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Abstract 

Deviations from normative brain ageing trajectories are linked to a wide range of adverse health 

outcomes. A number of brain age prediction models have been developed, based on various 

neuroimaging modalities, machine learning algorithms, training samples, and age ranges. 

However, it remains unknown whether these models converge on a shared genetic liability, and 

whether capturing this shared signal could provide a more sensitive marker of brain health than 

any single model alone. We first conducted a new brain age gap (BAG) GWAS in a sample of 

60,735 individuals across 29 cohorts worldwide, and then applied genomic structural equation 

modelling to examine the shared genetic variance between five prior BAG GWASs and our 

new analysis, using a single latent BAG factor (30 cohorts overall). All six BAG GWASs 

loaded onto a single factor, explaining 63% of the total genetic variance. We identified 19 

independent SNPs associated with the BAG factor, including four novel associations. 

Genetically, the BAG factor was positively correlated with multiple traits, with blood pressure, 

smoking, longevity, autism, and sleep showing putatively causal effects. A polygenic score 

(PGS) for the BAG factor showed associations with phenotypic BAGs already in childhood, 

with stronger links observed in adulthood. Phenome-wide association analyses indicated that 

BAG factor PGS captured associations with more health traits than individual BAG PGSs. Our 

findings underscore the importance of considering the shared variance across different BAG 

constructs to identify robust correlates of poor brain health.  
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Introduction  

As we age, the brain develops and changes with considerable variability across 

individuals (Raz & Rodrigue, 2006). Such deviations from a typical brain ageing trajectory are 

important correlates of poor health outcomes (J. H. Cole et al., 2018). Brain age gap (BAG) – 

conceptualised as the difference between chronological and brain predicted age (e.g., from 

brain scans) – has become a valuable neuroimaging marker within lifespan neuroscience. BAG 

has recently been linked to over 200 traits, including disease risk factors (e.g., increased 

diastolic blood pressure and body mass index), cognitive function, and non-communicable 

diseases (e.g., type I and type II diabetes) (Jawinski et al., 2025; Kolbeinsson et al., 2020). 

In recent years, a growing number of brain age prediction models have been developed. 

Some models have been used in genome-wide association studies (GWASs) to characterise the 

genetic underpinnings of BAG, showing single-nucleotide polymorphism (SNP)-based 

heritability estimates ranging from 0.23 to 0.47 (Jawinski et al., 2025; Leonardsen et al., 2023; 

Smith et al., 2020; Wen et al., 2024), which are generally higher than estimates for psychiatric 

disorders (Baselmans et al., 2021). Furthermore, in line with phenotypic research, brain-age 

GWASs identified potential causal effects of BAG on health outcomes, such as blood pressure 

and diabetes (Jawinski et al., 2025). Understanding the genetic influence on BAG may 

therefore help identify risk factors for poorer brain health in later life and shed light on the 

biological mechanisms underpinning variability in the brain ageing process. 

Despite advances in this field, it is currently unclear to what extent different brain age 

models capture a shared underlying genetic signal. These models have been based on various 

neuroimaging modalities (T1-weighted structural magnetic resonance imaging [MRI], 

diffusion imaging, and functional MRI), machine learning algorithms, training samples, and 

age ranges (Soumya Kumari & Sundarrajan, 2024). Observational studies demonstrate that 
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BAG predictions from distinct models do not always correlate highly with each other (e.g., 

correlations between BAGs: r = 0.45-0.64; Bacas et al., 2023), which may be partly due to 

these heterogeneous methodological choices, as well as training population differences (e.g., 

in age, socio-economic background, imaging acquisition protocols) and measurement error. 

Modelling the joint genetic architecture of different brain age GWASs would enable us to 

extract a latent BAG factor, allowing us to (1) assess the degree to which genetic associations 

with BAG are shared across multiple models, (2) boost power for genetic variant discovery, 

and (3) reduce measurement error. True brain age values can only ever be approximated and 

depend on the accuracy of the underlying age-prediction models. Low-accuracy models may 

be too lenient, while highly accurate models may remove biologically meaningful variance or 

reflect overfitting, thereby limiting the ability to capture clinically or genetically relevant 

effects (Bashyam et al., 2020; Schulz et al., 2025). To extract the relevant biological signal and 

reduce measurement noise, we need to aggregate shared genetic variance across different BAG 

models. 

While previous BAG GWASs were based on models with high predictive accuracy 

(mean absolute error of ~3 years), they were all based on the UK Biobank (UKBB) cohort, 

thereby limiting global representation. The Enhancing Neuro Imaging Genetics Through Meta-

Analyses (ENIGMA; Thompson et al., 2020). Consortium has pioneered a global approach to 

neuroimaging genetics and has developed a brain age model that is based on standard 

FreeSurfer output and is therefore easily scalable across cohorts worldwide (Han et al., 2021).  

