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Abstract
Deviations from normative brain ageing trajectories are linked to a wide range of adverse health
outcomes. A number of brain age prediction models have been developed, based on various
neuroimaging modalities, machine learning algorithms, training samples, and age ranges.
However, it remains unknown whether these models converge on a shared genetic liability, and
whether capturing this shared signal could provide a more sensitive marker of brain health than
any single model alone. We first conducted a new brain age gap (BAG) GWAS in a sample of
60,735 individuals across 29 cohorts worldwide, and then applied genomic structural equation
modelling to examine the shared genetic variance between five prior BAG GWASs and our
new analysis, using a single latent BAG factor (30 cohorts overall). All six BAG GWASs
loaded onto a single factor, explaining 63% of the total genetic variance. We identified 19
independent SNPs associated with the BAG factor, including four novel associations.
Genetically, the BAG factor was positively correlated with multiple traits, with blood pressure,
smoking, longevity, autism, and sleep showing putatively causal effects. A polygenic score
(PGS) for the BAG factor showed associations with phenotypic BAGs already in childhood,
with stronger links observed in adulthood. Phenome-wide association analyses indicated that
BAG factor PGS captured associations with more health traits than individual BAG PGSs. Our
findings underscore the importance of considering the shared variance across different BAG

constructs to identify robust correlates of poor brain health.



Introduction

As we age, the brain develops and changes with considerable variability across
individuals (Raz & Rodrigue, 2006). Such deviations from a typical brain ageing trajectory are
important correlates of poor health outcomes (J. H. Cole et al., 2018). Brain age gap (BAG) —
conceptualised as the difference between chronological and brain predicted age (e.g., from
brain scans) — has become a valuable neuroimaging marker within lifespan neuroscience. BAG
has recently been linked to over 200 traits, including disease risk factors (e.g., increased
diastolic blood pressure and body mass index), cognitive function, and non-communicable
diseases (e.g., type I and type Il diabetes) (Jawinski et al., 2025; Kolbeinsson et al., 2020).

In recent years, a growing number of brain age prediction models have been developed.
Some models have been used in genome-wide association studies (GWASs) to characterise the
genetic underpinnings of BAG, showing single-nucleotide polymorphism (SNP)-based
heritability estimates ranging from 0.23 to 0.47 (Jawinski et al., 2025; Leonardsen et al., 2023;
Smith et al., 2020; Wen et al., 2024), which are generally higher than estimates for psychiatric
disorders (Baselmans et al., 2021). Furthermore, in line with phenotypic research, brain-age
GWASs identified potential causal effects of BAG on health outcomes, such as blood pressure
and diabetes (Jawinski et al., 2025). Understanding the genetic influence on BAG may
therefore help identify risk factors for poorer brain health in later life and shed light on the
biological mechanisms underpinning variability in the brain ageing process.

Despite advances in this field, it is currently unclear to what extent different brain age
models capture a shared underlying genetic signal. These models have been based on various
neuroimaging modalities (T1-weighted structural magnetic resonance imaging [MRI],
diffusion imaging, and functional MRI), machine learning algorithms, training samples, and

age ranges (Soumya Kumari & Sundarrajan, 2024). Observational studies demonstrate that



BAG predictions from distinct models do not always correlate highly with each other (e.g.,
correlations between BAGs: » = 0.45-0.64; Bacas et al., 2023), which may be partly due to
these heterogeneous methodological choices, as well as training population differences (e.g.,
in age, socio-economic background, imaging acquisition protocols) and measurement error.
Modelling the joint genetic architecture of different brain age GWASs would enable us to
extract a latent BAG factor, allowing us to (1) assess the degree to which genetic associations
with BAG are shared across multiple models, (2) boost power for genetic variant discovery,
and (3) reduce measurement error. True brain age values can only ever be approximated and
depend on the accuracy of the underlying age-prediction models. Low-accuracy models may
be too lenient, while highly accurate models may remove biologically meaningful variance or
reflect overfitting, thereby limiting the ability to capture clinically or genetically relevant
effects (Bashyam et al., 2020; Schulz et al., 2025). To extract the relevant biological signal and
reduce measurement noise, we need to aggregate shared genetic variance across different BAG
models.

While previous BAG GWASs were based on models with high predictive accuracy
(mean absolute error of ~3 years), they were all based on the UK Biobank (UKBB) cohort,
thereby limiting global representation. The Enhancing Neuro Imaging Genetics Through Meta-
Analyses (ENIGMA; Thompson et al., 2020). Consortium has pioneered a global approach to
neuroimaging genetics and has developed a brain age model that is based on standard
FreeSurfer output and is therefore easily scalable across cohorts worldwide (Han et al., 2021).

