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(Abstract
-=We present the design and results of the MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024, focusing on
ederated learning (FL) for glioma sub-region segmentation in multi-parametric MRI scans, and evaluating novel weight
ggregation methods for increased robustness and efficiency. Participating methods from six teams are evaluated using a
standardized FL setup and a multi-institutional dataset derived from the BraTS glioma benchmark—a dataset consisting
of 1,251 training cases, 219 validation cases, and 570 hidden test cases, with segmentations of enhancing tumor (ET),
tumor core (TC), and whole tumor (WT). Teams are ranked by a cumulative scoring system accounting for segmentation
performance—measured by Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff Distance (HD95)—and
communication efficiency assessed through the convergence score. A PID-controller-based approach emerges as the
top-performing method, achieving a mean DSC of 0.733, 0.761, and 0.751 for ET, TC, and WT, respectively, with
corresponding HD95 values of 33.922mm, 33.623mm, and 32.309mm, while also being the most efficient with a
convergence score of 0.764. These results contribute to ongoing advances in FL, building on top-performers from
previous challenge iterations and surpassing them, highlighting PID controllers as powerful mechanisms for stabilizing and
optimizing weight aggregation in FL. The challenge code is available at https://github.com/FeTS-AI/Challenge.
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1. Background

While Al has been making strides in all fields, its applicabil-
ity in healthcare has been mainly hindered by data scarcity,
with most studies focusing on single-center data (Rajpurkar
et al., 2022; Kelly et al., 2019), not able to capture the di-
versity across patient populations. Models produced in such
a restricted manner have questionable generalizability in
real-world applications, where data significantly varies from
one site to the next. To address the scarcity, collaborative
studies are essential, and to remain respectful of privacy
constraints (such as HIPPA and GDPR (Annas et al., 2003;
Voigt and Von dem Bussche, 2017)), a realizable way for-
ward is through Federated Learning (FL): a framework that
distributes models across sites, learns locally from institu-
tional data, while alleviating the obvious privacy risks of
data-sharing and hence acting as a catalyst for multi-site
healthcare partnerships (McMahan et al., 2017; Yang et al.,
2018, 2019; Rieke et al., 2020; Sheller et al., 2020; Yang
et al., 2024; Pati et al., 2024). This way models may cap-
ture information from the high diversity of the real-world
data, remaining fair across different populations.

It is important to note that while FL mitigates the
obvious privacy risks by keeping data local, it does not
guarantee privacy by itself (Pati et al., 2024; Zhao et al.,
2025). Model updates can still leak sensitive information
through, for example, membership inference attacks (Hu
et al.,, 2022; Zhang et al., 2022). Complementary ap-
proaches to strengthen privacy in federated setups include
secure aggregation (Fereidooni et al., 2021; So et al., 2022;
Rathee et al., 2023), differential privacy (El Ouadrhiri and
Abdelhadi, 2022; Adnan et al., 2022), homomorphic encryp-
tion (Xie et al., 2024; Aziz et al., 2023), and confidential
computing?!.

For the work presented here, the use case is glioma seg-
mentation, encompassing both low-grade and high-grade
gliomas—including glioblastoma, the most common and
aggressive type of adult brain tumor. Glioblastoma, despite
multimodal treatments involving surgical resection, radia-
tion, and chemotherapy, has a median survival of about 15
months, with less than 10% of patients surviving for over 5
years (Ostrom et al., 2015). The poor prognosis is largely
a consequence of glioblastoma complexity, whose patho-
logical heterogeneity leads to treatment resistance Bakas
et al. (2024a); Villanueva-Meyer et al. (2024); Bakas et al.
(2024b). Routine diagnosis and response assessment in
glioblastoma patients is carried out through radiologic imag-
ing (i.e., magnetic resonance imaging (MRI)) (Shukla et al.,
2017), through which the tumor subregions may be delin-
eated for follow-up computational analyses and personalized
diagnostics (Pati et al., 2020). To enable robust tumor
subregion delineation, the International Brain Tumor Seg-

1. https://confidentialcomputing.io/
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mentation (BraTS) benchmark/challenge (Menze et al.,
2014; Bakas et al., 2018, 2017c,a,b; Baid et al., 2021b)
has been at the forefront of providing high-quality data
and an end-to-end open-source framework that fosters a
benchmark environment for fair algorithmic evaluation. It
used clinically acquired, multi-parametric MRl (mpMRI),
and the evaluated algorithms are publicly available for use
by the scientific community (Bakas et al., 2015; Zeng et al.,
2016; Kamnitsas et al., 2017; Isensee et al., 2018; McKinley
et al., 2018).

