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 a b s t r a c t

The development and evaluation of autonomous maritime vessels rely heavily on data-driven insights from itera-
tive testing and analysis. While initial analyses are often conducted on small experimental datasets to explore key 
system characteristics, scaling these analyses to large datasets presents significant challenges. In this study, we 
extend our prior work on visual exploration of small-scale test bed data by proposing approaches to scaling the 
visual analytics techniques to large datasets. Using AIS data from ferry boats as a proxy for extensive maritime 
drone operations, we address the challenges of large-scale data exploration over eight days of repetitive ferry 
movements across a busy strait, simulating conditions suitable for autonomous vessels. Our approach investigates 
movement patterns, operational stability during repeated trips, and potential collision scenarios. To support such 
analyses, we propose a general, reusable workflow and a set of practical guidelines for applying visual analytics 
techniques to large maritime movement datasets. The findings highlight the scalability and adaptability of visual 
analytics methods, providing valuable tools for analyzing complex maritime datasets and advancing autonomous 
vessel technologies.

1.  Introduction

In recent years, autonomous and semi-autonomous maritime vessels 
have seen growing adoption in diverse fields, ranging from marine re-
search and environmental monitoring to maritime logistics [1,2]. These 
systems, commonly referred to as sea drones, are often deployed as 
test beds for advanced technologies, enabling iterative development and 
testing [3]. The testing and development of autonomous vessels rely on 
detailed examinations of movement trajectories and multi-dimensional 
sensor measurements. Effective visualization and interactive exploration 
of these data are essential for diagnosing malfunctions, understanding 
environmental influences, and refining performance. In addition to the 
inherent complexities of the trajectories and sensor data, maritime envi-
ronments present unique challenges, including the influence of weather, 
external forces, and unconstrained two-dimensional movement, which 
complicate the analysis of vessel trajectories.

While small-scale datasets from experimental operations provide 
valuable insights, scaling the analysis to larger datasets is crucial for 
addressing challenges associated with real-world operations. This paper 
explores how the same analytical tasks can be effectively performed on 
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both small and large datasets, demonstrating the adaptability and scal-
ability of visual analytics techniques.

Another set of problems and tasks arises when exploring the po-
tential for replacing human-operated vessels engaged in regular oper-
ations with autonomous ones. Autonomous vessels must not only be 
programmed to perform standard procedures, but also be capable of 
recognizing deviations from expected conditions and adapting their be-
havior accordingly. Achieving this requires the analysis of large volumes 
of historical data that capture both routine operations in the relevant 
domain and the irregular actions taken by human pilots in response to 
non-standard situations. In this paper, we demonstrate how visual ana-
lytics techniques can support the analysis of such historical movement 
data.

Building upon our prior work [4], which focused on the visual explo-
ration of a small dataset from experimental maritime drones, we extend 
our approach to large data. As an example, we use a real-world set of 
AIS (Automatic Identification System, see [5]) data describing the op-
erations of human-piloted ferry boats, which perform repetitive trips 
across a strait. These ferry operations represent scenarios that could re-
alistically be handled by autonomous systems. To make this happen,
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analysts need to use the historical data to explore the potential be-
haviors, operational stability, and situational responses that future au-
tonomous vessels might require. At the same time, this dataset can also 
serve as a meaningful proxy for large-scale maritime drone data.

We propose and implement interactive visual techniques designed to 
address the following analytical tasks:

• Detailed investigation of movement characteristics and sensor mea-
surement recordings, focusing on detecting anomalies and unwanted 
behaviors.

• Assessment of operational stability during repeated movements, in-
cluding consistency and deviations.

• Exploration of collective vessel movements to identify and analyze 
(a) potential collision situations or (b) maneuvers undertaken to 
avoid such situations.

We begin by applying these tasks to a small experimental dataset to 
explore the capabilities of maritime drones in controlled scenarios. This 
case study serves, first, to demonstrate the contents and properties of 
vessel movement data, and, second, to introduce the interactive visual 
interfaces enabling exploration and analysis of such data. We then de-
scribe another case study demonstrating how the same tasks are adapted 
to the larger AIS dataset. For this purpose, we rely on computational pro-
cessing combined with visual exploration to uncover patterns, highlight 
deviations, and provide actionable insights for developers and operators 
of autonomous maritime systems. We then propose a general, reusable 
analysis workflow and a set of guidelines for scalable application of vi-
sual analytics techniques to large maritime traffic datasets.

The remainder of this paper is organized as follows. We first re-
view related work on maritime data visualization and visual analytics 
for spatio-temporal data. Next, we describe both datasets, explain how 
we process them, and demonstrate how they can be analyzed using our 
proposed techniques. Finally, we summarize our findings, discuss the 
scalability of the methods, and outline future directions for supporting 
the analysis of autonomous vessel operations across varying data vol-
umes.

2.  Related work

The work in [6] highlights a critical gap in the domain of drone 
technology and robotics, emphasising the absence of visual analytics 
tools for effective analysis of multidimensional spatio-temporal data. In 
essence, this deficiency poses significant challenges to users seeking to 
monitor, comprehend, and control the behaviors of individual drones 
and drone fleets. Analysis tools should facilitate exploration and analysis 
of drone telemetry, trajectory data, environmental variables, and other 
kinds of information, thereby enabling users to gain actionable insights 
into drone functioning.

Drones are produced by various companies, each employing propri-
etary tools and data formats that lack compatibility, making data sharing 
challenging. Consequently, competitions such as autonomous boat race 
[7,8] serve as valuable platforms for gathering real-world datasets due 
to the limited availability of such data from proprietary sources.

Drone data consist of sequences of time-stamped geographic posi-
tions in 2D or 3D, annotated with measured attributes such as speed 
and direction, as well as characteristics of the moving object (e.g. weight 
or fuel consumption) and characteristics of the environment (e.g. wind 
speed and direction, water current attributes etc.) Such data are typical 
for mobility data science [9] and visual analytics of movement [10], 
with variety of analysis methods proposed in the literature. A frame-
work for assessment of movement data quality was proposed in [11] 
and implemented as a protocol in a form of a Python library by [12]. 
The protocol addresses missing data, precision, consistency, and accu-
racy problems in respect to spatial, temporal, and attributive data com-
ponents on the level of elementary data records, intermediate segments 
of trajectories, and overall trajectories and sets of them.

