃 ⋊ 𝐸). By the above, we have

⨁
𝑒∈𝐸⧵{1} H

1(𝑃; 𝑘𝑃 ⋅ 𝑒)𝐸 ⊆ 𝐷2. Thus,

7.1.

HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) = HH1(𝑘𝑃)𝐸 + 𝐷2.

Theorem 1.2 implies therefore that every class inHH1(𝑘𝛼(𝑃 ⋊ 𝐸)) is represented by a derivation
with image contained in 𝐽(𝑘𝛼(𝑃 ⋊ 𝐸)). Equivalently, the map Der1(𝑘𝛼(𝑃 ⋊ 𝐸)) → HH1(𝑘𝛼(𝑃 ⋊
𝐸)) is surjective. By Corollary 2.4(iv),

7.2. We have thatHH1(𝑘𝛼(𝑃 ⋊ 𝐸)) is solvable if and only ifHH1(𝑘𝑃)𝐸 is solvable.

Note that the action of 𝐸 on HH1(𝑘𝑃) by taking conjugation in the twisted group algebra does
not depend on 𝛼 by Statement 4.3. Thus, this action on HH1(𝑘𝑃) coincides with the action of 𝐸
induced by the usual conjugation of 𝐸 on 𝑃. The rest follows from Theorem 1.2. □

Remark 7.3. The proof above can be refined to give a slightly stronger result. Using an isomor-
phism from [5, section 3.4], for 𝑒 a non-trivial element in 𝐸, we have H1(𝑇; 𝑘) ⊗𝑘 (𝑘𝑃 ⋅ 𝑒)𝐹 ≅

H1(𝑇; (𝑘𝑃 ⋅ 𝑒)𝐹). By the above proof, this is isomorphic to H1(𝑇; 𝑘𝑇) ≅ HH1(𝑘𝑇). By Lemma 5.6,
every class in HH1(𝑘𝑇)𝐸 has a representative 𝑑 with image in 𝐽(𝑘𝑇), that is, every class in
H1(𝑇; 𝑘𝑇)𝐸 is represented by a 1-cocycle 𝑓 ∈ 𝑍1(𝑇; 𝑘𝑇) with image contained in 𝐽(𝑘𝑇). Mapping
𝑓 to the corresponding 1-cocycle 𝑓′ in 𝑍1(𝑇; (𝑘𝑃 ⋅ 𝑒)𝐹), the proof above shows that the image of 𝑓′
is contained in 𝐽(𝑘𝑇)𝐽(𝑘𝐹)2 ⋅ 𝑒 ⊆ 𝐽(𝑘𝑃)3 ⋅ 𝑒.

As mentioned in the Introduction, Theorem 1.3 admits the following equivalent reformulation.

Theorem 7.4. Let 𝑃 be a non-trivial finite abelian 𝑝-group and 𝐸 be a 𝑝′-group acting on 𝑃.
Suppose [𝑃, 𝐸] = 𝑃, 𝐶𝐸(𝑃) ⩽ Z(𝐸) and that 𝐸∕𝐶𝐸(𝑃) is abelian. Every class in HH1(𝑘(𝑃 ⋊ 𝐸)) is
represented by a derivation on 𝑘(𝑃 ⋊ 𝐸) with image contained in the Jacobson radical 𝐽(𝑘(𝑃 ⋊ 𝐸)).
If the semisimple 𝔽𝑝𝐸-module 𝑃∕Φ(𝑃) is multiplicity free, then the Lie algebra HH1(𝑘(𝑃 ⋊ 𝐸)) is
solvable. The converse holds if 𝑝 is odd.

One way to prove Theorem 7.4 would be to play it back to Theorem 1.3 via the standard corre-
spondence between second cohomology and central group extensions. For convenience, we will
present a self-contained proof which directly translates the proof of Theorem 1.3 to the situation
of Theorem 7.4.