We thus first conducted a large BAG GWAS based on FreeSurfer-derived imaging
features, enabling us to combine data across 29 cohorts worldwide and extending beyond the

current focus on the UKBB. Subsequently, we applied genomic structural equation modelling



(Genomic SEM; Grotzinger et al., 2019) to examine the shared genetic variance across six
brain age GWASs, including the present study, using a single latent BAG factor. A latent factor
approach may provide a more accurate measure of BAG, capturing shared variance across
different imaging-derived predictors (e.g., grey matter volume, thickness, surface area) and
thus providing less biased estimates of BAG. We then conducted a GWAS on this latent factor,
followed by a comprehensive set of analyses to investigate the biological pathways, shared
genetic influences, causal relationships, polygenic risk, and phenome-wide associations with
BAG. To our knowledge, this is the first study to integrate multiple BAG GWASs into a unified
latent genetic factor, enabling a more robust investigation of its biological and clinical

relevance.

Method

ENIGMA GWAS

As prior BAG GWASs were primarily based on the UKBB, we embarked on a large-
scale international analysis that integrated genomics and standard FreeSurfer output from 29
cohorts worldwide (see map; N=60,735). Structural T1-weighted scans were processed using
FreeSurfer (Fischl, 2012) resulting in a total of 77 features based on the Desikan/Killiany atlas
(Desikan et al., 2006). The 77 features were used to derive BAG as detailed in Han et al. (2021).
We first conducted GWASs on the ENIGMA model (BAGnan) at the cohort level, and then
meta-analysed the results using METAL. For further details see Supplementary Material
(SM) Methods section 1.1 and Table 1. Descriptive cohort characteristics, as well as imaging

and genotype details, can be found in Tables S1-S4.



Genetic data sources for brain age gap

In addition to the GWAS conducted as part of the present study, we also selected five
additional BAG GWASs with publicly available genetic summary statistics from previously
published studies by Leonardsen et al. (2023), Wen et al. (2024), Smith et al. (2020), Kaufmann
et al. (2019), and Jawinski et al. (2025). Throughout the manuscript, we refer to these models
as BA Gauthor.surname. The models differed in terms of imaging modality, input features, machine
learning algorithms, samples, and age ranges. BAG was computed as the difference between
predicted brain age and chronological age. A descriptive overview of the six models is provided

in Table 1. A schematic summary of the analysis workflow is shown in Figure 1.



Figure 1. Analytical flowchart of the current study
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Table 1. Six studies contributing to the genomic SEM GWAS of brain age gap factor

Model GWAS Brain age derivation Reference
Name N Age % Ethnicity | Sample | MAE h? Loci | Imaging Algorithm Sample | Training | MAE r
range | females (years) | (SE) modality age range | (years)
BAGuan 60,735 18-75 53.7% EUR 29 9.4 0.21 29 Tlw MRI Ridge 19 18-75 male=6.5 female=0.83 | Han et al.
(ENIGMA) (Nukep=46, primarily | datasets (0.01) regression datasets female=6.8 male=0.85 (2021);
322; (inc. and the
Nenigma=1 UKBB) present
4,413) study
BAGtconardsen | 28,104 40-84y | 51.6% EUR UKBB | 245 0.27 8 T1w MRI SFCN-reg 21 3-95y 2.47 0.975 Leonardse
(pyment) (0.04) datasets netal.
(incl. (2023)
UKBB)
BAGwen 30,108 Appro | NA EUR UKBB | NA 0.47 11 Multimodal | Support UKBB 46-82y female=3.5 female=0.79 | Wen et al.
(brain BAG) x. 40- (0.02) MRI (T1w, | vector male =3.7 male=0.80 (2024);
84y dMR, rs- machine Tian et al.
fMRI) regression (2023)
BAGshmith 10,612 Appro | ~54% EUR UKBB | 29 0.23 1 Multimodal | Independent | UKBB 45-80y 29 NA Smith et
(62 modes) x. 40- (0.05) MRI (T1w, | component al. (2020)
84y dMRI, rs- analysis;
fMRI) regression-
based
models
BAGkaufmamn | 20,170 40-70* | 53%* EUR UKBB | NA 0.24 1 T1w MRI Gradient 41 3-89y 4.78* female=0.93 | Kaufmann
(brainage) (0.03) tree datasets male=0.94 et al.
boosting (inc. (2019)
with UKBB)
XGBoost
BAGgawinski 52,890! 45-82 52.2% EUR UKBB | 3.09 0.28 39 T1w MRI Relevance UKBB 45-82y 3.09 0.86 Jawinski
(combined and (0.02) vector et al.
BAG) LIFE- machine and (2025)
Adult XGBoost

