IT City Research Online
UNIVEREIST%(?qui)NDON

City, University of London Institutional Repository

Citation: catarau-Cotutiu, C. (2025). A model of functional creativity for generalisation
enhancement. (Unpublished Doctoral thesis, City St George's, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/36538/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

ﬂaﬁ
CITY

ST GEORGE'S

UNIVERSITY OF LONDON

CiTy ST GEORGE’S, UNIVERSITY OF
LONDON

A model of functional creativity for
generalisation enhancement

June 2025

Author:
Catarau-Cotutiu Corina

Supervisors:

Dr. Esther Mondragon
Prof. Eduardo Alonso

This dissertation is submitted for the degree of
Doctor of Philosophy
City St George’s, University of London
Department of Computer Science

Contents

1 Introduction 10
2 Motivation 14
3 Background 23
3.1 Creativity Theories 24
3.1.1 The four P’s Taxonomy 25
3.1.2 Product novelty taxonomies 26
3.1.3 Process based creativity theories. 28
3.1.4 Concepts and Conceptual space 28
3.1.5 Computational creativity theories 31
3.2 Functional creativity and Affordances 35
3.2.1 Affordances and temporality 36
3.3 Graph Representations in Cognitive and Computational Models 39
3.4 Representation Learning in Sequential and Hierarchical Tasks 42
3.5 Graph neural networks and attention 44
3.6 Reinforcement Learning 48

4 AIGenC: A Framework for Structured Generalisation and
Creativity 54
4.1 Concept processing component o7
4.1.1 Concept space 60
4.1.2 Memory systemo 62
4.2 Reflective reasoning component 65
4.3 Blending Component L. 68

5 AIGenC Concept Processing and Reflective Reasoning
Instantiation: SETLE (Structurally Enriched Trajectory

Learning and Encoding) 73
5.1 SETLE Ontology 75
5.1.1 Interactions and Objects 75
5.1.2 Affordances L. 76
5.1.3 Structurally Enriched Trajectories (SETs) 76

5.1.4 Hierarchical Memory Structure
5.1.5 Structured Data Source: CREATE Environment

5.2 SETLE: Hierarchical Graph Construction
5.2.1 SET Definition Through Random Exploration
5.2.2 Evaluating Methods for Concept Processing
5.2.3 Hierarchical Memory Structure

5.3 SETLE: SET encoder
5.3.1 Collecting data for training
5.3.2 Graph Encoder Architecture Based on Heterogeneous

Co-contrastive Learning (HeCo)

5.4 SET encoder experimental procedure
5.4.1 S1: SET Embedding Analysis: Margin and Loss Func-
tion Impacto
5.4.2 S2: Ablation Studies Emphasising the Model’s Design .
5.4.3 Performance Evaluation in Reduced-Complexity Envi-
ronments: MiniGrido 0L
5.4.4 Future Experiments on Complex Environments

AlIGenC in the Loop: Integrating Structurally Enriched
Trajectories into Reinforcement Learning

6.1 Overview of the Baseline RL Architecture
6.1.1 Training Procedure (CREATE Baseline)
6.1.2 Training Procedure (MiniGrid Baseline)

6.2 SETLE Integration in the Reinforcement Learning Loop

. 131

6.2.1 Two Approaches to Attention: Mackintosh vs. Transformer-

Based Mechanisms

6.3 Training Regimes and Experimental Design
6.3.1 Results in Physically Grounded Tasks (CREATE) . . .
6.3.2 Results in Symbolic Reasoning Tasks (MiniGrid) . . .
6.3.3 Cross-task episode embedding comparison

General discussion

Appendix: Slot-attention trainning and fine-tuning for ob-
ject discovery

133

150
156

159

183

B Appendix: Associative Strength Clustering for Long-Term

Memory Selection 188
B.1 Mackintosh-Based Associative Attention Mechanism 188
B.2 Python Implementation 189
B.2.1 Modified Mackintosh Attention Update 189

B.3 Visualisation of Associative Attention 190

C Appendix: Additional Logs and Visualisations 193
C.1 Trajectory-Level Behaviour 193
C.2 Attention Weight Visualisation 194
C.3 Episode Matching Frequency and Similarity 195

List of Figures

N —

O 1 O Ot = W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

AIGenC three component model architecture 55
Hierarchical concept space with object, affordance, and reward

layerso 61
Concept space encoding using graphs and hash map structures 64
A snapshot of the flow of information through the system . . . 65
Reflective Reasoning loop with memory and RL integration . . 68
Blending and Reflective Reasoning pipeline 70
DTI-Sprites reconstruction loss 84
DTI-Sprites reconstruction and segmentation failure 85
Segment Anything results on CREATE frames 86
Neural Statistician training metrics 89
PCA projection of action embeddings 90
Scatter plot of object interaction types 92
Hierarchical structure of a SET graph 93
Hierarchical memory architecture 94
Object-level representations from SAM 95
Interaction-level embeddings from ConvLSTM 95
Visualisation of object interactions in Neo4j 96
Neodj-extracted SETLE hierarchy of affordances and states . . 97
Training loss for extended alpha values 108
Training loss across different margin values 110
K-means clustering by task and outcome 111
Clustering under triplet vs. hybrid loss functions 113
Training loss curves for hybrid loss weights 119
PCA of episode embeddings across tasks 120
Clustering of episodes in complex Minigrid tasks 121
Clustering of episodes in Empty vs DoorKey tasks 122
Cross-task clustering of successful outcomes 123
Episode clustering within Empty-5x5 task 124
Reward curves for CreateLevel Buckets task 139
Reward comparison for SETLE optimisation strategies 140
Training loss with and without adapter 141
Q-value comparison with and without adapter layer 142
Average rewards across SETLE integration strategies 143
Loss curves with and without soft updates 144
Q-value stability using soft update 145

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
93
54
95
o6
o7

Stabilised training loss with soft updates 145

Remaining failure cases in CREATE tasks 146
Improved reward with full SETLE enrichment 147
Success rates in complex environments 148
Reward, loss, and Q-value comparison across strategies 149
Q-value behaviour in MiniGrid-Empty-5x5 151
Average reward per step in MiniGrid-Empty-5x5. 152
Cumulative reward in MiniGrid-Empty-5x5. 153
Success/failure counts in SimpleCrossingSIN1 154
Q-value evolution during SimpleCrossing training 155
Object embedding similarity across domains 156
Episode embedding similarity between task environments . . . 157
Hierarchical clustering of task embeddings 158
Slot Attention results on CLEVR 184
Slot Attention failure when transferring to CREATE 184
Slot segmentation after training on NVLRM 185
Mackintosh Object attention evolution over training 191
Final associative reward values per concept 192
Training statistics over trajectory data 194
Attention weights over retrieved ObjectConcepts 195
Episode matches retrieved at timestept =3 195
Episode retrieval frequency across strategies 196

List of Tables

1

Clustering Results for Success and Failure for SET encodings

at Different Margin Values 107
Comparison of Clustering Results for Random State Removal
vs. Complete Graphs 116
Impact of Flattening SET Hierarchical Structure on Clustering
Results o 117

Contributions

1. Catarau-Cotutiu, C., Mondragén, E., & Alonso, E. (2023, September).
AlGenC: Al generalisation via creativity. In EPTA Conference on Ar-
tificial Intelligence (pp. 38-51). Cham: Springer Nature Switzerland.

2. Catarau-Cotutiu, C., Mondragon, E., & Alonso, E. (2025). A represen-
tational framework for learning and encoding structurally enriched tra-
jectories in complex agent environments. arXiv preprint arXiv:2503.13194.
(Submitted to Neural Networks - Under Revision)

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my super-
visors for their invaluable guidance, support, and encouragement throughout
this research journey. Their insights and feedback were critical in shaping
the direction and depth of this work.

This research was supported by The School of Science and Technology’s
scholarships. I am grateful for this financial support, which made it possible
to carry out the work presented here.

Finally, I would like to thank my partner, my dog and my family for their
unwavering support, patience, and unwavering belief in me throughout the
years. This work would not have been possible without them.

Declaration

I hereby declare that I grant powers of discretion to the University Li-
brarian to allow the thesis to be copied in whole or in part without further
reference to the author. I hereby declare that, except where specific ref-
erence is made to the work of others, the contents of this dissertation are
original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of
work done in collaboration with others, except as specified in the text and
Acknowledgements.

Corina Catarau-Cotutiu June,2025

Abstract

This thesis investigates functional creativity as a mechanism for generalisa-
tion in reinforcement learning. Its main proposal is that agents can adapt
to novel tasks by recomposing structured representations of past experi-
ence, rather than relying on reactive policies or overfitting pattern inter-
polation. Inspired by cognitive models of creativity, we introduce a frame-
work (AIGenC) that conceptualises generalisation as the creative reuse of
abstract knowledge. Under this view, functional creativity is formalised as
the agent’s capacity to extract, decompose, and reassemble task-relevant
substructures, such as affordances, causal effects, and object relationships,
into new behavioural strategies. This theoretical proposal is instantiated
in a graph-based memory system that encodes episodic interactions as het-
erogeneous trajectories. Called Structurally Enriched Trajectory Learning
and Encoding (SETLE), it captures high-level structure in an agent’s expe-
rience, linking actions, objects, and outcomes across time and embedding
these trajectories using a hierarchical contrastive learning objective. Stored
in long-term memory, these structured representations are later retrieved
and matched by similarity, allowing agents to reuse subgraphs from prior
episodes selectively. SETLE is then integrated into a reinforcement learn-
ing loop, where memory-based enrichment informs both action selection and
policy optimisation. Retrieved graphs are filtered via attention or clustering
and injected into the agent’s working memory, effectively conditioning deci-
sions on structurally relevant past experiences. This enables zero-shot reuse
of behavioural knowledge and promotes sample-efficient learning. The com-
plete system is evaluated in two domains: CREATE, a continuous interaction
environment with tools and physical affordances, and MiniGrid, a symbolic,
discrete domain with sparse rewards and task diversity. In both settings,
SETLE-enhanced agents outperformed baseline models in terms of learn-
ing speed, generalisation to new goals, and trajectory optimality, validating
the practical impact of structured memory and creativity-inspired reasoning.
The framework is discussed in the context of both the advances and limita-
tions of current approaches, highlighting that generalisation remains bounded
by the diversity of prior experience, and unsupervised perceptual pipelines
(e.g., slot attention) often fail to transfer across domains. We conclude that
integrating conceptual abstraction, episodic memory, and decision-making
into a unified system is a step toward more adaptive, creative, and general
artificial intelligence.

1 Introduction

In recent years, artificial intelligence (AI) has achieved remarkable progress,
with reinforcement learning (RL) emerging as a powerful paradigm to en-
able autonomous agents to learn complex behaviours through interaction.
Despite its successes in domains ranging from games to robotics, standard
RL methods remain limited by their reliance on narrow, task-specific poli-
cies that often fail to generalise beyond the conditions encountered during
training. When exposed to novel environments, unseen task configurations,
or variations in object arrangements, these agents frequently exhibit a sharp
performance degradation. This fragility not only limits their real-world appli-
cability but also incurs significant computational cost: training agents from
scratch for each new task demands extensive simulation time, large datasets,
and considerable energy consumption. Recent studies have highlighted that
even state-of-the-art RL models require millions of environment interactions
to converge on a single task, often without transferable knowledge to similar
ones (Cobbe et al., 2020). This inefficiency motivates the development of
methods that promote generalisation and experience reuse, ideally enabling
agents to learn new tasks faster, with less data and compute. Addressing
both the problem of generalisation and the efficiency of learning thus consti-
tutes a critical step toward more robust and adaptable Al systems. This the-
sis investigates the problem of generalisation in reinforcement learning (RL)
by proposing a computational framework inspired by creativity informed by
insights from cognitive science. It is grounded in the hypothesis that gener-
alisation, as exhibited in human cognition, relies in part on creative problem
solving, specifically the ability to reorganise and recombine prior knowledge
to address novel challenges flexibly. Central to this process is the idea of
bootstrapping from partial experiences, leveraging fragments of past situ-
ations to infer viable actions in new contexts. By emulating this principle,
the proposed framework aims to go beyond memorisation, enabling agents to
construct enriched internal representations that support compositional rea-
soning and transfer. To explore this idea, a conceptual architecture named Al
Generalisation via Creativity (AIGenC) was developed and formalised in the
accompanying paper (Catarau-Cotutiu et al., 2023). AIGenC is designed to
support agents in structuring, storing, retrieving, and blending abstractions
from prior experience, thereby enabling adaptive behaviour across tasks that
vary in both surface form and underlying structure. By embedding this as-
pect of creativity into RL through concept spaces and enriched memory, this

10

work enables agents to tackle previously unseen tasks not through manually
designed knowledge or hard-coded priors, but by autonomously retrieving,
organising, and reapplying structures from their own past experiences.

At the centre of the AIGenC architecture lies a hierarchical concept
space,a graph structure with various levels and types of representations pro-
cured by the different components. This memory enables agents to represent
not just what occurred during an episode, but also how outcomes emerged.
Three core computational modules mediate an agent’s interaction with this
concept space:

1. Concept Processing: responsible for transforming raw perceptual input
into structured, graph-based representations

2. Reflective Reasoning: enabling the retrieval of past experiences based
on relevance and structural similarity

3. Blending: allowing for the adaptation and combination of retrieved
knowledge to generate novel solutions.

To instantiate these components in a concrete system, the second phase of
this research introduces SETLE (Structurally Enriched Trajectory Learning
and Encoding), as detailed in the paper ” A Representational Framework for
Learning and Encoding Structurally Enriched Trajectories in Complex Agent
Environments” (Catarau-Cotutiu et al., 2025). SETLE represents the reali-
sation of the Reflective Reasoning component of the AIGenC framework by
proposing Structurally Enriched Trajectories (SETS), graph-structured rep-
resentations that capture not only the temporal unfolding of agent experience
through states and actions, but also the higher-order relational structure
and affordance-based dependencies that span across episodes. By embed-
ding these structural abstractions within memory, SETLE enables agents to
retrieve, compare, and recombine meaningful sub-trajectories, thereby sup-
porting creative problem-solving and generalisation in novel environments.

Within this thesis, SETs are integrated directly into the reinforcement
learning training loop, enabling agents to generalise by using structured
knowledge acquired from previous episodes, representing the final part of this
research. This integration is realised through several key design elements:

1. A dual memory system comprising Working Memory (WM) and Long-
Term Memory (LTM), in which SETs are created, stored, and selec-
tively retrieved during learning

11

2. An attention-based enrichment mechanism that enhances the agent’s
current representation with subgraphs retrieved from LTM, based on
structural similarity to the current context

3. A comprehensive evaluation protocol that compares multiple learn-
ing strategies on two different environments: (1) baseline reinforce-
ment learning, (2) SET-based enrichment used only for action selec-
tion, (3) enrichment used for both selection and optimisation, and (4)
approaches augmented with adaptive modules and similarity penalties.

The contributions of this thesis are as follows:

Novel Contributions.

1. AIGenC: A Theoretical Framework for Creativity-Driven Gen-
eralisation (Chapter 4): A novel architecture that formalises general-
isation as creative knowledge reuse, comprising three integrated com-
ponents: Concept Processing, Reflective Reasoning, and Blending, op-
erating over a hierarchical concept space. This framework draws on
principles from cognitive science and representational reasoning to pro-
vide a principled approach to structured generalisation in RL.

2. Structurally Enriched Trajectories (SETs) (Chapter 5): A novel
graph-based representation that extends the standard RL trajectory
ontology to include objects, interactions, affordances, and hierarchical
dependencies. SETs capture not only temporal sequences but also the
relational and functional structure of agent experience. And comes
as an instantiation of several components of the AIGenC theoretical
template.

3. SETLE: A Hierarchical Graph Encoder for Trajectory Repre-
sentations (Section 5.3): A novel architecture for encoding SET's using
heterogeneous graph neural networks with meta-path-aware attention.
This encoder produces embeddings that support similarity-based re-
trieval and memory-guided reasoning.

4. Memory-Augmented RL Integration (Chapter 6): A novel method
for integrating structured episodic memory into the RL training loop,
including attention-weighted retrieval, graph-based state enrichment,
and stabilisation mechanisms (adapter layers, matching penalties, soft

12

updates) that enable effective knowledge reuse during both action se-
lection and policy optimisation.

5. Dual Attention Mechanism (Section 6.2.1): A novel combination of
Mackintosh-based associative attention for memory consolidation and
Transformer-style learned attention for retrieval, enabling complemen-
tary filtering of concepts for long-term storage and selective injection
during inference.

Adopted Methods and Components. The framework builds upon sev-
eral existing methods, which are evaluated and integrated rather than devel-
oped as part of this thesis:

e Object Discovery: We adopt the Segment Anything Model (Kirillov
et al., 2023) for zero-shot object segmentation after evaluating alterna-
tives including Slot Attention and DTI-Sprites (Section 5.2.2). SAM is
used as a pre-trained module without modification.

e Interaction Encoding: We employ a ConvLSTM architecture with
triplet loss for learning interaction representations (Section 5.2.2). While
the training procedure is tailored to our environments, the underlying
architecture follows established designs.

e Base RL Algorithm: The reinforcement learning substrate uses Dou-
ble DQN (Van Hasselt et al., 2016) as the policy learning algorithm
(Section 6.1), chosen for its stability and compatibility with our hybrid
action space.

e Graph Neural Network Foundations: The SET encoder builds on
Heterogeneous Co-contrastive Learning (Wang et al., 2021), adapting
its contrastive objective for episodic trajectory data (Section 5.3.2).

e Evaluation Environments: Experiments are conducted in CREATE
(Jain et al., 2020) and MiniGrid (Chevalier-Boisvert et al., 2023), both
existing benchmarks selected for their support of structured variation
and tool-based reasoning.

13

Empirical Contributions.

e Systematic evaluation across two domains (CREATE and MiniGrid)
demonstrating that SETLE-enhanced agents exhibit improved gener-
alisation, sample efficiency, and calibrated value estimation compared
to baseline models.

e Ablation studies validating the contribution of individual architectural
components (adapter, penalty, soft updates) to learning stability and
performance.

e Cross-domain analysis showing that trajectory-level embeddings cap-
ture functional similarity across environments with different visual and
symbolic characteristics.

In summary, this thesis outlines the AIGenC framework, its underlying
architecture, and the outcomes it offers to advance the frontiers of Al and
reinforcement learning.

2 Motivation

A persistent limitation in artificial intelligence lies in how knowledge is rep-
resented and reused. Many systems treat each task as an isolated prob-
lem, learning solutions from scratch without using structural regularities
across experiences. This limitation is particularly pronounced in reinforce-
ment learning (RL), where agents tend to specialise narrowly on the training
distribution, lacking mechanisms for abstraction, transfer, or creative recom-
bination. As a result, learning may be impaired in unfamiliar contexts, and
agents often fail to apply prior knowledge meaningfully. Common symptoms
include the development of overly optimistic policies due to recursive over-
estimation (Van Hasselt et al., 2016), as well as overfitting to task-specific
cues that do not generalise beyond the original environment (Cobbe et al.,
2020). These challenges highlight the need for structural representations and
memory mechanisms that support flexible knowledge reuse across tasks
Interestingly, these shortcomings do not necessarily stem from catas-
trophic forgetting (Kirkpatrick et al., 2017) or memory decay, but often re-
flect a deeper limitation in the design of learning algorithms. Most machine
learning systems, including many reinforcement learning agents, are built
on the simplifying assumption that training and deployment data are drawn

14

from the same underlying distribution (i.i.d.). This assumption rarely holds
in practice, where agents frequently encounter out-of-distribution (OOD)
states due to variations in tasks, environmental shifts, or novel object config-
urations. Since these algorithms are not explicitly equipped to reason about
domain shift, they often fail to adapt, resulting in brittle behaviour and sharp
drops in performance when deployed beyond the training distribution (Zhou
et al., 2022). Overcoming this limitation requires approaches beyond memo-
rising patterns, toward mechanisms that support structural abstraction and
experience reuse.

The situation intensifies when we consider AIl’s impressive pattern-matching
capabilities, particularly in deep learning, where models have demonstrated
superhuman proficiency in tasks within their training domain (Bengio et al.,
2021; Lyre, 2020). However, a contradiction arises when these models strug-
gle to apply the knowledge they have acquired to contexts that are signifi-
cantly different from their prior experiences. This conundrum raises a fun-
damental question: Why do Al systems exhibit superhuman competence in
one context while experiencing striking failures when confronted with a sim-
ilar yet distinct challenge? To address this puzzle, it is essential to delve
into the methods employed by deep neural networks. These networks occa-
sionally resort to shortcut strategies to achieve specific goals (Geirhos et al.,
2020). Shortcuts involve identifying spurious correlations within the data
that enable networks to complete tasks without understanding the underly-
ing structure of the input. They often encompass data interpolation, a pro-
cess of making ad-hoc adjustments that, while reducing errors, lack a genuine
understanding of the task. Interpolating agents, as a consequence, typically
struggle to generalise beyond their training task unless supplemented with
prior knowledge that extends their understanding beyond their training data.
As a result, models may appear competent while relying on surface-level cues
that fail to perform effectively under even minor distributional shifts.

RL exemplifies the challenge of poor generalisation in artificial agents.
Despite their capacity to learn complex behaviours and achieve superhu-
man performance in certain domains, for instance in game-playing Al (Silver
et al., 2017), robotics (Levine et al., 2018), and autonomous systems (Kiran
et al., 2021), RL agents frequently struggle to transfer acquired skills across
tasks, even when task structures are closely related. A common limitation
arises from the typical training and evaluation paradigm, where agents are
exposed to a single environment or a narrowly defined task. This restricted
exposure often results in the memorisation of high-reward action sequences,

15

rather than the development of strategies that generalise beyond the training
distribution. As a consequence, agents can overfit superficial task features,
bypassing the acquisition of broadly applicable competencies (Malik et al.,
2021). In the absence of structured internal representations, such as concepts
that capture the functional or relational properties of objects and actions,
agents tend to exploit transient regularities rather than acquire abstractions
that support transfer.

The difficulty of generalisation becomes more apparent when agents are
evaluated across tasks or environments that introduce structured variation.
Although most RL benchmarks are designed to assess performance within a
single task setting, only a limited number of testbeds, such as MiniGrid
(Chevalier-Boisvert et al., 2023), CREATE, and Meta-World (Yu et al.,
2020), offer systematic variations that facilitate the evaluation of general-
isation. MiniGrid introduces symbolic and spatial variability through layout
changes, whereas CREATE imposes tool-based variation by altering the set
of actions available to the agent across episodes. This tool-centric dynamic
forces agents to abandon fixed action policies and adapt to evolving task
affordances, thus providing a more stringent test of generalisation.

On the topic of generalisation, an important part of the narrative is played
by the recent advances in large language models (LLMs), which, in many
ways, shifted the narrative around generalisation in Al. These systems show
impressive performance on a wide range of benchmarks, often appearing to
generalise across modalities and tasks (Achiam et al., 2023; Touvron et al.,
2023; Bommasani et al., 2021). However, their success is largely attributable
to extensive pre-training in broad and diverse datasets, rather than to an
underlying capacity for structured, causal, or relational inference (Bender
and Koller, 2020; Marcus, 2020). Although LLMs can exhibit zero-shot gen-
eralisation to novel inputs, they often fail to apply familiar concepts ro-
bustly in new contexts, a limitation observed even in foundational work on
context-sensitive word representations (Dasgupta et al., 2020). This con-
text dependence suggests that, in the absence of compositional abstractions,
such systems rely heavily on the statistical breadth of their training data
to approximate generalisation. As a result, achieving systematic reuse of
knowledge across tasks often requires combinatorially large-scale data aug-
mentation, incurring substantial computational costs.

This distinction is critical: although LLMs simulate generalisation through
coverage and scale, they do not yet offer mechanisms for concept-level reason-
ing or grounded abstraction (Lake and Baroni, 2023; Mitchell and Krakauer,

16

2023). Without the ability to represent and manipulate meaningful relational
concepts, Al systems remain limited in their ability to transfer information
between structurally different contexts (Catarau-Cotutiu et al., 2023). Con-
sequently, there is a continued need for architectures that support explicit
compositional representations, particularly in domains characterised by high
environmental variability, embodied interaction, or dynamic task structure,
where exhaustively encoding all relevant conditions during training is infea-
sible (Garnelo and Shanahan, 2019; Catarau-Cotutiu et al., 2023).

Our hypothesis suggests that Creative Problem Solving (CPS) scenar-
ios could enable AI systems to learn explicit, versatile concepts that can be
adapted to novel situations, a step forward to solving the problem of general-
isation in Al (Catarau-Cotutiu et al., 2023). Generalisation is a natural pro-
cess by which individuals respond in the same way to different but similar in-
formation. Humans and other animals can map previous experiences to fresh
situations, thus adjusting to their environments efficiently, which machines
cannot (Momennejad, 2020; Murphy and Medin, 1985; Wu et al., 2018).
Successful adaptation often requires more than simply reusing information;
it calls for innovative solutions, such as crafting a tool from unconventional
materials (Catarau-Cotutiu et al., 2023). This capacity is often referred to
as transfer of learning, where prior knowledge can be efficiently applied to
novel contexts. One proposed mechanism underlying transfer learning in hu-
mans is compositional generalisation (or compositional transfer), the ability
to recompose learnt concepts into novel ones systematically.

In the context of AI, compositional generalisation has been studied in
natural language (Johnson et al., 2017; Lake and Baroni, 2018; Bahdanau,
2020; Gordon et al., 2019; Keysers et al., 2019; Lin et al., 2023) but has only
recently been approached by a few papers in RL (Kirk et al., 2023; Zhao
et al., 2022). Hupkes et al. (2020) introduced a categorisation framework
for compositional generalisation, developed for language but with parallels
to RL. This framework identifies five distinct forms of compositional gen-
eralisation. Compositional generalisation involves aspects like systematicity,
where Al systematically recombines known components and rules to extrapo-
late knowledge, productivity, which entails extending predictions beyond the
length of training data to foster Al’s capacity for innovation and adaptation,
substitutivity, reflecting the ability to generalise by substituting components
with synonyms or equivalents, localism, which examines whether model com-
position operations occur within specific data segments or apply globally
across the dataset, and overgeneralisation, assessing Al models’ adaptability

17

and resilience in the face of exceptions and outliers.

Achieving compositional generalisation ultimately hinges on how knowl-
edge is internally structured. Systematic recombination, abstraction, and
substitution of learned components require representations that encode not
just features, but relations and dependencies. Although deep learning archi-
tectures, especially in reinforcement learning, have made substantial progress,
they typically operate over dense, entangled representations that obscure con-
ceptual boundaries and inhibit reuse. This structural opacity undermines the
agent’s ability to generalise beyond the training distribution, despite surface-
level performance improvements.

Indeed, as deep networks increasingly match or surpass human bench-
marks in perception and language tasks (e.g., Ramesh et al. (2021); Bayer
et al. (2023); Yang et al. (2021)), their successes have fuelled the assumption
that such models possess abstract, human-like conceptual understanding.
Yet this impression is misleading. This illusion is nurtured by the assump-
tion that human-like performance implies human-like strategies, that is, by
the belief that behaving in a manner akin to humans presupposes similar
underlying cognitive traits. This fallacy is rooted in the prevalent notion of
computationalism and its disregard for the physical substrate of cognition
(Catarau-Cotutiu et al., 2023; Searle, 1980). The challenge here is that the
representations often need more structure to handle the nuanced forms of
compositional generalisation mentioned earlier effectively. Deep RL archi-
tectures, while powerful, tend to simplify the environment’s complexity by
processing raw input. However, this reduction often results in representations
that are not well-suited to systematically recombine known components (sys-
tematicity), extend predictions beyond training data (productivity), handle
component substitution (substitutivity), discern the scope of model compo-
sition (localism), or exhibit adaptability to exceptions (overgeneralisation).

To address these issues, we draw inspiration from CPS theories and learn-
ing theories to investigate the requirements and corresponding modelling
components that would enable a naive agent, which learns by trial and error
while interacting with an environment —i.e., an RL agent —to act efficiently
across domains in multiple tasks. This approach differs from standard deep-
RL architectures that merely reduce the complexity of the environment by
condensing raw input. A strategy that does not capture the higher-order
cognition needed to enable agents to acquire information that makes sense
of the structure of the world. Stimulus generalisation in the natural domain
is driven by the extant common elements present in the input. By virtue

18

of these commonalities, humans detect similarities between different sources
of information and are capable of transferring sensory knowledge from one
setting to another. Yet, stimulus generalisation relies exclusively on sensory
attributes that are often embedded within numerous irrelevant cues, both
similar and dissimilar, which may lead to inadequate or dysfunctional use of
information. Furthermore, stimulus generalisation is only a fraction of human
generalisation capabilities. For example, associations can also mediate gen-
eralisation to dissimilar cues, allowing the transfer of learning across different
sensory dimensions (Eilifsen and Arntzen, 2021). In addition, the role of com-
monalities can be extended to different levels of information (Mondragén and
Murphy, 2010). Thus, extracting suitable patterns and relationships capable
of bearing forward resemblance across situations beyond simple sensory in-
put is fundamentally adaptive as it enables humans to build up compressed
information; that is, to progressively reduce otherwise overwhelming stimula-
tion that would saturate their perception, and create hierarchies upon which
knowledge can be transferred. Generalisation and abstraction compress our
world to manageable proportions, make it familiar and permit transferring
knowledge to analogous scenarios (James, 1890).

In addition, the agent’s learning experience upon which concepts are to
be acquired is usually limited to single scenarios with features predominantly
extracted from a single sensory channel. Consequently, generalisation of per-
formance can only be achieved based on interpolation within the sensory
domain of the training set. Endowing artificial agents with core concepts,
abstract representations that capture meaning beyond the training context
(Chollet, 2019; Mitchell, 2021), that is, with a comparable capability of build-
ing and manipulating abstract information at different hierarchical levels, is
essential to achieve human-like performance. In the absence of such concepts,
current AT models produce non-optimal responses in unknown environments
and rely on large datasets and large numbers of parameters to produce seem-
ingly superhuman results (Reed et al., 2022), as is the case of transformers
in the popular GPT-3, whose impressive performance is due to it using 175
billion parameters and 45TB of text data (Rae et al., 2021).

Following (Olteteanu, 2020), we define different types of data collectively
as concepts, a consolidated unit that enables us to look for similarities and
match information parsimoniously. Accordingly, concepts are objects, events
and properties, all of which constitute the building blocks of meaning and so-
called common sense that allows humans to rapidly understand and interact
with novel scenes (Shanahan et al., 2020; Shanahan and Mitchell, 2022).

19

This is in contrast to current approaches of Al, where concepts are learnt
as undifferentiated feature vectors extracted from raw data, thus lacking the
abstraction needed to structure our thinking at a higher cognitive level.
The ability to apply a learned concept in closely matching scenarios is
referred to as near transfer. It involves allowing systems to reuse existing
knowledge across highly similar contexts, but it offers limited adaptability
when task structure or semantics deviate from prior experience. Achieving
more human-like behaviour requires going beyond near transfer, toward the
flexible reconstruction and modification of concepts to suit novel goals. This
process, known as displacement or creative transfer (Haskell, 2000), involves
recombining prior knowledge in new ways or forming entirely new abstrac-
tions to handle unfamiliar challenges. In such cases, simple generalisation
or approximation based on past data is insufficient; instead, agents must
engage in creative problem-solving, drawing from structural cues and con-
ceptual dependencies to generate new, context-sensitive strategies. The more
an agent can creatively reconfigure and repurpose previously acquired con-
cepts, rather than simply reuse them intact, the closer its behaviour aligns
with flexible, human-like generalisation. This motivates the need for archi-
tectural mechanisms that support not only transfer but conceptual transfor-
mation, particularly in reinforcement learning settings where environments
may differ in goals, tools, or underlying relational structure. CPS shifts
the focus of Al evaluation away from benchmark-specific performance and
toward agents’ capacity to generate novel solutions when faced with unfamil-
iar conditions. While standard benchmarks such as ImageNet (Deng et al.,
2009), GLUE (Wang et al., 2018), and SuperGLUE (Wang et al., 2019) have
driven progress in task-specific optimisation, they are increasingly limited in
their ability to capture broader generalisation. As Bowman and Dahl (2021)
observe, many popular NLP benchmarks are now saturated, state-of-the-art
models have surpassed human-level performance on tasks like GLUE and
SQuAD, yet continue to fail on simple test cases that probe the underlying
reasoning skills those benchmarks were designed to assess. These models of-
ten exploit superficial patterns or annotation artefacts in the data, giving the
illusion of competence while lacking a robust, transferable understanding.
Moreover, because many benchmarks are constructed under constrained
or artificial conditions, they do not reflect the variability and ambiguity of
real-world environments. As Raji et al. (2021) and others have argued, bench-
marks may obscure progress by promoting metric-driven competition rather
than structural improvement. This raises concerns not just about validity,

20

but also about the misalignment between benchmark success and meaning-
ful generalisation. In contrast, CPS emphasises flexible knowledge reuse
and concept recombination, capabilities that become increasingly important
when the similarity between tasks is low or ambiguous. As Malik et al.
(2021) notes, while reinforcement learning can exploit task similarity to aid
generalisation, when structural overlap is limited, creative solutions may be
essential. An agent displaying creative thinking should be able to generate
novel solutions from existing knowledge (Frith et al., 2021).

A recurrent misconception is that the implicit relations learned by neural
networks and captured in the weight matrices extracted from single sen-
sory information are sufficient to learn concepts with meaningful knowledge
(Doumas et al., 2008). Different studies challenge this assumption, showing
that deep networks frequently rely on shallow heuristics. In vision, convolu-
tional networks have been shown to prioritise local texture cues over global
shape information, despite human visual perception being primarily shape-
based (Geirhos et al., 2020). This reliance on low-level correlations suggests
that such models often succeed by exploiting surface regularities rather than
extracting high-level abstractions. Similarly, in natural language processing,
large language models tend to encode token co-occurrence statistics without
grounding their representations in semantic structure. Bender and Koller
(2020) argue that models like BERT (Jawahar et al., 2019) and GPT-2 lack
grounding in the external world and instead build internal representations
based solely on distributional patterns in text corpora. As a result, they may
produce outputs that are syntactically fluent yet semantically incoherent or
insensitive to pragmatic context.

In contrast, recent work by Piantadosi and Hill (2022) proposes a more
nuanced account grounded in conceptual role semantics. They argue that
meaning may emerge not through reference to the external world but through
the structured interrelations among internal representations. According to
this perspective, what gives a concept meaning is not its external referent,
but how it functions within a broader network of dependencies and inferences.
Evidence supports this idea: large language models increasingly approximate
human-like conceptual geometry and exhibit internal structure consistent
with human judgments. However, these representations are still incomplete.
As Piantadosi and Hill (2022) acknowledge, LLMs largely lack grounding in
sensorimotor experience, causal reasoning, and goal-directed interaction.

This motivates the need for hybrid representational architectures that
combine both implicit vector-based structure (capturing internal role seman-

21

tics) and explicit, externalised relational structure (capturing environmental
dynamics). To achieve flexible cross-domain generalisation, agents must inte-
grate richer forms of knowledge, including affordances, temporal dependen-
cies, and causal relationships—features that describe how entities interact
over time and how actions affect the world. These are not easily recoverable
from static sensory correlations alone. Recent surveys underscore the limi-
tations of vision-only systems and advocate for the integration of non-visual
contextual cues in achieving robust generalisation (Zhai, 2023). By encoding
both internal and external dimensions of conceptual structure, we aim to
equip agents with something akin to common sense Shanahan et al. (2020):
the ability to infer latent properties such as intentions, goals, and functional
constraints that are not directly observable. In our approach, this form of
grounded knowledge is not pre-specified, but acquired through structured
interaction with the environment—simulated using reinforcement learning
(Sutton et al., 1998).

In traditional RL scenarios, agents disregard by design most of the in-
formation provided by the environment, learning simple policies (sequences
of actions that accumulate rewards) linked to global states. Although, in
theory, states in RL can represent any type of information, in practice, RL
implementations work primarily on states in which only sensory data is en-
coded (Badia et al., 2020; Vinyals et al., 2019). In so doing, states are
monolithic entities that do not allow for the construction of concepts and
their transfer. We argue that to achieve more robust concept representa-
tions, an agent cannot rely on raw sensory information only, but rather it
must learn by trial and error the functional and contextual information that
accompanies it. Thus, we need to exploit these enhanced representations as
a first step towards achieving a creative agent that can adapt to new tasks
in RL scenarios. Suppose we wish to provide an agent with the ability to
adapt knowledge creatively. In that case, we need to expand the RL frame-
work with a mechanism that enlarges the set of actions and makes creative
problem-solving viable. There have been several approaches to enriching RL
with CPS capabilities. Recently, Gizzi et al. (2020) developed a formal model
that encapsulates states, actions, and policies under a single concept space
on which they defined different creativity functions (e.g., combination, trans-
formation). Similarly, Colin et al. (2016) drew a parallel between Wiggins’
Creative System Framework (2006) and hierarchical reinforcement learning.
The Creative System Framework (Wiggins, 2006) interprets creativity as a
concept search within a problem space and a meta-search of problem spaces.

22

Colin et al. (2016) made these two levels of search equivalent to searching the
object space in the environment and searching the policies in the RL space.
Despite the theoretical relevance of these approaches, they are high-level for-
mal proposals which do not offer specifications on how to integrate CPS and
RL. Our work aims at formulating a computational framework for machine
learning implementations that incorporate CPS in a deep RL environment.

To address these shortcomings in generalisation, this thesis proposes a
computational framework inspired by creativity, drawing from cognitive sci-
ence theories of concept formation and transfer. The goal is to explore how
agents can go beyond rote generalisation by creatively reorganising and reap-
plying prior knowledge in unfamiliar contexts. This perspective requires a
data representation structure that supports abstraction, compositionality,
and relational reasoning. Crucially, the thesis posits that knowledge must be
structured in a discoverable and reusable way by the agent itself, without rely-
ing on human-curated symbolic scaffolding. This emphasis on self-organised,
structured knowledge serves as the foundation for the next chapter, where
we present the theoretical underpinnings of creativity, reinforcement learning,
and graph-based representations that inform the proposed approach.

3 Background

In this section, we cover the theoretical background underpinning our pro-
posed model. Our examination commences with an investigation into the
types of creativity and creativity theories, specifically focusing on functional
creativity. We examine the intricate landscape of concept spaces and their
profound significance in cultivating creative cognitive processes. Concepts,
recognized as fundamental units within the creative paradigm, are discerned
not as isolated entities but as components intricately interlinked within a
dynamic web of associations. Within the landscape of functional creativ-
ity, the critical notion of affordances emerges. Affordances serve as pivotal
bridges between abstract conceptualizations and actionable, tangible out-
comes, significantly shaping how individuals engage with their surroundings
and manipulate their environment to manifest creative ideas.

Further in this theoretical exploration, we examine the principles of re-
inforcement learning (RL), a framework foundational to intelligent decision-
making. RL describes how agents adapt to their environment through it-
erative interaction and feedback, learning to select actions that maximise

23

long-term outcomes. Crucially, it also raises questions about how knowledge
is represented and reused, particularly in settings that demand adaptation
to unfamiliar situations, a core concern for creative problem solving.

To address these challenges, we turn to representation learning, which
seeks to construct internal models that capture the salient structure of the
environment in a form amenable to generalisation. Within this context, mem-
ory becomes a critical component: agents must not only store past experi-
ences but access and recombine them to inform future decisions. Structured
memory architectures, particularly those that encode relational information,
provide a foundation for this kind of reasoning.

We therefore introduce the notion of graphs and graph neural networks
(GNNs), which offer a versatile and expressive framework for representing
entities, their interactions, and temporal dynamics. In domains where cre-
ative adaptation is essential, graphs enable the encoding of compositional,
relational, and affordance-based structures, qualities necessary for agents to
move beyond pattern recognition and toward flexible conceptual reuse.

In summary, this section serves as the theoretical underpinning for our
subsequent discussion of the proposed model. It elucidates the foundational
theoretical elements that inform the model’s design and functionality, laying
an academic foundation upon which the creative capacities of our model will
be elucidated and explored.