Proof of Theorem 7.4. Let 𝑃 be a non-trivial finite abelian 𝑝-group and 𝐸 be a 𝑝′-subgroup act-
ing on 𝑃. Set 𝐶 = 𝐶𝐸(𝑃). Suppose [𝑃, 𝐸] = 𝑃, 𝐶 ⩽ Z(𝐸) and that 𝐸∕𝐶 is abelian. In particular,
since 𝐶 acts trivially on 𝑃, 𝐶 also lies in the centre of 𝑃 ⋊ 𝐸. As before, we will use the canonical
isomorphisms HH1(𝑘(𝑃 ⋊ 𝐸)) ≅ H1(𝑃 ⋊ 𝐸; 𝑘(𝑃 ⋊ 𝐸)) ≅H1(𝑃; 𝑘(𝑃 ⋊ 𝐸))𝐸 . As a 𝑘𝑃-module with
respect to the conjugation action,we have 𝑘(𝑃 ⋊ 𝐸) ≅ ⊕𝑒∈𝐸 𝑘𝑃 ⋅ 𝑒. Thus, we getHH1(𝑘(𝑃 ⋊ 𝐸)) ≅

H1(𝑃;⊕𝑒∈𝐸 𝑘𝑃 ⋅ 𝑒)𝐸 Since 𝐶 is a central 𝑝′-subgroup of 𝑃 ⋊ 𝐸, and since for every 𝑐 ∈ 𝐶 we
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 19 of 23

have 𝑘𝑃 ⋅ 𝑐 ≅ 𝑘𝑃 as a 𝑘𝑃-module, it follows that H1(𝑃; 𝑘𝑃 × 𝐶) ≅ H1(𝑃; 𝑘𝑃) ⊗𝑘 𝑘𝐶. This space
is 𝐸-invariant, with 𝐸 acting trivially on 𝑘𝐶, and hence

H1(𝑃; 𝑘(𝑃 × 𝐶))𝐸 ≅ H1(𝑃; 𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶 ≅ HH1(𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶.

Using the isomorphism 4.7 (with trivial 𝛼) it follows that

HH1(𝑘(𝑃 ⋊ 𝐸)) ≅ HH1(𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶 ⊕ (⊕𝑒∈𝐸⧵𝐶 HH1(𝑘𝑃; 𝑘𝑃 ⋅ 𝑒))𝐸.

In particular,HH1(𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶 is a Lie subalgebra ofHH1(𝑘(𝑃 ⋊ 𝐸)). In order to analyse, the sec-
ond summand let 𝑒 ∈ 𝐸 ⧵ 𝐶. Set𝑇 = 𝐶𝑃(𝑒) and𝐹 = [𝑃, ⟨𝑒⟩]. Since 𝑒 ∉ 𝐶, it follows that the group𝐹
is non-trivial. Since𝑃 is abelian, by [10, Theorem4.34] or by [7, Theorem5.2.3], we have𝑃 = 𝑇 × 𝐹.
Notice that for every g ∈ 𝑃, the conjugation action of g on 𝑘𝑃 ⋅ 𝑒 is equal to leftmultiplicationwith
g(𝑒g)−1. Thus, 𝑇 acts trivially on 𝑘𝑃 ⋅ 𝑒 and 𝐹 acts freely on 𝑃 ⋅ 𝑒. Using that 𝐹 is non-trivial, this
implies H1(𝐹; 𝑘𝑃 ⋅ 𝑒) = 0. Furthermore, 𝑘𝑃 ⋅ 𝑒 can be viewed as a 𝑘(𝑇 × 𝐹)-module 𝑘 ⊗𝑘 𝑘𝑃 ⋅ 𝑒
where 𝑘 is the trivial 𝑘𝑇-module, and 𝑘𝑃 ⋅ 𝑒 is the free 𝑘𝐹-module for the conjugation action of 𝐹
on 𝑘𝑃 ⋅ 𝑒. Just as in the proof of Theorem 1.3, by the Künneth formula 3.11, we have

H1(𝑃; 𝑘𝑃 ⋅ 𝑒) ≅ H1(𝑇; 𝑘) ⊗𝑘 (𝑘𝑃 ⋅ 𝑒)𝐹,

and the map 𝑡 ↦ 𝑡(
∑

𝑎∈𝐹 𝑎) ⋅ 𝑒 induces an isomorphism

𝑘𝑇 ≅ (𝑘𝑃 ⋅ 𝑒)𝐹.