Note. For BAGpconardsen We used the regression model (SFCN-reg). For BAGwen we used the multimodal ‘Brain PhenoBAG’ derived from grey matter, white matter, and functional connectivity
metrics. For BAGsmim we used the all-in-one model incorporating deltas from all 62 modes in a single model (code: V0140). For BAGyawinski We used the combined grey and white matter model.
T1w MRI = T1-weighted magnetic resonance imaging; dMRI = diffusion magnetic resonance imaging; rs-fMRI = resting-state functional magnetic resonance imaging; BAG = brain age gap;
EUR = European; GWAS = genome-wide association study; N = sample size; Loci = genome-wide significant SNPs clumped into approximately independent regions based on linkage
disequilibrium thresholds and genomic distance, as reported in the original publications; MAE = mean absolute error; NA = not available; SNPs = single nucleotide polymorphisms; UKBB = UK
Biobank; h? = SNP-based heritability; Combined BAG = combined grey and white matter BAG. ' GWAS originally conducted with 54,890 individuals; re-run with 52,890 to hold out 2,000 for
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polygenic score analyses. *No mean absolute error (MAE) reported in the original publication. An independent study on a separate dataset by Blake (2021) identified a MAE of 4.78. All BAG

GWASs controlled for age, sex, and genetic PCs. Other covariates were study specific. For example, total intracranial volume was controlled for in BAGpan, BAGwen, and BAGyawinski only.
Genomic SEM = genomic structural equation modelling.
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Genomic SEM GWAS of six brain age gaps

We used Genomic SEM (v.0.0.5; Grotzinger et al., 2019) to conduct a GWAS of the
six BAGs listed in Table 1 (Nunique.individuals=62,568; Nefrective=160,656). This method accounts
for sample overlap across contributing GWAS studies. First, we estimated genetic correlations
between the six BAG models within genomic SEM and performed confirmatory factor analysis
to identify a common latent factor. This approach allowed us to capture shared genetic variance
while reducing measurement error and model-specific noise. We then regressed each SNP on
the latent brain age factor using Genomic SEM’s multivariate GWAS function. For a detailed
description of the method, see Grotzinger et al. (2019).

To evaluate the adequacy of a single-factor solution, we additionally tested an
exploratory two-factor model and compared fit indices (standardised root mean square residual,
SRMR, Comparative Fix Index; CFI, model y*> and Akaike Information Criterion; AIC) using
confirmatory factor analysis. All modelling was conducted using default settings unless

otherwise specified.

Post-GWAS analyses.

We carried out a comprehensive set of post-GWAS analyses, as detailed below. For
more information on these post-GWAS analyses, see SM section 1.2.

Genomic loci and functional annotation. To annotate, prioritise and visualise GWAS
results, we used the Functional Mapping and Annotation of Genome-Wide Association Studies
(FUMA v1.5.2; Watanabe et al., 2017) SNP2GENE pipeline.

Gene functional annotation. FUMA’s GENE2FUNC pipeline provided biological
context for the identified genes. Tissue-specific differentially expressed genes were identified

by testing for enrichment of prioritised genes against background gene sets.
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MAGMA gene-based, gene-set, and tissue expression analyses. Gene-based
association analysis was performed using MAGMA v1.08. Gene-set analysis was performed
for curated gene sets and GO terms obtained from the MsigDB database (Liberzon et al., 2011).

Heritability and genetic correlations. To perform heritability and genetic correlation
analyses, we used linkage disequilibrium (LD) score regression (Bulik-Sullivan et al., 2015;
Bulik-Sullivan et al., 2015). We assessed correlations of the brain age factor with 33
psychiatric, cardiometabolic, behavioural, and ageing-related traits.

Mendelian randomisation. To understand which traits may be causally related to
BAG, we performed bi-directional two-sample Mendelian randomisation (MR) analysis with
all 33 traits. An inverse-variance weighted (IVW) approach was used as our primary analysis
estimate, with MR-Egger and weighted-median methods included as sensitivity analyses. To
test the causal direction of each SNP and remove potentially invalid genetic variants, Steiger
filtering was applied (Hemani et al., 2017). Analyses were performed using the TwoSampleMR
package (Hemani et al., 2018) in R v4.3.2 (R Core Team, 2025). To account for sample overlap
between exposure and outcome GWASs, we also calculated bias-corrected IVW estimates
using the MRlap package (Mounier & Kutalik, 2023).

Polygenic score associations with BAG in childhood and adulthood. Polygenic scores
(PGS) for individual BAGs and the latent BAG factor were computed using SBayesRC (Zheng
et al., 2024). We assessed how well PGS scores predicted phenotypic BAGs (1) in a
longitudinal child cohort (The Generation R Study; n =2,332; mean age 10 years [SD = 0.61];
Kooijman et al., 2016) and (2) in an independent (hold-out) adult imaging subset from the
UKBB cohort stratified by ancestry group (UKBB return no. 2442): European (n=2,000),
Central/South Asian (n=638), East Asian (n=291), and African (n=337); mean age 65 years

[range: 47-82]; Table S1). UKBB results for the polygenic BAG factor score were compared
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against scores obtained for each of the six input GWASs that contributed to the latent BAG
factor. To ensure independence from the previous UKBB imaging GWAS:s, all participants
who took part in the imaging visit and their relatives (up to 3rd degree) were excluded.