The Federated Tumor Segmentation (FeTS) challenge
2021 leveraged the BraTS glioma dataset to present the first
challenge ever proposed for FL. The FeTS challenge in 2021
focused on constructing and evaluating a consensus model
for the segmentation of gliomas, while its continuation in
FeTS 2022 built on the foundation laid by its predecessor,
further refining the federated learning techniques and ex-
panding the collaborative network for an even larger dataset
(Zenk et al., 2025). Since the first study of FL in healthcare
(Sheller et al., 2019, 2020) and following the FeTS 2022
challenge, there have been numerous studies across medical
imaging fields that focused on federated learning either in
a simulation set up where the “different sites” are actually
running on a single machine (Linardos et al., 2022; Ro
et al., 2021; Li et al., 2022; Adnan et al., 2022) or real-
world application, where the federated learning set up is
deployed across actual sites, bringing together cohorts that
span the globe (Pati et al., 2022b). Along the trajectory
of this growth, there have also been multiple notable tools
that foster FL research, such as the MedPerf for federated
benchmarking of Al models ‘in the wild" (Karargyris et al.,
2023), fedJAX for simulation-focused research (Ro et al.,
2021), and multiple libraries for FL development (Foley
et al., 2022; Roth et al., 2022; Beutel et al., 2020; Ziller
et al., 2021; Pati et al., 2022c).

Previous FeTS Challenges (2021 and 2022) Zenk et al.
(2025) have presented tasks in two scenarios: one task
in an environment that replicates federated learning con-
ditions within one machine using BraTS, and a second
task where evaluation is carried out across a real-world
federation. Building on the insights from these previous
challenges, the FeTS Challenge 2024, the third iteration
of this challenge, shifts its focus exclusively to “optimal
weight aggregation”, testing innovations on the federated
aggregation algorithm on a single machine, without the
hurdle of real-world deployment. The primary goal of this
challenge is to further refine the FL approach by optimizing
the aggregation of model weights from different institutions,
thereby improving the overall performance and robustness
of the consensus models. This focus aims to address some
of the remaining challenges in FL, particularly how best to
combine the learned parameters from diverse data sources
without compromising data privacy.
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Figure 1: A schematic of the FL-based learning process. The FeTS Challenge tasks participants with contributing their
innovations at the three levels: a. hyperparameter tuning, b. collaborator selection, c. weight aggregation function.
Note that for this challenge, the individual sites illustrated here are actually data partitions within one computational

environment rather than a real-world deployment.

2. Summary

The FeTS Challenge 2024 envisions FL as a transformative
paradigm for multi-institutional collaboration, enabling ro-
bust, fair, and generalizable models without compromising
patient privacy. The challenge aims to refine FL techniques
to improve personalized diagnostics and treatment planning,
emphasizing on glioma patients.

The task is focused on advancing aggregation methods
for federated consensus models (Figure 1), providing tools
that enable replicating an FL environment on a single ma-
chine. Using a curated multi-parametric MRI dataset from
the BraT$S glioma benchmark and clinically relevant segmen-
tation metrics (Maier-Hein et al., 2024; Reinke et al., 2024),
the challenge ensures real-world relevance while maintaining
compliance with privacy regulations, like HIPAA and GDPR.
It addresses critical challenges such as data scarcity and het-
erogeneity in healthcare Al while offering clear innovation
opportunities in areas such as weight aggregation algorithms,
hyperparameter tuning, and collaborator selection.

It is designed for researchers with programming exper-
tise, through low-code tools GaNDLF (Pati et al., 2021)
and openFL (Foley et al., 2022), but with clear “innovation
hotspots” in the code, i.e., lines of the script where inno-
vation is encouraged, including the aggregation algorithm
itself, the hyper-parameter tuning, and the selection of col-
laborators per round. This way innovators/participants can
seamlessly integrate new ideas in a code that is reproducible
and has already been used successfully for three iterations
of a challenge (2021, 2022, and now 2024) that attracted

participations from research groups around the globe.

3. Resource Availability

3.1 Code Location

To enable reproducibility by the scientific community, the
instructions and code used for the rankings have been made
publicly available?2. The GaNDLF framework, which acts
as the backbone for Al training and development, is also
available for public use® (Pati et al., 2021), as well as the
backend responsible for the federated learning orchestration
(OpenFL by Intel)*(Reina et al., 2021; Foley et al., 2022).

3.2 Relevant Research

FeTS Challenge 2024 facilitates research on FL through
benchmarking algorithms for optimal weight aggregation in
FL setups, toward developing models that generalize across
diverse clinical datasets without direct data sharing. It also
trains research relevant robust Al models to segment glioma
subregions in mpMRI data, but bears implications in broader
clinical applications (e.g., radiology, cardiology, pathology).
Most crucial is the potential of such refined FL techniques
to facilitate multi-site collaborations in creating Al models
for rare diseases or underserved populations where data
availability is limited.

2. https://github.com/FETS-AI/Challenge
3. https://github.com/mlcommons/GaNDLF
4. https://github.com/securefederatedai/openfl
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3.3 Licensing

The FeTS Challenge 2024 and its associated resources
(FeTS, GaNDLF, and OpenFL) adhere to an Apache Li-
cense®. This ensures that the resources are freely available
for research, development, and deployment in various aca-
demic and clinical applications.