Since 𝐸∕𝐶 is abelian, or equivalently, since the image of 𝐸 in Aut(𝑃) is abelian, it follows that the
direct product decomposition𝑃 = 𝑇 × 𝐹 is still stable under the action of𝐸. An obvious adaptation
of the last part of the proof of Theorem 1.3 yields that [𝐹, 𝐸] = 𝐹 ≠ 1 has order at least 3, so as
before the socle element

∑
𝑎∈𝐹 𝑎 of 𝑘𝐹 is contained in 𝐽(𝑘𝐹)2, whence (𝑘𝑃 ⋅ 𝑒)𝐹 ⊆𝑘𝑇 ⋅ 𝐽(𝑘𝐹)2 ⋅ 𝑒 ⊆

𝐽(𝑘𝑃)2 ⋅ 𝑒. It follows that every class inH1(𝑃; 𝑘𝑃 ⋅ 𝑒) has a representative with image contained in
𝐽(𝑘𝑃)2 ⋅ 𝑒, so the same holds forH1(𝑃;⊕𝑒∈𝐸⧵𝐶 𝑘𝑃 ⋅ 𝑒)𝐸 . Thus, every class inHH1(𝑘𝑃;⊕𝑒∈𝐸⧵𝐶 𝑘𝑃 ⋅
𝑒)𝐸 has a representativewith image contained in 𝐽(𝑘𝑃)2 ⋅ 𝑒. Let𝐷2 denote the image ofDer2(𝑘(𝑃 ⋊
𝐸)) in HH1(𝑘(𝑃 ⋊ 𝐸). By the above, we have HH1(𝑘𝑃;⊕𝑒∈𝐸⧵𝐶 𝑘𝑃 ⋅ 𝑒)𝐸 ⊆ 𝐷2, hence

7.5.

HH1(𝑘(𝑃 ⋊ 𝐸)) = HH1(𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶 + 𝐷2.

Theorem 1.2 implies therefore that every class inHH1(𝑘(𝑃 ⋊ 𝐸)) is represented by a derivation
with image contained in 𝐽(𝑘(𝑃 ⋊ 𝐸)). Equivalently, the mapDer1(𝑘(𝑃 ⋊ 𝐸)) → HH1(𝑘(𝑃 ⋊ 𝐸)) is
surjective. By Corollary 2.4 (iv),

7.6. We have that the Lie algebra HH1(𝑘(𝑃 ⋊ 𝐸)) is solvable if and only if HH1(𝑘𝑃)𝐸 ⊗𝑘 𝑘𝐶

is solvable.

The formula 3.4 implies that this is the case if and only ifHH1(𝑘𝑃)𝐸 is solvable. The rest follows
from Theorem 1.2. □

Corollary 7.7. Let 𝐺 be a finite group, 𝐵 a block with a non-trivial abelian defect group 𝑃 and an
abelian inertial quotient 𝐸 such that there is a stable equivalence of Morita type between 𝐵 and its
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20 of 23 LINCKELMANN and WANG

Brauer correspondent. Assume that 𝑘 is large enough. Suppose [𝑃, 𝐸] = 𝑃. If the𝔽𝑝𝐸-module𝑃∕Φ(𝑃)
is multiplicity free, thenHH1(𝐵) is a solvable Lie algebra. The converse holds if 𝑝 is odd.