We thus first conducted a large BAG GWAS based on FreeSurfer-derived imaging 

features, enabling us to combine data across 29 cohorts worldwide and extending beyond the 

current focus on the UKBB. Subsequently, we applied genomic structural equation modelling 
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(Genomic SEM; Grotzinger et al., 2019) to examine the shared genetic variance across six 

brain age GWASs, including the present study, using a single latent BAG factor. A latent factor 

approach may provide a more accurate measure of BAG, capturing shared variance across 

different imaging-derived predictors (e.g., grey matter volume, thickness, surface area) and 

thus providing less biased estimates of BAG. We then conducted a GWAS on this latent factor, 

followed by a comprehensive set of analyses to investigate the biological pathways, shared 

genetic influences, causal relationships, polygenic risk, and phenome-wide associations with 

BAG. To our knowledge, this is the first study to integrate multiple BAG GWASs into a unified 

latent genetic factor, enabling a more robust investigation of its biological and clinical 

relevance. 

 

Method 

ENIGMA GWAS 

 As prior BAG GWASs were primarily based on the UKBB, we embarked on a large-

scale international analysis that integrated genomics and standard FreeSurfer output from 29 

cohorts worldwide (see map; N=60,735). Structural T1-weighted scans were processed using 

FreeSurfer (Fischl, 2012) resulting in a total of 77 features based on the Desikan/Killiany atlas 

(Desikan et al., 2006). The 77 features were used to derive BAG as detailed in Han et al. (2021). 

We first conducted GWASs on the ENIGMA model (BAGHan) at the cohort level, and then 

meta-analysed the results using METAL. For further details see Supplementary Material 

(SM) Methods section 1.1 and Table 1. Descriptive cohort characteristics, as well as imaging 

and genotype details, can be found in Tables S1-S4.  
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Genetic data sources for brain age gap 

 In addition to the GWAS conducted as part of the present study, we also selected five 

additional BAG GWASs with publicly available genetic summary statistics from previously 

published studies by Leonardsen et al. (2023), Wen et al. (2024), Smith et al. (2020), Kaufmann 

et al. (2019), and Jawinski et al. (2025). Throughout the manuscript, we refer to these models 

as BAGauthor.surname. The models differed in terms of imaging modality, input features, machine 

learning algorithms, samples, and age ranges. BAG was computed as the difference between 

predicted brain age and chronological age. A descriptive overview of the six models is provided 

in Table 1. A schematic summary of the analysis workflow is shown in Figure 1. 
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Figure 1. Analytical flowchart of the current study 

 
 
Note. Light brown boxes represent genome-wide association studies (GWASs). Maroon boxes 
represent post-GWAS analyses. Summary statistics for BAGHan have been obtained as part of 
the present study (see map in the top right). Summary statistics for BAGLeonardsen, BAGWen, 

BAGSmith, BAGJawinski, and BAGKaufmann have been obtained from previously published studies. 
BAG = brain age gap; PheWAS = phenome-wide association study; UKBB = UK Biobank; 
GenR = Generation R study. 
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Table 1. Six studies contributing to the genomic SEM GWAS of brain age gap factor 

Model GWAS        Brain age derivation Reference 
Name N Age 

range 
% 
females 

Ethnicity Sample MAE 
(years) 

h2 
(SE) 

Loci Imaging 
modality 

Algorithm Sample Training 
age range 

MAE 
(years) 

r  

BAGHan 
(ENIGMA) 

60,735 
(NUKBB=46,
322; 
NENIGMA=1
4,413)  

18-75 53.7% EUR 
primarily 

29 
datasets 
(inc. 
UKBB) 

9.4 0.21 
(0.01) 

29 T1w MRI Ridge 
regression 

19 
datasets 

18-75 male=6.5 
female=6.8 

female=0.83 
male=0.85 

Han et al. 
(2021); 
and the 
present 
study 

BAGLeonardsen 
(pyment) 

28,104 40-84y 51.6% EUR UKBB 2.45 0.27 
(0.04) 

8 T1w MRI SFCN-reg  21 
datasets 
(incl. 
UKBB) 

3-95y 2.47 0.975 Leonardse
n et al. 
(2023) 
 

BAGWen 
(brain BAG) 

30,108 Appro
x. 40-
84y 

NA EUR UKBB NA 0.47 
(0.02) 

11 Multimodal 
MRI (T1w, 
dMRI, rs-
fMRI) 

Support 
vector 
machine 
regression 

UKBB 46–82y female=3.5 
male = 3.7 

female=0.79 
male=0.80 

Wen et al. 
(2024); 
Tian et al. 
(2023)  

BAGSmith 
(62 modes) 

10,612  Appro
x. 40-
84y 

~54% EUR UKBB 2.9 0.23 
(0.05) 

1 Multimodal 
MRI (T1w, 
dMRI, rs-
fMRI) 

Independent 
component 
analysis; 
regression-
based 
models 

UKBB 45-80y 2.9  NA Smith et 
al. (2020)  
 

BAGKaufmann 
(brainage) 

20,170 40-70* 53%* EUR UKBB NA 0.24 
(0.03) 

1 T1w MRI Gradient 
tree 
boosting 
with 
XGBoost 

41 
datasets 
(inc. 
UKBB) 

3-89y 4.78* female=0.93 
male=0.94 

Kaufmann 
et al. 
(2019) 

BAGJawinski 
(combined 
BAG) 

52,8901 45-82 52.2% EUR UKBB 
and 
LIFE-
Adult 

3.09 0.28 
(0.02) 

