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Abstract

This thesis focuses on the development of the theoretical, methodological and empirical literature on

factor models. We provide detailed descriptions of the techniques used to estimate factor models, as

well a means to establish the number of factors and assumption of factor models. The opening chapters

address research from the theoretical investigation, which is motivated by the fact that for the past �fty

years theoretical econometricians were working towards relaxation of the assumptions and increasing the

consistency of the estimators. We o¤er an alternative solution which engineers faster rates of convergence

for the estimated parameters, and furthermore without imposing any additional assumptions.

The following chapter focusses on the problem of omitted observations in factor model datasets.

Principle component analysis is only applicable to the balanced panel, therefore missing observations

have to be �lled. The modern literature predominantly focuses on the technique which can �ll either

missing observations at the beginning of the panel, or missing observations in the middle. Our technique

o¤ers a methodology which can help to �ll missing observations irrespective of their place in the panel. Our

technique is based on the factor model approach and uses factor model theory to develop the technique.

The closing chapter focuses on empirical application of the factor models. We attempt to assess

forecasting ability of the factor models in comparison with non-factor augmented counterparts and the

univariate model. We use a robust approach which has never been applied to factor models and the crude

oil market. Ultimately we show that the factor model approach can signi�cantly improve forecasting

ability in the crude oil market.
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1 Introduction

For more than 50 years the theory of factor models has retained a prominent presence in academic �nancial

literature. The reason for the frequent application comes from the fact that factor models exploit the

suggestion that a large number of series are driven by a limited number of common components. In other

words, variations in the large number of market series can be adequately modelled by a small number

of reference variables. A reduction in model variables helps to avoid the problem of reduced �exibility

usually experienced with the regression based model. Additionally, measurement errors and local shocks

can be estimated and excluded from the total variations. These advantages make the factor modelling

methodology one of the most popular and powerful tools among researchers and practitioners.

In previous theoretical studies (e.g. Lawley and Maxwell (1971), Chamberlain and Rothschild (1983),

Stock and Watson (2002), Bai (2003) and Bai (2004)) authors concentrated their e¤orts developing

consistent estimators for the factors. During the literature review we identify a number of gaps in

the existing theory. The purpose of our research is to �ll these gaps by developing an inferential and

predictability theory of factor models. In particular, in the �rst part of our research we propose a novel

estimation methodology which aims to improve the robustness of estimated common factors, loadings

and common components for the non-stationary panels of large time series (T) and cross sectional (n)

dimensions.

Our research is motivated by the fact that the existing factor model literature does not di¤erentiate

the degree of consistency of the common factors estimated from levels as opposed to the �rst-di¤erenced

panels. Detailed examination of the optimisation of factor consistency provides an opportunity to make a

contribution to the theoretical body of literature, re�ecting the principle aim of the research. Speci�cally,

we develop inferential and asymptotic theory for a novel methodology, showing that higher order terms

converge to zero at a faster rate and (n,T) pass to in�nity, suggesting that the proposed methodology

yields better �nite sample properties than direct estimation from �rst-di¤erenced data. We describe

methodology for Monte-Carlo simulation and empirical application that test developed theories. The

details of the study along with rigorous proofs are presented in the second chapter of the thesis. The

results of the study are applied to all further developments.

The third and forth chapters of the thesis concentrate on the methodological and empirical applications

of factor models. Additionally, we present a possible practical application of the developed theory to the

energy markets. Our literature review suggests that factor models theory has strong application and
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would help solve current forecasting issues in the market. We consider this application as a possible

addition to the main research focus, which is the development of factor models literature.

The third part of the thesis is motivated by the concurrent factor model literature failing to provide

a uni�ed methodology to overcome the problem of omitted observations in the large dimensional factor

model panels. In the literature review we �nd number of studies that discuss possible means of �lling

missing observations (e.g. Baggi, Golinelli, Parigi (2004), Marcellino and Schumaher (2011), Foroni and

Marcellino (2013)).Despite their attention, none of the studies where able to simultaneously �ll missing

observations at the end and in the middle of the panel including individual observations, and substantial

missing blocks. We have to point out that the majority of the panels included omitted observations in

the form of either individual missing observations, blocks of missing observations, mixed-frequency or

"ragged edge" data.

Ideally, the methodology which should help to overcome a problem would enable a researcher to

substitute all types of omitted observations present in the dataset, and take into account potential cross

dependence of the variables due to the existing factor structure. Common techniques suggest extracting

individual series and to substitute missing observations with cross-sectional independent variables. I have

recognised a gap in the literature and attempt to provide a technique that is both simple to execute and

one that can substitute any type of omitted observations in the factor based model. I employ factor

models methodology to construct the EM- interpolation technique. Practical application accompanied

by a rigorous proof allows me to distinguish and separate an accurate methodology from a parsimonious

one. I demonstrate the validity of the technique by a number of Monte-Carlo simulation results, and

empirical studies. I employ this technique to prepare the dataset for the �nal chapter which describes

the empirical chapter of the thesis.

The �nal chapter provides a collection of the research ideas, contributing strongly to the academic

literature as well as practical application. This is motivated by factor models never having been compared

with alternative forecasting techniques in the robust framework. We use two factor models FA-VAR and

FA-VECM to represent forecasting abilities of the factor model framework. The ARFIMA-GARCH

models represent a univariate comparison model. We aim to establish the best forecasting model using

the robust methodology described by Hansen (2011). The methodology uses the bootstraps technique

to establish superior forecasting in the model and is able to mitigate the bias results of the simple

loss function techniques. The loss functions, such as RMSE, MSE can determine the best result for the

particular sequence of the data, however, these results may be drastically di¤erent in the future. Hansen�s
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et al. (2011) technique uses bootstraps which shu e the data science and help mitigate this bias.

The third paper is an empirical study that determines the accuracyof the factor forecast in compar-

ison to multivariate VAR and VECM models, as well as univariate models. We conduct the exercise on

the WTI crude oil data for 1 month, 3 months, 6 months and 12 months to maturity future contract,

representing future oil term structures. We use large dimensional panels of data that include the infor-

mation about crude oil prises, supply, and demand determinants of crude oil prices and macroeconomic

information. The original panel is unbalanced and we therefore use the �ndings of the third chapter to

balance a panel used in the �nal part of the research.

The forth chapter reports on the results of the test of predictive ability of the factor models, multi-

variate models and univariate models. The results vary across the term structure, however, we can see

that the factor approach demonstrates signi�cantly higher levels of forecasting across the term structure.

This we �nd to be the case for both short and long term forecasting. A detailed description of the work

is presented in the forth chapter. The application of FA-VAR and FA-VECM models with information

proxies can be extended to the other commodity markets; additionally, the EM-methodology can be

applied to any factor base panel.

All three chapters work predominantly with the theory of factor models and, therefore, my thesis

contributes the most to the factor models �eld. In view of the format of the �nal document, energy

market research represents an empirical contribution in my �ndings. Overall the thesis contributes to the

theoretical, methodological and empirical research on factor models. The �rst part of the research resulted

in the development of an innovative technique that extends the research on factor models in the area of

developing higher estimator consistency. The lliterature review indicated that over the past 50 years factor

model research has moved towards more consistent estimators obtained from an unlimited dataset. This

is a signi�cant milestone in comparison to the original 1950s papers which imposed a number of restriction

on the model, ensuring consistency. Moreover, datasets had to be �nite along all dimensions. Modern

theory is able to estimate common factors without imposing additional restrictions, also from unlimited

datasets. Following this tradition of theoretical research which aims to improves estimation accuracy of

the factors, our research amendments the theory and o¤ers a way to improve estimation consistency even

further without loss of generality. All the assumptions applied in the previous researcher of this topic is

applicable and we have not imposed any additional constrains.

The third chapter contributes to the literature in so much as it provides the solution to the problem
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of missing observations. Our contribution allows solving a problem of missing observations in the panel

datasets, which are constructed for use in the factor model research. Based on the literature (see chapter

3) we distinguish between missing observations at the end of the panel, blocks of missing observations

in the middle of the panel and individual missing observations. Current literature does not provide a

methodology that can address all three types of missing variables. Our methodology attempts to �ll this

gap and o¤ers a solution based on the application of the factor models theory and methodology. We

have to impose additional assumptions to make sure this methodology is able to �ll missing observations.

Later research may concentrate on the means to relaxing the assumptions.

The �nal part of the thesis contributes to the empirical application of the factor models literature.

The contribution of the �nal chapter focuses on the robust testing of the factor augmented multivariate

models against univariate and multivariate counterparts. This has not been done before and we attempt to

measure the validity of the factor model approach for the forecasting of the crude oil market. Additionally,

the factor augmented vector error correction model has not been applied to the crude oil term structure;

we attempted to contribute to the literature by evaluating the forecasting performance of the factor

VECM model on crude oil market.

The remainder of the document is organized as follow: I begin the main body of the thesis by giving

a historical summary of the main developments in the �eld of factor models. I describe the evolution of

factor models, detailing estimation techniques and challenges during the process of �nding the optimal

number of factors. I also give a detailed overview of the existing literature on factor models, in addition

to technical assumptions that are important for the consistent estimation of factor models parameters.

In the second chapter I describe the proposed novel methodology and demarcate di¤erence between

our model and existing ones. It develops a set of assumptions required for new estimators to be consistent.

It describes the process of estimation and inferential theory, the development of asymptotic theory and

shows the bene�ts of the new method. The closing parts of the chapter describe Monte-Carlo simulations

and structural parameter evaluation used to demonstrate the gains of this novel methodology. The

appendix presents proofs for deriving a limited distribution of factor loadings. Thereafter I present my

concluding remarks and those areas of interest for further development.

The third chapter also provides a broad literature review on the history of the methodologies developed

to overcome omitted variable bias, as well as a description of the modern solutions to the problem. I then

move to describe a methodology of expected maximization approach. We use Monte-Carlo simulations
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to test the results, along with empirical applications to the crude oil market and testing the structural

parameters. At the end we provide a detailed summary and conclusion of the results. The fourth chapter

provides a description of current developments on the crude oil market and details the motivations

for researching the commodity markets. I describe models used in the "horse-race" and later present

the results of the forecast evaluation for one and multistep forecasts. In the appendix I provide all

previous theoretical �ndings in the form of the theorems, which are applied during the principle research

developments.
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2 Literature Review

2.1 Factor Models

For the past few decades, factor models have experienced increasing popularity in economic and �nance

related studies. This is primarily attributable to a growth in the availability of large datasets as well as

advances in technology. The growing mass of information broadens the horizons for in-depth �nancial

analysis, and modern technology helps to revolutionise the data processing techniques, which makes the

analysis of large datasets both feasible and worth while. Growing application of large datasets presents

new challenges for the traditional modelling practices, which experience the "curse of dimensionality"

issues during the process of modelling large dimensional panels. Factor models o¤er an elegant math-

ematical solution to the problem by introducing a methodology, which reduces the dimensionality by

searching for common patterns between variables (see,Forni et al.(2000)).

Many argue that pattern recognition, a bi-product of this technique, is a core reason for the popularity

of factor models among practitioners, and in particular in the social sciences. Some indicators such

as business con�dence, are commonly treated as an easily quanti�able variable, despite them being

qualitatively di¢ cult to measure. The method by which to quantify such an hypothetical variable is to

summarize the information from a large number of observable variables, by employing pattern recognition

techniques in factor models. The latent factors of the models become a "measure index" of qualitative

variables.

More rigorous �elds, such as �nance, employ pattern recognition to identify trends in the large time-

series panels. In some cases it is possible to determine the latent variables with observable time-series. The

model then bares a striking resemblance to the standard multiple regressions, for example traditional asset

prising models, such as Arbitrage Pricing Model by Ross (1976), CAPM by Sharp (1964), or Gordon�s

triangle model for the in�ation rate forecast (see Gordon (1988)). It is more intuitive to regress a panel of

observable variables, such as multiple regressions. However, it is near impossible to �nd new observable

variables (that have a strong correlation with the data) without a preliminary examination of main

trends in the dataset. Factor models provide an ideal preliminary analysis of large datasets, which can

subsequently lead to an interpretation of established trends. Even without direct interpretation, latent

factors can demonstrate leading patterns of the data.

Pattern recognition is a crucial part of factor analysis, and it is the feature that is most commonly
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confused with principal component analysis. For the bene�t of current research, we would like to draw

a clear distinction between two methods. According to Rencher (2002, p. 409): in principal components

analysis (henceforth PCA), we de�ne components as linear combinations of original variables. In factor

analyses (henceforth FA), original variables are linear combinations of the factors. Additionally, PCA

seeks to describe a large part of variation of the variables, but in factor analysis we account for covariance�s

between variables. Third, to apply PCA we do not require an initial set of assumptions. FA requires a

number of assumptions, such as the covariance matrix is positive de�nite. Finally, PC produces unique

components while in FA factors are subject to an arbitrary rotation. Factor analysis is preferred over

PCA as we are able to �nd an interpretation of the latent variables. The interpretation of the factor is

qualitative and aimed at providing best explanations to the set of common factors. Due to the fact that

PCA does not allow the rotation, the interpretation of the factors is not easy.

2.2 Gaps in the literature

The theory of factor models covers a broad range of topics related to consistent pattern recognition

techniques and further analysis of latent factors. During literature review we identify a number of gaps

in the existing theory which we would like to address in this thesis. We were able to identify gaps in the

related theoretical, methodological and empirical areas associated with factor models topics. We begin

our investigation with an analysis of the theoretical literature developed for the factor models. These

�ndings are especially relevant to the second chapter of the thesis. The third and forth chapters use the

theoretical literature for consistent estimations of the common factors used in the methodological and

empirical applications of the factor models.

In the second chapter we address the question of the development of the more consistent estimator

for the common factor models. In previous studies (e.g. Lawley and Maxwell (1971), Chamberlain

and Rothschild (1983), Stock and Watson (2002), Bai(2003), Bai(2004)) authors have concentrated their

e¤orts on the development of the consistent estimators of the common factors. We provide a detailed

historical overview of the theoretical development in the literature review below. Summarising the results,

it is noticeable that theoretical research resulted in the development of the set of assumptions which secure

the consistency of the estimators. The research gradually progressed towards the development of the more

consistent estimators for the common factors (see Stock and Watson (2002), Bai(2003), Bai(2004)), with

the most resent development on the topic establishing a set of assumptions which allowed to estimate
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common factors and factor loadings which converge to the true factors of large dimensional panels. Our

research continues a long line of the theoretical developments of the research which, aiming to improve

the consistency and rates of convergence of the factor estimates. In this respect, our contribution ntends

to improve the consistency in estimating factor models. rather than �ll a hole in the existing literature.

The third chapter concentrates on the common problem in the large dimensional panel literature

which relates to the problems of establishing a balanced panel of data when dealing with large dimensional

panels. A detailed evaluation of the literature on factor models established that the present methodology

of factor model estimation is only applicable to the balanced panels of data. However, while creating large

dimensional panels the problem of missing observations is more prevalent than usual. This issue prevents

direct estimation of the factor models and pre-requires �lling of the missing observation. Over the course

of the literature review we �nd number of studies that discuss possible options to �ll missing observations

(e.g. Baggi, Golinelli, Parigi (2004), Marcellino and Schumaher (2011), Foroni and Marcellino (2013)).

However, none of the studies were able to simultaneously �ll missing observations at the end of the panel

and in the middle of the panel including individual observations and substantial missing blocks. Our

study aims to �ll this gap by developing an alternative approach which can help to solve the problem of

di¤eringt types of missing observations in the panel of data. This approach builds on general theoretical

developments and a number of studies related speci�cally to the problem of omitted observations. General

theoretical developments will be described below in the uni�ed literature review, while speci�c literature

on missing observations is addressed in detail in the second chapter.

The �nal chapter addresses the empirical challenge of forecasting using large dimensional factor mod-

els. In the past, a number of empirical papers have used large dimensional factor models to improve

forecasting performance (e.g. Zagaglia(2010), Bernanke et al(2008)). However, the application of the

large dimensional factor modes has never been tested in the robust framework. Our research �lls this gap

by comparing a performance of the factor vector autoregressive model and factor error correction model

with a number of univariate models forecasts using Hansen (2011) bootstrap technique. Additionally, and

to the best of our knowledge, the error correction model has never been applied to the energy markets,

and it is for this reason that we are interested in evaluating the performance of the model using the

robust framework. In a similar fashion to the previous chapters, the theoretical framework regarding

the methodological estimation technique remains the same and its historical development is described in

the generalised literature review below. A more speci�c review of the energy markets and factor models

applied is given in the �nal chapter.
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2.3 A critical summary of the main developments in the theory of factor

models

Factor models were introduced by Lawley and Maxwell (1962) in the groundbreaking work on the statis-

tical analysis of large dimensional datasets. The authors suggested compressing large dimensional data

X by projecting the key trends of the dataset on the factor space F; while any variation from the main

trends are classi�ed as idiosyncratic noise. After performing the transformation, large dimensional data

has a structure of equation 1:

X =
rX

k=1

�F + E (1)

Where F (T � k) is a matrix of common factors, � (N � k) is a matrix of factor loading; E (N � T ) is a

matrix of idiosyncratic errors; r is an optimal number of factors, which is substantially smaller than the

total number of variables N . If r is large, then the model has not achieve a parsimonious description of

the variables in a form of the function of a few underlying factors.

Basic assumptions are:

� The error terms are mutually uncorrelated, with E(ei) = 0 and E(ei; ei) = �2. The assumption

always holds when the dataset consists of stationary variables;

� Further we impose restrictions on the factors: E(fk) = 0 and E(fk; ft) = 1;

� Additionally we assume independence of factors and idiosyncratic term: E(fk; eit) = 0.

The research on transformation of primary factor models reached a signi�cant milestone when Cham-

berlain and Rothschild (1983) introduced the "approximate factor" model. The approximate factor

relaxes the assumption of the primary model, such that it has an in�nite number of column variables

while time observations remain �xed. This improvement has resulted in a major reorganization of the

theory of factor models. First, the model allowed for non-diagonal covariance matrix, which is not true

for the primary model. Second, it demonstrates that PCA is equivalent to factor analysis when at least

one dimension (N or T) goes to in�nity.

The approximate factor model can be applied to broader sets of variables; however, it is still limited

such that the covariance matrix N � N has to be known. In response to the problem Connor and
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Korajczyk (1986, 1988, 1993) suggested estimating factor models using the covariance matrix T � T

while N is larger than T. This amendment opens the research to the family of large dimensional models

where both N and T tends to in�nity with di¤erent speed. Such models of greater concern to the current

study.

Stock and Watson (1999) were the �rst to describe static models with in�nitely large N and T. The

development of large dimensional models in linked with improvement in the quantity and quality of the

data. The improvement in technical characteristics of high capacity computers helped to develop data

collection and make processing easy and automated. Application of large dimensional panels allows for

a more detailed analysis of current market trends resulting in a better forecasting ability.

The properties of large dimension factor models are di¤erent in comparison to the primary and approx-

imate factor models. Therefore, new inferential and asymptotic theory of large dimensional static factor

models have been developed to ensure consistent estimation in the model. The new theory established a

more relaxed set of assumptions than was previously applied to �nite models. Large dimensional factor

models allow weak serial correlation in idiosyncratic terms, which are also generated by weak ARMA

presses. In comparison primary models only allow for iid idiosyncratic terms. Homoskedasticity of idio-

syncratic terms is signi�cantly relaxed, as well as weak dependency between factors and idiosyncratic

errors are permitted. This topic has been elaborated in the works by Bai (2003, 2004) where he derives

rates of convergence and establishes consistency of estimated factors and loadings.

Current research is based on assumptions and model formulations from Bai (2003,2004). We distin-

guish between two types: stationary (large dimensional panel X constructed from I(0) variables) and

non-stationary (large dimensional panel X constructed from I(1) variables). The model is given by equa-

tion 2:

Xit = �iFt + eit (2)

Ft = �Ft�1 + ut (3)

Where Xit is variable in a matrix X (T �N) that contains a large dimensional set of variables; Ft is

an observation in the matrix F (k � T ) of common factors where k is optimal number of factors; �i is an

observation in matrix� (N � k)of factor loading; and eit is idiosyncratic component; The common factor
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is described by equation 3.

2.3.1 List of Assumptions

This section outlines assumptions applied to large dimensional factor models. The assumptions are

taken from Bai (2003,2004) and they are speci�c to large dimensional factor models. For simplicity and

consistency of our research with the rest of the literature, we retain the assumptions of Bai (2003,2004).

Due to the fact that we use panels consisting of stationary or non-stationary series, than we provide two

lists that separate the assumptions applied to either of the panel types.

We start from the assumption developed Bai (2004) p.140 for I(1) panels :

Assumption A (Common stochastic trends):

(i) Ejjutjj4+� �M for some � > 0 and for all t � T ;

(ii) As T �! 1, T�2
PT

t=1 F
0
t F

00
t d�!

R
BuB

0
u, where Bu is a vector of Brownian motion with covari-

ance 
 uu = limT!1 1=T
PT

s=1

PT
t=1E(utu

0
s);the r� r positive de�nite matrix and F 0t are true common

factors

(iii) (iterated logarithms) lim infr!1 log log(T )T
�2PT

t=1 F
0
t F

00
t = D ,where D is a non-random pos-

itive de�nite matrix ;

(iv) (initial value) EjjF 00 jj4 �M:

Assumption B (Heterogeneous factor loading) The loading �i is either deterministic such that
�0i �

M or it is stochastic such that E
�0i �M: In either case, �00�0=N

p! �� as N !1 for r� r positive

de�nite non-random matrix ��:

Assumption C (Time and cross-section dependence and heteroskedasticity):

(i) E(eit) = 0 Ejeitj8 �M ;

(ii) E
�
e0set
N

�
= E(N�1PN

i=1 eiseit) = N (s; t); jN (s; s)j �M for all s, and T�1
PT

s=1

PT
t=1 jN (s; t)j �

M ;

(iii) E(eitejs) = � ij;s and (NT )�1
PN

i=1

PN
i=1

PT
t=1

PT
t=1 j� ij;tsj �M ;
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(iv) For every (t; s) E
���N�1=2PN

i=1[eiseit � E(eiseit)]
���4 �M:

Assumtion D f�ig ; futg ; and feitg are three groups of mutually independent stochastic variables.

Assumptions A to D outline a unique set of conditions that are applied to common and idiosyncratic

sets of non-stationary factor models. To interpret assumptions we have to consider the norm of random

matrix A to be denoted by kAk = [tr(A0A)]1=2 : Additionally, let F 0t and �0i be true common factors and

true factor loadings respectively; M is a positive �nite constant.

Assumptions A identify non-stationary common trends. Assumption A(i,ii,iii) de�nes distribution of

the idiosyncratic factor ut in the autoregressive process described in equation 3. Assumptions A(ii,iii)

ensures convergence of idiosyncratic factors to a positive de�nite limiting matrix and thus rules out the

possibility of co-integration between common factors. For more details on co-integrated trends see Bai

(2004) who discusses identi�cation and treatment of co-integrated trends in the non-stationary models.

Assumption A(iv) ensures that size of fourth moment is bounded. Assumption B sets the properties of

factor loading. In particular, it de�nes distribution up to the fourth moment and also that factor loading

is always di¤erent from zero by setting positive the de�nite matrix of variance-covariance as N goes to

in�nity.

Assumptions C de�nes idiosyncratic component eit in the factor model. Assumption C(i) relaxes

normality condition of eit. Assumptions C (ii,iii) allows for a limited time series and cross- sectional

dependence between the error components, that lets a model to have approximate factor structure (see

Chamberlain and Rothschild (1983). Assumptions C(iv,v) allow for Auto Regressive Conditional Het-

eroskedasticity (ARCH) in the error terms. However, the model performes better under homoskedasticity

and the no-correlation condition. Assumption D rules out correlation between eit and ut:

Next, we outline assumptions for stationary factor models following Bai (2003) Assumptions A-D,

p141.

Assumption E (Comon factors) E
F 0t  �M <1 and T�1�Tt=1F

0
t F

00
t

p! �F for some r� r positive

de�nite matrix �F :

Assumption F (Factor loading) k�ik � �� < 1; and
�00�0=N � ��

 ! 0 for some r � r positive

de�nite matrix ��:
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Assumption G (Time and cross-section dependence and heteroskedasticity):

(i) E(eit) = 0; E jeitj8 �M ;

(ii) (Time-series dependence) E
�
e0set
N

�
= E(N�1PN

i=1 eiseit) = N (s; t); jN (s; s)j � M for all s,

and T�1
PT

s=1

PT
t=1 jN (s; t)j �M ;

(iii) (Cross-sectional dependence) E(eitejt) = � ij;t, with j� ij;tj � j� ij j for some � ij and for all t. In

addition,

N�1PN
i=1

PN
j=1 j� ij j �M ;

(iv) E(eitejs) = � ij;s and (NT )�1
PN

i=1

PN
i=1

PT
t=1

PT
t=1 j� ij;tsj �M ;

(v) (Heteroskedasticity) For every (t; s) E
���N�1=2PN

i=1[eiseit � E(eiseit)]
���4 �M:

Assumption H (weak dependence between common factor and idiosyncratic errors):

E

�
1
N

NP
i=1

 1p
T

PT
t=1 F

0
t eit

� �M:

Assumptions E to H outline conditions applied to stationary factor models. Assumption E de�nes

true common factors such that classical assumption of the strict factor model is relaxed (F 0 is i.i.d.) and

some dynamics is allowed in the true common factor. It is however true that relations between true F 0

and X are still static. Assumption F ensures that factor loading has a unique contribution to the variance

of a large dimensional panel. In our research factor loadings are uniformly distributed. Assumption G

are equivalent to Assumption C which describes conditions for the idiosyncratic factor. Assumption H

allows weak dependence between factors and error components.

2.4 Critical evaluation of the methodology of factor model estimation

Factor model estimation can be described as a two step procedure. First we derive the factor model

parameters and determine their optimal number. Second we estimate factor scores by linear regression.

Modern literature recognises two widely applicable methods for the estimation of factor model parameters.

Maximum Likelihood (ML) technique was the original solution and later Chamberlain and Rothschild

(1983) suggested Principal Component Method (PC) as an alternative. The choice between two techniques

28



depends on the individual characteristics of the data. According to Rencher (2002) application of ML

is largely limited by the fact that it is only available for relatively normally distributed and �nite data.

However, given that these characteristics are satis�ed ML is preferred. This is partly due to the fact that

ML is an extremely computationally e¢ cient method for parameter estimation, and it is easy to obtain

additional statistics that help to assess the statistical signi�cance, goodness of �t, con�dence intervals for

factors and evaluate correlation between them.

Non-normality and high dimensionality of the data presents a problem for the traditional ML esti-

mators. More precisely, ML estimator fails to converge when the number of parameters for assessment

tend towards in�nity. Non-normality of the data leads to biased and ine¢ cient estimations. To solve

these problems, Principal Component Method was introduced. Due to the nature of the present research

we choose to use Principal Component Method for estimation of model parameters. First it overcomes

the limitation of ML and can be applied to the non-normal data, which provides data restriction in the

research. Second, the analysis is set to work with large dimensional panels and ML estimators can fail to

converge when the number of estimated parameters is going to in�nity. Third is that modern literature

on large dimensional factor analysis suggests PC for factor estimation. Finally, Principal Component

Method is most commonly applied to static panels, which are the subject of this research. Due to the

importance of the PCM we provide a complete methodology of the approach in the following chapter.

It is true that Principal Component Method has a number of variations such as Principal Axis Method

(PAM) and Iterated PAM. We therefore feel that it is essential to de�ne the di¤erences between the

various approaches and justify the reasons for choosing the PC. All the analysis on the topic is provided

in the following chapter.

Although Maximum Likelihood has no direct application in the current research we provide a summary

discussion about this methodology, in order to assess the various techniques available for factor analysis

in �nance. We also acknowledge the alternative and varied techniques additionally available to carry our

factor analysis (see Alpha Factoring, Image factoring, Regression factoring using OLS/ GLS, Bayesian

regression constructed by De Mol et al. (2006). However these methods are rare in economics and,

therefore, we refrain from carrying out a detailed discussion on the same.

It is essential to point out that implementation of Principal Component Analysis demands further

restrictions in the form of assumptions for available data. The list of assumptions has evolved over

the past few decades and current research considers the latest developments. We present the summary

discussion regarding individual assumptions.
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2.4.1 Common Factor Estimation

Principal Component Method and Related Approaches Principal Component Method (PC) was

introduced as a technique available primarily to large dimensional factor models, where the matrix of

errors is not normal. PC approximates common factors (F ) by applying spectrum decomposition to the

covariance matrix S:

S =
nX
i=1

(xi � �x) (xi � �x)0 =n (4)

S = C�C 0

Ŝ ~=
�
C�1=2

��
C�1=2

�0
= F̂ F̂ 0 + 	̂

We start by estimating covariance matrix of the original data using equation 4. We attempt to factor

S on normalised eigenvectors C and diagonal matrix of eigenvalues �. To do that we apply spectrum

decomposition and extract eigenvalues that are roots of equation jS ��Ij = 0 , where I is an identity

matrix and S is a positive semi-de�nite matrix. At the later stage we attempt to �nd eigenvectors C by

solving system of linear equations jS ��IjC = 0 , where � is know from the previous stage. Eigenvectors

C are normalised by dividing each non normalised eigenvector by its length. Normalization shifts the

coordinate axes to a new coordinate system, thus common factors become a convenient set of coordinates.

Finally, we neglect matrix 	 and attempt to determine common factors using third equation.