Proof. Since the Lie algebra HH1(𝐵) of a block 𝐵 of a finite group algebra 𝑘𝐺 is preserved under
stable equivalences of Morita type (cf. [12, Theorem 10.7]), we may assume that 𝑃 is normal
in 𝐺. Arguing as before, by [14, Theorem A] the block 𝐵 is Morita equivalent to 𝑘𝛼(𝑃 ⋊ 𝐸) for
some 𝛼 ∈𝑍2(𝐸, 𝑘×), inflated to 𝑃 ⋊ 𝐸 via the canonical surjection 𝑃 ⋊ 𝐸 → 𝐸. Thus HH1(𝐵) ≅

HH1(𝑘𝛼(𝑃 ⋊ 𝐸)) as Lie algebras. The result follows from Theorem 1.3. □

We remark that Broué’s abelian defect group conjecture predicts that there should always be a
derived equivalence between a block with an abelian defect group and its Brauer correspondent,
so in particular there should always be a stable equivalence of Morita type in that situation.

8 EXAMPLES

Example 8.1. Let 𝑘 be a field of prime characteristic 𝑝. Let 𝑃 be a non-trivial cyclic 𝑝-group and
𝐸 a 𝑝′-subgroup of Aut(𝑃). Then 𝐸 is cyclic of order dividing 𝑝 − 1 and acts freely on 𝑃 ⧵ {1}. It
follows for instance from [19, Example 5.7] as well as explicit calculations in [20, section 3] that
HH1(𝑘(𝑃 ⋊ 𝐸)) is solvable if and only if 𝐸 ≠ 1 or if 𝑝 = 2, and HH1(𝑘(𝑃 ⋊ 𝐸)) is simple if and
only if |𝑃| = 𝑝 ⩾ 3 and 𝐸 = 1. It is easy to see that this follows also from combining the results
of this paper. If 𝐸 ≠ 1, then HH1(𝑘(𝑃 ⋊ 𝐸)) is solvable by Theorem 1.3, or also by Theorem 1.1. If
|𝑃| = 𝑝 ⩾ 3, thenHH1(𝑘𝑃) is a simpleWitt Lie algebra, if |𝑃| = 𝑝 = 2, thenHH1(𝑘𝑃) is a solvable
non-abelian 2-dimensional Lie algebra, and if 𝑃 has order 𝑝𝑎 for some 𝑎 ⩾ 2, then HH1(𝑘𝑃) is
not simple, by Lemma 5.4, in conjunction with the fact that HH1(𝑘𝑃) has dimension |𝑃|. Note
that this describes the Lie algebra structure of HH1(𝐵) for 𝐵 a block of a finite group algebra 𝑘𝐺
with a non-trivial cyclic defect group 𝑃 and inertial quotient 𝐸, with 𝑘 sufficiently large. Indeed,
there is a stable equivalence of Morita type between 𝐵 and 𝑘(𝑃 ⋊ 𝐸) (see e.g. [16, Theorem 11.1.2]),
and henceHH1(𝐵) ≅ HH1(𝑘(𝑃 ⋊ 𝐸)) by [12, Theorem 10.2]. One can show this, of course, also by
making use of the fact, due to Rickard [23], that 𝐵 and 𝑘(𝑃 ⋊ 𝐸) are in fact derived equivalent.

Example 8.2. Let 𝑝 be an odd prime and 𝑃 a finite abelian 𝑝-group of rank 𝑟 ⩾ 1. Let 𝐸 be a group
of order 2, acting on 𝑃, with the non-trivial element of 𝐸 acting by inversion. This action of 𝐸 on
𝑃 ⧵ {1} is free, so 𝑃 ⋊ 𝐸 is a Frobenius group, and hence we have a Lie algebra isomorphism

HH1(𝔽𝑝(𝑃 ⋊ 𝐸)) ≅ Der(𝔽𝑝𝑃)
𝐸.