Due to data availability, we were only able to validate the PGS for the BAG factor using
two phenotypic BAGs in the UKBB cohort (BAGnan and BAGyawinksi) and three in GenerationR
(BAGHan, BAGteonardsen, and one external model not included in the latent factor: BAGcole;
Cole, 2023).

Polygenic score associations with health traits in childhood and adulthood. We then
tested for PGS associations with nine available health-related outcomes during development,
using data from Generation R (Kooijman et al., 2016). Additionally, to test which BAG PGS
(factor-based vs. individual PGSs) is most relevant to a wide range of traits (nits=6,646), we
performed a phenome-wide association study (PheWAS) in an independent, non-imaging
subset of unrelated White British adults from the UKBB cohort (n=271,879; mean age 58 years
[range: 40-74]). For PGS covariates see SM Methods section 1.2.

Trio genetic analyses. Within-family trio models were used to test for direct and
indirect genetic effects on nine available health-related outcomes and three phenotypic BAGs
in Generation R (Kooijman et al., 2016). In trio models, the direct genetic effect represented
the effect of the child’s PGS on health outcomes (conditional on the parental PGSs), while the
indirect effects reflected the parental effect on child health outcomes (conditional on the child’s
PGS) (Pingault et al., 2023; Tubbs et al., 2020).

The analytical sample included genotyped trios (children and their biological mothers
and fathers, up to n=1,063) with available phenotypic data. For each parent-offspring trio, we
computed polygenic BAG factor scores using SBayesRC (Zheng et al., 2024). Before analysis,

child, mother, and father polygenic BAG factor scores were first standardised and then
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residualised for the first five genetic principal components. The three polygenic BAG factor
scores were used as predictors of three phenotypic BAGs in the offspring (BAGhan,
BAGtconardsen, and BAGcole) as well as nine health outcomes in separate linear regression
models. All outcomes were measured when the children were on average 9-13 years old. Each

model also included age and sex as covariates.

Results

BAGHwm GWAS meta-analysis

We performed a genome-wide association meta-analysis of BAGuan across 29 cohorts
(total N = 60,735; mean age=37.6 years [range=18-75]; 53% female). We identified 32 lead
SNPs across 29 genomic risk loci reaching genome-wide significance (p < 5e7%; Table S5).
Mapped genes (Table S6-S7) have been previously associated with brain-related morphology
(i.e., brain region volumes), cognitive and psychiatric traits (e.g., cognitive performance,
schizophrenia), and other health-related measures (e.g., body mass index, lipids; Table S11).
Polygenic scores based on BAGuan explained the largest proportion of variance in brain age
gap in European ancestry individuals (R?>=8.3%; n=1,738) compared to other ancestries
(R2<2.7%; Table S28). A full description of the BAGuan GWAS results is provided in the SM

Results section 2.1 and Tables S5-S12.

Shared genetic architecture across six brain age models
Genetically, all BAG models were significantly correlated with each other, with at least
a moderate effect size (mean r,=0.64, Figure 2A; Table S13). Correlations ranged from

7¢=0.37 (BAGrconardsen and BAGHan) to 7¢=0.93 (BAGwen and BAGsmim). All six BAG models
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loaded onto a single latent factor (BAGractor; all standardised loadings > 0.60). This one-factor
solution fitted the data well (¥2[9] = 77.14, p = 5.96''%, CFI1 = 0.94, SRMR = 0.09), explaining
63% of the total genetic variance. BAGwen had the highest factor loading (beta=0.91, SE=0.07,
p=6.93¢*), followed by BAGsmin and BAGrkaufmann (Figure 2B). For the two-factor solution,

see SM Results section 2.2 and Figure S3.
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Figure 2. Shared genetic architecture of six brain age gaps and their association with health

outcomes
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Note. (A) Genetic correlations among six brain age gaps. (B) Genetically defined common
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estimator of plasminogen activator inhibitor-1.
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Genome-wide associations for shared genetic BAG factor

We identified 19 independent genome-wide significant SNPs (Figure 2C) across 16
independent loci (Table 2). The GWAS yielded a genomic control lambda (AGC) of 1.21 and
an LD score regression intercept of 1.01 (SE=0.01), indicating inflation driven primarily by
polygenicity.