Matrix 	 assumed to be diagonal and equal to diag( 1;  2; ::: n) = I � diag(f211; f
2
22; ::; f

2
nn), all

nondiagonal elements of 	 assumed to be equal to zero. The error matrix � = S � (�̂�̂0 + 	̂), s.t.

diagonal elements � are equal to zero, but o¤-diagonal elements are non-zero. The proportion of total

variance of S due to the fact that each factor is estimated by dividing each eigenvalue on trace of covariance

matrix #i=tr(S).

Principal Component Method has a number of variations that can be found in the modern literature.

Principal Axis Method (PAM) is possibly the most common variation of PC and it also can be applied for

the smaller panels. To apply PAM we start from the common expression S = F̂ F̂ 0 + 	̂, however unlike

the PC we do not neglect matrix 	, but attempt to approximate factor loadings using matrix S � 	

instead of S. Principal Axis Method can be easily transformed to the Iterated PAM. The �rst stage will

be to compute factors using standard PC, and then use new factors to approximate matrix S �	. The
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process then goes back to the �rst stage and continues until the convergence.

The di¤erence in the methodologies is marginal and as a result all these methods lead to the similar

results providing that (i) correlations are fairly large, with a resulting small value of k; and (ii) number

of variables n is large. According to the nature of the research it can be observed that application of any

of the methods would lead to similar results. However, Principal Component Method is computationally

easier therefore it is our main methodology for factor extraction.

Maximum Likelihood Factor analysis was originally performed using Maximum Likelihood (ML)

technique (see for example works by Sargent and Sims (1977), Stock and Watson (1989)). Principle

Component method partially evolved from ML and it bares certain similarities to the approach that

is still widely recognised as a valid technique for factor approximation. In this chapter we provide a

short description of ML because it (i) carries historical importance for factor analysis and (ii) we outline

ML procedure to be able to compare and describe the bene�ts of PC approach as a technique that was

developed to overcome the di¢ culty posed by ML. The procedure described below follows Lawley and

Maxwell (1962) original desings, and the more current work discussed by Bartholomew (2011).

S =

nX
i=1

(xi � �x) (xi � �x)0 =n

Ŝ = F̂ F̂ 0 + 	̂

L = �1
2
ln jŜj � 1

2
n
X
i;j

aijc
ij

We launch the ML technique by estimating covariance matrix S for panel Xit. It is obvious that

variance-covariance matrix can be approximated using common factor F as well as estimated directly

from the panel using the �rst equation. We use this idea to build likelihood function L, that we maximize

by setting partial derivatives (with respect to fir and 	i) equal to zero. The equation is estimated

iteratively up to convergence of the covariance matrix.

To be able to perform the procedure we have to impose number of conditions that tend to restrict

application of ML. First and most importantly, data has to be normally distributed X � Np(�;�).

Second, ML fails to converge given that covariance matrix is too large (for example matrix S T � T

when T ! 1) see Lawley and Maxwell (1962).Given that n is �nite, it is possible to apply ML for
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consistent estimation of factor loadings but not common factors. Common factors are then extracted

using regression F̂ = XS�1�̂. Next, we have to include conditions such that: (i) the matrix of common

factors F is independent from the matrix of errors eit;(ii) the matrix of errors should be independent and

identically distributed across time and independently across i; (iii) �nally the matrix 
(ete0t) is diagonal.

These assumptions are very strict for �nance and economics data and therefore the Principle component

approach was developed to overcome such restrictions.

2.4.2 Optimal Number of Factors

The problem of factor extraction is related to the question of the optimal number of factors (k), which

can be estimated using a number of techniques. In this section we give an overview of the most commonly

applied techniques, including the literature review on the topic and the reasoning behind favouring speci�c

methods.

We start from Bai and Ng (2002) approach for estimation of optimal number of factors, which is

based on information criteria. The information criteria optimizes the number of maximum possible

common factors kmax in the model as a trade-o¤ between accuracy of �t and over �tting, where kmax <

min fn; Tg and k < kmax. Information criteria is estimated using the following formulas PC(k) =

V (k) + k � g(n; T ); where V (k) is the minimized squared residuals, k is number of factors and g(N;T ) is

a penalty function. For the factors estimated from the �rst-di¤erence data, information criteria should

be estimated with the equation: PC(k) = V (k) + k�2 ((N + T ) =NT ) ln (NT= (N + T )) ; where �2 =

V (kmax). The number of factors for data in levels is calculated using the following information criteria:

PC(k) = V (k) + k�2�T ((N + T ) =NT ) ln (NT= (N + T )) ; where �T = T= [4 ln ln(T )] by the law of

iterated logarithms. Information criteria computes the number of factors consistently only for large

dimensional datasets.

There exist a number of alternative approaches. The classical approach for factor number selection

is the variance based approach. To perform this we �rst have to select the optimal amount of variation

that has to be explained (usually between 80%-90%). Total variation is estimated using tr(�); where the

amount of variation of each loading is equal to #i=tr(�); where #i is eigenvalue of each factor loading.

We choose optimal number of loading k, so that the sum of explained variation constitutes a relatively

large portion of total variation. It can also be estimated as a sum of squares of all elements of �̂ to

tr(�).
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The next method applies Kaiser criterion ( see Bandalos and Boehm-Kaufman (2009)), which omits

all factor loadings with eigenvalues smaller than average, that is
PN

n=1 #i=N . While applying Kaiser

criterion to PAM we omit all negative eigenvalues, which tend to reduce too many factors.

Thee Cattell screen test is based on the plot of each loading on the X axis and its corresponding

eigenvalue of � on Y axis, in which all values are sorted in an ascending order. As we move to the right

we observe the eigenvalue to drop and form a curve. We choose all eigenvalues (with their corresponding

factors) which are located before a noticeable sharp drop in values of the curve. This test is very popular

among practitioners, and the selection is based on a visual assessment of the plot.

Forni et al. (2000) proposed the use of an heuristic examination of factor loadings against variables

n. The minimal percentage of variance has to be explained by each prespeci�ed factor. Therefore, the

number of �rst q eigenvalues converge to the true one, while N � q remain bounded by original pre-

spesi�cation and can be neglected. This approach is highly sensitive to the prior speci�cation and can

therefore yield biased results.

2.4.3 Interpretation of common factors: Rotation

The theory of factor models recognises estimation of unobservable factors (see Stock and Watson (2002)).

However, practically applied, it is common to seek interpretation of those factors. To do this we intend

to group original variables in to clusters formed on the basis of the largest values for each factor. For

example, if the �rst factor is a vector (.927, -.037, .980 , .916, .194) then the �rst, third and forth variables

represent a cluster. By analysing the �rst, third and forth variables from the original panel X, we can

�nd an interpretation by looking for commonality between them. However, the values of factors do not

always present clear clustering and in this situation we have to apply a rotation technique. The rotation

aims to separate factors which contradict each other and make the model more interpretable. In addition,

we aim to reduce the number of negative factors which are hard to explain; �nally, we reduce as many

factors to zero in order to reduce parameters of the model.

The orthogonal rotation is the most commonly applied. Graphical interpretation of the rotation

consists in moving the factor (axis) closer to the cluster(s) of factor values. Rotated factors form a

similar covariance matrix, and can be easily interpreted.
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S = F̂ �F̂ �0 + 	̂ = F̂ TT 0F̂ 0 + 	̂ = F̂ F̂ 0 + 	̂

To estimate F̂ � = F̂ T we have to multiply the matrix of factors by the rotation matrix, that is a

matrix of Sin and Cos functions that determines the rotation angle. Graphical rotation is only possible

for simple systems with two factors. In more complicated situations we apply varimax rotation that looks

for rotated factors maximizing the variance of squared factors in each column F̂ �. As a result we obtain

a matrix of factors that can be clearly grouped into clusters.

2.4.4 Factor Scores Estimation

To complete the factor models it is crucial to estimate factor scores. The procedure was developed by

Bartlett(1938) and it builds on the idea of minimisation of the sum of squared standardised residualsP
i e
2= i; where  i are from equation F̂ F̂ 0 + 	̂: The sum can be rewritten as follow:

P
i e
2= i =

PN
i=1(xi �

P
�ikfk)

2= i

We minimize the above equation with respect to F to arrive to simple regeression � = X � F=T .

Following Stock and Watson (2002a) we distinguish between two cases of �short panels�where T < N and

�long panels�where T > N . For short panels we apply previously described computational technique,

i.e. we estimate common factors by PC and later estimate factor loadings using regression � = X�F=T:

For �long panels�where T > N we construct the loading by applying PC to N �N matrix X 0X and the

common factor is computed using regression F = (X � �)=N .
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Abstract

The existing inferential theory for non-stationary panel factor models is extended by proposing a novel

estimation methodology for common factors, loadings, and common components, in the context of large

time series (T) and cross sectional (n) dimensions. The method proposes to extract the non-stationary

common factors by applying Principal Components (PC) to data in stages, and then uses their �rst

di¤erences. First order asymptotics of the estimated loadings and common components are found to

be the same when the stationary factors are directly estimated using �rst-di¤erenced data. Conversely,

higher order terms are shown to converge to zero at a faster rate (n,T) and pass to in�nity, thereby

suggesting that the proposed methodology yields better �nite sample properties than direct estimation

from �rst-di¤erenced data. The theoretical �ndings are investigated through the comprehensive Monte

Carlo exercise, showing that even in the case of small N and T , the asymptotic results form a very good

approximation of the �nite sample properties of the stimated loadings and common components..
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3.1 Introduction

Previous studies on factor models theory concentrated on identifying those conditions that allow the

estimated factors to be treated as �known�and �true�, that is, when the estimation error is negligible; that

is when the estimation error is negligible. Of the early theoris, Lawley and Maxwell (1971) speci�ed a

list of strong assumptions that may be applied to a limited data sample, aiming to ensure convergence

between the estimated factor and the true theoretical trend..By partially relaxing the assumptions, as

Chamberlein and Rothschild (1983) did with their theory of large dimensional factor models, one is

able to ensure convergence between the estimated parameter and the true trend for much larger data

samples. The complete theory of large dimensional factor models was established twenty years later when

Stock and Watson (2002), Bai(2003), Bai(2004) identi�ed theoretical properties of the estimators of the

large multidimensional factor model, in addition to the list of assumptions which guaranteed convergence

between the parameters and the true factors.

The development of the theory of large dimensional factor models coincided with growing technological

progress, and had a huge impact on empirical research �ndings. Newly available large data sets demand

an analytical tool which can access and extract the information core locked in the dataset. The nature of

the factor models methodology are a perfect �t for the task, as they are essentially built for the purposes

of data scrutiny and major trend identi�cation. Statistical factor models can be applied to all data sets

that have a factor structure, and moreover, their generality and ability to rationalise seemingly random

data has not gone unnoticed in empirical research. Over the past �fteen years factor models methodology

has been increasingly related to macroeconomic analysis and research into forecasting, interest rates

and in�ation studies, monetary policy, nowcasting procedures and a plethora of trading methodologies.

Rudebusch and Wu (2008) developed a macro�nance model based on large dimensional factor models of

an array of macroeconomic factors, providing an indicator of a country�s economic health. Eickmeier and

Ziegler (2008) tested the strength of factor models in the forecasting output and in�ation of the countries.

Bernanke and Bovin(2000) demonstrated applicability of the factor model methodology to the monetary

policy identi�cation. All these papers demonstrate the generality of the factor models approach, their

ability to extract major trends, which can in turn be further interpreted in economic and �nancial terms

by the application of the factor rotation methodology and evaluation of association between factors and

time-series variables in the dataset (see Connor and Korajczyk (2009)).

The applicability of factor models to a wide variety of economic and �nancial problems results in the

great importance of the topics related to the estimations of factor models. Indeed, one would where pos-
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sible apply a consistent estimation technique, resulting in an unbiased, e¢ cient and consistent factor. In

other words, estimators should converge to the true common factors of the dataset; given the convergence

is achieved then we can treat estimated factors as known and proceed with underlying research. The

purpose of this chapter is to describe an addition to the existing factor models theory which allows faster

rates of convergence and closer approximation of the true common factors. The bene�ts of the research

can be seen in both theoretical and empirical econometrics. From a theoretical prospective the research

contributes to the existing theory of factor models and proves the theoretical concept: that better rates

of convergence can be achieved. At the same time the assumptions used in the theoretical proofs are

similar to the classical assumptions of Stock and Watson (2002), Bai(2003), Bai(2004). It implies that

under similar assumptions and without additional strengthening of underlined assumptions, we are able

to propose a methodology that deliver more consistent and robust factor trends.

From an empirical econometrics prospective the research provides alternative generalized methodology,

permitting greater precision in the estimation of common trends, without superimposing the stronger

assumptions of the existing theory. Therefore, the research can be applied to a variety of empirical areas,

and is especially valuable when the additional degree of the precision is necessary. We can identify a few

areas, such as spread trading research (especially on the markets with tighten spreads) where the degree

of the accuracy n identifying market entry points; the same applies to high frequency factor models

research for the purpose of building trading strategies. Macroeconomic research which applies factor

model theory will bene�t from the more precise identi�cation of the factors, however the impact would

be less noticeable as macroeconomic research usually focusses on the identi�cation of only generalized

trends and indicators of economic development.

In this chapter we demonstrate that our methodology iemphasizes the robustness of estimated com-

mon components, in comparison to the case when stationary factors are directly estimated using �rst-

di¤erenced data. Improvement in estimations obtained due to the faster rates of convergence of higher

order terms lead to better, which leads to more accurate �nite sample properties than direct estimation

from �rst-di¤erence data. Using our �ndings we are able to complement the existing theory of factor

models and contribute to the literature on factor models. We believe that our �ndings is important from

a theoretical perspective, as for the past three decades the literature on factor models focusses on the

development of the more robust and consistent estimators of large dimensional panel trends. In this

respect our research is one in a long line of those papers focused on the problem of increasing robustness

and consistency of the estimators. Therefore, the purpose of this chapter is to complete the existing
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inferential theory for the stationary and non-stationary factor models by proposing a novel estimation

methodology for common factors, loadings, and common components, in the context of large time series

(T) and cross sectional (N) dimensions.

In addition, we contribute to the empirical research by providing methodology that insures higher

theoretical precision of the factors. In empirical research we have to impose strong assumptions about

data generating process in order to claim that factor trend of the large dimensional panel is consistent

and robust. Our methodology provides a combination of the classical assumptions, and the alternative

approach should the data generating process not satisfy the assumptions of the classical theories as de-

scribed in Stock and Watson (2002) and Bai(2003). Additionally, given the generality of the assumptions,

the methodology can be applied to a variety of the datasets so as to increase the precision of the factor

estimator. This is especially valuable in the research which investigates the possibility of trading activities

using real time ultra-high frequency data, or tight spread trading, where estimated trends are aimed at

the development of future trading strategy and formation of the trading positions. As stated previously,

the methodology is applicable to any research satisfying Stock and Watson(2002), Bai(2003), Bai(2004)

classical factor models assumptions. However, using the methodology described in the chapter we are

able to achieve more robust and consistent estimators than those described in the previous chapters.

The remainder of this chapter is organised as follows: chapter 2.2 gives a brief overview of the

literature associated with the topic; chapter 2.3 provides the detailed technical speci�cation of the model

and describes the methodology; chapter 2.4 presents the theoretical �ndings; chapter 2.5 outlines the

results of the simulation exercise; and chapter 2.6 remarks upon our conclusions.

3.2 Literature review

The paper concentrates on the inferential theory of static large dimensional factor models, to which we

tailor the literature review. The extended version of the literature review in the area of factor models is

outlined in the chapter 2.1. In this chapter we present an overview of the history of inferential theory

development focused on static models.

Primary factor models have been extended to the large dimensional models by reducing the number of

assumptions applied to the common factors and error terms. In the classical works of Lawley and Maxwell

(1971), Anderson and Rubin (1956), and Anderson (1984), we �nd the original list of assumptions of

primary factor models that had been modi�ed. Among others, we referred to the set of assumptions
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concentrating on cross-sectional and time-series independence of idiosyncratic errors; normality of the

distribution of idiosyncratic errors as well as the factors; and the assumption that limits the number of

column vectors in the panels.

The �rst transformation of primarily factor models took place using relaxation of the assumption

regarding the independence of idiosyncratic terms, by allowing a weak cross-sectional correlation of errors

as long as the dataset correlation matrix produces bounded largest eigenvalues. The transformation

was �rst described in the work by Chamberlain and Rothschild (1983), who introduced the notion of

approximate factor model. The work on development of approximate factor models continued, and in

the late 1990�s Stock and Watson introduced static large dimensional factor models. During the same

period Forni, Hallin, Lippi, and Reichlin proposed their speci�cation of the large dimensional factor

model that is commonly referred to as the dynamic factor model. Boivin and Ng (2005) performed a

comparison between the models, concluding that when applied to econometrics, both in fact produced

similar forecasting results.

Theoretical �ndings in the 1980�s and 90�s played a crucial role in the development of the theory of

large dimensional factor models. Further research laid a foundation for the new �eld new �eld of approx-

imate large dimensional factor models. "Large" refers to the in�nite number of model observations, as

well as column vectors, and �approximate�indicates relaxed assumptions regarding independence relaxed

assumptions regarding independence of the idiosyncratic errors.

In the factor models, the dataset Xit is the only observable part of the model; factor loading, common

factors and idiosyncratic factors are latent, and they are not observed and do not have direct interpre-

tation. The dataset Xit is in�nite and thus, maximum likelihood estimation technique is not applicable,

though ML is commonly applied to the classical factor models. To estimate latent components of large

dimensional models it was necessary to develop a technique that ensured consistency and unbiased esti-

mators.

Connor and Korajczyk (1986) were the �rst to suggest an estimation solution for the factor models

with an in�nite number of factors. Their methodology was originally developed for the Chamberlain

and Rothschild (1983) the approximate factor model. We recall that approximate factor model allows

only one dimension of the dataset to reach in�nity. Connor and Korajczyk (1986) took advantage of

this feature and suggested a Principal Component methodology, analysing a covariance matrix of the

�nite dimension of the dataset. Such a transformation ensured consistent estimation of the factors in the
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approximate factor model with a weak cross-sectional dependence on error terms.

Stock and Watson (2002) extended the Principal Component methodology for the samples with both

in�nite time-series and cross-sectional dimensions. The methodology employs the quasi-maximum likeli-

hood technique for principal component analyses, allowing the presence of cross-sectional and time-series

correlations of error terms. Additionally, Stock and Watson�s (2002) methodology helped to impose

time-varying factor loadings. Bai(2003) o¤erred a theoretical justi�cation for the technique, analysing

the distribution of the factors and loadings, deriving asymptotic rates of convergence when T/N of the

sample goes to in�nity. Anderson and Vahid (2007) improved the principal component estimation tech-

nique by allowing jumps in the dataset, and used IV approach to correct a measurement error from

jumps.

To use principal component analysis for approximation of large dimensional factor models we have to

impose a set of assumptions on the latent factors. The common factor assumptions ensure no degener-

ation, and each factor has a unique contribution to the variance of panel dataset. Additionally, factors

are allowed to be correlated across time. The set of idiosyncratic assumptions ensures that errors can

have weak cross-sectional dependence, which is similar to Chamberlain and Rothschild�s (1983) model,

in which weak time-series correlation of errors is permitted, as well as heteroskedasticity.

Further developments are found in Heaton and Solo (2006) who proved the robustness of the common

factor estimators when the rate of cross-correlation increases with the speed of N. This development

signi�cantly improves the Chamberlain and Rothschild�s (1983) original assumption regarding cross-

sectional errors. Bai(2003) speci�ed that another assumption of the original model can be relaxed by

allowing weak correlation between common factors and idiosyncratic terms. Chapter 2.3.1 gives a rigorous

examination of the factor models assumption. As long as the set of idiosyncratic assumptions holds, the

estimators of common factor and loading is consistent. The static factor model also includes a set of strong

assumptions, including the independence of common factors and factor loading, as the independence of

loading and error terms.

Bai and Ng(2002) developed a formal methodology to estimate the optimal number of parameters in

the large dimensional approximate factor model. They developed an information criteria methodology

that is based on the �ltration of the largest eigenvalues in the sample. Additionally, the number of optimal

parameters can be tested using a scree plot. Onatski (2010) justi�ed this methodology by providing

asymptotic distribution for the factors extracted using scree plot tests. The author chooses optimal
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number of factors by analysing the change in the slope and curvature of the scree plot of eigenvalues.

Stationary static large dimensional factor models experienced a growth in popularity amongst empiri-

cal studies. Numerous practitioners apply this approach to achieve consistent evaluation of large datasets.

Among others are IV-factor model Kapetanios and Marcellino (2006a), Linear Factor Augmented Re-

gressions by Bai and Ng (2006a) and a groundbreaking work of Stock and Watson (2002a) on Di¤usion

Index (DI) forecasting methodology.

In addition to the static factor models, there has been a growing discussion regarding the application of

non-stationary models, allowimg for the analysis of the non-stationary set of variables Xit. The common

factor of the non-stationary set of variables has a unit root. Bai (2004) developed an asymptotic theory

and the rates of convergence for the non-stationary common factor. The theory holds when both time

series observations and cross-sectional columns are in�nite, leading to uniformly distributed common

components. Moreover, the common factor is consistently estimated even if each error term is spurious.

This is a signi�cant advantage in comparison to the traditional multiple regressions where number of

variables is limited. Bai (2004) imposes a number of assumptions.

In this chapter we give a brief desciption of the main results, before giving a full set of assumptions

in chapter 2.3.1. The �rst set of assumptions imposes the condition that variance matrix of common

factor, which has to be positive de�nite. Next, the non-stationary model implies similar conditions on

the idiosyncratic term, such that they are allowed to be weakly cross sectional and time series dependent.

The heteroskedasticity is allowed, whereas the dependence between errors and common factors is not. To

detect the non-stationarity of the variables in the model, Bai and Ng (2002) developed PANIC (Panel

Analysis of Non-stationarity in Idiosyncratic and Common Components), which examines the unobserv-

able latent factors and demonstrates the number of stochastic trends that are driving the data. The

majority of the unit root tests examine the dataset to determine a unit root of the trend, di¤erentiating

a PANIC approach.

The literature review provides a general overview of the main contributions of the theory of factor

models. This paper concentrates on the theoretical �ndings, and we threfore amend the discussion

of empirical applications of the large dimensional static factor models. The overview of the empirical

developments in the �eld of large dimensional factor models can be found in the following works of

Stock and Watson (2002b), Artis et al. (2005), Marcellino et al. (2003), Schumacher (2012). Unique

developments in the empirical applications of factor models can be found in Bernanke and Boivin (2003),
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Giannone et al. (2005a, b), Favero et al. (2005), Stock and Watson (2005).

3.3 Methodology

Consider the non-stationary panel factor series

Xit = �0iFt + eit; (5)

where i = 1; :::; n, t = 1; :::; T , Ft is a k-dimensional vector whose DGP is assumed to be Ft = Ft�1+"t; in

addition, we assume that eit is stationary. Bai (2004) develops the inferential theory for (5) - speci�cally,

for Ft, �i, and for the non-stationary common component Cit � �0iFt. On the other hand, one may also

consider the stationary, �rst-di¤erenced panel factor model

xit = �0ift + uit; (6)

where xit = �Xit and ft = �Ft. In this case, estimators for �i, ft and cit � �0ift (say �̂i, f̂t and ĉit

respectively) are provided by Bai (2003).

The purpose of this note is to complement the existing inferential theory on (5) and (6), by providing

some results on estimation based on using the �rst di¤erence of the estimator of Ft, say F̂t, computing

(5). Indeed, instead of estimating ft from (6), one could think of using ~ft = F̂t � F̂t�1. There�re, using

either the estimation �i from (5), say �̂i, or estimating �i from (6) using ~ft, one can compute the �rst

di¤erenced estimator of cit as ~cit � ~�
0
i
~ft. Estimating ft and cit is useful for various purposes, and one

important example is the estimation of the long run covariance matrices (henceforth, LRV) of Ft and

Cit. Of course, this can be also done by using other techniques, such as the estimation of the LRV of

Cit;which can be achieved directly, using Xit; the LRV of Ft can be estimated using f̂t, calculated from

(6). In this note, we consider the estimation based on ~ft and ~cit.

In the context of bootstrapping nonstationary factor models, some results have already been developed

by Trapani (2012a, 2012b). This note completes the inferential theory of the �rst-di¤erenced estimators.

In particular, in Section 3.4, we report rates of convergence for: ~ft; for the estimator of �i based on using

~ft in (6), say ~�i; and for a weighted-sum-of-covariances estimator of the LRV of Cit based on ~ft.
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3.4 Theoretical Results

All results reported here for ~ft, ~cit and ~�i are derived under the same assumptions as in Bai (2003, 2004),

which we omit for brevity. Henceforth, we de�ne the r � r rotation matrix H �
�
F̂ 0F
T 2

��
�0�
n

�
, where

F = [F1; :::; FT ]
0 (F̂ is de�ned similarly) and � = [�1; :::; �n]

0. The number of factors, r, is assumed

known from simplicity.

Firstly, we demonstrate a Lemma containing rates of convergence for ~ft = F̂t � F̂t�1.

Lemma 1 As (n; T )!1, it holds that

~ft �H 0ft = Op

�
1p
n

�
+Op

�
1

T 3=2

�
; (7)

max
1�t�T

 ~ft �H 0ft

 = Op

�
1

T

�
+Op

 r
T

n

!
; (8)

1

T

TX
t=1

�
~ft �H 0ft

�
uit = Op

�
1p
n

�
+Op

�
1

T 3=2

�
: (9)

Under n
T 3 ! 0,

p
n
�
~ft �H 0ft

�
d! QN (0;�t), where Q is de�ned in Theorem 2 in Bai (2004, p. 148)

and �t � limn!1 n�1
Pn

i=1

Pn
j=1 E

�
�i�

0
juitujt

�
.

Lemma 1 states that rates and uniform convergence of ~ft � H 0ft are the same as for F̂t � H 0Ft.

This can be compared with the results in Theorem 1 in Bai (2003), where it is shown that f̂t �H 0
1ft =

Op
�
n�1=2

�
+Op

�
T�1

�
- note that, in general, the rotation matrices H and H1 are di¤erent. Therefore,

heuristically, ~ft should be a better estimator than f̂t for the space spanned by ft, especially when T is

small. Lemma 1 is a complement, regarding the properties of ~ft, to Lemma A.1 in Trapani (2012a; see

Trapani 2012b for proofs). The Lemma contains essentially technical results that are useful for proofs.

We now turn to the estimation results of the loadings �i. To this end, it is possible to use the estimator

of �i from (5), say �̂i. Bai (2004, p. 148-149) shows that �̂i is �superconsistent�, viz. �̂i � H�1�i =

Op
�
T�1

�
; note also that the rate of convergence does not depend on n. Alternatively, it is possible to

estimate loadings using ~ft, by de�ning ~�i =
hPT

t=1
~ft ~f

0
t

i�1 hPT
t=1

~ftxit

i
. Let �" � E ("t"

0
t) = E (ftf

0
t);

it holds that:

Proposition 1 As (n; T ) ! 1 it holds that ~�i � H�1�i = Op
�
n�1

�
+ Op

�
T�1=2

�
. Under

p
T
n ! 0,

p
T
�
~�i �H�1�i

�
d! N (0; Vi) with Vi = (H 0�"H)

�1
(H 0�iH) (H�"H

0)
�1 and �i = limT!1E (ftf

0
suituis).
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Proposition 1 states that the properties of ~�i are (modulo the rotation matrix H which is di¤erent

from the case of using stationary data) the same as discussed in Bai (2003), where the estimation of �i

is based on using (6). The result can be compared with �̂i, whose convergence rate does not depend on

n and it is faster in T .

Based on Lemma 1 and Proposition 1, consider the �rst-di¤erenced estimator of the common com-

ponents cit, ~cit � �̂
0
i
~ft = Ĉit � Ĉit�1 = �̂

0
i

�
F̂t � F̂t�1

�
. By combining the results above, and using

Lemma 3 in Bai (2004), we have ~cit � cit = �̂
0
i
~ft � �0ift =

�
�̂i �H�1�i

�0
~ft +

�
~ft �H 0ft

�0
H�1�i+�

�̂i �H�1�i

�0 �
~ft �H 0ft

�
= Op

�
n�1=2

�
+ Op

�
T�1

�
. In view of this, and using Theorem 3 in Bai

(2004) on the limiting distribution of T
�
�̂i �H�1�i

�
, the asymptotic distribution of ~cit � cit has the

same properties as in Theorem 4 in Bai (2004, p. 149).

The results in Lemma 1 and Proposition 1 can be combined in order to estimate the LRV of the

common factors Ft and of the common components Cit. Let �F be the LRV of Ft, and de�ne similarly

the LRV of Cit as �C . A possible way of estimating (a rotation of) �F is attained through

�̂F = ̂F0 +
hX
j=1

�
1� j

h+ 1

��
̂Fj + ̂

F 0
j

�
;

where h is a bandwidth parameter and ̂Fj � T�1
PT

t=j+1
~ft ~f

0
t�j ; other kernels can also be employed.

This estimator is expected to be consistent in some sense under standard assumptions, on the decay of

the autocorrelation coe¢ cients of ft. Of course, �̂F does not estimate �F consistently due to rotational

indeterminacy; it can be expected that
�̂F �H 0�FH

 = op (1).

Similarly, �C can be estimated either as �̂C = �̂
0
i�̂F �̂i, or as ~�C = ~�

0
i�̂F

~�i. By virtue of Proposition

1, �̂C should be better, and we focus our attention on it.