39 T1w MRI Relevance 
vector 
machine and 
XGBoost 

UKBB 45-82y 3.09 0.86 Jawinski 
et al. 
(2025) 

Note. For BAGLeonardsen we used the regression model (SFCN-reg). For BAGWen we used the multimodal ‘Brain PhenoBAG’ derived from grey matter, white matter, and functional connectivity 
metrics. For BAGSmith we used the all-in-one model incorporating deltas from all 62 modes in a single model (code: V0140). For BAGJawinski we used the combined grey and white matter model. 
T1w MRI = T1-weighted magnetic resonance imaging; dMRI = diffusion magnetic resonance imaging; rs-fMRI = resting-state functional magnetic resonance imaging; BAG = brain age gap; 
EUR = European; GWAS = genome-wide association study; N = sample size; Loci = genome-wide significant SNPs clumped into approximately independent regions based on linkage 
disequilibrium thresholds and genomic distance, as reported in the original publications; MAE = mean absolute error; NA = not available; SNPs = single nucleotide polymorphisms; UKBB = UK 
Biobank; h2 = SNP-based heritability; Combined BAG = combined grey and white matter BAG. ¹ GWAS originally conducted with 54,890 individuals; re-run with 52,890 to hold out 2,000 for 
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polygenic score analyses. *No mean absolute error (MAE) reported in the original publication. An independent study on a separate dataset by Blake (2021) identified a MAE of 4.78. All BAG 
GWASs controlled for age, sex, and genetic PCs. Other covariates were study specific. For example, total intracranial volume was controlled for in BAGHan, BAGWen, and BAGJawinski only. 
Genomic SEM = genomic structural equation modelling.  
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Genomic SEM GWAS of six brain age gaps 

 We used Genomic SEM (v.0.0.5; Grotzinger et al., 2019) to conduct a GWAS of the 

six BAGs listed in Table 1 (Nunique.individuals=62,568; Neffective=160,656). This method accounts 

for sample overlap across contributing GWAS studies. First, we estimated genetic correlations 

between the six BAG models within genomic SEM and performed confirmatory factor analysis 

to identify a common latent factor. This approach allowed us to capture shared genetic variance 

while reducing measurement error and model-specific noise. We then regressed each SNP on 

the latent brain age factor using Genomic SEM’s multivariate GWAS function. For a detailed 

description of the method, see Grotzinger et al. (2019).  

To evaluate the adequacy of a single-factor solution, we additionally tested an 

exploratory two-factor model and compared fit indices (standardised root mean square residual; 

SRMR, Comparative Fix Index; CFI, model χ² and Akaike Information Criterion; AIC) using 

confirmatory factor analysis. All modelling was conducted using default settings unless 

otherwise specified.  

 

Post-GWAS analyses. 

We carried out a comprehensive set of post-GWAS analyses, as detailed below. For 

more information on these post-GWAS analyses, see SM section 1.2. 

Genomic loci and functional annotation. To annotate, prioritise and visualise GWAS 

results, we used the Functional Mapping and Annotation of Genome-Wide Association Studies 

(FUMA v1.5.2; Watanabe et al., 2017) SNP2GENE pipeline. 

Gene functional annotation. FUMA’s GENE2FUNC pipeline provided biological 

context for the identified genes. Tissue-specific differentially expressed genes were identified 

by testing for enrichment of prioritised genes against background gene sets.  
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MAGMA gene-based, gene-set, and tissue expression analyses. Gene-based 

association analysis was performed using MAGMA v1.08. Gene-set analysis was performed 

for curated gene sets and GO terms obtained from the MsigDB database (Liberzon et al., 2011).  

Heritability and genetic correlations. To perform heritability and genetic correlation 

analyses, we used linkage disequilibrium (LD) score regression (Bulik-Sullivan et al., 2015; 

Bulik-Sullivan et al., 2015). We assessed correlations of the brain age factor with 33 

psychiatric, cardiometabolic, behavioural, and ageing-related traits. 

Mendelian randomisation. To understand which traits may be causally related to 

BAG, we performed bi-directional two-sample Mendelian randomisation (MR) analysis with 

all 33 traits. An inverse-variance weighted (IVW) approach was used as our primary analysis 

estimate, with MR-Egger and weighted-median methods included as sensitivity analyses. To 

test the causal direction of each SNP and remove potentially invalid genetic variants, Steiger 

filtering was applied (Hemani et al., 2017). Analyses were performed using the TwoSampleMR 

package (Hemani et al., 2018) in R v4.3.2 (R Core Team, 2025). To account for sample overlap 

between exposure and outcome GWASs, we also calculated bias-corrected IVW estimates 

using the MRlap package (Mounier & Kutalik, 2023). 

 Polygenic score associations with BAG in childhood and adulthood. Polygenic scores 

(PGS) for individual BAGs and the latent BAG factor were computed using SBayesRC (Zheng 

et al., 2024). We assessed how well PGS scores predicted phenotypic BAGs (1) in a 

longitudinal child cohort (The Generation R Study; n = 2,332; mean age 10 years [SD = 0.61];  

Kooijman et al., 2016) and (2) in an independent (hold-out) adult imaging subset from the 

UKBB cohort stratified by ancestry group (UKBB return no. 2442): European (n=2,000), 

Central/South Asian (n=638), East Asian (n=291), and African (n=337); mean age 65 years 

[range: 47-82]; Table S1). UKBB results for the polygenic BAG factor score were compared 
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against scores obtained for each of the six input GWASs that contributed to the latent BAG 

factor. To ensure independence from the previous UKBB imaging GWASs, all participants 

who took part in the imaging visit and their relatives (up to 3rd degree) were excluded. 