Seventeen of the 19 independent SNPs showed a consistent direction of effect across
contributing GWASs; 15 SNPs had been previously linked to BAG in the input GWASSs, and
four SNPs were novel (Table 2). The SNPs mapped most consistently to 32 genes, with STH,
MAPT, and NKX6-2 showing the strongest associations (all p <9.69¢’!*; Tables S14-S15). A
subset of these genes (e.g., MAPT, KANSLI, CRHRI, and TOMM40) had previously been
linked with neurodegeneration, brain structure, or brain age (Burggren et al., 2017; Jawinski et
al., 2025; Kulminski et al., 2025; Leonardsen et al., 2023; Zhang et al., 2016), whereas others
(e.g., SHMTI, ALKBH5, WDRI2) had no strong prior relation with brain age-related

phenotypes, representing potentially novel genes underlying brain age.
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Table 2. Nineteen independent genome-wide significant variants associated with brain age gap factor across 16 genomic loci

Qp- Nearest

SNP Locus Chr  Position MAF  A1/A2  Estimate SE Z-score  p-value Q value Direction  gene Novel SNP
110753232 1 1 180950126 043  C/T  -0.025 0.004 -6.445  1.16B-10 3827 3.33¢” -t STX6 no(WHENEN),
110494988 2 1 215141570 039 /T 0.021 0.004  5.495 3.90E-08 2550 1.12¢% ++++++  (KCNK2) no(HENEEMN)
15743091 3 2 190704420 0.18  A/G  -0.030 0.005 -6.193  589E-10 098 0964 - PMS1 no (HENENEN,
15185726277 4 2 203904306 0.13  G/A  0.030 0.005  5.831 552E-09 1887 0.002  ++++++  NBEALl  no(HENEEN),
156442411 5 3 13836296 039  T/C -0.023 0.004 -5.687  129E-08 10.73  0.057 - (WNT7A) no(HEENEN)
15674243 6 3 39478695 047  C/T -0.023 0.004 -5929  3.05E-09 1689  0.005 - (RPSA) no (MEEENN,
1142003765 6 3 39479611  0.02  A/G  -0.047 0.008 -5.634  176E-08 1516 0010 - (RPSA) yes(IHNNENN)
1337637 7 4 38604470 031  G/A  -0.031 0.004 -7.666  1.77E-14 39.10 226e” - KLF3-AS1 no(HEENEN)
19992667 7 4 38680186 0.19  C/T  0.026 0.005 5582  237E-08 2.68 0749  +++++  KLF3 yes(HENENEN,
157704770 8 5 159487953 039  G/A  -0.023 0.004 -5.677  1.37E-08 4.82 0438 - TTCI no (MENENEN,
1765724 9 6 45417118 035  T/C -0.025 0.004 -6.565  520E-11 4292 383¢® RUNX2 no(MNNENEN,
1512263364 10 10 134555548 024  G/T  -0.033 0.005 -7262  3.82E-13 455 0473 - INPP5SA no(WEEENN,
112146713 11 12 106476805 0.09  T/C -0.041 0.006 -7.031  206E-12 1560 0.008 - NUAKI no(WMENENEN),
1528520337 12 15 39647894  0.07  T/C -0.035 0.006 -5463  4.68E-08 28.62 2.75¢" + (THBSI) no(WEEENEN)
1528364628 13° 17 18163262 027  C/T -0.025 0.004 -5716  1.09E-08 805  0.154  -— MIEF2 yes(IHNEENN),
15166840 14 17 19799698 041  G/A  -0.023 0.004 -5.636  1.74E-08 432 0505 = - (AKAP10) yes(WHEENEMN,
1$62065444* 15 17 43565599 020  T/C -0.046 0.005 -9.906  3.93E-23 6495 1.15¢? - PLEKHMI no(HENNEN)
152316775 15 17 43953502 0.17 A/G  0.027 0.005 5726 1.03E-08 1645 0006  ++++++  (MAPT) no (HENENEN,
rs429358 16 19 45411941  0.16  T/C -0.032 0.005 -6393  1.62B-10 14.34  0.014 - APOE no (MENNENN,

Note. Genome-wide significance set at p < 5e’8. SNP independence defined by linkage disequilibrium pruning with 2 < 0.1 within 500 kb windows
(using 1000 Genomes Phase 3 European reference panel). SNP=single nucleotide polymorphism; chr=chromosome; Locus = index of genomic
risk locus; #lead SNPs (in loci with >1 independent SNP); "novel locus; position = position on build GRCh37. MAF=minor allele frequency;
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Al=effect allele; A2=non-effect allele; Estimate=effect size of the effect allele; SE=standard error; Q=Qsnp heterogeneity statistic testing whether
the SNP acts solely through the common factor; Direction=effect direction across contributing studies (order: Han, Leonardsen, Jawinski, Wen,
Kaufmann, Smith); nearest gene = based on OpenTarget with genes that are proximal to each SNP in brackets; novel SNP = SNP identified as
significant at p<5e’® in the GWAS for the shared brain age gap factor but not reaching genome-wide significance at any of the input GWASs; each
input GWAS is represented by six coloured squares in the following order: Han, Leonardsen, Jawinski, Wen, Kaufmann, Smith. Colours indicate
novelty status: green (M) = direct replication of a previously reported association, orange (™) = indirect replication (in linkage disequilibrium with
a known variant using 72<0.1 and 500 kb window), purple (M) = novel association.
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Gene functional annotation