4. Materials & Methods
4.1 Data

This challenge leverages data from BraTS 2021 (Baid et al.,
2021a; Bakas et al., 2017c, 2018), a multi-institutional
dataset that has been evolving over the span of a decade,
and has supported multiple challenges (Menze et al., 2014;
Bakas et al., 2017a,b; Adewole et al., 2025; LaBella et al.,
2024a; Mehta et al., 2022; LaBella et al., 2024b; Amiruddin
et al., 2025; Kofler et al., 2025; Adewole et al., 2023; LaBella
et al.; Maleki et al., 2025; LaBella et al., 2024c; de Verdier
et al., 2024; Kazerooni et al., 2024; Moawad et al., 2024;
Kofler et al., 2023; Li et al., 2024). BraTS 2021 contains
mpMRI scans of glioma patients, routinely acquired during
standard clinical practice along with their reference standard
annotations for the evaluated tumor subregions. These are
augmented with metadata that identify the partitioning
of the scans in a de-identified manner. Each patient case
contains four structural mpMRI scans at the pre-operative
baseline timepoint: i) native T1l-weighted (T1) and ii)
contrast-enhanced T1 (T1-Gd), iii) T2-weighted (T2), and
iv) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR).

4.1.1 Data Pre-processing

The exact pre-processing pipeline applied to all the data
considered in the present FeTS challenge is identical with
the one evaluated and followed by the BraTS challenge
and previous FeTS challenge iterations. Input scans (i.e.,
T1, T1-Gd, T2, T2-FLAIR) are registered to the same
anatomical atlas (i.e., SRI-24 (Rohlfing et al., 2010)) using
the Greedy diffeomorphic registration algorithm (Yushke-
vich et al., 2016), ensuring a common spatial resolution
of (1mm3). After completion of the registration process,
brain extraction is done to remove any apparent non-brain
tissue, using a deep learning approach specifically designed
for brain MRI scans with apparent diffuse glioma. This al-
gorithm utilizes a novel training mechanism that introduces
the brain's shape prior as knowledge to the segmentation
algorithm (Thakur et al., 2020). All pre-processing rou-
tines have been made publicly available through the Cancer
Imaging Phenomics Toolkit (CaPTk®) (Davatzikos et al.,
2018; Pati et al., 2019; Rathore et al., 2017) and the FeTS

5. http://www.apache.org/licenses/
6. https://www.cbica.upenn.edu/captk
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Table 1: Overview of case numbers in training, validation,
and test sets. Datasets with source BraTS’'21 are central-
ized. *based on partitioning 1/2

Training  Validation Test
# cases 1251 219 570
# institutions | 23/33* 10 12
Source BraTS'21 BraTS'21 BraTS'21

tool (Pati et al., 2022b).

4.1.2 Annotation Protocol

The skull-stripped scans are annotated to indicate the brain
tumor subregions. The annotation process follows a prede-
fined clinically approved annotation protocol that describes
the detailed radiologic appearance of each tumor subregion
of the MRI scans. In summary, the tumor subregions are:

1. the enhancing tumor (ET), which delineates the hyperin-
tense signal of the T1-Gd, after excluding the vessels.

2. the necrotic tumor core (NCR), which outlines regions
appearing dark in both T1 and T1-Gd images (denoting
necrosis/cysts), and dark regions in T1-Gd and bright in
T1.

3. the tumor core (TC), which includes the ET and NCR,
and represents what is typically resected during a surgical
operation.

4. the whole tumor (WT), which includes the peritumoral
edematous and infiltrated tissue (ED), delineates the
regions characterized by the hyperintense abnormal signal
envelope on the T2-FLAIR sequence.

During its collection, BraTS followed a strict peer-review
process for quality control, where each case was assigned to
pairs of annotator-approvers. Annotator experience ranged
across various levels of clinical / academic ranks, while
approvers were the two experienced board-certified neuro-
radiologists (with > 13 years of glioma experience). The
annotators were given flexibility on which tool to use, and
whether to follow a complete manual annotation approach,
or a hybrid one with automated initial annotations followed
by their manual refinements. Afterward, the produced an-
notations were passed to the corresponding approver, who
evaluated them in tandem with the original mpMRI, and
either signs them off or, in case of quality issues, returned
them to the annotators for refinements. This iterative
approach is followed for all cases until their respective an-
notations reaches satisfactory quality for publication, and
noted as final reference standard segmentation labels.


http://www.apache.org/licenses/
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Figure 2: Official partitionings of the training set.