 Due to data availability, we were only able to validate the PGS for the BAG factor using 

two phenotypic BAGs in the UKBB cohort (BAGHan and BAGJawinksi) and three in GenerationR 

(BAGHan, BAGLeonardsen, and one external model not included in the latent factor: BAGCole; 

Cole, 2023). 

 Polygenic score associations with health traits in childhood and adulthood. We then 

tested for PGS associations with nine available health-related outcomes during development, 

using data from Generation R (Kooijman et al., 2016). Additionally, to test which BAG PGS 

(factor-based vs. individual PGSs) is most relevant to a wide range of traits (ntraits=6,646), we 

performed a phenome-wide association study (PheWAS) in an independent, non-imaging 

subset of unrelated White British adults from the UKBB cohort (n=271,879; mean age 58 years 

[range: 40-74]). For PGS covariates see SM Methods section 1.2.  

Trio genetic analyses. Within-family trio models were used to test for direct and 

indirect genetic effects on nine available health-related outcomes and three phenotypic BAGs 

in Generation R (Kooijman et al., 2016). In trio models, the direct genetic effect represented 

the effect of the child’s PGS on health outcomes (conditional on the parental PGSs), while the 

indirect effects reflected the parental effect on child health outcomes (conditional on the child’s 

PGS) (Pingault et al., 2023; Tubbs et al., 2020). 

The analytical sample included genotyped trios (children and their biological mothers 

and fathers, up to n=1,063) with available phenotypic data. For each parent-offspring trio, we 

computed polygenic BAG factor scores using SBayesRC (Zheng et al., 2024). Before analysis, 

child, mother, and father polygenic BAG factor scores were first standardised and then 



 
    
 

 

16 
   
 

residualised for the first five genetic principal components. The three polygenic BAG factor 

scores were used as predictors of three phenotypic BAGs in the offspring (BAGHan, 

BAGLeonardsen, and BAGCole) as well as nine health outcomes in separate linear regression 

models. All outcomes were measured when the children were on average 9-13 years old. Each 

model also included age and sex as covariates.  

 

Results 

BAGHan GWAS meta-analysis  

We performed a genome-wide association meta-analysis of BAGHan across 29 cohorts 

(total N = 60,735; mean age=37.6 years [range=18-75]; 53% female). We identified 32 lead 

SNPs across 29 genomic risk loci reaching genome-wide significance (p < 5e⁻⁸; Table S5). 

Mapped genes (Table S6-S7) have been previously associated with brain-related morphology 

(i.e., brain region volumes), cognitive and psychiatric traits (e.g., cognitive performance, 

schizophrenia), and other health-related measures (e.g., body mass index, lipids; Table S11). 

Polygenic scores based on BAGHan explained the largest proportion of variance in brain age 

gap in European ancestry individuals (R2=8.3%; n=1,738) compared to other ancestries 

(R2<2.7%; Table S28). A full description of the BAGHan GWAS results is provided in the SM 

Results section 2.1 and Tables S5–S12. 

 

Shared genetic architecture across six brain age models 

Genetically, all BAG models were significantly correlated with each other, with at least 

a moderate effect size (mean rg=0.64, Figure 2A; Table S13). Correlations ranged from 

rg=0.37 (BAGLeonardsen and BAGHan) to rg=0.93 (BAGWen and BAGSmith). All six BAG models 
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loaded onto a single latent factor (BAGfactor; all standardised loadings > 0.60). This one-factor 

solution fitted the data well (χ2[9] = 77.14, p = 5.96-13, CFI = 0.94, SRMR = 0.09), explaining 

63% of the total genetic variance. BAGWen had the highest factor loading (beta=0.91, SE=0.07, 

p=6.93e-41), followed by BAGSmith and BAGKaufmann (Figure 2B). For the two-factor solution, 

see SM Results section 2.2 and Figure S3.
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Figure 2. Shared genetic architecture of six brain age gaps and their association with health 

outcomes

Note. (A) Genetic correlations among six brain age gaps. (B) Genetically defined common 

factor model for brain age gap with standardised coefficients and standard errors shown in 

brackets. The latent factor is specified with unit variance identification. Model fit metrics: χ² = 

77.14, p(χ²) = 5.96e-13, CFI = 0.94, SRMR = 0.09. (C) Manhattan plot of the brain age gap 

GWAS based on genomic SEM using DWLS estimation. The y-axis depicts -log10(p) values 

for genetic variants associated with the brain age factor. The genome-wide significance 

threshold is denoted by the horizontal dotted red line at p = 5e-8. (D) Genetic correlations of 

the brain age factor with health outcomes. BAG = brain age gap; GWAS = genome-wide 

association study; SEM = structural equation model; DWLS = Diagonally Weighted Least 

Squares. ADHD = attention deficit hyperactivity disorder; PAI1 = DNA methylation-based 

estimator of plasminogen activator inhibitor-1. 
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Genome-wide associations for shared genetic BAG factor 

We identified 19 independent genome-wide significant SNPs (Figure 2C) across 16 

independent loci (Table 2). The GWAS yielded a genomic control lambda (λGC) of 1.21 and 

an LD score regression intercept of 1.01 (SE=0.01), indicating inflation driven primarily by 

polygenicity.  