Set 𝐽 = 𝐽(𝔽𝑝𝑃). The non-trivial element of 𝐸 acts as inversion on 𝑃, hence also on 𝑃∕Φ(𝑃), and
therefore as multiplication by−1 on 𝐽∕𝐽2 via the isomorphism from Lemma 2.7. Since this action
is in the centre of End𝔽𝑝(𝐽∕𝐽

2), it follows that End𝔽𝑝𝐸(𝐽∕𝐽
2) = End𝔽𝑝(𝐽∕𝐽

2). Lemma 5.9 implies
that the canonical Lie algebra homomorphism

HH1(𝔽𝑝(𝑃 ⋊ 𝐸)) ≅ Der(𝔽𝑝𝑃)
𝐸 → End𝔽𝑝𝐸(𝐽∕𝐽

2) ≅ 𝔤𝔩𝑟(𝔽𝑝)

is surjective. In particular, if 𝑟 ⩾ 2, then the Lie algebraHH1(𝔽𝑝(𝑃 ⋊ 𝐸)) is not solvable, while for
𝑟 = 1 this is a solvable Lie algebra of dimension |𝑃|−1

2
.
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ON THE SOLVABILITY OF THE LIE ALGEBRA HH1(𝐵) FOR BLOCKS OF FINITE GROUPS 21 of 23

Example 8.3. Let 𝑃 be a finite elementary abelian 𝑝-group of rank 𝑟 ⩾ 1, and let 𝐸 be a 𝑝′-
subgroup ofAut(𝑃). Suppose that 𝑃 is split semisimple as an 𝔽𝑝𝐸-module. Then 𝑃 has an 𝐸-stable
decomposition 𝑃 =

∏𝑟
𝑖=1⟨𝑥𝑖⟩, where the 𝑥𝑖 all have order 𝑝; in particular, 𝐸 is abelian. If the

subgroups 𝐶𝐸(𝑥𝑖), with 1 ⩽ 𝑖 ⩽ 𝑟, are pairwise distinct proper subgroups of 𝐸, then the simple
𝔽𝑝𝐸-modules ⟨𝑥𝑖⟩ are pairwise non-isomorphic non-trivial. In that case, setting 𝐸𝑖 = 𝐸∕𝐶𝐸(𝑥𝑖),
each 𝐸𝑖 is non-trivial, and the canonical surjections 𝐸 → 𝐸𝑖 induce an isomorphism 𝐸 ≅

∏𝑟
𝑖=1 𝐸𝑖 .

Note that each 𝐸𝑖 can be identified with a non-trivial cyclic subgroup of Aut(⟨𝑥𝑖⟩), and hence
𝑃 ⋊ 𝐸 =

∏𝑟
𝑖=1⟨𝑥𝑖⟩⋊ 𝐸𝑖 . In particular, 𝑃 is multiplicity free as an 𝔽𝑝𝐸-module, and 𝑃 = [𝑃, 𝐸].

Thus, Theorem 1.2 implies that HH1(𝑘𝑃)𝐸 is a solvable Lie algebra. In fact, since 𝑃 ⋊ 𝐸 is a
direct product of Frobenius groups, one can, using the Künneth formula, even conclude that
HH1(𝑘(𝑃 ⋊ 𝐸)) is solvable; see Example 8.5 below.

Example 8.4. Let 𝑘 be an algebraically closed field of characteristic 𝑝, let 𝐺 be a finite group and
𝐵 a block of 𝑘𝐺 with an elementary abelian defect group 𝑃 ≅ 𝐶𝑝 × 𝐶𝑝 of order 𝑝2 and an abelian
inertial quotient 𝐸. We identify 𝐸 with a subgroup of GL2(𝔽𝑝) when convenient.
The Brauer correspondent block with defect group 𝑃 is source algebra equivalent to 𝑘𝛼(𝑃 ⋊ 𝐸)

for some 𝛼 ∈ 𝑍2(𝐸; 𝑘×). By a result of Rouquier [24, 6.3] (see [17, Theorem A.2] for a proof for
non-principal blocks), there is a stable equivalence of Morita type between 𝐵 and 𝑘𝛼(𝑃 ⋊ 𝐸), and
hence, by [12, Theorem 10.2], we have an isomorphism of Lie algebras

HH1(𝐵) ≅ HH1(𝑘𝛼(𝑃 ⋊ 𝐸)).