Theorem 1 Assume that
P1

j=0 j
s
��Fj �� <1. It holds that

�̂C � �C = Op

�
hp
T

�
+Op

�
h

n

�
+Op

�
1

h

�
: (10)

Theorem 1 contains rates of convergence for �̂C , which is a consistent estimator provided that h!1

and that h=min
n
n;
p
T
o
! 0. This also gives a selection rule for h; as an example, the choice of the

bandwidth that maximizes the speed of convergence is h� = O
�
min

�
T 1=4; n1=2

	�
.
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We point out that �̂C is not the only possible estimator for �C . As another factor-based alternative,

one could consider estimating a rotation of �F using f̂t calculated from (6). Given that the rotation matrix

H di¤ers depending on whether (5) or (6) is used, in this case it is necessary to employ the estimated

loadings from model (6), which has the same properties as ~�i in Proposition 1. Based on this, and on

Lemma 1, it can be expected that this estimator does not converge as fast as �̂C . Similarly, it is possible

to use a weighted-sum-of-covariance estimator for �C based on using the xits directly. Theoretically, this

estimator should work due to the eits in (5) being stationary, although this may introduce some noise in

the estimation of �C .

3.5 Simulation Results

We report a Monte Carlo exercise to illustrate the behavior of the estimated common factors ~ft and

common components ~cit in comparison to true counterparts. We perform simulation using large sample

size matrixes. Although our paper addresses the problems related to the large sample size data, we felt

compelled by the idea to experiment with the smaller sample of data; the results of the experiment are

compared with the large sample experiment. The DGP we employ is the same as in Bai (2003), and in

particular the error term in (5), eit, is simulated according to ARMA(1,1) process, viz. eit = �eit�1 +

vit + �vit�1, with vit i.i.d. standard normal. We report results for the following combinations of (�; �) =

f(0; 0) ; (0:75; 0) ; (0; 0:75) ; (0;�0:75) ; (0:5; 0); (0; 0:5); (0:� 0:5)g; the combinations of the large sample

size dimensions are as follow (n; T ) = f25; 50; 100; 200; 500; 1000; 2000g� f50; 100; 1000g; additionally we

experiment with the �nite sample of the following dimensions (n; T ) = f5; 10g � f5; 10; 15g. Number of

replications is set to 1000.

We start the evaluation of the methodology with an assessment of the correlation parameters between

common factors and true common factors simulated in the exercise; tables I; II; V; V I; IX and X report

the results of the exercise. Tables I; V and IX relay the results for the exercise performed using the

methodology described in Bai(2003), while tables II, VI and X demonstrate the results of the novel

methodology.

The results suggest that the common factor estimated using the novel methodology bares greater

correlation to the true factor than the traditional common factor. This results hold for all variations

of the simulations, and therefore, the simulation results con�rm our theoretical �ndings that the novel

methodology provides faster rates of convergence and better approximation results. Coe¢ cients have
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better approximation when the number of column vectors increases in the panel dataset. We can observe

a similar dynamic amongst by increasing time-series observations. The largest datasets have marginal

deviation between the estimated and the true factor. As we decrease the numbers in column N and

the time-series observations T, the correlation between true and estimated factors decreases. Bai(2003)

described similar results which lead to the conclusion that larger panels of data have better approximations

of estimated factors.

We simulate error components according to four separate processes. First we generate an error term

as an iid process ARMA(0; 0), where errors are normally distributed. Second, DGP is generated using

autocorrelation process ARMA(p; 0) where structural parameter p equals 0:5 and 0:75. The third and

fourth processes are generated in a similar way to the moving average process ARMA(0; q)where q

parameter can take values f0:5; 0:75;�0:5;�0:75g. We start from only one parameter p and q in the

ARMA(p; q) DGP for error terms. Next we increase the number of p and q parameters in the ARMA

process. Diversity in our simulations secures a robust evaluation of the new methodology results and

helps to examine the impact on the long-run variance of the estimators.

All simulation exercises are able to extract common factors which are highly correlated to the true

factors. The data set with errors following the iid process generated by using ARMA(0; 0) equation for the

error terms demonstrated the best results. The majority of datasets with larger than N = 25 demonstrate

correlation above 70% between true and estimated common components. If we increase the dataset to

100 column vectors than the correlation increases above 90%. When the number of variables is increased

to 2000, the correlation between estimated factors and true parameters is exceptionally high, and on

average stands at 99%. For extra large samples, with the number of variables N larger than 1000; our

simulation demonstrates only marginal di¤erences with classical methodology. However, panels N lower

than 200 suggest that common factors extracted using novel methodology have higher correlation with

true factors. Panels with a smaller sample size demonstrate wider dispersion of the results. However,

the dynamic remains similar to the large sample panels. The correlation between estimated and true

common factors increases with the number of column vectors. The results are mixed with the increased

time- series observations, however when T = 1000 the results consistently improve in comparison to

the smaller samples. Positive results of the simulation exercise suggest that the proposed methodology

reduces the bias in long-run variance estimators and increases the convergence of the common factors.

A diverse number of autocovariates in the error term helps to address the issue of bandwidth using

Monte-Carlo simulation. Theorem 1 suggests that the rates of convergence of estimated factors are better
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than in Bai�s (2003) methodology given that the bandwidth h goes to in�nity. We test this assumption

by changing the number of covariates of error terms and estimating the degree of convergence using the

correlation coe¢ cient as the indicator. Our results report that in practice the degree of variations induced

by changing covariates is minimal and thus even a small bandwidth will demonstrate good results.

The dynamic of the common components is similar to common factors. We notice that the degree of

correlation between common components is overall lower than among common factors. We explain this

phenomenon by the fact that common components are the product of the multiplication of factor loadings

and factor trends; factor loadings have a higher degree of variability which increases the dispersion of

common factors. We can observe that the dynamics of common components and variability is similar

to the dynamics of common factors. The correlation increases with expanding the number of variables

N. For the smaller samples the correlation between true and estimated components is around 70% on

average, although the standard deviation is relatively high. When we increase the number of N to 2000

the correlation rises to more than 80% on average. We notice similar patterns between correlations of

common factors and common components, which we attribute to the fact that common components

include common factors.

The correlation between smaller sample common components demonstrates similar dynamics. Overall,

the correlation coe¢ cients are signi�cantly lower for smaller samples with an average of 50%. The

component estimated the using new methodology demonstrated a higher correlation than the traditional

methodology. Based on the results of the empirical exercise we can conclude that the new methodology

has a positive e¤ect on the precession of the estimation of common factors and components. Larger

sample panels help estimators to converge to true value with faster rates. The diversity of the samples

and equations provides a guide to a LRV, demonstrating increased correlation with an increased sample

size. Our evaluation of a number of autocovariates in equations demonstrates that the results hold, given

a di¤erent bandwidth level. Overall, the novel methodology demonstrates a smoothening of the results

with increased estimator precision.
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3.6 Conclusion

In this chapter we present an augmentation of the existing asymptotic theory of factor models. The

aim of our research is to present a novel methodology which aims to enhance the rates of convergence

for the estimated factor trends and common components, without additional assumptions. Our paper is

motivated by the trend in the factor model literature, which has over the past 30 years moved towards

closer approximation of the true common factors by estimators given more relaxed assumptions. The

bene�ts of the research can be seen in both theoretical and empirical econometrics. From a theoretical

prospective the research contributes to the existing theory of factor models and proves that better rates

of convergence can be achieved. Simultaneously, the assumptions used in the theorised proofs are similar

to the classical assumptions of Stock and Watson (2002), Bai(2003) and Bai(2004). It implies that under

similar assumptions and without additional strengthening of underlined assumptions, we are able to

propose a methodology which delivers more consistent and robust factor trends.

Our research is the result of careful investigation of the existing literature on factor models, where

factor models inference distinguishes between stationary and non-stationary datasets Xit. In the proposed

methodology we combine the results of the existing literature and develop a method that allow better

approximation of the latent parts of factor the model. The methodology is based on the idea of estimation

of the latent components of the factor models from the non-stationary panels. The appendix contains

extensive proofs, on the basis of which we suggest that asymptotic characteristics of the latent factors

is better when we estimate �rst di¤erence factors from common factors in levels. The classical theory

estimates �rst-di¤erence factors by applying principle components analyses to the �rst-di¤erence dataset.

The methodology has the same �rst order terms in comparison to the existing estimators, but o¤ers

di¤erent asymptotic results for the higher order terms. As a result, estimators computed according to

our novel methodology have a higher rate of convergence and provide a more robust approximation of

the model parameters.

We convey a Monte-Carlo simulation to access a performance of the theoretical results. All simula-

tions demonstrate,in comparison to the classical approach, better convergence of the estimated common

factor when use novel methodology. We see that extremely large factor models (where the number of

parameters is close to 2000) display only marginal deviation from the true factor. The results of the

current methodology and classical approach are almost identical for extra large panels. The main dif-

ference is seen in the inference of smaller panels, where the number of column vectors is between 5 and

50. The same dynamics are observed in the common component simulations. We can see that common
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components estimated using the new methodology are marginally closer to the true components; further

more, the correlation increases with sample size.

In the economic and �nancial literature this type of model is most commonly used for the research

proposes. We can see that novel methodology consistently produce higher correlation coe¢ cients between

true and estimated factors. These results con�rm superiority of the novel methodology, in particular for

smaller empirical datasets. Larger datasets demonstrate only marginal improvements during applications

of the methodology. The methodology does not have any limitations, and can be applied to any factor

model dataset, which makes it relevant not only from a theoretical prospective, but also for empirical

application.

51



AppendixA

T
ab
le
I
C
or
re
la
ti
on
C
oe
¢
ci
en
t
b
et
w
ee
n
f̂ t
an
d
f t

N
=
25

N
=
50

N
=
10
0

N
=
20
0

N
=
50
0

N
=
10
00

N
=
20
00

T
=
50

0.
86
52

0.
92
56

0.
96
01

0.
98
45

0.
98
87

0.
99
26

0.
99
31

p
=
0;
q
=
0

T
=
10
0

0.
87
91

0.
93
68

0.
96
76

0.
97
54

0.
98
88

0.
98
56

0.
99
37

T
=
10
00

0.
96
90

0.
97
00

0.
97
55

0.
97
71

0.
98
95

0.
99
45

0.
99
85

T
=
50

0.
92
77

0.
96
54

0.
98
26

0.
98
90

0.
98
93

0.
99
76

0.
99
23

p
=
0:
75
;q
=
0

T
=
10
0

0.
93
33

0.
96
45

0.
98
06

0.
97
03

0.
99
73

0.
99
81

0.
99
94

T
=
10
00

0.
96
09

0.
96
64

0.
98
90

0.
98
11

0.
99
10

0.
99
21

0.
99
94

T
=
50

0.
59
70

0.
75
20

0.
78
47

0.
99
06

0.
98
82

0.
99
85

0.
99
29

p
=
0;
q
=
0
:7
5

T
=
10
0

0.
74
21

0.
85
78

0.
92
24

0.
97
74

0.
98
67

0.
98
23

0.
98
59

T
=
10
00

0.
84
55

0.
86
27

0.
92
09

0.
98
58

0.
99
58

0.
98
89

0.
99
22

T
=
50

0.
73
50

0.
84
30

0.
91
92

0.
98
69

0.
99
33

0.
99
45

0.
99
96

p
=
0
;q
=
�
0:
75

T
=
10
0

0.
79
47

0.
94
26

0.
94
50

0.
96
80

0.
99
75

0.
99
00

0.
99
01

T
=
10
00

0.
89
53

0.
95
12

0.
96
35

0.
99
15

0.
99
61

0.
99
76

0.
99
86

T
=
50

0.
90
79

0.
91
41

0.
90
86

0.
98
39

0.
98
70

0.
99
55

0.
99
92

p
=
0:
5;
q
=
0

T
=
10
0

0.
90
56

0.
95
91

0.
97
31

0.
97
53

0.
98
01

0.
98
89

0.
98
99

T
=
10
00

0.
96
81

0.
96
29

0.
96
95

0.
98
70

0.
98
91

0.
99
58

0.
99
89

T
=
50

0.
86
65

0.
89
10

0.
94
81

0.
98
27

0.
98
28

0.
99
95

0.
99
39

p
=
0;
q
=
0:
5

T
=
10
0

0.
86
77

0.
90
10

0.
94
94

0.
97
32

0.
97
84

0.
98
96

0.
99
37

T
=
10
00

0.
90
71

0.
96
02

0.
95
94

0.
97
32

0.
97
90

0.
99
48

0.
99
80

T
=
50

0.
83
07

0.
92
15

0.
94
96

0.
97
74

0.
98
53

0.
98
62

0.
99
11

p
=
0
;q
=
�
0:
5

T
=
10
0

0.
84
01

0.
93
99

0.
96
49

0.
98
89

0.
98
06

0.
99
17

0.
99
50

T
=
10
00

0.
93
28

0.
94
16

0.
96
28

0.
98
65

0.
98
93

0.
99
04

0.
99
31

Table I shows estimators of correlation coe¢ cients between factors f̂t estimated using a new method-

ology and the true factors ft. Correlations are calculated for large dimensional panels with N number of

columns and T number of observations. Panels are constructed using equation 6 from simulated factors,

loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table II shows estimators of correlation coe¢ cients between factors ~ft estimated using the classical

methodology and the true factors ft. Correlations are calculated for large dimensional panels with N

number of columns and T number of observations. Panels are constructed using equation 6 from simulated

factors, loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table III shows estimator of correlation coe¢ cient between common component ĉt estimated using a

new methodology and the true common component ct. Correlations are calculated for large dimensional

panels with N number of columns and T number of observations. Panels are constructed using equation

6 from simulated factors, loadings and error terms; the error terms are simulated using an ARMA(p; q)

type process.
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Table IV shows estimators of correlation coe¢ cients between common component ~ct estimated using

the classical methodology and the true common component ct. Correlations are calculated for large

dimensional panels with N number of columns and T number of observations. Panels are constructed

using equation 6 from simulated factors, loadings and error terms; the error terms are simulated using

an ARMA(p; q) type process.
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Table V shows estimators of correlation coe¢ cients between factors ~ft estimated using a classical

methodology and the true factors ft. Correlations are calculated for large dimensional panels with N

number of columns and T number of observations. Panels are constructed using equation 6 from simulated

factors, loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table VI shows estimators of correlation coe¢ cient between factors ~ft estimated using the classical

methodology and the true factors ft. Correlations are calculated for large dimensional panels with N

number of columns and T number of observations. Panels are constructed using equation 6 from simulated

factors, loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table VII shows estimators of correlation coe¢ cient between common component ĉt estimated using a

new methodology and the true common component ct. Correlations are calculated for large dimensional

panels with N number of columns and T number of observations. Panels are constructed using equation

6 from simulated factors, loadings and error terms; the error terms are simulated using ARMA(p; q) type

process.
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Table shows an estimator of correlation coe¢ cient between common component ~ct estimated using

classical methodology and true common component ct. Correlations are calculated for large dimensional

panels with N number of columns and T number of observations. Panels were constructed using equation

6 from simulated factors, loading and error terms; the error terms were simulated using ARMA(p; q) type

process.
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Table IX shows estimators of correlation coe¢ cients between factors ~ft estimated using the classical

methodology and the true factors ft. Correlations are calculated for large dimensional panels with N

number of columns and T number of observations. Panels are constructed using equation 6 from simulated

factors, loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table X shows estimators of correlation coe¢ cients between factors ~ft estimated using the classical

methodology and the true factors ft. Correlations are calculated for large dimensional panels with N

number of columns and T number of observations. Panels are constructed using equation 6 from simulated

factors, loadings and error terms; the error terms are simulated using an ARMA(p; q) type process.
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Table XI shows estimators of correlation coe¢ cients between common component ĉt estimated using a

new methodology and the true common component ct. Correlations are calculated for large dimensional

panels with N number of columns and T number of observations. Panels are constructed using equation

6 from simulated factors, loadings and error terms; the error terms are simulated using an ARMA(p; q)

type process.
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Table XII shows estimators of correlation coe¢ cients between common component ~ct estimated using

the classical methodology and the true common component ct. Correlations are calculated for large

dimensional panels with N number of columns and T number of observations. Panels are constructed

using equation 6 from simulated factors, loadings and error terms; the error terms are simulated using

an ARMA(p; q) type process.
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Table XIII Simulation results for smaller sample size correlation of common factors f̂t and f

p = 0, q = 0 p = 0, q = 0:75 p = 0, q = 0:75 p = 0, q = �0:75

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10

T=5 0.6032 0.6234 0.6639 0.7551 0.5637 0.5556 0.5523 0.6432

fp1; q1g T=10 0.5020 0.5134 0.6437 0.7814 0.4250 0.4579 0.4203 0.4582

T=15 0.4905 0.5807 0.6736 0.7826 0.3350 0.3493 0.3906 0.4407

T=5 0.5977 0.6138 0.6626 0.7596 0.5690 0.5544 0.5453 0.6517

fp1; p2; q1; q2g T=10 0.4986 0.5143 0.6387 0.7775 0.4278 0.4592 0.4168 0.4562

T=15 0.4924 0.5846 0.6800 0.7844 0.3438 0.3440 0.3821 0.4308

T=5 0.5954 0.6185 0.6571 0.7475 0.5657 0.5494 0.5499 0.6424

fp1; p2; p3; q1; q2; q3g T=10 0.4984 0.5175 0.6503 0.7730 0.4300 0.4536 0.4142 0.4663

T=15 0.4939 0.5870 0.6662 0.7920 0.3425 0.3512 0.3918 0.4504

Simulation results for smaller sample size correlation of common factors ~ft and f

p = 0, q = 0 p = 0, q = 0:75 p = 0, q = 0:75 p = 0, q = �0:75

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10

T=5 0.6142 0.6441 0.6731 0.7821 0.5770 0.5734 0.5807 0.6689

fp1; q1g T=10 0.5208 0.5376 0.6670 0.7994 0.4435 0.4785 0.4487 0.4729

T=15 0.5267 0.5937 0.6939 0.8001 0.3552 0.3698 0.4168 0.4674

T=5 0.6215 0.6400 0.6743 0.7812 0.5814 0.5762 0.5842 0.6649

fp1; p2; q1; q2g T=10 0.5167 0.5354 0.6697 0.8091 0.4442 0.4779 0.4442 0.4730

T=15 0.5268 0.6016 0.6945 0.7907 0.3628 0.3792 0.4261 0.4687

T=5 0.6049 0.6507 0.6643 0.7816 0.5771 0.5767 0.5728 0.6625

fp1; p2; p3; q1; q2; q3g T=10 0.5267 0.5435 0.6576 0.8047 0.4529 0.4717 0.4400 0.4665

T=15 0.5294 0.5877 0.6875 0.7903 0.3469 0.3665 0.4256 0.4616

Table XIII shows estimators of correlation coe¢ cients between common factors estimated using a new

methodology f̂t or the classical methodology ~ft and the true factor ft. Correlations are calculated for

panels with smaller number of columns N and observations T . Panels are constructed using equation 6

from simulated factors, loadings and error terms; the error terms are simulated using an ARMA(�;�)

type process.
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Table XIV Simulation results for smaller sample size correlation of common components ĉt and ct

p = 0, q = 0 p = 0, q = 0:75 p = 0, q = 0:75 p = 0, q = �0:75

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10

T=5 0.4960 0.4922 0.5302 0.6508 0.4234 0.4372 0.4095 0.5252

fp1; q1g T=10 0.3663 0.3801 0.5119 0.6734 0.2993 0.3151 0.2997 0.3107

T=15 0.3520 0.4676 0.5664 0.6591 0.2257 0.2029 0.2882 0.3163

T=5 0.4694 0.5115 0.5475 0.6184 0.4323 0.4196 0.4268 0.5262

fp1; p2; q1; q2g T=10 0.3554 0.3699 0.5349 0.6434 0.2893 0.3550 0.2953 0.3541

T=15 0.3583 0.4761 0.5450 0.6788 0.2312 0.2011 0.2534 0.2850

T=5 0.4536 0.5078 0.5283 0.6422 0.4168 0.4200 0.4264 0.5082

fp1; p2; p3; q1; q2; q3g T=10 0.3648 0.3766 0.5123 0.6384 0.3256 0.3294 0.2831 0.3399

T=15 0.3557 0.4568 0.5333 0.6471 0.2415 0.2407 0.2871 0.3105

Simulation results for smaller sample size correlation of common components ~ct and ct

p = 0, q = 0 p = 0, q = 0:75 p = 0, q = 0:75 p = 0, q = �0:75

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10

T=5 0.5137 0.5358 0.5449 0.6764 0.4622 0.4472 0.4511 0.5477

fp1; q1g T=10 0.4199 0.3997 0.529 0.6737 0.3019 0.3730 0.3002 0.3690

T=15 0.4044 0.4879 0.5475 0.6936 0.2462 0.2316 0.3122 0.3376

T=5 0.4765 0.5351 0.5568 0.6420 0.4626 0.4715 0.4658 0.5203

fp1; p2; q1; q2g T=10 0.4095 0.3871 0.5385 0.6983 0.3349 0.3600 0.3105 0.3577

T=15 0.3897 0.4964 0.5922 0.6906 0.2559 0.2750 0.2986 0.3544

T=5 0.4828 0.5252 0.5169 0.6809 0.4331 0.4533 0.4497 0.5576

fp1; p2; p3; q1; q2; q3g T=10 0.4040 0.4030 0.5366 0.6884 0.3215 0.3642 0.3333 0.3440

T=15 0.4245 0.4489 0.5601 0.6730 0.2136 0.2308 0.3186 0.3129

Table XIV shows estimators of correlation coe¢ cients between commoncomponent estimated using a

new methodology ĉt or the classical methodology ~ct and the true common component ct. Correlations

are calculated for panels with smaller number of columns N and observations T . Panels are constructed

using equation 6 from simulated factors, loadings and error terms; the error terms are simulated using

an ARMA(�;�) type process.
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Appendix B: Proofs

Henceforth, we de�ne �nT � min f
p
n; Tg.

Proof of Lemma 1. The uniform consistency result in (8) follows directly from applying Propo-

sition 1 in Bai (2004) to
 ~ft �H 0ft

 � F̂t �H 0Ft

 + F̂t�1 �H 0Ft�1

, whence maxt  ~ft �H 0ft

 �
2maxt

F̂t �H 0Ft

.
We now show (7). Let et = [e1t; :::; ent]

0 and ut = [u1t; :::; unt]
0. Using equation (A.1) in Bai (2004, p.

164):
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. The distributional result

follows from noting that III is the dominating term when n
T 3 ! 0; its asymptotics is studied in Bai

(2004, Theorem 2).

Finally, consider (9). Using (11)

1

T

TX
t=1

�
~ft �H 0ft

�
uit = T�3

TX
t=1

TX
s=1

F̂sn;stuit + T
�3

TX
t=1

TX
s=1

F̂s�n;stuit + T
�3

TX
t=1

TX
s=1

F̂s

�
F 0s�

0ut
n

�
uit

+T�3
TX
t=1

TX
s=1

F̂s

�
f 0t�

0es
n

�
uit = a+ b+ c+ d:

Consider a = T�3
PT

t=1

PT
s=1

�
F̂s �H 0Fs

�
n;stuit +T

�3PT
t=1

PT
s=1 Fsn;stuit = a1+a2. It holds that

a1 � T�3=2
�
T�1

PT
s=1

 ~Fs �H 0
2Fs

2�1=2 �T�1PT
t=1

PT
s=1

��n;st��2 T�1PT
t=1 u

2
it

�1=2
= T�3=2Op

�
��1nT

�
Op (1).

66
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Proof of Theorem 1. In the proof, we omit H for simplicity when this does not cause ambiguity.
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Abstract

The presense of structural and non-structural omitted observations is an issue that features regularly

in large dimensional panels literature. There are a wide range of methodologies that have been proposed

in recent times, however a majority are developed around treating the omitted observation problem on

case-speci�c basis. This involves extracting time-series from the panel in order to �ll in the missing

observations and in e¤ect, disregarding the presence of cross-sectional correlation between the series.

This approach could potentially distort the results of any factor based analysis.

Our study proposes substituting the omitted observations to the panel with respect to the common

trends between the variables. Our methodology could also accommodate any type and proportions

of omitted observations. Given a large number of variables in the factor models we believe that our

methodology enables the preservation of richer dynamics. We carry out a �nite sample analysis with

competing strategies and �nally provide an empirical study to illustrate the superiority of our models.
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4.1 Introduction

In this paper, we develop an approach that is able to remedy a problem of omitted observations in the

large dimensional panel irrespectively of the number and location of the gaps. Until recently academic

publications paid little attention to the problem of missing observations, although the existence of the

problem was widely acknowledged in the �nancial industry. The problem was commonly solved using

simple data manipulations, for example, listwise deletion, which deletes observations on the speci�c

date for all variables (used in 94% of papers before 2000), substitution of the variable mean (King

(2013)), or even best guess imputation. More advanced approaches normally included modelling of bridge

equations, which apply a linear regression between fragmented variable and corresponding counterparts;

the �tted values were used on the place of omitted variables. Also modern techniques include state-space

models or MIDAS approach (Foroni and Marcellino (2013)). All models, although popular are applied to

single variable with irregular frequency. Multivariate alterations of the techniques often combine factor

approach with one of methodologies. However once again the multivariate approach means application

of interpolation to single variable using high-frequency multivariate panel.

Current research o¤ers solutions to the problem of missing observations across multivariate panels of

variables with cross-sectional and time-series dependence. The methodology applicable to three patterns

of missing observations within a panel. First, mixed frequency pattern, when some variables become

available with higher a frequency than others. For example, US GDP is only available quarterly while

US energy consumption is published on a monthly basis. Second, ragged-edge pattern (see Wallis, 1986),

when missing observations are unobserved for a few most resent observations all across the panel. Third,

random missing observations: when some of the variables are simply unpublished on certain dates. This

is particularly noticeable when we work with developing countries where the historical data is collected

irregularly.

A procedure builds on bridge equations, expected maximisation and more importantly on the common

trend methodology, discussed in the theory of factor models. The idea is to build a bridge equation

between a common factor from a mixed frequency panel and a factor from counterpart panel; the �tted

values are optimised using expected maximisation approach and are used to �ll missing observations

across a panel. This methodology helps to achieve backcasting, nowcasting and forecasting of variables

in the panel; therefore, the approach is fairly general and helps to solve a majority of the issues related

to unbalanced panels. The idea is not unique, and it builds on the earliest work on unbalanced panels

by Stone (1947), and seminal research by Stock and Watson (2002), amongst others. Most of the studies
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explore only the third type of missing observations pattern, when only a few observations are missing at

random. Current research proposes methodology that aims to provide information to the entire panel

disregarding the proportion or pattern of missing observation.

Relevance of the topic is discussed during detailed critical evaluation of the literature in the next

section. Next we provide a description of the theorem with proofs that allow the existence of the technique.

A more detailed description of the methodology is provided in the latter part of the paper. Section 4.4

presents the results for the simulation exercises as well as a discussion of the results of some practical

application to energy markets.

Energy markets are chosen as they necessitate a large number of parameters to determine fundamen-

tal forces behind commodity prices. This is as a traditional pricing approach advocates assessment of

current supply and demand of energy commodity; if supply is far greater then demand prices tend to

decline. Supply and demand is determined by a vast number of factors related to the global economy and

the subtelities of the geopolitics which are hard to quantify. In order to have a general model based on

fundamental determinants, we need to evaluate the market movements using a large data set. Modern

databases o¤er a wide range of economic, �nancial and geopolitical data that provide valuable information

for this analysis; however it is not uncommon that it misses a large proportion of observations. Our pro-

posed methodology is well suited to �ll missing observations across large dimensional and cross-correlated

panel such as mixed frequency energy panel, which makes it optimal illustration for the approach.

The results can be summarised as follows. This paper contributes to the literature on interpolation

techniques of large dimensional panels. To the best of my knowledge the methodology proposed by

Stock and Watson (2000) and alternative methodology by Forni et al.(2001) are the only ones that use

interpolation of large dimensional panels. The research attempts to extend Stock and Watson�s (2000)

technique.

The research contributes to both theoretical literature, by providing a new theorem and methodology,

and empirical literature by establishing new application for factor interpolation. Our most interesting

�nding is the newly formulated methodology, which can help to remedy a problem of mixed frequency

data, ragged edge data and random omitted variables.
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4.2 Literature review

A substantial theoretical and empirical pool of literature identi�es a number of widely applied methodolo-

gies which solve a problem of missing observations. I present a critical evaluation of available techniques

and identify gaps in the literature.

The majority of the techniques available for the problem of omitted observations focus on interpola-

tion of single variables (see, survey by Foroni and Marcellino (2013)). To the best of my knowledge early

models were available exclusively to single variables; among them are splines and aggregation. These

models are able to provide a quick solution, however they also create a range of problems as they rely

on the assumption that information in the high-frequency variable is re�ected in the low-frequency rep-

resentation. This assumption largely depends on the underlying variable �ow, such that only variables

with low volatility can satisfy it, otherwise the risks of losing important information run high.

Alternatively, one could use bridge equation methodology, which the relaxed assumption above. Bridge

equation methodology is still one of the most used for short term forecasting (see for example, Baggi,

Golinelli, Parigi (2004) and Diron (2008)), however they are also e¤ective in addressing the problem of

mixed observations. The examples of application mostly include forecasting of economic data, and in

particular GDP; study by Trehahn and Ingenito (1996) used bridge equations to forecast current US

GDP; Ba¢ gi et al. (2004) apply bridge equations to GDP of Euro Area. The critics point out that

bridge equations are essentially statistical models, which are prone to theoretical misspeci�cation (see

Foroni and Marcellino (2013)). In general, bridge models work well forecasting of the single variable,

forecasting of large dimensional panels with ragged-edge is too hard to handle, as every variable has to

be forecasted separately.