4.1.3 Training, Validation, and Test case characteristics

Of the original BraTS 2021 dataset, only the subset of radio-
graphically visible glioma is included in the FeTS challenge,
while cases without apparent enhancement are excluded.
The exact numbers can be found in Table 1. Training cases
encompass the mpMRI volumes, the corresponding tumor
subregion annotations, as well as a pseudoidentifier of the
site where the scans are acquired. Validation cases, however,
only contain the mpMRI volumes, without any accompany-
ing reference standard annotations or site pseudo-identifiers.
We explicitly provide two schemas to partition the provided
data (Figure 2):

1. Natural geographical partitioning by institution (parti-
tioning 1, 23 sites)

2. Artificial partitioning using imaging information (parti-
tioning 2, 33 sites), by further sub-dividing each of the
5 largest institutions in partition 1 into three parts after
sorting samples by their whole tumor size.

80% of the dataset is kept for federated training (train and
validation split), while the rest is set aside as a test set
to evaluate the performance of submitted algorithms. The
test set is never shared with the challenge participants.

4.2 Software Stack
4.2.1 Model Architecture

As the challenge focuses on the development of aggregation
methods, the architecture of the segmentation model it-
self remains fixed across all participants. Following current
literature and previous iterations of the challenge, the seg-
mentation model chosen for this role is U-Net (Ronneberger
et al., 2015) as the architecture has consistently performed

well on medical imaging datasets (Isensee et al., 2018;
Thakur et al., 2020; Drozdzal et al., 2016; He et al., 2016;
Cicek et al., 2016; Pati et al., 2021). The U-Net architec-
ture is composed of an encoder-decoder architecture, where
the encoder consists of layers performing convolutions and
downsampling, while the decoder consists of layers perform-
ing transpose-convolution and upsampling. It includes skip
connections in every convolution block—i.e., concatenated
feature maps paired across the encoder and the decoder
layer to improve context and feature re-usability, capturing
information at multiple scales/resolutions.

4.2.2 Federated Training

An infrastructure for federated tumor segmentation has
been provided to all participants indicating the spots on the
code where they are expected to make changes (“innovation
hotspots”). The primary objective is to develop methods for
effective aggregation of local segmentation model weight
updates, given the partitioning of the data into their real-
world distribution.

The aggregation mechanism follows extensive prior lit-
erature (Sheller et al., 2018, 2020; Isensee et al., 2018; Pati
et al., 2021), and is illustrated by Figure 1. Models are
trained locally in each individual site and sent back to the
aggregator at the end of each FL round. At the start of
each round, each collaborator locally validates any model it
receives from the central aggregation server (aggregator),
then trains the model received from the aggregator on
their local data. The local validation results along with the
model updates are then returned to the aggregator, which
combines model updates from all sites to produce a new
consensus model. The consensus model is then passed back
to each collaborator, and starts a new federated round.
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5. Quantitative Performance Evaluation

Participants are called to produce segmentation labels of the
different glioma subregions (ET, TC, WT). For each region,
the predicted segmentation is compared with the reference
standard segmentation using the following metrics:

5.1 Dice similarity coefficient (DSC)

The DSC is a metric commonly used to evaluate the perfor-
mance of segmentation tasks. It measures the extent of spa-
tial overlap of predicted masks (P M) and the provided refer-
ence standard (RS), while considering their union, thereby
addressing both over-segmentation and under-segmentation.
It is defined as

2|RS N PM|

DSC= —————.
|RS| + |PM|

(1)

5.2 Hausdorff distance (HD)

This metric quantifies the distance between the boundaries
of the reference standard labels against the predicted labels.
It originates from set theory and measures the maximum
distance of a point set to the nearest point in another set
(Rockafellar and Wets, 2005). This makes the HD sensitive
to local differences, as opposed to the DSC, which represents
a global measure of overlap. For the specific problem of
brain tumor segmentation, local differences are important
for properly assessing the quality of the segmentation. In
this challenge, the 95" percentile of the HD between the
contours of the two segmentation masks is calculated, which
is a variant of HD that is more robust to outlier pixels:

HDys(PM, GT) = max { Pos, d(p, GT),
pEPM

Pysy d(g, PM)},
geGT

(2)

where d(z,Y) = minycy ||z — y|| is the distance of z to
set Y.

5.3 Convergence Score

Convergence Score is used to estimate the efficiency of
the model and encompasses the time taken to train and
evaluate as well as the communication costs (download and
upload of model weights between each collaborator and the
central server).

We simulate the cumulative time taken per round, break-
ing it down to four components: training time Tt ain, vali-
dation time Ty,;, model weight download Tyown and upload
time T;,p. In each round, the simulated time per collaborator
k is

Tk = Tdown,k: + Tup,k + Tval,k . Nval,k + Ttrain,k . Ntrain,k (3)
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The total time for each round is max{Ty}. To simulate
a realistic FL setup, T ; was sampled from a normal dis-
tribution: T, ~ N (pix k, 0x k), Where x can be replaced
with train/val/down/up. The parameters of the normal
distribution are fixed but different for each client %k, and
based on time measurements derived from the largest to-
date real-world FL study, which used the same model—the
FeTS initiative (Pati et al., 2022a).