If 𝐸 = 1, or equivalently, if the block 𝐵 is nilpotent, then HH1(𝐵) ≅ HH1(𝑘𝑃) is a simple Witt
Lie algebra (see [18, Theorem 1.1] and the references in that paper for background).
If 𝐸 ≠ 1 and 𝐸 ⩽ 𝑍(GL2(𝑝)), then 𝑝 is odd, we have [𝑃, 𝐸] = 𝑃, and 𝑃 is a direct sum of two iso-

morphic simple 𝔽𝑝𝐸-modules. Hence, in that case,HH1(𝐵) has a quotient isomorphic to 𝔤𝔩2(𝔽𝑝),
so is non-solvable and non-simple, where we use Lemma 5.9.
If 𝐸 ≠ 1 and [𝑃, 𝐸] < 𝑃, then 𝑃 ⋊ 𝐸 ≅ 𝑄 × (𝑅 ⋊ 𝐸), where 𝑄 = 𝐶𝑃(𝐸) and 𝑅 = [𝑃, 𝐸] both have

order 𝑝 and 𝐸 is cyclic of order dividing 𝑝 − 1 (so 𝑝 is odd and 𝛼 is trivial). Since HH1(𝑘𝑄) is a
simple Witt Lie algebra and every class in HH1(𝑘(𝑅 ⋊ 𝐸)) is represented by a derivation of 𝑘(𝑅 ×

𝐸)with image contained in 𝐽(𝑘(𝑅 × 𝐸)), it follows from Lemma 3.7 thatHH1(𝐵) is neither simple
nor solvable in that case.
If 𝐸 is a non-trivial abelian but not a central subgroup of GL2(𝔽𝑝), such that [𝑃, 𝐸] = 𝑃, then

𝑃 is either simple as an 𝔽𝑝𝐸-module or the sum of two non-isomorphic simple 𝔽𝑝𝐸-modules,
and hence HH1(𝐵) is solvable in that case, by Theorem 1.3. For instance, if 𝐸 = 𝐶2 × 𝐶2 and 𝛼

is non-trivial, then the Brauer correspondent of 𝐵 is Morita equivalent to the quantum complete
intersection described in Example 8.6 below. Another instance arises as follows. By identifying 𝑃
with the additive group of 𝔽𝑝2 , one sees that the cyclic group 𝔽×

𝑝2
of order 𝑝2 − 1 acts regularly

on 𝑃 ⧵ {1}. Let𝑚 ⩾ 3 be a divisor of 𝑝 + 1 coprime to 𝑝 − 1, and let 𝐶𝑚 a cyclic group of order𝑚
acting freely on the non-identity elements of 𝑃. Then [𝑃, 𝐸] = 𝑃 and 𝑃 is a simple 𝔽𝑝𝐸-module,
hence HH1(𝑘(𝑃 ⋊ 𝐸)) ≅ HH1(𝑘𝑃)𝐸 is a solvable Lie algebra by Theorem 6.1.