A large body of literature propose methods specific for maritime 
traffic (for example, [13]) and, more generally, in transportation stud-
ies [14]. The number of visual analytics papers proposing various ap-
proaches for analyzing movement data is very large and continues grow-
ing. Some of them deal specifically with data describing movements of 
vessels. Variants of dynamic density maps combined with specialized 
computations and techniques for interaction [15–17] support explo-
ration of the density as well as other characteristics of maritime traffic. 
Kernel density estimation can be used to compute a volume of the traffic 
density in space and time [18], which can be visualized in a space-time 
cube [19] with two dimensions representing the geographical space and 
one dimension the time. [20] propose special glyphs for visualizing mar-
itime data. [21] employ visual and interactive techniques for analyzing 
vessel trajectories together with weather data. [22] use vessel move-
ment data to demonstrate the work of an interactive query tool called 
TimeMask that selects subsets of time intervals in which specified con-
ditions are fulfilled. This technique is especially suited for analyzing 
movements depending on temporally varying contexts.

Similarly to drone and ferry boats, it is common for public transport 
to follow repeatedly the same route. Such settings allow visually-driven 
analysis of dynamics along the route and varying frequency of depar-
tures from origins towards destinations. [23] apply a 3D view to show 
similar trajectories as bands stacked on top of a map background. The 
bands consist of colored segments representing variation of dynamic at-
tributes along the routes. Similarly, Itoh et al. [24] use stacked bands for 
displaying attributes along selected subway lines. [25] applied a com-
plementary approach, building a kind of 2D matrix, with rows corre-
sponding to stops along a bus line, columns representing minutes of the 
day, and colored cells reflecting aggregated attributes of movement such 
as average delay.

The literature study suggests that the following instruments are nec-
essary for analyzing real-world vessel traffic data:

• Methods for pre-processing the data, including cleaning, stop detec-
tion, and division into trips;

• Clustering of trips by similarity for identifying repeatedly used routes 
and separating them from others;

• Representation of trips and attributes along them on maps (in space), 
space-time cube (in space and time) and along the time line;

• Interactions for focusing on particular aspects, including filtering by 
area, time, identities, and attributes;

• Transformation of times in trajectories (aligning them to common 
starts or ends) for their comparison;

• Detection of interactions between trajectories.
These techniques proved to be useful in our analyses.

3.  Datasets used in this study

For this study we have utilized vessel trajectory data from dis-
tinct use cases. The first includes trajectories from small surface ves-
sels that operate autonomously, as part of specific missions related to a 
University-level race. The other refers to movements of larger ferry ves-
sels, traveling regularly between two ports. In this section we provide 
more details regarding each dataset.

3.1.  The aegean race data

The 1st Aegean [7] Race (Autonomous Robotic Vessels Competition) 
took place in the island of Syros (Greece) in July 2022. The university-
level competition was organised by the Intelligent Transportation Sys-
tems laboratory of the University of the Aegean and aimed to promote 
innovative ideas for smart shipping technologies. The student teams de-
signed and developed autonomous robotic vessels on their own [26]. 
They competed, under real sea conditions, in speed, endurance and ob-
stacle avoidance challenges, where their vessels had to operate com-
pletely autonomously without any interference by the users. Similar 
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Fig. 1. Analysis of the regularity of the position recording. The lengths of the 
time intervals between the recorded positions are represented by proportional 
sizes of circle symbols. The largest circle correspond to a time gap of 23 seconds, 
whereas the regular interval length is 1 second.

to a sailing regatta, the first challenge had vessels to perform a single 
round trip, bounded by three buoys, thus testing their speed capabili-
ties on short, predefined trips. The second, collision avoidance, aimed to 
demonstrate the ability of the vehicles to detect, and effectively avoid, 
obstacles on their path, including other moving vessels or static objects 
(scattered buoys). Finally, the third challenge focused on the endurance 
of the vessel and its systems for voyages of longer duration. For this 
purpose, a round trip between two buoys was followed, with vessels 
performing as many laps as possible in the extended time frame, with-
out stopping. The resulting data set consists of positional and mobility 
data of 3 vessels during all 3 challenges.

The data set has high temporal precision, with positions recorded 
almost every second (Fig. 1 shows an example trajectory), resulting in 
over 6900 positional reports. However, using GPS coordinates with only 
7 decimal points lacks the precision needed to accurately track move-
ment in small areas when recording data at a temporal resolution of 
about 1 second. This limitation can lead to distortions on maps, such as 
checkerboard-like patterns, and sudden fluctuations in derived move-
ment metrics like speed, acceleration, direction, and turns.

3.2.  Trajectories of ferry boats and surrounding traffic

For the second case study, we use a set of AIS data from 577 vessels 
that appeared in the part of Saronic Gulf near Athens from August 1, 
to August 9, of 2024 (however, the data for August 8, are missing). The 
study area, shown in Fig. 2, includes the Salamis Strait, a busy waterway 
used for ferry routes and other vessel traffic connecting Athens to the 

Salamis Island and beyond. From this dataset, we focus our analysis on 
the trajectories of 23 ferry boats circulating across the Salamis Strait. 
The data from the other vessels are used in analyzing the spatio-temporal 
context of the movements of the ferry boats.

The trajectories of the ferries include in total 72,837 position records. 
The temporal resolution is predominantly 60 seconds (in about 80% of 
the records). In 99.6% of the records, the time interval to the next record 
does not exceed 3 minutes, but there are also large time gaps indicating 
missing data.

Additionally to the vessel coordinates and time stamps, the data 
include recorded values of the speed over ground (SOG), course over 
ground (COG), and heading. However, in 93.2% of the position records, 
the heading attribute has a special value 511, which indicates absence 
of data. Among the values of SOG, there are obvious outliers, such as 
102.3 knots, while the values in 96.2% of the records range from 0 to 
11.8 knots.