3.1 Creativity Theories

To achieve our research objectives, we conducted an extensive literature re-
view on computational creativity and machine learning. Our exploration
began with examining existing creativity taxonomies and theories, followed
by an in-depth analysis of AI models that can assist us in achieving CPS.

Creativity is a complex concept that has been studied from various per-
spectives, including psychology, philosophy, cognitive science, and computer
science. As a result, different definitions and requirements must be consid-
ered when developing a creative system. In computational creativity (CC),
numerous definitions have been proposed over time, with some emphasizing
the importance of value, novelty, and surprise.

24

3.1.1 The four P’s Taxonomy

First, we will utilise Rhodes’ four P’s taxonomy of creativity to categorise
our research properly. Even though our aim is not to replicate creativity
in humans, we still need to scope out the creativity research pertinent to
our goal of improving generalisation in RL agents by taking inspiration from
CPS. Rhodes’ taxonomy divides creativity research into four areas: person,
process, press, and product. The ”person” component focuses on the indi-
vidual traits necessary for creativity, such as mental adaptability and the
ability to redefine concepts. The "process” component involves the steps
taken to produce a creative artifact. The "press” component refers to the
influence of society and external factors on the creative process. Finally, the
"product” component examines the characteristics necessary for a creation
to be considered innovative.

To create a model that takes inspiration from the creative problem-solving
abilities of a person, we need to evaluate how knowledge is structured in
the minds of creative individuals. Understanding the process of acquiring
concepts is crucial in developing a knowledge space which enables creativ-
ity. Although Rhodes’ taxonomy separates ”"person” and ”process”, there is
overlap in the research fields, as some traits of creative individuals are also
necessary for the creative process.

The taxonomy also presents the social perspective of creativity - or the
press element. Environmental factors at all stages of life form a psycholog-
ical press (Rhodes, 1961) that may be either constructive or destructive to
creativity. Humans usually belong to different environments, and the press
component refers to how a person processes their environment and how the
environment influences creativity, such that some products of creation are
just responses to the social needs of time or climate. ”The existing and
overwhelming influence of causes for invention is proved by the frequency
of duplicate invention, where the same idea is hatched by different minds
independently at about the same time.”

The final P refers to product, Rhodes (1961) specifies that an idea be-
comes a product the moment it is embodied in something tangible. Usually,
product-based research focuses on the evaluation component of the artefact
produced by a creative system; this can be anything from art pieces, math-
ematical theorems or even adaptability to the environment.

This taxonomy is particularly useful in framing our research goals, as it
highlights that creativity-related constructs—such as process, product, and

25

person—are interdependent rather than mutually exclusive. Our primary
focus lies in creative problem-solving, which emphasises the process of gen-
erating novel solutions by reorganising existing knowledge. In this thesis, we
aim to emulate the dynamics of this process in artificial agents, specifically in-
vestigating how structural representations and memory mechanisms can sup-
port the emergence of creative behaviour. While our model operationalises
creativity through process-based mechanisms (e.g. graph recombination and
enrichment), we also recognise that these processes are shaped by aspects of
mental representation (person) and result in measurable performance out-
comes (product). The following section outlines key theoretical perspectives
on the characteristics of creative output in problem-solving contexts, which
will later serve as a comparative framework for analysing the behaviour of
our system.

3.1.2 Product novelty taxonomies

Diverse interpretations of creativity exist, each accentuating aspects of the
four P’s, resulting in a plethora of assessment methodologies. In our en-
deavour, the central objective revolves around developing a model that takes
inspiration from the process of generating creative output, necessitating an
emphasis on process-oriented evaluation. This premise holds significance
in light of the prevailing trend in creativity assessment, which frequently
gravitates toward methods rooted in divergent thinking. Had our study
primarily focused on the creative product, we might have readily adopted
established theoretical frameworks such as the ”Creative Product Semantic
Scale” (O’Quin and Besemer, 1989) or the ”Consensual Assessment Tech-
nique” (Baer, 2020). These frameworks typically involve external human
evaluators who assess creative outputs. However, such conventional evalu-
ations risk sidelining the creative potential of agents that may have yet to
earn the favour of a specific audience.

Our process-oriented approach seeks to mitigate this inherent bias and
instead focuses on the personal experience of creativity. This perspective,
akin to the principles of compositional generalisation in machine learning,
underscores the role of creative processes in reshaping and disseminating
knowledge in novel and innovative ways. Just as compositional generalisa-
tion in machine learning emphasises the systematic recombination of known
components and rules to extrapolate knowledge into novel ones, our creative
process-centric evaluation seeks to unravel the dynamic processes through

26

which creative ideas and insights are generated, shaped, and communicated.
This alignment between compositional generalisation and creativity under-
scores the synergy between these domains. It emphasises the potential for
using insights from one field to enrich our understanding and modelling of
the other.

As the research falls under the investigation of " personal creativity”, even
intra-personal creativity has different levels of magnitude. Therefore, we
need to identify where on the creativity spectrum everyday creative problem-
solving lies. Boden (1996) mentions two types of creativity: P-creativity
(psychological), which refers to an idea being considered innovative with
respect to the creator’s mind, and H-creativity (historical), which includes
being P-creative but also new to the whole of humanity. The second type
is usually glorified and associated with brilliance and genius. However, our
main aim in developing a model for creative behaviour is to enhance the
ability of artificial agents to generalise, which hinges on their sense-making
skills. So, we focus on P-creativity because the underlying creative process
remains the same whether an idea is groundbreaking for everyone or just new
to the agent creating it. Differences may arise from individual viewpoints or
external influences (referred to as "person” or "press” factors), but these
aspects are beyond our research scope. Our core goal is to understand and
model the common processes involved in creative problem-solving, ultimately
improving the generalisation capabilities of Al agents.

The realm of P-creativity has an extensive scope, encompassing a wide
range of activities, from the simple act of using a pen to stir a cup to the
more complex task of devising a novel method for adding numbers up to 100.
To narrow our focus and effectively evaluate our agent’s creative capacity, we
must delineate the level of novelty we aim to attain. It’s essential to recognise
that creativity isn’t a binary concept but rather a matter of degree.

Kaufman and Beghetto (2009)’s insightful perspective on creativity as
a gradient phenomenon offers valuable guidance. He suggests that creators
progress along a continuum, transitioning from one level of creativity to
another. In this context, Kaufman’s 4C model of creativity provides us with
a framework to pinpoint the specific level of novelty and specificity at which
we intend to assess our outputs.

Our interest primarily lies in the domain of creative problem-solving
(CPS) and creativity’s role in generating personally meaningful insights.
CPS, as a form of everyday creativity, encompasses a wide range of cognitive
activities, such as students articulating newly grasped concepts or individ-

27

uals reinterpreting ideas through novel metaphors. This level of creativity,
often called mini-c creativity, is deeply embedded in the learning process. It
does not require dramatic innovation but involves internal restructuring and
reinterpretation of existing knowledge in a meaningful way to the learner.

In our context, this restructuring may not immediately appear ”creative”
in the colloquial sense. Yet the ability of an agent to adapt flexibly, reor-
ganise prior experiences, and apply them to new situations lies at the core of
creative cognition. The transition from mini-c to little-c creativity, marked
by observable novelty and problem-solving efficacy, serves as a developmental
trajectory in humans and artificial agents. This progression aligns with our
broader objective of designing agents capable of robust generalisation and
knowledge transfer.

Our approach embraces the idea that creativity is not solely about gen-
erating entirely new knowledge, but about reconfiguring existing structures
to address novel challenges. In this thesis, we operationalise these processes
through mechanisms that support structural abstraction, relational memory,
and representational reuse, laying the groundwork for machine creativity
grounded in adaptive problem-solving.

3.1.3 Process based creativity theories

Once we decided on our agent’s desired level of creativity, we proceeded
to review existing theories on the creative process. This included examining
both computational creativity and psychology perspectives to understand the
mechanism behind creativity better. By understanding this mechanism, we
could select the appropriate data structures and components to incorporate
into our model. Our goal was to create a more robust and transferable way
for artificial agents to learn and solve problems by drawing inspiration from
cognitive models of creativity.

3.1.4 Concepts and Conceptual space

Understanding theories of creativity requires first acknowledging the central
structure within which creative processes are thought to occur: the con-
ceptual space. This space serves as the cognitive substrate where concepts
are represented, manipulated, and recombined, making it fundamental to
models of creativity and generalisation. To determine which characteristics
a computational model must incorporate, we must examine the theoretical

28

foundations of conceptual spaces, particularly the nature of the concepts that
populate them. This involves surveying various cognitive and philosophical
accounts that define what constitutes a concept and how these units con-
tribute to structured thought and creative reasoning.

In the 1970s, Rosch’s influential work on colour categorisation (Rosch,
1975) challenged the classical view of categories as being defined by nec-
essary and sufficient conditions. Her findings demonstrated that category
membership is often graded, with some instances perceived as more proto-
typical than others. This theory of graded category structure posits that
concepts emerge not from formal logical criteria but from statistical regu-
larities in perceptual and functional experience. In many ways, this view
parallels how categories are learned in modern machine learning systems.
For instance, unsupervised learning algorithms such as clustering identify
groupings of data points based on feature similarity, often forming dense re-
gions in representation space that reflect prototypical examples, analogous to
human prototypes. These learned structures exhibit many of the properties
described by Rosch, including graded membership and flexible boundaries,
offering a computational realisation of cognitive theories of categorisation. A
range of theoretical and computational approaches have since been proposed
to explain the graded structure of categories, each offering distinct insights
into how concepts are represented, organised, and flexibly applied—moving
beyond the fixed, rule-based assumptions of classical categorisation theories
(Gabora et al., 2008).

1. Prototypes (Rosch, 1975, 1973, 2024): A concept is defined by a collec-
tion of characteristic features, rather than specific defining ones. These
features are weighted to create a prototype, which serves as a reference
point for categorising new items. To be classified under a certain con-
cept, an item must be similar enough to the prototype. The prototype
consists of features, each with weight or applicability value. Unlike
traditional category definitions, prototypes do not require uniform at-
tributes or predetermined limits.

2. Exemplar Theories (e.g. (Medin et al., 1984; Nosofsky, 1988; Heit,
1996)): A concept is represented by a set of instances stored in mem-
ory. Each exemplar has uniquely weighted features, and a new item is
categorised based on its similarity to the most salient exemplars.

3. Concepts as Theories: Concepts take the form of 'mini-theories’ (e.g.

29

(Murphy and Medin, 1985)) or schemata (Rumelhart and Norman,
1983), in which the causal relationships amongst features or properties
are identified. As such concepts do not stand independently but belong
to larger systems and are viewed as interconnected within theories or
networks, with context-dependent effects readily incorporated.

4. The Geometrical Approach: Géardenfors (Gardenfors, 2004) introduced
a geometrical approach that considered dimensions (e.g., color, pitch,
temperature, weight) and their relationships. This approach distin-
guished between integral and non-integral dimensions and defined prop-
erties as convex regions in domains. Concepts were seen as sets of
convex regions across multiple domains, with context-dependent com-
binations modelled by replacing regions from one concept with those
from another.

We draw inspiration from the geometrical approach of Gardenfors (2004)
and the concept of a conceptual space built from geometrical representa-
tions. This space is based on several quality dimensions, as mentioned ear-
lier. Gardenfors’s geometric representations serve as an intermediary between
symbolic and sub-symbolic representations. In this conceptual space, quality
dimensions are based on perception or sub-symbolic processing, while regions
in the space are abstract symbols known as concepts. The distance between
entities in this space represents their similarity, and the quality dimensions,
as specified by Gardenfors (Gardenfors, 2004), represent various ”qualities”
of objects. Specifically, they are used to assigning properties to objects and
specifying relations among them.

To expand a conceptual space, one can begin with a set of dimensions that
are augmented through the learning process. These dimensions can include
base concepts, perceptible through sensory inputs, as well as functional rep-
resentations like object functions and social roles, which are defined by their
actions. The development of complex concepts requires the construction of
these higher-level ideas from the base concepts, requiring information to be
encoded at multiple levels. Clark et al. (2021) delves into this topic by ex-
ploring formalising concepts. Bechberger and Kiihnberger (2017) introduce
several operations in a formalisation of the concept space that can be used to
create new concepts from existing ones and describe relations between con-
cepts. An important property is distance, which is a measure of similarity
for concepts, as it allows for a natural representation of classes of entities.

30

One of the main hurdles with Géardenfors’ view when adapting it to an
artificial setup is the origin of the features or dimensions. In artificial agents,
a finite initial set of features can be provided manually by a knowledge en-
gineer (Russell and Norvig, 2016). However, bottom-up concept building
becomes unscalable as the problem complexity and feature count increase.
Deep learning tools could enable an agent to extract the unsupervised fea-
tures relevant to a given task and scenario, and build concepts based on
those. This will remove the intermediator and allow the agent to filter an
unlimited set of possible features. Yet, as the world becomes more complex,
it is harder to define concepts in terms of features alone. Representing the
concept space hierarchically, such that the combination of low-level concepts
enables the definition of more complex ones, is thus essential.

In this section, we have discussed the fundamental features of concepts
and conceptual space, as outlined in the theoretical literature. We aimed
to highlight the importance of these traits, including adaptability within
and across dimensions, as well as the ability to combine concepts to create
a model that facilitates functional creativity. In the following sections, we
will explore various theories related to computational creativity, with a fo-
cus on functional creativity. These theories will primarily operate within a
conceptual space with properties similar to those outlined in this section.

3.1.5 Computational creativity theories

Boden (1996) conceptual space theory offers valuable insights into compu-
tational creativity, distinguishing between three primary types of creativity:
combinatorial, exploratory, and transformational. Unlike earlier creativity
theories that mainly emphasised novelty and the audience’s perspective, Bo-
den’s theory delves into the underlying mechanisms that drive these creative
processes.

Combinatorial creativity, the most accessible form, involves the novel jux-
taposition of previously learned elements. It operates within a fixed concep-
tual space, drawing new connections between existing ideas, often through
associative mechanisms. This process of forming associations is known as
"associative learning” and enables us to link seemingly unrelated elements in
our minds. This can be observed in artificial setups, where the agent recom-
bines previously experienced object-action tuples retrieved from structurally
similar episodes and reuses them in novel task configurations.

"Exploratory creativity,” on the other hand, involves navigating through

31

a multidimensional conceptual space defined by various axes, such as x, vy,
and height. Within this conceptual space, individuals embark on a journey of
exploration, uncovering new instances and ideas that have remained hidden
within the existing boundaries. It is akin to charting uncharted territories
within the existing creative landscape. This form of creativity can manifest
in artificial agents as, rather than just copying past data, the agent selectively
matches, filters, and recombines structurally relevant components (such as
affordances or object relations) to construct plausible new solutions. This
behaviour reflects an internal exploration of the space of achievable plans,
enabled by structural generalisation rather than rote memorisation.

Notably, Boden’s theory challenges the notion that ”transformational cre-
ativity” is impossible. The feasibility of creativity, whether deemed possible
or impossible, is closely tied to the current confines of the conceptual space
in which an agent operates. When this concept space transforms, such as
expanding to encompass new quality dimensions, the seemingly impossible
can become possible, reshaping the creative landscape.

In exploring Boden’s conceptual space theory, we gain insights into the
essential functions that any creative agent must possess. This underscores
the necessity for dynamic conceptual spaces capable of adaptation and evo-
lution, accommodating the fusion of concepts, relations, and dimensions.
Such adaptability fosters the generation of fresh and imaginative ideas. Fur-
thermore, this discussion relates to our earlier conversations on the broader
topics of generalisation in Al and compositional generalisation, emphasising
the dynamic nature of conceptual spaces in creative Al systems.

Achieving all three types of creativity within a single system can be a
formidable undertaking. To tackle this challenge methodically, we will com-
mence our journey by striving for combinatorial creativity in the context
of Creative Problem Solving (CPS). As per Boden’s insights (Boden, 2009),
combinatorial creativity stands out as the most accessible starting point.
Our Al system will initially manifest combinatorial behaviour and subse-
quently progress towards embracing transformational creativity. The crux
of our approach lies in leveraging the combinatorial operation, a cornerstone
for artificial systems. This operation empowers systematic generalisation, fa-
cilitating the generation of fresh combinations, including those absent from
the training data and even those bearing zero probability within the training
distribution (Goyal and Bengio, 2022). It’s crucial to note that these new
combinations failed to surface in the training data and would remain absent
even if we had access to an infinite volume of training data from our distribu-

32

tion. Boden’s comprehensive theory equips us with a repertoire of operations
that delineate diverse forms of creativity. Our primary aim is to adapt these
creative facets to the realm of problem-solving, with a paramount objective
of enhancing sense-making capabilities within our Al agents.

Boden’s framework identifies combinatorial creativity as generating new
ideas through novel combinations of familiar concepts, without altering the
underlying conceptual space. Conceptual blending, as introduced by Fau-
connier (Fauconnier and Turner, 1998), provides a cognitive mechanism for
formally modelling this type of creativity. While Boden focuses on the kinds
of creativity and the structure of conceptual spaces, Fauconnier provides a
detailed account of how mental operations within and across these spaces can
give rise to new meaning. This theory serves as a framework for problem-
solving and sense-making, comprising four distinct spaces. Concept blending
is a powerful domain-independent technique that allows us to avoid relying
on specific dimensions. The Conceptual Integration Networks (CIN) space is
abstract and further divided into three smaller mental spaces: input, generic,
and blend. Mental spaces are small conceptual units constructed as we think
and talk, with the purpose of local understanding and action. These spaces
are partial assemblies that contain elements. Although conceptual and men-
tal space definitions differ, they share the similarity of being represented
geometrically, as Fauconnier portrays them. Mental spaces are represented
by circles, with elements being points or icons within the circles, and lines
represent connections between elements. This supports the idea of "the ge-
ometry of thought”. Although Fauconnier’s work (Fauconnier and Turner,
1998) did not directly investigate creativity, blending as a general cognitive
operation enables dynamic and active concepts during thinking. Fauconnier
identifies the construction and operation of blends as a creative process.

Our problem-solving approach involves interpreting the spaces of blending
theory. The input space consists of concepts extracted and processed from
the environment, such as the tools and context of a problem. The generic
space contains elements shared among the input spaces and can be used
to identify equivalence relations. In CPS, this can help us find similarities
between previous and current problem requirements. The blend space is
formed by combining elements from all the spaces (input and generic), but
some elements from the input spaces can be merged before being added to
the blend space.

A critical concept in this theory is selective projection. When using con-
ceptual integration networks to solve a problem, only some aspects from the

33

input spaces will be chosen to be added to the blend space if they are helpful
in solving the problem. This can lead to the creation of new structures in the
blend space. Selective projection is a necessary and exciting process, and we
need to explore different machine learning methods to achieve it. The mech-
anism behind selective projection is not described in Fauconnier and Turner
(1998), but in our work on creative problem solving, we combine existing
concepts to create new ones. This process required a selective projection
mechanism, as not all features from each concept are necessary to solve the
problem.

Both Boden’s and Fauconnier and Turner’s theories of creativity share
a foundational emphasis on the recombination of ideas drawn from different
conceptual sources. Whether through the traversal of conceptual spaces (Bo-
den) or the dynamic integration of mental spaces (Fauconnier and Turner),
creativity is consistently framed as a process of connecting previously un-
linked structures in novel and meaningful ways. This theme resonates with
Arthur Koestler’s influential theory of bisociative thinking, articulated in
The Act of Creation (Koestler and Burt, 1964), which further grounds the
idea of creativity in the intersection of disparate cognitive domains.

Koestler introduces bisociation to distinguish between associative think-
ing within a single frame of reference and creative thinking that bridges
multiple frames. If an idea can be associated with two frames of reference,
F1 and F2, it becomes bisociated with both. The term bisociative implies
that creative thinking should allow an idea to be perceived in multiple frames
of reference.

What makes Koestler’s account particularly relevant to our focus is its
functional orientation. He defines a matrix as “any ability, habit, or skill, any
pattern of ordered behaviour governed by a code or fixed rules,” highlighting
that creativity involves not only abstract reasoning but also the repurposing
or recombination of functional behaviours.

This perspective aligns closely with our view that skills and actions are es-
sential components of the concept space in Creative Problem Solving (CPS).
The capacity to creatively reframe a task involves associating it with alterna-
tive functional structures or behavioural repertoires. This idea will be further
developed in the following section on functional creativity and affordances,
where we shift focus from conceptual abstraction to how agents perceive and
act upon possibilities in the environment, and how these affordances enable
novel solutions through the composition and repurposing of action schemas.

34

3.2 Functional creativity and Affordances

While the previous section surveyed general theories of creativity, this work
focuses on a specific subset: functional creativity. We must distinguish clas-
sical problem-solving from Creative Problem Solving (CPS) to understand
functional creativity. Traditional problem-solving tasks are typically defined
by fixed initial and goal states and rely on well-established operators. In con-
trast, CPS tasks are characterised by incomplete or underspecified conceptual
spaces, requiring the agent to expand or reorganise its internal representa-
tions to generate a solution. For example, CPS may involve designing a
novel mechanism using a constrained set of parts or creatively reconfiguring
an incomplete system to achieve a target function (Olteteanu, 2020).

CPS aligns closely with Gestalt theories of insight, such as Karl Dunker’s
distinction between reproductive thinking, which involves applying known
solutions, and productive thinking, which requires restructuring the problem
representation to enable a novel insight. Functional creativity embodies this
latter process, allowing agents to explore and extend their concept space,
create new combinations, and reinterpret known structures in novel ways.

In our previous section, we discussed how an agent’s tasks and environ-
ment can encourage or hinder their creativity. Humans gain different associ-
ations with stimuli by engaging with their environment in various everyday
tasks, which they can utilise in the future. Functional creativity is a crucial
mechanism that compels agents to explore and modify their concept space to
develop alternative solutions to a problem. The ability to adapt and provide
alternative solutions to a given environment is a vital aspect of generalisation
in artificial agents.

According to Olteteanu (2020), creative problem-solving should include
varied desiderata such as visuospatial inference, creative use of affordance,
concept generation and structure transfer, insight, and re-representation.
Olteteanu’s research provides a theoretical framework for creative problem
solving in artificial agents, allowing diverse creative problem-solving pro-
cesses to occur. The knowledge encoding should be done at three different
levels: feature space, concepts, and problem templates, stating that a concep-
tual space structure that is appropriate for CPS should contain hierarchical
levels of representation going from sub-symbolic to symbolic, as supported
by Olteteanu (2020) in this framework.

Therefore, when an artificial agent is presented with a problem-solving
task, it will process their environment and extract different sensory informa-

35

tion, which will help it build internal representations passively. We aimed
to represent a concept in the concept space that can answer the questions of
"what is?” and ”what can be done with it?” according to a given context and
goal. So far, we have concentrated on just one aspect of sensory information.
However, as noted earlier, successful learning transfer requires more than
sensory input. Different types of knowledge are crucial for creating useful
concept representations (Catarau-Cotutiu et al., 2023). When faced with a
problem-solving task related to objects, children typically interact with them
first to learn about their characteristics and potential uses (Xie et al., 2021).

3.2.1 Affordances and temporality

The term affordance was introduced by Gibson in 1977 (Gibson, 1977) to
describe the potential actions an environment offers to an agent, given the
properties of objects and the context of interaction. Rather than being in-
trinsic properties of objects, affordances are understood as relational con-
structs, emerging from the dynamic interplay between agent and environ-
ment. This relational interpretation is reinforced by Chemero et al. (2003),
who argues that affordances should be defined as static attributes but as
agent-environment relationships that are grounded in perceptual and be-
havioural coupling.

The connection between affordances and functional creativity is especially
salient when the initial representation or strategy for solving a problem proves
insufficient. Functional creativity involves re-evaluating or reconfiguring ob-
ject uses to achieve a goal in a novel context. Critically, visual similarity does
not imply functional equivalence. For instance, while a beach ball and a bowl-
ing ball may appear similar in shape and size, their vastly different weights
produce divergent affordances when, for example, attempting to balance a
lever. As such, discovering affordances requires active exploration; agents
must interact with objects through trial and error to infer their possible uses
and behaviours (Catarau-Cotutiu et al., 2023).

Several formal frameworks have been proposed to articulate better and
operationalise the concept of affordance, drawing from Gibson’s foundational
work and extending it through multiple disciplinary lenses. These frame-
works typically define affordances through the interaction of three core ele-
ments: the agent, the environment, and an observer or interpreter. Key con-
tributions include the perspectives of Chemero et al. (2003), Greeno (1994),
Michaels (2003), Sanders (1997), Stoffregen (2018), Turvey (1992) and Wells

36

(2002). These interpretations vary in significant ways. For example, Turvey
views affordances as invariant environmental properties, while Stoffregen also
includes the observer’s perceptual systems. Chemero’s view is more dynamic,
incorporating behaviour into the definition of affordance. On the other hand,
Steedman conceptualises affordances as action possibilities, proposing their
integration into planning systems.

Among these, we find the formalisation proposed by Sahin et al. (2007)
particularly compelling. Like Chemero, they conceptualise affordances as
relations between the agent and environment, but they further adapt this
notion for practical use in autonomous robotic systems. According to their
theory, an affordance is a relation between a specific effect and an (entity,
behaviour) combination. This means that the effect is produced when an
agent applies the behaviour to the entity. The refined formalisation is ex-
pressed as (effect, (entity, behaviour)). This formalisation makes it clear
that affordances are relations consisting of an (entity, behaviour) pair and
an effect, which has the potential to be generated when the agent applies
the behaviour to the entity. This theoretical foundation is operationalised
within the AIGenC framework in Section 4.1, where affordances are defined
as acquired relations between (effect, reward) pairs and (concept-object, ac-
tion) tuples, and formally instantiated as Affordance Transition Tuples in
Section 5.1.2.

Therefore, we propose enriching the formation of a hierarchical concept
space by including affordances related to objects’ encoded physical features.
Incorporating affordances enables an agent to form various complex represen-
tations in a given functional, spatial and temporal context, hence acquiring
knowledge about object manipulation. We have also introduced a modifica-
tion to Sahin’s formalism such that we can capture the notion of an action
outcome.

Time and context are foundational dimensions of creative problem solv-
ing (CPS), particularly in how agents form and apply concepts such as af-
fordances. Many affordances derive their functional significance not from
intrinsic object properties alone, but from the situational and temporal con-
text in which they are encountered. This interdependence between struc-
ture, sequence, and consequence aligns with the neurocognitive construct of
episodic memory, which serves as a mechanism for organising and retrieving
temporally structured experiences.

Episodic memory organizes personal experiences based on particular times
and places, effectively partitioning incoming sensory information into distinct

37

episodes or events. This segmentation of experiences, informed by associa-
tive learning principles, leads to a dynamic representation of stimuli over
time. Comprehending the temporal relationships between events is pivotal
for establishing causality in our actions. Furthermore, stimulus representa-
tions across different events may vary due to the temporal progression of
the events themselves, as noted in Kokkola et al. (2019)’s research. Kokkola
et al. (2019)’s study emphasises that stimulus representation undergoes tem-
poral evolution, with certain elements exhibiting differential activity at var-
ious points during stimulus presentation. This temporal dynamics is key
to understanding how our cognitive system processes and associates infor-
mation. The notion of episodes, essentially groups of events, is a critical
bridge between temporal reasoning and functional representations. Accord-
ing to Kokkola et al. (2019), when two temporal clusters, akin to what we
call episodes, display similar activities, associations between elements within
the predicting cluster and the outcome cluster strengthen more rapidly and
achieve higher asymptotic strength. This temporal clustering and the ability
to discern similarities among episodes are pivotal for facilitating temporal
reasoning and supporting functional representations, ultimately enhancing
the creative problem-solving capabilities of our cognitive agents (Goyal and
Bengio, 2022).

The findings from Kokkola et al. (2019) highlight that temporally or-
ganised episodes are not merely sequences of events but structured entities
where relational and temporal coherence enables faster and stronger asso-
ciative learning. For artificial agents to benefit from similar mechanisms,
particularly in support of functional generalisation and creative reuse, these
episodes must be encoded in a format that captures their internal structure,
preserves their causal dynamics, and allows meaningful comparison across
time and context. Graphs naturally meet these requirements. They provide
a flexible and compositional framework for representing interactions between
objects, actions, and affordances, while explicitly modelling temporal and
causal relationships. This makes them especially well-suited for encoding
episodes as structured knowledge traces that can be queried, matched, and
recombined. In the following section, we introduce the graph-based founda-
tions that underpin this representational strategy.

38

3.3 Graph Representations in Cognitive and Compu-
tational Models

Graphs are non-linear data structures composed of nodes (entities) and edges
(relations) that can flexibly encode various interactions, dependencies, and
abstractions. In the context of conceptual representation, graphs offer a pow-
erful and expressive framework for modelling structured knowledge. Unlike
fixed-vector representations or matrices, graphs are inherently compositional
and modular: new relationships can be introduced or removed without re-
structuring the entire space. This makes them particularly well-suited for
dynamic concept spaces. Additionally, graphs enable the representation of
different levels of hierarchical abstraction, which means that a graph can be
labelled and become a node in another higher-level graph.

Alternative relational structures have been proposed across various dis-
ciplines. Using graphs for structured memory representation has deep roots
in cognitive science. The Quillian semantic network model (Quillian, 1967;
Collins and Quillian, 1969) proposed that concepts are stored as nodes in
a network, with pointers to their properties and categorical relationships.
For instance, the node ”canary” may point to bird as a superclass and to
properties like yellow and can sing. More general properties (e.g., can fly)
are not duplicated at every subordinate node but are inherited from higher
levels (e.g., from the bird node). This architecture conserves memory and
supports inference via traversal: to answer whether a canary can fly, the
system must move up to "bird” and retrieve its associated features. Thus,
Quillian’s model provides early evidence that relational memory structures
such as graphs can support compositional reasoning and hierarchical gener-
alisation, principles that remain central in contemporary AIl. However, the
model also has significant limitations. It assumes a rigid taxonomic struc-
ture of knowledge, which does not reflect the graded, context-sensitive nature
of human categorisation. Inference is symbolic and deterministic and lacks
mechanisms for handling ambiguity, uncertainty, or noisy input.

Another influential model is frame theory (Minsky, 1974), which encodes
stereotypical situations as structured memory units known as frames. Each
frame comprises fixed top-level elements that define the general structure of
a scenario, alongside lower-level slots that must be dynamically filled with
context-specific data or linked sub-frames. Although frames provide a modu-
lar and interpretable way to represent knowledge, they are often handcrafted
and domain-specific, limiting their scalability and flexibility.

39

In contrast, tensor-based models (Smolensky, 1990; Plate, 1995) and neu-
ral embedding approaches, such as relation vectors, seek to represent rela-
tional information in a continuous, distributed form. These data-driven and
scalable methods make them appealing for large-scale applications. However,
they often sacrifice interpretability and lack support for explicit symbolic
reasoning or compositional generalisation, as relational structure is encoded
implicitly and cannot be easily isolated or manipulated.

While each representation has its strengths, many struggle to jointly sat-
isfy the requirements of interpretability, compositionality, and structural
flexibility. Vector embeddings, for example, capture relational similarity
through proximity in latent space but obscure the underlying structure, mak-
ing it difficult to revise or reason about individual relationships. In con-
trast, graph-based representations explicitly encode both entities and their
interrelations, supporting symbolic manipulation, relational abstraction, and
goal-directed recombination, capabilities essential for planning and creative
problem-solving.

Graphs offer flexibility in both vertical and horizontal dimensions. Ver-
tical flexibility enables reasoning across multiple levels of abstraction within
a hierarchy. In contrast, horizontal flexibility allows for structural expansion
or modification at a given level, by adding, removing, or reconfiguring nodes
and edges. To account for temporal dynamics, dynamic graphs extend this
flexibility by enabling the graph structure itself to evolve over time. This
makes them particularly well-suited for modelling creative cognition, tempo-
rally grounded reasoning, and adaptive knowledge structures, as they can re-
flect the agent’s ongoing interaction with its environment. Such adaptability
is essential for representing functional classes, episodic memory, and concept
spaces that shift and reorganise in response to changing task demands.

However, using dynamic graphs in artificial systems requires an efficient
and flexible memory structure. While static graphs are often stored as ad-
jacency matrices, this format is ill-suited for dynamic, sparse, or partially
connected graphs, where structure changes over time. A more suitable ap-
proach is adjacency lists, which represent a graph as an array of linked lists.
Each node stores a list of its current connections, allowing for efficient up-
dates and memory allocation as the graph evolves. This representation sup-
ports real-time modification and maintains scalability even in large, heteroge-
neous knowledge structures. This format supports partial connectivity and
dynamic restructuring, making it well-suited for open-ended environments
and incremental learning. Moreover, it aligns with theoretical requirements

40

for creativity-supportive representations—mnamely, that they be hierarchical,
adaptive, and capable of reconfiguration in response to novel stimuli (Fau-
connier and Turner, 1998; Gardenfors, 2004; Mednick, 1962; Wallas, 1970).

These advantages have driven a growing interest in graph-based approaches
across artificial intelligence. Neural-symbolic systems (Garcez et al., 2008),
knowledge graphs (Hogan et al., 2021), graph neural networks (GNNs) (Battaglia
et al., 2018), and relational deep reinforcement learning frameworks (Zam-
baldi et al., 2018) all use graphs to model structured and flexible represen-
tations of knowledge. Their ability to support compositionality, abstraction,
and generalisation has made them central to systems designed for multi-task
reasoning, adaptive planning, and creative problem-solving.

Beyond their structural flexibility, graphs support various operations es-
sential for reasoning and learning, including graph traversal (e.g., breadth-
first or depth-first search), sub-graph matching and node and edge manipu-
lation. These operations enable agents to perform dynamic inference, apply
structural constraints, and recombine known patterns in novel ways, core
capabilities for adaptive problem-solving and compositional generalisation.

Traditional approaches to graph comparison, such as isomorphism checks
or sub-graph matching, often rely on rigid structural constraints and do not
scale well in environments where graphs are large, noisy, or semantically het-
erogeneous. While theoretically grounded methods like Gromov-Wasserstein
distances from optimal transport theory (Alvarez-Melis and Jaakkola, 2018)
offer more flexible structural alignment, they can be computationally expen-
sive and are limited in their ability to integrate semantic content or context-
sensitive features. In our setting, for instance, comparing graph-structured
concepts requires sensitivity to topological similarity and functional rele-
vance: how affordances, objects, and actions interact over time to produce
meaningful outcomes.

Recent advances have shifted toward learning-based methods that en-
code graph structure and semantics into vector representations to address
these limitations. Graph neural networks (GNNs) provide a framework for
learning such representations by propagating information along edges and
aggregating context from local neighbourhoods. When combined with at-
tention mechanisms, GNNs can learn to weight and prioritise relevant nodes
and relationships dynamically, enabling fine-grained reasoning over graphs
without requiring hand-crafted alignment criteria.

41

3.4 Representation Learning in Sequential and Hier-
archical Tasks

As discussed in the previous section, graph-based representations offer a ro-
bust framework for encoding structured relationships between entities, ac-
tions, and outcomes. However, to use such structures effectively in learning
systems, we must also understand how representations are acquired, how
agents learn to organise, abstract, and generalise knowledge from experi-
ence. This is the central concern of representation learning, which enables
agents to extract meaningful structure from high-dimensional data and apply
it across diverse tasks and environments.

Representation learning transforms high-dimensional inputs, such as raw
sensory observations or rich interaction histories, into compact and infor-
mative encodings that support efficient inference, prediction, and decision-
making. These encodings can be learned through either supervised or un-
supervised methods. While supervised approaches optimise for performance
on specific labelled tasks, unsupervised and self-supervised methods aim to
uncover meaningful structure in the data without external labels, an essential
property for agents operating in interactive and open-ended environments.

Much of the existing work in representation learning has focused on
compression-based techniques, where the goal is to project high-dimensional
observations into lower-dimensional latent spaces that preserve task-relevant
structure. These approaches aim to reduce redundancy, improve sample effi-
ciency, and support policy generalisation in fields like reinforcement learning
(RL) (Bengio et al., 2013; Lesort et al., 2018; Wang et al., 2021). Disen-
tangled representation learning is a notable direction within this paradigm,
which seeks to factor latent spaces into independently meaningful compo-
nents, such as object identity, position, or controllable dynamics. By iso-
lating such factors of variation, these representations promote modularity,
interpretability, and transfer across tasks that share underlying structure
(Higgins et al., 2018).

A widely adopted framework for learning latent representations is the
variational autoencoder (VAE) (Kingma et al., 2013), which uses a probabilis-
tic encoder-decoder architecture to reconstruct input data while regularising
the latent space to follow a known prior distribution. VAEs are valued for
their ability to produce smooth, continuous latent embeddings that support
interpolation, sampling, and generative modelling. In reinforcement learn-
ing, VAEs have been employed to encode compact representations of states

42

and actions, enabling more efficient policy learning and decision-making.

However, standard VAEs are often limited in capturing structured de-
pendencies, particularly in sequential, hierarchical, or temporally extended
patterns. In such cases, compressing interactions into a single flat latent
space can lead to losing important compositional or relational information.
To address these limitations, various hierarchical extensions have been pro-
posed, such as Hierarchical VAEs (HVAESs) (Zhao et al., 2017) and Hierarchi-
cal Variational Autoencoders for Control (HVACs) (Edwards and Storkey,
2016; Vahdat and Kautz, 2020). These models introduce multiple layers of
stochastic latent variables, allowing the system to encode both low-level de-
tail and high-level structure within a single generative framework. HVAC
models, in particular, are designed for control settings, allowing agents to
plan using temporally abstract latent goals while grounding them in low-
level motor control. These hierarchical models are instrumental in domains
with complex action semantics or task hierarchies.

Despite their advantages, both VAEs and their hierarchical variants often
treat input as monolithic and overlook the fine-grained structure of the envi-
ronment. This limitation becomes especially pronounced in sequential tasks,
where the agent must reason not only about state identity but also about
how actions, objects, and outcomes unfold over time. Generalisation in such
settings depends on capturing temporal, causal, and functional dependencies,
which cannot be easily inferred from static state representations.

Trajectory representations offer a richer alternative by preserving the se-
quence of decisions and their evolving consequences. They support long-
horizon reasoning, temporal credit assignment, and planning under delayed
feedback—core requirements in many RL domains. Various approaches have
explored trajectory-level learning, including autoencoders for behaviour se-
quences, latent skill discovery, and segment-based abstraction. However,
as we will discuss in the reinforcement learning section, many existing ap-
proaches continue to treat trajectories as unstructured or flat sequences, lim-
iting their potential for reuse and transfer.

To overcome the limitations of treating trajectories as flat or purely se-
quential data, in our work, we shifted toward graph-based representations
that model trajectories as structured, relational systems. Rather than view-
ing a trajectory as a list of temporally ordered states and actions, this per-
spective treats it as a dynamic network of interacting entities, linked through
relations that reflect temporal, causal, or functional dependencies.

Such representations must be made tractable and comparable for down-

43

stream reasoning tasks. While theoretically grounded methods like Gromov-
Wasserstein distances from optimal transport theory (Alvarez-Melis and Jaakkola,
2018) mentioned earlier offer flexible alignment between graphs with differ-

ent topologies, they remain computationally demanding and often struggle to
incorporate semantic content or contextual relevance. This motivates using
learned graph encodings, which can preserve structure and semantics while
enabling efficient comparison, retrieval, and policy conditioning. In the next
section, we turn to Graph Neural Networks (GNNs) and attention mech-
anisms, which provide a framework for learning such representations from
data.

3.5 Graph neural networks and attention

While previous chapters have provided the theoretical background behind
graphs’ suitability for our theoretical framework, this section will cover some
of the information needed to use graphs in machine learning applications.
Graphs provide a powerful and flexible structure for representing relational
information. Formally, a graph G is defined as a pair (V,E), where V is a set
of vertices (nodes) and E is a set of edges connecting pairs of nodes:

G=(V.E) (1)

Edges may be represented explicitly as pairs (i,j) or encoded in an adja-
cency matrix or list A, where each entry A; ; denotes the presence or strength
of a connection between node i and node j.

Unlike convolutional neural networks (CNNs), which assume a fixed-grid
structure and exploit spatial locality, Graph Neural Networks (GNNs) gener-
alise convolutional operations to arbitrary graph topologies. This flexibility
allows GNNs to aggregate information from neighbouring nodes according to
the graph’s structure, learning over domains with non-Euclidean data such
as knowledge graphs, trajectories, and causal systems.