In each federated round we compute the mean DSC
on a fixed split (20%) of the training data and the sim-
ulated round time T'. Over the course of an experiment,
this results in a DSC-over-time curve. A projected DSC
curve is computed as DSCpyoj(t) = maxy <, DSC(t’). The
convergence score metric is calculated as the area under
that projected DSC-over-time curve:

T
Sconv :/t DSCprOj <t> dt (4')
0

where:

= Sconv IS the convergence score. Higher values of this
metric indicate enhanced convergence and thus a superior
FL approach in terms of efficiency.

= DSCproj(t) is the projected DSC at time ¢.

= The integral runs from ty (starting time) to 7' (final
time).

To standardize the time-axis for the convergence score
among participants, all FL experiments performed during
the challenge are limited to one week of simulated total
time, which was a realistically feasible duration based on
the experience from the FeTS initiative (Pati et al., 2022a).
The FL runs were terminated once the simulated time
exceeds one week and the model with the highest validation
score before the last round is stored, to assure that a long
last round exceeding the time limit does not benefit the
participant.

5.4 Ranking Strategy

Before evaluating the submissions on the test set, algorithms
are re-trained by the organizers, to ensure reproducible re-
sults and to prevent data leakage between federated sites.
To standardize comparisons, the rankings are computed inde-
pendently for each test case before aggregating them across
the dataset, so performance is assessed fairly across differ-
ent cases without being dominated by any single case. DSC
scores, which measure the overlap between predicted and
reference standard segmentations, are ranked in descending
order since higher values indicate better segmentation per-
formance. Conversely, Hausdorff distances, which quantify
boundary errors, are ranked in ascending order as lower
values correspond to more precise boundary delineations.
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A tie-breaking strategy using rank averaging is applied
to ensure consistent rankings when multiple teams achieve
the same performance on a given test case. Specifically, if
k teams have the same score for a particular metric, they
all receive the average rank they would occupy if ranked
distinctly. For example, if three teams tie for the second-best
score, instead of being arbitrarily assigned ranks 2, 3, and 4,
they are each assigned the average rank (2 +3+4)/3 = 3.
This method prevents unfair advantages or disadvantages
due to arbitrary rank assignment and ensures a smooth
aggregation of ranks across multiple cases. The overall
ranking score for each team is then computed as the mean
of its assigned ranks across all Dice and Hausdorff metrics,
leading to a comprehensive performance measure.

Beyond segmentation quality, the framework integrates
a communication efficiency score to refine the rankings.
The communication metric, which reflects the efficiency
of model convergence during training, is ranked separately
using the same averaging-based ranking strategy. Since
a higher communication score indicates better efficiency,
rankings for this metric are assigned in descending order.
This additional ranking is incorporated into the final ranking
score using a predefined weight w, ensuring that teams that
achieve competitive segmentation performance with lower
communication costs are favored. The cumulative ranking
score, incorporating segmentation and communication effi-
ciency, is computed as the mean of all individual rankings
(Dice, Hausdorff, and convergence score).

Mathematically, the final ranking score R; for team t is
given by:

1
N+ w

R, =

Z Tt,m +

meM

(5)

w
rt,comm
N+w
where:

= M is the set of segmentation metrics (Dice and Haus-
dorff) evaluated for each tumor subregion (ET, TC, WT).

» N = |M]| is the total number of segmentation rankings
per test case, calculated as the number of metrics (2:
Dice and Hausdorff) multiplied by the number of tumor
subregions (3: ET, TC, WT), giving N =2 x 3 =6,

» 7¢m is the rank of team ¢ for metric m,

" 7¢comm 1S the rank of team ¢ based on communication
efficiency,

= w is the weight assigned to the communication metric.

This formulation ensures a balanced evaluation of seg-
mentation accuracy and computational efficiency, where
the influence of communication efficiency is modulated by
the chosen weight w. When w = 0, rankings depend solely
on segmentation performance, whereas increasing w gives
more importance to communication efficiency.

6. Limitations

As a simulation-based setup, the FeTS 2024 challenge comes
with limitations. While we approximate weight download
and upload times in our convergence score metric, it does
not fully reflect the communication heterogeneity across
sites, which includes variable bandwidth, latency, dropped
connections, and asynchronous updates. Second, differ-
ences in hardware availability (e.g., GPU memory, CPU
load, and system failures) are abstracted away, but these
factors strongly influence performance in real-world studies.
Finally, security protocols, and the operational complexities
of coordinating institutions are not represented here.

Despite these limitations, a simulated setup ensures
reproducibility, fairness, and scalability for benchmarking
innovations in aggregation methods. Such simulations are
necessary prior to real-world deployments as they assess
multiple promising aggregation methods without the ex-
pensive nature of actual large-scale coordination. They are
essentially a preliminary step to future work that would
bridge simulation and deployment, incorporating realistic
communication and hardware variability into benchmarking
protocols.