For the analysis, we needed to divide the continuous trajectories 
spanning over several days into discrete trips from one to the other side 
of the strait. For this purpose, we used the boundaries of the stopping 
areas (in particular, ports) identified earlier at the stage of data prepro-
cessing described in Section 4. We divided the full trajectories into seg-
ments starting and ending in the stopping areas located on the western 
and eastern sides of the strait (Fig. 3, left). After skipping several seg-
ments consisting of only a few points with large time gaps in between, 
i.e., missing most of the points along the routes, we obtained 1536 trips, 
including 768 eastward and 766 westward trips shown in Fig. 3 using 
purple and green colors, respectively. Besides, there we have got two 
anomalous trip trajectories. One is starting in the middle of the route; 
evidently, the remaining positions from this trip were missing in the 
original data. In the other anomalous trip, the boat apparently turned 
back without entering the destination port on the eastern side.

4.  Preprocessing of big data

In order to analyze the vessel voyages data, the input trajectories first 
need to be properly formatted and prepared. This would entail identi-
fying instances with faulty feature values, removing unnecessary data, 
like duplicates, and annotating parts of the movement. Overall, this pre-
processing step pertain to both individual positional records and full 
trajectory entries, while we assume that we have continuous sequences 
of messages from a very large number of vessels. The data records con-
sumed by this mechanism may be historical (collected earlier) or come 
in real time.

For processing historical AIS data, a distributed map-reduce ap-
proach (e.g. Apache Spark1) is typically selected to extract routes from 
AIS positional reports [27,28]. Different processing tasks upon large-
data can be materialized through this method, including trajectory com-
pression [29], anomaly detection [30] or even clustering [31]. Popu-
lar processing frameworks, such as Apache Spark, transform traditional 
data processing pipelines into a sequence of map-reduce tasks. Oper-
ations such as filtering and de-duplication, as well as pairwise calcu-
lations, are supported through mapping, sorting and redistribution of 
data in distributed nodes is happening through the shuffling process, 
while aggregation and collection of results is happening in the reduce 
phase. Common operations such as selection, filtering, application of 
simple mathematical transformations and window operations are inte-
gral to the apache Spark application interface. In addition, complex and 
custom transformations are also supported through the definition of cus-
tom user defined functions (UDF), i.e custom functions that are applied 
at record level in the distributed dataset. In this context, the proposed 
pre-processing methodology can be easily transformed into a big data 
pipeline by executing four major steps.

1 https://spark.apache.org/
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Fig. 2. Left: Salamis Strait with trajectories of ferries and other vessel traffic. Right: the position of the study area in a larger geographic context.

Fig. 3. Left:The trajectories of the ferry boats have been divided into trips between port areas. Right: The trajectories representing the trips have been aligned by 
their starting points and visualized in a space-time cube display, where the vertical dimension represents time.

First, we filter out all records that have erroneous values in regard to 
position (incomplete coordinates, latitude near poles, or zero are typi-
cal values indicated erroneous GPS reception from AIS transceiver), time 
(difference in timezones), identifier (non-AIS compliant MMSI specifi-
cations), as suggested by [11,12]. Provided that coordinates and times-
tamps can be trusted and the dataset is sorted in ascending time, errors 
in speed (extreme values of speed for vessels typically indicate errors) 
and direction (missing values or default) can be reconstructed. Specifi-
cally we can combine window operations and UDFs to calculate speed 
from the distance and time interval between two sequential positional 
records, while heading or course correction can be tackled by solving 
the inverse geodetic problem inside a UDF, for the same pair of records.

Secondly, to detect locations that vessels stop, we use a speed thresh-
old. A slight movement of a vessel is reported to AIS even when at anchor 
due to GPS inconsistencies and the slight movement vessels perform 
around their anchor point. The selected speed threshold (e.g. less than 
0.5 knots) indicates that the vessel is not underway using its engines. 
Later, this filtering process is combined with geo-fencing techniques to 
ensure that the detected stops are located within a port or anchorage 
area. If the geometries of such areas are not available in the form of 
an external dataset, they can be extracted directly from the data [32]. 
To achieve that, a separate dataset that contains only stopped vessels’ 
records is extracted. This extracted dataset is much smaller than the 
original dataset, thus a density clustering approach (DBSCAN [33]) can 
be used to group together stopped vessel records and then form solid 
areas that vessels stop. The effectiveness of DBSCAN-based approaches 
free space movement data has been taken advantage in a multitude of 
other works regarding vessel traffic [34–36].

As a third step, we identify the sequences of vessels positions that 
indicate a complete trip. This is achieved through the respective stop-
ping areas geometries, like ports. More precisely, all records are first 
organized in partitions based on the vessel identifier (i.e. MMSI) and 
sorted by time. Then, we join the records dataset with the geometries 
dataset so that all records that spatially intersect with a port/anchorage 

area are annotated with its identifier. For each vessel, all messages that 
are chronologically in between two stops are annotated using window 
functions with the same trip identifier.

Finally, similar trips are organized in groups, using as group iden-
tifier the vessel type, provided by AIS, origin and destination location 
of each trip. All trip trajectories within each group are sorted based on 
their length and duration. The representative or baseline trajectory for 
each group can be selected as the one with either median duration or 
length, or even apply more sophisticated methods that include sparsity 
into the selection as presented in [37].

5.  Investigation of the experimental dataset

5.1.  Detailed exploration of individual trajectories

Possible objectives of a detailed exploration of individual trajecto-
ries include inspection of the characteristics of the movement, position 
recording, and measurements. The most common visualization of trajec-
tories is by lines on a map, as in Fig. 4, left. An animated map can show 
the progress of the movement over time but not the overall shape of the 
trajectory. A space-time cube [38], as in Fig. 4, right, shows the relative 
times of different segments of the trajectory, as well as the movement 
directions and speeds. The speed in a trajectory segment is indicated by 
the inclination of the corresponding line: the smaller the inclination, the 
higher the speed.