More sophisticated techniques for mixed frequency data include MIDAS models and modi�cation of

state-space models. Two methodologies are often compared, for example, studies by Kuzin, Marcellino

and Schumaher (2011), Ghysels et al. (2005), Ghysels, Santa-Clara and Valkanov (2006)); they conclude

that state space MF-VAR ( Mariano and Murasawa (2010)) model tend to do better on long-term horizon,

while MIDAS perform better for shorter periods. The main distinction between the two approaches is

that MIDAS tend to deal with single dependent variable, while MF-VAR can model endogenaity between

multiple variable similar to classical VAR. the main drawback of the state-space models, including Kalman

�lter (see Mittnik and Zadrozny (2005)), is that state-space models can be overly parameterised and need

to estimate large number of parameters, which leads to the degrees of freedom problem. MIDAS is simpler,
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however it cannot model interdependency between models.

From the evidence above it is obvious that the majority of the models are focused on solving a problem

of missing observations for one or only a few variables, and for a few of the most recent observations

(short term forecasting horizon). Therefore, there is a need for the approach that can be applied for

multivariate datasets. Majority of the models above have multivariate representation, combining factor

models with the methodology. Among others, there is a paper by Doz et al. (2011) on the application

of bridge equations with factor trends, state-space VAR models with factors (see, Banbura and Rünstler

(2011)), and factor MIDAS (see, Marcellino and Schumacher (2010), Altissimo et al. (2010)).

The techniques above rely on balanced high-frequency panels which are used for interpolation of

one single variable. There are only a handful of techniques that can help to minimise the impact of a

problem of missing observations inside the panel used for factor model application. Among most used are

techniques described by Stock and Watson (1999), Altissimo et al (2001)); however they are applicable

to panels with low overall proportion of missing observations. The technique that can remedy a larger

proportion of missing variables (more than 75%) has not been identi�ed during my literature review.

Therefore, current research aiming to provide theoretical and empirical evidence requires consideration of

a potential remedy for highly unbalanced panels. The methodology is based on the factor model literature

that is discussed in detail in chapter 2. Here I present an extension to the factor interpolation techniques

of the modern literature.

The importance of the topic is evident as many leading studies provide strong evidence that imple-

mentation of a factor structure results in smaller MSE than competing techniques which are based on

simple bridge models or structural models. Among others we refer to Stock and Watson (1998, 2002b)

on di¤usion index interpolation, Forni et al. (2000) and Armah and Swanson (2010, 2011). Various

practitioners such as the Federal Reserve of Chicago, the US Treasury, the European Central Bank, the

European Commission, and the Centre for Economic Policy Research all acknowledge the importance of

a factor (or di¤usion index) methodology in their models. Armah and Swanson (2010, 2011) and Stock

and Watson (2002a, 2006) evaluate the utility of factor models and di¤usion indexes for nowcasting and

problems of "ragged-edge" data.

Recent surveys (see Boivin and Ng (2005), Eickmeier and Ziegler (2008), Marcellino and Schumacher

(2008)) indicate that the di¤usion index framework generally consists of two stages. The �rst step

involves estimation of the model. Commonly referred to as "step (E)", it and involves estimation of the
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latent factors from the large dimensional panel. We optimize factors by applying Expected Maximization

or Maximum Likelihood methods. These minimize the error between estimated and true data points.

The second step involves multiplication of latent factors on factor loadings which �ll previously omitted

observations. For simplicity, we refer to the second stage as "step (F)", �lling low frequency series with

missing observations. Bovin and Ng (2005) evaluate the sensitivity of step (E) with the methods used

for factor estimation and �nd that none of the existing methods produce superior results. The results

indicate that any currently available method for factor extraction should provide solid results; thus the

choice of approach should not a¤ect the �nal output.

Current literature recognises two main methodological branches that use the factor models method to

interpolate unbalanced panels. The �rst approach builds on the work by Stock and Watson (1998,2002b)

and uses factor estimation procedure that involves the application of the principal component analyses to

extract latent factors. Principal component and factor analyses were recognised as a standard evaluation

tool for large dimensional data from the early stages of econometrics development (see Anderson (1958)).

More recently, we saw an increasing number of academic papers aiming to develop additional methods

for analyses of large dimensional data by the application of PC. Most striking contributions were made

by Bai (2003,2004), who developed an asymptotic theory for estimated factors, loadings and common

components. They de�ne properties of distributions for all components and more importantly relax the

assumptions of the model for the large dimensional panels. This �nding is crucial for the purpose of

current research given that proofs of the research were developed on the basis of original assumptions in

Bai (2003). Bai and Ng (2002, 2006, 2011) examine topics related to the optimal factor model structure

and establish techniques to identify optimal number of factors, whereas later authors worked on de�ning

con�dence intervals for the components.

Stock and Watson�s framework (henceforth SW) is widely used by academics and practitioners. For

example, the paper by Bernanke and Boivin (2003) uses SW methodology to implement factor interpo-

lation for real-time GDP. The procedure re�ects the complexity of the problem related to establishing

monetary policy in a situation when �nal GDP �gures are published with considerable delay. SW frame-

works apply to various models currently used by practitioners. Amongst others, we found static factor

interpolation in the methodology of the Federal Reserve Bank of Chicago�s Activity Index (CFNAI) and

the US Treasury model developed and published by Kitchen and Monaco (2003).

Factors extracted by PC are interpolated using random values and later commonly improved using

the Expected Maximization procedure. EM aims to minimize the error between true and interpolated
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values in the factors. Application of EM is widely used for interpolation and extrapolation in the models

where frequency is mixed (see for example Mitchell et al. (2005)). It was originally developed in the

work by Friedman (1962), Chow and Lin (1971) where authors apply EM procedure to minimise the error

between the estimated value for missing observation and true value in the series. EM technique in factor

model framework is applied directly to the factors. Schumacher and Breitung (2008) employed a method

of factor EM interpolation where latent factors were �rst extracted and later interpolated using random

draws from a standard normal distribution as "a �rst guess" for EM initialization. Alternatively, Biernacki

et al (2003) described a procedure of random initialization based on previous runs of EM that are only

available for variables without any data irregularities. Angelini et al. (2006) describe the development of

EM interpolation with respect to factor models; Marcellino et al. (2007) provide a comparison to other

approaches.

Alternative methodologies for latent factor extraction are developed in the second branch of the

literature. The procedure is appealing to empirical research since it deals with data irregularities, non-

synchronicity and publication lags of the data (primarily GDP) in the Euro Area. It is based on the

work by Forni et al. (2000, 2001), examining generalised dynamic factor models which are similar to

Stock and Watson (1998) di¤usion index models. Forni et al. (2000, 2001) work applied inverse Fourier

transformation to acquire common components instead of spectrum decomposition. More importantly,

the procedure di¤ers from the SW owing to the fact that it de�nes common components in the frequency

domain, allowing the use of �uctuations with waves with periods of over a year and therefore, �ltering out

short term noise. As a result, frequency models allow the recognition of established long term cyclicality

of the common components which then become a template for missing observations.

The cyclicality of common components is not the only parametric speci�cation that can be imposed

on factors. Recent developments in the academic literature discuss a possibility of ARMA process pre-

speci�cation of factors (see Mariano and Murasawa (2010)). In addition, Camacho et al (2012) addition-

ally examine the possibility of applying Markov switching models to dynamic factors.

As we stated above, this factor methodology is unique as it attempts to remedy omitted observations

over cross-sectional dependent panels. Concurrently, this technique is predominatly applied to the panels

with low proportion of missing observations. In our research we attempt to improve this condition by

suggesting methodology of non-random initialisation of expected maximisation approach. This method-

ology should help to improve the precision of optimisation procedures and allow to interpolate panels

with a large portion of mixed�frequency panels and for short term forecasting of ragged-edge panels.
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Based on the �ndings of Bovin and Ng (2005) we feel that there will be no qualitative di¤erence in

the methodology of our study if we use any of the popularly available techniques for common components

estimation. We therefore follow the SW system and estimate factors using a PC methodology. In the

following chapter we describe a methodology that uses factor values to �ll missing observations in the

related panel. Initial values are then improved using the EM approach. Next, we present a number of

Monte Carlo simulations that aim to match factor EM techniques with available competing methodologies.

We also perform an empirical application to a dataset from the energy markets. We carry out now-casting

of prices for oil re�nery products using large dimensional panels consisting of a wide variety of data

representing oil supply and demand determinants along with other relevant macroeconomic data series.

4.3 Methodology

In this section, we discuss the methodology of the Factor-EM procedure. We begin by introducing a

common form of a factor model that follows the assumptions from Bai (2003,2004). Next we introduce

data irregularities and propose a methodology for their identi�cation. We o¤er a detailed study of the

unique initialisation method developed speci�cally for this approach, including rigorous proofs. Finally,

we discuss all stages of the Expected Maximisation procedure.

4.3.1 Generalized equidistant factor model

We de�ne the generalized factor model in a manner that is consistent with the formulation and notations

of Stock and Watson�s (2002b) classical framework. We de�ne a matrix X which is a large dimensional

panel of N columns of constituent vectors over T time periods. The dimension T represents equidistant

time intervals indicative of a balanced matrix X and neglects any data irregularities. Decomposition

of the matrix X results in two features, the common component denoted by (�F ) and the second, the

idiosyncratic factor (E). Common component(s) describe common trends amongst vectors with the

idiosyncratic factors corresponding to individual �uctuations within the series. The common components

are linear combinations of the column vectorsN and are, therefore, devoid of any economic interpretations.

A factor model has the following representation;
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X = �0F + E (12)

Ft = �pFt�p + ut (13)

Common components feature common factors F and factor loadings �. The matrix of the common

factors F is of the dimension (T � k) and contains common trends between column vectors; matrix �

(N�k) provides a measure of association of each column vector to the common trends; Bai and Ng (2002)

methodology determines the optimal number of trends k. The idiosyncratic component is a matrix E size

(T �N). We consider two options: �rst for stationary panels, such that coe¢ cient p is low and re�ects

weak time-series dependence and second, non-stationary panels, when coe¢ cient p may be large (more

than 3) re�ecting strong autocorrelation in the factor trend.

Model 12 follows assumptions published in Bai (2003, 2004). These assumptions are more relaxed

in comparison to the earlier factor models, which assumed that the error terms were iid. Generalised

factor models include realistic allowances for idiosyncratic components to satisfy market conditions. In

order to be consistent with the literature, we follow a list of assumptions from Bai (2003, 2004). Section

2.3.1 outlines a full list of assumptions; Appendix A section 6 lists additional assumptions for asymptotic

proofs.

We di¤erentiate assumptions for stationary and non-stationary panels. Non-stationary panels include

column vectors speci�ed by I(1) autoregressive process of order one (assumptions A-D, section 2.3.1);

stationary panels include I(0) vectors (assumptions E-H, section 2.3.1). Assumption A is responsible for

the properties of the autoregressive process, creating a dynamic between time dimensions of common

factors. This is a vital modi�cation in comparison to the earlier models, which assumed independence

across time dimension of common trends. It does not, however, relax the relationship between common

factors and the panel, which is perceived to be static.

Assumption B sets the properties of factor loadings to ensure that each column vector has a unique

representation. The matrix of factor loadings can be random providing that two conditions hold: it is

independent of common factors and error terms and the existance of the fourth moment.

Assumption C assures that model 12 re�ects the observable characteristics of the data on the market.

They relax conditions for idiosyncratic errors, which now can have weak serial and cross-sectional correla-
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tion, and heteroskedasticity. It is a substantial improvement in comparison to the iid errors of basic factor

models, or to the approximate factor model assumption that singularly allows for weak cross-sectional

correlation in the error terms. Assumption D establishes independence between factor loadings and error

terms.

Assumptions E to H de�ne components in the stationary panels. Assumption E de�nes bounds for

the dynamics across time dimension in common trends. Assumptions F and G are identical to B and

C ; �nally Assumption H allows weak dependence between errors and common components in stationary

panels.

Overall, the assumptions of the generalised factor model allows estimation of consistent parameters

given the properties of �nancial market data. Early models do not allow for vital characteristics of

market data, such as serial � correlation of idiosyncratic factors, and therefore, are more restricted in

their applications. Many factor-interpolation procedures (e.g. Schumacher and Breitung (2008)) follow

the earlier modelling approach and therefore the outputs from these models need to be considered in lieu

of the implied assumptions.

To estimate common components and idiosyncratic errors for model 12 the methodology employs

principal components (hereafter PC) method. In removing scale e¤ects, the time series is demeaned.

Following PC methodology we use spectrum analysis on the variance-covariance matrix of the large

dimensional panel X. In doing so, we attempt to decompose the covariance matrix into their constituent

eigenvalues and eigenvectors. The factors are
p
T times eigenvectors corresponding to the eigenvalues of

the T � T matrix XX 0 for stationary panels; it is T times eigenvectors corresponding to the eigenvalues

of the T �T matrix XX 0 for non-stationary panels. Factor loadings estimated using equation � = FX=T

and common components are F�0.

For long panels, optimal estimation method calculates the matrix of factor loadings � which is
p
N

times eigenvalues corresponding to the eigenvectors of the N�N matrix, then determines common factors

according to the formula F = X�=N . Common components are identical to F�0. The aim of the method

is to minimise idiosyncratic components and simultaneously keep the number of common components to

a minimum.
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4.3.2 Mapping data irregularities

In order to ensure consistency of the model parameters, we have previously de�ned the generalized factor

model along with a list of relevant assumptions. In this section, we introduce data irregularities within

the large dimensional panels and propose our methodology to mitigate this issue.

Large dimensional panel can be subject to the problem of data irregularity due to the data gathering

and reporting problems. The complexity of the data collection process regularly leads to the "publication

lags", "low" frequency of the data or data unavailability. As a result, panels become unbalanced; and

the pattern of missing observations has three potential structures: �rst an unsystematic structure when

observations in the column vectors are unavailable in a random order. It is associated with rare events

taking place due to an anomaly in data gathering. More severe cases have systematic structure of data

unavailability such as either "low frequency reporting" or "publication lags". Low frequency reporting

can be identi�ed only in the content of the ideal frequency of the panel time dimension. It occurs when

data for the single column vector is available at a lower frequency than the rest of the vectors. A common

example that illustrates the issue with mixed frequency usually involves GDP which is only available

at a quarterly frequency. Additionally, a large panel could also involve a "ragged-edge" problem, when

data has few missing observations at the beginning or the end of every variable in the panel. In other

words, it is a ragged structure of the panel bottom (top) border as a result of unavailability of the data

after (before) a certain date. The recent observations are unavailable possibly due to publication lags.

Additionally, the older data may be unavailable due to issues relating to data gathering and veri�cation

over the entire period, such as in times of political uncertainty in emerging markets.

Our methodology is an uni�ed approach that addresses all three types of data irregularities. We start

formalisation of the approach by introducing some data irregularities to the panel X. We de�ne panel

X� size (T � �N) such that it includes some missing observations, where the type of data irregularities

are not relevant. The goal is to convert panel X� that includes missing observations to the balanced

panel X of the size (T �N). In order to do that we introduce selection matrix A, such that the following

relationship holds:

X = A0X� (14)

Selection matrix A size (T � � T ) is known and is required to have a full rank. Without data irreg-
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ularities matrix A is an identity matrix. To clarify the methodology we consider an example that aims

to to interpolate three quarters of the UK and the US GDP to nine monthly observations (three months

per quarter). Following the methodology we formalise the problem by considering a panel of data X�

size (3 � 2) that we transfer to panel X size (9 � 2). We apply equation 14 using the selection matrix

resulting in panel X(0) below:

A0X� =

0BBBB@
0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

1CCCCA
0

�

0BBBB@
UK1;1 US2;1

UK1;2 US2;2

UK1;3 US2;3

1CCCCA

X(0)0 =

0B@ UK1;1 0 0 UK1;2 0 0 UK1;3 0 0

US2;1 0 0 US2;2 0 0 US2;3 0 0

1CA

Matrix X� expands using selection matrix A and forms preliminary matrix X(0) same size as X.

Observations of the preliminary matrix equals zero in those instances of missing observations. Selection

matrix A is always known; however, it does not have a uni�ed form. Every time we perform an interpo-

lation procedure for the new panel we have to study X� and modify the selection matrix such that it �ts

appropriate matrix X(0). For every interpolation, matrix X(0) should position available observations at

their expected locations and supply zeros for missing observations.

To achieve a balanced panel X we have to modify zero values across panel X(0). Initial transformation

substitutes zero values to the approximation of the missing observations, thus replacing panel X(0) to

X(1); next the Expected Maximization procedure optimizes initial approximations of missing values in

panel X(1). Before we describe detailed methodology of the EM process, we would like to draw attention

to the transformation of X(0) to X(1).

4.3.3 Factor-Initialisation

The initialisation (transformation) procedure has a few variations in the literature. Biernacki et al

(2003) conducts a survey of random initialisation procedures (henceforth RI) in which he describes the

methodology and evaluates perturbation of variates, including classi�cation of the EM algorithm, a

Stochastic EM algorithm and short runs of EM, among others. RI methodology �lls zero values of

82



the panel X0 with random draws from standard normal distributions. Later the EM algorithm is used

for optimization. Our study proposes a novel methodology for initialization of the EM procedure that

provides non-random initialisation (henceforth NRI) values which have greater proximity to the true

values than RI.

The structure of the generalised factor model is in the core of NRI methodology. Consider re-de�ning

panels X and X� according to the structure of generalised factor model, equation 12. We argue that the

di¤erence between two panels originates in the common trends. Factor loading should remain relatively

similar, such that they are responsible for the unique representation of column vectors that are equivalent

for both panels. In other words the following relationship holds:

X� = ��
0
F � + E� (15)

X = ��
0
F + E (16)

Where X� and F � are panels and common factors in unbalanced panels, X and F correspond to the

balanced panel. To the best of our knowledge, the assumption that factor loading is constant does not

have a signi�cant impact on the initialisation procedure. The varying factor loading can therefore be

easily achieved. For the purpose of this paper, we �xed factor loading such that it is identical in balanced

and unbalanced panels. We consider variable factor loading to be a subject for further extension to

current research.

To apply Factor-NRI we introduce panel Y that satis�es two conditions: �rst that it is a balanced

panel of size (T �NY ) or in other words it has exactly the same length as panel X; second panel Y has a

high correlation with the panel X. For example, panel X can consist of medium term heating oil futures

available only after 1995 while panel Y consists of short term futures available from 1990. This is an

extreme example. The methodology does not require such a proximity for applications since the aim of

the procedure is to provide initial values that will be optimised. Below we de�ne panel Y .

Y = 	�0G+� (17)

Y � = 	�0G� +�� (18)
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Where 	� corresponds to factor loading, Y is the observed balanced panel size (T �NY ) and G is a

matrix of common factor (T � k); k for panel Y is equal to panel X; � is the idiosyncratic factor. We

use selection matrix A which maps missing observations in panel X�. We apply selection matrix A to

balance panel Y using equation 14. As a result we obtain panel Y �, and following the transformation has

an identical pattern of missing observations as X�. We apply PC analyses to Y �, to �nd G�:

The identi�cation of a suitable panel Y is a key for successful application of the technique. The

identi�cation of the panel Y varies depending on the empirical characteristics of the data. The application

of the NRI techniques to term structure data (similar to the heating oil futures) results in the direct

identi�cation of Y , as part of the term structure variables which do not have missing observations. For

the remaining cases, we suggest close analyses of the dataset and separation of the original dataset on

variables with omitted observations (panel X) and without (panel Y ). Theoretically, justi�cation for this

operation is that all variables in factor panel data should share a common trend, otherwise identi�cation of

the few common trends in the panel is impossible. Therefore, the commonality of the trends is a common

characteristic between variables with missing observations and without given that they are a part of one

complete factor panel dataset. We have to point out that the variables in factor panels are selected from

the basis of the theoretical model, in that they are not random variables, and are selected for an analyses

of the particular event. Together they constitute our justi�cation for the assumption that the original

dataset can be split on the panel X and Y, such that they will satisfy the assumptions. This de�nition of

the panel Y should allow for easy identi�cation and application in the method. The chapter on empirical

application will demonstrate this approach in action. In comparison to the competing approaches, NRI

does not induce additional problems associated with the identi�cation of panel Y, providing that the

original dataset can be separated on panels X and Y . In practice the majority of large dimensional

datasets have complete variables and variables with missing observations, which permit the proposed

separation. NRI method is applicable to both stationary and non-stationary panels X and Y ; however,

we avaluate NRI application separately in two cases.

The �rst option considers panel X consisting of non-stationary variables.

Following equation 15 and 18 we de�ne the relationship between two estimators such that:

F̂ � = �̂�Ĝ� +�� (19)
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where �� � I(0) meaning that F̂ � and Ĝ� are cointegrated; if �� � I(1) we have to consider �rst-

di¤erencing or de-trending all column vectors in the panels X and Y; leading to both X and Y being

stationary panels. Factor-NRI theory for stationary panels is described further. F̂ � is an estimated

matrix (k�T �) of common factors extracted from panel X�; Ĝ� is a matrix (k�T � ) of common factors

extracted from panel Y �; �̂� is a vector (k � 1) that represents correlation coe¢ cients between F̂ � and

Ĝ�:

Theorem 2 Given assumptions A-G from Bai(2004), for 1=
p
N ! 0 limiting distribution of correlation

coe¢ cient �̂� given by:

T (�̂� � ��) d! �e[HG

R 1
0
BGB

0
GH

0

G]
1=2N(0; 1)

where BG is vector of Brownian motions de�ned in Bai(2004), Assumption A2 and �G de�ned in

Appendix B; HG =
�
Ĝ0Ĝu

T 2

��
�0�
n

�

Limiting distribution implies that asymptotic normality generally holds. In practice researchers should

feel comfortable using a mixed-normal distribution for approximation of the correlation coe¢ cients. The

limiting distribution is true for large dimensional panels. Based on the lemma 2:

Proposition 2 As (N;T )!1; let assumptions A-G Bai(2004) hold

T (�̂� � ��) = Op(1) +Op(1=
p
N)

Providing that G� and F � are observable, �� can be estimated with the rate of convergence
p
N by

the least squre method (according to proposition 2). Based on 17 and 19 we approxiate F :

F̂ = �̂�Ĝ+ E (20)

Next we use equation 16 to creat panel X(1):

The second option considers panel X consisting of stationary variables. For the stationary option we

use the same methodology as described in the �rst part of section 4.3.3 to arive to the results in 20.

The di¤erence is due to a variation in asymptotic results. The limiting distribution for stationary case is

described in Theorem 3:
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Theorem 3 Given assumptions A-G Bai(2003) and for (N;T )!1

p
T (�̂� � ��) d! ��1G �

1=2
i N(0; 1)

where �i is de�ned in Bai(2003) p144, �G de�ned in Bai(2003) p.141, which are presented in Chapter

6 of the thesis

Providing that (N;T )!1, then theorem 3 and the rate of convergence will be derived in appendix

A. The rate of convergence is summarised in proposition 3.

Proposition 3 As (N;T )!1, it holds that

p
T (�̂� � ��) = Op(1) +Op(

p
T
N )

Assumptions for � coe¢ cient After careful investigation of the coe¢ cient �, we construct a set of

reasonable assumptions that are then summarized within the list of Assumptions K :

Assumption K:

(i) �� = �, where � is a correlation coe¢ cient between F̂ and Ĝ

(ii) � is stable over period T

(iii) ��i = �i, where �i is a set of factor loading for panel Xit and �
�
i are factor loadings for X

�
it

Assumption K (i) relates to the conditional correlation coe¢ cient between the two common trends

and states that � has to be stable between di¤erent frequencies. The assumption may seem strong and

therefore we feel that in future enhancements to our study, a framework that would allow for Dynamic

Conditional Correlation (see Engle(2002)) would mitigate this assumption and improve performance.

Assumption K (ii) o¤ers stability to the coe¢ cient � over time; this can be determined by using one of

the structural stability tests. Assumption K(iii) ensures that factor loadings are constant for low and

higher frequency models. Factor loadings can be modeled in a similar way to common factors by using

a correlation coe¢ cient between factor loading from panels X and Y , thus assumption K(iii) can be

relaxed.
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4.3.4 Factor EM-algorithm

To perform the Expected Maximization procedure we have to obtain panels X� and X(1), as well as the

common factor F and factor loading � and panel-speci�c selection matrix A. Next, for the jth iteration

of ith variable we update values for X(1), such that X(1) becomes Xj after every jth iteration. The

procedure follows equation 21:

X(j) = F̂ (j�1)�̂
(j�1)

+A0(AA0)�1(X� �AF̂ (j�1)�̂
(j�1)

) (21)

We consider equation to be the E-step (expectation step) of the procedure. E-step follows Stock and

Watson�s (2002a, p. 156) approach. To initialise step-E we utilize the initial matrix X(1) and common

factor F which are approximated using Factor-Initialisation procedure.

The principal components method is applied to panel X(j) such that new estimates for common

factor F and factor loading � are obtained. The new common factor and factor loading are returned to

step-E and the procedure is repeated until they converge. The procedure is repeated until the maximum

percentage change of the variables�estimates from step j and j + 1 are larger than 10�5.

4.4 Results

4.4.1 Simulation

The �nite sample properties of our methodology are assessed via a Monte-Carlo simulaiton. The simu-

lation starts from data generating process Ft = Ft�1 + ut (where ut are iid N(0; 1)); creating the single

common factor F (r = 1); this is non-stationary and does not have omitted observations. Common

factor G for panel Y is estimated using pre-determined coe¢ cient �; the equation of common factor G

is G = � � F . Factor loading � and 	 in panels X and Y are determined using random drowns from

a uniform distribution. Error components of both panels are generated in a similar way to the ARMA

process and thus allows aweak time-series correlation. Non-stationary panels X and Y are obtained by

generating common factors, loadings and error terms using equations 16 and 17:
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X = ��
0
F + E

Y = 	�0G+�

Common factors, loadings and error terms are generated such that �nal panels X and Y have the

following combinations of the dimensions:T = 50; 100 and 200 and N = 20; 50 and 100. Panels X� and

Y � are obtained form panels X and Y ; to simulate the mixed-frequency pattern of missing observations

we omit every second observation in X and Y to achieve 50% omitted observations in panel X� and Y �.

Similarly, we omit two out of every three observations to achieve 66% distortion of the panel; we omit

every three out of four observations to achieve 75% distortion; �nally every four out of �ve observations

are missing to achieve 80% distortion in the panel. Next we transfer panels X, X�, Y , Y � to stationary

form and extract common components from panels X� and Y �. The estimated factor F̂ is
p
T times the

eigenvectors corresponding to the largest eigenvalue of XX 0and, therefore, given F̂ , we can also work out

� (� = X 0F=T ); the same applies to factor G. We use an equation 19 to start a process of non-random

initialisation and use an expected maximisation algorithm to re-create panel X. The re-created panel

X is compared with the simulation and the conclusion is made regarding how close new panel matches

original simulated panel X.

The reported results are based on 1000 repetitions. To evaluate the results we use the Theils inequality

coe¢ cient popularly referred to as the Theil�s U. Theil�s U is a normalised value of a popular loss function,

Root Mean Squared Error or RMSE. Theil�s U has an additional attractive property of having well de�ned

upper and lower bounds; it varies between 0 and 100% where higher results indicate better performance.

where Xs
it is simulated panel X and Xf

it is panel X re-created using NRI and EM algorithm. We

rely on the results of Monte-Carlo simulations to assess the sensitivity of the now-casting performance

for Factor-EM Algorithm (henceforth FEMA). We begin the evaluation by assessing the sensitivity of

FEMA to the degree of panel distortions. Simulations include only mixed-frequency irregularities because

they lead to higher distortions of the panel rather than individually omitted observations. We use this

methodology to test panels with T dimensions f50; 100; 200g and N dimensions f20; 50; 100g; we use all

combinations of the dimensions. Above we brie�y mention the process of inducing missing observations

in the panels, however we would like to describe the procedure in detail with the example of the panel X

with 50 observations (T = 50) and 20 variables (N = 20).
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The panel X was estimated using equation 16; X is non-stationary and a balanced panel. We omit

every second observation in the panel, transforming it to panel X� size 25�20. Due to this operation half

of the simulated panel X observations are omitted, leading to 50% of the panel distortion. This new panel

is panel X� size 25� 20 and we transfer it to the stationary format using the formula ln(F1=F0). Panel

X� would be transferred using selection matrix to the panel size 50 � 20 (panel X(0) in methodology),

where every second observation of X(0) equals to zero, re�ecting that these observations are unknown.

Similarly, we omit every two out of three observations in panel X, such that only every third observation

remains una¤ected; panel X� will have a dimension 17 � 20. Panel X(0) will transfer panel X� back to

the original 50�20 size, but only every third observation in the panel will have a value and the remaining

observations are zeros. An example of such transformation will be quarterly GDP data (observed only

at the end of every quarter), that is transferred to the monthly frequency. Additionally, we examine the

cases when three out of four observations are omitted from panel X; and four out of �ve observations

are omitted resulting in the panel X� size 10 � 20. We use equivalent procedure on the panels with

di¤erent sizes, in particular we look at the combination of the T dimension equals to f50; 100; 200g and

N dimensions f20; 50; 100g.

Appendix B, Table XV summarises simulation results by reporting descriptive statistics for the Theil�s

U (mean and 5, 25, 50, 75 and 95 percentiles). We report results for Factor Expected Maximization

and four comparable techniques: Spline, Kalman Filter Interpolation, Factor-Spline, Factor-Kalman

Filter. Angilini et al (2006) identify Cubic Spline and Kalman Filters to be reasonable benchmarks for

interpolation procedures. We include two types of the techniques: �rst, we exercise a classical application

of both techniques, i.e. direct application of Spline and Kalman Filter to column vectors for interpolation;

second, we apply both techniques to the common factor after which we perform the transformation to

the panel X using equation 16. The second technique is identi�ed by the expression "Factor- Spline" or

"Factor- Kalman Filter".