Seventeen of the 19 independent SNPs showed a consistent direction of effect across 

contributing GWASs; 15 SNPs had been previously linked to BAG in the input GWASs, and 

four SNPs were novel (Table 2). The SNPs mapped most consistently to 32 genes, with STH, 

MAPT, and NKX6-2 showing the strongest associations (all p < 9.69e-13; Tables S14-S15). A 

subset of these genes (e.g., MAPT, KANSL1, CRHR1, and TOMM40) had previously been 

linked with neurodegeneration, brain structure, or brain age (Burggren et al., 2017; Jawinski et 

al., 2025; Kulminski et al., 2025; Leonardsen et al., 2023; Zhang et al., 2016), whereas others 

(e.g., SHMT1, ALKBH5, WDR12) had no strong prior relation with brain age-related 

phenotypes, representing potentially novel genes underlying brain age. 
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Table 2. Nineteen independent genome-wide significant variants associated with brain age gap factor across 16 genomic loci  

Note. Genome-wide significance set at p < 5e-8. SNP independence defined by linkage disequilibrium pruning with 𝑟2 < 0.1 within 500 kb windows 
(using 1000 Genomes Phase 3 European reference panel). SNP=single nucleotide polymorphism; chr=chromosome; Locus = index of genomic 
risk locus; alead SNPs (in loci with >1 independent SNP); bnovel locus; position = position on build GRCh37. MAF=minor allele frequency; 

SNP Locus Chr Position MAF A1/A2 Estimate SE Z-score p-value Q 
Q p-
value Direction 

Nearest 
gene Novel SNP 

rs10753232 1 1 180950126 0.43 C/T -0.025 0.004 -6.445 1.16E-10 38.27 3.33e-07 ----+- STX6 no (  ) 

rs10494988 2 1 215141570 0.39 C/T 0.021 0.004 5.495 3.90E-08 25.50 1.12e-04 ++++++ (KCNK2) no (  ) 

rs5743091 3 2 190704420 0.18 A/G -0.030 0.005 -6.193 5.89E-10 0.98 0.964 ------ PMS1 no (  ) 

rs185726277 4 2 203904306 0.13 G/A 0.030 0.005 5.831 5.52E-09 18.87 0.002 ++++++ NBEAL1 no (  ) 

rs6442411 5 3 13836296 0.39 T/C -0.023 0.004 -5.687 1.29E-08 10.73 0.057 ------ (WNT7A) no (  ) 

rs674243a 6 3 39478695 0.47 C/T -0.023 0.004 -5.929 3.05E-09 16.89 0.005 ------ (RPSA) no (  ) 

rs142003765 6 3 39479611 0.02 A/G -0.047 0.008 -5.634 1.76E-08 15.16 0.010 ------ (RPSA) yes (  ) 

rs337637a 7 4 38604470 0.31 G/A -0.031 0.004 -7.666 1.77E-14 39.10 2.26e-07 ------ KLF3-AS1 no (  )  

rs9992667 7 4 38680186 0.19 C/T 0.026 0.005 5.582 2.37E-08 2.68 0.749 ++++++ KLF3 yes (  ) 

rs7704770 8 5 159487953 0.39 G/A -0.023 0.004 -5.677 1.37E-08 4.82 0.438 ------ TTC1 no (  ) 

rs765724 9 6 45417118 0.35 T/C -0.025 0.004 -6.565 5.20E-11 42.92 3.83e-08 ------ RUNX2 no (  ) 

rs12263364 10 10 134555548 0.24 G/T -0.033 0.005 -7.262 3.82E-13 4.55 0.473 ------ INPP5A no (  ) 

rs12146713 11 12 106476805 0.09 T/C -0.041 0.006 -7.031 2.06E-12 15.60 0.008 ------ NUAK1 no (  ) 

rs28520337 12 15 39647894 0.07 T/C -0.035 0.006 -5.463 4.68E-08 28.62 2.75e-05 -----+ (THBS1) no (  ) 

rs28364628 13b 17 18163262 0.27 C/T -0.025 0.004 -5.716 1.09E-08 8.05 0.154 ------ MIEF2 yes (  ) 

rs166840 14b 17 19799698 0.41 G/A -0.023 0.004 -5.636 1.74E-08 4.32 0.505 ------ (AKAP10) yes (  ) 

rs62065444a 15 17 43565599 0.20 T/C -0.046 0.005 -9.906 3.93E-23 64.95 1.15e-12 ------ PLEKHM1 no (  ) 

rs2316775 15 17 43953502 0.17 A/G 0.027 0.005 5.726 1.03E-08 16.45 0.006 ++++++ (MAPT) no (  ) 