A typical GNN takes as input a node feature matrix (NxD), where each
of the N nodes has a D-dimensional feature vector, along with an adjacency
matrix A of size (NxN). A standard fully connected layer propagates input
as:

HY = o (WOTX +50) (2)

44

where X € RM*Po is the input feature matrix, with N denoting the
number of nodes and Dy the input feature dimensionality. The matrix W (©)
RPoxD1 represents the learnable weight parameters of the first layer, and
b0 ¢ RP1 is the corresponding bias vector. The output HM € RV*P1 ig the
hidden node representation after applying the non-linear activation function
o(+), such as the Rectified Linear Unit (ReLU).

More generally, we denote by H*®) € RN*Pr the node feature matrix
at layer k, where Dy is the dimensionality of the node embeddings at that

layer. The updated node representations at the next layer are given by
H(k—H) c RNXDgt1

Graph Convolutional Layer In contrast to purely feature-based trans-
formations, Graph Convolutional Networks (GCNs) explicitly incorporate
graph topology by propagating information between neighbouring nodes (Yao
et al., 2019):

¥ = o (A*HBW®) (3)

where W) € RP#*Pri1 is a learnable weight matrix and o(-) is a non-
linear activation function. The matrix A* € RV*YN denotes the normalized
adjacency matrix, typically defined as

=

A* = DEAD}, (4)

where A = A+ I is the adjacency matrix augmented with self-loops and
D is the degree matrix of A. This normalization ensures numerically stable
message aggregation and equal contribution from neighbouring nodes.

Message Passing Framework More generally, Graph Neural Networks
(GNNSs) can be expressed within a message passing framework. At each layer
k, node representations are updated by aggregating messages from neighbour-
ing nodes and combining them with the node’s own state:

= ey 2, 7).

(4,9)€€s
n® g e((k- 1))) (5)

B = Fos ().

45

Here, & denotes the edge set of graph s. The term mgf) represents the ag-

gregated message received by node ¢ from its neighbouring nodes, computed
using a message function fis(-). The term ni’f) corresponds to a transfor-
mation of the node’s own previous representation via a node update function
fnode(+). The updated node embedding hg:) is obtained by combining the
neighbourhood message and the node-specific information using an update

function fupdate(-)-

Graph Convolution Operator For notational convenience, the message
passing process can be compactly expressed as a graph convolution operator:

h% = GConv (AS, hg’;*”) (6)

where GConv(-) denotes a generic graph convolution function parame-
terized by the adjacency matrix A, and the node representations from the
previous layer. This abstraction encompasses a wide range of GNN archi-
tectures, including GCNs, attention-based models, and relational message
passing networks.

Crucially, GNN outputs are permutation-invariant, meaning that isomor-
phic graphs —those with identical structure but different node ordering —are
treated equivalently. This property allows GNNs to generalise across struc-
turally similar inputs, making them robust to superficial differences in rep-
resentation and well-suited for reasoning over abstract relational structures.

While early GNN architectures were designed for homogeneous graphs,
where all nodes and edges share the same type, many real-world domains are
inherently heterogeneous. This is especially true in task-driven environments
that involve diverse elements, such as objects, actions, affordances, and task
outcomes. In such cases, different node and edge types carry different se-
mantic roles, and modelling their interactions requires architectures capable
of distinguishing and leveraging this heterogeneity.

Heterogeneous Graph Neural Networks (HGNNs) (Yang et al., 2023a) ad-
dress this challenge by extending standard GNNs to support typed nodes and
edges. These models utilise mechanisms such as meta-paths, edge schemas,
and type-aware message passing to capture multi-relational structures across
different semantic layers (Wang et al., 2021). A meta-path is a sequence of
node and edge types (e.g., object—affords—action—achieves—goal) that defines
a relational pattern or semantic pathway in the graph. By modelling how

46

information flows through such typed sequences, HGNNs can learn context-
sensitive embeddings that reflect both local and global structural dependen-
cies. As a result, HGNNs are particularly well-suited to domains that de-
mand hierarchical reasoning, such as affordance-based object manipulation,
compositional planning, or structured problem-solving.

Building on this foundation, recent research has explored the integration
of causal reasoning into graph-based learning. For example, Jin et al. (2024)
represent trajectories as causal graphs, applying counterfactual link predic-
tion to model not just associations but potential causal dependencies between
entities. While this approach allows for fine-grained causal inference, it relies
on semi-supervised training, assuming access to ground-truth annotations or
predefined graph structures. This assumption poses a limitation in reinforce-
ment learning (RL) environments, where supervision is sparse, and agents
must discover structure purely through interaction and exploration.

To overcome the dependency on labelled data, self-supervised HGNNs
such as Heterogeneous Co-contrastive Learning (HeCo) have been intro-
duced (Wang et al., 2021). HeCo employs two complementary views of the
graph: one that captures global schema-level structure, and another that en-
codes meta-path-based local context. By contrasting these views, the model
learns to embed nodes in a way that reflects both high-level semantics and
neighbourhood-level structure, without requiring external labels. However,
despite its strengths, HeCo is designed for static, node-centric graphs, mak-
ing it less suitable for dynamic or episodic environments, where graphs evolve
over time and agents must learn from sequences of interactions.

To address this, Graph Transformer Co-contrastive Learning (GTC) (Sun
et al., 2025) introduces a dual-branch architecture that combines local graph
neural network aggregation with Transformer-based global modelling. Its
Hop2Token mechanism converts multi-hop neighbourhoods into structured
token sequences, enabling the model to capture hierarchical and contextual
dependencies better. This hybrid design improves representation quality and
avoids over-smoothing, outperforming traditional HGNNs in static bench-
marks. Nevertheless, like HeCo, GTC operates on fixed graph snapshots and
lacks native mechanisms for temporal or episodic modelling, limiting its util-
ity in RL settings where structure must be learned and adapted incrementally
over time.

Taken together, these advances demonstrate the potential of HGNNs and
attention-based models to capture rich relational and semantic structure. Yet
they also highlight a gap: most current models are not designed to support

47

the dynamic, cumulative, and interactive nature of reinforcement learning.
They assume static input graphs, overlook temporal evolution, and fail to
track how task elements, affordances, and outcomes change throughout learn-
ing. These limitations point to the need for an expanded RL ontology that
incorporates structured, hierarchical trajectory representations and enables
reasoning over shared components across episodes.

These advances in graph neural networks and attention mechanisms pro-
vide the technical foundation for our approach. In Chapter 5, we employ
heterogeneous GNNs with meta-path-aware attention to encode Structurally
Enriched Trajectories (SETs), enabling agents to compare and retrieve struc-
turally similar experiences from long-term memory.

While recent developments in graph-based learning offer promising tools
for capturing relational structure, most reinforcement learning frameworks
continue to rely on a classical ontology that models tasks using flat repre-
sentations. To understand the representational gap, it is necessary first to
review the foundational elements of reinforcement learning and how they
shape current approaches to learning and generalisation.

3.6 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm in which an agent inter-
acts with an environment over time to learn a policy that maximises cumula-
tive reward (Sutton et al., 1998). The core elements of an RL system include
states, which represent the current configuration or situation of the envi-
ronment; actions, which are the available decisions or operations the agent
can take; and rewards, which provide scalar feedback on the desirability of
outcomes resulting from those actions. RL agents learn through interaction,
unlike other machine learning methods that rely on data. States represent
the current situation of the agent in the world. The RL agent learns to opti-
mise its policy to achieve a goal state by maximising the cumulative reward.
In other words, it learns a strategy based on the distribution of rewards to
achieve its objectives.

Markov Decision Processes The Markov Decision Process (MDP) is the
standard formalism used in reinforcement learning (RL). An MDP is defined

as a tuple
M = (S7A7 R7T7p)7

48

where S is the state space, A is the action space, R : S x A x § — R is
the scalar reward function, T'(s" | s, a) is the (possibly stochastic) Markovian
state transition function, and p(sg) is the initial state distribution.

At each discrete time step t, the agent observes a state s; € S, selects an
action a; € A, receives a reward r;, = R(sy, as, $411), and transitions to the
next state g1 ~ T(- | ¢, ap).

The objective in an MDP is to learn a policy 7(a | s) that maximizes the
expected cumulative discounted reward, also known as the return:

G = Z Tk, (7)
k=0

where v € [0, 1) is the discount factor controlling the relative importance
of future rewards.
The state-value function of a policy 7 is defined as

Vi(s) =Ex [Gi | 50 = 5], (8)

and the action-value function (Q-function) is defined as

Q" (s,a) =K, [Gy| 8¢ = s,a, = al . (9)

The optimal value functions are given by

V*(s) = max V™(s), Q*(s,a)= mgx@”(s,a), (10)

and the optimal policy 7* can be derived from the optimal Q-function as

7*(s) = argmax Q" (s, a). (11)
acA

Deep reinforcement learning (deep RL) combines the sequential decision-
making framework of reinforcement learning with the powerful function ap-
proximation capabilities of deep learning. In this setting, agents interact
with their environment by feeding observations, often high-dimensional vi-
sual frames, into deep neural networks, which then output actions based
on learned internal representations. Unlike classical RL approaches that
operate on predefined, low-dimensional state spaces, deep RL agents can
autonomously learn features from raw input, allowing them to operate in
more complex and unstructured environments. Deep RL agents learn a va-
riety of environment features, rather than simply learning policies tied to

49

global states. Some deep RL models train the neural networks responsible
for learning environment representations and the RL task in a single loss
function (e.g., Baker et al. (2019); Jaderberg et al. (2016); Raileanu et al.
(2021)).

Deep Q-Learning In Q-learning, the optimal action-value function is
learned iteratively using the Bellman optimality equation:

Q(5,0) = By [r +ymaxQ'(s',a')] (12)

Deep Q-Networks (DQN) approximate the Q-function using a neural net-
work Q(s, a; 0) with parameters 6. The network is trained by minimizing the
temporal-difference (TD) loss:

L(0) = E(sa,,5)~D {(r +ymaxQ(s', a5 07) = Q(s, a; 9))1 ;o (13)

where D is a replay buffer and 6~ denotes the parameters of a target
network, which are periodically updated to stabilize training.

Double Deep Q-Learning Double Deep Q-Networks (DDQN) reduce
overestimation bias in DQN by decoupling action selection and evaluation.
The target value in DDQN is defined as

yPPON — 4 ~() (s’, arg max Q(s',d’;0), 97) . (14)

This modification improves training stability and empirical performance,
particularly in environments with noisy or stochastic rewards.

However, other works (Stooke et al., 2021; Yarats et al., 2021) and our
work separate the representation learning task from goal-directed training.
Representations are extracted using pretrained models, which are only up-
dated inside the RL training loop instead of being trained from scratch. This
approach allows for faster training and eliminates the need to optimise for
two tasks simultaneously. Learning representations within the RL training
loop is challenging because the only source of supervision is the reward, which
is often noisy, sparse, and delayed (Zhang et al., 2022).

It is important to consider how these representations are formed, whether
they are pretrained or not. A key limitation of conventional RL architectures
is that they often encode experience as flat sequences of frames, disregarding

50

both structure and temporal abstraction. Simply encoding entire frames into
latent vectors makes it difficult for the agent to differentiate between relevant
and irrelevant features, including core features necessary for learning and
those that are not, such as image quality, resolution, and colour. It also fails
to represent temporal dependencies critical to tasks requiring delayed reward
estimation, long-horizon planning, or compositional skill reuse (Hayman and
Huebner, 2019; Zhang et al., 2022).

While outcomes, whether intended or incidental, offer a concise summary
of performance, they do not capture the process by which the outcome was
achieved. Understanding a task requires more than recognising the final
state; it requires interpreting the trajectory of actions and interactions that
led to it. As such, one of the central challenges in RL is to move beyond
stepwise transitions and instead learn structured trajectory representations
that capture the dynamics of behaviour over time.

Classically, trajectories are defined as sequences of state-action pairs that
unfold from an initial state to termination (Sutton et al., 1998). While
this introduces a basic temporal structure, it does not encode hierarchical
or causal relationships beyond immediate transitions. One extension of this
classical definition is the options framework (Precup, 2000), which intro-
duces temporally extended actions that allow an agent to execute multi-step
behaviours before concluding. An option consists of an internal policy, an
initiation set, and a termination condition, enabling an agent to select and
commit to more than a single-step action. Other approaches, such as RL
with trajectory feedback, shift from evaluating individual steps to assessing
the entire trajectory as a whole (Efroni et al., 2021). This is particularly
useful in scenarios where immediate feedback is sparse or impractical, such
as real-world robotics or autonomous systems, where long-term dependen-
cies must be considered. Both options and trajectory feedback offer different
ways to extend decision-making beyond stepwise transitions: one by grouping
actions into temporally extended choices, and the other by evaluating entire
trajectories. Yet, neither provides the level of structural detail necessary for
effective generalisation and knowledge transfer. Options, as well as the tra-
jectory feedback approach, treat elements of decision-making as indivisible
units, lacking the granularity needed for structured generalisation. Options
group actions into fixed temporal sequences, ignoring finer-grained execution
details such as object properties, interaction dynamics, and environmental
constraints. Similarly, trajectory feedback evaluates entire sequences without
analysing individual contributions, making it difficult to identify structural

o1

similarities across tasks or extract reusable behavioural patterns that sup-
port generalisation and adaptation. This limitation suggests the need for
more structured trajectory representations that capture not just individual
actions but also high-level task structures and reusable behavioural patterns.

An approach that deals with trajectories in a more structured way is the
Self-Consistent Trajectory Autoencoder (SeCTAR) (Co-Reyes et al., 2018).
SeCTAR frames hierarchical reinforcement learning (HRL) as a trajectory-
level representation learning problem. Instead of learning discrete sub-policies,
SeCTAR builds continuous latent spaces of trajectories, allowing agents to
represent and generate structured behaviours. While SeCTAR’s latent space
encodes meaningful trajectory structures, it does not explicitly segment tra-
jectories into transferable skills, which may limit its effectiveness for com-
positional learning and policy transfer. Methods such as the Constructing
Skill Trees (CST) algorithm (Konidaris et al., 2011) address this limitation
by automatically segmenting demonstration trajectories into reusable skills
using change-point detection techniques. This approach enables agents to
decompose long-horizon tasks into meaningful sub-policies, facilitating skill
reuse and hierarchical planning. However, CST relies on human-provided
demonstrations, which means that it does not autonomously explore or dis-
cover skills without predefined examples. A more generalisable approach
would integrate structured trajectory representations with autonomous skill
discovery, enabling agents to learn and refine reusable skills without requiring
expert demonstrations.

Most existing trajectory representation methods in RL treat trajectories
as flat sequences, focussing on linear dependencies rather than hierarchical
structures. For example, the Outcome-Driven Actor-Critic (ODAC) frame-
work (Rudner et al., 2021), trajectory-based prediction models (Haines et al.,
2018), and memory-based RL frameworks such as Sequential Episodic Con-
trol (SEC) (Freire et al., 2024) all adopt flat representations of trajectories
as a core design choice. ODAC models latent outcome representations by
treating trajectories as flat sequences of state-action transitions, providing a
structured yet non-hierarchical approach to inferring task success. Similarly,
Haines et al. (2018) emphasises cumulative patterns in state sequences to
predict outcomes, assuming linear trajectory structures to simplify trajec-
tory modelling. Meanwhile, SEC improves adaptability and generalisation
by retaining episodic state-action pairs, allowing agents to recall past in-
teractions and improve learning efficiency in sparse-reward environments.
However, SEC’s flat memory structure prevents it from capturing hierarchi-

52

cal trajectory dependencies, which are essential for structured learning, skill
reuse, and transferability.

These limitations highlight the need to expand the ontology of reinforce-
ment learning to include structured representations of task elements, hierar-
chical trajectory dependencies, and cross-episode relationships.

To summarise, this chapter has introduced the theoretical foundations
and technical landscape underpinning our approach to structure-aware gen-
eralisation in reinforcement learning. We began by surveying key theories of
creativity and functional abstraction, emphasising the cognitive importance
of concept composition, affordance-based reasoning, and adaptive problem-
solving. These insights motivated the need for systems that can not only
learn from past experience, but flexibly reorganise and reuse that experience
in novel contexts.

Building on this foundation, we introduced graph-based representations
as a powerful formalism for modelling structured knowledge—particularly in
domains where relationships, transitions, and causal dependencies are cen-
tral to behaviour. We then explored how graph neural networks (GNNs),
including heterogeneous and attention-based variants, provide mechanisms
for encoding and reasoning over such structures. These models enable agents
to learn relational patterns, attend to relevant substructures, and build ab-
stractions that generalise beyond specific instances.

We also reviewed advances in representation learning, highlighting both
the promise and limitations of compression-based methods for sequential and
temporally extended tasks. In particular, we noted that many approaches
struggle to capture the compositional and causal dynamics essential for gen-
eralisation. Finally, we examined the unique demands of reinforcement learn-
ing environments, where sparse rewards, evolving state spaces, and structural
diversity make the case for richer, more expressive representations that inte-
grate both trajectory history and conceptual abstraction.

Together, these discussions converge on the need for a unified framework
that embeds structured experience into a form that supports retrieval, anal-
ogy, and reuse across tasks. At the conceptual level, this thesis builds on
AIGenC (Catarau-Cotutiu et al., 2023), a cognitively inspired architecture
for generalisation that identifies Reflective Reasoning, Conceptual Abstrac-
tion, and Creative Reuse as central components of adaptive intelligence. As
part of this framework, we introduce SETLE (Structurally Enriched Trajec-
tory Learning and Encoding) as a concrete realisation of AlGenC’s Reflective
Reasoning module. SETLE encodes agent experience as graph-structured

53

trajectories, capturing objects, affordances, and outcomes in a temporally
and relationally grounded manner. It leverages graph neural networks and
attention-based memory mechanisms to support structural matching, ab-
straction, and knowledge reuse. In the final stage of this research, SETLE
is integrated into the reinforcement learning loop, allowing agents to enrich
decision-making with structured representations derived from prior episodes.
This integration not only improves data efficiency and policy performance
but also marks a foundational step toward realising computational creativity
through structure-aware learning and generalisation.

4 AlGenC: A Framework for Structured Gen-
eralisation and Creativity

The code for the different components of the system is available at the fol-
lowing repositories:

e https://github.com/CatarauCorina/aigenc_main_rl_loop/ — im-
plementation of the main RL training loop and agent integration.

e https://github.com/CatarauCorina/setle_code — implementation
of the SETLE memory system for graph-based trajectory encoding and
retrieval.

Before presenting the details of our framework, we begin by establishing
its central objective: to enable artificial agents to learn, reuse, and generate
structured representations that support flexible generalisation in reinforce-
ment learning (RL). Rather than proposing a definitive cognitive theory of
creativity, we draw inspiration from a range of cognitive models and theo-
ries, particularly those emphasising concept abstraction, affordance reason-
ing, and combinatorial learning. Our goal is not to mimic human functional
creativity, but to harness its principles to improve representational capacity
and knowledge transfer in artificial agents.

The AIGenC framework (Catarau-Cotutiu et al., 2023) provides a con-
ceptual foundation for this endeavour. It proposes that generalisation in
artificial systems should be approached not as a by-product of data scale or
parameter tuning, but as a structured process grounded in the agent’s ability
to construct, adapt, and recombine concepts over time. In contrast to most
machine learning models that operate on raw sensory data, AIGenC assumes

o4

Frame

Nt N e Reasoned
action .

v
Random 1. CONCEPT PROCESSING

action
Slot Attention

1

1

1

1

1

1

1

1

1

1

1

1

1

HVAC H
3. BLENDING |
Encoded S 1
EE— 1

1

1

1

1

1

1

1

1

2. REFLECTIVE REASONING

0,

2a.LTM () S End matching

4_ initialisation episode n

: | No. of failed
2 episodes >M

NO

YES
o et

\ v
2

Memory

matching >

= NO

2

contents

No i A
1

4
4 " 4!
_______ Use k-clustering toselect _ _ "1
Di k memories
iscard

DEEP RL MODEL

Is St m% # WM YES Working Memory | Long Term Memory ‘
WM LT™M
J

Figure 1: The three components of the model - Concept Processing (cream/o-
live), Reflective Reasoning (blue), Blending (purple) - and the algorithmic
flow. The agent receives input in the form of frames from the environment.
Frames are encoded in the Concept Processing component as vector represen-
tations by two unsupervised models. In the Reflective Reasoning component,
LTM is initialised by random exploration (2a). The process of populating
Working Memory and LTM is indicated by open tip arrows, a solid green
(1) and a dashed black line (4), respectively. Following LTM initialisation,
a process called Selective Matching (2b) is activated together with Deep Re-
inforcement Learning training. Selective Matching returns from LTM the
concepts most similar to the current state. The retrieved concepts are then
incorporated into the current state before they are inputted into the Deep
Reinforcement Learning model. If the agent is unsuccessful at solving the
task for several episodes, a Blending process is triggered, by which novel con-
cepts are formed and then added to the current state (3).

95

that agents build internal concept spaces that encode both relational and
functional knowledge, acquired through interaction with the environment.

AlGenC is presented in this chapter as a theoretical template, outlin-
ing the necessary functional components for creative generalisation—mnamely
Concept Processing, Reflective Reasoning, and Blending. Importantly, this
framework is not bound to a specific implementation; rather, it offers a model-
theoretic architecture that outlines the minimal cognitive requirements for
creative generalisation. While the functional roles of the components remain
consistent, their realisation may differ across implementations depending on
the affordances and observational richness of the environment.

Consequently, throughout this chapter we focus on the functional role of
each component, deferring their specific computational instantiation to the
subsequent chapters. Specifically, Chapter 5 (SETLE) provides the concrete
algorithms for graph construction, encoding, and matching, while Chapter 6
details their integration into the reinforcement learning loop.

The framework comprises three core components, each corresponding to
a distinct cognitive function essential for adaptive problem-solving:

1. Concept Processing is responsible for extracting and encoding ob-
jects, actions and affordances from sensory input, forming the founda-
tional elements of the agent’s internal concept space.

2. Reflective Reasoning enables the retrieval and comparison of stored
conceptual structures from memory, aligning past experience with cur-
rent task demands.

3. Blending facilitates the generation of novel concepts by creatively re-
combining previously learned elements when existing representations
prove inadequate for solving new problems.

These components operate over a hierarchical concept space implemented
as a graph-based structure. In this space, nodes represent learned con-
cepts—such as objects, actions, or affordances—and edges encode relational,
temporal, or causal dependencies among them. This structural represen-
tation supports flexible composition and abstraction, making it well-suited
for transfer across diverse tasks and environments. Affordances and out-
comes, which appear abstract at this template level, are formally defined
with domain-specific examples in Sections 5.1.3 and 5.1.4 respectively.

56

Each high-level component includes finer-grained sub-processes. Con-
cept Processing comprises two submodules: one for object discovery and
another for action and affordance learning. Reflective Reasoning involves
two key elements as well: the initialisation and structuring of Long-Term
Memory (LTM), and a selective matching process that aligns current task
representations with relevant prior knowledge. The interactions among these
components and memory systems are illustrated in Figure 1.

The entire framework operates atop a goal-directed reinforcement learn-
ing substrate. The hierarchical concept space that underpins it leverages both
implicit patterns—learned through distributed representations—and explicit
relations derived from structural and functional interactions.

This chapter presents the architecture of AIGenC, describing each compo-
nent and its interactions with the others. It also introduces the underlying
dual-memory system, comprising a Working Memory (WM) and a Long-
Term Memory (LTM). Working Memory holds the current context and en-
codes novelty, while Long-Term Memory accumulates concepts across tasks,
enabling reuse and abstraction.

In the sections that follow, we describe each component in detail, be-
ginning with Concept Processing, which encodes perceptual and functional
information into a structured, internal concept space. This will form the
basis for the subsequent chapters.

4.1 Concept processing component

A concept processing unit is needed to encode and add the input to the
concept space. To separate sensory from dynamic information, we postulate
two corresponding subunits, both unsupervised and pretrained.

Unsupervised models are used to ensure that the concept space is internal
to the agent, in the sense that externally given classes do not predefine the
discovered concepts, and to equip the agent with the ability to extract rep-
resentations of objects or concepts regardless of whether it has experienced
them before or not.

The first sub-unit aims to find and represent objects as latent vectors
through unsupervised object discovery, while the second aims to encode ac-
tion vectors. While the AIGenC template defines this as a generic perceptual
role, our specific instantiation in Chapter 5 fulfils it using the Segment Any-
thing Model; see Section 5.2.2).

The interaction of the two subunits and the environment is described

o7

based on a modification of Sahin and collaborators’ formalism (Sahin et al.,
2007). Functionally, we define affordances here as an acquired relation be-
tween an (effect, reward) pair and a (concept-object, action) tuple. This
relation is formally operationalised as the ’Affordance Transition Tuple’ in
Section 5.1.2, which details the mathematical structure of these connections.
In this manner, when an agent applies an action to the object, an effect and
associated reward pair is generated. The action representation and the effect
will form the affordance (See Algorithm 1, lines 26-27).

The extracted representations are composed into graph-structured states,
which form the input to the agent’s working memory and ultimately drive
policy learning and decision-making. As illustrated in Algorithm 1, this pro-
cess establishes the foundational elements upon which Reflective Reasoning
and Blending operate in later stages of the loop.

The functional role of the Concept Processing component is to ground the
agent’s reasoning in perceptual reality. Its purpose is to extract meaningful,
generalisable representations from raw interaction data—transforming sen-
sory inputs into the structured building blocks of the concept space. While
we define its theoretical structure and cognitive motivation here, the specific
neural architectures used to instantiate it, such as the object discovery and
action encoding models, are detailed in Chapter 5.

58

Algorithm 1 AIGenC integrated within an RL setup

w
—_

32:
33:
34:
35:
36: |

DO DO DO DO DD DD DD = = = = = = = = =
STESNEO0OIRG AW =OPX N L v

WY N N

: Inputs: environment &£, policy network 7y, action set A, number of outer iterations N
: Hyper-parameters: memory init steps/phase, clustering method (e.g., KMeans), matching thresh-

old 7 (if applicable)

: Initialise LTM: itm <+ (keys[],{}) © persistent long-term memory of abstracted graphs/centroids
: Procedures (templates):

OBJECTDISCOVERY (frame) — objects > pre-trained; returns K object slots/encodings
AcCTIONENCODING (interactions) — action_enc > pre-trained; returns encodings of object-action in-
teractions

BUILDSTATEGRAPH(objects, action_enc, s¢) — Gt > construct graph for state st
MatcH(mem, query) — T/F > returns whether query already exists in mem
ENCODESTATE(S) — 25 > state encoder used for effect computation
UPDATESTATEGRAPH(GY4, St, at, St+1,€t) — Gt > updates G¢ with transition + effect

CLUSTER(wm) — C, CENTROIDS(C) — {uc}

. for iteration =1,2,..., N do

Initialise WM: wm <+ (keys][], {}) > working memory for this iteration
Select A; C A > e.g., random subset of actions/objects to explore
while episode not done do > stop after fixed horizon or upon terminal reward

Observe current state s¢

objects <~ OBJECTDISCOVERY (s¢)

action_enc <— ACTIONENCODING (A;)

G < BUILDSTATEGRAPH (objects, action_enc, st)

if memory initialisation phase then

| a; + RanpoM(A)

else

L at < 7'I'9(Gt)

Execute a¢ in £ and observe (s¢41,7¢)

zt < ENCODESTATE(St), 2¢+1 < ENCODESTATE(S¢+1)

et < z¢41 — 2t > effect embedding captures action-induced change (representation-invariant
transition cue)

Gt < UPDATESTATEGRAPH(GY, St, Gt, St+1, €t)

if not MATCH(wm, G¢) then

| Abp(wm, Gy) > store movel state graph in WM
else

| DISCARD()

> Post-episode / post-iteration consolidation: abstract WM and update LTM
C < CLUSTER(wm)

{pc} < CENTROIDS(C) > centroid representations (graphs or encodings)
if not MaTcH(ltm, {pc}) then
| App(itm, {uc}) > store novel centroids/abstract graphs in LTM

> Optimise policy network (details omitted here): update 6 using transitions/graphs collected

Algorithm 1 serves as the master orchestration of the AIGenC framework,

integrating all three functional components into a unified learning cycle. It
defines the complete operational flow: how concepts are extracted (Con-
cept Processing, lines 5-6, with concrete implementations detailed in Section
5.2.2), how memory is managed (WM initialization line 13, LTM consolida-
tion lines 32-35, instantiated in Section 5.2.3), how actions are selected via
the policy network (lines 20-23, detailed in Section 6.1), and when special-
ized reasoning operations are invoked (Reflective Reasoning and Blending,
whose detailed mechanisms are presented in the next subsections and fully
integrated into the RL loop in Algorithm 5, Chapter 6).

59

Because Algorithm 1 represents the entire system, different sections of this
thesis will revisit and explain specific portions of it from the perspective of
each functional component. Section 4.1 focuses on Concept Processing’s role
(lines 16-27, 32-35); Section 4.2 details how Reflective Reasoning operates
within the loop through selective matching; and Section 4.3 explains how
Blending is conditionally activated during impasse situations. This layered
explanation allows us to maintain the conceptual clarity of each component
while showing how they integrate within the master algorithm.

In line 26 Algorithm 1, we calculate the ’effect’ of an interaction as the
vector difference between the resulting state and the current state (2441 — 2;).
We use this difference formulation rather than the absolute final state because
it isolates the transformation induced by the action from the specific envi-
ronment configuration. By capturing the relative change, this representation
is helpful in recognising the outcome across different contexts. For example,
a 'push’ action that moves an object forward produces a similar difference
vector regardless of the object’s initial coordinate. This invariance allows
the agent to identify and transfer functional outcomes, such as displacing an
obstacle or opening a door, even when they occur in novel locations or with
different objects.

4.1.1 Concept space

The concept space functions as a dynamic, hierarchical structure that encodes
the representations extracted during Concept Processing. It forms the sub-
strate upon which Reflective Reasoning operates, supporting both similarity-
based retrieval and compositional abstraction. Inspired by Olteteanu’s cog-
nitive formalism (Olteteanu, 2020), the concept space is structured across
three interconnected levels: a feature-level embedding space, a concept level,
and a graph representation of an RL state-time configuration that defines
the problem template (see Fig.2). The structure can be characterised as a
graph that stores and relates information without a predefined data design
and satisfies theoretical prerequisites such as being hierarchical and adap-
tive (Fauconnier and Turner, 1998; Gardenfors, 2004). Nodes encode entities
such as objects, actions, affordances and outcomes, while edges capture their
functional, temporal, or causal dependencies. Crucially, graphs enable dy-
namic adaptation—nodes and edges can be added, removed, or reconfigured
without requiring a fixed schema, reflecting the evolving nature of agent
experience. Higher-order concepts, such as states or outcomes, can be rep-

60

resented as subgraphs or macro-nodes themselves, enabling recursive reuse
and transfer across tasks. Temporal structure is integrated through graph
motifs that encode episodic transitions, allowing for fine-grained reasoning
over sequences of events.

Layer 2:
Temporal
layer

Graph t

Layer1:
Objects and
affordances at
timet

Layer O:
Features with
implicit relations

Object X feature vector Affordance Y feature vector

Figure 2: Hierarchical concept space: object concepts are represented by
feature vectors at the bottom level (Layer 0). At the middle level (Layer
1), nodes and edges represent object concepts and affordances. At the top
level (Layer 2), the graphs from the previous level become nodes along with
a reward given to the agent in the RL setting (red +) in a graph whose edges
mark temporal succesion (t).

Given the temporal and context-sensitive nature of creative problem solv-
ing, we represent the concept space as a dynamic graph stored in mem-
ory, using adjacency lists rather than fixed matrices to accommodate struc-
tural plasticity. This representation supports partial connectivity, episodic

61

binding, and continual expansion as the agent interacts with the environ-
ment. Unlike traditional memory architectures (e.g., Neural Turing Machines
(Graves et al., 2014)), which operate on flat matrix-based memory banks, our
graph-based memory enables rich topological encoding of experience, captur-
ing not only what the agent has encountered but how elements relate and
evolve over time. This hierarchical organisation of the concept space is con-
cretely instantiated in Section 5.2.3, where we describe the three-level graph
structure: Level 1 (objects and interactions), Level 2 (affordances and states),
and Level 3 (SETs/trajectories).

4.1.2 Memory system

Our framework integrates two interacting memory components: a Working
Memory (WM) and a Long-Term Memory (LTM). These memories operate at
different temporal scales and interact continuously throughout the lifetime of
the RL agent, enabling both short-term reasoning and long-term knowledge
accumulation.

As introduced in the previous subsection, the content of both memo-
ries,the concept space, is represented using structured relational abstractions.
Concretely, the concept space is assembled in the form of two interrelated
lists (Fig. 3). First, an object list stores object representations extracted
persistently by the Concept Processing component. Second, a hash map
structure maps each object or concept to a set of related nodes, where each
mapping encodes a relation (e.g., an affordance) between concepts.

This abstract representation corresponds directly to the graph-based mem-
ory structures used in Algorithm 1. In particular, the hash map structure
depicted in Fig. 3 is instantiated as the data structure underlying both WM
and LTM, with each key representing a node in the concept graph and each
value representing a set of outgoing relational edges.

While such mappings could be maintained using conventional data struc-
tures, graph databases such as Neo4j (Lal, 2015) provide a more scalable and
expressive implementation. Rather than relying on dense adjacency matri-
ces, Neodj represents graphs using adjacency lists and indexed node lookups,
a model that naturally aligns with the object-relation structure shown in
Fig. 3. Each concept node stores explicit references to its connected nodes
and relations, enabling efficient traversal and modification.

This representation offers several computational advantages that are crit-
ical in an RL setting. It supports constant-time access to related concepts,

62

efficient insertion of new nodes and relations, and flexible subgraph queries.
These operations are required as the agent incrementally constructs and up-
dates state graphs during interaction with the environment. As demonstrated
in later chapters, this structure allows the agent to compare and generalize
experiences based on structural similarity rather than raw state identity.

The interaction between WM and LTM is explicitly realized in Algo-
rithm 1. During each episode, the agent constructs a state graph G, from
object and action encodings (Algorithm 1, lines 18-20). If this graph is
structurally novel with respect to the current contents of WM, it is added
to WM (line 27). WM therefore acts as a temporary buffer of distinct state
graphs encountered within an episode, supporting short-term reasoning and
decision-making.

Once an episode terminates, either due to task completion or a predefined
time limit, the contents of WM are abstracted through clustering. Specifi-
cally, representative centroid graphs are computed and used as compressed
summaries of the episode’s experiences (Algorithm 1, lines 34-38). These
centroid graphs, together with their associated concepts and relations, are
then stored in LTM if they are not already present. Unlike WM, LTM persists
across episodes and serves as a repository of accumulated conceptual knowl-
edge, enabling transfer of learning over the agent’s lifetime (Loynd et al.,
2020; Mezghan et al., 2022).

The operational interaction between these memory components corre-
sponds directly to the information flow illustrated in Fig. 4. Reflective
Reasoning is implemented through matching operations between the cur-
rent state graph and the contents of LTM, allowing relevant past concepts to
be retrieved and used to enrich the current representation. When repeated
failures occur, the Blending component retrieves and combines concepts from
LTM to construct novel state graphs, which are then reintegrated into WM
and evaluated by the policy. Through this cycle, the agent incrementally re-
fines its internal concept space while maintaining a clear separation between
transient working representations and persistent long-term knowledge.

63

Graph representation of a layer of the concept space

Affordance 1

Affordance 2

€ oueployy

Memory representation of the concept space using lists

Objects list Affordance hashmap
Keys: Values:
Object1 -
Object 2 » Objectl [(object 2, affordance 1), (object 4, affordance 3)]

Object 3 ——l_
Object 4 > Object3 [(object 2, affordance 2)]
Object 5

Figure 3: The top panel shows the concept space represented as a mathe-
matical structure, a graph. The bottom panel displays how graphs are coded
in memory, using two lists: an object list and a hash map of other nodes
(i.e., other objects). The keys from the hashmap represent the objects (e.g.,
Object 1), and the values are tuples indicating the connected node (e.g., ob-
ject 2) and the edge between two nodes, which in this case is an affordance

relation (e.g., affordance 1).

64

NO

Is t 2 total_timesteps or YES

| goal_state ?

Add k more important states to LTM

ENVIRONMENT]

)

1. CONCEPT PR L ..
[PROCESSING]—-[S(t)=([obj1,0bj2..],{objl:[aff],0bj2:[aff3]..}, frame)

DEEP RL MODEL

Task failed for n NO 2. REFLECTIVE Matched
episodes ? REASONING memories
YES l
YES .
Iss(t)in WM ? —— Discard
3. BLENDING]
NO
Long term memory
Working memory LT™M

wM
New concept

Figure 4: A snapshot of the flow of information through the system. The cur-
rent state, encoded by the Concept Processing component, is first compared
to the concepts stored in Long Term Memory at the Reflective Reasoning
component. The concepts that match are used to expand the current state
graph. The enhanced current state is then passed to the Deep RL model
(detailed in Section 6) and applied to the environment. A condition set on
the grey top ellipse determines whether the loop is repeated; if the condition
is not met, the k most important states from Working Memory are added
to Long Term Memory. At the end of a loop, the current state is added to
Working Memory if it is different from its current content (bottom ellipse).
If several sequential episodes end in failure, Blending is used to enhance the
current state with new concepts created by retrieving and combining con-
cepts from LTM (left ellipse).

4.2 Reflective reasoning component

The Reflective Reasoning component defines a procedure to choose which
concepts from WM are to be permanently stored in LTM and incorporates
a matching operation between the current state and LTM information (see
Algorithm 2, line: 12). Matching allows selecting the concepts useful to fulfil
the specific task at any given time point.

Processing in the Reflective Reasoning component is executed sequen-

65

tially (Fig.1). First, LTM is initialised; then, selective matching occurs (Al-
gorithm 2, line: 12-14). The agent first explores the environment randomly
(using a random action selection policy, Algorithm 1, line: 21), learning new
concepts at each state and storing the most representative ones in LTM. The
interplay of the two memory systems enables a process of matching novel
states to past information (Doumas et al., 2022). Concepts that reach long-
term memory (LTM) are selectively retrieved to enhance the agent’s ability
to choose an action that leads to a state closer to the goal. This selective
matching operation is carried out in the Selective Matching unit (Fig. 2b).
By storing structured representations of concepts in LTM, the agent can
access past experiences and use them to inform current decisions, allowing
adaptation to new tasks and environments.

Matching, however, does not convey sameness retrieval. Creative agents
must adapt previous concepts to unfamiliar states by connecting relational
concepts to new objects (Shanahan and Mitchell, 2022). The hierarchical
structure of the concept space allows independent access to each level of ab-
straction, making this type of adaptation possible. Nonetheless, matching
also requires a comparison process to assess similarity by measuring the dis-
tance between the elements involved, such as graph-based concepts. Rather
than relying on shallow graph comparison techniques such as adjacency ma-
trix overlap, which fail to account for semantic and functional variability,
our approach encodes the graphs into vector representations that preserve
relational and topological nuance. These learned embeddings are then com-
pared using distance metrics to guide matching and enrichment, as will be
elaborated in the subsequent chapters.

After the initialisation of LTM through agent exploration, selective match-
ing on the initialised memory can be done using a trainable policy network
for action selection (the policy network architecture and its integration with
memory-based enrichment are detailed in Section 6.1 and Section 6.2 respec-
tively). This shifts the agent’s focus towards exploitation,where the goal is
achieved by using objects in the environment or building new ones.