Example 8.5. Theorem6.1 can be extended to direct products of Frobenius groups, using theKün-
neth formula. For 1 ⩽ 𝑖 ⩽ 𝑛 let𝑃𝑖 be a non-trivial finite abelian𝑝-group and let𝐸𝑖 be a𝑝′-subgroup
of Aut(𝑃𝑖) acting freely on 𝑃𝑖 ⧵ {1}. By Proposition 5.2 we haveHH1(𝑘(𝑃𝑖 ⋊ 𝐸𝑖)) ≅ HH1(𝑘𝑃𝑖)

𝐸𝑖 , so
by Lemma 5.6 the canonical map Der1(𝑘(𝑃𝑖 ⋊ 𝐸𝑖)) → HH1(𝑘(𝑃𝑖 ⋊ 𝐸𝑖)) are surjective.
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Set 𝑃 =
∏𝑛

𝑖=1 𝑃𝑖 and 𝐸 =
∏𝑛

𝑖=1 𝐸𝑖 . Proposition 3.1, applied repeatedly, implies that the map
Der1(𝑘(𝑃 ⋊ 𝐸)) → HH1(𝑘(𝑃 ⋊ 𝐸)) is surjective. Suppose in addition that 𝑃∕Φ(𝑃) is multiplicity
free as an 𝔽𝑝𝐸-module, or equivalently, that each 𝑃𝑖∕Φ(𝑃𝑖) is multiplicity free as an 𝔽𝑝𝐸𝑖-module,
for 1 ⩽ 𝑖 ⩽ 𝑛. Lemma 5.9 implies

[Der1(𝑘(𝑃 ⋊ 𝐸)), Der1(𝑘(𝑃 ⋊ 𝐸))] ⊆ Der2(𝑘(𝑃 ⋊ 𝐸)) + IDer(𝑘(𝑃 ⋊ 𝐸)),

and in particular, thatHH1(𝑘(𝑃 ⋊ 𝐸)) is a solvable Lie algebra. In the case where 𝐸 is abelian, this
follows also from Theorem 1.3.

Example 8.6. Suppose that 𝑝 is an odd prime. Consider the algebra

𝐴 = 𝑘⟨𝑥, 𝑦|𝑥𝑝 = 𝑦𝑝 = 0, 𝑥𝑦 + 𝑦𝑥 = 0⟩.
This algebra, which has dimension 𝑝2, arises as basic algebra of the non-principal block of 𝑘(𝐶𝑝 ×

𝐶𝑝)⋊ 𝑄8, with defect group 𝐶𝑝 × 𝐶𝑝 and inertial quotient 𝐶2 × 𝐶2. It is shown in [2, Theorem 1.1]
amongst other statements on the structure of the Lie algebra HH1(𝐴) that HH1(𝐴) is a solvable
Lie algebra. Theorem 1.3 provides an alternative proof of this fact.

Example 8.7. Let 𝑘 be an algebraically closed field of prime characteristic 𝑝, let 𝐺 be a finite
group, 𝑁 a normal subgroup such that 𝐺∕𝑁 is a 𝑝-group, and let 𝑏 be a 𝐺-stable block of 𝑘𝑁.
Set 𝐶 = 𝑘𝑁𝑏. Then 𝐵 = 𝑘𝐺𝑏 is a block of 𝑘𝐺. Let 𝑃 be a defect group of 𝐵, and set 𝑄 = 𝑃 ∩ 𝑁.
Suppose that 𝑃 is abelian and that 𝑄 has a complement 𝑅 in 𝑃. If 𝑝 is odd or if 𝑅 has rank at least
2, thenHH1(𝐵) is not solvable. Indeed, by a theoremof Koshitani andKülshammer in [13] (see [16,
Theorem 10.4.2] for an expository account), we have a 𝑘-algebra isomorphism 𝐵 ≅𝑘𝑅 ⊗𝑘 𝐶, so by
the Künneth formula 3.2,HH1(𝐵) has a Lie subalgebra isomorphic toHH1(𝑘𝑅), which in turn has
a Lie algebra quotient HH1(𝑘𝑅∕Φ(𝑅)). If 𝑝 is odd or if 𝑅 has rank at least 2, then HH1(𝑘𝑅∕Φ(𝑅))

is a simple Witt Lie algebra.
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