rs429358 16 19 45411941 0.16 T/C -0.032 0.005 -6.393 1.62E-10 14.34 0.014 ------  APOE no (  ) 
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A1=effect allele; A2=non-effect allele; Estimate=effect size of the effect allele; SE=standard error; Q=QSNP heterogeneity statistic testing whether 
the SNP acts solely through the common factor; Direction=effect direction across contributing studies (order: Han, Leonardsen, Jawinski, Wen, 
Kaufmann, Smith); nearest gene = based on OpenTarget with genes that are proximal to each SNP in brackets; novel SNP = SNP identified as 
significant at p<5e-8 in the GWAS for the shared brain age gap factor but not reaching genome-wide significance at any of the input GWASs; each 
input GWAS is represented by six coloured squares in the following order: Han, Leonardsen, Jawinski, Wen, Kaufmann, Smith. Colours indicate 
novelty status: green ( ) = direct replication of a previously reported association, orange ( ) = indirect replication (in linkage disequilibrium with 
a known variant using r²<0.1 and 500 kb window), purple ( ) = novel association. 
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Gene functional annotation 

We observed tissue-specific expression patterns, whereby some genes (e.g., MAPT, 

RUNDC3A, and GFAP) showed higher expression in brain tissue compared to peripheral 

tissues (Figure S4, Table S16). The strongest enrichment signals were observed in the 

cerebellum, not significant after Bonferroni correction (Figure S5, Table S17). Enriched 

biological processes were related to tumour immune responses (Table S18). Lastly, among all 

traits included in the GWAS catalog, the prioritised genes overlapped most significantly with 

phenotypes related to neurodegenerative disease, cardiometabolic health, and brain 

morphology (e.g., Alzheimer’s disease, body mass index, lipids, hippocampal volume, and 

cerebrospinal fluid biomarkers). Reassuringly, brain age was also identified among the 

enriched traits (Figure S6, Table S18-S19). 

 

Genetic correlations with other traits 

 The BAG factor was genetically correlated with 12 of 33 tested traits, of which eight 

survived false discovery rate (FDR) correction (Figure 2D; Table S20). These included 

positive associations with granulocyte proportion, smoking, metabolic age, bipolar disorder, 

blood pressure, type 2 diabetes, and CRP, as well as negative associations with longevity.  

 

Mendelian randomisation 

MR results demonstrated evidence for a potentially causal role of blood pressure 

(systolic blood pressure: betaIVW 0.066, 95% CI 0.017 to 0.116, p=0.008; diastolic blood 

pressure: betaIVW 0.069, 95% CI 0.021 to 0.116, p=0.005), smoking initiation (betaIVW 0.070, 

95% CI 0.014 to 0.127, p=0.014), and longevity (ORIVW 0.95, 95% CI 0.92 to 0.99, p=0.019) 

on the BAG factor (Figure 3; Table S21). Reverse MR revealed an effect of the BAG factor 
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on autism spectrum disorder (ORIVW=1.85, 95% CI 1.29 to 2.66, p < 0.001), sleep duration 

(betaIVW=-0.094, 95% CI -0.163 to -0.026, p = 0.007), and smoking initiation (betaIVW=-0.144, 

95% CI -0.248 to -0.041, p = 0.006). The MR-Egger estimate for smoking initiation was 

inconsistent with the primary estimate. No other trait showed significant associations (Figure 

3; Table S22). For sensitivity analyses, see SM Results section 2.3 and Tables S21-S24.  

When compared to MR analyses conducted separately for each of the six individual 

BAGs, we observed that the BAG factor captured the most robust associations across traits 

(i.e., identified by most BAG models) and omitted inconsistent associations (i.e., only 

identified with one or two individual BAG models; Figure S7; Table S21). The same was 

largely true for the reverse associations (trait on BAG; Figure S8; Table S22). MR results for 

the BAG factor did not seem to be driven by biases related to sample overlap or winner’s curse. 

For details, see SM Results section 2.3, Figure S9; and Table S24. 
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Figure 3. Mendelian randomisation results: bidirectional association between brain age gap 

factor and health outcomes 

 

Note. Each panel portrays the effect of health outcomes on brain age gap (left side) and the 

effect of brain age gap on health outcomes (right side). Beta (95% CI) represents the SD change 

in brain age gap per 1 SD increase in exposure. For binary outcomes (type 2 diabetes, coronary 

artery disease, schizophrenia, Parkinson’s disease, major depressive disorder, autism spectrum 

disorder, Alzheimer’s disease, bipolar disorder, ADHD, longevity, smoking initiation), effect 

estimates are presented on the log-odds scale. ADHD = attention deficit hyperactivity disorder; 

SD = standard deviation.
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Polygenic score associations with BAG in childhood and adulthood 

 We then evaluated the performance of the polygenic score for the BAG factor in 

predicting phenotypic BAG in childhood and adulthood (including analyses across ancestries), 

using a sample of children (mean age 9-13 years; Table S25) from the Generation R Study and 

a multi-ancestry sample of adults from the UKBB cohort (mean age 65 years; Table S26). 

These samples were independent from the discovery GWAS. 

In Generation R, small positive associations between the BAG factor polygenic score 

and phenotypic BAGs (BAGHan and an external model BAGCole) were observed, suggesting 

genetic influences on brain age already early in life (partial R2 up to 1.5%; Figure 4A; Table 

S27). 