66

Algorithm 2 Instantiation of UPDATESTATEGRAPH via selective matching
and supplementation

1: Input: current state graph G¢, long-term memory Itm, current state s¢
> This algorithm expands the UpdateStateGraph operation in Algorithm 1

3: > It refines the state graph before action selection using LTM
4: selective-matching(Gy,ltm, st) > Template operation from Algorithm 1
5: returns a set of LTM subgraphs similar to G using graph—matching

6: supplement(G1,G2) > Template operation from Algorithm 1
7 returns the graph union used to complete missing objects and affordances

8: for iteration =1,2,...,N do

9: Init wm < (keys]], {}) > As in Algorithm 1
10: while episode not done do

11: > State graph construction as in Algorithm 1
12: > Begin expansion of UpdateStateGraph
13: matched—graphs < selective—matching(Gy, ltm, s¢)

14: enhanced—graph < supplement(G¢, matched—graphs)

15: > End expansion of UpdateStateGraph
16: ai,¢ < m(enhanced—graph) > Policy now acts on enriched graph
17: > Environment interaction and memory updates as in Algorithm 1
18: Optimise policy network > As in Algorithm 1

Applying a concept from memory to a given state entails two steps Fig.5:
first, a match of the graph representing the state (e.g., G) to the graphs
representing the long-term stored information (e.g., LTM); second, once the
match is successful, G; is supplemented with the objects and affordances
present in the retrieved LTM subgraph but lacking in G; in a process known
as completion Shanahan and Mitchell (2022) (Algorithm 2, line: 13). Such
completion will foster learning and bring to the agent’s current state useful
past experiences.

So far, we have demonstrated how an agent can solve a problem by util-
ising various existing concepts. The following component describes creating
an entirely new concept by leveraging the existing concept space, considered
(everyday) creativity.

67

| 5
ENVIRONMENT
4 reward

5

2. REFLECTIVE REASONING

4
DEEPRLMODEL [« = = = = = = = = = = = |
Long term memory _| :
LT™M |
. . 2 - 3 3
2 Y Sclective matching() Matched memories - ;
1
1 |
1
|

- Current
state
6

[1. CONCEPT PROCESSING]

2

Current state
different from WM
states?

Add to
6 6
‘Working memory
WM

—

Compare()

Figure 5: This figure provides a focused view of the Reflective Reasoning
component, acting as a zoom-in of the memory interaction already intro-
duced in Fig. 1. The processing is illustrated through numbered coloured
arrows. First, the input is encoded and represented as a graph (1). The pro-
cessed current state is passed to the memory matching function (2), which
outputs the best matches between the current state and Long Term Memory
concepts. The concepts retrieved represent the union of the best matches and
supplement the current state (3), which is input into a deep RL model (de-
tailed in Section 6). The deep RL model outputs an action which is applied
to the environment (4). The deep RL model is updated with a reward and
the current state becomes associated with it (5). The updated state is added
to Working Memory if it is significantly different (6). The whole process runs
in a loop until a final state is reached or a given number of time-steps have
passed.

4.3 Blending Component

Creativity is triggered when existing concepts are insufficient to solve a task,
leading an agent to a standstill. We are using the expression impasse situation
(Laird et al., 2012) to refer to the inability of an agent to solve a task for
several episodes. A CPS approach should help overcome such an impasse
with a solution that satisfies the problem constraints. Hence, we are working

68

under the assumption that the impasse could be surmounted by developing a
novel, useful concept. In the AIGenC framework, new concepts are generated
by blending existing concepts in the latent space into new representations.
Conceptual blending (Fauconnier and Turner, 1998) denotes the combination
of meaningful features of two or more concepts into a new concept.

Two issues must be addressed when creating a new concept: selecting
the relevant concepts that help the agent achieve a goal and combining them
effectively. To filter the concept space for information that can solve a prob-
lem, the agent must have a high-level understanding of the problem, context,
and task requirements; that is, acquire a general problem template to process
the information, which requires summarising and organising information at
a level of abstraction beyond the current hierarchy. Artificial agents lack
this knowledge, so we propose a heuristic that widens the range of matched
concepts by relaxing the similarity constraint in matching (i.e., we propose
using a similarity criterion (say, X%) for selecting concepts to be blended,
acknowledging that other approaches may also be appropriate). When Re-
flective Reasoning finds the concepts that lead to a satisfactory solution, the
problem-solving task stops; otherwise, Blending is activated, making the two
functionally complementary (see Fig.6). Both components match informa-
tion from LTM to the current state. However, Blending retrieves a larger
pool of information, allowing for a wider variety of environmental data to be
operated on.

69

Task failed for n
episodes ?

Current State

Yes/No

Current State @
H @ Long term memory

Current StatE@

Long term memory

®
J

Selective matching

LT™

)

Selective matching

Returns concepts 50% or more Returns concepts 80% or more
similar to current state similar to current state

Output: Matched concepts

[Blending algorithm]

Output: New blended concept

Output: Matched concepts

Add to current state

Add to current state

Figure 6: Reflective Reasoning and Blending complementary pipeline. Fail-
ure in solving a task on multiple episodes (grey top ellipse) activates Blending
(left elements connected by pink lines); otherwise, the processing is carried
out in Reflective Reasoning (right elements connected by blue lines). A pro-
cess of Selective Matching between the current state and Long Term Memory
follows. Reflective reasoning selects concepts with a high similarity ratio and
applies a union function to supplement the current state graphs. Blending
selects concepts with a lower similarity rate. A Blending algorithm is run.
The outcome of this algorithm is applied to the current state.

Retrieved concepts are used to create novel concepts using a non-linear,
trainable network, thereby expanding the concept space with new, diverse
concepts that can be applied to the task. The network must respect the latent
space’s structure, meaning that the dimensions of the latent vectors should
be maintained, and the network should be able to combine their feature

70

values by moving across their dimensions. Relevant features extracted by
concept processing sub-modules can be identified post hoc by quantifying
their contribution to the performance of the previous unsupervised models.
SHAP (Shapley Additive Explanations, (Lundberg and Lee, 2017)) is an
interpretability method that can be used to weigh the pertinence of individual
features and select the latent space features that bear the most relevance to
solving the task.

To keep the semantic features of data through the generation process, we
propose decomposing the input into a vector and a latent code that targets
the salient semantic features of the data distribution. This process is similar
to Chen et al.’s approach Chen et al. (2016). Thus, the input vector would be
replaced by the concepts to be merged with a set of trainable parameters for
their combination function. In addition, the latent codes could be initialised
with an average of the SHAP values. As the Blending function is intended
to create novel concepts rather than reproduce input in the latent space,
a clustering-specific loss function could be used to evaluate the similarity
between the generated concept and existing concepts in the cluster, with a low
value indicating a good match. By enforcing clustering similarity through the
loss function, we could reduce the variability of the new concept, providing
a mechanism for more meaningful concept building (Mukherjee et al., 2019).

It is essential to note that the proposed blending mechanism would only
be possible in a system that incorporates functional components like those
presented in our model. The underlying representational structure of the
first component is critical to obtaining a comprehensive input representa-
tion. At the same time, Reflective Reasoning tools are essential for selecting,
adding, and filtering concepts in the concept space, reducing computational
costs and recycling useful concepts. Filtering, which involves understand-
ing the high-level characteristics of the concept affordance, is not simply a
search of the conceptual space. Instead, it requires a generalisable solution
template, developed through repeated similar experiences. We anticipate
that our agent’s semi-random selection of relevant objects will establish a
foundation for incremental abstract representations.

While the broader AIGenC framework initially relies on this semi-random
retrieval, its instantiation through SETLE moves toward a more structured
and informed mechanism. Central to this refinement is the concept of a prob-
lem template—an abstract pattern that emerges from generalising across pre-
viously encountered episodes and supports the selection and recombination
of relevant knowledge components. Although agents do not begin with ac-

71

cess to such templates, the construction of Structurally Enriched Trajectories
(SETSs) and their outcome-based representations provides a concrete founda-
tion for approximating them. By encoding temporal sequences, functional
dependencies, and relational affordances, SETLE equips the agent to retrieve
and compose partial solutions in a manner that mirrors template-based rea-
soning—facilitating more adaptive, transferable, and ultimately creative be-
haviour in novel tasks.

With Blending, the complete architecture has been presented. The ar-
chitecture proposed serves as a blueprint for designing more robust systems
equipped with transferable and adaptable knowledge capable of solving prob-
lems creatively.

While this section has outlined the conceptual role of Blending within the
AlGenC framework, namely, the retrieval of loosely similar concepts and their
recombination to generate novel representations, its concrete algorithmic re-
alisation is deferred to Chapter 6. Specifically, Algorithm 5 (lines 18-24) im-
plements the Blending mechanism through attention-weighted retrieval and
graph supplementation, demonstrating how retrieved concepts are selected,
scored, and injected into the agent’s working memory during the reinforce-
ment learning loop. However, it does not yet perform the full latent-space
combination described above—where features from multiple concepts are in-
terpolated or merged via a trainable network (e.g., using SHAP-weighted
feature selection and InfoGAN-style generation).

This simplification reflects practical constraints: the CREATE and Mini-
Grid environments used in our experiments do not allow evaluation of—genuinely
novel concept generation. Testing the full Blending mechanism would require
environments specifically designed to reward creative solutions that cannot
be achieved through retrieval alone—a direction we identify for future re-
search.

72

5 AlGenC Concept Processing and Reflec-
tive Reasoning Instantiation: SETLE (Struc-
turally Enriched Trajectory Learning and
Encoding)

To instantiate the Reflective Reasoning component of the AIGenC frame-
work, this chapter introduces a concrete computational model, namely, Struc-
tured Trajectory Learning and Encoding (SETLE). SETLE addresses a key
representational bottleneck in reinforcement learning: the inability to encode
and retrieve structured, relational knowledge from temporally extended in-
teractions. This limitation hinders agents from abstracting past experience,
thereby reducing their capacity to generalise or adapt creatively to novel
tasks.

Rather than representing experience as flat sequences of state-action tran-
sitions, SETLE conceptualises episodes as hierarchically structured trajecto-
ries, called Structurally Enriched Trajectories (SETs), that encode objects,
their interactions, and the affordances that mediate functional change over
time. These hierarchical graphs preserve both the compositional nature of
tasks and the dynamic dependencies between agent actions and environmen-
tal transformations. SETs are constructed incrementally during training and
stored in a dual-memory system as described in the previous chapter, which
enables retrieval, matching, and recombination across episodes. We detail
how SETSs are built from raw data, how their relational and temporal struc-
ture is encoded within heterogeneous graph memory, and how graph neural
networks and attention-based mechanisms are used to compare current states
with structurally similar past experiences. This includes SETLE’s use of
meta-path-aware semantics, outcome-based linking, and encoding strategies
that allow the agent to identify functionally relevant substructures from its
long-term memory.

Unlike traditional methods that aggregate information across entire graphs,
we introduce a subgraph-centric approach tailored for episodic data. Each
episode is treated as an independent subgraph, and its representation is solely
based on its local neighbourhood. A key distinction of our framework is the
ability to handle shared nodes that may appear in multiple trajectories or
episodes. These shared nodes serve as bridges between episodes, allowing the
emergence of cross-episode patterns. For example:

73

e An object, such as a ball, might be used across different episodes but
in varying contexts (e.g., being pushed to a goal in one task and placed
in a bucket in another).

e Similarly, an action like push could have different effects depending on
the affordances and states in multiple episodes.

By encoding these shared nodes within their respective trajectory sub-
graphs, the relationships learnt from one trajectory or episode can inform
the understanding of similar interactions in other episodes, enhancing gener-
alisation across tasks.

By grounding abstraction in interaction, SETLE provides a principled
mechanism for structured generalisation, transforming episodic traces into
reusable, compositional knowledge. This not only enables behavioural reuse
in new settings, but also supports the gradual emergence of task schemas or
problem templates from accumulated experience.

We first define the ontology of our framework, then describe the process
of constructing Structurally Enriched Trajectories (SETSs) as heterogeneous
graphs, ensuring they encode multi-level relationships between objects, inter-
actions, states, and affordances. We then detail the methodology for learning
SET embeddings, which can be used for downstream tasks, including inte-
gration into reinforcement learning pipelines.

Summarising, this chapter covers:

1. A conceptual framework for RL representations that extends RL’s on-
tology to incorporate affordances and hierarchical trajectory structures,
enabling agents to capture sequences of different states and their rela-
tional dependencies.

2. A formal conceptualisation of SET to expand the notion of trajectories
to include not only state-action sequences but also objects, interactions,
affordances, and task-relevant components.

3. A novel architecture SETLE to extract and encode SET's

(a) An instantiation of the Hierarchical Memory Structure described
in the previous chapter: A multi-level memory system that en-
codes task elements at varying levels of abstraction, capturing
both fine-grained interactions and high-level trajectory patterns,
supporting robust generalisation across tasks.

74

(b) Heterogeneous Sub-Graph Encoder: A specialised encoder de-
signed to learn trajectory representations by leveraging subgraphs
with shared components rather than treating full graphs as inde-
pendent entities.

4. Experimental evidence suggesting that SETLE effectively captures both
task-specific patterns and cross-task similarities, supporting structured
trajectory learning in dynamic, episodic environments.

5.1 SETLE Ontology

This section defines key components of our framework, including interac-
tions, Structurally Enriched Trajectories (SETSs), affordances, and hierar-
chical memory, which together provide a structured representation of task
execution. Although several of these concepts have been introduced in ear-
lier sections, they are revisited here in the context of their integration within
the full system instantiation, illustrating how they interoperate to support
generalisation, abstraction, and decision-making.

5.1.1 Interactions and Objects

Objects and interactions are structured embeddings extracted from the en-
vironment that encode task-relevant features that influence decision-making.
An interaction i; represents the interaction between an agent-object or object-
object relationship observed within the environment. However, the nature of
these interactions varies across the environments used in our experiments. In
CREATE, where agents and objects are embedded in a physics-based simu-
lation, agent-object interactions can be explicitly observed and encoded, for
example, when a ball pushes a block or navigates around obstacles. These
interactions provide rich relational information that informs the agent’s un-
derstanding of affordances and causal effects. In contrast, environments like
MiniGrid do not explicitly expose physical interactions. Instead, transitions
are primarily recorded as state-action changes, without observable agent-
object contact, which limits the granularity of relational information. As
a result, in MiniGrid, interaction nodes are omitted, and the graph repre-
sentation focuses on object embeddings and action-induced state transitions
instead.

75

5.1.2 Affordances

As described in the previous chapter, an affordance is conceptualised as the
learnt relationships between an (effect, reward) pair and a (concept-object,
interaction) tuple. When an agent applies an action, it produces an interac-
tion, which in turn generates an effect (a state transition) and an associated
reward, both of which are stored as an affordance. This structured represen-
tation is designed to improve generalisation across tasks by predicting how
different interactions influence trajectories across varying contexts.

Formally, an affordance A encapsulates an agent’s action, the current
state, and the resulting trajectory (Catarau-Cotutiu et al., 2023):

A= {Staat75t+17rt} (15)

where s; is the current state, a, is the agent’s action, s;;; is the resulting
state, and r; is the reward at time ¢.

5.1.3 Structurally Enriched Trajectories (SETs)

In reinforcement learning (RL), formally, we define the basic unit of inter-
action as a transition Tuple. This tuple captures the immediate causal link
between a state, an action, and its outcome:

T = Sty Aty St41, T (16)

where s; is the current state, a; is the action taken, s;; is the resulting
state, and r; is the immediate reward. A trajectory 7, then, is defined as a
temporal sequence of these transition tuples, representing a complete episode
of interaction:

7= (To,Ti,..., Tr) (17)

where s, € S represents the agent’s state at time step t, a; € A is the
action taken, and T denotes the length of the episode.

We define a Structurally Enriched Trajectory (SET) as an exten-
sion of this classical trajectory that incorporates additional structural compo-
nents, capturing relational dependencies and affordance-based interactions.
A SET is represented as a hierarchical graph:

G- =(V,E, @) (18)

76

where V' is the set of nodes, F is the set of edges, and ® assigns feature
embeddings to nodes.

V= Utho{Ota I, ft, s¢} is the set of nodes across the episode. For each time
step t:
e s; is the state node at time step t.
e (O, is the set of object nodes present at time step t.

e [, is the set of interaction nodes occurring at time step t.

~

fi is an affordance—outcome node associated with the transition
from s; to s;4q. It represents the action-conditioned functional
change observed in the environment and includes an outcome/ef-

fect term, e.g.
Azy = 2p01 — 2, (19)

where z; = Enc(s;) is an encoded representation of the state (or
observation).

The union over ¢ ensures that V' contains the complete set of states, ob-
jects, interactions, and affordance—outcome nodes encountered through-
out the episode.

E = Eiemporal U Estructural 15 the set of edges, defined as the union of temporal
and structural relations.

Eremporal = Ur—g {(st, £, (fi,5141)} encodes the temporal (causal) flow of the
episode by linking each state to the affordance-outcome node and then
to the subsequent state. This models the transition as a path s; —

~

ft = s441, while keeping the outcome explicitly available as part of f;.

FEgtructurar €ncodes within-timestep functional dependencies:

T

Byt = |J ({(0,3) |0 € O i € LY UL, f) i € 1}). (20)

t=0

That is, objects are linked to the interactions they participate in, and
interactions are linked to the affordance—outcome they enable.

77

d:V — R? assigns embeddings to nodes (states, objects, interactions, affordance—
outcome nodes). In particular, &(ft) may concatenate or otherwise
combine interaction features with the outcome embedding Az, so that
affordances capture both what was done and what changed.

Example. Consider an agent pushing a ball. At time ¢, the graph contains
s¢, an object node op,1, an interaction node ipysh, and an affordance-outcome
node ft whose outcome component encodes the observed change (e.g., the
ball’s displacement), along with the next state s;11. The structural relation
is encoded as opa; — Tpush — ft, while the temporal transition is encoded as
S¢ = fr = St

This enriched representation allows us to model task execution beyond
stepwise transitions, capturing how task elements evolve over time and in-
teract within different contexts.

5.1.4 Hierarchical Memory Structure

We organise multiple Structurally Enriched Trajectories (SETs) within a hi-
erarchical memory structure, which serves as a concrete instantiation of the
concept space introduced in the previous chapter. The hierarchical mem-
ory structure, represented as a large heterogeneous graph, captures shared
trajectory components across different episodes. The hierarchical memory is
formally represented as:

M:(gl7g27"'agN) (21)

Where:

- G, represents an individual SET subgraph, modelling a structured tra-
jectory of an episode.

- Each subgraph G; can be further decomposed into a sequence of lower-
level graphs G/, where each G! corresponds to a state in the episode, decom-
posed into its fundamental components (objects and interactions).

- SETs share low-level components, such as objects and interactions, cre-
ating relational dependencies across multiple trajectories.

The hierarchical structure of the memory captures different levels of ab-
straction. At the lowest level, each state is represented as a graph G!, en-
coding the relationships between objects and their interactions. At a higher

78

level, SETs encapsulate structured trajectories, linking sequences of state-
graphs through affordances into meaningful task representations. Unlike tra-
ditional memory structures that store isolated trajectories, our hierarchical
memory structure connects trajectories through shared elements, preserving
both task-specific dependencies and cross-task relationships. This structured
representation allows agents to retrieve relevant experiences based on shared
trajectory components, improving adaptability and transfer in reinforcement
learning environments.

To formally represent the hierarchical graph for a SET, we model the
task environment as a Heterogeneous Information Network (HIN), defined as
a graph G = (V, E, A, R, ®), where:

e V/ is the set of nodes (e.g., states, objects, interactions, affordances);
e FF CV xV is the set of edges connecting nodes;

o A = {A}, Ay, ..., A} is the set of node types (e.g., State, Object,
Interaction, Affordance);

e R = {Ry, Ry, ..., Ry} is the set of relation types, where each R; de-
fines a semantic relationship between node types (e.g., has_object,
participates_in, causes, temporal next);

o &:V — R? assigns feature embeddings to nodes.

The network schema of G, denoted as I' = (A, R), is used to describe
the structure of interactions between nodes of different types, capturing the
local structure. The schema is used to define direct connections among var-
ious node types (such as states, interactions, affordances and trajectories),
forming the foundation for encoding relationships in heterogeneous networks.

Additionally, we define *meta-paths* to capture the composite relation-
ships within task episodes. A meta-path P is defined as a sequence A; LR
A, LN N A1, where each A; is a node type and each R; is a re-
lation. Meta-paths describe the indirect, higher-order connections between
node types, such as sequences connecting states to the enriched trajectories,
which are essential for capturing complex dependencies across task hierar-
chies.

79

5.1.5 Structured Data Source: CREATE Environment

To develop and evaluate our proposed framework, we required environments
that support structured, temporally extended interactions and diverse task
configurations. This necessitated platforms with multiple manipulable ele-
ments, variable goals, and the potential for multi-step planning—characteristics
essential for studying generalisation, hierarchical reasoning, and creative
adaptation. Our primary environment, CREATE (Construction, Reuse, and
Extension of Actions through Transfer and Exploration) (Jain et al., 2020),
meets these criteria. It provides a rich set of tasks involving dynamic object
interactions—such as pushing a ball to a target, placing it in a container,
or navigating around obstacles—allowing us to capture affordances and en-
code functionally diverse solutions. The variability in task configurations
across episodes in CREATE forces agents to adapt strategies and recombine
prior knowledge, making it particularly suited for testing creativity-inspired
mechanisms like concept blending and structured reuse.

To complement this setup, we also incorporate the MiniGrid environ-
ment as a secondary testbed. MiniGrid offers lightweight, partially observ-
able grid-based tasks that facilitate efficient data collection and evaluation
of generalisation. While its state transitions and task diversity enable broad
comparisons, MiniGrid lacks explicit physical interactions and continuous
affordances, limiting its utility for developing the full creative potential of
agents. Nevertheless, its inclusion allows us to assess the robustness of our
framework across discrete and continuous settings and to evaluate the consis-
tency of learned representations in environments with fundamentally different
structural properties.

Together, CREATE and MiniGrid provide a dual testing ground: CRE-
ATE supports the emergence of structured, creative behaviour, while Mini-
Grid enables cross-environment evaluation of generalisation capabilities.

5.2 SETLE: Hierarchical Graph Construction

From template to instantiation. In Chapter 4, AIGenC was introduced at a
template level, where the core operations object discovery, interaction encod-
ing, affordance construction, memory matching, and graph supplementation
were defined abstractly to foreground the architecture. In this section, we
make that template concrete: SETLE instantiates these operations to con-
struct Structurally Enriched Trajectories (SETs) that drive Reflective Rea-

80

soning.

More in particular, SETLE integrates the outputs of the Concept Process-
ing component, transforming perceptual observations (objects and interac-
tions) into graph nodes, and infers affordances as functional transformations
that link successive states and bind them to the involved objects/interac-
tions. Through this process, SETLE preserves both local relationships (e.g.,
agent-object interactions within a timestep) and longer-range patterns (e.g.,
action—effect sequences across time), grounding abstraction in observed ex-
perience. This structured representation forms the foundation for memory
storage, retrieval, and downstream reasoning.

In the remainder of this section, we detail the graph construction oper-
ations, including object and interaction encoding, state transitions, and the
integration of affordance-driven relations, all of which emerge from and build
upon the framework defined by Concept Processing.

5.2.1 SET Definition Through Random Exploration

In RL, an episode consists of a complete sequence of interactions from an
initial state to termination, encapsulating the trajectory an agent follows
within a given task. To extract and formalise SETs (for a detailed definition,
see Section 5.1.3) we employ an exploration strategy within the CREATE
environment (Jain et al., 2020). In this setup, agents engage with tasks such
as pushing a ball to a goal or placing it inside a bucket, generating diverse
trajectories. To maximise variability in the trajectory space and better cap-
ture adaptive patterns and task-relevant structures, RL agents operate under
a random policy rather than being optimised for specific rewards.

Each episode is represented as a SET graph (see Fig.13), encapsulating
the task setup, actions taken, and the result of the task, which is stored for
validation and further analysis in the hierarchical memory (see 5.1.4). This
process directly instantiates the Concept Processing stage of the AlGenC
framework (see Algorithm 1, Lines 4-6), where concepts are extracted from
raw observations and structured into graphs. The resulting SETs are sub-
sequently stored in Working and Long-Term Memory (Algorithm 1, Lines
7-8).

An episode F is defined as a sequence of state-action pairs:

E ={(s0,a0),(s1,a1), ..., (s¢;a¢),...(sp,ar)} (22)

where s, € S is the state at time ¢, and a; € A is the action taken at time ¢.

81

A SET is labelled as success if the agent reaches the goal; otherwise, it
is labelled as failure. The SET of an episode SET(E) is labeled as follows:

success, if sy € G

SET(E) = { (23)

failure, otherwise

where G is the set of goal states.

SETs are represented hierarchically (see Section 5.2.3) in the memory
structure, including the episode’s inventory and action sequence. For each
episode, the corresponding SET graph Gggr is constructed, consisting of
nodes representing states and edges representing state transitions (i.e., as
seen in Fig.13).

5.2.2 Evaluating Methods for Concept Processing

The following section details the experimental methodology and evaluation
criteria used to assess candidate models for the object discovery and inter-
action learning components of the Concept Processing module. This module
plays a critical functional role by extracting transferable latent representa-
tions of objects and interactions, forming the perceptual foundation of the
agent’s internal concept space. These representations must be disentangled
from raw sensory input and be capable of generalising across diverse envi-
ronments. To meet these requirements, we focus on unsupervised or weakly
supervised approaches that learn concepts from structural and statistical
regularities in the data, rather than relying on predefined labels or dense
supervision.

Object discovery: Methodological Considerations We adopt the premise
that learned object concepts should be unsupervised, modular, and spatially
disentangled. This motivates the use of representation learning methods
such as autoencoders (AEs) (Rumelhart and Norman, 1983; Masci et al.,
2011) and variational autoencoders (VAEs) (Kingma et al., 2013), which
compress high-dimensional inputs into compact latent representations. How-
ever, standard VAEs treat the input image as a whole and typically learn
entangled latent representations, which do not explicitly separate different
objects or regions within the image. As a result, they lack the inductive bias
needed for object compositionality, the ability to represent multiple, distinct

82

entities within a scene. To address this, we explored object-centric mod-
els specifically designed to decompose scenes into independent object-level
components, thereby enabling more interpretable and transferable concept
representations.

To filter the extracted object vectors and reduce computational overhead,
we constrain the number of object slots to a fixed K, selecting only the
most salient components from a total of N latent encodings. This reduces
noise, limits memory bloat, and focuses attention on conceptually meaningful
entities.

Object discovery: Model Selection Process To identify a suitable
object discovery model for our framework, we trained and evaluated sev-
eral existing approaches, focusing on their transferability, robustness across
environments, and dependence on fine-tuning. All models were initially pre-
trained on standard object-centric datasets, and we systematically assessed
their ability to generalise to novel RL environments without additional su-
pervision.

Unsupervised object discovery requires identifying recurring patterns in
visual input that can be interpreted as discrete entities, distinguishing objects
from the background and one another. A range of popular methods tackle
this challenge by learning to decompose visual scenes into interpretable com-
ponents. These include approaches based on autoencoders, such as MoNet
(Burgess et al., 2019), multi-object representation learning using VAEs, and
the Slot Attention mechanism.

Our evaluation began with the Slot Attention module (Locatello et al.,
2020), which uses an iterative attention process to assign parts of the latent
representation to a fixed number of K object slots. Each slot is intended to
capture a distinct object in the scene. This model has shown strong results
in synthetic and structured environments and is often used as a benchmark
in object-centric learning. This model has demonstrated strong performance
in object-centric learning on structured datasets, such as CLEVR (John-
son et al., 2017). In our initial experiments, conducted on CLEVR, a cus-
tom 2D-shapes dataset, and two RL environments (CREATE and AnimalAl
(Crosby et al., 2020)), Slot Attention demonstrated strong in-distribution
performance. Still, it failed to generalise to more complex or noisy domains.
Specifically, in CREATE and AnimalAl, the model struggled to produce sta-
ble segmentations and reconstructions, resulting in slot drift and low-quality

83

object representations even after fine-tuning (see Appendix 4.1).

Given these limitations, we next explored DTI-Sprites (Monnier et al.,
2021), a model specifically designed to decompose images into object-like
layers using learned appearance and motion cues. Unlike Slot Attention,
which requires general-purpose pretraining, DTI-Sprites was trained directly
on AnimalAl frames. This yielded more stable segmentations within the
trained environment (Fig. 7, 8), with object layers that were better aligned
with perceptual boundaries.

loss
= dti-sprites-animalai-curated

0.02
0.015

0.01

0.005

0 10k 20k 30k 40k 50k

Figure 7: DTI-Sprites training on curated AnimalAl frames. The plot shows
the reconstruction loss decreasing over time, indicating convergence.

However, despite its improved in-domain performance, DTI-Sprites ex-
hibited poor transferability. The model failed to generalise to unseen envi-
ronments, instead encoding dataset-specific priors that limited its utility as a
general-purpose concept extractor. More critically, DTT-Sprites proved to be
computationally inefficient, with long per-frame processing times that made
it impractical for use in interactive or real-time learning settings. This posed
a serious limitation for its integration into the AIGenC framework, where
representations must be extracted online as part of a continual learning pro-
cess. As such, DTI-Sprites did not meet the architectural or performance
requirements of our system.

84

masked_prototypes

Step e——f) 55747 |

backgrounds

Step en——————f 55749

Figure 8: DTI-Sprites training on curated AnimalAl frames. The bottom
panel displays a background sample from the environment. The top panel
shows the masked prototypes generated by the model. Notably, these seg-
mented shapes do not fully correspond to actual objects present in the scene,
illustrating a key failure mode of the model-—namely, the inability to discover
meaningful and grounded object representations despite low reconstruction
loss. This highlights the limitations of using DTI-Sprites for object-centric
concept extraction in RL environments.

85

Finally, we evaluated the Segment Anything Model (SAM) (Kirillov et al.,
2023), a large-scale foundation model trained on over 1 billion masks and 11
million images. Unlike previous models, SAM is designed for zero-shot seg-
mentation and generalises well to previously unseen domains. In our experi-
ments, we used SAM without any fine-tuning. We found that it consistently
outperformed both Slot Attention and DTI-Sprites in segmenting objects
across both CREATE and AnimalAl (Fig. 9). It produced clean, inter-
pretable object masks that were robust to variation in background, shape,
and viewpoint, making it the most viable solution for concept grounding in
our pipeline.

50

100

150

200

250

300

w

350

Figure 9: Segment Anything applied to CREATE environment frames. The
model consistently produced object-consistent masks without fine-tuning,
unlike previous object-centric models.

Object discovery: Final Design Choice Based on this evaluation, Seg-
ment Anything was selected as the default object discovery module in our
system. This empirical success directly supports the theoretical requirements
set forth by the AIGenC framework. In particular, SAM’s ability to per-
form unsupervised, zero-shot segmentation aligns with the need for internally

86

grounded concept representations—those not dependent on pre-defined labels
or task-specific tuning. Its robustness across domains ensures that extracted
object concepts are stable and transferable, a core condition for building a
reusable concept space. Moreover, SAM’s inference efficiency makes it suit-
able for integration into online RL pipelines, fulfilling the practical constraint
that concept processing must occur within the agent’s active learning loop.

The discovered objects are encoded as latent vectors and added to the
agent’s working concept space. In the next sections, we describe how these
encodings are combined with action representations, how we manage con-
cept memory growth, and how structured trajectories are formed from these
elements.

Interaction Learning: Methodological Considerations Modelling ob-
ject—action interactions in reinforcement learning is a persistent challenge,
particularly under unsupervised or weakly supervised constraints. While ex-
isting deep learning models have proven effective at encoding object-level fea-
tures, capturing interactions, especially those with generalisable affordance-
like properties, requires architectures capable of disentangling agent-object
dynamics from contextual noise. Within the Concept Processing module,
we experimentally evaluated two models: the Neural Statistician (NS) and
a Convolutional Long Short-Term Memory (ConvLSTM) model with triplet
loss. These models were chosen for their capacity to capture structured
regularities across grouped interactions and to support generalisation across
variations in object configurations.

Importantly, the latent vectors produced are not referred to as affordances
in the classical sense, since they do not fully capture functional invariances
across tasks. Instead, we refer to them as interaction representations, which
encode interaction dynamics observed during episodes. To align with our
formalism (see Algorithm 1, lines 26-27), these vectors are further enriched
with outcome-level features, including the effect and reward, thereby cap-
turing both behavioural and functional attributes necessary for downstream
learning and reasoning.

Interaction Learning: Model Selection Process To evaluate effective
encoding strategies, we explored two distinct models: the Neural Statistician
and a ConvLSTM with triplet loss.

The Neural Statistician (NS) (Edwards and Storkey, 2016) is explicitly

87

designed to separate context-level (shared) and instance-level (specific) vari-
ables in grouped data. This architecture allows us to treat sequences of
interactions involving the same object as a single group, where the object’s
identity remains fixed and only the configuration varies. This aligns with
our affordance formalism, where interaction effects (e.g., bounce, slide) are
learned across similar contexts. We trained the NS on grouped action se-
quences from the CREATE environment, where each group captured multi-
ple configurations of one object undergoing interactions. However, CREATE
frames exhibit high visual similarity across configurations, and many object
interactions differ only subtly in spatial layout or motion trajectory. NS
learns latent representations for unordered datasets by generating a poste-
rior ¢(c|D) over the context ¢ of each dataset D, as such, their application
to environments with high task similarity, such as CREATE, reveals notable
limitations. Specifically, the shared context ¢ across episodes often results in
poor separability between distinct tasks, hindering the generalisation of rep-
resentations. As shown in Fig. 10, although reconstructions capture coarse
contextual structure, the training was plagued by unstable variational lower
bounds (VLBs) and inconsistent gradients.

The PCA projection of interaction embeddings from the Neural Statis-
tician model (see Fig.11) reveals that the model learned to cluster cer-
tain object types, particularly those with high semantic consistency such
as Fixed_Ball or Bouncy_Hexagon—into distinct regions. This indicates that
the context-level variables were partially successful in capturing object iden-
tity across multiple configurations. However, the significant overlap between
other categories (e.g., Fixed_Box vs Bouncy_Box, Triangle variants) suggests
that the separation between context and instance-level variables was not fully
achieved. These issues, combined with the NS model’s sensitivity to group
partitioning and lack of scalability, ultimately hindered its use as an online
component in the reinforcement learning loop.

88

Loss classif

100k 200k 300k

Running VLB VLB_batch

image_in_step_0 reconstruction

Reconstruction
Input

. Step co—) 354996 |
Step eon——f) 354996

Figure 10: Training metrics for the Neural Statistician model on grouped in-
teraction sequences. The classification loss (top panel) and variational lower
bound (VLB) (middle panel, left and right) plateau early, suggesting limited
optimisation progress or an insufficient gradient signal. While reconstruc-
tion samples show coarse recovery of object-level patterns, the instability
may stem from both the model’s sensitivity to grouping structure and the
high visual similarity of interactions in the dataset.

89

ActionRepr Embeddings Clustered by Associated Object Types NS

-

Object Type

® Belt
Bouncy_Ball
Bouncy_Box
Bouncy_Hexagon

® Bouncy_Pentagon
Bouncy_Square

® Bouncy_Triangle
Bucket

= e Cannon

e Fan
i ® Fixed_Ball

00] Fixed_Box

¢ Fixed_Hexagon
Fixed_Pentagon

® Fixed_Square
Fixed_Triangle
Funnel

-05 Hinge

® Hinge_Constrained
no_op

® Ramp
See_Saw
TFampoline

05

PCA2

5 T b : ; 3

Figure 11: PCA projection of action representation embeddings produced
by the Neural Statistician. Each point represents an embedding associ-
ated with an object interaction. While some clusters (e.g., Bouncy_Box,
Fixed_Hexagon) are distinguishable, there is notable overlap across certain
categories, reflecting the difficulty of learning disentangled interaction dy-
namics in a high-similarity environment like CREATE.

We utilise a ConvLSTM-based encoder to address the challenges of distin-
guishing between similar objects and their interactions across various tasks.
This encoder is designed to capture the temporal dependencies inherent in
sequences of object interactions. By encoding temporal dynamics, the Con-
vLSTM model provides a richer and more structured representation of the
task environment. Furthermore, to ensure that the embeddings effectively
distinguish between similar and distinct interactions, we couple the ConvL-
STM with a triplet loss function. The triplet loss enforces separation in the
embedding space by bringing embeddings of similar interactions closer to-
gether while pushing embeddings of distinct ones further apart. As such we
were able to produce robust and discriminative interaction representations,
forming a foundational component for subsequent hierarchical encoding.

Let F, = {f1, f2, ..., fn | all frames associated with interaction a} repre-

90

sent the set of frames associated with a specific interaction a. For a given
frame z, € F,, we denote x, € F, as a positive sample (a frame associated
with the same interaction a) and z, ¢ F, as a negative sample (a frame
associated with a different interaction).

The triplet loss Liipiet is defined as:

Lisipler = max(0, d(f(za), f(2p)) = d(f(2a), f(2n)) + @) (24)

Where f(z) is the embedding function that maps a frame into the embed-
ding space, d(-) is a distance function (e.g., Euclidean distance), and « is the
margin. In our experiments, we set a = 0.6 after a hyper-parameter search
of values ranging from 0.1-1.0. The final value provided optimal separation
between embeddings of similar and distinct interactions.

This margin value helps the network distinguish subtle differences be-
tween interactions while maintaining adequate separation between positive
and negative pairs.

Using this approach, we observed a clear separability in the embedding
space. We applied K-means clustering to the learned embeddings and re-
vealed the distinct clusters corresponding to different types of interactions.
In the environment used (CREATE), all interactions involve a ball object
interacting with various other objects. Thus, our analysis focuses on the
second object, as it determines the dynamics of the interaction.

While clustering separability is not perfect, the learned representations
exhibit an emergent understanding of interaction similarity. For instance,
interactions involving swings or trampolines may occasionally overlap in cer-
tain clusters, yet the model consistently groups bouncy objects together,
distinguishing them from interactions involving fixed objects (Fig. 12). This
behaviour highlights the network’s ability to capture underlying object prop-
erties that are essential for solving tasks in the CREATE environment.

91

Clusters of Learned Representations: Fixed vs Bouncy Objects

I Category, Object Type
4 Bouncy, Bouncy_Triangle
® Bouncy, Trampoline
® Bouncy, Bouncy_Hexagon
® Bouncy, Bouncy_Pentagon
B Bouncy, Bouncy_Square
Fixed, Fixed_Hexagon
Fixed, Fixed_Square
Fixed, Fixed_Pentagon

@)

Bouncy Fixed

Figure 12: The scatter plot visualises the second object in interactions cat-
egorized as Fixed (orange, right side of the plot) or Bouncy (blue, left side
of the plot), with each symbol representing a unique object (e.g. triangle,
hexagon etc). The type of symbol along with their color indicates specific ob-
jects (e.g., Bouncy_Triangle, Fixed_Hexagon). The y-axis represents unique
object IDs, while the x-axis categorizes objects into Bouncy or Fixed.

5.2.3 Hierarchical Memory Structure

To effectively model SETSs, we structured episodic data into hierarchical het-
erogeneous graphs, where the feature extraction functions ® : V' — R? (see
Section 5.1.3) assigned high-dimensional embeddings to nodes representing
objects, interactions, and states. This structure instantiates the conceptual
memory architecture introduced in Section 4.1.2, where the concept space
was defined as a hierarchical graph supporting both Working Memory and
Long-Term Memory operations (see Fig. 3 and Fig. 4).

The nodes and their different relations are organised into hierarchical het-
erogeneous graphs with three distinct levels of abstraction: (1) a base layer for
objects and interactions, where objects are extracted using the SAM model
(Kirillov et al., 2023) and interaction dynamics are encoded via a ConvL-
STM; (2) a mid-layer for states and affordances, capturing the transition dy-
namics and relationships between interactions and their effects (affordances
here realise the (effect, reward)—(object, action) relations defined in Section
4.1); and (3) a trajectory layer for task-level abstractions, representing the
cumulative impact of interactions and sequences (see Fig. 14).