To explore the details of the position recording and sensor measure-
ments, it is useful to combine the representation of the trajectory by 
a line with representing the recorded points by symbols, such as dots. 
Sizes and/or colours of the symbols can encode recorded measurements, 
as, for example, the speed in Fig. 5, left, or computed variables, such as 
the time to the next point in Fig. 1. The positions of the point symbols on 
a trajectory line indicate gaps in measurements and reveal line segments 
resulting from interpolation between known positions. Such estimations 
may significantly differ from the unknown actual path.
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Fig. 4. A single trajectory represented on a map (left) and in a space-time cube (right). The time axis in the space-time cube is oriented upwards.

Fig. 5. Exploration of movement characteristics. Left: speed measurements are represented by point colouring. Right: deviations of the movement direction (computed 
from consecutive positions) from the vessel heading (recorded during the movement) are represented by proportional sizes and colours of circle symbols. Orange 
symbolises deviations to the right and blue to the left.

Big Data Research 43 (2026) 100575 

5 



N. Andrienko, G. Andrienko, D. Zissis et al.

Fig. 6. Selection of a relevant part of the trajectory by means of temporal filtering.

Visualisation of speed and course data along a trajectory can also 
give a hint about the impacts of wind and waves on the vessel move-
ment. Thus, we see on the map on the left of Fig. 5 that the speed 
of the southward movement was notably higher than in the move-
ment to the north, which shows the impact of the wind blowing 
from the north and northeast. The impact of the wind on the ves-
sel course can be explored by calculating and visualising the differ-
ences between the recorded vessel heading and the movement course 
computed from consecutive vessel positions. On the right of Fig. 5, 
the deviations are represented by dot symbols with the colour (blue 
or orange) encoding the direction of the deviation (left or right of 
the heading) and size proportional to the amount of the deviation, in
degrees.

A necessary tool for interactive exploration of trajectory data is time 
filter allowing selection of time intervals for viewing only data gener-
ated in these intervals while the remaining data are hidden. The work of 
a time filter is illustrated in Fig. 6, where it was used to hide irrelevant 
parts of the trajectory that reflect the vessel movements before and after 
the race. The filter was applied to the data presented in Fig. 5. We see 
that the speed during the race was mostly quite high and the deviations 
of the course from the heading were low compared to the hidden parts 
of the trajectory that were visible in Fig. 5. Still, the orange and blue 
colours of the dot symbols signify the impact of the northern and north-

eastern wind: the course slightly deviated to the right of the heading 
during the southward movement and to the left during the northward 
and westward movements.

In a similar way, one can explore any sensor measurements taken 
by the vessel along the route. To summarise, basic techniques for visual 
exploration of individual trajectories and associated point-based mea-
surements include representation of the trajectories by lines on a map 
and in a space-time cube, using point symbols for showing the locations 
of the recorded trajectory points and any attributes associated with the 
points, and time filter for selection of time intervals and corresponding 
trajectory parts to focus on.

5.2.  Exploration of repeated movements

During development and testing, drones often need to perform re-
peated tasks, following the same pre-defined route. Some variations of 
the route may occur due to changes in context such as weather condi-
tions, activities of the drone itself, other events that happened nearby 
(e.g. proximity to stationary obstacles or other moving objects) etc. Ex-
amples of such data have been collected during the so-called endurance 
race, see Fig. 7. Similarly to Fig. 4, the space-time cube in the middle 
shows dynamics of the 3 trajectories. In the bottom, trajectories are di-
vided into repeated fragments and their starting times are aligned.

Big Data Research 43 (2026) 100575 

6 



N. Andrienko, G. Andrienko, D. Zissis et al.

Fig. 7. Endurance race: trajectories of the 3 drones on the map (left) and map space-time cube (middle and right).

Fig. 8. Endurance race: dynamics of speeds over multiple loops. The display in the left shows dynamics over time; segmented time bars in the middle align starts of 
all loops; trajectory wall display [39] in the right shows speeds in their spatial context.

Analysis of repeated movement is not limited to purely spatial and 
spatio-temporal shape matching. In addition, it is necessary to study 
the dynamics of attributes for the whole trajectories and their dynamics 
within the trajectories. Thus, by computing average speeds over mul-
tiple fragments we observed gradual speed decrease over the sequence 
of loops for each drone, indicating their degrading performance. More 
detailed analysis can be done using time series displays, as shown in 
Fig. 8. Such displays are suitable for understanding the overall dynam-
ics of movement in the repeated fragments and for identifying times and 
locations of speed changes, as well as sporadic fluctuations. In further 
analysis, these patterns can be matched to context data (e.g. weather at-
tributes) or events of proximity to stationary obstacles or other vessels.

5.3.  Exploration of interactions

Here we focus on the task of detecting and exploring events of close 
approach of vessels to other static or moving objects; we shall call such 
events interactions  [40]. Interactions can be detected by computing the 
minimal distance from each point of a vessel trajectory to the boundary 
or location of another object at the time of attaining this point.

In computing the distance to a moving object, it is necessary to take 
into account the possible differences between the time moments when 
the locations of the given vessel and the other object were sampled. 
Thus, for a vessel position measured and recorded at time moment 𝑡
there may be no position in the trajectory of another moving object 
having exactly the same time reference. Therefore, in computing the 
distances, it is necessary to take a temporal buffer [𝑡 − 𝜖, 𝑡 + 𝜖] around 
each position of the vessel trajectory, find the points from the other tra-
jectory where times fit in this time interval, and compute the distances to 
all these points. The temporal threshold 𝜖 is chosen based on the coars-
est temporal resolution of the position recording among all trajectories 
involved in the calculation.

To detect close approaches, it is also necessary to define what dis-
tance between objects can be treated as a close approach, i.e., to set a 
distance threshold 𝛿. It is chosen depending on the sizes of the vessel 
and the objects that can be approached during the vessel movement.

As an example, we show results of detecting interactions between 
two autonomous vessels during a race using the threshold settings 𝜖 = 5
seconds and 𝛿 = 1 m.