In UKBB, positive associations were observed between the polygenic score for the 

BAG factor with both BAG phenotypes (i.e., BAGHan and BAGJawinski), showing the best 

predictive performance in European and East Asian ancestry groups (partial R2 up to 6%; 

Figure 4B). Cross-model analyses showed that the best-matching polygenic score-BAG pairs 

used the same model (i.e., PGSBAG.Han with BAGHan and PGSBAG.Jawinski with BAGJawinski). When 

removing the exact pairs, the BAG factor consistently ranked highest, explaining the largest 

proportion of variance across the remaining BAG phenotypes and ancestry groups (Table S28). 

 

Polygenic score associations with health traits in childhood and adulthood 

When testing for associations between the PGS for the BAG factor and nine health-

related child outcomes in Generation R (n=2,269), we observed a negative association with 

high-density lipoprotein cholesterol, which survived multiple testing correction (Figure 4C, 

Table S29). No other trait showed significant associations. In UKBB (n=271,879), the PGS 

for the BAG factor was associated with 460 adult phenotypes in a PheWAS after FDR 
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correction. Notable associations included blood pressure, education/qualification, overall 

health rating, parental age at death, fluid intelligence score, neuroticism, and alcohol use 

(Figure 4D). Overall, the PGS for the BAG factor outperformed PGSs for the individual BAG 

models that contributed to the meta-analysis, achieving the lowest mean rank of association p-

values across phenotypes and the highest number of significant associations compared to 

polygenic scores from individual BAG models (Figure 4E; Figure S10; Table S30). Across 

all BAG models, the highest proportions of FDR-corrected associations were in domains 

related to sociodemographic, lifestyle/environment, physical, and cognitive characteristics. 

BAGfactor showed the highest number of associations within most categories, indicating the 

broadest phenotypic coverage amongst all BAGs. A detailed breakdown by phenotype category 

(e.g., mental health, cognitive function, medications, physical measures, sociodemographic 

characteristics) is provided in Table S31.
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Figure 4. Associations of the polygenic score for BAG factor with phenotypic BAGs and a 

broad range of outcomes in the Generation R and UK Biobank cohorts 
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Note. Association of the polygenic score for the BAG factor with (A) three phenotypic BAGs 

in children from the Generation R cohort, and (B) two phenotypic BAGs in adults from the UK 

Biobank cohort stratified by ancestry: European (EUR), East Asian (EAS), Central/South 

Asian (CSA), and African (AFR). Error bars represent standard errors. (C) Associations of the 

polygenic score for the BAG factor with nine health outcomes in Generation R. (D) PheWAS 

results showing associations of the polygenic score for BAG factor with a broad range of 

outcomes in the UK Biobank cohort, with the top (or most relevant) association in each 

category annotated by an arrow. (E) Proportion of PheWAS associations surviving FDR 

correction across phenotypic categories for each polygenic score derived from BAGfactor and 

the six input GWASs that contributed to the meta-analysis. BAG = brain age gap; PheWAS = 

phenome-wide association study; GWAS = genome-wide association study; FDR = False 

Discovery Rate. 

 

Trio genetic analyses 

 Finally, we investigated whether associations between the PGS for the BAG factor and 

health-related child outcomes in Generation R were likely due to indirect genetic effects, using 

child-parent trio data (up to n=1,063). We detected no significant indirect genetic effects for 

any trait (Figure 5; Table S32). 
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Figure 5. Trio results testing for indirect and direct (child) genetic effects of polygenic score 

for BAG factor on child outcomes in Generation R 

 

Note. IQ = intelligence quotient; BAG = phenotypic brain age gap. 
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Discussion 

Our genomic analysis demonstrated that diverse BAG models, trained on distinct 

imaging modalities, features, and samples, were largely underpinned by a common genetic 

signal. All six BAG GWASs loaded strongly on a single latent factor that accounted for ~63% 

of their additive genetic variance (rangeindividual.BAGs: 36-83%), indicating that a sizable 

proportion of genetic influences on brain age is shared across methodological implementations. 

A GWAS of this factor yielded 19 independent variants, of which four were novel and two 

were independent of known loci. The remaining 15 variants had been previously identified in 

one to three BAG GWASs, yet never consistently across all six GWASs. These variants map 

to genes previously implicated in neurodegeneration and brain structure (e.g., MAPT, KANSL1, 

CRHR1, APOE/TOMM40). In line with previous studies (Jawinski et al., 2025; Leonardsen et 

al., 2023), the strongest signal was observed at a locus linked to MAPT – a gene encoding tau, 

a key protein in Alzheimer’s disease and other tauopathies (Zhang et al., 2024). We also 

observed signals in novel candidates (e.g., SHMT1, ALKBH5, WDR12), which are involved in 

the regulation of cell proliferation (Hölzel et al., 2005) and apoptosis (Paone et al., 2014). These 

results point to a biologically plausible, polygenic substrate of brain age that is shared but only 

partially recoverable from any single BAG implementation. 