We observed tissue-specific expression patterns, whereby some genes (e.g., MAPT,
RUNDC34, and GFAP) showed higher expression in brain tissue compared to peripheral
tissues (Figure S4, Table S16). The strongest enrichment signals were observed in the
cerebellum, not significant after Bonferroni correction (Figure S5, Table S17). Enriched
biological processes were related to tumour immune responses (Table S18). Lastly, among all
traits included in the GWAS catalog, the prioritised genes overlapped most significantly with
phenotypes related to neurodegenerative disease, cardiometabolic health, and brain
morphology (e.g., Alzheimer’s disease, body mass index, lipids, hippocampal volume, and
cerebrospinal fluid biomarkers). Reassuringly, brain age was also identified among the

enriched traits (Figure S6, Table S18-S19).

Genetic correlations with other traits

The BAG factor was genetically correlated with 12 of 33 tested traits, of which eight
survived false discovery rate (FDR) correction (Figure 2D; Table S20). These included
positive associations with granulocyte proportion, smoking, metabolic age, bipolar disorder,

blood pressure, type 2 diabetes, and CRP, as well as negative associations with longevity.

Mendelian randomisation

MR results demonstrated evidence for a potentially causal role of blood pressure
(systolic blood pressure: betaryw 0.066, 95% CI 0.017 to 0.116, p=0.008; diastolic blood
pressure: betaryw 0.069, 95% CI 0.021 to 0.116, p=0.005), smoking initiation (betaryw 0.070,
95% CI1 0.014 to 0.127, p=0.014), and longevity (ORvw 0.95, 95% CI 0.92 to 0.99, p=0.019)

on the BAG factor (Figure 3; Table S21). Reverse MR revealed an effect of the BAG factor
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on autism spectrum disorder (ORyw=1.85, 95% CI 1.29 to 2.66, p < 0.001), sleep duration
(betaryw=-0.094, 95% CI -0.163 to -0.026, p = 0.007), and smoking initiation (betaryw=-0.144,
95% CI -0.248 to -0.041, p = 0.006). The MR-Egger estimate for smoking initiation was
inconsistent with the primary estimate. No other trait showed significant associations (Figure
3; Table S22). For sensitivity analyses, see SM Results section 2.3 and Tables S21-S24.
When compared to MR analyses conducted separately for each of the six individual
BAGs, we observed that the BAG factor captured the most robust associations across traits
(i.e., identified by most BAG models) and omitted inconsistent associations (i.e., only
identified with one or two individual BAG models; Figure S7; Table S21). The same was
largely true for the reverse associations (trait on BAG; Figure S8; Table S22). MR results for
the BAG factor did not seem to be driven by biases related to sample overlap or winner’s curse.

For details, see SM Results section 2.3, Figure S9; and Table S24.
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Figure 3. Mendelian randomisation results: bidirectional association between brain age gap

factor and health outcomes
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Polygenic score associations with BAG in childhood and adulthood

We then evaluated the performance of the polygenic score for the BAG factor in
predicting phenotypic BAG in childhood and adulthood (including analyses across ancestries),
using a sample of children (mean age 9-13 years; Table S25) from the Generation R Study and
a multi-ancestry sample of adults from the UKBB cohort (mean age 65 years; Table S26).
These samples were independent from the discovery GWAS.

In Generation R, small positive associations between the BAG factor polygenic score
and phenotypic BAGs (BAGhan and an external model BAGcole) were observed, suggesting
genetic influences on brain age already early in life (partial R? up to 1.5%; Figure 4A; Table
S27).

In UKBB, positive associations were observed between the polygenic score for the
BAG factor with both BAG phenotypes (i.e., BAGHan and BAGiawinski), showing the best
predictive performance in European and East Asian ancestry groups (partial R? up to 6%;
Figure 4B). Cross-model analyses showed that the best-matching polygenic score-BAG pairs
used the same model (i.e., PGSBAG.Han With BAGhan and PGSgaG jawinski With BAGyawinski). When
removing the exact pairs, the BAG factor consistently ranked highest, explaining the largest

proportion of variance across the remaining BAG phenotypes and ancestry groups (Table S28).