[Insert table XV around here]

Table XV demonstrates that the variability of the results of Theil�s U is the lowest for FEMA in

comparison to other approaches; in other words FEMA produces the most consistent results across the

simulation. High stability of the parameters is attributable to the uniqueness of the FEMA approach. The

methodology of NRI allows precise estimation of preliminary F̂t values which is key to approximating true

Ft. The methodology aims to re-build omitted observations of preliminary F̂t using available observations
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of other highly synchronised common factors Ĝt that we can identify by the high degree of correlation. In

methodological section we discuss the methods of identi�cation of panel Y and therefore assume that for

the majority of the panel identi�cation of panel Y will be relatively straightforward. We argue that highly

synchronised common factors F̂t and Ĝt should re�ect the same common trend. Given that we are able

to observe the true path of this common trend (through common factor Ĝt) and the degree of distortion

of panel X�and therefore the resulting common component F̂ �t is irrelevant as it synchronised with the

observed trend. As an example, we present an extreme case where the common component Ĝt has a

perfect correlation (� = 1) with F̂t. In this case, Ĝt is equivalent to a true value of the higher frequency

Ft; therefore, by substituting Ĝt in equation 16 we are able to form panel Xit with equivalent frequency

to that of panel Yit. It is rare to �nd perfect correlation between two components, however, examples

such as interest rate structures or futures term structure could possibly comply with this condition.

The lowest standard deviation of FEMA holds for all percentiles of results for the distribution of Theil�s

U. This implies that competing approaches are signi�cantly more a¤ected by the change in proportion

of omitted observation than the FEMA approach. To illustrate our �ndings we provide a graphical

comparison between two column vectors, one from the true and the other from the FEMA enhanced

panel X. The graphs display only the �rst column vector (true and estimated) since a larger number of

columns would be di¢ cult to portray graphically. In doing so, we assume that the �rst column vector is as

good a representation of the interpolation as any other column vector in the panel. This is because it can

sensibly demonstrate the relationship between true and estimated vectors. Figures 1, 2, 3 illustrate the

FEMA interpolation results; we see that the di¤erence in the graphs is almost indistinguishable, which

rea¢ rms the fact that there is a very small degree of FEMA sensitivity to the omitted observations.

The spline approach produces the largest variation of Theil�s U results. The classical spline approach

has a slightly lower variation of the results than the more advanced Factor-Spline. Such high sensitivity

to the proportion of missing observations is explained by the spline methodology, which creates a smooth

transition between two values and assumes that all omitted observations lie on the line. Spline is therefore

an example of the smoothing function since it is not constructed to identify �uctuations. It collapses to

the column vector mean given a large proportion of omitted observations. In other words, it converges to

the mean given a large interval between two observable points. Figures 4 and 5 demonstrate the Factor-

Spline interpolation; �gures 6 and 7 illustrate a classical application of the spline procedure. We observe

that both types of spline interpolation have similar results and sensitivity to omitted observations. For

panels with 50 percent distortion, the spline methodology is able to produce good results as it will �ll
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missing observation with the average of two known observations. However, for larger gaps the average

of the available observations converges to the mean of the variable, which we observe on �gures �ve and

seven. Moreover, the estimated vector demonstrates a large degree of deviation from true observations

at the end as a result of spline reverting to its cubic form due to unavailability of �nal observation (if the

last value is not observed).

The Kalman �lter demonstrates low mean and standard deviation of Theil�s U distribution. The

results suggest that the Kalman �lter is consistently less sensitive, but also has the poorest approximation

of Panel X amongst the competing techniques. The Factor-Kalman Filter shows marginally better

results than the classic Kalman-Filter approach. The results in Table IV demonstrates a structural "low

frequency data" type interpolation. We believe that the methodology of Kalman �lters is sub-optimal

for this data structure. The problem lies with the �lter which has to �learn� the parameters on the

low frequency observations; these parameters are subsequently applied by the Kalman-Filter to estimate

higher-frequency observations. The parameters vary signi�cantly between low and high frequency to

be e¢ cient enough. The Kalman �lter performs better during interpolation of ragged edge data, as it

learns the parameters on the available data and then it recreates a few missing observations at the end

of the sample with the same frequency. Figures 8 and 9 illustrate Factor-Kalman �lter; �gures 14 and

15 illustrate results of the classical Kalman �lter approach. The graphs demonstrate a relatively high

volatility of the vector estimations, which, however, never breach the con�dence intervals.

Finally, we perform a comparison of FEMA for two types of omitted observations: "ragged edge"

against "low frequency". To estimate the accuracy of the FEMA methodology for "ragged edge" panels

we perform interpolation for the panel that includes 20% of omitted observations at the bottom of

panel X. The methodology is equivalent to "low frequency", such that we estimate preliminary values

for common factor F̂t using high synchronicity with Ĝt, then we optimize the results using the EM

procedure. Table XV demonstrates that means of Theil�s U distributions are similar for "low frequency"

and "ragged edge" FEMA interpolation procedures. It suggests equivalent e¤ectiveness of interpolation

for both structures of omitted variables; however the "ragged -edge" distribution has higher standard

deviation, and moreover it is negatively skewed. The results are the re�ection of the e¤ect of a longer

interval of omitted observations than in "low frequency" structures. It is more challenging to interpolate

longer intervals of omitted observations as interpolated values are more likely to drift away from the true

path in longer intervals of missing observations; this may lead to error accumulation.

Table XVI demonstrates the sensitivity of the methodology to the sample size with regard to T and N
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dimensions. The results show that the sample size of the dataset has only marginal impact on estimations.

This result is consistent with Bovin and Ng�s (2006) �ndings that similarly showed marginal changes.

[Insert Table XVI around here]

Table VI FEMA section demonstrates that most signi�cant changes are taking place when we in-

crease sample size along N dimensions. We see that even though the changes are marginal, Theil�s U

demonstrates better approximation to the true panel. Enlarging the sample size along the T dimension

produces mixed results, therefore we can argue that better results are achieved for the panels with larger

N .

Both spline and Factor-spline interpolation demonstrate low standard deviation of the results while

increasing sample size along T and N dimension. Therefore, spline interpolation remains relatively

una¤ected by changes in samples size. Kalman Filter is the most sensitive among interpolation techniques

to the sample size variations along both T and N . We can see a signi�cant increase in the e¤ectiveness

of approximations between true and estimated models with an increase in the sample size.

We conclude that FEMA provides better and more consistent interpolation results than the benchmark

techniques for the panels with a high degree of distortion. The results are better for the panels with short

intervals of omitted observations.The consequences are that ragged-edge panels with long unobserved

intervals have a worse interpolation performance than the ones with short intervals. In many cases,

ragged-edge panels contain only a few recent unobservable points and, therefore, this issue may be

disregarded. The sample size sensitivity analysis con�rms consistency of the results.

4.4.2 Empirical application

The empirical application may be viewed as a practical extension of the simulation. The object of the

empirical exercise is to demonstrate FEMA methodology application to the real data. To assess the

e¤ectiveness of the application we have to compare balanced panel valuies are with interpolated values

from arti�cially distorted panel; this approach will help to assess how well FEMA can interpolate values

for real datasets and demonstrate the applicability of the approach. We cannot chose unbalanced data

for the empirical application as we won�t be able to approximate how close interpolated values to the

real ones. Also the choice of unbalanced panels is impossible as application of the factor model approach
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is only available to the balanced panels. It would have been interesting to compare factors estimated

from balanced and unbalanced panels and make a conclusion regarding the importance of �lling missing

observations. However, the factor models approach is not applicable to unbalanced panels, therefore we

always have to �ll missing observations �rst and later use the principle components estimator. Thus,

we believe that an optimal demonstration of the empirical application uses balanced panels, where we

introduce a di¤erent degree of the distortion according to the objectives of the exercise.

To test FEMA on empirical data we choose two sets of data: the �rst demonstrates application of

the FEMA approach to the panel of mixed-frequency data; the second outlines the case of ragged-edge

data and also illustrates the challenges of applying the methodology to the smaller dataset. All panels

used in empirical application are balanced data; this condition is mandatory to be able to apply Theil�s

U function. The �rst set of data oriented on the datasets where �rst factor explains less than 50% of

variation of the panel; we refer to such datasets as week factor structure panels. The second set of data

evaluates datasets where the �rst factor explains more than 50% of the variation in the panel; we refer to

this dataset as a strong factor panel. In the next section we give more detailed description of both data

sets and later discuss the results of the empirical application.

4.4.3 Dataset

Both sets of data chosen for empirical application are balanced panels ranging from January 1990 to

October 2010 for a total of T=250 monthly observations. The �rst dataset consists of 120 energy variables

which are divided between two panels: a) panel X consisting of 20 oil re�nery products prices; b) Panel

Y consisting of 100 re�nery fundamentals. Panels X and Y are balanced panels consisting of monthly

observations that are log di¤erenced and de-trended to suit the requirements of the proposed FEMA

algorithm. In particular panel X of from the historical prices of the variety of re�nery products, such as

gasoline, kerosene, jet fuel, fuel oil and diesel fuel.

The choice of variables for panel Y demonstrates the approach we suggested for the selection of the

panel Y in a methodological section. We recommend consideration of the full dataset (120 variables)

that was selected using the theoretical justi�cation. Next we can separate datasets on the variables with

missing observations (panel X) and variables without missing observations (panel Y). Let�s say that the

original dataset (120 variables) is intended to be used for forecasting crude oil prices using factor vector

autoregressive model. Therefore, the full dataset is intended to be used with the principal component
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method, after which factors will be extracted and thus can be used to forecast crude oil prices. We

set a challenge for the existing dataset by implying that all but re�nery prices data have no missing

observations. We would like to interpolate missing observations in re�nery prices, such that thereafter

we will be able to apply the principle component approach. Therefore, we can divide the original dataset

on the panel X, which consist of re�nery prises with missing observations; and panel Y which consist of

the remaining dataset without missing observations. Note that the dataset used in this exercise is a part

of the existing dataset used for FAVAR model in the paper by Zagaglia(2008) and therefore the choice

of the variables are justi�ed in the paper. A complete list of the variables can be found in Appendces C

and D.

Panel Y shows variables such as the price of crude oil from major exporter countries, which has a

direct and very strong correlation with the price of oil re�ned products. We include information on the

amount of the supplied re�nery products in barrels per day, and similarly we include information on

the amount of re�nery product. We include information on the drilling activity that is set to increase

available reserves of oil and increase availability of raw material for re�neries. We add macroeconomic

indicators to re�ect demand for oil and re�ned products. It should be noted that we intended to use

GDP growth as a proxy for productivity growth and, therefore, oil consumption (demand) pressure by

emerging countries. However, due to quarterly frequency of the GDP we use the industrial production

index. We pay signi�cant attention to the US as it is a leading consumer of energy products. We include

measures of US monetary aggregates and indicators of con�dence. Zhang et al (2008) suggest including

US dollar exchange rates since the stability of the US dollar is one of the key elements in understanding oil

prices. To provide a proxy for broader �nancial market sentiments prevailing at the time of the forecasts

we include leading stock and bond indices. The dataset re�ects the �uctuations of leading oil stocks and

OTC derivative spreads. Variables in panel Y are correlated to with re�nery prices and should be able

to demonstrate major trends in crude oil markets. These trends should be similar to the ones in re�nery

markets, which will help to interpolate re�nery prices.

The second dataset consists of the data from Light Sweet Crude oil spot and future prices for maturities

from 1 to 12, for the period January 1990 to October 2010. The �rst factor extracted from this data

explains more than 50% of the variation in the dataset, as the term structure �uctuations demonstrate

high correlation. We de�ne this as a dtrong factor structure dataset. We follow three objectives for the

application of this dataset: �rst we investigate the sensitivity of the methodology to a decrease in the

panel size. We follow the paper by Bovin and Ng(2006), who show that factor models are only marginally
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sensitive to the size of the sample. The second we compare the results of FEMA interpolation for weak

and strong factor structures. Third we examine the application of the approach to the ragged edge data,

in contrast to the previous case which is applied to the mixed-frequency data. The ragged edge data is

that which omits only a few observations at the end or beginning of the dataset. The second dataset is

divided on panel X which includes future oil prices from 6 to the 12 month futures; panel Y includes spot

prices and 1 to 5 futures. In panel X we arti�cially induce missing observations, such that the �rst 70

data points are missing; the rest remains available.

4.4.4 Empirical results

The �rst step in the FEMA procedure deals with the application of the PC method to the panels Xit

and Yit. We consider an application to the fully balanced panel with 250 monthly observations for weak

factor structures, and then strong factor structure panels with 100 observations. As a result, we extract

true Ĝt and F̂t. We consider interpolation for four unbalanced panels with 50, 66, 75 and 80% of irregular

data. We also force data irregularities to the balanced panel X and extract unbalanced common factor

F̂ �t .

In the empirical literature, there is considerable uncertainty about the appropriate choice of the

number of factors since the information criteria seems to provide misleading results in certain cases. For

example, Bernanke and Boivin (2003) use three factors for their real-time applications for the US, whereas

the Federal Reserve Bank of Chicago publishes a US composite index based on a similar structure but

where only one factor of monthly data is chosen. In the application, the number of factors were set equal

to one and the rest of the procedures were carried out following the methodology outlined in section 4.3.

[Insert Table XVII around here]

We present the results of the empirical procedure in Table XVII. The interpolation performance of

the FEMA is compared to the competing spline and Kalman �lter models. We assess the results using

mean as a proxy of goodness of �t, and standard deviation to establish e¢ ciency of the methodology. We

start by analysing the results for the weak factor model. FEMA demonstrates a higher mean and lower

standard deviation of Theil�s U distribution when varying the proportion of omitted observations in the

column vector. The results indicate consistently good approximation with low sensitivity to changes in

the proportion of omitted observations.
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The spline produces the highest mean for 50% distortion amongst competing approaches. However,

the accuracy of approximation severely declines when the proportion of distortion rises. The Kalman

Filter demonstrates the extremely poor now-casting ability based on the mean of Theil�s U distribution.

We can see that the quality of now-casting gradually declines as the proportion of missing observations

increase. The results are consistent with the results of the simulation exercises.

A strong factor structure improves performance of the FEMA procedure. The performance of splines

and KF techniques gradually decline with the increase in the proportion of omitted observations. Poor

results of the spline and the Kalman Filter are attributed to the higher volatility of common factors in

the strong factor panels, as well as higher volatility of individual vectors. FEMA is able to overcome this

problem as factor Ft can model volatility through the volatility of the highly synchronised factor Gt. The

results of strong factor models are consistent with those from our simulation exercise. Overall, panels

with a strong factor structure have improved results over those from panels with weaker factor structures

when using the FEMA methodology. However, this improvement is generally marginal.

We perform an additional evaluation of the empirical validity of the FEMA approach using the

assessment of the structural parameters of the panel regression. We regress a panel Y which consists

of eight variables including re�nery prices of motor gasoline, aviation gasoline, kerosene-type jet fuel,

kerosene, fuel oil, diesel fuel, propane, residual fuel oil. The regressors are summarised in panel X which

consists of the costs of oil imported from Mexico, Nigeria, Venezuela, and average oil prices from OPEC

and Non- OPEC countries. Original panels X and Y contained 100% of observations with monthly

frequencies; to perform the exercise we decreased both panels samples on 50%, 66%, 75% and 80% by

methodological deletion of the observations. For example for the panel with sample equals to 50% from

the original, we delete every second observation; for the sample with 66% missing observations we keep

every third observation and delete two out of every three; for panels with 75% missing observations

we keep every forth observation and for the panels with 80% missing observations we keep every �fth

observation in the panel. We regress low frequency panel Y on low frequency panel X; the results are

given in the Table XVIII.

In the second step we use FEMA methodology to interpolate low frequency panels Y � and X� with

50%, 66%, 75% and 80% back to the 100% monthly observations. We regress interpolated panel Y on

panel X and display the coe¤cients in the Table XVIII. In the table we present coe¤cients and standard

errors, which help to assess structural parameters. We can see that the parameters of the high frequency

regressions are relatively stable and the values are close between the parameters from the panels inter-
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polated from 50%, 66%, 75% and 80% panels of missing observations. At the same time the parameter

for the low frequency panel is signi�cantly di¤erent between them and substantially di¤erent from high

frequency parameters. The di¤erence between structural parameters is due to the variations in the sample

size; while size of T dimension in the 100% balanced panel is 240 observations; the sample size in the

panel with 80% missing observations is 48. Such a drastic dixoerence in the sample sizes of the regression

leads to the di¤erence in the structural parameters. At the same time we can see that parameters which

are interpolated to have the same sample size (the regressions between panels Y and X) have very similar

structural parameters, which con�rms the theory. To conclude, we can observe that FEMA interpolation

methodology panels generate stable and consistent observations irrespective of the proportion of missing

observations. This is con�rmed by the structural parameters, which are similar for the panels interpolated

from panels with 50% to 80% missing observations.

4.5 Conclusions

Our study is inspired by the problem of irregularity of data observations, which is more than usual in

the large dimensional datasets. We aimed to create a comprehensive method that can e¢ ciently recreate

numerous patterns of omitted observations between cross-sectionally correlated time series variables. We

accomplished the goal by designing into Factor Expected Maximization Approach that can successfully

provide substitutes for omitted observations in the column vectors while taking into consideration cross-

sectional correlation within the panel.

The methodology of FEMA builds on factor model theory and more precisely on di¤usion index

methodology that suggests using common trends between variables to provide omitted observations. The

methodology is linked directly to the principal components method that helps to extract common trends

from lower and higher frequency data. The higher frequency trends are used as a stencil to substitute

preliminary estimations to the omitted observations; expected maximisation technique optimises the

results. The methodology di¤ers from random initialisation that is common among EM applications.

Non-random initialisation allows estimation of more precise preliminary values than random initialisation

and therefore, mitigates sensitivity to the long intervals and/or large proportions of omitted variables.

The conclusion is con�rmed by the results of simulation and empirical exercises. According to simulation

exercises, the competing models failed to provide consistent outperformance when we induced large

intervals of omitted variables. In addition, we ensured that the results hold for both large and medium
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size panels by performing size sensitivity evaluation. The empirical application used energy data to

demonstrate the methodology "in action". We used both strong and weak factor model structures; and

as expected, strong factor FEMA had better results.

Let us mention that FEMA has limitations and opportunities for further improvements. First, non-

random initialisation is only available for the factor base panel, which can be matched with the identical

high frequency common trend. We have the potential to mitigate this issue by splitting original large

dimensional panel into two parts: omitted observations X and balances panel Y. A factor structure of

large dimensional panels implies that they share a common trend along the panel. By splitting the

original panel into two we preserve factor structure, and allow the balanced panel to act an approximator

of the second part. This scenario is a realisticoccurrence in �nancial markets (for example, heating oil

term structure).

Second, the methodology allows only for variations in the common trend, assuming that factor loading

remains stable. Although we believe that this assumption is trustworthy, we feel that the research can be

extended to include �exible factor loading that varies from low to high frequency. Flexible factor loading

can be estimated using a similar methodology for non-random initialisation and EM. Third, we believe

that the examination of the methodology is limited solely to monthly-frequency based applications of

simulations and empirical study. The application can be extended to weekly, daily and hourly frequencies,

though higher rates are subject to further investigation.

The results of the simulations and empirical exercises suggest that it is a di¢ cult task to provide omit-

ted observations on such a large scale as 50 percent (and more) omitted observations in large dimensional

data. However, the results demonstrate that it is possible to identify omitted observations with around

60 percent precision, which is shown by Theil�s U results. The results are comparable with academic

literature on now-casting and large dimensional interpolation such as Stock and Watson (2002a), Schu-

macher and Breitung (2008). Additionally, we leave the room for further investigation and improvement

of the method, as well as wider empirical applications.

98



References

[1] Appendix A: Proofs

Lemma 2 Let assumptions A-H from Bai(2004), then:

(i) 1
T 2

TP
t=1

GtFt = �+Op(
1
T )

(ii) 1
T 2

TP
t=1

Gt(F̂t � Ft) = 1
T (Op(

1
T ) +Op(

1p
N
))

(iii) 1
T 2

TP
t=1
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t=1 ĜtF̂t

i
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Proof. Theorem 2

Consider equation 19, where �̂ converges to the true value with the rate established in 23.
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Consider equation 19, we re-write all terms starting from (i):
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(Ĝt �Gt)(F̂t � Ft)

By applying lemma 3, we have:

�̂ = �+Op(
1p
T
) +Op(

1

2NT
)

p
T (�̂� �) = Op(1) +Op(

p
T

N
) (25)

102



Proof. Theorem 3

Based on equation 19 and convergence rate from 25 we establish limiting distribution of �̂ for stationary
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p
T=N ! 0 limiting distribution of correlation coe¢ sient for stationary

panels is:
p
T (�̂� �) = ��1G �

1=2
i N(0; 1)
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Appendix B. Results

T
ab
le
X
V
.
Si
m
ul
at
io
n
re
su
lt
s

Fa
ct
or
E
xp
ec
te
d
M
ax
im
iz
at
io
n
A
pp
ro
ac
h

R
ag
ge
d
E
dg
e

M
ea
n

0.
05

0.
25

0.
5

0.
75

0.
95

M
ea
n

0.
05

0.
25

0.
5

0.
75

0.
95

50
%

58
.9
71
2

51
.0
43
4

56
.4
72
2

58
.7
22
9

61
.2
32
4

66
.2
15
3

56
.2
50
8

40
.4
79
1

45
.7
54
1

60
.2
75
7

62
.0
09
3

69
.7
00
3

66
%

58
.9
26
56

51
.0
85
7

56
.5
60
6

58
.7
16
5

61
.2
60
8

66
.2
24
5

75
%

58
.8
57
4

51
.4
75
5

56
.6
07
7

58
.6
49
5

61
.2
66
1

66
.2
27
3

80
%

56
.6
57
6

51
.2
52
1

56
.4
43
4

56
.6
17

61
.1
22

66
.1
37
7

Fa
ct
or
-S
pl
in
e

Sp
lin
e

50
%

50
.2
51
9

44
.1
16
8

47
.8
71

50
.5
04
8

52
.4
51

55
.7
57
3

50
.3
77

44
.6
16
7

48
.2
76
1

50
.4
68
1

52
.5
33
1

55
.5
91
3

66
%

45
.8
11
7

35
.2
74
7

37
.6
82
3

49
.0
20
6

49
.7
23
7

44
.0
14
5

47
.3
13
58

41
.3
81
7

43
.4
56
5

50
.2
72
8

50
.9
66
2

42
.8
00
1

75
%

36
.6
44

31
.3
70
0

33
.9
90
8

37
.1
53
7

39
.2
92
5

43
.5
25
3

36
.5
24
8

31
.3
20
5

34
.1
65
9

32
.2
88
4

36
.9
41
2

42
.1
29
5

80
%

31
.9
16
7

27
.0
37
5

30
.6
40
5

33
.6
54
4

38
.1
35
6

40
.6
58
7

35
.7
22
4

29
.5
92
3

38
.9
67
5

36
.7
98
4

37
.5
99
1

41
.3
29
5

Fa
ct
or
-K
al
m
an

K
al
m
an
F
ilt
er

50
%

34
.8
81
6

21
.7
55
7

32
.4
37
7

36
.3
80
4

39
.8
35
6

42
.5
87
8

33
.9
21

20
.0
00
6

28
.3
46
3

34
.2
82
4

38
.2
70
2

54
.9
93
1

66
%

34
.4
38
19

22
.8
70
1

32
.3
78
9

35
.9
14
9

39
.3
45
1

40
.0
74
7

33
.4
69
04

19
.9
20
5

27
.7
76
3

32
.4
24
3

36
.7
17
8

50
.6
16
4

75
%

33
.6
38
3

25
.8
82
7

31
.0
50
4

33
.5
93
4

36
.9
16
6

38
.8
05
7

30
.5
47
8

19
.5
60
9

25
.3
90
3

31
.3
62
6

33
.7
89
3

45
.3
79
2

80
%

31
.8
67
4

25
.6
38
9

30
.9
37
7

32
.5
43

35
.6
30
5

37
.6
17
4

28
.5
81
2

18
.3
68
4

24
.5
16
7

31
.1
80
8

33
.4
69
6

44
.5
79
9

104



Table XV shows reversed and normalised RMSE loss functions, such that the functions are allowed

to take values between 0 and 100%. The results are equal to 100% when all �lled observations exactly

match true values of these observations. The �rst column in the table represent average results achieved

by competing methodologies; the remaining columns represent quantiles of the distribution; the results

are estimated over 1000 simulations. The results are estimated for di¤erent number of missing observation

in the panel (from 50% to 80%).
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Table XVI shows reversed and normalised RMSE loss functions, such that the functions are allowed to

take values between 0 and 100%. The results are equal to 100% when all �lled observations exactly match

true values of these observations. Table shows average results achieved by competing methodologies;

the results are estimated over 1000 simulations for the panel with di¤erent number of columns N and

observations T. The results are estimated for di¤erent number of missing observation in the panel (from

50% to 80%).
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Table XVII Empirical results

Weak factor structure

N=20/T=100 50% omitted 66% omitted 75% omitted 80% omitted

Factor 56.0694 56.0467 55.7485 55.4007

Factor-Spline 61.7721 48.0266 49.5426 43.1693

Factor-Kalman 49.292 35.1382 34.4789 35.1047

SplineIndiv 67.5456 48.3019 54.1855 47.1131

KalmanIndiv 42.51 41.4901 40.3793 40.4729

Strong factor structure

N=20/T=100 50% omitted 66% omitted 75% omitted 80% omitted

Factor 60.0781 59.9577 59.9975 60.6792

Factor-Spline 47.6854 45.3498 38.8739 42.2862

Factor-Kalman 36.5646 35.9756 21.144 36.3239

SplineIndiv 48.1778 46.4598 39.7355 41.9037

KalmanIndiv 32.7832 32.1087 30.9853 31.439

Table XVII shows reversed and normalised RMSE loss functions, such that the functions are allowed

to take values between 0 and 100%. The results are equal to 100% when all �lled observations exactly

match true values of these observations. Table shows average results achieved by competing methodologies

while �lling missing observations for empirical dataset. The results are estimated for di¤erent number

of missing observation in the panel (from 50% to 80%). Additionally, we demonstrate a variation of the

results for two types of panels: panels with strong factor structure and panels with weak factor structure.
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Table XVIII Empirical results

High frequency Low frequency

50% 66% 75% 80% 50% 66% 75% 80%

Oil import cost, Mexico 0.3703 0.3658 0.2546 0.3368 -0.0850 0.0000 -0.3201 -0.0506

0.0832 0.0879 0.0886 0.1012 0.1215 0.0002 0.1485 0.1850

Oil import cost, Nigeria 0.2568 0.2325 0.3654 0.1599 0.3054 0.2472 0.6579 0.5851

0.0674 0.0714 0.0719 0.0822 0.0978 0.0990 0.1175 0.1638

Oil import cost, Venezuela 0.0730 0.1217 -0.0268 0.1518 0.0931 0.4409 -0.0531 -0.2162

0.0495 0.0524 0.0528 0.0603 0.0761 0.1166 0.1107 0.0973

Oil price OPEC -0.0019 0.0527 -0.1016 -0.1215 -0.4271 0.0477 -0.2608 -0.0652

0.0901 0.0953 0.0961 0.1098 0.1271 0.0791 0.1731 0.1437

Oil price Non-OPEC 0.8957 0.8656 1.1254 1.0794 0.4964 -0.3333 0.4571 0.3199

0.1091 0.1154 0.1163 0.1329 0.1624 0.1353 0.2043 0.2493

Constant 0.0030 0.0028 0.0014 0.0000 -0.0009 -0.0018 -0.0001 0.0000

0.0004 0.0008 0.0008 0.0009 0.0012 0.0019 0.0015 0.0021

R-sruared 0.7186 0.7057 0.6968 0.6448 0.2342 0.2835 0.6168 0.6156

Table XVIII demonstrates parameters, standard errors and the goodness of �t of the regressions run

using variables with smaller number of observations due to the fact that some of the proportion of these

variables are missing (low frequency). The proportion of missing observation �uctuates between 50% and

80% if we establish original number of observations equals to 100%. I interpolate these variables using

proposed methodology and perform the regression; the resulting parameters are reported in the columns

marked �high frequency�.
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Appendix C. List of �gures
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Figure 1: The graph of FEMA interpolation, for dataset with 50 % omitted observations
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Figure 2: The result of FEMA interpolation, for dataset with 75 % omitted observations
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Figure 3: The results of FEMA interpolation, for dataset with 80% omitted omitted observations
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Figure 4: The results of Factor Spline, for datasets with 50% omitted observations
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Figure 5: The results of Factor Spline, for datasets with 75 % omitted observations
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Figure 6: The results of Spline, for datasets with 50 % omitted observations
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Figure 7: The results of Spline, for datasets with 75 % omitted observations
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Figure 8: The results of Factor Kalman Filter, for datasets with 50 % omitted observations
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Figure 9: The results of Factor Kalman Filter, for datasets with 75 % omitted observations
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Figure 10: The results for Kalman Filter, for datasets with 50 % omitted observations
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Figure 11: The results for Kalman Filter, for datasets with 75 % omitted observations

115



0 50 100 150 200
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

X estimate
X true
95% Confidence Intervals

Figure 12: FEMA empirical application, 50 % omited, XN;T = (18; 240) YN;T = (100; 240)
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Figure 13: FEMA Empirical Application,75 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 14: Factor spline Empirical Application,50 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 15: Factor spline Empirical Application,75 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 16: Spline Empirical Application,50 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 17: Spline Empirical Application,75 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 18: Factor Kalman Filter Empirical Application, 50 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 19: Factor Kalman Filter Empirical Application, 75 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 20: Kalman Filter Empirical Application, 50 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Figure 21: Kalman Filter Empirical Application, 75 % omitted, XN;T = (18; 240) YN;T = (100; 240)
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Appendix D. List of re�nery oil products