This hierarchical organisation is stored in a graph database, as motivated
by the computational advantages discussed in Section 4.1.2. It is not simply
a stratification of layers but a structured representation where lower levels
influence higher-level abstractions. Objects and actions/interactions influ-
ence affordances, which in turn shape state transitions and contribute to the

92

formation of SETs. This dependency across levels enables agents to reason
over task structure, capturing both local dynamics and high-level task gener-
alisation in complex environments. Formally, the hierarchical memory graph
G representing a SET consists of:

Edge types
- = 3 contributes to interaction relation

"""" > state has object relation
——> interaction produces affordance relation
— > state influences affordance relation

Node types
SET node

@ State node
° Affordance

affordance outcome relation
> SET has state relation

node
) Interaction
~ node
Object
node

Figure 13: This illustration represents the hierarchical structure of a SET,
capturing relationships between different node types in task representation.
At the lowest level, interactions (light-filled circular nodes) depend on ob-
jects (darker circular nodes). Moving upward, affordances (smaller darker
nodes) emerge from interactions, which then influence states (highlighted in
red with distinct borders) which in turn influence the next affordance. At the
highest level, the SET node connects to the structure through temporal state
dependencies. The edges indicate relationships such as object dependencies,
contributions, and effects. Varying line styles help differentiate these rela-
tionships. This hierarchical structure showcases how task execution is rep-
resented by linking objects, interactions, affordances, and states. Note that
this figure instantiates the conceptual hierarchy presented in our AIGenC
template and shown in Figure 2 (Chapter 4): the progression from objects
to interactions to affordances to states to SETSs reflects increasing levels of
abstraction in the latent embedding space. Unlike the conceptual template
where affordances were depicted as edges, here they are implemented as ex-
plicit nodes to support independent embeddings and graph-database storage.

Level 1: low-level abstractions (objects and interactions) The low-
est level of the hierarchy captures individual objects (Fig. 15) and interac-
tions representations (Fig. 16), which form the fundamental units in the
environment (Fig. 17). In the graph visualisation (Fig. 13), objects appear

93

SET layer

RL Agent with random policy

E performs a given task until goal is ; A
ireached in a maximum of 9 steps

"""""""""""""""""" e / \ \ Mid layer:
States and
\ @_\ = ° @ affordances
>
® :) ° - N ° N } :
- o = " B
= v Base layer:
Objects and
x> - O .- Interactions
For a given step at time t the State is 1 v,“
decomposed into objects and interactions Sz
| SAM: bbject detection %Pre-trained ConvLSTM:
7mode|] ‘action embedder

- q@

For each object added to the environment sets of frames that
capture the dynamics of the interaction are retrieved

Figure 14: Hierarchical Memory building: The image shows the models used
to build the hierarchical memory. The base layer extracts objects and in-
teractions using the SAM object detection model and a pre-trained ConvL-
STM, capturing fundamental task dynamics. The mid-layer represents states
and affordances, modelling how interactions influence future states. At the
highest level, the SET layer encodes trajectory-level abstractions, capturing
long-term dependencies across sequential states. This hierarchical organisa-
tion enables efficient reasoning over task structures and adaptive decision-
making.

as orange nodes, each connected by has_object edges to higher-level states,
while interactions appear as pink nodes encoding the dynamics between ob-
jects.

The relationship between objects and interactions is fundamental to model
structured learning. Fig. 17 illustrates how objects interact with each other,
emphasising that an interaction is defined not only by its motion dynamics
but also by the entities involved in its execution.

94

e

SAM: Object
detection model)

.

Figure 15: Base-level representations: Object-level representations extracted
at the base layer using the SAM object detection model. These representa-
tions capture object features in the environment and are stored in a graph
database.

Pre-trained
ConvLSTM: action
. embedder

Figure 16: Base-level representations: Interaction-level representations ex-
tracted at the base layer using a pre-trained ConvLSTM action embedder.
These embeddings capture the dynamics of object interactions and are stored
in the graph database.

To construct structured representations of objects and interactions, we
employed a combination of object detection and interaction representation
learning techniques. This section presents the final design choices resulting
from our evaluation process. In the previous section, we have detailed the
methodological considerations and experimental results that informed these
decisions.

95

Node properties ©

ActionRepr

<id> 36
all_att_values 1]
congri N alpha 0.1
Ntribyte y N P

att 0.01
obj_type Trampoline

D © © © © ©

parent_id_state 321

(‘,G\'\\('\\:)\)\e ~—~ value [-16.416099548339844,18.404104232788086,-24.62711 ©
524963379,26.86768341064453,22.659706115722656,
17.751506805419922,-26.64668083190918,21.7810707
09228516,-21.20094108581543,-10.181000709533691, -

20.977319717407227,-26.068140029907227,11.337875
366210938,22.79943084716797,-20.295347213745117,
21.168222427368164]

Figure 17: Representation of two objects interacting. Interactions are char-
acterized not only by their execution but also by the relationships they share
with the objects involved. On the right, the different parameters of an In-
teraction are shown such as the type, and the vector representation. Repre-
sentation obtained from the Neo4j (Lal, 2015) graph database interface.

1. Object Detection for extraction of object nodes

Objects within each episode are extracted using the SAM (Segment
Anything Model) object detection model Kirillov et al. (2023), which
identifies and classifies entities in the environment. A process of check-
ing whether the object exists already is carried out using a cosine sim-
ilarity function.

T

Similarity (opew, 0;) = M, Vi € Memory (25)
||VneW|| ||VZ||
If max Similarity(opew, 0;) < 7, add opew as a new node. (26)

2. Learning Interactions Representations using ConvLLSTM for the extrac-
tion of interaction nodes

A ConvLLSTM encoder with triplet loss is used to model object interac-
tions effectively, capturing their temporal and spatial dynamics within
the environment.

Level 2: Affordances and State Transitions At the intermediate level,
we represent states as heterogeneous graphs, denoted as G, (See Section

96

5.1.4) at time ¢. Each state comprises multiple interacting objects, connected
through interaction representations that shape the decision-making process
(Fig. 13).

Affordances, whose conceptual role was introduced in Section 4.1 as ac-
quired relations between (effect, reward) pairs and (object, action) tuples, are
here instantiated as directed edges (green nodes in Fig. 13) linking consecu-
tive states (Fig. 18). They capture both the immediate effect of an interaction
and its associated reward, enabling the model to prioritise interactions that
contribute to successful task completion.

By explicitly modelling affordance relationships, we improve the sys-
tem’s ability to reason about sequential dependencies and facilitate adap-
tive decision-making in complex environments, capturing richer contextual
information beyond traditional action-reward pairs.

° Overview

y %, Node labels
. @ Relationship types
4 § has_state (9)
0.26855... ;,(D <
Displaying 17 nodes, 21 relationships.

. , Q
K- -

o)
o

Figure 18: Illustration of the hierarchical structure in SETLE as extracted
from the Neodj graph database (Lal, 2015). The second level of the hierar-
chy consists of states (red, from the middle node the first set of connections)
connected by affordances (green, the outermost nodes), illustrating the tran-
sitions between states via affordances.

By explicitly modelling affordance relationships, we improve the sys-
tem’s ability to reason about sequential dependencies and facilitate adap-
tive decision-making in complex environments that move beyond traditional
action-reward, capturing richer contextual information.

97

Level 3: High-Level Abstraction of Structurally Enriched Trajec-
tories (SETs) The topmost layer in the hierarchical structure corresponds
to the overall SET representation. In its raw form, a SET is defined by the
underlying levels, comprising states, affordances, interactions, and objects
(see Section 5.1.3). The hierarchical graph structure illustrated in Figure 13
captures these relationships, with the SET node connecting to states through
temporal dependencies.

However, utilising full graph structures for downstream tasks is compu-
tationally impractical. To address this, we learn a latent representations
of SETs (see Section 5.3), effectively compressing the rich hierarchical in-
formation into a compact embedding. This latent representation forms the
core of our proposed AIGenC algorithmic template, enabling efficient and
scalable utilisation in downstream tasks without losing critical task-relevant
information.

5.3 SETLE: SET encoder

The SETLE encoder transforms Structurally Enriched Trajectories (SETs)
into compact, task-relevant embeddings, allowing the agent to generalise
across episodes. Built upon the structured representations defined in Sec-
tion 5.2, each SET encodes object configurations, agent interactions, affor-
dances, and temporally linked states as a heterogeneous graph. The encoder
projects these graphs into a latent space where structurally and functionally
similar trajectories are positioned nearby, supporting relational abstraction
and cross-task retrieval.

Within the AIGenC framework, the encoder is a critical component of
Reflective Reasoning. It provides the mechanism by which the agent com-
pares its current trajectory with stored experiences—not based on surface-
level similarity but by recognising deeper structural regularities across tasks.
These trajectory embeddings serve as functional approximations of problem
templates, which are abstract patterns that capture how actions and affor-
dances combine over time to produce successful or unsuccessful outcomes.

Significantly, this process extends beyond simple retrieval. The encoder
supports the enhancement of the agent’s current working memory by en-
abling partial matches to structurally relevant past episodes. When no high-
similarity match is found, this exact mechanism underpins blending, facili-
tating the recombination of multiple weakly related experiences to generate
novel solutions.

98

To learn this embedding space, the SETLE encoder is trained using a
triplet loss objective, which enforces that trajectories with similar causal and
functional structures—and especially similar outcomes—are embedded close
together while dissimilar or unsuccessful episodes are pushed further apart.
This encourages the emergence of a structured trajectory space that supports
flexible retrieval and generalisation during learning and decision-making.

The remainder of this chapter details the core components of the SETLE
training pipeline. We begin with the data collection process, outlining how
episodic graphs are constructed from CREATE and MiniGrid interactions.
We then describe the SETLE graph encoder architecture, which builds on
a Heterogeneous Co-contrastive Learning (HeCo) architecture adapted for
structured trajectory data. Finally, we detail the experimental protocol,
where the encoder is optimised using triplet loss to cluster structurally simi-
lar outcomes and support trajectory-level generalisation. These components
together instantiate the Reflective Reasoning process in AIGenC.

5.3.1 Collecting data for training

We collect SETs and label them to create a dataset for training, by following
these steps:

1. Random exploration: We begin with an exploration phase where the
agent performs multiple tasks within the CREATE or Minigird envi-
ronment. During this phase, a random policy agent operates in the
environment until it reaches the goal state. For tractability, we have
limited the number of steps the agent can take in an environment to
9, if it has not reached a goal state by then, the SET is labelled as un-
successful. We repeat the process until sufficient successful trajectories
have been collected for training.

2. SET Labelling: After each episode, we assess whether the agent success-
fully completed the task. If the episode ends with the agent achieving
the goal state, the episode SET is labelled as: success; otherwise, it is
labelled as: failure. Alongside the label, we store relevant metadata
about the setup, actions taken, and objects encountered, allowing for
later validation and analysis. Successful SETs are stored in the agent’s
memory (see Section 5.1.4), completed with the inventory of objects
(in the case of CREATE), interactions, and state transitions that led
to the successful completion.

99

Once a sufficient number of trajectories have been collected, we train the
SETLE encoder using a triplet loss function.

5.3.2 Graph Encoder Architecture Based on Heterogeneous Co-
contrastive Learning (HeCo)

A graph encoder is a neural architecture that transforms graph-structured
data into meaningful embeddings, preserving the relationships and depen-
dencies between entities. Unlike standard feature extractors, graph encoders
operate over relational data, using the graph topology to learn structured
representations.

Graph encoders rely on message passing, a core operation in Graph Neural
Networks (GNNs) (Scarselli et al., 2008), where each node iteratively aggre-
gates information from its neighbours to refine its representation (Gilmer
et al., 2017). In its general form, message passing is defined as:

gl — (ﬁq/ngq/zﬂ[z}wu]) (27)
Where:

o Hl ¢ RVxd". Node representations at the I-th layer, extending the
notation from Equation 3.

d¥: Hidden dimension of the [-th layer.

Wl e RA>d™ . Tearnable weight matrix for the [-th layer.
e N: Number of nodes in the graph.

e A= A+1I: Adjacency matrix A with added self-loops (identity matrix
I), a common extension of the normalised adjacency A* from Equa-
tion 3.

D: Degree matrix of A, used for symmetric normalisation.

e o0: Nonlinear activation function.

This process allows nodes to incorporate structural context from their
neighbours, making graph encoders particularly effective for tasks that re-
quire relational reasoning.

100

Most existing approaches either encode entire heterogeneous graphs or
focus on subgraph encoding for homogeneous data. Full-graph encoding en-
ables global feature propagation, but it does not preserve localised dependen-
cies. We model the hierarchical memory in SETLE as a collection of SET
subgraphs, unlike standard GNNs that operate on a global graph, SETLE
learns representations for independent trajectory (SET) subgraphs, where
each SET node aggregates information solely from its connected states, in-
teractions, objects, and affordances. By structuring trajectories (SETS) as
subgraphs within the larger task graph (see Section 5.1.4), SETLE captures
common elements, such as objects and interactions, at lower levels, allowing
localised learning while maintaining global coherence across tasks.

Building on the principles of HeCo (introduced in the Background sec-
tion), we adapt its contrastive learning approach for episodic graphs. We
treat each SET as a subgraph, with the SET node acting as the central
node. The central node refers to the primary node within a graph that ag-
gregates information from surrounding nodes through both meta-path and
schema-based message passing, ensuring that its embedding captures local
structural dependencies as well as high-order semantic relationships within
the heterogeneous graph.

The encoding operation can be formally represented as:

SETLE—encoder(GSET) — ZSET (28)

where zggr is the latent representation of a Structurally Enriched Tra-
jectory Gsgr.

To train the graph encoder, we use a triplet loss and a hybrid loss function
to organise SET embeddings. Successful SETs from the same task are drawn
together, while unsuccessful SETs or SETs from different tasks are pushed
apart. This allows us to differentiate between successful and unsuccessful
strategies, enhancing generalisation. To ensure that episodes with similar
trajectories are encoded closely in the latent space, we employ a triplet loss
as such:

Lyer, = max(0,d(9(va), 9(4p)) — d(9(ya), 9(yn)) + @) (29)

Here:
e g(y) is the SET embedding function.

® Yu, Yp, and y, are the anchor, positive, and negative SET samples.

101

e d is a distance metric.
e (v is a margin parameter.

By minimising this loss, the model learnt to align trajectory-specific em-
beddings, ensuring that episodes with similar trajectories (i.e., trajectories
belonging to the same tasks) remained close while distinguishing those with
different results.

To further improve the quality of SET representations, a modified hybrid
loss function that combines the triplet loss with a cross-view contrastive
loss is also used. This approach not only pushes similar SET embeddings
together but also aligns two graph views: meta-path and schema, ensuring
consistency across different perspectives of the episodic graph.

The two key views from HeCo are adapted to SETs as follows:

1. Network Schema View

In the network schema view, we encode the structural dependencies
of each episode by considering relationships between node types (e.g.,
state, interaction, affordance) around the central SET node. This view
allows us to capture local patterns directly connected to the episode.

2. Metapath View

The meta-path view captures high-order semantic relationships by en-
coding dependencies across sequences of connected nodes, allowing the
model to learn relationships that span multiple levels of the episode’s
hierarchy. The following steps outline the process of computing node
embeddings under the meta-path view:

(a) For a given node ”i” and a set of M meta-paths {P;, P,, ..., Py},
which represent high-order semantic relationships (e.g., SET-St-
Obj-Inter-Aff or SET-St-Aff-St):

i. For each meta-path P,, we apply a meta-path specific Graph
Convolutional Network (GCN) to encode its characteristics:
e Calculate the projected features h; and h; for nodes "i”
and ”j” in the meta-path.

99 299 99 29
1

e Use degree information d; and d; for nodes and "j” to
compute the updated embedding hf " based on the meta-
path’s semantic similarity.

102

(b) For all M meta-paths, we obtain a set of embeddings {hfl, ce th}
for node ”i.”

(c¢) Use semantic-level attention to combine these embeddings into
the final embedding z"” under the meta-path view:

b}

e (Calculate the weight of each meta-path P, for node ”i

e Determine the importance of each meta-path in the embed-
ding fusion.

e Perform a weighted sum of meta-path embeddings to produce
the final node embedding.

The selected metapaths, SET-St-0bj-Inter-Aff and SET-St-Aff-St,
are designed to capture high-order semantic relationships within each
episode in the RL environment.

e SET-St-0Obj-Inter-Aff (SET - State - Object - Interaction
- Affordance):

— This meta-path reflects the hierarchical progression from the
episode as a whole, through individual states, down to specific
objects and actions, ultimately linking to affordances.

— By following this sequence, SETLE can capture the causal
chain of events where each state within a SET is defined by
its constituent objects and the wnteractions involving those
objects. The inclusion of affordances in the meta-path al-
lows the model to understand how specific object interactions
influence the likelihood of transitioning to desirable or goal-
oriented states.

— This path is crucial for learning how particular combinations
of objects and their interactions contribute to successful re-
sults, enabling the model to capture the semantic importance
of specific object relationships in each episode. It supports
the agent in recognising patterns of interaction that are effec-
tive across similar tasks, improving object selection and result
prediction in new scenarios.

e SET-St-Aff-St (SET - State - Affordance - State):

— This meta-path emphasises the transitions between states within
a SET, specifically focussing on how each affordance (a state-
action-state link with associated rewards) facilitates state changes.

103

— By encoding this meta-path, SETLE captures the dynamics
of state transitions within the trajectory. The affordance links
provide a representation of the agent’s actions and the effects,
highlighting which transitions are likely to lead to success or
failure.

— This metapath is valuable for modelling temporal dependen-
cies in SETSs, as it reveals the sequences of states the agent en-
counters. Understanding these transitions is critical for build-
ing a representation that reflects the path to the goal, rather
than just the individual states, thus helping the agent gener-
alise across different task setups that share similar transition
dynamics.

Together, these meta-paths allow us to capture both static relation-
ships (e.g., object interactions within a state) and dynamic rela-
tionships (e.g., state-to-state transitions driven by affordances) in the
SET graph. By incorporating both aspects, we can construct a more
comprehensive and semantically meaningful representation of each tra-
jectory, allowing it to effectively generalise across tasks and improve
decision-making in complex reinforcement learning environments.

Considering these two views we define the hybrid loss as:

Lhybrid =)\Lfr]?glet + (1 -)‘)LZ(i)?lv‘:rastive (30)
Here:
o L%, organises SET embeddings in the latent space, as previously
defined:

Loiier = max(0,d(9(va), 9(yp)) — d(9(ya), 9(yn)) + @) (31)

where ¢(y) is the SET embedding function, y,, v,, and y, are the
anchor, positive, and negative SET samples, d is a distance metric,
and « is a margin parameter.

view 3 ; :
LIcw stive aligns the meta-path and schema view embeddings to ensure

consistency across views:
exp(sim(2zmp, 2sc)/T)
D ez eXp(sim(zmp, 2)/7)

view o
Lcontrastive - lOg

(32)
Where:

104

— Zmp and zg are the meta-path and schema view embeddings for
the same SET.

— sim(+,) is a similarity function, such as cosine similarity.

7 is the temperature scaling parameter.

— Z represents the set of embeddings, including positive and nega-
tive samples.

e)\ is a hyperparameter that controls the balance between the triplet loss
and the contrastive loss, with 0 < A < 1.

By combining these objectives, the hybrid loss ensures that SET embed-
dings are both task-specific (via the triplet loss) and consistent across graph
views (via the contrastive loss).

5.4 SET encoder experimental procedure

This section evaluates the effectiveness of SETLE’s hierarchical graph en-
coder in encoding task-specific information. The evaluation is structured
into two key sets of experiments: margin sensitivity analysis and ablation
studies. In the first set of experiments (S1), we assessed how different mar-
gin values in the triplet loss function affect the quality of learnt embeddings.
By varying the margin parameter, we analysed its influence on the clustering
of success and failure SETs in the embedding space. This experiment pro-
vided insights into the optimal margin settings that enhanced separability
while maintaining robust intra-cluster cohesion.

The second set of experiments (S2) consisted of ablation studies to assess
the impact of hierarchical structures and relational dependencies in SETLE’s
SET design. We systematically modified or removed key components, such
as hierarchical organisation, sequentiality, and affordance-based state tran-
sitions, to understand their contributions to SET representation. By com-
paring the clustering performance of modified versions of SET’s structure
against its complete hierarchical design, we demonstrated the necessity of
structured graph-based encoding for effective trajectory learning.

Finally, we present results in the MiniGrid environment—a simplified,
discrete setting in which the concept space is restricted to objects and state
transitions, as interaction-level dynamics cannot be extracted meaningfully.
This allows us to test SETLE’s capacity for abstraction under reduced rep-
resentational complexity.

105

5.4.1 S1: SET Embedding Analysis: Margin and Loss Function
Impact

The first set of experiments aimed to evaluate the ability of SETLE’s hierar-
chical graph encoder to represent enhanced trajectory information effectively.
The primary focus was on assessing whether the embeddings generated by
SETLE can distinguish between successful and unsuccessful episodes within
and across tasks. Using episodic data collected from the CREATE envi-
ronment, each episode was encoded as a heterogeneous graph (SET) that
comprises objects, actions, states, and affordances.

We investigated how well SETLE’s SET embeddings captured the under-
lying task dynamics by analysing clustering quality using various configura-
tions of hyper-parameters and different loss functions.

The evaluation focused on specific parameters including:

e Margin Values: We experimented with margin values for the triplet
loss, specifically testing values of [0.1, 0.2, 0.5, 1.2, 1.5]. This parameter
regulates the separability of embeddings in the latent space by control-
ling how far apart unsuccessful SETs are pushed from successful ones.

e Loss Functions: Two types of loss functions were employed:

1. Classical Triplet Loss: Ensures SET embeddings for similar
episodes are close, while those for dissimilar SETs are further
apart.

2. Hybrid Triplet Loss: Combines triplet loss with a cross-view
contrastive loss. The contrastive component aligns embeddings
from the schema and meta-path views, while the triplet compo-
nent enhances task-based separability.

The following metrics were used to evaluate the separability of success
and failure clusters:

e Silhouette Score: Measures the cohesion and separation of clusters,
the values can range between -1 and 1, with higher values indicating
more distinct clusters. Values closer to 1 suggest that episodes are
well-clustered within their respective success or failure groups.

e Davies-Bouldin Index (DBI): Quantifies the average similarity ratio
of each cluster with its most similar cluster, with lower values indicating
better clustering performance and less overlap between clusters.

106

e Dunn Index: Assesses the ratio between the minimum inter-cluster
distance and the maximum intra-cluster distance, with higher values
representing greater separability and well-defined clusters.

Margin Impact and Results Effect of Margin Values

We evaluated the impact of varying margin values on the clustering qual-
ity of SET embeddings. The results provided insights into the cohesion and
separation of clusters for both successful and unsuccessful episodes. High
cohesion within success or failure clusters indicated that the embeddings
effectively captured the underlying patterns of similar SETs, while high sep-
aration between these clusters reflected the model’s ability to distinguish the
dynamics of successful and unsuccessful episodes. These insights were critical
for evaluating the suitability of different margin values in shaping the latent
space for SET-specific encoding.

The clustering results were analysed using three standard metrics: Sil-
houette Score, Davies-Bouldin Index (DBI), and Dunn Index.

Table 1 summarises the clustering performance across margin values.
Higher margins (1.2 and 1.5) generally yielded better separability, reflect-
ing clearer distinctions between successful and unsuccessful episodes. We
extended our analysis to a = 2.0 to verify behaviour at larger values. Re-
sults showed comparable performance to o = 1.5, indicating a plateau rather
than degradation. This suggests o /~ 0.6—1.5 represents the effective operat-
ing range, with diminishing returns beyond this interval.

Table 1: Clustering Results for Success and Failure for SET encodings at
Different Margin Values

Margin Silhouette Silhouette DBI DBI Dunn Dunn
Score Score (Suc- (Fail- Index Index
(Suc- (Failure) cess) ure) (Suc- (Failure)
cess) cess)

0.1 0.7632 0.8531 0.4514 0.2319 2.2497 3.4662

0.2 0.7959 0.8659 0.3205 0.2233 2.9952 3.3552

0.5 0.7943 0.8798 0.3378 0.1771 2.5417 5.3031

1.2 0.7588 0.8535 0.3603 0.2305 2.3577 3.5070

1.5 0.8137 0.8990 0.2974 0.1548 2.7778 5.5415

107

Training Loss Comparison: Extended Alpha Values

—o— a=2.0
4.0 -8=- a=15

o—9
g—0

3.5

\/ N\ =

. N

Loss
w
o

2.0

250 500 750 1000 1250 1500 1750 2000
Training Step

Figure 19: Training loss comparison between o = 1.5 and a = 2.0 over
training steps. Both configurations exhibit similar loss trajectories, with
a = 1.5 achieving marginally lower values (e.g., 2.16 vs 2.41 at step 1898).
The absence of performance degradation at o = 2.0 indicates that the loss
plateaus beyond the optimal range rather than increasing, confirming that
a € [0.6, 1.5] represents the effective operating range with diminishing returns
at higher values.

108

From the results in Table 1, it was shown that higher margin values gener-
ally improved clustering quality for both success and failure SETs. Notably:

e The Silhouette Score showed a consistent improvement with increas-
ing margin, peaking at a margin of 1.5, where the success and failure
clusters were well-separated.

e The Davies-Bouldin Index (DBI) decreased as the margin increased,
reaching its lowest value at a margin of 1.5. This suggested that higher
margins reduced the overlap between clusters, leading to more distinct
success and failure groupings.

e The Dunn Index improved significantly with higher margins, espe-
cially for failure SETs, which achieved their highest separability at a
margin of 1.5. This indicated that increasing the margin value results in
more well-defined clusters, with greater distances between the success
and failure groups.

Higher margin values proved necessary for effective clustering in this
context because the CREATE environment is relatively simple, with low-
resolution frames and limited visual complexity. In such environments, em-
beddings based on episode encodings can appear similar due to the simplicity
of the scenes and fewer unique features across frames. Using higher mar-
gins (1.2 and 1.5), we ensured that embeddings for episodes with different
outcomes or tasks are separated more distinctly, overcoming the limitations
posed by the low frame quality and simplifying environment.

In terms of epoch loss, we did not observe significant changes with varying
margin values Fig.20. The overall epoch loss progression remained relatively
stable, suggesting that while higher margins did not heavily impact conver-
gence or loss reduction during training, they did have a positive effect on the
quality of clustering in the latent space. In the cluster analysis below, we
examined how these higher margin values enhanced episode separability, sup-
porting generalisation and task-based decision-making. Figure 20 illustrates
the training loss for different margin values.

Visualization of Outcome Embeddings To complement the quantita-
tive analysis of clustering metrics such as Dunn Index, DBI, and Silhouette
Score, we employed K-means clustering and visualisation techniques to pro-
vide a qualitative assessment of the learnt SET embeddings. By reducing the

109

Epoch Loss

— logger-1.5_hybrid_loss_alpha_cummulation_20 = logger-zoomed_triplet_loss_alpha_0.1_cummulation_20 &
1.5
1
0.5
Step”
1k 2k 3k 4k 5k 6k

Figure 20: Training loss for various margin values. Higher margins improve
clustering quality without significantly affecting convergence.

dimensionality of the embeddings using PCA, we examined the spatial dis-
tribution of clusters in two dimensions, revealing the distinctiveness of task
and result representations. These visualisations offered additional insights
into how well SETLE’s graph encoder captured the structural and outcome-
specific features of the tasks, highlighting its ability to group similar episodes
while maintaining separation between dissimilar ones. The tight grouping of
points within each task cluster, along with minimal overlap between clusters
of different tasks, indicated that the graph encoder has learnt meaningful
representations that distinguish both the task type and the outcome.

Figure 21a shows the K-means clustering of SET embeddings, color-coded
by task. The results highlight SETLE’s ability to capture task-level distinc-
tions and result-specific information.

Additionally, the separation of successful and unsuccessful SETs within
the same task, indicated by distinct markers in the plot, further highlighted
SETLE’s effectiveness in encoding task-specific information. For example,
episodes from CreateLevelPush that successfully reached the goal state were
grouped closely, while failed attempts were separated, providing evidence
that SETLE captures not only the task identity but also the quality of task
execution Figure 21b.

110

PCA Component 2

K-Means Clustering of Positive Outcomes (PCA Reduced) by Task

task
1.5 .. @ CreatelevelPush-v0
° @ CreatelevelBuckets-v0
@ CreatelevelBasket-v0
1 O@ @ CreatelevelBelt-v0
O CreatelevelObstacle-v0
0.5
0
(@)
[©)
-0.5
S o
© @
=1
Qe
=1 0 i 2 3

PCA Component 1

(a) Task-level clusters: K-means Clustering of SET Encodings (PCA Reduced).
Each point represents a SET in the CREATE environment, color-coded by task.

PCA Component 2

K-Means Clustering of Episode Encodings (PCA Reduced)

task, outcome

2 F [l CreatelLevelPush-v0, true
$8 CreatelevelPush-v0, false
155 ~ CreatelLevelBuckets-v0, true
» $8 CreatelevelBuckets-v0, false
1 g% [l CreatelLevelBasket-v0, true
$8 CreatelLevelBasket-v0, false
0.5 (] 0] [l CreatelevelBelt-v0, true
=] o $8 CreatelevelBelt-v0, false
0 ﬁ [0 CreateLevelObstacle-v0, true
% ® $8 CreatelLevelObstacle-v0, false
-0.5 § &
% =
=1.5 ,
=2
=1 0 1 2 3

PCA Component 1

(b) Outcome and task-specific clusters: Each point represents a SET in the CRE-
ATE environment, colour-coded by task, where circles mark successful SETs and
crosses mark failed ones.

Figure 21: K-means clustering of SET embeddings. (a) Clustering by task
only. (b) Clustering by task and outcome (success vs. failure). SETLE effec-
tively captures both task-level distinctions and outcome-specific information.

111

Loss Functions Impact and Results To further analyse the impact of
different optimisation strategies on SET representation, we compared the
performance of two loss functions: the simple triplet loss and the hybrid
loss. While the triplet loss focusses on enforcing distance constraints be-
tween similar and dissimilar SET embeddings, the hybrid loss integrates
contrastive learning by aligning embeddings across schema and meta-path
views. This combination aims to enhance both structural consistency and
task separability.

To assess the effectiveness of the hybrid loss in improving representation
compared to the standard triplet loss, we visualised the SET embeddings
generated by SETLE under both loss functions. Each point represents a SET,
colour-coded by task, with successful episodes marked as [and unsuccessful
episodes marked as x. The visualisations are provided in Figures 22a and
22b, where subfigure (a) shows the results with triplet loss and subfigure (b)
shows the results with hybrid loss.

Observations on Inter-task Improvements: The hybrid loss demon-
strated inter-task improvements compared to the triplet loss:

e Task Separation: The hybrid loss resulted in better separation be-
tween tasks compared to the triplet loss. In Figure 22b, tasks with
shared structural dynamics (e.g., tasks using similar objects like buck-
ets or baskets) were positioned closer in the embedding space, while
maintaining distinct clusters for unrelated tasks. The hybrid loss lever-
aged cross-view contrastive signals (e.g., schema and meta-path views)
to capture shared dynamics between tasks. This led to embeddings
that better encode structural similarities and inter-task relationships,
facilitating generalisation.

e Outcome-specific Encoding: While both loss functions distinguished
successful and unsuccessful SETs within the same task, the hybrid loss
brought positive and negative outcomes from the same task closer to-
gether compared to the triplet loss. This behaviour arose from the
cross-view contrastive learning mechanism in the hybrid loss, which
emphasised shared structural and task-specific features across both
positive and negative outcomes. By leveraging complementary views
(e.g., schema and meta-path), the hybrid loss encouraged the embed-
dings of episodes from the same task, regardless of their outcome, to
cluster more closely while maintaining sufficient separation between
success and failure states. This reflected a more nuanced encoding of

112

K-Means Clustering of Episode Encodings (PCA Reduced)

4 task, outcome
- Bl CreatelevelPush-v0, true
3 $8 CreatelLevelPush-v0, false
[l CreatelLevelBuckets-v0, true
8 CreatelevelBuckets-v0, false
~ 2 [CreatelevelBasket-v0, true
v L?JD $8 CreateLevelBasket-v0, false
2 1 . B CreatelevelBelt-v0, true
£ ,
aQ $8 CreatelevelBelt-v0, false
g 0 ® ' w [0 CreatelevelObstacle-v0, true
: W $8 CreatelevelObstacle-v0, false
O g
a i
-
-2
-3 8
-3 =2 -1 0 1 2 3 4

PCA Component 1
(a) Triplet Loss trained encoder clustering results.

K-Means Clustering of Episode Encodings (PCA Reduced)

task, outcome

¢ f- B CreatelevelPush-v0, true
35 = $8 CreatelLevelPush-v0, false
[l CreatelLevelBuckets-v0, true
4 ? w ®8 8 CreatelevelBuckets-v0, false
~ [l CreatelLevelBasket-v0, true
€ 0.5 8 a* P $8 CreatelevelBasket-v0, false
o P [CreatelevelBelt-v0, true
2 o 8 CreatelevelBelt-v0, false
g m % O CreatelevelObstacle-v0, true
o $8 CreatelevelObstacle-v0, false
g -0 oy
a

-1 0 ki 2 3
PCA Component 1

(b) Hybrid Loss trained encoder clustering results.

Figure 22: Comparison of K-means clustering of SET embeddings under
different loss functions. (a) Triplet loss: Provides reasonable task separation
but limited inter-task alignment. (b) Hybrid loss: Enhances task separation
and aligns result-specific embeddings more effectively by leveraging cross-
view contrastive learning. Successful SETs (o) are closer within the same
task, while failed ones (X) remain distinct, reflecting improved generalization
and result differentiation.

113

the shared task dynamics and structural similarities inherent in both
successful and unsuccessful trajectories.

The hybrid loss significantly enhanced the representation of inter-task
relationships while maintaining strong intra-task and outcome-level differen-
tiation, by using cross-view contrastive learning in addition to triplet-based
alignment.

Comparison with State-of-the-Art Heterogeneous Graph Encoders
While state-of-the-art heterogeneous graph encoders such as HeCo and GTC
excel in static graph settings and node-level tasks like classification and clus-
tering, they are not directly comparable to SETLE due to differences in
problem setting, data structure, and application focus. SETLE addresses the
unique challenge of encoding episodic, dynamic graphs, where each episode
forms a structured subgraph (SET) representing trajectories. Unlike the
static, node-centric graphs typically used by HeCo and GTC, the data in
SETLE comes from episodic environments like CREATE, where the graphs
evolve dynamically over time and must encapsulate hierarchical abstractions
across objects, interactions, states, affordances, and trajectories.

This fundamental difference in problem formulation and the nature of the
data makes direct comparisons with existing heterogeneous graph encoders
unsuitable and underscores the distinct contribution of SETLE to learning
hierarchical SET representations.

Comparison on CREATE environment In Jain et al. (2020), action
representations were evaluated by encoding agent actions across episodes
and analysing their separability within the embedding space. Their results
highlighted effective clustering of actions, particularly for distinguishing tasks
requiring distinct agent behaviours.

In contrast, SETLE shifted the focus to trajectory representations, en-
coding not only the actions but also the intermediate states, transitions,
and affordances that cumulatively define the task’s success or failure. The
comparison reveals that action representations, as emphasised by Jain et al.
(2020), excel in precision for short-term predictions, such as determining the
next best action in a sequence. SETLE, however, takes a broader approach
by also learning interaction representations using a ConvLSTM architecture
and then integrating them with state, affordance, and object information to
enable comprehensive SET representation learning. By combining detailed

114

interaction-level encoding with higher-level abstractions of task trajectories,
SETLE provides a unified framework that supports both immediate decision-
making and generalisation across tasks. This integration highlights the com-
plementary nature of interaction and trajectory representations, with SETLE
excelling in task-level analysis while maintaining robust interaction represen-
tation capabilities.

5.4.2 S2: Ablation Studies Emphasising the Model’s Design

To further investigate the importance of SETLE’s hierarchical structure, we
conducted three additional experiments: random state removal, sequentiality
disruption, and flattened representations. These experiments highlighted the
robustness of the model and its reliance on structured representations for
accurate outcome embeddings.

1. Random State Removal

Objective: Demonstrate the importance of sequential states in accurately
representing SET's.

Design: Randomly removed a fixed proportion (e.g., 10%, 20%, 40%) of
the states in the graph. Encode the modified SET using SETLE and compare
clustering quality. Below we presented the results of removing 40% of the
states, having observed that for lower values the results were insignificant.

Results:

115

Table 2: Comparison of Clustering Results for Random State Removal vs.
Complete Graphs

Metric State Removal Complete Remarks

Silhouette 0.756 0.797 Reduced cohesion and separation
Success of success clusters.

Silhouette 0.827 0.820 Less cohesive clustering.

Failure

DBI Suc- 0.472 0.345 Higher overlap and less distinct
cess success clusters.

DBI Fail- 0.298 0.314 Marginally better cluster defini-
ure tion.

Dunn 1.838 2.561 Reduced separation and compact-
Index Suc- ness of success clusters.

cess

Dunn In- 2.904 2.618 Less compact and separated fail-

dex Failure

ure clusters.

Remarks: State removal disrupted the sequential flow and relational de-
pendencies, leading to poorer cluster cohesion and separability (see Table

2).

2. Sequentiality Disruption
Objective: Test how breaking the sequential order of states impacts SET

representation.

Design: Randomly shuffled the sequence of states in each episode while
keeping all nodes intact.

Remarks: Sequential disruption reduced the ability to encode cumulative
effects, leading to embeddings that are less meaningful and cohesive.

Results:

e Silhouette Scores: Shuffled sequences exhibit lower clustering quality

(success: 0.785 compared to 0.748).

e Dunn Index: Noticeable degradation in success cluster compactness

(2.285 compared to 1.613).

e DBI: Increased overlap between shuffled task clusters (success: 0.378
compared to 0.494).

116

3. Flattened Representations

Objective: Tested the importance of hierarchical elements in trajectories
by replacing the hierarchical graph with a flat graph structure.

Remarks: Flattening the graph significantly degraded the quality of the
learnt task representations, highlighting the importance of relational data for
meaningful task dynamics (see Table 3).

Results:

Table 3: Impact of Flattening SET Hierarchical Structure on Clustering
Results

Metric Flattened Complete Impact of Flattening

Silhouette 0.705 0.770 Decreased cohesion and separation
Success of success clusters.

Silhouette 0.782 0.823 Reduced distinct boundaries for fail-
Failure ure clusters.

DBI Suc- 0.595 0.473 Increased overlap and less distinct
cess success clusters.

DBI Fail- 0.425 0.305 Higher overlap between failure clus-
ure ters.

Dunn In- 1.326 1.652 Reduced separation and compact-
dex Suc- ness of success clusters.

cess

Dunn In- 1.864 2.888 Poorer separation and compactness
dex Fail- of failure clusters.

ure

5.4.3 Performance Evaluation in Reduced-Complexity Environ-
ments: MiniGrid

While the CREATE environment (Jain et al., 2020) showcased SETLE’s
ability to learn from rich, dynamic, and continuous visual environments, a
central hypothesis of this thesis is that the same underlying mechanism can
generalise across varying representational regimes—including low-resolution,
symbolic environments. To test this, we extended SETLE to the MiniGrid
benchmark suite, a grid-based environment that offers highly abstract, dis-
crete observations and minimal visual complexity.

117

Unlike CREATE, MiniGrid lacks continuous interactions or a persistent
inventory system and features a limited, discrete action space. Accord-
ingly, the graph construction process was modified: ” Action Representation”
nodes, previously used to encode rich agent-tool-object dynamics, were omit-
ted. The resulting MiniGrid-specific SETs contain only Object, State, and
Affordance nodes, linked via relational edges that trace the agent’s symbolic
trajectory.

This adaptation serves to isolate and evaluate the contribution of SE-
TLE’s graph-based inductive bias in a minimal setting.

To mitigate the limitations of low-resolution symbolic input in MiniGrid,
further refinements were applied to the object extraction pipeline. Rendered
frames were first pre-processed using contrast equalisation and spatial upscal-
ing to enhance visual saliency. Each segmented crop was then passed through
CLIP (Ramesh et al., 2022) to obtain a robust vision-language embedding.
CLIP was chosen explicitly over conventional encoders such as ResNet (He
et al., 2016) or VGG (Simonyan and Zisserman, 2014) because these standard
architectures, trained on natural image statistics, catastrophically fail when
applied to synthetic grid-based environments with flat colours and uniform
textures. CLIP, by contrast, demonstrated the ability to align symbolic pat-
terns with semantic concepts even in low-visual-complexity domains. This
design choice was critical for preserving the object-centric nature of the SE-
TLE framework and maintaining consistency between the original CREATE
experiments and the MiniGrid adaptation.

Once the static objects were extracted and stored, SETLE followed its
standard graph memory construction: State nodes were created at each
timestep, Affordance nodes were linked to represent the agent’s chosen action
at each transition, and the object nodes were consistently connected to all
subsequent states in the episode.