Polygenic score associations with health traits in childhood and adulthood

When testing for associations between the PGS for the BAG factor and nine health-
related child outcomes in Generation R (n=2,269), we observed a negative association with
high-density lipoprotein cholesterol, which survived multiple testing correction (Figure 4C,
Table S29). No other trait showed significant associations. In UKBB (n=271,879), the PGS

for the BAG factor was associated with 460 adult phenotypes in a PheWAS after FDR

25



correction. Notable associations included blood pressure, education/qualification, overall
health rating, parental age at death, fluid intelligence score, neuroticism, and alcohol use
(Figure 4D). Overall, the PGS for the BAG factor outperformed PGSs for the individual BAG
models that contributed to the meta-analysis, achieving the lowest mean rank of association p-
values across phenotypes and the highest number of significant associations compared to
polygenic scores from individual BAG models (Figure 4E; Figure S10; Table S30). Across
all BAG models, the highest proportions of FDR-corrected associations were in domains
related to sociodemographic, lifestyle/environment, physical, and cognitive characteristics.
BAGtuctor showed the highest number of associations within most categories, indicating the
broadest phenotypic coverage amongst all BAGs. A detailed breakdown by phenotype category
(e.g., mental health, cognitive function, medications, physical measures, sociodemographic

characteristics) is provided in Table S31.
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Figure 4. Associations of the polygenic score for BAG factor with phenotypic BAGs and a

broad range of outcomes in the Generation R and UK Biobank cohorts
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Note. Association of the polygenic score for the BAG factor with (A) three phenotypic BAGs
in children from the Generation R cohort, and (B) two phenotypic BAGs in adults from the UK
Biobank cohort stratified by ancestry: European (EUR), East Asian (EAS), Central/South
Asian (CSA), and African (AFR). Error bars represent standard errors. (C) Associations of the
polygenic score for the BAG factor with nine health outcomes in Generation R. (D) PheWAS
results showing associations of the polygenic score for BAG factor with a broad range of
outcomes in the UK Biobank cohort, with the top (or most relevant) association in each
category annotated by an arrow. (E) Proportion of PheWAS associations surviving FDR
correction across phenotypic categories for each polygenic score derived from BAGtacior and
the six input GWASSs that contributed to the meta-analysis. BAG = brain age gap; PheWAS =
phenome-wide association study; GWAS = genome-wide association study; FDR = False

Discovery Rate.

Trio genetic analyses

Finally, we investigated whether associations between the PGS for the BAG factor and
health-related child outcomes in Generation R were likely due to indirect genetic effects, using
child-parent trio data (up to n=1,063). We detected no significant indirect genetic effects for

any trait (Figure S; Table S32).
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Figure 5. Trio results testing for indirect and direct (child) genetic effects of polygenic score

for BAG factor on child outcomes in Generation R
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Discussion

Our genomic analysis demonstrated that diverse BAG models, trained on distinct
imaging modalities, features, and samples, were largely underpinned by a common genetic
signal. All six BAG GWASSs loaded strongly on a single latent factor that accounted for ~63%
of their additive genetic variance (rang€individual BAGs: 36-83%), indicating that a sizable
proportion of genetic influences on brain age is shared across methodological implementations.
A GWAS of this factor yielded 19 independent variants, of which four were novel and two
were independent of known loci. The remaining 15 variants had been previously identified in
one to three BAG GWASs, yet never consistently across all six GWASs. These variants map
to genes previously implicated in neurodegeneration and brain structure (e.g., MAPT, KANSLI,
CRHRI1, APOE/TOMM40). In line with previous studies (Jawinski et al., 2025; Leonardsen et
al., 2023), the strongest signal was observed at a locus linked to MAPT — a gene encoding tau,
a key protein in Alzheimer’s disease and other tauopathies (Zhang et al., 2024). We also
observed signals in novel candidates (e.g., SHMT1, ALKBHS5, WDR1?2), which are involved in
the regulation of cell proliferation (Holzel et al., 2005) and apoptosis (Paone et al., 2014). These
results point to a biologically plausible, polygenic substrate of brain age that is shared but only
partially recoverable from any single BAG implementation.

Further analyses position the latent BAG factor as a health-relevant dimension. Genetic
correlations aligned BAG with cardiometabolic and inflammatory profiles (blood pressure,
type 2 diabetes, C-reactive protein, granulocyte proportion), smoking, bipolar disorder, and
metabolic age, and in the expected opposite direction with longevity. MR supported putative
causal contributions of higher blood pressure and smoking initiation to higher BAG (pointing
towards promising prevention targets for brain health), and of a genetic propensity to longevity

as a protective factor. The implication of blood pressure on brain age replicates previous MR
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findings (Jawinski et al., 2025). Smoking initiation and longevity represented associations not
reported in previous MR studies, but are in line with those observed in non-causal observational
research (Linli et al., 2022; Zettergren et al., 2024). Reverse MR indicated a possible causal
effect of genetic liability to higher BAG factor on autism spectrum disorder and shorter sleep
duration, suggesting that BAG may be both a downstream effect of and a risk factor for poor
health.