Variable name Measure Source

1 Re�ner Price of Finished Motor Gasoline to End Users Dollars per Gallon EIA

2 Re�ner Price of Finished Aviation Gasoline to End Users Dollars per Gallon EIA

3 Re�ner Price of Kerosene-Type Jet Fuel to End Users Dollars per Gallon EIA

4 Re�ner Price of Kerosene to End Users Dollars per Gallon EIA

5 Re�ner Price of No. 2 Fuel Oil to End Users Dollars per Gallon EIA

6 Re�ner Price of No. 2 Diesel Fuel to End Users Dollars per Gallon EIA

7 Re�ner Price of Propane (Consumer Grade) to End Users Dollars per Gallon EIA

8 Re�ner Price of Finished Motor Gasoline for Resale Dollars per Gallon EIA

9 Re�ner Price of Finished Aviation Gasoline for Resale Dollars per Gallon EIA

10 Re�ner Price of Kerosene-Type Jet Fuel for Resale Dollars per Gallon EIA

11 Re�ner Price of Kerosene for Resale Dollars per Gallon EIA

12 Re�ner Price of No. 2 Fuel Oil for Resale Dollars per Gallon EIA

13 Re�ner Price of No. 2 Diesel Fuel for Resale Dollars per Gallon EIA

14 Re�ner Price of Propane (Consumer Grade) for Resale Dollars per Gallon EIA

15 Re�ner Price of Residual Fuel Oil, Percent, Resale Dollars per Gallon EIA

16 Re�ner Price of Residual Fuel Oil, Percent, End Users Dollars per Gallon EIA

17 Re�ner Price of Residual Fuel Oil, Resale Dollars per Gallon EIA

18 Re�ner Price of Residual Fuel Oil, End Users Dollars per Gallon EIA

19 Re�ner Price of Residual Fuel Oil, Average, Resale Dollars per Gallon EIA

20 Re�ner Price of Residual Fuel Oil, Average, End Users Dollars per Gallon EIA
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Appendix E. List of variables in panel Y

Variable name Measure Source

1 F.O.B. Cost of Crude Oil Imports From Mexico Dollars per Barrel EIA

2 F.O.B. Cost of Crude Oil Imports From Nigeria Dollars per Barrel EIA

3 F.O.B. Cost of Crude Oil Imports From Venezuela Dollars per Barrel EIA

4 F.O.B. Cost of Crude Oil Imports From Persian Gulf Dollars per Barrel EIA

5 Average F.O.B. Cost of Crude Oil Imports From All OPEC Dollars per Barrel EIA

6 Average F.O.B. Cost of Crude Oil Imports From All Non-OPEC Dollars per Barrel EIA

7 Landed Cost of Crude Oil Imports From Canada Dollars per Barrel EIA

8 Landed Cost of Crude Oil Imports From Mexico Dollars per Barrel EIA

9 Landed Cost of Crude Oil Imports From Nigeria Dollars per Barrel EIA

10 Landed Cost of Crude Oil Imports From Saudi Arabia Dollars per Barrel EIA

11 Landed Cost of Crude Oil Imports From Venezuela Dollars per Barrel EIA

12 Landed Cost of Crude Oil Imports From All OPEC Dollars per Barrel EIA

13 Landed Cost of Crude Oil Imports From All Non-OPEC Dollars per Gallon EIA

14 Unleaded Regular Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

15 Unleaded Premium Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

16 All Types of Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

17 Crude Oil and Natural Gas Rotary Rigs in Operation, Onshore Number of Rigs EIA

18 Crude Oil and Natural Gas Rotary Rigs in Operation, O¤shore Number of Rigs EIA

19 Crude Oil Rotary Rigs in Operation Number of Rigs EIA

20 Natural Gas Rotary Rigs in Operation Number of Rigs EIA

21 Crude Oil and Natural Gas Rotary Rigs in Operation, Total Number of Rigs EIA

22 Active Well Service Rig Count Number of Rigs EIA

23 Wells Drilled, Exploratory, Crude Oil Number of Wells EIA

24 Wells Drilled, Exploratory, Natural Gas Number of Wells EIA

25 Wells Drilled, Exploratory, Dry Number of Wells EIA

26 Wells Drilled, Exploratory, Total Number of Wells EIA

27 Wells Drilled, Development, Crude Oil Number of Wells EIA

28 Wells Drilled, Development, Natural Gas Number of Wells EIA

29 Wells Drilled, Development, Dry Number of Wells EIA
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30 Wells Drilled, Development, Total Number of Wells EIA

31 Wells Drilled, Total, Crude Oil Number of Wells EIA

32 Wells Drilled, Total, Natural Gas Number of Wells EIA

33 Wells Drilled, Total, Dry Number of Wells EIA

34 Crude Oil, Natural Gas, and Dry Wells Drilled, Total Number of Wells EIA

35 Total Footage Drilled Thousand Feet EIA

36 Asphalt and Road Oil Product Supplied Thousand Barrels per Day EIA

37 Aviation Gasoline Product Supplied Thousand Barrels per Day EIA

38 Distillate Fuel Oil Product Supplied Thousand Barrels per Day EIA

39 Jet Fuel Product Supplied Thousand Barrels per Day EIA

40 Propane/Propylene Product Supplied Thousand Barrels per Day EIA

41 Lique�ed Petroleum Gases Product Supplied Thousand Barrels per Day EIA

42 Lubricants Product Supplied Thousand Barrels per Day EIA

43 Motor Gasoline Product Supplied Thousand Barrels per Day EIA

44 Petroleum Coke Product Supplied Thousand Barrels per Day EIA

45 Residual Fuel Oil Product Supplied Thousand Barrels per Day EIA

46 Total Petroleum Products Supplied Thousand Barrels per Day EIA

47 Crude Oil Imports, Total Thousand Barrels per Day EIA

48 Distillate Fuel Oil Imports Thousand Barrels per Day EIA

49 Jet Fuel Imports Thousand Barrels per Day EIA

50 Residual Fuel Oil Imports Thousand Barrels per Day EIA

51 Total Petroleum Imports Thousand Barrels per Day EIA

52 Crude Oil Stocks, SPR Thousand Barrels EIA

53 Crude Oil Stocks, Non-SPR Thousand Barrels EIA

54 Crude Oil Stocks, Total Thousand Barrels EIA

55 Distillate Fuel Oil Stocks Thousand Barrels EIA

56 Jet Fuel Stocks Thousand Barrels EIA

57 Motor Gasoline Stocks Thousand Barrels EIA

58 Residual Fuel Oil Stocks Thousand Barrels EIA

59 Crude Oil Re�nery Net Input Thousand Barrels EIA
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60 Natural Gas Plant Liquids Re�nery and Blender Net Inputs Thousand Barrels EIA

61 Other Liquids Re�nery and Blender Net Inputs Thousand Barrels EIA

62 Distillate Fuel Oil Re�nery Net Production Thousand Barrels EIA

63 Jet Fuel Re�nery Net Production Thousand Barrels EIA

64 Propane/Propylene Re�nery Net Production Thousand Barrels EIA

65 Lique�ed Petroleum Gases Re�nery Net Production Thousand Barrels EIA

66 Finished Motor Gasoline Re�nery and Blender Net Production Thousand Barrels EIA

67 Residual Fuel Oil Re�nery Net Production Thousand Barrels EIA

68 Total Petroleum Re�nery and Blender Net Production Thousand Barrels EIA

MACROECONOMIC AND FINANCIAL DATA

69 Yield on 10 year Gov US bonds percent Di¤, log DS Datastream

70 M1 billion dollars Di¤, log DS Datastream

71 M2 billion dollars Di¤, log DS Datastream

72 US Bank lending rate percent Di¤, log DS Datastream

73 US con�dence index rate index Di¤, log DS Datastream

74 Producer�s price index for �nished goods index Di¤, log DS Datastream

75 US CPI index index Di¤, log DS Datastream

76 US industrial production index index Di¤, log DS Datastream

77 Yield on 20years US gov. Bonds percent Di¤, log DS Datastream

78 Sp500 index index Di¤, log DS Datastream

79 Yield on US 3yaers gov bonds percent Di¤, log DS Datastream

80 Share price of Exxon average price Di¤, log DS Datastream

81 Share price of BP average price Di¤, log DS Datastream

82 Share price of CONOCO average price Di¤, log DS Datastream

83 Share price of Shell average price Di¤, log DS Datastream

84 Share price of Chevron average price Di¤, log DS Datastream

85 Crude Oil-Dtd Brent UK Close USD/BBL price Di¤, log DS Datastream

86 Crude Oil-Brent 1Mth Fwd FOB USD/BBL price Di¤, log DS Datastream

87 US TREASURY BILL RATE - 3 MONTH (EP) percent Di¤, log DS Datastream

88 EURO to usd noon NY (EP) NADJ exchange rate Di¤, log DS Datastream
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89 US-DS index OilGas - PRICE INDEX index Di¤, log DS Datastream

90 Citigroup Bond Index Corporate US index Di¤, log DS Datastream

91 Citigroup Bond Index Overall index Di¤, log DS Datastream

92 Citigroup Bond index treasury index Di¤, log DS Datastream

93 Citigroup Bond Index Industrial index Di¤, log DS Datastream

94 DAX stock market index index Di¤, log DS Datastream

95 UK stock market index index Di¤, log DS Datastream

96 China Industrial production index index Di¤, log DS Datastream

97 Euro area industrial production index index Di¤, log DS Datastream

98 USD-GBP exchange rate exchange rate Di¤, log DS Datastream

99 UK industrial production index index Di¤, log DS Datastream

100 World Dow-Jones industrial performance index Di¤, log DS Datastream
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5 Superior predictive ability of data rich models: A study in oil

futures

Ekaterina Ipatova

Cass Business School, City University London

April 9, 2014

Abstract:

A panel of common energy market fundamentals as well as macroeconomic variables is constructed in

order to extract latent factors using the principle component methodology. The latent factors are then

allowed to interact dynamically using a FAVAR (Factor Augmented Vector Autoregressive) model and

FA-VECM (Factor Vector Error Correction) model which are used to develop short-term forecasts. A

"horse race" of competing multivariate and univariate time series models is utilized in order to compare

the forecasting performance of the factor augmented model. In order to mitigate the data snooping bias

inherent in such studies we employ the non-parametric Hansen at el. (2011) MCS (Model Con�dence

Set) approach to evaluate the forecasting ability of the models, if any. We �nd that factor augmented

models have superior sort term forecasting ability.
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5.1 Introduction

Investment in commodities has seen a signi�cant rise in the past decade with a myriad of indices and

instruments presenting some lucrative opportunities. Similarly, a large proliferation of commodity based

funds is also evident. A major component for investment attraction towards the commodity markets at-

tributable to the lower correlation with other �nancial assets which provided diversi�cation opportunities.

Several prominent academic studies concluded that investors can signi�cantly reduce portfolio risk and

attract substantial risk premiums through relatively modest investments in long-only commodity index

funds (e.g., Gorton and Rouwenhorst (2006); Erb and Harvey (2006)). Additional factors responsible for

investors�embracing of the commodity markets is attributable to the general economic situation towards

general economic situation during the middle of the past decade when interest rates declined to histori-

cally low levels, risk premiums steadily decreased, and traditional assets showed little obvious potential.

Global outlook on the fast growing developing countries like Brazil, China and India, and the accompany-

ing demand for oil, industrial metals and construction supplies determined positive market sentiment on

the fundamental side of commodity investments and convinced investors in potential long-term high risk

premiums (Kat and Oomen (2006)). The investment funds started to take advantage of deep and liquid

exchange traded commodity futures, and more than 100 billion dollars moved in to commodity markets

between 2004 and 2008. Domanski and Heath (2007) designate this as "�nancialization" of commodity

futures markets. Investment boom reached its peak around the 2008 �nancial crisis, where the aggregate

long positions held by commodity index investors reached about $256bn (see Mou and Yiqun (2010)).

Commodity �nancial instruments were introduced during the second half of the 20th century; however,

the 2000s may be characterised by developments in the deep and liquid markets, such that additional

bene�ts are felt as a result of a diverse asset portfolio(see, for example, Kat and Oomen et al. (2006)).

The bene�ts are the result of a low correlation between commodity derivatives and traditional �nancial

instruments (stocks and bonds). Aside the low correlation, investing in commodity markets was perceived

to be a hedge against in�ation as well. Browne and Cronin (2010) stated that traditional asset classes

weaken and perform poorly during periods of sharply rising in�ation. Commodities, on the other hand,

bene�t from rising in�ation due to growth in price. There exists an opinion regarding endogeneity between

commodity prices and in�ation. Nevertheless, commodity derivatives help to protect a portfolio from the

negative impact of in�ation and systematic risks.

The bene�ts of commodity investments raise a question concerning optimal tools for the analyses and

forecasting of the market. The primary motivation of this study is to provide a comparative analysis
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of the predictive abilities of the factor base models in comparison to univariate models appropriate for

the analysis of the commodity markets. A number of studies (e.g. Zagaglia (2010)) attempt to enhance

predictive ability of the forecasting models on the energy markets using additional information extracted

from large dimensional panels. The study focused on the application of the FA-VAR (Factor Vector

Augmented methodology), where the dynamics of crude oil prices and common factors is modelled simul-

taneously in an attempt to increase forecastability of the oil markets. Our research posits a comparison of

the FA-VAR model with the FA-VECM approach, which is applicable due to the co-integration between

crude oil futures. Our hypothesis is that FA-VECM should produce superior results in comparison to

FA-VAR, as it allows to model co-integrational relationships. We also provide the results for simple VAR

and VECM models to demonstrate the bene�ts of the factor approach.

To order to use the factor approach in both models we incorporate more than 300 series, which are

used in the factor panel. The panel dataset, therefore, incorporates supply and demand factors and

also established �nancial and macro-economic variables. There is a downside to formulating a model

based on large dataset which is that it is comprised of the series with mixed frequencies and data that

is made available on di¤erent dates. This is known as a "ragged edge" problem (Ferrara et al 2010). A

number of interpolation and smoothing algorithms are proposed (and used) to mitigate this. Following

Bernanke (2008) and Zagaglia (2010) we extract common factors from a large dimensional panel and

then model the joint dynamics of the �latent�factors along with crude oil prices. We focus on FA-VECM

(Factor Augmented Vector Error Correction Model) which tests superiority of the competing forecasts

by adding latent trends from data-rich panels and additionally, incorporating information from term

structure endogeneity (see Kilian(2008a) and Kilian (2008b)).

We propose a horse-race of competing models in order to determine the superiority of their predictive

ability. Following the issue of data-snooping bias when a horse-race of competing models is carried out (see

Hansen et al (2011), Stock and Watson (1999)), a possible solution may lie in formulating a loss function

for in-sample performance and thereafter comparing it with an out-of-sample metric. However when

we have multiple forecasts from competing models, ascertaining the superiority of one model over the

benchmark is non-trivial. We therefore propose using the Model-Con�dence Set (MULCOM) approach

of Hansen et al (2011) which allows us to establish genuine outperformance and also to arrange the

competing models according to their forecasting abilities.

This paper contributes to the literature by comparing the forecasting performance between data-rich

models and univariate models. The superiority of the large dimensional models over the univariate ones
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has never been tested in a robust framework. We use a non-parametric technique to test our hypothesis.

We compare FA-VECM and a number of univariate ARFIMA-GARCH models

The remainder of the paper is organized as follows: section 5.2 describes the procedure we use to

build two types of large dimensional based models: FAVAR, FAVECM. We provide the description of

univariate models and, most importantly, model con�dence set methodology, which is a non-parametric

approach that determines model superiority. Section 5.3 describes the results of the model con�dence set

test, and section 5.4 summarise the paper and ends with some concluding remarks.

5.2 Methodology

A detailed description of the primary FAVAR and FA-VECM model is carried out along with the pro-

posed augmentation of the procedure, as well as a description of competing models used to compare

the outperformance of the primary series. In order to mitigate the data-snooping bias inherent to these

studies, we describe the MULCOM procedure after Hansen (2011). A distinct advantage of using the

MULCOM procedure over its previous counterparts� (the WRC & SPA) tests for data snooping is its

ability to include nested formulations of a general model.

The methodology section is organised as follows: we start with a detailed description of the model

and assumptions associated with the factor model. We give a complete account of all the procedures

we use to establish existence and stability of the factor model used in the research. We continue with

a description of the FA-VAR and FA-VECM model and describe the process of constructing the model.

We continue with description of the competitive time-series models used as a comparison to the factor

approach. We �nish with a detailed description of the MULCOM procedure.

5.2.1 Factor Models

Latent Factors The foundations for the asymptotics and inferential theory of static factor models were

laid down by Stock and Watson (2002a) and Bai (2003,2004).Following their contributions we establish

a general form as well as a list of assumptions applied in the research. Formally, the static factor model

is expressed as:

Xit = �iFt + eit
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where Xit is the observation for i0th cross section of the panel at time t; �i refers to factor loading,

and Ft is a latent factor. We employ Principal Components (PC) methodology to convert panel datasets

into the set of latent factors and loadings. Following Stock and Watson (2002a) we apply classical

computational correction to the �short panels�where T < N . The estimated common factors, denoted

by Ft, are therefore T times the eigenvectors corresponding to the largest eigenvalues of T�T matrixXX 0.

The transformation enables us to estimate common factors using an approach that is less computationally

intensive. In comparison when we apply PC to long panels where N < T we construct lambda �rst as

the square root of N times eigenvectors corresponding to the largest eigenvalues of the N � N matrix

X 0X and common factor computed using regression F = (X � �)=N .

The application of PC to a large dimensional dataset allows us to use a general set of assumptions

regarding error term eit that is similar to the approach used in the current literature. Particularly, the

error terms are not required to be normally distributed; there is a possibility of including weak cross-

sectional dependence, weak time dependence, heteroskedasticity, weak dependence between factors and

idiosyncratic errors (see Bai (2003)). Formally, a complete list of assumptions that are applicable to our

model is detailed in section 2.3.1.

The methodology of our research aims at estimating a rolling FA_VAR and FA-VECM to obtain a

series of one step-ahead forecasts which will be used to determine superior forecasting ability. During

the estimation of rolling FA-VAR and FA-VECM and competing models we always work with the data

inside the current rolling window r leaving the rest of the data for further windows. For consistency, we

estimate the rolling factor model using an identical rolling window period (150 data points for all models)

to select data from T � N dataset. In other words, we leave number of series N intact, but T for each

estimation would be equal to r. The number of rolling periods is equal to (T � r). As a result we obtain

r� k� (T � r) a matrix of common factors that are then used to estimate (T � r) rolling factor models,

where k is the optimal number of factors.

The primary objective of the rolling estimation in our case is to mitigate the possibility of any

�forward-looking�bias that can potentially occur if we estimate matrix T � k common factors using the

entire T �N dataset. Intuitively, the issue of the �forward-looking�bias is attributed to covariance used

in PC. The means of variables used in covariances are very sensitive to the sample. If we include the

sample T � N then the means of variables would be largely di¤erent from the means estimated from

shorter rolling subsamples. In other words the means of two samples are not identical. The mean is a

part of the covariance formula, and thus the covariance matrix will alter in accordance with the changes
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in the mean. Factors are estimated using a covariance matrix and thus will also change. Moreover, means

of variables estimated using T � N data include information for the entire period from t = 1 to T . At

the same time while estimating rolling factor models we concentrate only on the data inside the current

rolling window and the rest of the data is assumed unknown. Therefore, means of variables- if estimated

using T �N dat,a bring information about the period assumed to be unknown for current window. Thus,

the covariance matrix computed using T �N dataset passes this information to each common factor and

it feeds information regarding future trends into the model in respect of current window. To avoid this

�forward-looking� bias we estimate with the rolling factor model, so that each common factor re�ects

information only inside the matching rolling window.

We use the classical approach proposed by Bai and Ng (2002)1 to determine the optimal number of

factors. We estimate the number of common factors on the stationary panel, and identify that optimal

number of factors equals 2. It is con�rmed by estimation of the percentage of variation explained (PVE)

by each factor for each of the rolling subsamples. PVE is equal to the eigenvalue corresponding to each

factor divided by N. From Table XIX we can see that the �rst 2 factors explain the large percentage of

variation. A drop of PVE for third and later factors explains the results of information criteria, which

also demonstrate that the �rst two factors give the best approximation of common factor trends.

In the study we perform the Johansen co-integration test, to determine the presence of co-integration

between 1, 3, 6 and 9 months futures of oil prices. The result is given in Table XXI. We can see that the

co-integration test demonstrates 3 co-integration relationship. More importantly it signals the necessity

of factor model, which take into consideration co-integration relationships.

Factor- Augmented VAR and VECM models A number of studies have used a factor framework

that is formulated speci�cally to allow for endogeity (see Bernanke et al(2008), Zagaglia (2010)). In our

study we decide to include restrictions within the model structure to allow for the classical factor model

assumption, i.e. the factors are strictly orthogonal to one another and are also linearly independent. This

will enable factor models to be more true to classical assumptions of factor models. In restricted models

we permit endogeneity between observed components Yt however we keep unobserved (latent) components

Ft independent from each other. As a result unobserved factors are exogenous. The resulting FA-VAR

and FA-VECM models are as follow:
1MatLab code for selection of optimal number of factors in factor model developed in Bai and Ng (2002) is available on:

: http://www.columbia.edu/~sn2294/research.html.
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Yt = � +�(L)Yt�1 +�(L)Ft + vt

Yt = � +�(L)Yt�1 +�(L)Ft + ut�1 + vt

where �(L) and �(L) is a matrix of lag polynomials, and vt is a vector of normally-distributed shocks,

ut�1 is error correction term. Yt is a vector of observed variables and Ft. is a vector of unobservable

factors. Equation above states that the observabals are a¤ected by each over, common factors and their

own lags.

FA-VAR model is applicable to stationary series, therefore establishing stationarity of the observable

Yt. All elements of FA-VECM should be stationary according to the theory.In the �horse raise� using

simple VAR and VECM models, whose equations are identical to the equation above with exception to

the excluded factor augmentation part. Additionally we con�rm stationarity of the exogenous part of the

factor model: unobserved common factors. We perform Augmented Dickey-Fuller (see Dickey and Fuller

(1979)) and Phillips-Perron (see Phillips and Perron (1988)) unit root test, where the number of lags for

unit root tests is estimated using MAIC criteria proposed by Perron and Ng (2001)2 .

MAIC(k) = ln(�̂2k) +
2(�T (k) + k)

T � kmax

where �T (k) = (�̂
2
k)
�1�̂

2

0

PT
t=kmax+1

~y2t�1 and �̂
2
k = (T � kmax)�1

PT
t=kmax+1

ê2tk, and k is a lag order.

Augmented Dickey-Fuller (henceforth ADF) and Phillips-Perron (henceforth PP) unit root tests are

estimated individually for all components of Y (oil future contracts) and F (common factors). Subsamples

of Y and F tested separately for (T �r) rolling iterations. The average test statistic across the individual

rolling iterations is reported, for each of the future contracts as well as for the factors used in the

model. According to the ADF and PP test, we �nd that the common factors are highly signi�cant at the

conventional (� = 0:05) level of signi�cance and are therefore stationary.

We change to AIC for optimal lag �(L) length selection of factor models where the maximum number

of possible lags is eight. The optimal number of lags for all models across (T � r) subsamples almost

always equals one.

2Matlab codes for MAIC for the lag selection for unit root test is available on: http://people.bu.edu/perron/code.html.
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To obtain the (static) one step ahead forecasts for the model, we use a rolling factor models regression

with a window length of r = 150 observations. The choice of the window length is motivated by practical

issues of model convergence. The window size is kept at 150 observations for all the other models for ease

of comparison as well. The forecasting exercise consists of (T � r) = 116 iterations.

5.2.2 Time-Series Models

Research compares factor based models with the family of time-series models. We select the ARFIMA�

GARCH (Autoregressive Fractionally Integrated Moving Average) model to be the primary competitor

to a factor based approach. We choose ARFIMA�GARCH because it provides two distinct advantages.

First it is parsimonious both in its structure and formulation and secondly it allows us to use multiple

parameterizations. Therefore, we keep a unique base model, but increase the number of competing models

by estimating ARFIMA(p; d; q) � GARCH(�; �) using di¤erent parameterisations of coe¢ cients. The

speci�cation of the general model is as follows:

p(L)(1� L)dYt = q(L)et

�2t = �0 + �1e
2
t�1 + ��

2
t�1

where Yt is NYMEX crude oil futures, et is a serially uncorrelated, mean zero disturbance, P (L) =

1 � p1L � :::ph(Lh) is a stationary autoregressive process, and q(L) = 1 + q1L + :::qrLr is an invertible

moving-average process; �2t conditional time-varying variance and "
2
t�1 is realised volatility, d is fractional

integration.

The mean of the process is modelled using Autoregressive Fractionally Integrated Moving Average,

while conditional volatility is captured using GARCH. An issue with parameterising the conditional

variance equation would be that the number of possible models (and their parameterisations) would be

too numerous (see Poon and Granger (2003)). It has also been shown by Hansen, Nason and Lunde

(2003) that amongst the various (330) ARCH type models tested on a particular data set, there was very

little evidence to suggest that there were superior formulations to the GARCH(1; 1). However in order

to capture the richer dynamics of the conditional volatility we increase parametrisation and as a result

lags are selected from {1, 2, and 3}. The parameterizations for ARFIMA part is obtained by varying
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the combinations of the p and q lags between {0, 1, 2, 3}. After performing the estimation we obtain a

total of 144 models those are all variations of ARFIMA�GARCH model.

5.2.3 Model Con�dence Set. Mitigating data-snooping bias

Data snooping was �rst referred to White (2000) in order to explain the issues arising out of re-using a

given data set for the purposes of inference or possibly model selection. In our case we use the same panel

and test a host of models over it. We are therefore not able to de�nitively conclude that any superior

forecasting ability of the competing models is attributable chance alone. This is a typical issue inherent

to time-series data where a single realization of the variable of interest is observable. There are various

proposals laid out in the literature. The simplest would be an in-sample estimation period followed by

an out-of-sample evaluation. Formal statistical tests include the Diebold and Mariano (1995) test and

White�s (2000) RC (Reality Check) procedure.

In order to mitigate the data snooping bias which is inherent in model forecast comparisons of this

nature we can look to Hansen�s (2005) methodology which is called the Superior Predictive Ability test

(SPA) which allows us to test the null that there is no genuine forecasting outperformance of the best

model chosen. We take our investigations a step further and decide to rank the models based on their

outperformance by choosing the methodology of Hansen (2011) known as the Model Con�dence Set. The

advantage of the MCS over the SPA test is twofold, a) we do not have to choose a benchmark over which

the other models are compared, and b) it returns the entire set of models which have superior performance

by ranking them within a con�dence set. In the spirit of earlier sequential testing procedures, White�s

(2000) RC for example; the procedure requires the following; a) an equivalence test, b) an elimination

rule, and c) an updating algorithm.

Formally, M0 denotes the set of (competing) forecasting models. M0 consists of two subsets: Mts

which contain univariate time-series parameterizations and MFM which contain variations of the factor

based models in all (T � r) individual forecasts. Each constituent model is indexed by i 2 f1; :::m0g. In

order to illustrate the MCS procedure, we consider two competing forecast series ff̂it;T gnt=1 and ff̂jt;T gnt=1
with their corresponding forecast errors denoted by fêit;T gnt=1 and fê

j
t;T gnt=1 generated by the i0th and

j0th the competing models respectively. We specify MSE (Mean Squared Error) as a loss function for

determining the forecasting ability of each competing model. This loss function could be easily replaced

by a variety of other similar loss functions and is denoted by a general notation and g(eit;T ) and g(e
j
t;T ) .
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This enables us to denote the set of superior (outperforming) models M *as follows;

M� � fi 2M0 : E(d
ij
t;T ) � 0; j 2Mog

Where dijt is the di¤erential between the respective individual loss functions g(:) at time t i.e. d
ij
t =

g(eit) � g(ejt ). At every iteration, based on E
�
dijt;T

�
one model is eliminated from the original set M0

till M� is reached. The criteria for iterative arriving is through the evaluation of the following null

hypothesis:

H0 : E(d
ij
t;T ) = 0; i; j 2M

Upon rejection of the null, the candidate model j may be eliminated from the set M . Set M which

reduces iteratively with the elimination of rules with poor forecasting ability, is said to have converged

to the optimal set M� when the null is accepted at a prede�ned level of signi�cance � which is 0.05 in

our case.

We follow Hansen (2011) in identifying the two primary components required to incorporate this

testing procedure. They are the equivalence test and the elimination rule used in order to arrive at the

con�dence set denoted byM�
1��. The equivalence test �M is based on the statistic TM � max

i;j2M
jti;j j where

ti;j =
�dijp

var( �dij)
and �dij = 1

T

TP
t�1

dij;t. The elimination rule states that the model selected for elimination

is the one where t = TM . Since the asymptotic distribution of the range is said to be non-standard

according to Hansen (2011), they propose the use of the Politis and Romano (1994) block bootstrap.

5.3 Results/Data Analysis

5.3.1 The Dataset

Our study focusses on the energy markets from January 1990 to April 2012 for a total of T = 266 monthly

observations. Vector of dependent variables Yt includes future prices for WTI crude oil traded in the New

York Mercantile Exchange (NYMEX) with date-to maturity f1; 3; 6; 12g months. The one month (nearest

futures contract) is used as a proxy for spot oil. The selection of contracts is justi�ed by their liquidity

(see Geman, Kharoubi (2008)). Also the speci�c selection is justi�ed by our interest in the comparison
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of modelling results between short term, medium term and long term contracts.