We trained the SETLE encoder on MiniGrid episodes using the same pro-
cedure as described for CREATE. Figure 23 illustrates the impact of varying
the triplet loss margin « in the hybrid loss function during training. As
in CREATE, all models converge to similarly low loss values, with lower
margins (e.g., 0.2 and 0.5) exhibiting slightly smoother convergence. How-
ever, convergence stability alone does not capture the quality of the learned
embeddings. To better assess the impact of margin settings, we evaluated
clustering performance using the same standard metrics: Silhouette Score,
DBI and Dunn Index, computed separately for success and failure clusters.
For example, with a = 0.2, we observed a strong Silhouette Score of 0.69

118

for successful episodes and a low DBI of 0.45, indicating compact and well-
separated clusters. By contrast, o = 1.2 achieved a slightly lower silhouette
(0.57) and a higher DBI (0.78), suggesting less distinct cluster boundaries.
In contrast to CREATE, where higher margin values (e.g., 1.2 and 1.5) were
needed to enforce separation between similar-looking episodes due to visual
simplicity and frame-level redundancy, MiniGrid presented a reverse pattern.
Despite its symbolic and low-resolution observations, MiniGrid’s discrete and
abstract representation space contains more structured and semantically dis-
tinct transitions. As a result, lower margin values (e.g., 0.2 and 0.5) were
sufficient to stabilise training and encourage meaningful embedding separa-
tion.

Epoch Loss
0

— logger-0.2_hybrid_loss_alpha_cummulation_20 — logger-0.5_hybrid_loss_alpha_cummulation_20 — logger-1.0_hybrid_loss_alpha_cummulation_20 — logger-1.2_hybrid_loss_alpha_cummulation_20
logger-1.5_hybrid_loss_alpha_cummulation_20

1 \/ /\
= S
~ ~ \’_/\ sten
1k %* 3 ak sk ok

Figure 23: Epoch-wise training loss curves for different values of the hybrid
loss weight o during training with alpha cumulation.

We now turn to visual clustering analyses to further examine this effect.
Using PCA-reduced embeddings and K-Means clustering, we visualise how
different tasks and outcomes are organised in the latent space. These findings
provide insights into the agent’s ability to separate task semantics, represent
outcome distinctions, and recognise structural task similarity.

The results reveal several important trends. First, as shown in Fig.
24, tasks with structurally distinct layouts—such as ”MultiRoom-N4-S5-v0”,
" UnlockPickup-v0” and ”SimpleCrossing-SIN1”, form clearly separated clus-
ters, suggesting that the encoder successfully captures high-level differences
in spatial configuration and affordance structure. When both successful and

119

unsuccessful episodes are considered (Fig. 25), we observe a consistent sep-
aration between outcomes, even within the same task. This indicates that
SETLE encodes not only the task setting but also the behavioural trajectory
and its result, capturing outcome-sensitive variations in agent interaction.

K-Means Clustering of Positive Outcomes (PCA Reduced) by Task

4
task
(©)
3 (0]
@ MiniGrid-UnlockPickup-vO
~ 2 O MiniGrid-MultiRoom-N4-S5-v0
€ © MiniGrid-SimpleCrossingS9N1-v0
[}
c
8. 1
£ o @
o
< 0 (©]
9}
a
-1
-2
?

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
PCA Component 1

Figure 24: PCA-reduced embeddings of successful episodes from multiple
MiniGrid tasks, clustered using K-Means. Tasks with structurally dis-
tinct configurations—such as MultiRoom-N4-S5-v0, SimpleCrossing-S9IN1
and UnlockPickup-v0, form clearly separated clusters, indicating that the
encoder captures meaningful variations in spatial layout and task structure.

120

K-Means Clustering of Episode Encodings (PCA Reduced)

4 E task, outcome
3.5
3
~
2.5
-
g 2
5 2
aQ 8§3
g 1.5 O MiniGrid-MultiRoom-N4-S5-v0, true
z $8 MiniGrid-MultiRoom-N4-S5-v0, false
9 1 @ O MiniGrid-SimpleCrossingS9N1-v0, true
$8 MiniGrid-SimpleCrossingS9N1-v0, false
0.5
0 #

PCA Component 1

Figure 25: K-Means clustering of PCA-reduced episode embeddings across
tasks: MultiRoom-N4-S5-v0 and SimpleCrossing-S9N1, including both suc-
cessful and unsuccessful outcomes. While task identity still influences clus-
tering, clear separation between positive and negative outcomes emerges,
highlighting the encoder’s sensitivity to behavioural results and trajectory
success.

Interestingly, this separation is not universal: in simpler tasks such as
"Empty-5x5-v0” and " DoorKey-5x5-v0”, the embeddings overlap significantly,
despite the fact that the latter includes a goal-directed key-door interaction.
This overlap is further confirmed in Fig. 26, which focuses exclusively on
positive outcomes from these two tasks. Notably, ”Empty-5x5-v0” can be
interpreted as a simplified form of "DoorKey-5x5-v0”, where the spatial lay-
out and goal location remain constant, but the constraint introduced by the
door is removed. The encoder appears to capture this equivalence, treat-
ing both tasks as functionally similar due to their shared goal structure and
minimal planning horizon. Crucially, this similarity persists even though
the encoder was trained to maximise discriminability between episodes, in-
dicating that SETLE’s representations are not just outcome-aligned but also
sensitive to deeper notions of task equivalence.

This alignment between simple tasks becomes even more apparent when
extending the comparison to larger configurations. In particular, "DoorKey-
8x8-v(0”, a more spatially demanding version of ”DoorKey-5x5-v0”, remains

121

K-Means Clustering of Episode Encodings (PCA Reduced)

-0.5

o~
5
c
2
£
(e}
O
< -1.5
&
, 6
2 xx
s
-1.5
Figure 26:

5

-0.5 0

PCA Component 1

0.5

task, outcome

MiniGrid-Empty-5x5-v0, true
MiniGrid-Empty-5x5-v0, false
MiniGrid-DoorKey-5x5-v0, true
MiniGrid-DoorKey-5x5-v0, false

K-Means clustering of PCA-reduced episode encodings

for

" Empty-5x5-v0” and ”DoorKey-5x5-v0”, including both successful and un-
successful outcomes. While outcome-specific clusters are clearly distinguish-
able within each task, the two tasks themselves show substantial representa-
tional overlap—indicating that the encoder treats them as structurally sim-
ilar despite the presence of an additional key-door interaction in the latter.

122

tightly clustered alongside the simpler "Empty-5x5-v0” and ”DoorKey-5x5-
v0” tasks when considering only positive outcomes (Fig. 27). This reinforces
the hypothesis that SETLE encodes task representations not purely based on
grid size or visual complexity, but rather on the underlying goal structure and
interaction demands. Despite being trained to distinguish episodes through
a contrastive objective, the encoder learns to cluster trajectories that share
similar causal and functional properties. At the same time, outcome-specific
variation is still well represented: as shown in Fig. 28, positive and negative
trajectories from the same task are consistently separated. This highlights
SETLE’s ability to encode both high-level structural similarity and fine-
grained behavioural distinctions, making it well-suited for trajectory-level
reasoning and generalisation.

K-Means Clustering of Positive Outcomes (PCA Reduced) by Task

task
@ MiniGrid-Empty-5x5-v0
-0.5 @ MiniGrid-DoorKey-5x5-v0
© @ MiniGrid-DoorKey-8x8-v0

)

-1.5

PCA Component 2
@

-1.5 -1 -0.5 0 0.5 1 1.5
PCA Component 1

Figure 27: Clustering of positive outcomes across ”Empty-5x5-v0”,
"DoorKey-5x5-v0”, and " DoorKey-8x8-v(”, visualised using PCA. The tight
grouping across different grid sizes and levels of visual complexity suggests
that SETLE encodes similarity based on functional structure and goal dy-
namics, rather than superficial spatial variation.

123

K-Means Clustering of Episode Encodings (PCA Reduced)

task, outcome
P} (] e
[l MiniGrid-Empty-5x5-v0, true
-0.5 8 MiniGrid-Empty-5x5-v0, false

-1.5

PCA Component 2

-1.5 -1 -0.5 0 0.5
PCA Component 1

Figure 28: K-Means clustering of full episodes for ”Empty-5x5-v0” re-
veals strong separation between successful and unsuccessful trajectories, even
within a single task. This demonstrates that SETLE captures fine-grained
behavioural differences and can distinguish between functionally meaningful
outcomes.

The clustering results in MiniGrid confirm that SETLE effectively cap-
tures both structural task similarity and outcome-based distinctions across
a variety of environments. The model generalises across tasks with shared
goals and low interaction complexity—such as Empty and DoorKey—while
clearly separating those with more complex layouts or affordance demands.

5.4.4 Future Experiments on Complex Environments

Future work will focus on evaluating SETLE in more complex, real-world en-
vironments that involve richer dynamics, higher-dimensional state represen-
tations, and more diverse task structures. Such environments could include
robotics simulations. However, accessing these environments poses significant
challenges. The computational complexity of encoding high-dimensional,
multi-level graphs from real-world tasks can become prohibitive, requiring
both advanced hardware and efficient learning algorithms.

Despite these challenges, applying SETLE in such scenarios could provide
valuable insights into its scalability and robustness, further demonstrating

124

its ability to generalise across diverse and complex task settings. This would
solidify its role as a framework capable of bridging the gap between dynamic,
task-aware representations and real-world applications.

To explore how structured representations support learning in dynamic
environments, in the next chapter we examine the integration of SETLE
into the reinforcement learning loop. This stage operationalises the AIGenC
framework’s capacity for adaptive decision-making by using SETLE’s en-
riched trajectory encodings to guide policy optimisation. Through this in-
tegration, we evaluate how reflective memory, structural abstraction, and
context-aware retrieval improve the agent’s ability to generalise, transfer,
and act effectively in sparse and variable task settings.

6 AIGenC in the Loop: Integrating Struc-
turally Enriched Trajectories into Reinforce-
ment Learning

To move from architecture to application, this chapter details the integration
of SETLE into the reinforcement learning training loop, thereby operational-
ising the full AIGenC framework within an interactive agent. While earlier
chapters introduced AIGenC’s three components—Concept Processing, Re-
flective Reasoning, and Blending—and described the design and function of
SETLE as an instantiation of Reflective Reasoning, this section shows how
these elements work together during the agent’s learning process.

We describe how structured representations are built in real-time through
Concept Processing, how episodic graphs are encoded and enriched with
relevant past knowledge via SETLE, and how this enriched state supports
generalisation and adaptation during action selection. We also show how
memory is updated incrementally, enabling the agent to form increasingly
abstract conceptual structures that support creative problem-solving over
time.

This chapter thus completes the pipeline, from perceptual abstraction,
through memory-guided reasoning, to adaptive behaviour—realising the AlGenC
architecture in full within a functioning reinforcement learning agent.

125

6.1 Overview of the Baseline RL Architecture

To contextualise the performance of SETLE-enriched agents, we begin by
outlining the baseline reinforcement learning (RL) setup used in our experi-
ments. This architecture serves as the foundation upon which all enrichment
mechanisms are evaluated.

The baseline agent is based on a Double Deep Q-Network (Double DQN)
(Van Hasselt et al., 2016), selected for its stability in Q-value estimation and
compatibility with mixed observation and action modalities. The agent uses
two Q-heads: one for discrete action selection and one for continuous control,
depending on the environment.

The baseline agent observes the raw state (for both environments), en-
codes it using a convolutional or linear encoder, and selects actions via an
epsilon-greedy policy. The Q-network is updated using experience replay and
periodic target network updates.

While simple, Double DQN provides a strong and interpretable baseline.
Its lack of structured memory, graph-based reasoning, or conceptual abstrac-
tion makes it an ideal comparison point for assessing the contribution of the
AIGenC framework.

We evaluate across two distinct domains:

CREATE Environment: A visually rich, physics-based environment
designed for object manipulation and tool use. Tasks include pushing balls
into containers, navigating obstacles, and achieving complex multi-step goals.
CREATE is particularly suited for testing structured planning, affordance
learning, and behavioural reuse.

MiniGrid Suite: A minimalist 2D gridworld composed of symbolic en-
tities (e.g., keys, doors, goals) and agent-centric observations.

6.1.1 Training Procedure (CREATE Baseline)

The baseline agent for the CREATE environment is trained using a Deep
Q-Network (DQN)-style architecture adapted for a hybrid action space.
At each timestep, the agent selects a tool from its inventory (discrete action)
and predicts a spatial coordinate (z,y) (continuous action) at which to apply
the selected tool. Formally, each action is represented as:

a; = (0, (,9))

where 0; is a tool from the current inventory, and (z,y) denotes the interac-
tion location in the environment.

126

To handle this mixed action structure, we adopt a multi-headed Q-
network that outputs:

1. A categorical Q-value vector over all possible tools (up to 939), masked
by the current inventory.

2. A continuous 2D vector representing the predicted coordinates (x,¥)
for tool application.

This follows the multi-headed architecture approach to hybrid action mod-
elling, allowing independent training of discrete and continuous components
while enabling joint decision-making.

Continuous Coordinate Prediction via Regression. A key design
choice in our architecture concerns the handling of continuous spatial ac-
tions. In standard continuous-action reinforcement learning (Lillicrap et al.,
2015), the agent must solve a* = arg max, (s, a), which requires either it-
erative optimisation over the action space or a separate actor network that
learns to output actions maximising expected return.

Our approach differs fundamentally: rather than treating (x,y) coordi-
nates as actions to be optimised, we frame spatial prediction as a supervised
regression task conditioned on the selected discrete tool. Specifically, once
the discrete Q-head selects tool o; via arg max, the continuous head outputs
a deterministic coordinate prediction (z,y) = fo(s,0;) trained to minimise
the mean squared error against observed successful interaction locations.

This design sidesteps the need for continuous action-space maximisation
entirely. The regression target is derived from environment feedback: when
an action (0;, x,y) yields positive reward, the coordinate (x,y) serves as a su-
pervised signal for that tool-state pair. This is feasible in CREATE because:

1. Spatial structure is learnable: Successful interaction locations ex-
hibit regularities tied to object positions and tool affordances, making
regression a viable learning objective.

2. Discrete selection dominates: The primary decision, which tool to
use, is handled by the discrete Q-head with standard arg max selection.
The continuous head refines where to apply the already-chosen tool.

3. Exploration covers the space: During e-greedy exploration, random
(x,y) samples provide diverse training data for the regression head,
ensuring coverage of the coordinate space.

127

This hybrid approach trades off the theoretical guarantees of continu-
ous action-value optimisation for practical simplicity and stability. While
it assumes that coordinate prediction can be learned as a function of state
and tool, rather than requiring explicit value-based selection, this assump-
tion holds well in environments like CREATE where spatial affordances are
visually grounded. We note that extending this approach to domains with
less structured action-location relationships may require revisiting the action-
value formulation, potentially incorporating actor-critic methods for the con-
tinuous component.

Action Selection Strategy. The agent follows an e-greedy policy:

e With probability e, it explores by randomly sampling a tool from the
inventory and a random valid position.

e Otherwise, it exploits the learned Q-function by selecting the tool with
the highest Q-value (subject to masking) and uses the network’s pre-
dicted position.

The exploration rate decays exponentially over time:
€t = €gnd + (estart - Eend) ' e—t/decaylate (33>
with parameters:

Estart = 107 €end = 01, decay,rate = 104

Learning. Both Q-heads are trained jointly using a combination of:
e Temporal-Difference (TD) loss for the discrete tool selection.
e Regression loss for coordinate prediction.

The discrete Q-head is initialised using Xavier uniform weights, and positive
bias initialisation is applied to encourage early exploration. All training
metrics—Q-values, rewards, loss breakdown, and e decay—are logged using
Weights & Biases (W&B) and will be discussed in the Results subsection.

128

Algorithm 3 Hybrid Action DQN Training Loop

1: Initialize Q-network Qy with:

2: 1. Discrete head for tool selection

3: 2. Continuous head for coordinate prediction

4: Initialize target network (Qy-, experience buffer D

5: Set € < €gtart

6: for each episode do

7: Reset environment and tool inventory

8: for each timestep t do

9: if random < € then

10: Sample tool a uniformly from inventory

11: Sample (&,) uniformly from valid space
12: else

13: L a < argmax QQy(s¢, a) (masked by inventory)
14 (#,§) < QI (s,, a)

15: Execute action (a, Z,y), observe 1y, s;11

16: Store (s, ag, e, $¢41) in buffer D

17: Sample mini-batch from D and update @y

18: Update target network periodically: Qg- < Qg
19: | | Decay € using exponential schedule

6.1.2 Training Procedure (MiniGrid Baseline)

In contrast to the CREATE environment, where agents interact through a
hybrid action space and inventory-based tool application, the MiniGrid setup
features a purely discrete action space. The agent must learn to navigate,
interact with objects, and solve tasks such as key-door unlocking and room
traversal using a fixed set of primitive discrete actions: move forward, turn
left, turn right, pickup, drop, and toggle.

To preserve consistency with the object-centric framing of the CREATE
experiments while avoiding reliance on symbolic state input, the baseline
MiniGrid agent receives only pixel-level visual observations via env.render ().
It does not have access to internal simulator state or structured symbolic
observations such as obs["image"]. This design choice aligns the setup
with real-world perception constraints, where agents must extract action-
able information from raw sensory input. Given MiniGrid’s discrete and
minimalistic action space, a number of structural and computational adapta-

129

tions were made to SETLE. Unlike in CREATE, where ActionRepresentation
nodes captured rich object-tool interactions, the MiniGrid graph structure
was simplified. It included only State and Affordance nodes, connected by
influences and outcome edges. This simplification allowed direct testing
of the thesis claim that the benefits of structured episodic memory do not
stem from predefined semantics but from the flexible object-centric trajectory
modelling enabled by SETLE.

To reduce computational overhead, the visual perception module was
adapted. The Segment Anything Model (SAM) and CLIP were used only
once at the beginning of each episode, leveraging the fact that MiniGrid
environments are static within each episode. Extracted objects (e.g., walls,
keys, doors) remain unchanged during interaction, and are thus linked to
every State node throughout the episode graph without needing re-inference.
This drastically reduced GPU usage and inference time, while still ensuring
that the episodic graph maintained its conceptual integrity.

For the reinforcement learning architecture, a standard Double DQN
agent is used. The Q-network consists of a convolutional encoder followed
by a fully connected Q-head predicting discrete action values. Exploration
follows an e-greedy schedule:

€t = €end + (Estart - 6end) : eft/decayjate (34)

with:
Estart — 10, €end — 01, decay,rate =]_04

The agent is trained using standard temporal-difference loss over mini-
batches sampled from an experience replay buffer, and the target network
is periodically updated. No memory augmentation or enrichment is used in
this baseline.

Training is conducted across six standard MiniGrid tasks: Empty 5x5,
DoorKey 5x5, DoorKey 8x8, UnlockPickup, MultiRoom N4 S5, and SimpleCrossing
SON1. These tasks collectively test basic navigation, symbolic object use, and
multi-room spatial reasoning.

This baseline serves as the foundation for evaluating whether structured
memory and enrichment mechanisms, introduced in subsequent sections,
yield improvements in sample efficiency, stability, and generalisation across
task variants.

130

6.2 SETLE Integration in the Reinforcement Learning
Loop

To evaluate the impact of structured episodic memory on generalisation and
learning efficiency, we integrate SETLE into the reinforcement learning (RL)
training loop. SETLE implements the Reflective Reasoning component of the
AIGenC framework, enabling the agent to supplement its current experience
by matching recent trajectories against long-term memory (LTM), retrieving
relevant structures, and enriching its working memory (WM) before selecting
an action.

Algorithm 4 SETLE Matching and Enrichment at Timestep ¢

Require: Partial trajectory G;_s.;, current state_id, episode_id, SETLE en-
coder, LTM
Ensure: Enriched working memory graph at time ¢
Encode partial trajectory: zguery ¢~ encode_episode(Gy_3.)
Retrieve LTM episode encodings {(z;, episode;) }¥,
Compute similarity: s; = cos(2query; 2i)
Select top-K most similar episodes: top_episodes «— argsort(s)[: K]
for each matched episode; do
Extract candidate nodes (objects, affordances, actions) not in G
Apply relevance and attention filtering
Select top-/V nodes by attention score
Inject selected nodes and edges into WM graph at state_id with
source=setle

Functional Overview. Unlike standard RL agents that rely exclusively
on immediate state observations, SETLE allows the agent to draw from
structurally similar prior experiences. Rather than reusing entire episodes,
the agent selectively retrieves and injects semantically aligned substructures,
such as objects, affordances, and actions, into the current WM graph. This
supplemented graph is then re-encoded and passed to the policy network,
forming a cycle of perception, memory-guided reasoning, and decision-making.

The retrieval and injection mechanism in lines 18-24 of Algorithm 5 can
operate in two modes, corresponding to Reflective Reasoning and Blending
as defined in Sections 4.2 and 4.3:

e Reflective Reasoning mode: When the agent is performing ade-

131

quately (no impasse detected), retrieval uses a high similarity thresh-
old, returning only closely matching episodes. Injected concepts are
familiar and reinforce known strategies.

¢ Blending mode: When repeated failures trigger an impasse condi-
tion, the similarity threshold is relaxed, allowing retrieval of more dis-
tant episodes. This introduces diverse concepts that may enable novel
solutions.

In both modes, the current implementation uses the same attention-weighted
injection mechanism. The distinction lies in what is retrieved (similar vs.
diverse) and when (continuous vs. impasse-triggered), not in how retrieved
concepts are integrated. Full latent-space blending—where diverse concepts
are fused into genuinely new representations—remains a direction for future
work.

To support temporal abstraction and contextual matching, SETLE en-
codes a rolling window of the last &k = 4 state graphs as a partial trajectory,
denoted G;_3;. This representation captures both spatial and temporal de-
pendencies, helping disambiguate states that may appear similar in isolation
but differ in their broader interaction history. These richer representations
improve the precision and utility of memory retrieval.

The core mechanism of SETLE follows a selective matching and supple-
ment pattern. The agent compares the current partial trajectory G;_s; to
stored episodes in LTM, full encoded trajectories, and identifies structurally
similar ones. From these, it extracts missing but relevant elements and in-
jects them into the current WM graph. This interaction is formalised in
Algorithm 4.

To identify what knowledge is most relevant, SETLE employs a trainable
attention mechanism that scores candidate nodes based on their contextual
alignment with the current partial trajectory. This targeted prioritisation en-
ables fine-grained control over memory reuse, ensuring that only structurally
and semantically pertinent components are integrated into the working mem-
ory graph.

The selected nodes and edges form a supplement to the current graph
Gy, producing an enriched graph Gf that includes potentially useful but
previously absent information. This enriched graph is re-encoded using the
SETLE GNN encoder and passed through an adapter layer before being input
to the policy network.

The integration of SETLE modifies the standard RL loop as follows:

132

1. Encode the last four states as a partial trajectory graph.
2. Retrieve the top-k most similar episodic embeddings from LTM.
3. Expand the episodes to be able to select the needed concepts.

4. Filter retrieved graph concepts by context and apply attention to rank
and select the most relevant candidates.

5. Inject selected nodes and edges to supplement the current WM graph.

6. Re-encode the enriched graph and pass it to the policy head.

6.2.1 Two Approaches to Attention: Mackintosh vs. Transformer-
Based Mechanisms

To investigate the impact of relevance-driven enrichment on learning and
generalisation, we implemented and evaluated two distinct attention mecha-
nisms for concepts selection:

1. Mackintosh-Based Associative Attention (Computational At-
tention). This biologically inspired mechanism is adapted from the Mack-
intosh model of associative learning. It treats attention as a scalar associa-
bility value that changes over time based on how reliably a concept predicts
reward (for full implementation details and plots of the Mackintosh associa-

tive model, see Appendix B). Each concept’s associative strength Vf(ln) and

associability aff) are updated at every timestep using the following rule:

AV — ot B (1= Vi 4+ V) - |RY

Ao = —0 - (X" =V + V7| — A" = V7 + V7))

Concepts that repeatedly co-occur with high-reward outcomes increase
their associability and are more likely to be retained and reused. This atten-
tion model is computationally efficient and interpretable, but it is agnostic to
structural embeddings or local task context at retrieval time. It is best suited
for deciding what concepts should be stored long-term based on statistical
regularities.

133

2. Transformer-Style Learned Attention. In contrast, this mechanism
applies attention over node embeddings using a vector projection architecture
inspired by the Transformer model. Given an encoded partial trajectory
(query), and candidate node embeddings (keys), we compute similarity via:

e ((W, - query, W, - candidate;)/T)
v Zj exp ((W, - query, Wj, - candidate;)/7)

This enables the model to learn a flexible, task-specific notion of rele-
vance, allowing selective injection of nodes from retrieved episodes during
runtime. It operates entirely at inference time and supports generalisation
across diverse task structures by aligning latent concept representations.

In our architecture, the two attention systems are not redundant but
complementary:

1. Associative strength determines which concepts are stored in LTM.

2. Transformer-based attention determines which concepts are retrieved
and injected into WM.

134

Algorithm 5 AIGenC RL Loop with SETLE Enrichment, Mackintosh As-
sociability, and Graph Supplementation

1: Initialize: LTM <« (keys[], {}), WM « (keys]], {})

2: Parameters: Associability a4 = 0.5, Learning rate 3, Attention temperature 7, Decay rate ©

3: for episode = 1,2,..., N do

4: Gepisode < [] > Initialize episode trace
5 env < Reset environment

6 fort=1,...,T do

7: s¢ < observe environment state

8

9

// Concept Extraction and Graph Construction
G «+ create_state_graph(s¢, inventory, env)

10: Append Gt t0 Gepisode

11: // Matching and Enrichment (SETLE)

12: if t > 4 then

13: G¢_3:¢ + extract_partial_trajectory(Gepisode)

14: Zquery $— encode_episode(G¢_3:¢)

15: Retrieve {(z;, episode;)}¥ | from LTM

16: Compute similarities s; < cos(zquery; 2i)

17: topK + top-K episodes by s;

18: // — Blending Operation (see Section 4.3) —
19: for each episode j in topK do

20: Extract candidate nodes (affordances, objects, actions)
21: Compute attention weights o; using:

a;j = softmax

(Wazquery) - (szj))

.
22: Select top-N candidates by attention score

23: Inject candidates into G with tag source="setle_attention"
24: . // — End Blending —

25: // Policy Action

26: Encode enriched G} using SETLE encoder

27: at < w(G7) using e-greedy strategy

28: St4+1,7t + take action a¢ in environment

29: // Store Transition

30: Add (st,at, e, st+1) to Replay Buffer

31: // Associative Strength Update (Mackintosh)

32: for each concept A in G; do

33: Compute:

AVITY =D g 1=V + VD) Ry

80t =~ (13— Vi) 4 VT - - v V)

34: L Update V4 and ay

35: // Supplement and Memory Consolidation

36: W Mclusters < cluster(Gepisode) Using concept similarity
37: centroids < cluster centers

38: for each centroid G. do

39: if match(Ge,LTM) is False and V4 > threshold then
40: | | Add G. to LTM

This dual-system setup allows SETLE to balance global statistical regu-
larities with local task relevance—enabling both robust concept consolidation
and adaptive memory reuse (see Algorithm 5).

135

6.3 Training Regimes and Experimental Design

To evaluate the impact of SETLE-based memory enrichment on reinforce-
ment learning performance, we design a controlled experimental framework
that compares multiple agent configurations across diverse tasks. The goal
is to assess whether structured memory reuse improves learning efficiency,
generalisation, and policy stability.

Multi-Task Training Protocol. Importantly, all experiments employ a
random mixture training regime rather than sequential or curriculum-
based learning. At each training step, episodes are sampled uniformly at
random from the full set of available tasks. The agent does not first mas-
ter one task before encountering another; instead, it experiences interleaved
episodes from all tasks throughout training. This design choice serves two
purposes:

1. Testing genuine generalisation: By exposing the agent to all tasks
simultaneously, we ensure that any observed transfer or knowledge
reuse emerges from the agent’s internal representations rather than
from sequential skill accumulation or task-specific fine-tuning.

2. Stress-testing memory mechanisms: Random task mixing creates
a challenging setting for memory-based systems, as the agent must
maintain and retrieve relevant knowledge across interleaved experiences
from structurally diverse tasks.

This protocol contrasts with curriculum learning approaches, where tasks
are ordered by difficulty, or continual learning setups, where tasks are pre-
sented in sequence. Our random mixture design more closely reflects real-
world deployment scenarios where agents cannot anticipate which task they
will encounter next.

Experimental Conditions. We evaluate five distinct training configura-
tions, each representing a different integration strategy for SETLE into the
RL loop:

1. Baseline RL: A standard Double DQN agent trained without any
graph memory or enrichment. This serves as the control condition.

136

2. Action Selection Only: SETLE enrichment is applied exclusively at
inference time. The policy network receives graph-enhanced embed-
dings for action selection, but gradients do not propagate through the
memory pathway.

3. SETLE for Action and Optimisation: Graph-enriched representa-
tions are used for both policy inference and backpropagation. The
encoder is updated end-to-end, allowing memory reuse to influence
learning directly.

4. Adapter + Penalty: A learnable adapter transforms SETLE embed-
dings before they are fed into the Q-network. Additionally, a penalty
is applied when the same LTM episodes are repeatedly matched, en-
couraging more diverse memory access.

5. Adapter + Penalty + Soft Update: This final configuration adds a
target encoder updated via soft updates (Polyak averaging) to increase
temporal stability and reduce volatility during enrichment.

Each configuration is tested on five CREATE tasks and a suite of Min-
iGrid scenarios. Experiments are conducted across three random seeds per
condition to ensure statistical robustness. All runs are logged using Weights
& Biases (W&B), capturing reward trajectories, Q-value trends, enrichment
frequency, and memory match statistics.

Performance is assessed using a combination of behavioural and represen-
tational metrics:

e Success Rate: Percentage of episodes in which the goal is successfully
achieved.

e Reward Frequency: Average number of positive reward events per
episode.!

e (Q-Value Stability: Variance of predicted Q-values over time, used as
a proxy for value estimation reliability.

'We report reward frequency (nonzero events per step) rather than average or cumu-
lative reward because the extreme sparsity of rewards in this environment causes average
reward to collapse near zero for all agents. Frequency provides a more interpretable mea-
sure of how reliably agents encounter positive outcomes. Cumulative reward (Fig. 43)
confirms the same pattern.

137

e Embedding Quality: Silhouette scores and clustering metrics are
used to evaluate how well SETLE embeddings separate tasks or struc-
ture trajectories.

Overview of Stabilisation Mechanisms. Integrating structured mem-
ory into the RL loop introduces challenges not present in standard archi-
tectures: distributional mismatch between retrieved and learned representa-
tions, over-reliance on frequently matched episodes, and training instability
from varying enriched inputs. Through systematic experimentation, we iden-
tified three complementary mechanisms that address these challenges: (1) an
adapter layer to align memory embeddings with the policy network’s repre-
sentation space, (2) a matching penalty to encourage retrieval diversity, and
(3) soft target updates to stabilise learning under varying enriched inputs.

The following subsections present these components incrementally, re-
flecting the experimental process through which they were developed and
validated. Together they form an integrated approach to a stable memory-
augmented reinforcement learning.

6.3.1 Results in Physically Grounded Tasks (CREATE)

Baseline vs Action Selection only strategy To evaluate the impact of
SETLE-based enrichment applied only at action selection time, we compare
the reward trajectories of four independent training runs on the ” Create Level
Buckets” task. Figure 29 overlays the baseline and enriched configurations.

Baseline agents exhibit slow, consistent learning, with reward increas-
ing modestly over time. In contrast, SETLE-enhanced agents demonstrate
significantly higher initial rewards—particularly in one run (Run 3), which
peaks above 1.8 early in training. However, this reward advantage tends to
decay over time, suggesting that initial enrichment may bootstrap early per-
formance but lacks sustained refinement. Baseline runs are tightly clustered,
with minimal variation in performance. The action selection only condition
introduces higher variance: while one run significantly outperforms the base-
line, others perform comparably. This variance reflects the dependency of
enrichment efficacy on the relevance and timing of matched episodes from
long-term memory.

The comparison reveals that even lightweight enrichment strategies, such
as injecting prior knowledge only during policy inference, can substantially

138

accelerate early learning. However, these benefits are inconsistent unless
coupled with mechanisms for continual memory refinement or adaptation.

Average Reward Comparison: Baseline vs. Setle Enhanced for action selection only

\ Run / Strategy
175 \ Run
\
\\ — Runl
\\ Run 2
1.50 - \ —— Run3
\ — Run4
‘\ Strategy
1.25 ‘\ —— baseline
\\ ——- action selection only
B \ ™\
© \ SN
3 1.00 \ L \
K ; \
o \\
o \
© SN S
; 0754 \\// \\\\
0.50 -
0.00
0 2 4 6 8 10 12 14 16

Training Step

Figure 29: Average reward over time on Create Level Buckets for base-
line and SETLE-enhanced (action selection only) agents. Solid lines: base-
line; dashed lines: enriched strategy. Each training step corresponds to one
episode of interaction with the environment, after which the policy network
is updated using sampled transitions from the replay buffer.

Action selection only strategy vs Action Selection and Optimisa-
tion strategy The performance comparison of the inference vs inference
and optimisation strategy Fig.30 reveals a clear advantage of the full SETLE
enrichment strategy that integrates both action selection and optimisation
over the action-selection-only baseline 2. While both configurations benefit
from retrieving relevant past experiences, applying enrichment only at in-
ference time limits its long-term impact. In contrast, feeding enriched state
representations into the training loss allows the agent to adjust its value func-

2The periodic drops in reward observed in the optimisation strategy (dashed line) result
from target network updates. These updates cause a sudden shift in the learning objective,
creating a temporary misalignment between the policy’s learned representations and the
new target values. The agent recovers and typically surpasses its previous performance
level as the optimisation realigns with the updated targets, producing the characteristic
staircase pattern. This instability motivates the introduction of soft updates, discussed
later

139

tion based on structurally informed information. This leads to more stable
learning, faster convergence, and improved generalisation. The Basket task,
which involves precise object placements and temporal dependencies, par-
ticularly benefits from this deeper integration. By using enrichment during
both forward and backward passes, the agent reinforces not just immedi-
ate decisions, but also the internal representations that govern its learning
dynamics. This illustrates the key claim of the thesis: memory-based struc-
tural generalisation is most effective when it influences both decision and

optimisation processes.

0.30

0.25

Average Reward

o
N
o

o
=

o

-
-
-
\
o7
-
-
-
.
/
/
/
/
/
/
/
/
/
/
/
’
/
/
i

Average Reward Comparison: Action Selection vs. Setle Enhanced for action selection and optimisation for Basket level
I~
Fac

Run / Strategy
I ~
I~ N,
. ! ~
E N ! Seo

Run
— Runl

Strategy
—— Action only for Create Level Basket N
! SSJ
! ~

===~ Action and optimisation for Create Level Basket

0.10 A

"""" I
20 25 30 35 40

0.05 4
10 15
Training Step

Figure 30: Comparison of average reward over time for the CreateLevelBas-

ket task using two SETLE configurations—Action Selection Only vs. Action
+ Optimisation. The full optimisation strategy yields higher and more stable
rewards, demonstrating the benefit of incorporating enriched memory repre-

sentations during both inference and training

Further improvements to the RL loop: adapter and penalty To
further stabilise and enhance the integration of memory into the reinforce-
ment learning loop, we introduced two complementary mechanisms within

the SETLE-enhanced agent: an adapter layer and a matching penalty. The
adapter is a learnable projection module (implemented as a two-layer MLP)

applied after graph-based enrichment. Its purpose is to map enriched state
embeddings—composed of objects, affordances, and contextual relations re-

140

trieved from long-term memory—into a representation space better aligned
with the Q-network’s expectations. This addresses a critical issue in memory-
based reinforcement learning: the potential distributional shift between learned
embeddings and externally injected representations. Empirically, we found
that the adapter significantly reduced the continuous loss (Fig. 31), and
also improved the Q-value stability (Fig. 32), indicating that the enriched
information became more usable for the continuous action head.

Loss/continuous

logger-with_adaptor_set_enrichment_and_matching &
= logger-set_enrichment_and_matching v

200 400 600 800 1k 1.2k

0.06

0.05

0.04

0.03

0.02

0.01

Loss/categorical

logger-with_adaptor_set_enrichment_and_matching &
= |ogger-set_enrichment_and_matching v

oA

200 400 600 800 1k 1.2k

Figure 31: Comparison of training loss for the continuous (left) and cate-
gorical (right) heads under two strategies: standard SETLE enrichment and
SETLE with an adapter. The adapter-based strategy achieves consistently
lower loss in the continuous head and comparable or improved loss in the
categorical head, indicating that the enriched embeddings are easier to opti-
mise when mapped through a learnable projection layer.

141

Q/mean_continuous Q/mean_categorical

logger-with_adaptor_set_enrichment_and_matching & logger-with_adaptor_set_enrichment_and_matching &
— logger-set_enrichment_and_matching v — logger-set_enrichment_and_matching v

0.08
0.05 0.06
0.04

0 0.02

-0.05 -0.02

Step Step

-0.04
200 400 600 800 1k 1.2k 200 400 600 800 1k 1.2k

Figure 32: Comparison of mean Q-values for the continuous (left) and cat-
egorical (right) action heads, with and without the adapter layer. The
agent using the adapter (with_adapter_set_enrichment _and matching) ex-
hibits smoother and more stable Q-value evolution in both heads. This
suggests that the adapter helps reconcile the enriched embeddings with the
policy network’s expectations, leading to more reliable value estimation.

The matching penalty, on the other hand, addresses a common failure
mode in memory-based systems: repeated reliance on familiar or frequently
matched trajectories. In earlier experiments, we observed that the agent
would frequently retrieve the same high-scoring past episodes during enrich-
ment, leading to repeated reinforcement of narrow behavioural patterns. To
counteract this, we implemented a dynamic penalisation scheme that down-
weights the similarity scores of frequently matched episodes. This forced the
retrieval mechanism to consider a broader set of candidates, encouraging ex-
ploration and preventing overfitting to a small subset of trajectories. This
penalty was particularly effective in later stages of training, where diversity
in retrieved episodes was critical to maintain learning momentum and avoid
premature convergence.

Together, these strategies aim to balance effective reuse of prior knowledge
with the flexibility needed for robust adaptation across tasks.

To evaluate the downstream behavioural impact of the adapter and reuse
penalty, we executed the full SETLE-enriched reinforcement learning loop
across multiple tasks. Figure 33 focuses on the Create Level Push task,
where agents must manipulate tools to move objects toward target zones, a
task requiring spatial precision and multi-step affordance chaining.

142

Among the configurations tested, the adapter-based strategy consistently
achieved higher average rewards over time, indicating improved sample ef-
ficiency and generalisation. This sustained performance suggests that the
adapter module effectively aligns enriched graph representations with the
policy network’s internal feature space, allowing the agent to better exploit
retrieved knowledge without destabilising learning.

While all SETLE-augmented variants, including action selection only and
action+optimisation, outperformed the early baseline, the adapter 4+ penalty
strategy was unique in maintaining reward gains after the initial peak. This
was particularly notable given the challenge of delayed rewards in the Push
task. The adapter appeared to dampen the mismatch between static memory
embeddings and dynamic task features, while the penalty term discouraged
overfitting to frequently matched episodes.

Average Reward Comparison: Action Selection vs. Setle Enhanced for action selection and optimisation and Adapter Strategy for Push level

...... Run / Strategy
: Run
— Runl
Strategy
—— Action selection only for Create Level Push
—=—=- Action and optimisation for Create Level Push
- Full strategy with adapter for Create Level Push

o
o

o
o

Average Reward

14
B

0.2

0.0

Training Step

Figure 33: Average episode reward on CreateLevelPush across three SETLE
integration strategies. The adapter-enhanced model (dotted line) consis-
tently outperforms simpler strategies, demonstrating improved reward ac-
quisition and training robustness.