Exploration of detected interactions requires them to be represented 
visually on a map, as, for example, in the middle of Fig. 9. The points of 
close approach are marked by dot symbols and connected to the corre-
sponding points from the other trajectory by lines. Another visual rep-
resentation is a space-time cube, as in the lower part of Fig. 9. It shows 
the approximate relative times of different interactions.

However, occlusions and line intersections in both the map and the 
cube complicate the examination of the details of the interactions. This 
problem can be solved using time filtering, as illustrated in Fig. 10. For 
convenience, a time interval containing one interaction can be selected 
using a mouse operation within the map display.

6.  Investigation of the performance of ferry boats

In this case study, we discuss how to scale the analysis to large tra-
jectory datasets, where detailed examination of individual trajectories 
becomes impractical. Nevertheless, it is important to retain the use of 
interactive visual interfaces, which enable interpretation of the infor-
mation based on domain expert knowledge and support the detection of 
unforeseen situations and patterns that are difficult to identify algorith-
mically.

As mentioned earlier, analyzing historical data reflecting the behav-
ior of human-piloted vessels can provide essential insights for develop-
ing autonomous alternatives. By understanding how routine operations 
are performed and how human operators respond to irregular situations, 
developers can better define the expected capabilities of autonomous 
systems. Such analysis is particularly valuable when large-scale data 
from autonomous vessels is not yet available.

Using the AIS data described in Section 3.2, we focus on ferry boat 
trips across the Salamis Strait. Our approach combines data aggregation 
and computational methods to detect and extract anomalies or disrup-
tions in regular movements, enabling targeted, detailed investigations.
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Fig. 9. Interactions between two autonomous vessels during a race. Top: a ta-
ble describing the detected interactions. Middle: points of close approach are 
marked on a map. An enlarged map fragment is shown on the right. Bottom: the 
trajectories and points of close approach are displayed in a space-time cube.

Fig. 10. One interaction has been selected for inspection by means of time fil-
tering.

6.1.  Detection and exploration of anomalous behaviors

A straightforward method for detecting anomalies in large trajec-
tory datasets is through histograms that represent the distributions of 
relevant numeric attributes, such as trip duration and path length. This 
aggregated representation scales well to large datasets and effectively 
highlights outliers. For example, in Fig. 11, the histogram of trip dura-
tions (left) reveals a single extreme outlier of 61 minutes, while most 
trips last between 9 and 19 minutes. Similarly, the histogram of path 
lengths (right) identifies one unusually short and one unusually long 
trip.

The very short path corresponds to an incomplete trajectory, as men-
tioned in Section 3.2. The trip with the longest path also exhibits the 
longest duration. To investigate this outlier, we queried and visualized 
its trajectory on both a map and a space-time cube (Fig. 12). The map 
suggests that the ferry was approaching the eastern port but abruptly 
turned back without entering the port. However, the space-time cube 
reveals a significant time gap between two consecutive positions, rep-
resented as a steep diagonal line. A closer look highlights a 41-minute 
gap, marked on the map by a yellow circle. This indicates missing posi-
tion records, suggesting the vessel likely entered the port, paused, and 
resumed its journey after the stop. Thus, these anomalies are artifacts 
caused by incomplete data rather than actual operational disruptions.

Apart from easily detectable outliers, there may be anomalies that 
are hard to detect in visualizations of aggregated data. Thus, in a bunch 
of trajectories connecting two ports, the shapes of some trajectories may 
deviate from the usually followed routes. Such trajectories can be no-
ticed on a map and in a space-time cube, as in Fig. 3; however, this 
requires visual representation of each individual trajectory, which may 
not be feasible when the trajectories are very numerous. Besides, vi-
sual discrimination of typical routes from fluctuations requires high 
transparency in representing the trajectories. The typical routes become 
prominent on the map when many trajectories following these routes are 
drawn one on top of another. However, this approach makes deviating 
trajectories hard to notice due to their high transparency.

The problem of detecting unusual shapes or other kinds of anomalies 
that cannot be revealed using aggregated data displays can be solved by 
means of density-based clustering with an appropriate distance function. 
Thus, for distinguishing typical and unusual route shapes, one needs 
a distance measure assessing the spatial distance between trajectories 
[41,42]. It is also important to use a suitable clustering algorithm, such 
as OPTICS [43], which not only separates clusters from noise (i.e., ob-
jects dissimilar to others) but also associates clustered objects with two 
values: core distance and reachability distance. Objects with low core 
distances represent the most typical, frequently occurring cases. High 
reachability distances signify deviations from the cluster cores, i.e., from 
the typical cases. Hence, in addition to the noise, cluster members with 
high reachability distances may correspond to anomalous behaviors.

Applying OPTICS to the ferry trips dataset, we used the “route sim-
ilarity” distance function ([10]) with a spatial threshold of 100m and 
a minimum of 20 neighbors. Fig. 13 (top) shows the results. The stan-
dard routes are visualized in Fig. 13 (middle) and consist of trajectories 
with low core distances. Deviating routes, identified by high reachabil-
ity distances or classified as noise, are shown in Fig. 13 (bottom). These 
trajectories are drawn with higher opacity for better visibility.

While density-based clustering is effective, its scalability is limited 
for very large datasets. To address this, clustering can be combined with 
classification [44]. In this hybrid approach, clustering is applied to a 
manageable random sample of data. Dense clusters representing fre-
quent, typical behaviors are then used as training classes. The remaining 
data are processed using a classification algorithm, such as kNN, to as-
sign instances to these classes or mark them as unclassified if they are 
dissimilar. Unclassified instances are flagged for further investigation 
as potential anomalies. This approach can also be applied to streaming 
data.

By combining aggregation, clustering, and classification, this 
methodology provides an efficient framework for exploring large tra-
jectory datasets while ensuring that critical anomalies and disruptions 
are not overlooked.