Panel data set comprised of a total number of N = 301 series that was originally utilised by Zagaglia

(2010). In the research I updated original dataset and include 4 additional years which then cover the

crises period. The dataset is well-matched for the current research for the number of reasons. First,

factor based models require large dimensional datasets that would make factor based modelling possible.

These requirements limit available series that can be included in the panel as some series may have

a disproportionately low number of observations or series can be irrelevant distorting factor structure.

Secondly, we believe that choice of variables in the dataset is entirely justi�ed both on empirical as well as

theoretical grounds. This is due to the fact that all series in the panel are meant to re�ect macroeconomic,

�nancial and geographical forces that drive oil prices, as well as number of tests proved empirically that

dataset has a factor structure. Finally, a large proportion of the dataset has already been used for similar

work and therefore shown to be relevant. The dataset is therefore both enhanced and updated we provide

detailed justi�cation/description of series below.

We start by including detailed statistics of energy resources consumed by individual sectors of the

economy, as well as by the production sources, i.e renewable energy, natural gas and etc. To complete the

world oil demand picture we include large number of series on petroleum consumption and storage for

major OECD countries. A proxy of the consumption of crude oil is also included in the form of industrial

production indices for emerging economies. We use industrial production indices as a higher frequency

proxy of emerging countries GDP (as GDP available only on quarterly bases). GDP growth approximates

the growth in production and therefore crude oil consumption (demand) pressure by emerging countries.

The supply side of the oil market is described by including information about oil production in OPEC

and non-OPEC countries. We include around 60 additional series that re�ect information on drilling

activity in US, costs of import from number of geographical regions and re�nery prices. Special attention

is paid to the US region which constitutes a third of the series within our panel. Close attention to the

US region is due to the fact that our data shows that the US is a major consumer of energy products. In

addition the US has a large publicly available dataset that describes energy market that goes back more

than 20 years.

Our dataset is therefore constructed in a manner that re�ects the �uctuations of major oil stocks and

OTC derivative spreads re�ecting speculative activity. It includes measures of monetary aggregates and

indicators of con�dence. US dollar exchange rates are included since it is argued that the stability of the

US dollar is described as one of the key elements in identi�cation of oil prices (see Zhang et al(2008)).
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Major stock and bond indices are also included to provide a proxy for broader �nancial market sentiments

prevailing at the time of the forecasts. Thus, our �nal dataset is a balanced panel consisting of monthly

observations that are log di¤erenced and de-trended to suit the requirements of the proposed primary

(FAVAR) model. A complete list of the variables can be found in Appendix C.

5.3.2 Empirical Results

We apply two sets of competitive methodologies (factor models and univariate models) to the crude oil

future contracts with short, medium and long maturities. We impose restrictions to build a set of 164

competing nested models. Factor models represented by FA-VECM and FA-VAR models, which accom-

panied by simple VECM and VAR models, 144 models obtained using ARFIMA-GARCH methodology

and 16 models derived using simple ARFIMA. We use iterative procedure with rolling windows equal to

150 data points to extract one-step-ahead forecasts.

By gradually imposing a large number of restrictions we acquire a dataset where model one-step-

ahead forecasts (and also �ve-step ahead forecast) changing gradually and minor from model to model.

For Model Con�dence Set (hence forth MCS) methodology the dataset with minor variations between

forecasts is less informative than the one with wider variations (where di¤erence between loss functions

are larger). However, an attractive feature of the MCS approach is that it acknowledges the limitations

of the data. Informative data will result in a MCS that contains only the best model. Less informative

data make it di¢ cult to distinguish between models and may result in a MCS that contains several (or

possibly all) models. Thus, the MCS di¤ers from extant model selection criteria that chooses a single

model without regard to the information content of the data. In our research we expect more than one

best (second best) performing model due to the fact that large portion of the dataset are nested models.

The complete dataset M0 contains 116 one-step-ahead forecasts for 164 models. We use M0 to

start MCS procedure for identi�cation of the superior predictive ability. The procedure performs 10000

bootstraps for 171 models with alpha=0.05 and p=0.15 with sensitivity check contained out for p=0.05

and 0.15 with no qualitative di¤erence. As a result we acquire dataset M that is a ranking of superior

predictive ability between models. According to our expectations M is large and contain several best

(and second best) performing models.

The aim of the research is to explore the forecasting ability of data-rich panels. To do so we compare

predictive ability of data-rich models with naïve univariate forecast. We are only interested in the top few
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models that have superior predictive ability. If the factor model ranks in the top performing models we

can insist that additional information that came from latent factors and term structure brings signi�cant

bene�ts. Thus we choose to report only top (30 models) forecasting models to be in line with objective

of research and also to account for opportunity that more than one model can show the best results. The

results are reported in Table XXII and XXIII.

[Insert Table XXII and XXIII around here]

In Table X we reported the results for crude oil futures contract with short (1 month), medium (3

and 6 months) and long (12 months) to maturities. The most important part of the results is p-value

for the null hypothesis that the current model has superior predictive ability to the others. The higher

p-value the better model�s performance. P-values are estimated using the distribution of loss functions

that are obtained by performing the bootstrapping procedure on individual forecasts for 164 models.

Using this approach we are able to make statements about the signi�cance of our results-a property that

is not satis�ed by the commonly used approach of reporting values from multiple pairwise comparisons.

Along with p-values we report MSE value for each model, to be able to compare more robust MCS results

to traditional loss function approach. Finally we report the rank of the model based on MCS p-value

estimation.

The results vary across term structure of oil futures. We start from contract with 1 month to maturity.

The best forecasting performance was shown by FAVECM model. We can observe that the second best

result shown by ARFIMA-GARCH model and third place holds FAVAR model. Further we observe a

large set of competing models which include VECM and VAR models. None of these competing models

(p-value 0.7740) outperform each other when robust MSC methodology is used. We compare MSC results

with classical MSE indicator. The results are consistent: FAVECM remains at the top with lowest MSE;

it followed by ARFIMA(2,2)-GARCH(2,3) and FAVAR. Further, we observe wide dispersion between

MSE that demonstrates the bias of pairwise comparison approach (out of sample comparison between

forecast and real series).

The medium term crude oil futures contracts demonstrate di¤erent dynamics, with time�series models

scoring higher p-value. For contracts with 3 months to maturity the set of factor models perform worse,

with FAVECM being second best model and FAVAR being 14. Simple VECM and VAR perform worse

than factor augmented models; for example, FAVECM holding second place and VECM ninth. Overall,

in contract with 3 months to maturity we observed that factor model set is below top univariate models,
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however FAVECM is very close to the top. It is interesting to note that while medium term factor models

performed worse than time-series models, MSE results demonstrate that the loss function is decreased

in comparison to the contract with 1 month to maturity. We interpret forecastability improvements by

decreasing volatility across term structure (from closest towards furthest contracts). Factor models in

medium term 6 months to maturity contracts set demonstrate worse forecastibility than in all compared

options. FAVAR is not in the top 30 models, and FAVECM is only on 24 place; VECM is takes 29 place.

At the same time MSE values variation is very narrow, indicating little di¤erence between ability of the

models to forecast.

Finally, 12 months to maturity contracts demonstrate exceptionally good results for factor model set.

FAVECM and FAVAR takes �rst and third places and simple VAR and VECM second and forth best

performance for long maturity contracts. Both factor models are included in the top set of predictive

models signalling that latent factors consistently add superior predictive ability. The MSE value is the

loss between the contracts that con�rm the result that loss function decreases the value as we move across

term structure.

Among 5-step ahead forecasts FAVECM is a leader model for 1,3 and 6 months to maturity contracts.

However, the p-value demonstrate that ARFIMA(1,1) for 6-month contracts and FAVAR for 12 months

contracts have equivalent predictive ability. FAVAR for 1,3 and 6 months contracts performs signi�cantly

worse than alternative factor model. Simple VECM and VAR perform worse than factor augmented

models for all �ve-step ahead forecasts. The MSE values con�rm the results of MCS as they gradually

increasing from top best performing model to worst model.

Our results show plenty of useful guidelines. First we can see superiority of the factor augmented

vector error correction models in majority for the forecast exercises. Additionally, we can observe that

FAVECM demonstrates better results in comparison to FAVAR model, which proves that the informa-

tion accumulated from co-integration relationship of crude oil prices with di¤erent maturities signi�cantly

increase accuracy of the forecast. At the same time worse performance of FAVAR can be due to misspec-

i�cation of the model in comparison to FAVECM. Both FAVAR and FAVECM perform better than not

augmented models (VECM and VAR) which proves that common factors increase forecasting ability of

the models, which is similar to the previous �ndings of the related literature (see Zagaglia (2010)).

Factor models deliver consistently better results for forecasting entire term structures. Time-series

models can be calibrated for better forecast of individual contracts but they does not allow to use
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same univariate model speci�cations for the contracts with di¤erent maturities. We can conclude that

application of the factor models and speci�cally FAVECM can stabilise forecastability of the model and

performs superior forecasting for the entire term structure movements inside one regression.
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5.4 Conclusion

We propose a "horse race" approach that juxtaposes the large dimensional and univariate models, and

utilizes robust non- parametric procedures to determine superior predictive ability. Forecastability of

crude oil future contracts has never been tested using robust MCS approach. Applying this methodology

we obtain signi�cant results contrary to those from a classical pairwise comparison. Using this technique

we con�rm the results by Zagaglia (2010) that factor models deliver consistent performance on the future

oil markets. Our results are richer than we expect.

We can see that factor models are able to increase forecastability of the crude oil futures for the

short and long term forecasting horizon. This is true across the term structure of crude oil futures. The

best performing model is the factor augmented vector autoregressive model, which is able to accumulate

additional information from the co-integrational relationship of crude oil futures and use it to improve the

accuracy of the forecast. In comparison the factor augmented VAR model performs worse in comparison

to FAVECM and many univariate models. If we compare factor augmented models with their non

augmented counterparts we notice that factor augmentation can improve the performance of the model.

Also factor models produce more stable results across the term structure; this is due to the fact that

univariate models results vary across 4 analysed crude oil futures. Optimal univariate models for 1 month

crude oil may not even be included in top forecasting models of the next crude oil futures. This issue can

be observed across entire forecasting exercise.

We can conclude that we were able to prove superiority of the factor base model approach in the

robust framework. Additionally, data-rich dataset improve the consistency of the forecast across the

term structure. Therefore, we reach the goal of the research and recon�rm previous literature �ndings

which were established using simple loss function (MSE). We can see further potential developments of

the topic by investigating predictive ability of the data-rich models in comparison to more varied set of

models.
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Appendix A. List of Tables

Table XIX. Descriptive Statistics

Factor number Average Minimum Maximum .25 Quantile Median .75 Quantile

1 17.9651 14.8345 22.3217 15.6555 18.0321 19.9358

2 13.9687 12.1725 15.5392 13.8571 14.1371 14.3825

Table XIX demonstrates basic descriptive statistics for the distribution of factors used in the FA-VAR

and FA-VECM models. This distribution is constructed from 116 factors estimated using a rolling

regression.

Table XX. Unit-root average statistic accross rolling subsamples

Variable Name 1 m 3 m 6 m 12 m F1 F2

PP -11.9579 -11.2229 -10.5288 -10.0401 -23.6458 -10.0736

ADF -8.2230 -7.5176 -9.3980 -9.9546 -8.8970 -8.7057

Table XX shows average statistics of Augmented Dickey-Fuller and Phillips Peron unit root tests for

crude oil futures and factor trends. We fail to reject the null hypothesis that a process contains a unit

root if the test statistic is larger than the critical values. *PP 5% critical value -1.9425. ** ADF 5%

critical value -3.4419.

Table XXI Johancen Co-integration test

Unrestricted Cointegration Rank Test (Trace)

No. of CE(s) Trace Statistic Critical Value 5% Prob.**

None * 99.1580 47.8561 0.0000

At most 1 * 48.7564 29.7971 0.0001

At most 2 * 23.9919 15.4947 0.0021

At most 3 0.0602 3.8415 0.8061

Table XXI demonstrates the results of the Johansen co-integration test for crude oil future contracts

with 1, 3, 6 and 12 months to maturity.
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Table XXII. MCS Comparison of Crude Oil Future Contracts Forecast

Crude Oil Future Contract 1 M Crude Oil Future Contract 3 M

Model MSE p-value Model MSE p-value

FA-VECM 0.0080 1.0000 ARFIMA(1,1)GARCH(3,2) 0.0072 1.0000

VECM 0.0081 0.9578 FA-VECM 0.0072 1.0000

FA-VAR 0.0087 0.7740 VECM 0.0073 0.9678

ARFIMA(2,2)GARCH(2,3) 0.0090 0.7740 ARFIMA(0,1)GARCH(2,1) 0.0073 0.9415

ARFIMA(2,2)GARCH(1,1) 0.0090 0.7740 ARFIMA(0,1)GARCH(3,2) 0.0073 0.9394

ARFIMA(1,0) 0.0090 0.7740 ARFIMA(1,0)GARCH(3,1) 0.0073 0.9068

ARFIMA(2,0) 0.0090 0.7740 ARFIMA(0,1)GARCH(3,1) 0.0073 0.8605

ARFIMA(0,0)GARCH(1,1) 0.0090 0.7740 ARFIMA(0,1)GARCH(2,3) 0.0074 0.8559

ARFIMA(3,1)GARCH(1,1) 0.0090 0.7740 ARFIMA(1,1)GARCH(3,1) 0.0074 0.7925

ARFIMA(1,0)GARCH(1,1) 0.0091 0.7740 ARFIMA(1,1)GARCH(2,2) 0.0074 0.7490

ARFIMA(0,1)GARCH(1,1) 0.0091 0.7740 ARFIMA(1,1)GARCH(2,1) 0.0074 0.7034

ARFIMA(0,1) 0.0091 0.7740 ARFIMA(0,1)GARCH(3,3) 0.0074 0.7060

ARFIMA(1,1) 0.0091 0.7740 ARFIMA(1,1)GARCH(3,3) 0.0074 0.6347

ARFIMA(2,1) 0.0091 0.7740 ARFIMA(1,0) 0.0075 0.5179

ARFIMA(0,3) 0.0091 0.7740 ARFIMA(2,0) 0.0075 0.5103

ARFIMA(0,0) 0.0092 0.7740 ARFIMA(0,1) 0.0076 0.5193

VAR 0.0092 0.7740 ARFIMA(2,1) 0.0077 0.5193

ARFIMA(3,1) 0.0092 0.7740 ARFIMA(0,2) 0.0077 0.5193

ARFIMA(0,2) 0.0092 0.7740 ARFIMA(1,2) 0.0077 0.5193

ARFIMA(1,2) 0.0092 0.7740 ARFIMA(0,0)GARCH(1,1) 0.0078 0.5193

ARFIMA(2,2) 0.0092 0.7740 ARFIMA(2,2)GARCH(1,1) 0.0078 0.5193

ARFIMA(1,3) 0.0092 0.7740 ARFIMA(0,0) 0.0078 0.5193

ARFIMA(3,2)GARCH(1,1) 0.0092 0.7740 ARFIMA(3,0) 0.0078 0.5193

ARFIMA(3,2) 0.0093 0.7740 ARFIMA(1,1) 0.0078 0.5193

ARFIMA(3,3) 0.0093 0.7740 FAVAR 0.0079 0.5193

ARFIMA(2,0)GARCH(1,1) 0.0093 0.7740 FAVAR 0.0079 0.5193

ARFIMA(1,1)GARCH(1,1) 0.0093 0.7740 ARFIMA(1,3) 0.0079 0.5193
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Table XXII. Continued. MCS Comparison for Crude Oil Future Contracts Forecast

Crude Oil Future Contract 6 M Crude Oil Future Contract 12 M

Model MSE p-value Model MSE p-value

ARFIMA(0,1)GARCH(3,2) 0.0061 1.0000 FAVECM with 2 factors 0.0045 1.0000

ARFIMA(1,0) 0.0062 0.8948 FAVECM with 3 factors 0.0045 1.0000

ARFIMA(1,0)GARCH(2,3) 0.0061 0.8938 ARFIMA(1,0) 0.0050 0.7950

ARFIMA(1,0)GARCH(3,2) 0.0061 0.8538 ARFIMA(2,0) 0.0051 0.7950

ARFIMA(0,1)GARCH(2,3) 0.0062 0.8538 ARFIMA(1,0)GARCH(1,1) 0.0051 0.7950

FAVECM 0.0062 0.8400 ARFIMA(0,1)GARCH(1,1) 0.0050 0.7950

VECM 0.0062 0.8460 ARFIMA(3,1)GARCH(1,1) 0.0051 0.7950

ARFIMA(1,0)GARCH(3,3) 0.0062 0.8460 ARFIMA(3,2)GARCH(1,1) 0.0051 0.7950

ARFIMA(2,0) 0.0063 0.8361 ARFIMA(0,1)GARCH(1,2) 0.0051 0.7950

ARFIMA(2,1) 0.0063 0.8361 ARFIMA(1,0)GARCH(2,1) 0.0051 0.7950

ARFIMA(1,2) 0.0064 0.8349 ARFIMA(0,1)GARCH(2,1) 0.0050 0.7950

ARFIMA(1,1)GARCH(1,2) 0.0063 0.8310 ARFIMA(3,2)GARCH(2,1) 0.0051 0.7950

ARFIMA(2,2)GARCH(1,2) 0.0063 0.8191 ARFIMA(1,0)GARCH(3,1) 0.0050 0.7950

ARFIMA(0,1)GARCH(1,3) 0.0063 0.8141 ARFIMA(0,1)GARCH(3,1) 0.0050 0.7950

ARFIMA(0,1)GARCH(2,2) 0.0062 0.8141 ARFIMA(0,1)GARCH(3,3) 0.0050 0.7950

ARFIMA(1,0)GARCH(3,1) 0.0063 0.8141 ARFIMA(1,1) 0.0051 0.7687

ARFIMA(0,1)GARCH(3,3) 0.0062 0.8101 FAVECM with 4 factors 0.0051 0.7604

ARFIMA(0,1)GARCH(3,3) 0.0062 0.8061 ARFIMA(1,0)GARCH(3,2) 0.0051 0.7484

ARFIMA(0,1)GARCH(1,2) 0.0063 0.8001 ARFIMA(0,1)GARCH(3,2) 0.0051 0.7274

ARFIMA(1,0)GARCH(1,2) 0.0063 0.8060 ARFIMA(0,1)GARCH(2,2) 0.0051 0.6986

ARFIMA(3,2)GARCH(3,1) 0.0065 0.7821 ARFIMA(0,1)GARCH(1,3) 0.0051 0.6113

ARFIMA(0,0)GARCH(3,2) 0.0064 0.7491 FAVECM with 1 factors 0.0051 0.6010

ARFIMA(0,1)GARCH(2,1) 0.0063 0.7471 FAVECM with 5 factors 0.0052 0.5969

Table XXII demonstrates the results of the "horse-race" between factor augmented models, univariate

models and multivariate models. Table XXII presents the results evaluating the e¤ectiveness of one-step

ahead forecasts from di¤erent models using the loss function, MSE. Additionally, the table also reports

the p-values obtained from the Hansen at el. (2011) MCS methodology. This compares the forecasting

ability of the competing models by computing the MSE distribution using 10,000 bootstraps. The best

forecasts will typically have a p-value close to or equal to 1, while the remaining p-values demonstrate
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decreasing predictive ability of the models.

Table XXIII. MCS Comparison of Crude Oil Future Contracts Forecast. Multiple forecast

Crude Oil Future Contract 1 M Crude Oil Future Contract 3 M

Model MSE p-value Model MSE p-value

FAVECM with 1 factor 0.0094 1.0000 FAVECM with 1 factor 0.0076 1.0000

ARFIMA(1,1) 0.0094 1.0000 FAVECM with 2 factors 0.0080 1.0000

ARFIMA(3,2)GARCH(1,1) 0.0101 0.9648 ARFIMA(1,1)GARCH(3,2) 0.0080 1.0000

ARFIMA(2,1) 0.0105 0.9457 ARFIMA(1,1)GARCH(3,3) 0.0106 0.9568

ARFIMA(2,3) 0.0109 0.9235 ARFIMA(3,2)GARCH(1,1) 0.0110 0.9457

ARFIMA(0,1)GARCH(1,1) 0.0111 0.9123 ARFIMA(0,1)GARCH(3,1) 0.0112 0.9457

ARFIMA(1,0) 0.0111 0.9123 ARFIMA(0,1)GARCH(2,3) 0.0112 0.9312

ARFIMA(2,0) 0.0111 0.9123 ARFIMA(1,1)GARCH(3,1) 0.0010 0.9312

ARFIMA(0,3) 0.0112 0.9123 ARFIMA(1,1)GARCH(2,2) 0.0111 0.9312

ARFIMA(3,2) 0.0115 0.9110 ARFIMA(1,1)GARCH(2,1) 0.0113 0.9312

ARFIMA(2,2)GARCH(2,3) 0.0131 0.9110 ARFIMA(0,1)GARCH(3,3) 0.0110 0.9312

FAVECM with 2 factors 0.0139 0.9110 ARFIMA(0,1)GARCH(2,1) 0.0119 0.8328

ARFIMA(2,2)GARCH(1,1) 0.0141 0.9110 ARFIMA(0,1)GARCH(3,2) 0.0119 0.8328

ARFIMA(3,1)GARCH(1,1) 0.0148 0.9110 FAVECM with 5 factors 0.0120 0.8328

FAVECM with 3 factors 0.0168 0.9110 FAVECM with 3 factors 0.0121 0.8328

ARFIMA(3,3) 0.0150 0.9110 FAVECM with 4 factors 0.0130 0.8328

ARFIMA(2,2) 0.0151 0.9110 ARFIMA(1,0)GARCH(3,1) 0.0120 0.8047

ARFIMA(0,0)GARCH(1,1) 0.0155 0.9110 ARFIMA(1,2) 0.0121 0.8047

ARFIMA(1,0)GARCH(1,1) 0.0160 0.9110 ARFIMA(2,2)GARCH(1,1) 0.0123 0.8047

ARFIMA(1,2) 0.0160 0.9110 ARFIMA(0,0)GARCH(1,1) 0.0125 0.8047

ARFIMA(2,0)GARCH(1,1) 0.0160 0.9110 ARFIMA(0,0) 0.0125 0.8047

ARFIMA(0,2) 0.0164 0.9110 ARFIMA(3,0) 0.0127 0.8047

ARFIMA(2,1)GARCH(1,1) 0.0166 0.9110 ARFIMA(1,1) 0.0128 0.8047

ARFIMA(3,0) 0.0167 0.9110 ARFIMA(1,0) 0.0128 0.8047

ARFIMA(0,1) 0.0169 0.9110 ARFIMA(2,0) 0.0128 0.8047

ARFIMA(1,1)GARCH(1,1) 0.0173 0.9110 ARFIMA(0,1) 0.0129 0.8047

ARFIMA(1,3) 0.0182 0.9110 ARFIMA(2,1) 0.0130 0.8047
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Table XXIII. Continued MCS Comparison of Crude Oil Future Contracts Forecast. Multiple forecast

Crude Oil Future Contract 6 M Crude Oil Future Contract 12 M

Model MSE p-value Model MSE p-value

ARFIMA(0,1)GARCH(3,2) 0.0121 1.0000 FAVECM with 2 factors 0.0125 1.0000

ARFIMA(1,0) 0.0123 0.9625 FAVECM with 3 factors 0.0125 1.0000

ARFIMA(1,0)GARCH(2,3) 0.0123 0.9625 ARFIMA(2,0) 0.0130 0.8012

FAVECM with 1 factor 0.0125 0.9537 ARFIMA(1,1) 0.0130 0.8012

FAVECM with 2 factors 0.0125 0.9537 ARFIMA(0,1)GARCH(1,2) 0.0130 0.8012

ARFIMA(1,0)GARCH(3,2) 0.0126 0.9537 ARFIMA(1,0)GARCH(2,1) 0.0131 0.8012

ARFIMA(0,1)GARCH(2,3) 0.0126 0.9537 ARFIMA(0,1)GARCH(2,1) 0.0131 0.8012

ARFIMA(1,1)GARCH(1,2) 0.0130 0.9234 ARFIMA(1,0)GARCH(1,1) 0.0135 0.7728

ARFIMA(1,2) 0.0131 0.9234 ARFIMA(1,0)GARCH(3,2) 0.0135 0.7728

ARFIMA(2,0) 0.0131 0.9234 FAVECM with 4 factors 0.0135 0.7728

ARFIMA(2,1) 0.0131 0.9234 ARFIMA(0,1)GARCH(1,1) 0.0136 0.7728

ARFIMA(2,2)GARCH(1,2) 0.0133 0.9234 ARFIMA(3,1)GARCH(1,1) 0.0136 0.7728

ARFIMA(0,1)GARCH(1,3) 0.0133 0.9234 ARFIMA(3,2)GARCH(1,1) 0.0136 0.7728

ARFIMA(1,0)GARCH(3,3) 0.0133 0.9234 ARFIMA(3,2)GARCH(2,1) 0.0136 0.7728

ARFIMA(1,0)GARCH(3,1) 0.0138 0.8930 ARFIMA(1,0)GARCH(3,1) 0.0137 0.7728

ARFIMA(0,1)GARCH(3,3) 0.0138 0.8930 ARFIMA(0,1)GARCH(3,1) 0.0137 0.7728

ARFIMA(0,1)GARCH(2,2) 0.0139 0.8930 ARFIMA(0,1)GARCH(3,3) 0.0137 0.7728

ARFIMA(0,1)GARCH(3,3) 0.0140 0.8930 ARFIMA(1,0)GARCH(2,2) 0.0138 0.7728

ARFIMA(0,1)GARCH(1,2) 0.0140 0.8930 ARFIMA(1,1)GARCH(2,2) 0.0139 0.7728

ARFIMA(1,0)GARCH(1,2) 0.0140 0.8930 FAVECM with 1 factors 0.0139 0.7728

ARFIMA(3,3)GARCH(3,2) 0.0142 0.8725 FAVECM with 5 factors 0.0140 0.7728

ARFIMA(2,2) 0.0142 0.8725 ARFIMA(0,1)GARCH(3,2) 0.0140 0.7728

Table XXII demonstrates the results of the "horse-race" between factor augmented models, univariate

models and multivariate models. Table XXII presents the results evaluating the e¤ectiveness of �ve-step

ahead forecasts from di¤erent models using the loss function, MSE. Additionally, the table also reports

the p-values obtained from the Hansen at el. (2011) MCS methodology. This compares the forecasting

ability of the competing models by computing the MSE distribution using 10,000 bootstraps. The best

forecasts will typically have a p-value close to or equal to 1, while the remaining p-values demonstrate

decreasing predictive ability of the models.
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Appendix B: List of variables in the panel

Variable name Measure Source

1 F.O.B. Cost of Crude Oil Imports From Angola Dollars per Barrel EIA

2 F.O.B. Cost of Crude Oil Imports From Colombia Dollars per Barrel EIA

3 F.O.B. Cost of Crude Oil Imports From Mexico Dollars per Barrel EIA

4 F.O.B. Cost of Crude Oil Imports From Nigeria Dollars per Barrel EIA

5 F.O.B. Cost of Crude Oil Imports From Saudi Arabia Dollars per Barrel EIA

6 F.O.B. Cost of Crude Oil Imports From United Kingdom Dollars per Barrel EIA

7 F.O.B. Cost of Crude Oil Imports From Venezuela Dollars per Barrel EIA

8 F.O.B. Cost of Crude Oil Imports From Persian Gulf Dollars per Barrel EIA

9 Average F.O.B. Cost of Crude Oil Imports From All OPEC Dollars per Barrel EIA

10 Average F.O.B. Cost of Crude Oil Imports From All OPEC Dollars per Barrel EIA

11 Landed Cost of Crude Oil Imports From Angola Dollars per Barrel EIA

12 Landed Cost of Crude Oil Imports From Canada Dollars per Barrel EIA

13 Landed Cost of Crude Oil Imports From Colombia Dollars per Barrel EIA

14 Landed Cost of Crude Oil Imports From Mexico Dollars per Barrel EIA

15 Landed Cost of Crude Oil Imports From Nigeria Dollars per Barrel EIA

16 Landed Cost of Crude Oil Imports From Saudi Arabia Dollars per Barrel EIA

17 Landed Cost of Crude Oil Imports From Venezuela Dollars per Barrel EIA

18 Landed Cost of Crude Oil Imports From Persian Gulf Dollars per Barrel EIA

19 Landed Cost of Crude Oil Imports From All OPEC Dollars per Barrel EIA

20 Landed Cost of Crude Oil Imports From All Non-OPEC Dollars per Barrel EIA

21 Unleaded Regular Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

22 Unleaded Premium Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

23 All Types of Gasoline, U.S. City Average Retail Price Dollars per Gallon EIA

24 Re�ner Price of Finished Motor Gasoline to End Users Dollars per Gallon EIA

25 Re�ner Price of Finished Aviation Gasoline to End Users Dollars per Gallon EIA

26 Re�ner Price of Kerosene-Type Jet Fuel to End Users Dollars per Gallon EIA

27 Re�ner Price of Kerosene to End Users Dollars per Gallon EIA

28 Re�ner Price of No. 2 Fuel Oil to End Users Dollars per Gallon EIA

29 Re�ner Price of No. 2 Diesel Fuel to End Users Dollars per Gallon EIA
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30 Re�ner Price of Propane (Consumer Grade) to End Users Dollars per Gallon EIA