Further analyses position the latent BAG factor as a health-relevant dimension. Genetic 

correlations aligned BAG with cardiometabolic and inflammatory profiles (blood pressure, 

type 2 diabetes, C-reactive protein, granulocyte proportion), smoking, bipolar disorder, and 

metabolic age, and in the expected opposite direction with longevity. MR supported putative 

causal contributions of higher blood pressure and smoking initiation to higher BAG (pointing 

towards promising prevention targets for brain health), and of a genetic propensity to longevity 

as a protective factor. The implication of blood pressure on brain age replicates previous MR 
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findings (Jawinski et al., 2025). Smoking initiation and longevity represented associations not 

reported in previous MR studies, but are in line with those observed in non-causal observational 

research (Linli et al., 2022; Zettergren et al., 2024). Reverse MR indicated a possible causal 

effect of genetic liability to higher BAG factor on autism spectrum disorder and shorter sleep 

duration, suggesting that BAG may be both a downstream effect of and a risk factor for poor 

health.  

Polygenic scores derived from the latent factor predicted BAGs in independent cohorts, 

including in childhood, suggesting that brain age trajectories may be shaped well before 

midlife. Most ageing studies concentrate on adulthood (Felix et al., 2014), despite recent 

research showing that variations in adult brain age might be shaped by early-life experiences 

(Vidal-Pineiro et al., 2021). Consistent with this research, our findings call for an increased 

focus on development to understand lifelong ageing and to identify effective ageing 

interventions. 

In our PheWAS analyses, polygenic scores derived from the latent factor also 

outperformed scores from individual BAG GWASs in predicting health traits across multiple 

domains. This increase in phenotypic associations when combining different GWASs has also 

been observed in the context of substance use (Xu et al., 2023) and cardiovascular disease 

(Jorda et al., 2023; Jordà et al., 2025), which further highlights the interconnectedness of a 

wide range of phenotypes and genetically indexed brain age. These findings suggest that BAG 

may reflect broad systemic effects and therefore serve as a more global marker of health, rather 

than being limited to brain-related traits (Cole et al., 2018).  

Trio models suggested that associations of the polygenic score for the BAG factor with 

the individual BAGs and HDL cholesterol in childhood were unlikely to reflect 

intergenerational pathways. The overall lack of effects aligns with prior research (Ghatan et 
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al., 2025), although due to the small sample size, we might have been underpowered to detect 

these effects, or they may emerge later.  

Our findings should be interpreted in light of the following limitations. First, while the 

latent genetic BAG factor removes model-specific measurement error, it may still partly 

capture shared methodological characteristics rather than solely biological brain age processes. 

Second, due to the limited availability of MRI data in non-European cohorts, our analyses were 

based on predominantly European-ancestry individuals, although we did include cross-ancestry 

analyses where possible. Third, our BAG factor was largely T1-based, potentially 

underestimating vascular effects on the brain that are better captured by T2 or FLAIR 

sequences. Future studies could build on our study by assessing harmonised, region- or 

modality-specific brain age models (e.g., structural vs. functional, or grey vs. white matter) and 

examining effects across multiple ancestries. Findings could also be triangulated across 

longitudinal designs and in randomised controlled trials to test whether blood pressure 

treatment or smoking cessation could slow down BAG trajectories. 

In conclusion, by modelling shared genetic variance across six distinct brain age 

models, this study provides a comprehensive and biologically grounded understanding of the 

genetic architecture underlying brain ageing. The identification of 19 genome-wide significant 

SNPs––spanning established neurodegenerative genes (e.g., MAPT, APOE/TOMM40) and 

novel candidates––highlights a core set of genetic influences that transcend methodological 

differences between BAG implementations. The latent BAG factor not only enhanced genetic 

discovery and predictive accuracy but also captured meaningful associations with health-

relevant traits, including blood pressure, smoking, and longevity, underscoring its systemic 

relevance. Polygenic analyses further revealed that genetic influences on brain age gap may 

emerge early in life. Collectively, these findings position the latent BAG factor as a robust, 
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integrative phenotype that advances our understanding of the biological foundations of brain 

age gap and its links to broader health outcomes. 

 

Code availability.  

All analysis code is available at https://github.com/VilteBaltra/genetic-architecture-of-

brain-age-gap, with UK Biobank–specific code for brain age estimation, GWAS, and PheWAS 

provided at https://github.com/pjawinski/enigma_brainage. 

 

Data Availability 

GWAS summary statistics for BAGLeonardsen are available from the corresponding author 

of the associated publication (Yunpeng Wang; doi: 10.1038/s41380-023-02087-y) upon 

reasonable request. GWAS summary statistics for BAGWen can be downloaded from 

https://labs-laboratory.com/medicine/multimodal_brain_bag. GWAS summary statistics for 

BAGSmith can be obtained from https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes 

(model number: V0140). GWAS summary statistics for BAGKaufmann can be obtained from 

https://github.com/tobias-kaufmann/brainage. GWAS summary statistics for BAGJawinski can 

be downloaded from Zenodo at https://doi.org/10.5281/zenodo.14826943. We used the 

brainage2025.full.eur.gwm.gz dataset comprising the discovery and replication sample (n = 

54,890; European ancestry), excluding 2,000 individuals that were held out for polygenic score 

analyses, resulting in 52,890 individuals of European ancestry. GWAS summary statistics for 

BAGHan and BAG factor can be obtained from https://doi.org/10.5281/zenodo.17997141 and 

https://doi.org/10.5281/zenodo.17992281, respectively. 
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