Polygenic scores derived from the latent factor predicted BAGs in independent cohorts,
including in childhood, suggesting that brain age trajectories may be shaped well before
midlife. Most ageing studies concentrate on adulthood (Felix et al., 2014), despite recent
research showing that variations in adult brain age might be shaped by early-life experiences
(Vidal-Pineiro et al., 2021). Consistent with this research, our findings call for an increased
focus on development to understand lifelong ageing and to identify effective ageing
interventions.

In our PheWAS analyses, polygenic scores derived from the latent factor also
outperformed scores from individual BAG GWAS:s in predicting health traits across multiple
domains. This increase in phenotypic associations when combining different GWASs has also
been observed in the context of substance use (Xu et al., 2023) and cardiovascular disease
(Jorda et al., 2023; Jorda et al., 2025), which further highlights the interconnectedness of a
wide range of phenotypes and genetically indexed brain age. These findings suggest that BAG
may reflect broad systemic effects and therefore serve as a more global marker of health, rather
than being limited to brain-related traits (Cole et al., 2018).

Trio models suggested that associations of the polygenic score for the BAG factor with
the individual BAGs and HDL cholesterol in childhood were unlikely to reflect

intergenerational pathways. The overall lack of effects aligns with prior research (Ghatan et
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al., 2025), although due to the small sample size, we might have been underpowered to detect
these effects, or they may emerge later.

Our findings should be interpreted in light of the following limitations. First, while the
latent genetic BAG factor removes model-specific measurement error, it may still partly
capture shared methodological characteristics rather than solely biological brain age processes.
Second, due to the limited availability of MRI data in non-European cohorts, our analyses were
based on predominantly European-ancestry individuals, although we did include cross-ancestry
analyses where possible. Third, our BAG factor was largely T1-based, potentially
underestimating vascular effects on the brain that are better captured by T2 or FLAIR
sequences. Future studies could build on our study by assessing harmonised, region- or
modality-specific brain age models (e.g., structural vs. functional, or grey vs. white matter) and
examining effects across multiple ancestries. Findings could also be triangulated across
longitudinal designs and in randomised controlled trials to test whether blood pressure
treatment or smoking cessation could slow down BAG trajectories.

In conclusion, by modelling shared genetic variance across six distinct brain age
models, this study provides a comprehensive and biologically grounded understanding of the
genetic architecture underlying brain ageing. The identification of 19 genome-wide significant
SNPs—spanning established neurodegenerative genes (e.g., MAPT, APOE/TOMM40) and
novel candidates—highlights a core set of genetic influences that transcend methodological
differences between BAG implementations. The latent BAG factor not only enhanced genetic
discovery and predictive accuracy but also captured meaningful associations with health-
relevant traits, including blood pressure, smoking, and longevity, underscoring its systemic
relevance. Polygenic analyses further revealed that genetic influences on brain age gap may

emerge early in life. Collectively, these findings position the latent BAG factor as a robust,
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integrative phenotype that advances our understanding of the biological foundations of brain

age gap and its links to broader health outcomes.

Code availability.

All analysis code is available at https://github.com/VilteBaltra/genetic-architecture-of-

brain-age-gap, with UK Biobank—specific code for brain age estimation, GWAS, and PheWAS

provided at https://github.com/pjawinski/enigma_brainage.

Data Availability

GWAS summary statistics for BAGLeonardsen are available from the corresponding author
of the associated publication (Yunpeng Wang; doi: 10.1038/s41380-023-02087-y) upon
reasonable request. GWAS summary statistics for BAGwen can be downloaded from

https://labs-laboratory.com/medicine/multimodal brain bag. GWAS summary statistics for

BAGsmith can be obtained from https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes

(model number: V0140). GWAS summary statistics for BAGkaufmann can be obtained from

https://github.com/tobias-kaufmann/brainage. GWAS summary statistics for BAGyawinski can

be downloaded from Zenodo at https://doi.org/10.5281/zenodo.14826943. We used the

brainage2025.full.eur.gwm.gz dataset comprising the discovery and replication sample (n =
54,890; European ancestry), excluding 2,000 individuals that were held out for polygenic score
analyses, resulting in 52,890 individuals of European ancestry. GWAS summary statistics for

BAGHan and BAG factor can be obtained from https://doi.org/10.5281/zenodo.17997141 and

https://doi.org/10.5281/zenodo.17992281, respectively.
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