7. Participating Methods

A total of 6 submissions by 5 teams from four continents
were submitted to FeTS Challenge 2024. The six proposed
algorithms are outlined in table 2 and their innovations are
as follows:

Federated Tick-Tack by ReMIC: Fed Tick-Tack
presents a novel approach to federated learning by introduc-
ing a two-phase aggregation technique designed to enhance
model robustness and accuracy, especially in heterogeneous
data environments. Instead of updating models at the
end of each communication round, Fed Tick-Tack alter-
nates between two distinct phases: Tick and Tack. In the
Tick phase, an aggregated model is distributed to selected
collaborators, who then locally train and return their mod-
els, weighted according to their individual importance (i.e.
a weight assigned to each collaborator that reflects their
model’s influence on the overall aggregated model). The
Tack phase focuses on updating these weights by calculat-
ing the differences between consecutive model proposals.
This iterative adjustment ensures that the final model not
only reflects the most recent learning but also adapts to
the individual progress of each collaborator. Furthermore,
Fed Tick-Tack supports both scalar and parameter-specific
weight adjustments, offering flexibility in how collaborators’
contributions are integrated. This method also introduces
ranked batches to organize collaborators based on perfor-
mance, toward balanced and efficient training rounds.

® Clustered Approach with Bias-Variance Bal-
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Table 2: Teams and the corresponding papers of their submissions. Note that HTTUAS submitted 2 papers, proposing
two distinct methods abbreviated in the text based on the technique they're deploying (Rec for Recommender Engine

and RL for Reinforcement Learning).

Team Method (Paper Title)
SNU FedPOD: the deployable units of training for federated learning
rigg FedPID, an aggregation method for Federated Learning (Machler et al., 2024)

HTTUAS (Rec)
2024b)

Recommender Engine for Client Selection in Federated Brain Tumor Segmentation (Khan et al.,

HTTUAS (RL)
et al., 2024a)

Election of Collaborators via Reinforcement Learning for Federated Brain Tumor Segmentation (Khan

Flair
Balancing

Adaptive Federated Learning for Brain Tumor Segmentation: A Clustered Approach with Bias-Variance

Federated Tick-Tack

ancing by Flair: Flair's approach integrates client selec-
tion, hyper-parameter tuning, and aggregation methods to
enhance federated model training. The method involves
clustering clients using k-means based on their training
times, which minimizes idle times and ensures that clients
with smaller datasets are effectively utilized. An adaptive
strategy is used for hyper-parameter selection, including
dynamic adjustment of local epochs and a modified co-
sine annealing schedule for learning rates. The aggregation
method improves upon traditional FedAvg by incorporating
Validation Loss Ratio (VLR) and an Overfit Penalty (OFP)
to balance contributions based on validation performance
and to address overfitting.

e Recommender Engine for Client Selection by
HTTUAS: The study introduces a novel client selection
protocol for Federated Learning in brain tumor segmen-
tation, leveraging a recommender engine based on Non-
Negative Matrix Factorization (NNMF) combined with a
hybrid content-based and collaborative filtering approach.
The NNMF decomposes historical performance metrics to
identify suitable collaborators, while a fallback mechanism
ensures continued operation in the absence of sufficient
data. Additionally, this method presents Harmonic Simi-
larity Weighted Aggregation (HSimAgg), an enhancement
of the SimAgg (Khan et al., 2021) algorithm that uses
harmonic mean aggregation to robustly handle outliers and
extreme values, improving the accuracy and reliability of
the federated model.

o Election of Collaborators via Reinforcement
Learning by HTTUAS and similarity-weighted aggrega-
tion (SimAgg) (Khan et al., 2021) approach designed to
optimize collaborator selection in federated brain tumor
segmentation. The method employs multi-armed bandit
algorithms, specifically Epsilon-greedy (EG) and Upper Con-
fidence Bound (UCB), to manage the selection of collab-
orators and enhance model generalization. RL-HSimAgg
balances exploration and exploitation to promote effective
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training across diverse datasets by dynamically choosing col-
laborators based on their performance. The approach also
incorporates a similarity-weighted aggregation method to
handle outliers by using harmonic mean, thereby improving
robustness in FL environments.

e FedPID by rigg: Building on their previous par-
ticipations FedCostWAvg and FedPIDAvg (Machler et al.,
2021, 2022), FedPID refines the aggregation strategy by
incorporating improvements in how the integral term is
computed. Unlike FedPIDAvg, which used a simple inte-
gration of the loss function, FedPID measures the global
drop in cost since the first round. This method integrates
a weighted averaging scheme combining dataset sizes, re-
cent cost reductions, and global cost changes to update the
model. Additionally, FedPID addresses varying dataset sizes
by modeling them with a Poisson distribution, adjusting
training iterations accordingly. This approach aims to en-
hance model performance by balancing local improvements
with global progress and handling dataset size variability
effectively.

e FedPOD by SNU: FedPOD also builds upon the
foundations of FedPIDAvg (Machler et al., 2022), to opti-
mize both learning efficiency and communication costs in
federated learning. FedPOD complements FedPIDAvg in
two ways: (a) it includes outlier nodes that would other-
wise be excluded and (b) eliminates the need for historical
participant data. Due to these modules, FedPOD aims to
better handle skewed data distributions and participant vari-
ability. Also, FedPOD is designed to work with Kubernetes'’
POD units, allowing for dynamic scaling of computational
resources through Kubernetes' auto-scaling functionality.