Further improvements to the RL loop: soft update While the adapter-
enhanced SETLE model showed improved policy learning and reward acqui-
sition, the Q-value and loss plots (Figures 32, 31) reveal training instabilities,
particularly in the form of sharp spikes in both continuous and categorical
loss. These fluctuations suggest that although enriched embeddings carry

143

useful information, their integration introduces representational shifts that
are difficult for the policy network to absorb consistently in a fully syn-
chronous update scheme. To mitigate this, we introduce a soft target network
update mechanism, which blends the parameters of the policy and target net-
works more gradually. By slowing the rate of change in Q-value targets, soft
updates reduce oscillations and promote convergence when learning from en-
riched state representations that vary over time.

Loss/continuous Loss/categorical
er-soft_update_penalty_with_adaptor_set_enrichment_and_m a er-soft_update_penalty_with_adaptor_set_enrichment_and_m a
logger-with_adaptor_set_enrichment_and_matching = logger-with_adaptor_set_enrichment_and_matching =
— logger-set_enrichment_and_matching v — logger-set_enrichment_and_matching v
4 G > 4 G >
0.06
0.15 0.05

0.04
0.03
0.02

0.01
A ANAAMA A~ ARyt AL RSP
200 400 600 800 1k 1.2k

Figure 34: Loss curves for the adapter-enhanced SETLE agent with and
without soft updates. Sharp spikes in both continuous and categorical loss
indicate unstable value updates caused by abrupt changes in enriched state
representations.

As shown in Figure 34, without soft updates, both continuous and cate-
gorical losses display frequent high-magnitude spikes. These indicate unsta-
ble value updates, especially when the enriched state representation changes
abruptly between timesteps or episodes. By contrast, the introduction of
the soft update mechanism leads to noticeably smoother training dynamics
(Figure 36). All three loss components: total, continuous, and categorical,
show reduced variance, lower peaks, and more consistent downward trends
over time. Similarly, in the Q-value plots (Figure 35), the mean Q-values
remain more stable and within narrower ranges, especially for the contin-
uous branch. This indicates that the soft update effectively damps abrupt
value shifts caused by mismatch between new enriched information and the
existing value function.

144

Q/mean_continuous Q/mean_categorical

er-soft_update_penalty_with_adaptor_set_enrichment_and_m & er-soft_update_penalty_with_adaptor_set_enrichment_and_m &
logger-with_adaptor_set_enrichment_and_matching v logger-with_adaptor_set_enrichment_and_matching v
0.04
0.02 0.04
o AR M U KL g A
Il 'Lh | “r‘f N v \)\ 'q\{ V 0.02
-0.02 ‘ |
-0.04 0
-0.06 Step Step
200 400 600 800 1k 1.2k 200 400 600 800 1k 1.2k

Figure 35: Q-value statistics for the soft update strategy. The mean Q-values
remain bounded and relatively stable over time, indicating more consistent
learning dynamics when enriched state information is gradually integrated.

Loss/total Loss/continuous Loss/categorical
er-soft_update_penalty_with_adaptor_set_enrichment_and_n § er-soft_update_penalty_with_adaptor_set_enrichment_and_n § er-soft_update_penalty_with_adaptor_set_enrichment_and_n §
4

> 4 » 4 »
0.003

0.014

0.012
0.012 0.0025

0.01 0.002

0.008
0.008 0.0015

0.006
0.006 0.001

0.004

0.004 Step Step 0.0005

200 400 600 800 1k 1.2k 200 400 600 800 1k 1.2k 200 400 600 800 1k 1.2k

Figure 36: Loss curves for the full strategy with adapter and soft target
network updates. The soft update stabilises training by reducing oscillations
and suppressing large loss spikes, enabling smoother convergence.

Together, these results support the conclusion that soft updates are criti-
cal for stabilising learning when using adaptive memory systems like SETLE.

Challenges of Generalisation in the CREATE Environment The
CREATE environment presents a particularly challenging setting for struc-
tured reinforcement learning due to its requirements for high interactivity,
sparse rewards, and multi-step problem-solving. Unlike symbolic environ-
ments such as MiniGrid, where object interactions and transitions are dis-
cretised and low-dimensional, CREATE demands fine-grained motor control

145

(e.g., tool-object manipulation) and sequential reasoning over long temporal

horizons (e.g., positioning a ball onto a ramp to launch it into a target).
In the preceding sections, we introduced several architectural components

designed to address these challenges: SETLE-based memory enrichment, an

adapter module for aligning latent spaces, a matching penalty to discourage
repetitive retrieval, and a soft update mechanism to enhance stability during

policy learning. While each of these mechanisms showed empirical benefits,
their success depends heavily on the interplay between memory retrieval,

enrichment quality, and policy plasticity. Not all runs achieve generalisation,

as shown in Fig. 37.
Average Reward Comparison: Baseline vs Action Selection vs. Adapter,penalty and soft update enhancement for Buckets level
I
1

Run / Strategy
I

Run
— Run1l
Strategy
—— Baeline for Create Level Buckets
—=—- Action selection only for Create Level Buckets
Adapter, penalty and soft update for Create Level Buckets
1
!
1
]
]
!
1
/

0.16

0.14

0.12 4

0.10

Average Reward

0.08

14

0.06

0.04 /
/

10

Training Step

Figure 37: Some CREATE tasks remain sub-optimal even with SETLE en-
richment, highlighting the difficulty of achieving consistent generalisation

across runs.
Nevertheless, when memory matching and integration mechanisms align

successfully, particularly under the full adapter and soft update strategy,
the agent demonstrates substantial improvements in reward acquisition and

trajectory quality, significantly outperforming the baseline (Fig. 38).

146

Average Reward Comparison: Baseline vs Action Selection vs. Adapter,penalty and soft update enhancement for Buckets level

Run / Strategy
Strategy
0354 — Action selection only for Create Level Obstacle
Adapter and penalty for Create Level Obstacle
—— Soft Update for Create Level Obstacle
Run
1 — Run1

Average Reward

0.15

- — —t
0.05 -

0 5 10 15 20 25 30 35 40
Training Step

Figure 38: Performance comparison illustrating a case where full SETLE
integration leads to dramatically improved reward outcomes.

Out of over 40 independent runs across different tasks and configurations,
only those using both the adapter and soft update enhancements managed
to solve the environment at least once (Fig. 39). These results highlight not
only the potential of structured trajectory enrichment, but also the fragility
of the approach in complex domains. Importantly, these experiments were
conducted under deliberately constrained training regimes: episode lengths
were capped at 9 steps, and overall training time was limited. We deliber-
ately constrained the training setup—Ilimiting the number of episodes and
capping each trajectory at 9 steps—to focus on evaluating whether struc-
tured memory and enrichment mechanisms can accelerate learning and en-
able generalisation under low-data, few-step conditions. This design tests the
efficiency of SETLE-enhanced agents in challenging settings where standard
reinforcement learning strategies would typically struggle to succeed without
extensive trial-and-error or curriculum-based shaping.

147

FinalStats_adapter_and_penalty_0/SuccessRate

— logger-adapter_and_penalty_run_0_task_CreateLevelPush &
— |logger-adapter_and_penalty_run_0_task_CreatelLevelPush v

0.06
0.05
0.04
0.03
0.02

0.01
Step

200 400 600 800 1k 1.2k
-l

Figure 39: Only runs using the full enrichment strategy achieved success in
at least one complex CREATE task.

148

Summary of Key Metrics Across Strategies

Metric
Avg Reward
mmm Max Reward
mmm Mean Loss
mmm Mean Q-Value (Categorical)

101

Value

o el | | .
N N \d ¢ S
) & oS N O
& 2 >
Q7) X e &
S < RS &
& &7 & &
o S 3 o) xR
< 7
0(3 X2 ’b*& \OQ s
XS Q Ny X
< o & <
< & &
G N X7 &
2
& 7
° &

Strategy

Figure 40: The bar chart compares average reward, maximum reward, mean
loss, and mean Q-value (categorical) across all strategy variants for 5 different
runs for each of the task and strategy. The adapter and penalty strategy
exhibits the highest average and peak rewards, while the action selection
only strategy shows higher Q-values but also greater loss. Baseline and other
non-optimised configurations remain lower across all axes, highlighting the
benefits of integrated enrichment and adaptive mechanisms.

Summary of key metrics across strategies The bar plot (Fig.40) sum-
marises key performance metrics across different reinforcement learning strate-
gies enhanced with SETLE. Here are the main insights:

1. Adapter and Penalty is the most effective strategy overall, achieving
the highest average reward (around 1.8) and maximum reward (> 10),
with the lowest overall loss and modest Q-values. This supports ear-
lier findings that combining knowledge integration (via SETLE) with
adaptation and exploration encourages meaningful generalisation.

2. Adapter + Penalty + Soft Update comes second in performance, with
lower but still non-trivial rewards and stable losses, suggesting that
soft updates help maintain training stability but may slow aggressive
reward gains.

3. Action Selection Only and SETLE for Action Selection and Optimisa-
tion yield the lowest average rewards, indicating that access to memory

149

alone is not sufficient—adaptation layers and retrieval regulation are
essential. While the Action and Optimisation strategy does outperform
the baseline in several runs as seen previously, its performance is in-
consistent across tasks. This suggests that optimisation over enriched
states can lead to better outcomes, but without additional mechanisms
like the adapter or penalty, the agent may struggle to stabilise learning
or generalise across different task configurations.

4. Baseline performs slightly better than random SETLE variants without
adaptation but lacks the reward stability and peak performance of more
structured approaches.

Overall, these results confirm that structured enrichment must be accom-
panied by mechanisms for adaptation (adapter layers) and memory regula-
tion (penalty, soft update) to produce consistent and transferable learning
in environments like CREATE. Other logging, as well as how attention and
tool reuse has been tracked, can be found in Appendix C.

6.3.2 Results in Symbolic Reasoning Tasks (MiniGrid)

To evaluate the behaviour of the SETLE-enhanced reinforcement learning
agent in reward-sparse settings, we first conducted experiments in MiniGrid
on the Empty-5x5 task. This environment is intentionally minimalist, con-
taining no explicit goals or rewards, and thus provides no extrinsic learning
signals during interaction. The aim of this experiment is not to assess task
completion but to observe the value dynamics and learning behaviour
of agents when operating under severe epistemic uncertainty and absence of
reinforcement. Both the baseline and SETLE-enhanced agents were trained
using Double DQN designed to reduce overestimation bias by decoupling
action selection from evaluation.

Despite this bias correction, the baseline agent displayed a rapid and
sustained increase in Q-values over time, even in the complete absence of
reward (see Fig. 41).

150

Q/mean
— logger-adpter_penalty_soft_update_run_0_task_MiniGrid-Empty-5x5-v0 — logger-baseline_run_0_task_MiniGrid-Empty-5x5-v0

Lo

Step
1k 2k 3k 4k

Figure 41: Comparison of Q-value evolution for Baseline and SETLE-
enhanced agents in MiniGrid-Empty-5x5. The baseline agent exhibits sus-
tained value inflation despite receiving no reward, with Q-values rising above
3.0. The SETLE-enhanced agent maintains more conservative Q-values
around 1.0, reflecting structurally grounded value estimation under sparse
feedback.

On average, baseline Q-values stabilized around 3.3 after a few hundred
steps. This behaviour indicates a form of residual value inflation, wherein
Q-values are recursively bootstrapped from their own overestimated targets.
Since no extrinsic signal exists to anchor these predictions, the value function
drifts into ungrounded optimism, assigning high expected returns to se-
quences of actions that are never positively reinforced. Such overconfidence,
though syntactically correct in terms of Bellman updates, poses a threat to
generalisation, especially when agents are transferred to environments where
structural conditions change or delayed rewards appear.

151

MiniGrid Empty 5x5: Reward Comparison (Baseline vs Soft Update)
0.10
Strategy
—— Soft Update
—— Baseline
0.08 1
2 0.06
o
H
Q
-4
[
g
§ 0.04
=4
0.02
0.00 Sl
0 1000 2000 3000 4000 5000 6000 7000
Training Step

Figure 42: Average reward per step for Baseline (orange) and SETLE-
enhanced agents (blue) in MiniGrid-Empty-5x5. Although overall rewards
are low due to the sparse-reward nature of the environment, the SETLE-
enhanced agent achieves nearly twice the reward frequency of the baseline,
indicating improved exploration and task-relevant behaviour despite the ab-
sence of explicit supervision.

By contrast, the SETLE-enhanced agent maintained Q-values near 1.0
throughout training, less than one-third of the baseline level, indicating a
more conservative and context-sensitive learning dynamic. At first glance,
this may appear as an indication of stagnation or failure to learn. How-
ever, closer inspection of the reward logs (Fig.42) reveals that the SETLE-
enhanced agent achieved nearly double the reward frequency per step
compared to the baseline (0.0084 vs. 0.0048) (Fig.43). Although absolute re-
wards remained low due to the task’s sparsity, the increased reward density
and stabilised Q-values suggest that SETLE’s structured memory support
fosters more calibrated value estimation and meaningful exploration.

152

Cumulative Reward Comparison: SETLE vs Baseline

Figure 43: Cumulative reward comparison between the baseline agent and
the SETLE-enhanced agent in the MiniGrid-Empty-5x5 environment. The
SETLE-enhanced agent consistently collects reward more frequently and
achieves a higher overall total, despite the sparse and minimal nature of
the environment. This demonstrates the benefit of structured trajectory
enrichment in guiding exploration and sustaining learning under low-signal
conditions.

Rather than hallucinating reward where none exists, SETLE retrieves
structured prior experiences—such as object co-occurrences and contextual
affordances, that allow the agent to infer when sequences are not worth prop-
agating optimistic returns. In doing so, the agent suppresses speculative Q-
value growth and aligns its internal value function with the actual utility
of its behaviours. This form of value realism is increasingly recognised as a
desirable property in deep RL. Recent work (Fujimoto et al., 2018; Kumar
et al., 2020) has highlighted the risks of overestimation in Q-learning and pro-
posed conservative or uncertainty-aware alternatives to promote trustworthy
generalisation.

In summary, while the baseline agent appears to ”learn” faster in numer-
ical terms, its Q-values are ungrounded and misleading in the context
of a reward-sparse environment. The SETLE-enhanced agent, by contrast,
produces Q-value trajectories that more accurately reflect the lack of posi-
tive reinforcement, and in doing so, demonstrates stronger potential for
generalisation across structurally similar tasks.

Behavioural Analysis in the Hardest Mini-Grid Task: SimpleCross-
ingSIN1 In contrast to the Empty-5x5 task, which served as a diagnostic
environment for reward-free value estimation, the SimpleCrossingS9N1 task
represents the most complex environment in our Mini-Grid evaluation suite.
It requires the agent to navigate through multiple rooms separated by walls

153

and doors, some of which are partially obstructed, requiring careful plan-
ning and multi-step exploration. The sparse reward signal is delivered only
upon successful navigation to a distant goal, making this task particularly
challenging for unstructured exploration.

The results reveal significant divergence in agent behaviour across strate-
gies. In terms of raw task success, the adapter + penalty + soft update
strategy achieves the highest number of successful episodes (see Fig.44), while
the adapter + penalty strategy performs second, even though still low
(Fig.44). Both significantly outperform the baseline in terms of final perfor-
mance, for which no success if obtained.

Episode Outcomes in SimpleCrossingS9N1

250 Outcome
W Successes
B Failures

200
(%]
[}
kel
b
2 150
w
kS
@
Q
£ 100}
>
=2

s0{

0 e \y e

n
e rer and PE" 1y _soft- pd®
adaP= ~ dp‘e‘—p nay -~
Strategy

Figure 44: Success and failure counts across strategies for the

SimpleCrossingS9N1 task. All agents were trained for the same number
of episodes. The adapter 4+ penalty + soft update strategy achieved the
most successful completions. In contrast, the baseline agent recorded zero
successes, underscoring the importance of structured memory for navigating
long-horizon, sparse-reward environments.

However, as shown in Fig. 44, these success gains come at the cost of
increased trial failures. The method all though comes with an improvements
it is yet to be satisfactory.

154

The Q-value trajectories in Fig. 45 illustrate again the g-value overesti-
mation. The baseline agent quickly settles into a narrow range of inflated
Q-values (2.0-2.2), reflecting premature convergence to suboptimal policies.
In contrast, SETLE-enhanced agents—particularly those using soft update
and adapter integration—exhibit high-frequency but bounded Q-value fluc-
tuations near 0.0. These fluctuations reflect richer but more cautious value
estimation, as agents continuously reassess the utility of action paths in the
absence of consistent external reinforcement.

logger-adapter_and_penalty_run_3_task_MiniGrid-SimpleCrossingS9N1-v0 == logger-setle_actiol ction_
— logger-baseline_run_0_task_MiniGrid-SimpleCrossingS9N1-v0 v

ter_penalty_soft_update_run_3_task_MiniGrid-SimpleCrossingSon1-vo a
rossingSONI-VO — \cgger—adapter,and,penalty,run,},ﬁask,Min'\GridrS\'mpleCrussmgS?Nler.
_run_3_task_! d: leCrossingSIN1-vO

A
rl‘\m M, i A | A ‘\ W
| F A / \ UL A I IER PLY Tl AT
o TR AR AR

200 400 600 800

Figure 45: Evolution of average Q-values during training in
SimpleCrossingS9N1. The baseline agent exhibits elevated and per-
sistent Q-value inflation (around 2.0), which does not correlate with
actual reward acquisition. SETLE-enhanced agents, especially those using
adapters and soft updates, maintain lower, noisier Q-values—reflecting a
more grounded and cautious value estimation process suitable for sparse-
reward environments.

Overall, these findings underscore the strength of structured memory en-
richment in complex symbolic environments. SETLE-enhanced strategies not
only improve final success rates, but also exhibit more realistic and adaptive
learning dynamics under sparse-reward conditions. In the hardest MiniGrid
setting, this manifests as a trade-off between exploratory depth and training
volatility—one that SETLE manages better than traditional baselines.

155

6.3.3 Cross-task episode embedding comparison

While traditional object-centric representations offer semantic interpretabil-
ity, they often fall short in enabling cross-domain generalisation. Our analysis
reveals this limitation clearly. The violin plot in Figure 46 shows the distri-
bution of top-k cosine similarities between MiniGrid objects (e.g., a golden
key, a red triangle) and their closest counterparts in CREATE. Even for
visually simple or conceptually similar categories like a red key, the distribu-
tion remains narrow and shifted towards low similarity scores. This indicates
that despite having similar names or roles, the embeddings of objects trained
in distinct environments remain poorly aligned in practice. Such discrepan-
cies stem from differences in rendering style, visual resolution, and context-
specific usage—highlighting the fragility of object-level transfer across do-
mains.

ns. at, x= a_label”, ="DOX ", ="D
a green square - H—
a red triangle - H
a golden key - %
ared key - “

! | | ' |
—0.05 0.00 0.05 0.10 0.15
similarity

minigrid_label

Figure 46: Distribution of top-k cosine similarities for MiniGrid object em-
beddings matched to CREATE objects. Even semantically aligned objects
exhibit narrow similarity distributions, indicating poor object-level alignment
across domains. This supports the claim that functional generalisation must
operate above raw perceptual encoding.

In contrast, when comparing entire trajectory embeddings—capturing
not just objects but also actions, affordances, and their interdependencies,
a more encouraging picture emerges. As illustrated in the heatmap of Fig-
ure 47, several CREATE and MiniGrid task pairs show non-trivial cosine
similarities at the episode level. For example, CreateLevelPush-v0 and

156

CreateLevelBelt-v0 exhibit meaningful structural overlap with ” MiniGrid-
DoorKey-5x5 and MiniGrid-Empty-5x5, suggesting that the agent learns
shared procedural structures such as navigation, obstacle manipulation, and
goal seeking.

Mean Cosine Similarity between Tasks (CREATE vs MiniGrid)

-0.325
CreatelLevelBasket-v0

—0.300
CreatelevelBelt-vO

0.275

0.250

CreatelLevelBuckets-v0

create_task

0.225

0.200
CreatelLevelObstacle-v0

0.175

CreatelLevelPush-v0
0.150

MiniGrid-DoorKey-5x5-v0
MiniGrid-DoorKey-8x8-v0
MiniGrid-Empty-5x5-v0
MiniGrid-MultiRoom-N4-S5-v0
MiniGrid-SimpleCrossingS9N1-v0
MiniGrid-UnlockPickup-v0

minigrid_task

Figure 47: Mean cosine similarity between episode-level embeddings
across CREATE and MiniGrid tasks. Higher values along diagonals
suggest structural alignment between tasks like CreateLevelPush and
MiniGrid-DoorKey-5x5, despite differences in appearance and control
schemes. This highlights SETLE’s ability to extract relational and sequential
regularities shared across environments.

The clustermap in Figure 48 reinforces this trajectory-level alignment.
Tasks from the two domains are not segregated by origin but grouped accord-

157

ing to their functional and temporal similarities. For instance, ” CreateLevel-
Buckets” and MiniGrid-UnlockPickup are clustered together, despite vast
differences in visual and mechanical design. This pattern reflects the agent’s
ability to learn and compare episodes based on high-level interaction graphs,
rather than low-level appearance features.

Clustermap of Mean Cosine Similarity (CREATE vs MiniGrid Tasks)

- L

CreatelevelBelt-v0

- CreatelevelBuckets-v0

CreatelevelPush-v0

create task

CreatelevelBasket-v0

CreatelevelObstacle-v0

o o
? >
's] n
x x
h’lﬁ n
E 2z
g [=%
S £
o w
3 ©
S 2
=y Q
o} g
H 5
=

MiniGrid-DoorKey-8x8-v0
MiniGrid-MultiRoom-N4-55-v0
MiniGrid-SimpleCrossingS9N1-v0
MiniGrid-UnlockPickup-v0

minigrid_task

Figure 48: Hierarchical clustering of average episode embeddings from CRE-
ATE and MiniGrid tasks. Tasks from both environments are grouped based
on shared interaction structure and relational dependencies, not domain ori-
gin.

Together, these results highlight the core advantage of SETLE’s ap-
proach: rather than relying on static embeddings of isolated objects, it
encodes episodes as structured graphs capturing action-effect relationships
and contextual dependencies. This abstraction enables meaningful compari-
son across environments and supports the agent’s ability to retrieve and reuse
experience even in domains with drastically different visual or symbolic struc-
ture. These findings strengthen the thesis argument that creative generalisa-
tion in reinforcement learning hinges on structured, relational memory—not

158

raw perceptual similarity.

7 General discussion

A central aim of this thesis has been to investigate whether agents can
generalise across tasks and domains not merely through memorisation, but
by structurally encoding and reusing experience in conceptually meaningful
ways. To this end, we operationalised the AIGenC framework as a model
of creative problem-solving and knowledge transfer, instantiated through the
SETLE architecture. This framework posits that generalisation emerges not
from scale or pattern interpolation alone, but from an agent’s capacity to
build and navigate a hierarchical concept space—one in which prior knowl-
edge can be retrieved through matching and flexibly adapted through blend-
ing to solve novel tasks.

This work does not attempt to resolve long-standing questions about
the nature of concepts or the formal limits of representation (Piantadosi,
2021; Frixione and Lieto, 2012; Lieto et al., 2017). Nor does it aim to model
human cognition per se. Instead, it takes a pragmatic stance: if generalisation
in natural cognition often involves abstracting and recombining experience,
can artificial agents be designed to do the same, without supervision, and
without task-specific engineering? This thesis has explored this hypothesis
empirically, using AIGenC as an architecture and SETLE as an instantiation
to build agents that learn structured memory from interaction and apply it
creatively during training.

Yet even as empirical progress continues, a deeper limitation remains.
Contemporary Al systems, particularly large-scale generative models, often
perform well not because they autonomously discover abstract structure, but
because human designers have already done much of the conceptual work.
For instance, task formulations, such as chain-of-thought prompting (Wei
et al., 2022), that embed reasoning steps directly into inputs, and alignment
procedures, like Reinforcement Learning from Human Feedback (RLHF),
that shape models’ outputs toward socially and semantically coherent re-
sponses. These interventions embed human reasoning and abstraction into
the model’s learning environment, effectively outsourcing much of the con-
ceptual burden to the design process itself. Roitblat (2025) characterises
this as anthropogenic debt: the hidden scaffolding of problem formulation,
representation, and evaluation that humans supply. These systems typically

159

reframe tasks as language modelling problems and rely on dense pattern
interpolation over massive datasets. What appears as general intelligence
may instead be the byproduct of solving narrowly structured tasks with vast
supervision. Piantadosi and Hill (2022) similarly argue that genuine gen-
eralisation depends not on surface pattern matching, but on the ability to
represent and manipulate conceptual roles—internal structures that support
inference, abstraction, and reuse. From this perspective, the challenge of
AGI is not scaling models further, but endowing agents with the capacity to
construct and navigate structured knowledge autonomously. Without this,
intelligence remains bounded by the assumptions encoded in the data and
tasks we design.

This critique suggests not just a performance gap, but a structural one:
the absence of systems capable of forming, organising, and reusing inter-
nal representations in flexible, task-independent ways. To explore this gap,
we drew from cognitive science to design agents equipped with mechanisms
for low-level concept formation and hierarchical memory organisation, while
remaining agnostic about whether these mechanisms resemble human cogni-
tion. While debate continues over whether Al can ultimately achieve human-
like generalisation (Fjelland, 2020; Shevlin and Halina, 2019), there is broad
consensus that its current absence remains a critical obstacle to AGI (Zhang
et al., 2021).

To evaluate whether structured memory and compositional abstraction
can help address this limitation, we tested agents equipped with these capac-
ities in a range of reinforcement learning tasks. Our findings provide partial
support for the hypothesis. SETLE agents reused prior concepts across tasks
more effectively than baseline models, displayed more stable and calibrated
value estimation, and revealed meaningful clustering of structurally similar
episodes, even across different environments. In some cases, knowledge trans-
fer occurred across symbolic and perceptual boundaries. Still, generalisation
remained incomplete. On more complex tasks, success rates were limited,
and agents often required task-specific data to converge.

Across both domains, SETLE-enhanced agents outperformed baseline
agents in several ways:

1. Increased reward acquisition: In CREATE tasks such as CreateLevel-
Buckets and CreateLevelObstacle, agents using enrichment (especially
with the adapter and soft update enhancements) consistently achieved
higher average rewards and exhibited greater stability in training.

160

2. Improved value estimation in sparse settings: In MiniGrid’s Empty 5x5
environment, where no rewards are available, baseline agents demon-
strated value inflation, with Q-values increasing unrealistically over
time. SETLE agents, by contrast, maintained grounded estimates near
zero, avoiding spurious optimism.

3. Cross-task retrieval and structural similarity: Episode-level embed-
dings revealed meaningful structural similarity across different environ-
ments, even when object-level embeddings failed to align. For instance,
clustering analyses showed that MiniGrid and CREATE episodes in-
volving navigation or tool usage were grouped together, despite domain
differences.

However, these improvements came with significant caveats:

Fragility of enrichment mechanisms, attention-based retrieval and
graph supplementation, proved highly sensitive to architectural and procedu-
ral choices. Without components such as the adapter or soft target updates,
the policy network often struggled to integrate enriched representations, re-
sulting in unstable Q-values and high loss variance. This was particularly
evident in MiniGrid tasks with high compositional complexity (MultiRoom,
DoorKey 8x8), where naive enrichment degraded performance.

Limited Success Rates despite better value calibration and more ef-
ficient learning, success on more challenging MiniGrid tasks remained low.
In MultiRoom, agents with enrichment (e.g. adapter and penalty) achieved
some success (up to 5/250), while baseline agents failed entirely. Yet the over-
all absolute success rate remained modest. This underscores that structural
representations help learning, but are not sufficient for strong generalisation
without additional components such as curriculum learning, environment
modelling, or planning.

Enrichment # Generalisation (Yet). One of the thesis’s hypotheses
was that structured memory can enable generalisation via knowledge trans-
fer. The results partially support this: retrieval of relevant subgraphs from
past episodes improved early learning and provided inductive biases. How-
ever, complete generalisation, adapting to tasks with unseen goals, object
combinations, or spatial layouts, remained elusive. SETLE reduces the sam-
ple complexity of learning by providing more meaningful inputs; however, the
learned policies still heavily depend on observed data. In this sense, SETLE
enables more informed memorisation, but not yet true extrapolation.

161

The Illusion of Learning: One of the more surprising findings in this
thesis was the consistent overestimation of value in baseline agents trained
in sparse environments like Empty 5x5. Despite no rewards, the Q-function
”learned” to assign high expected returns. This illusion of progress—learning
unanchored in meaningful feedback—is not unlike the hallucinations of LLMs:
fluent yet disconnected from ground truth. In this sense, SETLE’s conser-
vative value estimates, while slower to rise, are a sign of epistemic humility.
By grounding its predictions in structural similarity, SETLE avoids the ”hal-
lucination trap”. However, it also exposes a difficult tradeoff: slower, struc-
turally aware learning versus faster, yet brittle, convergence. This mirrors
broader tensions in Al research between sample efficiency and reliability, and
raises questions about how to properly evaluate learning systems, not only
by reward curves, but by the trustworthiness and interpretability of their
behaviours.

These observations align closely with the critique offered by Morad et al.
(2023), who argue that memory is only beneficial when it is both selective and
structurally aligned with task demands. In their analysis, large, unstructured
memory systems can degrade performance by reinforcing spurious patterns,
leading to worse generalisation. Their proposed “fast and forgetful” memory
system echoes the principle we adopt with AIGenC: that reuse should be
conditional and relevance-driven, not blind replay. Together, these insights
suggest that generalisation in RL cannot be achieved through architectural
scale or data accumulation alone. Without structurally grounded representa-
tions that encode not only what was rewarded but also why those outcomes
were possible, agents remain prone to brittle reuse, spurious generalisation,
and illusory learning.

The findings in this thesis reflect a broader shift in reinforcement learning
and beyond: generalisation is increasingly understood not as a byproduct
of scale or memorisation, but as a function of how experience is represented
and reused. Structured episodic memory contributes to this shift by enabling
the retrieval and recomposition of past experiences based on functional and
relational similarity, rather than surface-level correlation

This view aligns with a broader movement in RL toward architectures
that treat memory as more than a buffer for replay. Recent work in dual-
memory systems, such as Two-Memory Reinforcement Learning (Yang et al.,
2023b), explores how fast, non-parametric recall can complement slower,
gradient-based policy updates. Similarly, research into abstract episodic con-
trol—such as NECSA (Li et al., 2023)—emphasises the importance of struc-

162

ture in stored experiences, showing that compositional patterns over multiple
steps can support more effective transfer than isolated transitions. These ap-
proaches differ in implementation, but converge on a common principle: that
memory becomes useful for generalisation when it captures higher-order reg-
ularities.

The direction taken in this thesis reflects this same principle. In SETLE,
episodes are not stored as flat vectors or sequences but as graph—structured
representations that encode affordances, object-action relations, and causal
dependencies. This enables retrieval to operate based on conceptual simi-
larity, rather than just spatial or temporal proximity. The result is a form
of generalisation grounded not in parameter interpolation but in structural
analogy, where trajectories with similar internal logic can guide new be-
haviour.

This structural view of memory is increasingly mirrored in trends outside
RL as well. In large language models, retrieval-augmented generation (RAG)
methods (Lewis et al., 2020) enhance generalisation by incorporating external
data at inference time. Rather than relying solely on parametric knowledge,
these systems retrieve relevant information from structured sources, such as
documents, knowledge graphs, or application programming interfaces (APIs),
and integrate it into their predictions. Crucially, this augmentation is not
arbitrary—retrieval is guided by contextual signals in the input, ensuring
that the retrieved knowledge is functionally aligned with the task at hand.
Similarly, hybrid LLM architectures are exploring the integration of symbolic
planners, relational memories, or program-like reasoning modules to support
generalisation through structure rather than scale.

While these systems operate in different domains compared to our model,
they share a conceptual thread: the move from passive memory to active re-
trieval, from monolithic models to modular systems where structure informs
inference. AIGenC and SETLE represent a reinforcement learning analogue
of this design trend. It shows that agents benefit not just from storing ex-
perience, but from organising it in ways that support flexible recomposition
and adaptive reasoning.

This perspective carries implications for how we think about general in-
telligence. While SETLE does not claim to approach AGI in capability, it
contributes to a growing research direction focused on functional general-
isation through conceptual mechanisms, such as abstraction, analogy, and
recombination, rather than brute-force pattern learning. This aligns with
calls from across machine learning and cognitive science to focus on the in-

163

ternal organisation of knowledge, and on architectures that support reuse
and recomposition across tasks (Lake et al., 2017; Chollet, 2019; Marcus,
2020).

The contribution here is deliberately modest. As Roitblat (2025) points
out, fluency and scale are often mistaken for intelligence, when what is needed
are systems that can construct and apply internal structure autonomously.
SETLE takes a small but significant step in this direction—supporting agents
that can not only act, but also interpret and organise what they’ve learned
in a reusable form. In doing so, the AIGenC framework shifts the framing
of AGI from a fixed capability threshold to a set of capacities related to
generative reuse, compositional inference, and relational learning—capacities
that can be directly tested and measured.

Defining AGI remains an open and often contested problem (Goertzel,
2014; Shevlin and Halina, 2019). There is little consensus on what consti-
tutes generalisation or how to assess it meaningfully. AIGenC sidesteps the
problem of definition by offering a more operational framing: intelligence is
not about universality, but about the generative flexibility to adapt experi-
ence across novel configurations. This reframing aligns with work in cognitive
systems and neurosymbolic reasoning, where generalisation is defined not by
the breadth of input coverage but by the system’s ability to recombine inter-
nal representations to solve new problems.

This shift also has practical implications. As argued in strategic pol-
icy discussions (e.g., Mitre and Joel (2025)), even limited generalisation ca-
pabilities can be consequential when applied in high-stakes contexts—from
decision-making systems to autonomous agents. Architectures that explicitly
model the internal structure of experience offer more than improved sample
efficiency—they provide a basis of interpretability and auditability. Unlike
purely parametric systems, which often collapse reasoning into opaque acti-
vations, systems like SETLE provide explicit traces of what was retrieved,
why it was relevant, and how it informed behaviour.

Nonetheless, AIGenC and SETLE remain early-stage models with several
limitations. While its relational memory enables improved transfer, it is sen-
sitive to design choices, such as attention mechanisms and adapter modules,
and currently lacks mechanisms for long-term concept consolidation or sym-
bolic abstraction. Additionally, the current form depends on domain-specific
processing (e.g., affordance extraction) that may not generalise easily.

Future work may explore the integration of large language models as
dynamic concept generators, utilising their latent semantics to create or re-

164

fine the graph-based representations used by SETLE. LLMs could serve as
external guides for shaping conceptual spaces in ways that reduce human in-
tervention—for example, automatically identifying which types of nodes are
relevant for a given context (e.g., whether to instantiate ActionRepr nodes,
which affordances apply, or how to distinguish real-world from simulated ob-
jects and effects). Such models could help adapt the structure of the concept
space on the fly, tailoring it to the task, environment, or embodiment modal-
ity. Similarly, deployment in robotic settings could further ground affordance
learning in physical interaction, enabling generalisation to emerge through
embodied experience rather than predefined schemas.

Ultimately, this thesis does not propose a blueprint for AGI—but it does
offer one path forward: by treating experience not just as data to compress,
but as relational knowledge to organise, abstract, and adapt. In this light,
generalisation becomes not a matter of scale, but a matter of structure and
reuse, a challenge that demands both architectural clarity and conceptual
flexibility.

165

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L.,
Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023).
Gpt-4 technical report. arXiv preprint arXiw:2303.08775.

Alvarez-Melis, D. and Jaakkola, T. S. (2018). Gromov-wasserstein alignment
of word embedding spaces. arXiw preprint arXiv:1809.00013.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo,
Z. D., and Blundell, C. (2020). Agent57: Outperforming the atari human
benchmark. In International conference on machine learning, pages 507—
517. PMLR.

Baer, J. (2020). The consensual assessment technique. In Handbook of re-
search methods on creativity, pages 166-177. Edward Elgar Publishing.

Bahdanau, D. (2020). On sample efficiency and systematic generalization of
grounded language understanding with deep learning.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B.,
and Mordatch, I. (2019). Emergent tool use from multi-agent autocurric-
ula. In International conference on learning representations.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner,
R., et al. (2018). Relational inductive biases, deep learning, and graph
networks. arXw preprint arXiv:1806.01261.

Bayer, M., Kaufhold, M.-A., Buchhold, B., Keller, M., Dallmeyer, J., and
Reuter, C. (2023). Data augmentation in natural language processing: a
novel text generation approach for long and short text classifiers. Interna-
tional journal of machine learning and cybernetics, 14(1):135-150.

Bechberger, L. and Kiithnberger, K.-U. (2017). A comprehensive implemen-
tation of conceptual spaces. arXiv preprint arXiv:1707.05165.

Bender, E. M. and Koller, A. (2020). Climbing towards nlu: On mean-
ing, form, and understanding in the age of data. In Proceedings of the
58th annual meeting of the association for computational linguistics, pages
5185-5198.

166

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning:
A review and new perspectives. IEEFE transactions on pattern analysis and
machine intelligence, 35(8):1798-1828.

Bengio, Y., Lecun, Y., and Hinton, G. (2021). Deep learning for ai. Com-
munications of the ACM, 64(7):58-65.

Boden, M. A. (1996). Artificial intelligence. Elsevier.

Boden, M. A. (2009). Computer models of creativity. Ai Magazine, 30(3):23~
23.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx,
S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E.; et al. (2021).
On the opportunities and risks of foundation models. arXiv preprint
arXiw:2108.07258.

Bowman, S. R. and Dahl, G. E. (2021). What will it take to fix benchmarking
in natural language understanding? arXiv preprint arXiv:2104.02145.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, 1., Botvinick,
M., and Lerchner, A. (2019). Monet: Unsupervised scene decomposition
and representation. arXww preprint arXiv:1901.11390.

Catarau-Cotutiu, C., Mondragon, E., and Alonso, E. (2023). Aigenc: Ai
generalisation via creativity. In EPIA Conference on Artificial Intelligence,
pages 38-51. Springer.

Catarau-Cotutiu, C., Mondragén, E., and Alonso, E. (2023). Aigenc: Ai
generalisation via creativity. In EPIA Conference on Artificial Intelligence,
pages 38-51. Springer.

Catarau-Cotutiu, C., Mondragon, E., and Alonso, E. (2025). A representa-
tional framework for learning and encoding structurally enriched trajecto-
ries in complex agent environments. arXiv preprint arXiv:2503.13194.

Chemero, A., Klein, C., and Cordeiro, W. (2003). Events as changes in the
layout of affordances. Ecological Psychology, 15(1):19-28.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel,
P. (2016). Infogan: Interpretable representation learning by information

167

maximizing generative adversarial nets. Advances in neural information
processing systems, 29.

Chevalier-Boisvert, M., Dai, B., Towers, M., Perez-Vicente, R., Willems, L.,
Lahlou, S., Pal, S., Castro, P. S., and Terry, J. (2023). Minigrid & mini-
world: Modular & customizable reinforcement learning environments for
goal-oriented tasks. Advances in Neural Information Processing Systems,

36:73383-73394.

Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiw:1911.01547.

Clark, S., Lerchner, A., von Glehn, T., Tieleman, O., Tanburn, R., Da-
shevskiy, M., and Bosnjak, M. (2021). Formalising concepts as grounded
abstractions. arXiw preprint arXiv:2101.05125.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine,
S. (2018). Self-consistent trajectory autoencoder: Hierarchical reinforce-

ment learning with trajectory embeddings. In International conference on
machine learning, pages 1009-1018. PMLR.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2020). Leveraging pro-
cedural generation to benchmark reinforcement learning. In International
conference on machine learning, pages 2048-2056. PMLR.

Colin, T. R., Belpaeme, T., Cangelosi, A., and Hemion, N. (2016). Hier-
archical reinforcement learning as creative problem solving. Robotics and
Autonomous Systems, 86:196-206.

Collins, A. M. and Quillian, M. R. (1969). Retrieval time from semantic
memory. Journal of verbal learning and verbal behavior, 8(2):240-247.

Crosby, M., Beyret, B., Shanahan, M., Herndandez-Orallo, J., Cheke, L., and
Halina, M. (2020). The animal-ai testbed and competition. In Neurips
2019 competition and demonstration track, pages 164-176. PMLR.