6.2.  Assessment of operational stability during repeated movements

After detecting abnormal or irregular behaviors, the next step is to 
investigate their locations and frequency. Not all deviations from stan-
dard routes are equally significant. For example, Fig. 13 (bottom) shows 
some irregular trajectories deviating from standard routes within or near 
port areas. These deviations typically comply with traffic regulations in 
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Fig. 11. Histograms representing the distributions of the trip duration and length.

Fig. 12. Visual investigation of a detected anomalous trajectory on a map and in a space-time cube.

Fig. 13. Detection of regular and irregular routes by means of clustering using OPTICS.
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Fig. 14. Top: Central trajectories of the trip clusters constructed from averaged corresponding positions of the core cluster members. Middle: Trip segments deviating 
from the central trajectories by 100 or more meters. Bottom: Spatial filter to extract the deviating segments occurring in the crossing area.

ports and can be considered normal. However, deviations occurring in 
the middle of the strait, where traffic flows intersect (Fig. 2, left), may 
deserve special attention. Targeted analysis of such deviations requires 
their detection and extraction through computational techniques.

We propose an approach for extracting deviating trip segments, il-
lustrated in Fig. 14. First, the central routes of the trip clusters are con-
structed using the core cluster members (Fig. 13, middle). The central 
route construction algorithm [45] groups spatially close points from dif-
ferent trajectories and calculates the spatial centers of these groups to 
form the central trajectory. In Fig. 14, top, the central routes for the 
green and purple clusters are shown as thick lines colored in light green 
and pink, respectively. This step is performed once after identifying the 
regular trajectory shapes, and the central routes are stored for subse-
quent use.

Next, for each point on a trip, its distance to the nearest segment of 
the central route is calculated. This operation can be applied to both 
historical and streaming data. Trip points and segments with distances 
exceeding a defined threshold (e.g., 100m, as in Fig. 14, middle) are 
flagged as deviations. Finally, only segments falling within a predefined 
area of interest (e.g., the traffic crossing area in our case study) are ex-
tracted for further analysis, as illustrated in Fig. 14, bottom. This spatial 
filtering step is computationally efficient and scalable, making it suit-
able for streaming data analysis.

Once the deviating trajectory segments are extracted, they are sub-
jected to detailed inspection. Since these anomalies are expected to 
be relatively infrequent, they can be effectively analyzed using visual 
and interactive techniques, supplemented by computational methods as 
needed.
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Fig. 15. 2D time histogram shows the distribution of the starts of the ferry trips by days (horizontal dimension) and hours (vertical dimension). The bar lengths are 
proportional to the counts of the trip starts in the 1-hour time intervals. The black segments represent the counts of the trips deviating from the regular routes in the 
traffic crossing area.

6.3.  Examination of spatio-temporal contexts of normal and abnormal 
movements

The temporal distribution of deviating trips among all ferry trips can 
be explored using temporal histograms, such as the 2D time histogram 
shown in Fig. 15. In this visualization, the horizontal and vertical axes 
represent days and hours of the day, respectively. The length of the gray 
bars indicates the total counts of ferry trips starting within 1-hour inter-
vals, while the black segments within the bars represent the counts of 
trips deviating from the standard routes within the traffic crossing area. 
These deviations correspond to trips containing the previously extracted 
abnormal segments. As observed in Fig. 15, no clear temporal patterns 
emerge in the occurrence of deviations, nor do these occurrences show 
any correlation with the overall number of ferry trips across the strait.

Deviations from standard routes could potentially be influenced by 
specific weather conditions, such as strong side winds. With access to 
relevant weather data, it is technically possible to correlate weather pa-
rameters with the timing of deviations. However, in this case, no contin-
uous periods of heightened deviation frequency are evident, suggesting 
that weather is unlikely to be a significant factor.

The more probable cause of these deviations is the traffic conditions 
in the strait, as ferry boats may alter their routes to avoid collisions with 
other vessels. To investigate this hypothesis, we analyzed the relation-
ship between deviations and overall traffic density in the crossing area. 
Using AIS data from all vessels in the study area, we computed hourly 
time series representing the number of vessels present in the crossing 
area and compared this with the time series of deviation occurrences.

Fig. 16 illustrates the use of 2D matrix displays for these time series. 
Each row corresponds to a day, and each column represents an hour 
of the day. The left panel shows the hourly counts of deviation events, 
while the right panel visualizes the z-scores of total vessel counts in 
the crossing area. Positive z-scores are displayed as gray squares, and 
negative z-scores as white squares.

Our analysis reveals no apparent similarity between the temporal 
patterns of the two time series. This lack of correlation suggests that 
the deviations are not driven by overall traffic intensity. Instead, these 
anomalies likely result from specific configurations of vessels and their 
movements within the spatio-temporal vicinity of the ferry boats. In-
vestigating such localized interactions requires detailed examination of 
individual cases. Given that these situations are typically infrequent, in-
teractive visual analysis is a feasible approach.

The maritime traffic domain knowledge includes the fact that, under 
specific vessel configurations, a vessel may need to deviate from their 
planned route in accord with the International Regulations for Prevent-
ing Collisions at Sea (COLREGs). The latter consists of a set of rules and 
mitigation actions that apply worldwide to avoid collisions at sea. The 

most relevant rule for the area we examine relates to crossing vessels, 
as shown in Fig. 3. The prescribed mitigation action for two powerboats 
(vessels using engines) crossing at a risk of a collision is that the vessel 
that approaches from the left side the other vessel must deviate giving 
priority to the other vessel.

In our case study, 59 deviations occurred over eight days, with a 
maximum of 14 deviations per day and two per hour. In a real-time 
monitoring scenario, anomalies can be examined as soon as they are 
detected, ensuring timely insights into potential navigation issues.

A visual examination of three distinct cases of ferries deviating from 
their standard routes is presented in Fig. 17. The upper images display 
map fragments, providing spatial contexts for each deviation. On top 
of each route a vessel marker is depicted. The colored segments in the 
front of the markers indicate the left and the right side of each vessel. 
In a crossing situation, the vessel facing the red side of another vessel 
must give priority and move behind the other vessel (this movement is 
indicated with an arrow in top left and center figure in Fig. 17). These 
maps show the trajectories of vessels moving within the crossing area at 
the times the deviations occurred. The screenshots of space-time cubes 
below the maps further illustrate the temporal progression of these sit-
uations.