8. Results

All teams are ranked according to Equation (5). For each of
the 570 testing subjects, three tumor regions—ET, TC, and
WT—are evaluated using two segmentation measures: the
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Dice Similarity Coefficient (DSC') and the 95th percentile
Hausdorff Distance (H Dgs). This results in a total of
570 x 3 x 2 = 3,420 individual rankings across all cases
and metrics. As each of these metrics is accounted for
three times (one for each modality), we also incorporate
convergence score into the ranking process with a weighting
factor of w = 3. This results in an adjusted total of
570 x 3 x 3 = 5,130 rankings summed per team.

To provide an overview of segmentation performance,
Table 3 presents the mean DSC and HD95 scores for each
team. Higher DSC values indicate better segmentation
accuracy, whereas lower HD95 values signify more precise
boundary delineation.

FedPID and FedPOD methods presented by rigg and
SNU respectively are top performers on DSC across all
tumor types, indicating superior segmentation accuracy and
consistency. The two methods also achieve competitive me-
dian Hausdorff Distance at 95th percentile (HD95) scores,
demonstrating robustness in handling extreme boundary
cases. The best DSC performance is achieved by SNU, with
values of 0.733 (ET), 0.751 (WT), and 0.761 (TC). The
best HD95 scores (i.e., lowest values) are more distributed:
rigg achieves the lowest HD95 for ET (32.246 mm) and
TC (31.705 mm), while HTTUAS (Rec) attains the lowest
for WT (28.228 mm). These results demonstrate that no
single method consistently outperforms across all metrics,
highlighting trade-offs between segmentation accuracy and
robustness.

Table 3: Mean DSC and HD95 for each team in the FeTS
Challenge 2024. The highest DSC values (higher is better)

and the lowest HD95 values (lower is better) are highlighted
in bold.

DSC (1) HD95 ({)
Team
ET WT TC ET WT TC
SNU 0.733 0.751 0.76133.922 32.309 33.623
rigg 0.722 0.754 0.748 |32.246 31.122 31.705
HTTUAS (Rec) | 0.682 0.738 0.716 | 34.023 28.228 32.911
HTTUAS (RL) | 0.668 0.702 0.699 | 32.930 28.991 31.372
Flair 0.658 0.651 0.681|42.637 27.893 44.622
0.620 0.645 0.644 | 45.724 29.030 46.426

Visualizing the distribution of the performance, we also
observe substantial variability in performance across dif-
ferent samples, with rigg and SNU exhibiting the lowest
variance (Figure 3).

In terms of communication efficiency, FedPOD (SNU)
also has the best convergence score by a significant margin
(Figure 4). In terms of the other methods, HTTUAS (REC)
provides a solid alternative with slightly higher DSC values
than HTTUAS (RL) but with more variability in HD95,
suggesting a trade-off between segmentation accuracy and

robustness. Flair shows good DSC results but has higher
variability and below average communication efficiency, re-
flecting that its dynamic hyper-parameter adjustments and
clustering strategy might not be worth the computational
overload.

The final ranking of each team is determined by sum-
ming all individual rankings and computing the cumulative
ranking score as described in Equation (5). This approach
ensures that both segmentation accuracy and computa-
tional efficiency are considered in a balanced manner. The
winner of FeTS Challenge 2024 is the FedPOD method of
SNU, while the FedPID method is also on the top 3 4. Even
if we remove the communication efficiency from the ranking
assessment, these two methods remain on the top 3 of the
leaderboard. As both are based on the PID-controller, this
showcases the effectiveness of this foundation for weight
aggregation techniques.

9. Discussion

The MICCAI FeTS Challenge 2024 explored FL for glioma
sub-region segmentation in brain mpMRI scans, focusing on
innovations in weight aggregation. By analyzing the results
of six distinct approaches, we identify trends and insights,
highlighting both strengths and areas for improvement.

Two particular methods were of highest interest: Fed-
PID and FedPOD, which achieved first and second ranking
respectively if we only account for performance on the DSC
and HD95, then third and first if we also account for com-
munication efficiency (Table 4). Their relative variability
on performance in the box plots was also the most similar
in terms of robustness (Figure 3). The similarity in per-
formance may be due to the fact that both these methods
build on a predecessor from FeTS Challenge 2022 (Zenk
et al., 2025), FedPIDAvg (Machler et al., 2022), whose
first iteration was FedCostWAvg (Machler et al., 2021) pre-
sented in FeTS Challenge 2021. In both these challenges,
the respective method achieved competitive ranking, and
now two top performers are building on it further, sug-
gesting this method presents a highly reliable baseline for
innovation on the algorithm of FL.