Dasgupta, 1., Guo, D., Gershman, S. J., and Goodman, N. D. (2020). An-
alyzing machine-learned representations: A natural language case study.
Cognitive Science, 44(12):¢12925.

168

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Ima-
genet: A large-scale hierarchical image database. In 2009 IEEFE conference
on computer vision and pattern recognition, pages 248-255. leee.

Doumas, L. A., Hummel, J. E., and Sandhofer, C. M. (2008). A theory of
the discovery and predication of relational concepts. Psychological review,
115(1):1.

Doumas, L. A.; Puebla, G., Martin, A. E., and Hummel, J. E. (2022). A
theory of relation learning and cross-domain generalization. Psychological
review.

Edwards, H. and Storkey, A. (2016). Towards a neural statistician. arXiv
preprint arXiv:1606.02185.

Efroni, Y., Merlis, N., and Mannor, S. (2021). Reinforcement learning with
trajectory feedback. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 7288-7295.

Eilifsen, C. and Arntzen, E. (2021). Mediated generalization and stimulus
equivalence. Perspectives on Behavior Science, 44(1):1-27.

Fauconnier, G. and Turner, M. (1998). Conceptual integration networks.
Cognitive science, 22(2):133-187.

Fjelland, R. (2020). Why general artificial intelligence will not be realized.
Humanities and Social Sciences Communications, 7(1):1-9.

Freire, I. T., Amil, A. F., and Verschure, P. F. (2024). Sequential memory im-
proves sample and memory efficiency in episodic control. Nature Machine
Intelligence, pages 1-13.

Frith, E., Elbich, D. B., Christensen, A. P., Rosenberg, M. D., Chen, Q.,
Kane, M. J., Silvia, P. J., Seli, P., and Beaty, R. E. (2021). Intelligence
and creativity share a common cognitive and neural basis. Journal of
Ezperimental Psychology: General, 150(4):609.

Frixione, M. and Lieto, A. (2012). Representing concepts in formal ontolo-
gies. compositionality vs. typicality effects. Logic and Logical Philosophy,
21(4):391-414.

169

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approx-
imation error in actor-critic methods. In International conference on ma-
chine learning, pages 1587-1596. PMLR.

Gabora, L., Rosch, E., and Aerts, D. (2008). Toward an ecological theory of
concepts. Fcological Psychology, 20(1):84-116.

Garcez, A. S., Lamb, L. C., and Gabbay, D. M. (2008). Neural-symbolic
cognitive reasoning. Springer Science & Business Media.

Gardenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT
press.

Garnelo, M. and Shanahan, M. (2019). Reconciling deep learning with sym-
bolic artificial intelligence: representing objects and relations. Current
Opinion in Behavioral Sciences, 29:17-23.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge,
M., and Wichmann, F. A. (2020). Shortcut learning in deep neural net-
works. Nature Machine Intelligence, 2(11):665-673.

Gibson, J. J. (1977). The theory of affordances. hilldale, usa. Hilldale USA,
1(2).

Gilmer, J., Schoenholz, S. S.; Riley, P. F., Vinyals, O., and Dahl, G. E.
(2017). Neural message passing for quantum chemistry. In International
conference on machine learning, pages 1263-1272. PMLR.

Gizzi, E., Nair, L., Sinapov, J., and Chernova, S. (2020). From computational
creativity to creative problem solving agents. In ICCC, pages 370-373.

Goertzel, B. (2014). Artificial general intelligence: concept, state of the art,
and future prospects. Journal of Artificial General Intelligence, 5(1):1.

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt, D. (2019). Permu-
tation equivariant models for compositional generalization in language. In
International Conference on Learning Representations.

Goyal, A. and Bengio, Y. (2022). Inductive biases for deep learning of higher-
level cognition. Proceedings of the Royal Society A, 478(2266):20210068.

170

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines.
arXw preprint arXw:1410.5401.

Greeno, J. G. (1994). Gibson’s affordances.

Haines, N., Vassileva, J., and Ahn, W.Y. (2018). The outcome-
representation learning model: A novel reinforcement learning model of
the iowa gambling task. Cognitive science, 42(8):2534-2561.

Haskell, R. E. (2000). Transfer of learning: Cognition and instruction. Else-
vier.

Hayman, G. and Huebner, B. (2019). Temporal updating, behavioral learn-
ing, and the phenomenology of time-consciousness. Behavioral and Brain
Sciences, 42.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 7T70-7T78.

Heit, E. (1996). The instantiation principle in natural categories. Memory,
4(4):413-452.

Higgins, 1., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and
Lerchner, A. (2018). Towards a definition of disentangled representations.
arXw preprint arXiw:1812.02230.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez,
C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021).
Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1-37.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. (2020). Compositionality
decomposed: How do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757-795.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver,
D., and Kavukcuoglu, K. (2016). Reinforcement learning with unsuper-
vised auxiliary tasks. arXww preprint arXiv:1611.05397.

Jain, A., Szot, A., and Lim, J. J. (2020). Generalization to new actions in
reinforcement learning. arXiv preprint arXiww:2011.01928.

171

James, W. (1890). The principles of psychology. Henry Holt.

Jawahar, G., Sagot, B., and Seddah, D. (2019). What does bert learn about
the structure of language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Jin, L., Zhao, F., Yan, C., and Gui, X. (2024). Causal graph representation
learning for outcome-oriented link prediction. In 2024 International Joint
Conference on Neural Networks (IJCNN), pages 1-8. IEEE.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zit-
nick, C., and Girshick, R. (2017). Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
2901-2910.

Kaufman, J. C. and Beghetto, R. A. (2009). Beyond big and little: The four
¢ model of creativity. Review of general psychology, 13(1):1-12.

Keysers, D., Scharli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S.,
Momchev, N.; Sinopalnikov, D., Stafiniak, L., Tihon, T., et al. (2019).
Measuring compositional generalization: A comprehensive method on re-
alistic data. arXiv preprint arXiv:1912.097135.

Kingma, D. P., Welling, M., et al. (2013). Auto-encoding variational bayes.

Kiran, B. R., Sobh, L., Talpaert, V., Mannion, P.; Al Sallab, A. A., Yogamani,
S., and Pérez, P. (2021). Deep reinforcement learning for autonomous

driving: A survey. IEEFE transactions on intelligent transportation systems,
23(6):4909-4926.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L.,
Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., et al. (2023). Segment
anything. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 4015-4026.

Kirk, R., Zhang, A., Grefenstette, E., and Rocktéschel, T. (2023). A sur-
vey of zero-shot generalisation in deep reinforcement learning. Journal of
Artificial Intelligence Research, 76:201-264.

172

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,
Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A.,
et al. (2017). Overcoming catastrophic forgetting in neural networks. Pro-
ceedings of the national academy of sciences, 114(13):3521-3526.

Koestler, A. and Burt, C. (1964). The act of creation.

Kokkola, N. H., Mondragén, E., and Alonso, E. (2019). A double error
dynamic asymptote model of associative learning. Psychological review,
126(4):506.

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A. (2011). Cst: Con-
structing skill trees by demonstration. Doctoral Dissertations, University
of Massachuts, Ahmrest.

Kumar, A.,; Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-
learning for offline reinforcement learning. Advances in neural information
processing systems, 33:1179-1191.

Laird, J. E., Derbinsky, N., and Tinkerhess, M. (2012). Online determination
of value-function structure and action-value estimates for reinforcement

learning in a cognitive architecture. Advances in Cognitive Systems, 2:221—
238.

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In
International conference on machine learning, pages 2873-2882. PMLR.

Lake, B. M. and Baroni, M. (2023). Human-like systematic generalization
through a meta-learning neural network. Nature, 623(7985):115-121.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).
Building machines that learn and think like people. Behavioral and brain
sciences, 40:e253.

Lal, M. (2015). Neo4j graph data modeling. Packt Publishing Ltd.

Lesort, T., Diaz-Rodriguez, N., Goudou, J.-F., and Filliat, D. (2018).
State representation learning for control: An overview. Neural Networks,
108:379-392.

173

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018).
Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. The International journal of robotics re-
search, 37(4-5):421-436.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,
Kiittler, H., Lewis, M., Yih, W.-t., Rocktéschel, T., et al. (2020). Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Li, Z., Zhu, D., Hu, Y., Xie, X., Ma, L., Zheng, Y., Song, Y., Chen, Y.,
and Zhao, J. (2023). Neural episodic control with state abstraction. arXiv
preprint arXiw:2501.11490.

Lieto, A., Chella, A., and Frixione, M. (2017). Conceptual spaces for cog-
nitive architectures: A lingua franca for different levels of representation.
Biologically inspired cognitive architectures, 19:1-9.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

Lin, Z., Azaman, H., Kumar, M. G., and Tan, C. (2023). Compositional
learning of visually-grounded concepts using reinforcement. arXiv preprint

arXiw:2309.04504.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold,
G., Uszkoreit, J., Dosovitskiy, A., and Kipf, T. (2020). Object-centric
learning with slot attention. Advances in neural information processing
systems, 33:11525-11538.

Loynd, R., Fernandez, R., Celikyilmaz, A., Swaminathan, A., and
Hausknecht, M. (2020). Working memory graphs. In International confer-
ence on machine learning, pages 6404-6414. PMLR.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting
model predictions. Advances in neural information processing systems, 30.

Lyre, H. (2020). The state space of artificial intelligence. Minds and Ma-
chines, 30(3):325-347.

174

Malik, D., Li, Y., and Ravikumar, P. (2021). When is generalizable rein-
forcement learning tractable? Advances in Neural Information Processing
Systems, 34:8032-8045.

Marcus, G. (2020). The next decade in ai: four steps towards robust artificial
intelligence. arXiv preprint arXiv:2002.06177.

Masci, J., Meier, U., Ciresan, D., and Schmidhuber, J. (2011). Stacked
convolutional auto-encoders for hierarchical feature extraction. In Artificial
neural networks and machine learning-ICANN 2011: 21st international
conference on artificial neural networks, espoo, Finland, June 14-17, 2011,
proceedings, part i 21, pages 52—-59. Springer.

Medin, D. L., Altom, M. W., and Murphy, T. D. (1984). Given versus induced
category representations: use of prototype and exemplar information in

classification. Journal of experimental psychology: Learning, memory, and
cognition, 10(3):333.

Mednick, S. (1962). The associative basis of the creative process. Psycholog-
ical review, 69(3):220.

Mezghan, L., Sukhbaatar, S., Lavril, T., Maksymets, O., Batra, D., Bo-
janowski, P., and Alahari, K. (2022). Memory-augmented reinforcement
learning for image-goal navigation. In 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 3316-3323. IEEE.

Michaels, C. F. (2003). Affordances: Four points of debate. FEcological psy-
chology, 15(2):135-148.

Minsky, M. (1974). A framework for representing knowledge.

Mitchell, M. (2021). Abstraction and analogy-making in artificial intelligence.
Annals of the New York Academy of Sciences, 1505(1):79-101.

Mitchell, M. and Krakauer, D. C. (2023). The debate over understanding
in ai’s large language models. Proceedings of the National Academy of
Sciences, 120(13):¢2215907120.

Mitre, J. and Joel, B. P. (2025). Artificial general intelligence’s five hard
national security problems. Santa Monica, CA: RAND Corporation.

175

Momennejad, 1. (2020). Learning structures: predictive representations, re-
play, and generalization. Current Opinion in Behavioral Sciences, 32:155—
166.

Mondragén, E. and Murphy, R. A. (2010). Perceptual learning in an ap-
petitive pavlovian procedure: Analysis of the effectiveness of the common
element. Behavioural Processes, 83(3):247-256.

Monnier, T., Vincent, E., Ponce, J., and Aubry, M. (2021). Unsupervised
layered image decomposition into object prototypes. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 8640-8650.

Morad, S., Kortvelesy, R., Liwicki, S., and Prorok, A. (2023). Reinforcement
learning with fast and forgetful memory. Advances in Neural Information
Processing Systems, 36:72008-72029.

Mukherjee, S., Asnani, H., Lin, E., and Kannan, S. (2019). Clustergan:
Latent space clustering in generative adversarial networks. In Proceedings

of the AAAI conference on artificial intelligence, volume 33, pages 4610—
4617.

Murphy, G. L. and Medin, D. L. (1985). The role of theories in conceptual
coherence. Psychological review, 92(3):289.

Nosofsky, R. M. (1988). Exemplar-based accounts of relations between clas-
sification, recognition, and typicality. Journal of Experimental Psychology:
learning, memory, and cognition, 14(4):700.

Olteteanu, A.-M. (2020). Cognition and the Creative Machine: Cognitive Al
for Creative Problem Solving. Springer Nature.

O’Quin, K. and Besemer, S. P. (1989). The development, reliability, and
validity of the revised creative product semantic scale. Creativity Research
Journal, 2(4):267-278.

Piantadosi, S. T. (2021). The computational origin of representation. Minds
and machines, 31:1-58.

Piantadosi, S. T. and Hill, F. (2022). Meaning without reference in large
language models. arXiv preprint arXiv:2208.02957.

176

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions
on Neural networks, 6(3):623—-641.

Precup, D. (2000). Temporal abstraction in reinforcement learning. Univer-
sity of Massachusetts Amherst.

Quillian, M. R. (1967). Word concepts: A theory and simulation of some
basic semantic capabilities. Behavioral science, 12(5):410-430.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F.,
Aslanides, J., Henderson, S., Ring, R., Young, S., et al. (2021). Scaling
language models: Methods, analysis & insights from training gopher. arXiv
preprint arXiw:2112.11446.

Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, 1., and Fergus, R. (2021).
Automatic data augmentation for generalization in reinforcement learning.
Advances in Neural Information Processing Systems, 34:5402-5415.

Raji, I. D., Bender, E. M., Paullada, A., Denton, E., and Hanna, A. (2021).
Ai and the everything in the whole wide world benchmark. arXiv preprint
arXw:2111.15366.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierar-
chical text-conditional image generation with clip latents. arXiv preprint
arXiw:2204.06125, 1(2):3.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
and Sutskever, . (2021). Zero-shot text-to-image generation. In Interna-
tional conference on machine learning, pages 8821-8831. Pmlr.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-
Maron, G., Gimenez, M., Sulsky, Y., Kay, J., Springenberg, J. T., et al.
(2022). A generalist agent. arXiv preprint arXiv:2205.06175.

Rhodes, M. (1961). An analysis of creativity. The Phi delta kappan,
42(7):305-310.

Roitblat, H. (2025). Some things to know about achieving artificial general
intelligence. arXiv preprint arXiv:2502.07828.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal
of experimental psychology: General, 104(3):192.

177

Rosch, E. (2024). Principles of categorization. In Cognition and categoriza-
tion, pages 27-48. Routledge.

Rosch, E. H. (1973). Natural categories. Cognitive psychology, 4(3):328-350.
Rudner, T. G., Pong, V., McAllister, R., Gal, Y., and Levine, S. (2021).

Outcome-driven reinforcement learning via variational inference. Advances
in Neural Information Processing Systems, 34:13045-13058.

Rumelhart, D. E. and Norman, D. A. (1983). Representation in memory.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern ap-
proach. pearson.

Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., and Ucoluk, G. (2007).
To afford or not to afford: A new formalization of affordances toward
affordance-based robot control. Adaptive Behavior, 15(4):447-472.

Sanders, J. T. (1997). An ontology of affordances. FEcological psychology,
9(1):97-112.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2008). The graph neural network model. IEEE transactions on neural
networks, 20(1):61-80.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain
sciences, 3(3):417-424.

Shanahan, M., Crosby, M., Beyret, B., and Cheke, L. (2020). Artificial intel-
ligence and the common sense of animals. Trends in Cognitive Sciences,
24(11):862-872.

Shanahan, M. and Mitchell, M. (2022). Abstraction for deep reinforcement
learning. arXiv preprint arXiw:2202.05839.

Shevlin, H. and Halina, M. (2019). Apply rich psychological terms in ai with
care. Nature Machine Intelligence, 1(4):165-167.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering
the game of go without human knowledge. nature, 550(7676):354-359.

178

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Smolensky, P. (1990). Tensor product variable binding and the representa-
tion of symbolic structures in connectionist systems. Artificial intelligence,
46(1-2):159-216.

Stoffregen, T. A. (2018). Affordances as properties of the animal-environment
system. In How Shall Affordances Be Refined?, pages 115-134. Routledge.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. (2021). Decoupling represen-
tation learning from reinforcement learning. In International conference
on machine learning, pages 9870-9879. PMLR.

Sun, Y., Zhu, D., Wang, Y., Fu, Y., and Tian, Z. (2025). Gtc: gnn-
transformer co-contrastive learning for self-supervised heterogeneous graph
representation. Neural Networks, 181:106645.

Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix,
T., Roziere, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023).
Llama: Open and efficient foundation language models. arXiv preprint
arXiw:2502.13971.

Turvey, M. T. (1992). Affordances and prospective control: An outline of
the ontology. Ecological psychology, 4(3):173-187.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational au-
toencoder. Advances in neural information processing systems, 33:19667—
19679.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning
with double g-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019).
Grandmaster level in starcraft ii using multi-agent reinforcement learning.
nature, 575(7782):350-354.

179

Wallas, S. (1970). The art of thought. harcourt brace & world inc. 1926.
Creativity.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F.,
Levy, O., and Bowman, S. (2019). Superglue: A stickier benchmark for
general-purpose language understanding systems. Advances in neural in-
formation processing systems, 32.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R.
(2018). Glue: A multi-task benchmark and analysis platform for natural
language understanding. arXww preprint arXiw:1804.07461.

Wang, X., Liu, N., Han, H., and Shi, C. (2021). Self-supervised heterogeneous
graph neural network with co-contrastive learning. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining,
pages 1726-1736.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V.,
Zhou, D., et al. (2022). Chain-of-thought prompting elicits reasoning in
large language models. Advances in neural information processing systems,
35:24824-24837.

Wells, A. J. (2002). Gibson’s affordances and turing’s theory of computation.
Ecological psychology, 14(3):140-180.

Wiggins, G. A. (2006). A preliminary framework for description, analysis and
comparison of creative systems. Knowledge-based systems, 19(7):449-458.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., and Meder, B.
(2018). Generalization guides human exploration in vast decision spaces.
Nature human behaviour, 2(12):915-924.

Xie, S., Ma, X., Yu, P., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2021). Halma:
Humanlike abstraction learning meets affordance in rapid problem solving.
arXw preprint arXw:2102.11344,.

Yang, X., Yan, M., Pan, S., Ye, X., and Fan, D. (2023a). Simple and ef-
ficient heterogeneous graph neural network. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pages 10816-10824.

180

Yang, Y., Cao, J., Wen, Y., and Zhang, P. (2021). Table to text generation
with accurate content copying. Scientific reports, 11(1):22750.

Yang, Z., Moerland, T. M., Preuss, M., and Plaat, A. (2023b). Two-memory
reinforcement learning. In 2023 IEEE Conference on Games (CoG), pages
1-9. IEEE.

Yao, L., Mao, C., and Luo, Y. (2019). Graph convolutional networks for
text classification. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370-7377.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. (2021). Reinforcement
learning with prototypical representations. In International Conference on
Machine Learning, pages 11920-11931. PMLR.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S.
(2020). Meta-world: A benchmark and evaluation for multi-task and meta

reinforcement learning. In Conference on robot learning, pages 1094-1100.
PMLR.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I.,
Tuyls, K., Reichert, D., Lillicrap, T., Lockhart, E., et al. (2018). Relational
deep reinforcement learning. arXiv preprint arXiw:1806.01830.

Zhai, X. (2023). Chatgpt and ai: The game changer for education. Zhai,
X.(2023). ChatGPT: Reforming Education on Five Aspects. Shanghai Ed-
ucation, pages 16-17.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Under-
standing deep learning (still) requires rethinking generalization. Commu-
nications of the ACM, 64(3):107-115.

Zhang, W., GX-Chen, A., Sobal, V., LeCun, Y., and Carion, N. (2022).
Light-weight probing of unsupervised representations for reinforcement
learning. arXiv preprint arXiw:2208.12345.

Zhao, L., Kong, L., Walters, R., and Wong, L. L. (2022). Toward composi-
tional generalization in object-oriented world modeling. In International
Conference on Machine Learning, pages 26841-26864. PMLR.

181

Zhao, S., Song, J., and Ermon, S. (2017). Learning hierarchical features from
deep generative models. In International Conference on Machine Learning,
pages 4091-4099. PMLR.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. (2022). Learning to prompt
for vision-language models. International Journal of Computer Vision,
130(9):2337-2348.

182

A Appendix: Slot-attention trainning and fine-
tuning for object discovery

This appendix documents the experimental process and outcomes of training
the Slot Attention model (Locatello et al., 2020) for unsupervised object
discovery. The goal was to assess the model’s capacity to learn disentangled
object representations in controlled synthetic settings and then evaluate its
transferability to new, visually distinct environments.

The Slot Attention model was first trained using the CLEVR dataset,
which provides high-contrast, compositional scenes with diverse 3D objects.
Training was performed with a batch size of 32 over 300 epochs. As shown in
Figure 47, the model successfully learned to disentangle and segment multiple
objects within each frame, assigning distinct slot vectors to individual shapes.
The output included both reconstructed input frames and visualisations of
slot-wise object masks, demonstrating accurate object discovery in the source
domain.

To test generalisation, the pretrained model was evaluated on frames
from the CREATE environment—an interactive, physics-based 2D environ-
ment with distinct object dynamics. Without fine-tuning, the model failed
to generalise: both reconstructions and slot activations appeared noisy, as
illustrated in Figure 48. Notably, despite the simplicity of CREATE scenes,
the model attempted to apply 3D priors learned from CLEVR, misrepresent-
ing flat 2D objects as volumetric shapes. This behaviour suggests that the
inductive biases learned during training were overfitted to the 3D rendering
style and spatial composition of CLEVR.

Subsequent experiments extended training on CREATE-specific data with
contrast-enhanced frames. While some improvements in segmentation fi-
delity were observed, the learned object representations remained fragile.
This highlights an important limitation in current slot-based models: their
generalisation is highly sensitive to the visual domain and rendering as-
sumptions of the source data. For robust application in agent-centric en-
vironments like CREATE or MiniGrid, domain-specific training or meta-
adaptation strategies will likely be necessary To address this bias, the model
underwent training on the NVLRM dataset, a 2D dataset of shapes Fig.51.
The training results, similar to those of the CLVR dataset, indicated profi-
cient slot allocation and reconstruction. Nevertheless, the model still strug-
gled to generalise across shapes, as evidenced by the lack of meaningful results

183

Figure 49: Slot Attention model trained on CLEVR: Input frames, object
reconstructions, and slot masks show consistent disentanglement and identi-
fication of multiple objects.

Figure 50: Transfer failure: CLEVR-trained Slot Attention applied to CRE-
ATE. Reconstructions and slot activations are poor, revealing overfitting to
CLEVR’s 3D priors.

184

in both reconstruction and slots.

| | d -
o |
=

Figure 51: Slot attention segmentation on NVLRM after training directly on
the same dataset. While the model exhibited stable reconstruction during
training, transfer to other settings remained limited.

Additional experiments were conducted to improve the performance of
slot-based object discovery, including preprocessing CREATE frames to ar-
tificially enlarge objects and training with a noisy autoencoder to encourage
robustness. However, these strategies failed to yield significant improvements
in either slot quality or reconstruction accuracy.

Fine-tuning was also explored, using the best-performing checkpoints pre-
trained on CLVR or NVLRM, and exposing them to data from the CREATE
and AnimalAl environments. Randomised frames from both environments
were used to fine-tune the autoencoder for up to five epochs. Although fine-
tuning improved reconstruction fidelity to some extent, the model continued

185

to struggle with meaningful object segmentation, especially in scenes where
objects were partially occluded, off-centre, or low in contrast. In CREATE,
where objects appear in low resolution and often blend into a white back-
ground, both reconstruction and slot separation remained unreliable.

To counteract dataset-specific biases, we also trained the model from
scratch on frames from CREATE. However, the results were even less promis-
ing. The network frequently defaulted to producing blank or all-white re-
constructions, likely overwhelmed by the visual uniformity and low contrast
of the background. Although extending the training time produced some
marginal improvements—such as slight slot divergence from the reconstruc-
tion—these gains were insufficient. The slots often remained too similar to
one another, failing to capture distinct object-level features or provide useful
semantic separation.

Moreover, the need to train or fine-tune concept extraction models indi-
vidually for each environment is itself undesirable. Such an approach contra-
dicts the broader goal of generalisable perception and concept formation, as it
undermines scalability and reusability across domains. In the context of life-
long learning and cross-environment generalisation, reliance on environment-
specific training pipelines would introduce unacceptable fragility and manual
overhead.

To mitigate the model’s tendency to favour reconstruction quality over
slot disentanglement, we modified the slot loss to incorporate a novelty term
based on pairwise slot dissimilarity. This novelty coefficient penalised slots
that were too similar, encouraging the model to spread attention across dis-
tinct features. While this modification led to modest improvements in slot
diversity, it also introduced instability in training and failed to boost object-
level segmentation or downstream usability significantly.

These findings highlight the limitations of directly applying slot-attention
models to real-world or semi-naturalistic environments like CREATE and An-
imalAl. Despite promising results on synthetic datasets, transfer remained
elusive—underscoring that high-quality object discovery in reinforcement
learning contexts requires not only robust architectures but carefully de-
signed perception pipelines.

As a result, the final implementation adopted a pragmatic approach: a
pre-processing pipeline using the Segment Anything Model (SAM) and CLIP
for object extraction, described in detail in the Methodology Chapters.

186

The novelty coefficient, defined as:
novelty = mean(p2 — distance(s;, s;))

where s; and s; was integrated into the loss function as follows:

1

novelty

loss = mse_loss(recon_combined, input) +

187

B Appendix: Associative Strength Cluster-
ing for Long-Term Memory Selection

B.1 Mackintosh-Based Associative Attention Mecha-
nism

As an alternative to trainable transformer-based attention, this thesis also
explored a cognitively inspired, interpretable mechanism for long-term mem-
ory (LTM) selection based on associative learning theory. Specifically, we
implemented a variation of the Mackintosh model (1975), which modulates
concept salience based on its historical correlation with reward outcomes.
This model provides a symbolic and lightweight means of deciding which
object concepts in Working Memory (WM) should be promoted to LTM.

The core principle is that concepts which consistently help predict reward
should become more salient (i.e., receive higher attention), while concepts
that are consistently irrelevant should be downweighted or forgotten.

The update rule for the associative value Vj”) at time n is:

AVt = a5 (1= VE+ VD) IR (35)

The associability of concept A, denoted a4, is then updated based on the
comparative prediction error:

Aa%“) —- 9. (|)\n —VEi4+VE =\ =V, +W‘A|) (36)

Concepts that consistently correlate with reward will see their « increase,
while concepts that are uninformative will gradually decay in associability.

Over time, this mechanism converges toward a sparse set of high-attention
concepts that are reliably associated with task success. These are then se-
lected for promotion to LTM. Concepts that appear frequently but without
predictive value decay naturally in associability, filtering out distractors.

By using this symbolic mechanism alongside the learnable self-attention
approach described in the main chapters, this thesis offers two complemen-
tary strategies for determining relevance in memory systems: one grounded
in cognitive theory and interpretability, the other in gradient-based optimi-
sation and scalability.

188

B.2 Python Implementation

The associative attention mechanism described above was implemented using
Python and Neo4j. The following function updates attention values for object
concepts in Working Memory (WM) based on their historical association with
reward. Attention values and associabilities are stored in a Neo4j database
and updated online during training.

B.2.1 Modified Mackintosh Attention Update

I def compute_attention(self, time, episode_id, omega=0.1, beta
=0.6, default_alpha=0.1):
ep_id = int(episode_id.split(’:’)[2])

V]

3 reinforcer_and_sum = self.concept_space.
objects_attention_and_reinforcer (time, ep_id)

1 reinforcer_time_t = abs(reinforcer_and_sum[’reinforcer’
1001)

5 sum_all_obj = reinforcer_and_sum[’sum(o.att)’] [0]

6 reward_current_time = reinforcer_and_sum[’s.reward’][0]

8 df _all_obj_att = self.concept_space.get_obj_att_at_time_t

(time, ep_id)
9 df _all_obj_att[’not_obj_i’] = sum_all_obj -
df _all_obj_att[’o.att’]

11 obj_values_prev_time = self.concept_space.
get_obj_att_values_prev_time (time, ep_id)

2 if not obj_values_prev_time.empty:

13 obj_values_prev_time[’last_value_obj_i’] =
obj_values_prev_time[’prev_att’]

14 obj_values_prev_time[’sum_val_obj_not_i’] (

5 obj_values_prev_time[’last_value_obj_i’].sum() -
obj_values_prev_time[’last_value_obj_i’]

16)

17 obj_values_prev_time[’delta_alpha_obj_i’] = -omega *
(

18 reward_current_time - obj_values_prev_timel[’
last_value_obj_1i’]

19) - (

20 reward_current_time - obj_values_prev_timel[’
sum_val_obj_not_i’]

21)

22 obj_values_prev_time[’alpha_obj_i_temp’] = (

189

38

39

10

41

42

13

14

45

46

obj_values_prev_time[’alpha’] +
obj_values_prev_time[’delta_alpha_obj_i’]
)
obj_values_prev_time.loc[obj_values_prev_timel["
alpha_obj_i_temp"] <= 0.05, ’alpha_obj_i’] = 0.05
obj_values_prev_time.loc[obj_values_prev_timel["
alpha_obj_i_temp"] >= 1, ’alpha_obj_i’] = 1

obj_to_update = pd.merge(df_all_obj_att,
obj_values_prev_time, on="id_o")

obj_to_update[’delta_obj_i’] = (

obj_to_update[’alpha_obj_i’] * beta * (1 -

obj_to_update[’o.att’]) * reinforcer_time_t

)

obj_to_update[’new_value_obj_i’] = obj_to_updatel[’o.
att’] + obj_to_update[’delta_obj_i’]

else:
obj_to_update = df_all_obj_att
obj_to_update[’delta_obj_i’] = (
default_alpha * beta * (1 - obj_to_update[’o0.att’
]) * reinforcer_time_t

)

obj_to_update[’new_value_obj_i’] = obj_to_updatel[’o.
att’] + obj_to_update[’delta_obj_i’]

obj_to_update[’alpha_obj_i’] = obj_to_update[’alpha’]

Update Neo4j memory with new attention values
dict_values_to_update = list(obj_to_updatel[l[

’id_o’, ’new_value_obj_i’, ’att_values’, ’alpha_obj_i
J

J1.to_dict(’index’) .values ())
self.concept_space.update_objects_attention (
dict_values_to_update)

B.3 Visualisation of Associative Attention

To better understand how the associative attention mechanism evolves during
training, we visualise both the dynamic changes in attention values over time
and the final attention scores after interaction with the environment.

Figure 52 presents the trajectory of attention weights computed using the
Mackintosh model for several object concepts across timesteps. Each colored
line corresponds to a distinct object ID encountered during training. The

190

trends clearly demonstrate how some objects rapidly increase in attention
due to strong predictive associations with reward, while others remain low,
indicating a lack of reward relevance. For instance, the orange and red lines
represent concepts whose attention sharply increases and stabilises near the
maximum, reflecting high utility in predicting outcomes. In contrast, flatter
or noisier lines represent objects that were encountered often but did not
prove predictive.

Obj attention

, ’\%(\“/(\V@\i % W :i

0.6

—e— 10
0.4 —e— 11

——13
0.2 14
15

X axis

Figure 52: Evolution of object attention values over training timesteps. Line
color represents object ID.

Figure 53 offers a static snapshot of the final attention values, concept
frequencies, and raw association strengths after a full episode. Here, we ob-
serve the outcome of the associative learning process: object concepts that
appeared frequently and accrued positive reward influence display higher as-
sociative weights and attention scores (values near 1.0), while others that
were rare or non-predictive maintain low attention. The use of a frequency-
normalised relevance metric (e.g., vobj/freq) helps highlight whether con-
cepts were predictive due to their reward correlation or simply frequent co-
occurrence.

191

match(e:Episode)-[:has_state]-(s)-[r:has_object]— (o) where
elementId(e)="4:35c6f93f-aedf-40a2-ba92-c88bc937e420:387"

with elementId(o) as id,count(r) as freq, o.att as vobj, o.alpha

as att

return id,freq, vobj, att, vobj/freq as vobj2

I freq vobj att vobj2
33f-aedf-40a2-ba92-c88bc937e420:436" 11 1.571084551262026 1.0 0.1428258682965478
33f-aedf-40a2-ba92-c88bc937e420:395" 25 0.9985579261334732 1.0 0.039942317045338925
33f-aedf-40a2-ba92-c88bc937e420:390" 25 0.9993993007810059 1.0 0.03997597203124024
33f-aedf-40a2-ba92-c88bc937e420:453" 1 0.01 0.1 0.01
33f-aedf-40a2-ba92-c88bc937e420:419" 13 0.9598239081105198 1.0 0.07383260831619383
33f-aedf-40a2-ba92-c88bc937e420:389" 20 0.9967742674953202 1.0 0.04983871337476601

Figure 53: Final associative values for each object concept based on accu-
mulated reward history.

Together, these figures illustrate how the Mackintosh-based associative
clustering mechanism provides a grounded and interpretable means of se-
lecting memory candidates for long-term storage. By prioritising concepts
that repeatedly co-occur with reward and suppressing uninformative distrac-
tors, the system builds a semantically meaningful long-term memory. This
process serves as a cognitively inspired alternative to black-box trainable at-
tention layers and enables agents to curate their own symbolic concept space
incrementally.

192

C Appendix: Additional Logs and Visualisa-
tions

To support the experimental findings presented in the main body of the
thesis, we include below supplementary visualisations and logs from training
runs involving SETLE-enhanced agents. These logs offer further insight into
the internal behaviour of the agent’s graph memory system and enrichment
mechanisms.

C.1 Trajectory-Level Behaviour

Figure 54 shows five key trajectory-level metrics recorded throughout training
in the CREATE environment using the Soft update with adapter strategy.
These include:

e UniqueTools: Number of distinct tools used per episode.

e ToolSwitches: Number of tool transitions per episode.

Steps: Total interaction steps before success/failure.

Reward: Episode reward signal.
e RedundantActions: Number of ineffective or repeated actions.

These metrics help visualise agent behaviour, tool use diversity, and learn-
ing progression over time.

193

i v Trajectory 5 1-50f5 *x ©

Trajectory/UniqueTools Trajectory/ToolSwitches Trajectory/Steps
er-soft_update_penalty_with_adaptor_set_enrichment_and_n § er-soft_update_penalty_with_adaptor_set_enrichment_and_n § er-soft_update_penalty_with_adaptor_set_enrichment_and_r §
14 4 14 4 4
7 .
12 14
6
10
12
5
8
10
N 6
3 4 8
Step Ste Step
2 2 6
1k 2% 3k ak sk 6k 1k 2% 3k ak 5k 6k 1k 2% 3k ak 5k 6k
Trajectory/Reward Trajectory/RedundantActions
er-soft_update_penalty_with_adaptor_set_enrichment_and_n § er-soft_update_penalty_with_adaptor_set_enrichment_and_m §
4
8
1
6
0.8
0.6 4
0.4
2
02
Step
0
1k 2k 3k 4k sk 6k 1k 2k 3k 4k sk 6k

Figure 54: Trajectory-level statistics during training: unique tools, tool
switches, steps per episode, reward progression, and redundant actions.

C.2 Attention Weight Visualisation

Figure 55 shows logs of attention weights assigned to ObjectConcept nodes at
different timesteps. The top-weighted nodes correspond to object concepts
most relevant for contextual enrichment. Consistent attention on specific
concepts suggests stable and interpretable memory reuse.

194

v Attention 36

runs.summary["Attention/Ob
jectConcept_step_9"]

o

runs. summary["Attention/0b
jectConcept_step_8"]

o

runs. summary["Attention/Ob

jectConcept_step_7"]

o

runs. summary["Attention/0Ob
jectConcept_step_6"]

<

= Filter = Filter = Filter = Filter
Node 1D Attention Weight Node I Attention Weight Node ID Attention Weight Node 1D Attention Weight
4:£37e0877- o026 4 4:737eb877- 0.0430% 4:£37eb877- 002154 4:£37eb877- 002
2166-4051- 1 b166-4051- 1 b166-4051- 1 b166-4051-
o3af- b3af- b3af- b3af-
4:£37e0877- 0.02816 4:£37¢b877- 0.0488 4:£37b877- 0.0215 4:£37eb877- 0.0232
2 5166-4051- b166-4651- b166-4651- b166-4651-
o3af- b3af- b3af- b3af-
< > < > < > < >
E==-¢« -30f24 E==-¢«¢ 3024 3 E==-¢x< 3024 3 E==-¢« -30f30
runs. sumary["Attention/ob | runs. sumary["Attention/ob runs. summary["Attention/b | g runs. sumary["Attention/ob |
jectConcept_step_4"] jectConcept_step_3"] jectConcept_step_14"] jectConcept_step_13"]
= Filter = Filter = Filter = Filter
Node ID Attention Weight Node I Attention Weight Node ID Attention Weight Node 1D Attention Weight
4:£37eb877 002242 4:£37eb877- 03552 4:37eb877- o081 ® 4:£37eb877- 006172
b166-4051- b166-4051- b166-4651- b166-4851-
b3af- 1 b3af- 1 b3af- 1 b3af-
PPS— Py @68130e1e141: @68130e1e141: ©68130e1e141:
:i‘i'““' 4:£37eb877 00355y 4:£37eb877 00281 4:£37€b877 0.04654
af- e 0O L 0B
v < > . » . >

1-10 of 36 > & @
[runs . summary["Attention @
/ObjectConcept _step_5"3
= Filter

Node 1D Attention Weight

4:£37eb877- 00257
1 b166-4051-

b3af-

4:£37eb877- 0.0257]
2 b166-4851-

b3af-

e — b
===-¢< -30f30 >
runs. sumary["Attention/0b g
jectConcept_step_12"1
= Filter

Node ID Attention Weight

4:£37eb877- 004762

b166-4051-

1 b3af-

@68130¢1e141:

4:£37eb877 00476y

« e .

Figure 55: Attention weights over ObjectConcept nodes across enrichment
steps. Each panel shows the top-weighted retrieved nodes and their scores.

C.3 Episode Matching Frequency and Similarity

Figures 56 and 57 depict the episode retrieval behaviour of the system. Fig-
ure 56 shows the top-3 matched episodes at a selected timestep (e.g., t = 3),
based on cosine similarity to the current partial trace. Figure 57 presents
the histogram of most frequently matched episode 1Ds, indicating which tra-
jectories were repeatedly reused as templates during enrichment.

= Filter

Rank Episode ID

1 4:37eb877-b166-4051-b3af-068130e1e141:10414

2 4:£37eb877-b166-4051-b3af-068130e1e141:10288

3 4:f37eb877-b166-4051-b3af-068136e1e141:9959

1 4:£37eb877-b166-4051-b3af-068130e1e141:1215

2 4:f37eb877-b166-4051-b3af-068130e1e141:1353

3 4:f37eb877-b166-4051-b3af-068130e1e141:513

CreatelevelBasket-v@

CreatelLevelBasket-ve

CreateLevelBasket-ve

CreatelevelPush-ve

CreatelLevelPush-ve

CreateLevelPush-ve

Figure 56: Episodic
timestep ¢ = 3.

Task

similarity

02189

matches with their similarities retrieved by SETLE at

195

v Match 32

Match Frequency (Top 10) - t=3

0+
14764 | }
15136 4 logger-penalty_with_adaptor_set...
154 gg— I logger-soft_update_penalty_with...
5840~
6189
6546
6872
7219+
7570+
7917 ~jun
e
e
o)4
°
00
2 200
2. 200!
w 20150
0177 |
20204 ~|—
20231 ~j—
20290
20:
03]
71
444 -
7224 -|
7752
8125+
2|
T T T T T T T T T T T 1
0 4 6 8 10 12 14 16 18 20 22 24

Figure 57: Histogram showing episode retrieval frequency for top-10 matched
episodes across runs and strategies. Higher counts reflect consistent struc-
tural similarity.

These visualisations collectively demonstrate that the SETLE framework
not only retrieves past experience selectively and consistently, but also en-

ables dynamic adaptation of attention to support sample-efficient, structured
generalisation.

196