In the first case, a ferry heading toward the eastern port performed a 
maneuver to avoid a collision with a vessel crossing its route and mov-
ing northward. In the second case, a ferry bound for the western port 
deviated northward to give way to a vessel traveling from the north. 
The space-time cube reveals that the positions of the two vessels were 
in close proximity at one point. However, this apparent closeness could 
be an artifact caused by the coarse temporal resolution of the AIS data 
and the linear interpolation applied between recorded positions, which 
were sampled at intervals of approximately one minute. Both deviations 
appear to be in-line with the mitigation actions COLREGs define.

The third case depicts a more complex scenario involving multiple 
ferry boats traveling in parallel. This situation forced one of the ferries 
not only to deviate from its standard route but also to reduce its speed to 
avoid potential conflicts. Again, in this situation according to COLREGs, 
when vessels have their maneuverability restricted (often due to coast-
line, bathymetry or other vessels nearby), they must coordinate with 
nearby vessels to ensure a safe passage.

The visual analysis of the ferries deviations showed that most devi-
ations result from the application of the navigational rules for the area 
rather than an emergency scenario. Generally, for a deviation to comply 
with COLREGs in this area, we expect the vessel to deviate north when 
it moves towards west and south when it moves towards east. The map 
representation of the deviating segments in Fig. 14 shows that it is typi-
cally the case. Still, there are exceptions, which may deserve additional 
investigation using interactive visualizations.
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Fig. 16. 2D representation of the hourly time series of the counts of the deviations (left) and the overall intensity of traffic in the crossing area (right). The display 
on the right represents the normalized deviations of the vessel counts from the mean number of vessels in the crossing area. The positive deviations are shown in 
gray and negative in white.

Fig. 17. Visual exploration of details of individual deviations from standard routes. The upper images are map fragments showing the spatial contexts of the 
deviations. Below them, the spatio-temporal contexts are represented in a space-time cube. The ellipsoid markers at the origin of each deviation on the map indicate 
each vessel’s direction. The colored segments indicate sailing navigational lights that are located in the front part of each vessel, according to the International 
Regulations for Preventing Collisions at Sea (COLREGs) [46]. The vessels with arrows in the top-center and top-left figures indicate clear application of the COLREGs 
for powerboats crossing each other’s routes. In crossing situations, a vessel approaching another vessel’s left/red side ( port side in nautical terms) must avoid crossing 
ahead of her, while the other vessel has to maintain her course. In the top-right figure, multiple vessels approach the port area simultaneously restricting significantly 
their maneuverability, forcing vessels to reduce speed or even stop to avoid collision. Vessels in restricted maneuverability typically coordinate their actions to ensure 
safety at sea.

7.  Discussion

In this work, we proposed and demonstrated a set of visual analytics 
techniques for analyzing maritime vessel movements. We investigated 
the applicability and scalability of these techniques for different analysis 
tasks using both small experimental datasets and larger AIS datasets as 
proxies for real-world scenarios involving autonomous vessels. The dis-
cussion focuses on evaluating the methodologies, highlighting the chal-
lenges encountered, and considering the implications of the findings.

Scalability and adaptability of the methods. The techniques demonstrated 
in this study effectively scaled from analyzing a small experimental 
dataset of sea drones to a large AIS dataset of ferry movements across 
the Salamis Strait. Tasks such as anomaly detection, stability assess-
ment, and spatio-temporal exploration were successfully scaled to larger 
datasets through computational preprocessing, clustering, and filtering. 
The combination of interactive visualization and computational process-
ing proved essential for handling the volume and complexity of AIS 
data, while still enabling detailed examination of individual cases when 
needed. Table 1 summarizes our experiences as a general reusable work-
flow.

Insights into vessel behavior and anomalies. Interactive visual inspection 
is crucial for domain experts and maritime traffic operators to under-
stand events and assess the criticality of unusual and complex situa-
tions based on their domain knowledge. Our case studies demonstrated 
how the visual analytics approach revealed valuable insights into both 
normal and abnormal vessel behaviors. For example, deviations from 
standard routes were identified as artifacts of missing data, responses 
to specific vessel configurations, or compliance with maritime traffic 
rules such as COLREGs. The ability to discern such cases highlights the 
importance of combining domain knowledge with visual analytics for 
context-aware interpretation.

Challenges in data quality and real-time application. The study un-
derscored several data quality challenges, including missing position 
records, coarse temporal resolution, and potential inaccuracies in sen-
sor measurements. These issues limited the granularity of certain anal-
yses, such as determining precise collision risks. While the prepro-
cessing methods mitigated some of these challenges, their resolu-
tion remains critical for advancing real-time applications. Although 
we described how the analysis workflows could be adapted to real-
time monitoring, this requires efficient implementation of the com-
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Table 1 
Workflow for scalable visual analytics of maritime trajectory data. 
 Step of workflow  Task VA techniques Adaptation to large data
 Data preprocessing  Clean data Visualize attribute distri-

butions to set thresholds 
distinguishing valid val-
ues from errors

Aggregate data before visualiz-
ing and use suitable visualizations 
(e.g., histograms)

 Data preprocessing  Extract stop places Visually supported 
density-based clustering 
of stop positions; creating 
areas around clusters

Automatically extract stop posi-
tions using a speed threshold; di-
vide the study area into smaller 
spatial regions to process in par-
allel or iteratively

 Data preprocessing  Extract complete trips between stop places of interest Interactively select rele-
vant stop places; visualize 
and explore results of au-
tomatic extraction

Visualize summary statistics of ex-
tracted trips (e.g., path length, du-
ration); highlight extreme cases 
for inspection; set thresholds to 
exclude invalid results

 Model normal behaviors  Identify subsets of normal trips for each stop pair Density-based clustering 
of trips by similarity in 
shapes and movement dy-
namics; visualization to 
tune parameters