Methods such as HTTUAS (Rec) and Flair illustrate the
challenge of balancing segmentation accuracy with commu-
nication efficiency. HTTUAS (Rec) performed competitively
in DSC while maintaining lower variability in HD95. Flair's
adaptive strategies yielded moderate results but were hin-
dered by higher computational demands. Communication
efficiency was a critical metric in the final ranking, in which
FedPOD outperformed all others by a significant margin,
underscoring its relevance for real-world FL applications. In
particular, it showcased what could be a critical innovation
for FL efficiency: reframing the process as deployable Kuber-
netes units. This could be a highly valuable modification to
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Figure 3: Box plots for Dice and HD95 metrics, illustrating the span of segmentation performance across different

participating methods.

the algorithm for multi-site collaborations, especially under
resource constraints.

The observed variability across aggregation strategies
can be partly explained in medical imaging context: clinical
datasets are inherently heterogeneous across sites not only
in size but also in characteristics, reflecting differences in
scanners, acquisition protocols, and patient populations,
and outliers are not infrequent. On the one hand, HTTUAS
methods are based on SimAgg assumes similarity of local
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models to global average, which given non-IID settings
of medical imaging is often an incorrect assumption that
does not acknowledge the presence of outliers. SimAgg-
based methods thus favor high-performing collaborators and
may boost overall segmentation accuracy but risk overlook-
ing smaller institutions, raising questions of fairness. On
the other hand, algorithms such as FedPID and FedPOD
regulate updates across rounds using controller-inspired
dynamics, which stabilizes learning under the non-uniform
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Table 4: Final cumulative rankings of teams in the FeTS Challenge 2024. The table displays two rankings: A. one
that includes convergence score—i.e. Overall Ranking (w = 3), accounting for computational efficiency. B. one that
excludes convergence score—i.e. Segmentation-Only (w = 0), evaluating exclusively on segmentation quality.

Team Overall Ranking (w =3) | Segmentation-Only (w =0)
Rank Score (R;) Rank Score (R;)

SNU 1 2.317 2 2.976
HTTUAS (Rec) 2 2.744 3 3.116
rigg 3 3.206 1 2.809
HTTUAS (RL) 4 3.337 4 3.505
Flair 5 4.402 5 4.102
ReMIC 6 4.994 6 4.491

Convergence
Score

Figure 4. Convergence Score for each team. SNU's ap-
proach outperforms all others in this regard.

conditions of medical imaging, and effectively model out-
liers with a Poisson distribution. While FedPID and its
predecessors exclude these outliers, FedPOD has devised a
way to include them effectively in the training.

Future work may apply FedPOD and other PID-based
methods beyond simulation-based evaluations to real-world
deployments, and assess these highlighted benefits in set-
tings of realistic device heterogeneity and communication.
FedPOD's inclusion of outliers makes it an interesting can-
didate for fairness studies, while its compatibility of Ku-
bernetes further enables its application on large-scale real
world scenarios. This challenge, as its predecessors, high-
lights that FL algorithms are ripe for innovation, and sets a
foundation for continued improvement.

Data availability

The imaging data used for the FeTS Challenge 2024 are

derived from the publicly available BraTS 2021 dataset. Ac-
cess to the dataset in the format used for this challenge can

be obtained through The Cancer Imaging Archive: https:
//www.cancerimagingarchive.net/analysis-result/
rsna-asnr-miccai-brats-2021/.

Ethical Standards

This work involves no new human or animal subject data
collection. All imaging data used in the FeTS Challenge
2024 are from the publicly available BraTS 2021 dataset,
which was de-identified and ethically approved under the
respective Institutional Review Boards (IRBs) of contribut-
ing institutions. Data use complies with HIPAA and GDPR
regulations. No additional IRB approval was necessary for
this study. All data derivatives used in the challenge pre-
serve and respect the original dataset’s licensing and ethical
constraints.

Ethical Standards

The FeTS Challenge 2024 adheres to rigorous ethical stan-
dards, ensuring compliance with data privacy and consent
regulations. The challenge exclusively uses the BraTS 2021
dataset, which is publicly available and open source. Since
no new patient data are collected or shared, the challenge
does not involve privacy risks or concerns related to data
protection. Furthermore, the challenge investigates FL, a
paradigm that, when deployed in the real world, allows data
to remain within originating institutions, thereby preserv-
ing patient privacy and complying with regulations such as
HIPAA and GDPR.

All human data included in the challenge originate from
the BraTS dataset, where Institutional Review Board (IRB)
approval had been previously obtained. Data collection and
processing adhered to protocols ensuring subjects’ informed
consent or opt-in mechanisms, as per institutional policies.

For derivative data used within the challenge, such
as preprocessed MRI scans, compliance with the original
dataset’s licensing terms is maintained, ensuring ethical use
and redistribution of data.
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