Apply clustering and visualization 
to manageable trajectory samples; 
sample from different time peri-
ods to verify consistency

 Model normal behaviors  Define normal behaviors Interactively select core 
cluster members and 
summarize into model 
trips

Construct model trips from sam-
pled trajectories, assuming fre-
quent typical patterns and diver-
sity of anomalies

 Detect and analyze anomalies  Identify anomalies Automatically quantify 
each trip’s similarity to 
the respective model; 
visualize distance statis-
tics; interactively inspect 
deviating trips

For very large sets of anomalies, 
aggregate deviations by grid cells 
and visualize spatial distribution; 
use spatial queries to extract out-
liers from selected areas

 Detect and analyze anomalies  Analyze temporal distributions of anomalies Visualize normal and ab-
normal behavior frequen-
cies in a calendar-style 
aggregated display

Aggregate data on a server, then 
visualize time-based summaries

 Detect and analyze anomalies  Examine details of selected trips Select anomalous trips in 
key locations (e.g., traf-
fic lanes); visually exam-
ine context and interac-
tions

After inspecting selected trips, use 
queries to extract similar cases 
and compare contexts

putational and visualization pipelines to handle high-frequency data
streams.

Applicability to autonomous vessel development. The findings demon-
strate that these techniques provide valuable insights for develop-
ing, testing, and operating autonomous maritime systems and manag-
ing other types of maritime traffic. The methods support key analyt-
ical tasks, such as identifying performance deviations, ensuring opera-
tional stability, and understanding the spatio-temporal contexts of vessel 
movements. By applying these techniques, developers can better eval-
uate system performance under varying environmental and operational 
conditions.

Implications for future research and development. Future research should 
focus on enhancing the integration of visual analytics with real-time 
decision support systems for autonomous vessels. This includes:

• Improving methods for detecting and visualizing interactions be-
tween vessels;

• Extending clustering and classification approaches for more robust 
handling of large datasets;

• Incorporating additional data sources, such as weather or current 
conditions, to contextualize anomalous behaviors further;

• Developing open-source tools and libraries to make advanced visual 
analytics techniques more accessible to researchers and practitioners 
in the maritime domain.

Limitations and generalizability. While the case studies demonstrated the 
effectiveness of the methods for analyzing ferry movements, their gener-
alizability to other vessel types or operational contexts requires further 

validation. For example, differences in vessel behavior, traffic density, 
and environmental influences may necessitate adaptations of the tech-
niques.

Still, our experience gained in this study allows us to outline sev-
eral general approaches that can support effective application of visual 
analytics techniques to large-scale spatio-temporal datasets (see also Ta-
ble 1):

• Aggregate before visualizing: Summarize large volumes of data 
using aggregation techniques (e.g., histograms, calendar matrices, 
spatial grids) to reveal overall patterns without overwhelming the 
analyst.

• Decompose spatially and temporally: Divide the dataset into 
smaller spatial regions or time intervals to make clustering and other 
computations more manageable and interpretable.

• Sample for modeling: Use representative trajectory samples for 
clustering and defining normal behaviors, assuming that frequent, 
typical movement patterns will dominate in the data.

• Preprocess on the server side: Perform aggregation and filtering 
operations server-side (or in batch processes) to prepare summaries 
suitable for interactive, client-side visualization.

• Preserve interactivity for discovery: Retain interactive tools for 
filtering, brushing, and selecting subsets of interest. Human-in-the-
loop exploration enables flexible refinement and contextual under-
standing of patterns and anomalies.

• Use scalable anomaly detection workflows: Quantify deviation 
from modeled behaviors, then aggregate and localize anomalies 
(e.g., by grid cells or time windows) to prioritize detailed inspection.
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These strategies provide a foundation for adapting VA techniques 
to large, complex datasets in maritime and other movement-related 
domains. They balance computational efficiency with the interpretive 
power of human-guided analysis.

Practical relevance. The techniques presented in this paper are intended 
to support real-world decision-making, particularly, in the preparation 
for deploying autonomous vessels in routine transportation operations. 
The ability to analyze historical data at scale is essential for training, 
evaluating, and fine-tuning autonomous systems based on observed be-
haviors and anomalies in human-operated operations.

As the techniques presented in this paper are applied in an offline, 
retrospective context, a question can be raised about their applicability 
in real-time scenarios. Generally, such scenarios rely heavily on automa-
tion, whereas human involvement becomes necessary in exceptional or 
unforeseen situations. In such cases, analysts require targeted visualiza-
tions that not only present relevant details clearly but also help direct 
attention to anomalies that may require human judgment.

While comprehensive discussion of real-time use cases is beyond the 
scope of this paper, the visual analytics techniques presented here lay 
the groundwork for future monitoring systems that combine automated 
detection with interactive, human-in-the-loop decision support in time-
sensitive scenarios.

8.  Conclusion and future work

This study demonstrated the scalability and applicability of visual 
analytics techniques for analyzing maritime vessel movements, using 
both small experimental and large AIS datasets. The proposed methods 
effectively addressed key analytical tasks, such as anomaly detection, 
stability assessment, and spatio-temporal exploration, while enabling 
insights into both normal and abnormal vessel behaviors.

The findings emphasize the value of combining computational pro-
cessing and interactive visualization to support the development and op-
eration of autonomous maritime systems. Despite these advancements, 
challenges such as data quality issues, coarse temporal resolution, and 
the need for real-time analysis remain critical areas for improvement.

To build on this work, future research should focus on:
• Developing real-time pipelines for efficient analysis combining algo-
rithmic methods with visualization.

• Enhancing techniques for detecting and analyzing vessel interactions 
under complex traffic conditions.

• Integrating additional data sources, such as weather and ocean cur-
rents, for richer contextualization.

• Testing and adapting the methods to diverse operational scenarios 
and vessel types.

Advancing visual analytics in maritime applications will improve sit-
uational awareness and operational safety, ultimately supporting the 
broader adoption of autonomous vessel technologies.
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