31 Re�ner Price of Finished Motor Gasoline for Resale Dollars per Gallon EIA

32 Re�ner Price of Finished Aviation Gasoline for Resale Dollars per Gallon EIA

33 Re�ner Price of Kerosene-Type Jet Fuel for Resale Dollars per Gallon EIA

34 Re�ner Price of Kerosene for Resale Dollars per Gallon EIA

35 Re�ner Price of No. 2 Fuel Oil for Resale Dollars per Gallon EIA

36 Re�ner Price of No. 2 Diesel Fuel for Resale Dollars per Gallon EIA

37 Re�ner Price of Propane (Consumer Grade) for Resale Dollars per Gallon EIA

38 Re�ner Price of Residual Fuel Oil, Percent, Resale Dollars per Gallon EIA

39 Re�ner Price of Residual Fuel Oil, Percent, End Users Dollars per Gallon EIA

40 Re�ner Price of Residual Fuel Oil, Resale Dollars per Gallon EIA

41 Re�ner Price of Residual Fuel Oil, End Users Dollars per Gallon EIA

42 Re�ner Price of Residual Fuel Oil, Average, Resale Dollars per Gallon EIA

43 Re�ner Price of Residual Fuel Oil, Average, End Users Dollars per Gallon EIA

44 Coal Consumed by the Commercial Sector Billion Btu EIA

45 Natural Gas Consumed by the Commercial Sector Billion Btu EIA

46 Petroleum Consumed by the Commercial Sector Billion Btu EIA

47 Total Fossil Fuels Consumed by the Commercial Sector Billion Btu EIA

48 Hydroelectric Power Consumed by the Commercial Sector Billion Btu EIA

49 Geothermal Energy Consumed by the Commercial Sector Billion Btu EIA

50 Biomass Energy Consumed by the Commercial Sector Billion Btu EIA

51 Total Renewable Energy Consumed by the Commercial Sector Billion Btu EIA

52 Primary Energy Consumed by the Commercial Sector Billion Btu EIA

53 Electricity Retail Sales to the Commercial Sector Billion Btu EIA

54 Commercial Sector Electrical System Energy Losses Billion Btu EIA

55 Total Energy Consumed by the Commercial Sector Billion Btu EIA

56 Coal Consumed by the Electric Power Sector Billion Btu EIA

57 Natural Gas Consumed by the Electric Power Sector Billion Btu EIA

58 Petroleum Consumed by the Electric Power Sector Billion Btu EIA

59 Total Fossil Fuels Consumed by the Electric Power Sector Billion Btu EIA

60 Nuclear Electric Power Consumed by the Electric Power sector Billion Btu EIA

61 Hydroelectric Power Consumed by the Electric Power Sector Billion Btu EIA
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94 Active Well Service Rig Count Number of Rigs EIA

95 Wells Drilled, Exploratory, Crude Oil Number of Wells EIA

96 Wells Drilled, Exploratory, Natural Gas Number of Wells EIA

97 Wells Drilled, Exploratory, Dry Number of Wells EIA

98 Wells Drilled, Exploratory, Total Number of Wells EIA

99 Wells Drilled, Development, Crude Oil Number of Wells EIA

100 Wells Drilled, Development, Natural Gas Number of Wells EIA

101 Wells Drilled, Development, Dry Number of Wells EIA

102 Wells Drilled, Development, Total Number of Wells EIA

103 Wells Drilled, Total, Crude Oil Number of Wells EIA

104 Wells Drilled, Total, Natural Gas Number of Wells EIA

105 Wells Drilled, Total, Dry Number of Wells EIA

106 Crude Oil, Natural Gas, and Dry Wells Drilled, Total Number of Wells EIA

107 Total Footage Drilled Thousand Feet EIA

108 Hydroelectric Power Consumed by the Electric Power Sector Quadrillion Btu EIA

109 Geothermal Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

110 Solar/PV Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

111 Wind Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

112 Wood Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

113 Waste Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

114 Biomass Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

115 Total Renewable Energy Consumed by the Electric Power Sector Quadrillion Btu EIA

116 Fuel Ethanol Feedstock Trillion Btu EIA

117 Fuel Ethanol Losses and Co-products Trillion Btu EIA

118 Fuel Ethanol Production Trillion Btu EIA

119 Fuel Ethanol Net Imports Trillion Btu EIA

120 Fuel Ethanol Stocks Trillion Btu EIA

121 Fuel Ethanol Consumption Trillion Btu EIA

122 Hydroelectric Power Consumed by the Industrial Sector Quadrillion Btu EIA

123 Geothermal Energy Consumed by the Industrial Sector Quadrillion Btu EIA

124 Fuel Ethanol Consumed by the Industrial Sector Quadrillion Btu EIA

125 Biomass Losses and Co-products in the Industrial Sector Quadrillion Btu EIA
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126 Biomass Energy Consumed by the Industrial Sector Quadrillion Btu EIA

127 Total Renewable Energy Consumed by the Industrial Sector Quadrillion Btu EIA

128 Fuel Ethanol Consumed by the Transportation Sector Quadrillion Btu EIA

129 Biodiesel Consumed by the Transportation Sector Quadrillion Btu EIA

130 Biomass Energy Consumed by the Transportation Sector Quadrillion Btu EIA

131 Biofuels Production Quadrillion Btu EIA

132 Total Biomass Energy Production Quadrillion Btu EIA

133 Total Renewable Energy Production Quadrillion Btu EIA

134 Hydroelectric Power Consumption Quadrillion Btu EIA

135 Geothermal Energy Consumption Quadrillion Btu EIA

136 Solar/PV Energy Consumption Quadrillion Btu EIA

137 Wind Energy Consumption Quadrillion Btu EIA

138 Wood Energy Consumption Quadrillion Btu EIA

139 Waste Energy Consumption Quadrillion Btu EIA

140 Biofuels Consumption Quadrillion Btu EIA

141 Total Biomass Energy Consumption Quadrillion Btu EIA

142 Total Renewable Energy Consumption Quadrillion Btu EIA

143 Geothermal Energy Consumed by the Residential Sector Quadrillion Btu EIA

144 Solar/PV Energy Consumed by the Residential Sector Quadrillion Btu EIA

145 Wood Energy Consumed by the Residential Sector Quadrillion Btu EIA

146 Total Renewable Energy Consumed by the Residential Sector Quadrillion Btu EIA

147 Hydroelectric Power Consumed by the Commercial Sector Quadrillion Btu EIA

148 Geothermal Energy Consumed by the Commercial Sector Quadrillion Btu EIA

149 Wood Energy Consumed by the Commercial Sector Quadrillion Btu EIA

150 Waste Energy Consumed by the Commercial Sector Quadrillion Btu EIA

151 Fuel Ethanol Consumed by the Commercial Sector Quadrillion Btu EIA

152 Biomass Energy Consumed by the Commercial Sector Quadrillion Btu EIA

153 Total Renewable Energy Consumed by the Commercial Sector Quadrillion Btu EIA

154 Asphalt and Road Oil Product Supplied Thousand Barrels EIA

155 Aviation Gasoline Product Supplied Thousand Barrels EIA

156 Distillate Fuel Oil Product Supplied Thousand Barrels EIA

157 Jet Fuel Product Supplied Thousand Barrels EIA
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158 Kerosene Product Supplied Thousand Barrels EIA

159 Propane/Propylene Product Supplied Thousand Barrels EIA

160 Lique�ed Petroleum Gases Product Supplied Thousand Barrels EIA

161 Lubricants Product Supplied Thousand Barrels EIA

162 Motor Gasoline Product Supplied Thousand Barrels EIA

163 Petroleum Coke Product Supplied Thousand Barrels EIA

164 Residual Fuel Oil Product Supplied Thousand Barrels EIA

165 Other Petroleum Products Supplied Thousand Barrels EIA

166 Total Petroleum Products Supplied Thousand Barrels EIA

167 Crude Oil Imports, Total Thousand Barrels EIA

168 Distillate Fuel Oil Imports Thousand Barrels EIA

169 Jet Fuel Imports Thousand Barrels EIA

170 Propane/Propylene Imports Thousand Barrels EIA

171 Lique�ed Petroleum Gases Imports Thousand Barrels EIA

172 Finished Motor Gasoline Imports Thousand Barrels EIA

173 Residual Fuel Oil Imports Thousand Barrels EIA

174 Other Petroleum Products Imports Thousand Barrels EIA

175 Total Petroleum Imports Thousand Barrels EIA

176 Crude Oil Exports Thousand Barrels EIA

177 Petroleum Products Exports Thousand Barrels EIA

178 Total Petroleum Exports Thousand Barrels EIA

179 Crude Oil Production, Persian Gulf Thousand Barrels EIA

180 Crude Oil Production, Canada Thousand Barrels EIA

181 Crude Oil Production, China Thousand Barrels EIA

182 Crude Oil Production, Egypt Thousand Barrels EIA

183 Crude Oil Production, Mexico Thousand Barrels EIA

184 Crude Oil Production, Norway Thousand Barrels EIA

185 Crude Oil Production, United Kingdom Thousand Barrels EIA

186 Crude Oil Production, United States Thousand Barrels EIA

187 Crude Oil Production, Total Non-OPEC Thousand Barrels EIA

188 Crude Oil Production, World Thousand Barrels EIA

189 Crude Oil Production, Algeria Thousand Barrels EIA
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190 Crude Oil Production, Angola Thousand Barrels EIA

191 Crude Oil Production, Ecuado Thousand Barrels EIA

192 Crude Oil Production, Iran Thousand Barrels EIA

193 Crude Oil Production, Iraq Thousand Barrels EIA

194 Crude Oil Production, Kuwait Thousand Barrels EIA

195 Crude Oil Production, Libya Thousand Barrels EIA

196 Crude Oil Production, Nigeria Thousand Barrels EIA

197 Crude Oil Production, Qatar Thousand Barrels EIA

198 Crude Oil Production, Saudi Arabia Thousand Barrels EIA

199 Crude Oil Production, United Arab Emirates Thousand Barrels EIA

200 Crude Oil Production, Venezuela Thousand Barrels EIA

201 Crude Oil Production, OPEC Thousand Barrels EIA

202 Crude Oil Stocks, SPR Thousand Barrels EIA

203 Crude Oil Stocks, Non-SPR Thousand Barrels EIA

204 Crude Oil Stocks, Total Thousand Barrels EIA

205 Distillate Fuel Oil Stocks Thousand Barrels EIA

206 Jet Fuel Stocks Thousand Barrels EIA

207 Propane/Propylene Stocks Thousand Barrels EIA

208 Lique�ed Petroleum Gases Stocks Thousand Barrels EIA

209 Motor Gasoline Stocks Thousand Barrels EIA

210 Residual Fuel Oil Stocks Thousand Barrels EIA

211 Residual Fuel Oil Stocks Thousand Barrels EIA

212 Residual Fuel Oil Stocks Thousand Barrels EIA

213 Crude Oil Re�nery Net Input Thousand Barrels EIA

214 Natural Gas Plant Liquids Re�nery and Blender Net Inputs Thousand Barrels EIA

215 Other Liquids Re�nery and Blender Net Inputs Thousand Barrels EIA

216 Total Petroleum Re�nery and Blender Net Inputs Thousand Barrels EIA

217 Distillate Fuel Oil Re�nery Net Production Thousand Barrels EIA

218 Jet Fuel Re�nery Net Production Thousand Barrels EIA

219 Propane/Propylene Re�nery Net Production Thousand Barrels EIA

220 Lique�ed Petroleum Gases Re�nery Net Production Thousand Barrels EIA

221 Finished Motor Gasoline Re�nery and Blender Net Producti Thousand Barrels EIA
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222 Residual Fuel Oil Re�nery Net Production Thousand Barrels EIA

223 Other Petroleum Products Re�nery Net Production Thousand Barrels EIA

224 Total Petroleum Re�nery and Blender Net Production Thousand Barrels EIA

225 Petroleum Consumption, France Thousand Barrels EIA

226 Petroleum Consumption, Germany Thousand Barrels EIA

227 Petroleum Consumption, Italy Thousand Barrels EIA

228 Petroleum Consumption, United Kingdom Thousand Barrels EIA

229 Petroleum Consumption, OECD Europe Thousand Barrels EIA

230 Petroleum Consumption, Canada Thousand Barrels EIA

231 Petroleum Consumption, Japan Thousand Barrels EIA

232 Petroleum Consumption, South Korea Thousand Barrels EIA

233 Petroleum Consumption, United States Thousand Barrels EIA

234 Petroleum Consumption, Other OECD Thousand Barrels EIA

235 Petroleum Consumption, Total OECD Thousand Barrels EIA

236 Petroleum Stocks, France Million Barrels EIA

237 Petroleum Stocks, Germany Million Barrels EIA

238 Petroleum Stocks, Italy Million Barrels EIA

239 Petroleum Stocks, United Kingdom Million Barrels EIA

240 Petroleum Stocks, OECD Europe Million Barrels EIA

241 Petroleum Stocks, Canada Million Barrels EIA

242 Petroleum Stocks, Japan Million Barrels EIA Million Barrels EIA

243 Petroleum Stocks, South Korea Million Barrels EIA Million Barrels EIA

244 Petroleum Stocks, United States Million Barrels EIA Million Barrels EIA

245 Petroleum Stocks, Other OECD Million Barrels EIA Million Barrels EIA

246 Petroleum Stocks, Total OECD Million Barrels EIA Million Barrels EIA

Macroeconomic data

247 Yield on 10 year Gov US bonds percent Datastream

248 M1 Datastream

249 M2 Datastream

250 Capital utilization rate percentage index Datastream

251 US con�dence index rate index Datastream

252 Producer�s price index for �nished goods index Datastream
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253 Producer�s price index less food and energy index Datastream

254 Federal Funds rate Datastream

255 Consumption expenditure US Datastream

256 US CPI index Datastream

257 US industrial production index Datastream

258 US house construction index Datastream

259 Yield on 20years US gov. Bonds Datastream

260 Dow Jones index Datastream

261 Sp500 index index Datastream

262 Yield on US 3yaers gov bonds Datastream

263 Crude ligh 1 month open interest number of contracts Datastream

264 Share price of Exxon average price Datastream

265 Share price of BP average price Datastream

266 Share price of CONOCO average price Datastream

267 Share price of Shell average price Datastream

268 Share price of Chevron average price Datastream

269 JPMorgan global index Datastream

270 JPMorgan global Eurobond index Datastream

271 JPMorgna US gov bond index price Datastream

272 Crude Spread WTI- Brent M+1 NY Cls price Datastream

273 Crude Spread WTI- Brent M+2 NY Cls price Datastream

274 Crude Spread Dubai M-M+1 NY Close price Datastream

275 Crude Spread Dubai M+1-M+2 NY Close price Datastream

276 Crude Oil-td Brent UK Close US Datastream

277 Crude Oil-Brent 1Mth Fwd FOB US Datastream

278 US TREASURY BILL RATE - 3 MONTH (EP) percent Datastream

279 EURO to usd noon NY (EP) NA Datastream

280 Morgan Stanley total index Datastream

281 US-DS index Oil&Gas -Price Index Datastream

282 Citigroup Bond Index Corporate US index Datastream

283 Citigroup Bond Index Overall index Datastream

284 Citigroup Bond index treasury index Datastream
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285 Citigroup bond Index Corporate Bond 1-3 years, Euro area Datastream

286 Citigroup Bond Index Total Return index Datastream

287 Citigroup Bond Index Industrial index Datastream

288 Citigroup Bond Corporate Industrial Worldwide index Datastream

289 DAX stock market index Datastream

290 UK stock market index Datastream

291 China Industrial production index Datastream

292 Euro area industrial production index Datastream

293 US/GBP exchange rate exchange rate Datastream

294 UK industrial production index Datastream

295 World Dow-Jones industrial performance index Datastream

296 CBOE VIX (implied volatility index) index Datastream

297 NYMEX Natural gas 2 month price Datastream

298 NYMEX Natural gas 3 month price Datastream

299 NYMEX Natural gas 6 month price Datastream

300 NYMEX Heating oil 2 month price Datastream

301 NYMEX Heating oil 3 month price Datastream
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6 Conclusion

This thesis addressed the current issues in the �eld of factor models. We concentrated on three distinct

problems contributing to the theoretical, methodological and empirical literature related to factor models

theory. We developed our research from the bases of evaluating the existing literature on factor models

theory and identifying gaps in the literature. As a result we recognized three topics, the development of

which would be bene�cial to the expansion of the existing factor models literature.

In the �rst chapter, we proposed a novel methodology for estimating common factors, factor loadings

and common components from the data in levels for �rst di¤erence models. Alternative methodology

has same �rst order terms in comparison to the existing estimators, but o¤er di¤erent asymptotic results

for the higher order terms. As a result, estimators computed according to our novel methodology have

higher rate of convergence and give more robust approximation of the model parameters. The aim of

our research is to demonstrate a novel methodology aiming to enhance the rates of convergence for the

estimated factor trends and common components, without additional assumptions.

The research extends the tradition of the modern factor model literature, which over the past �fty

years moved towards relaxation of the basic assumptions, improvement of the consistency of the estimators

and removing the boundaries of the panel dataset. Original assumptions imposed strict restrictiond on

the dataset dimensions, and prevented the occurrence of heteroskedustisity, autocorrelation, and cross-

sectional correlation of the error terms in the factor model. Additionally, the errors had to be normally

distributed. Further developments help to relax these assumptions, whilst ensuring convergence of the

estimators to the true factor. The assumption of classical large dimensional literature (Bai (2003), Bai

(2004), and Stock and Watson (2002)) demonstrate the convergence of the parameters, however, our

methodology helps to improve rates of convergence in comparison to the classical literature. It implies

that with using similar assumptions we are able to achieve more robust and consistent factor trends.

Monte-Carlo simulations were performed to test the methodology. Factors were simulated using an

autoregressive process; loadings were drawn from univariate distributions. The error terms of factor mod-

els were simulated using multiple speci�cations of the process that can be described using the ARMA

model. We �nd that the majority of the common factors estimated using the novel methodology has a

marginally higher degree of correlation with the true simulated factor, in comparison to the factors esti-

mated using the classical approach. We also found that the degree of correlation between the true factors

and estimated factors increased as the dimensions of the panel increased. We found that the estimated
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factor converges to the true factor given the large dataset, and both novel and classical methodologies lead

to the similar results but only for the exceptionally large panels. Smaller panels demonstrate a marginal

di¤erence between the correlation of true factor and estimated factor, with a higher correlation resulting

from the novel methodology. Our research helps to improve the consistency of the factor estimator, which

has wide theoretical and empirical application. From a theoretical prospective the research adds to the

long line of theoretical �ndings which aimed to improve estimation methodology, without loss of general-

ity. From an empirical prospective, our methodology allows to estimate factors which have higher rates

of convergence to true factors and therefore improve the quality of the estimators. We are of the opinion

that research can be further developed and greater rates of convergence achieved. More interesting still

will be investigation of the rates of convergence in the relatively medium and small panels, as we observe

a larger impact of the novel methodology on these types of panels. Additionally, further development

of the topic should progress towards greater relaxation of the basic assumptions of the factor models,

without loss of the consistent and robust performance of the estimators.

The third chapter of the research thesis is focused on the identi�cation and �lling of the missing

observations in the factor panel. The motivation for the research comes from the fact that current factor

model literature predominantly focused on the estimation of the factors, and analysing the factor based

forecast. However, to perform factor analyses research has to construct a balanced panel of data which

will allow application of the principle components method and estimation of factors. Modern literature

has paid little attention to the topic of the construction of the appropriate factor models, especially

when it comes to the area of �lling missing observations in the unbalanced panels. The majority of the

literature (see literature review in chapter 3) focuses on the individual missing observations in the panel,

or alternatively on the missing observations at the beginning or the end of the dataset. Our methodology

provides the alternative, which allows one to �ll observations in any part of the panel, i.e. at the end or

beginning of the dataset, as well as blocks of missing observations, and individual missing observations in

the panel. The methodology attempts to employ this feature of the factor model, using factor structure

to solve the problem of missing observations simultaneously. It allows one to map any pattern of missing

observations and re-construct the observations, given that number of assumptions are ful�lled. The most

signi�cant limitation of our methodology is that the researcher has to be able to extract the alternative

common factor which does not have any missing observations, nor a high degree of correlation with

the factor from the unbalanced panel. We argue that factor datasets can be divided into balanced and

unbalanced panels, where the �rst panel contains all variables with missing observations, and the second

panel contains all the balanced variables. By de�nition, factor panel should share common trend(s)
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between all variables in the panel, and therefore factors from the unbalanced and balanced panels should

share a common trend. This assumption is applicable to empirical research, as it is common that some

parts of the panel contain well balanced variables, while other variables have some missing observations.

We perform both the simulation and empirical exercises in order to test the validity of our methodol-

ogy. We simulate panels with di¤erent degrees of distortion, such that the panels can have between 50%

and 80% missing observations. Additionally, we performed this exercise for the panels with a di¤erent

number of observations and variables. We compare the technique with four alternative models. Two com-

peting models contained the factor base approach; we used the factor panels to estimate common factors

and later employed Kalman Filter and cubic spline to nowcast missing observations directly in the factor.

Later, we used the factor with �lled omitted observations to restore the panel dataset using the process

of matrix multiplication of the factor and factor loading. Two alternative approaches use Kalman �lter

and cubic splyne technique to �ll missing observations directly in the factor panel. We report goodness

of �t of the nowcasting procedure by reversing Theil�s U loss function, which is estimated on the basis of

the normalised RMSE loss function. The results are bound between 0% and 100%, with higher results

indicating better �t of the missing observations.

We report average goodness of �t of the �tted values, as well as a variation of the goodness of �t of

the missing observations from a change in the panel size. We can see that our methodology demonstrates

the highest and most stable results in �lling missing observations. Theil�s U function demonstrates an

average result of 58%, which is stable if we increase the number of missing observations to 80%. This is

explained by the methodology, which provides an approximation of the true factor �uctuations using a

closely correlated alternative common factor. Spline methodology performs signi�cantly worse. This is

due to the fact that for the large blocks of missing observations, splyne tends to converge to the factor

mean and is therefore unable to demonstrate any �uctuations during that period. The Kalman �lter

need some stable preliminary blocks of data where the parameters can be learned. The Kalman �lter

will perform signi�cantly better for the missing observations at the end of the forecasted period, however

in the panels with a mixed pattern of missing observations, the kalman �lter does not have enough data

to calibrate the parameter. We also performed an investigation of the structural parameters. We found

that structural parameters are di¤erent for high and low frequency estimations. The di¤erence between

structural parameters is due to variations in the sample size; while size of T dimension in the 100%

balanced panel is 240 observations; the sample size in the panel with 80% missing observations is 48.

Such a drastic di¤erence in the sample sizes of the regression leads to the di¤erence in the structural
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parameters.

We can conclude that the methodology developed in the research is able to �ll missing observations

with greater accuracy than competing models, which is shown by range of sensitivity tests. We provide

theoretical proofs to support our research methodology. We would like to continue work on further

developing the methodology. At the moment we can see a few potential areas: �rstly, we believe that

the range of competing models can be expanded; secondly, concurrently we only provide approximation

to the common factor using the second highly correlated factor. We never investigate a possibility of the

factor loading approximation, and instead impose the reasonable assumption of the stability of the factor

loading. Additionally, the research can be extended to provide greater examination of the appropriate

selection of the factor used for approximation in the model.

The �nal chapter of the thesis focuses on the problem of empirical application of the factor model

theory. We use energy markets to illustrate the superior forecasting ability of the factor model. The

superiority of the factor model builds on the notion that factor models are able to �lter the noise from

large dimensional panels and extract the common trend between all the variables in the panel. It is

impossible to include all the variables of large dimensional panels in the regression due to the fact

that we easily run short in our degree of freedom. In addition, the computational intensity is vast in

regressions where the number of repressors is assumed to be in�nite, and such a regression will thus no

longer prove informative. The number of parameters also has to be reduced, such that we can use all

relevant information to improve the forecast.

We use two factor augmented models FA-VAR and FA-VECM. We take into consideration co-

integration between crude oil markets in the FA-VECM model; both models are compared with their

non-factor augmented multivariate VAR and VECM models, which use only crude oil returns to forecast

future �uctuations. Additionally, we use a set of univariate models ARFIMA-GARCH which attempt to

model crude oil returns only by elaborating on the dynamic of the time-series. We propose a "horse race"

approach that juxtaposes the large dimensional and univariate models, and utilizes robust non-parametric

procedures to determine superior predictive ability. We use Hansen�s et al. (2011) approach to establish

superior forecasting; the approach employs the bootstrap technique and estimates the best forecasting

model using 10,000 bootstrap iterations.

According to the estimations, the FA-VECM model demonstrates the best performance amongst

competing factor models for WTI crude Oil futures forecasts with 1 month, 3 months, 6 months and
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12 months to maturity. We can observe that FA-VECM leads among the competing univariate and

multivariate model forecasts. We can conclude that co-integration relationship play a signi�cant role

in the forecast of the crude oil market. At the same time, factor variables also improve the model

performance in comparison to the non-factor augmented models across all the one-step and multi-step

forecasts. Therefore, our research helps to �ll the gap in the empirical literature of factor models by

examining forecasting ability of factor based models in a robust way, using Hansen�s et al. (2011)

methodology for the �rst time. We also examine the FA-VECM model for forecasting in the crude oil

market and achieve superior results. These are the two major contributions of the �nal chapter of the

thesis. In the future the research may be extended to include more compatible models in the �horse

race� of Hansen�s et al. (2011) methodology, which should help to establish new ways to improve the

forecasting of the crude oil market.
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Appendix. Asymptotic theory

The appendix presents additional assumptions, lemmas, propositions and theorems which applied in

the asymptotic proofs for sections 3 and 4. We concentrate on the assumptions that are required for the

proofs. Assumptions and conditions for proofs of the lemmas and propositions, but not directly used in

the current study proofs are not present. They can be found in the original works. All proofs in the

study follow the original assumptions and conditions. We start from assumptions and Lemmas applied

to the non-stationary large dimensional panels, which are discussed in original work by Bai(2004):

� Assumption IFor each i; as T !1

1
T

PT
t=1 F

0
t eit

d!
R
BudB

(i)
e

Assumption I is following Bai(2004) p148, that de�nes Bu is r�1 vector of Brownian motions de�ned in

section 2.3.1; B(i)e is scalar Brownian motion process with variance 
(i)ee = lim(1=T )
PT

t=1

PT
s=1E(eiteis):Bu

and B(i)e are independent. We apply assumption I to obtain limiting distribution of correlation between

two factors in the third section.

Our proofs use set of lemmas from Bai(2004) those are presented below:

� Lemmas Bai(2004):

(i) Lemma A.1 p164 Under assumptions A-C, we have for some M <1, and for all N and T .

E
�
T�1

PT
t=1

N�1=2e0t�
0
2� = E

�
T�1

PT
t=1

N�1=2PN
i=1 eit�

0
i

2� �M;

E

�
T�4

PT
t=1

PT
s=1

�
N�1PN

i=1XitXis

�2�
�M;

E
(NT )�1=2PN

i=1

PT
t=1 eit�

0
i

 �M:

(ii) Lemma B.1 p 167 Under assumptions A-D, we have
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�2NT

�
1
T

PT
t=1

 �Ft �H 0
2F

0
t

2� = Op(1)

where H2 = H1V
�1
NT has full rank and VNT is an r� r diagonal matrix consisting of the �rst r largest

eigenvalues of (1=NT 2)XX 0 in decreasing order; �NT = min
np

N;T
o
:

(iii) Lemma B.4(i) p171 Under assumptions A-E form Bai(2004), the r � r matrix sutis�es:

T�1(F̂ � F 0H1)
0F 0 = Op(T

�1) +Op(N
�1=2);

We also consider a proposition 1 Bai(2004) p 143 in the proof for section 3:

max1�t�T

F̂ kt �Hk0F 0t

 = Op(T
�1) +Op(

p
T=N)

� Theorem 2 p148 Bai (2004): As N;T !1; with N=T 3 ! 0; we have for each t

p
N
�
F̂t �H 0F 0t

�
=
�
~F 0F
T 2

�
1p
N

PN
i=1 �

0
i eit +Op(1)

d! QN(0;�t)

where ~F 0F 0=T 2 d�!Q and �t = limn!1(1=N)
PN

i=1

PN
j=1E(�

0
i�
00
j eitejt)

� Theorem 3 p149, Bai (2004) As N;T !1;

T (�̂i �H�1
1 �0i ) = H�1

1

�
F 00F 0

T 2

��1PT
t=1 F

0
t eit +Op(1)

d! (��Q
0)�1(

R
BuB

0
u)
R
BudB

(i)
e ;

where �� is positive de�nite non-random matrix and ~F 0F 0=T 2 d! Q

� Proposition 1 Bai(2004) p.143

max1�t�T
F̂ kt �Hk0F 0t

 = Op(T
�1) +Op(

p
T=N)

Assumptions,Lemmas formulated in Bai(2003):
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� Assumption J Bai(2003) p144 for each i, as T !1;

1p
T

PT
t=1 F

0
t eit

d! N(0;�i);

where �i =plimT!1(1=T )
PT

s=1

PT
t=1E

�
F 0t F

00
s eiseit

�

� Lemmas Bai(2003):

(i) Lemma A1 p158

~F �H 0F 0 = V �1NT (
1
T

PT
s=1

~FsN (s; t) +
1
T

PT
s=1

~Fs�st +
1
T

PT
s=1

~Fs�st +
1
T

PT
s=1

~Fs�st)

where �st = e0set=N � N (s; t) and �st = F 00s �
00et=N and �st = F 00t �

00es=N and VNT is a diagonal

matrix consisting of the �rst r eigenvalues of (1=NT )XX 0 in decreasing order.

(ii) Lemma B2 p164 Under

T�1( ~F � F 0H)0F 0 = Op(�
�2
NT )

where �2NT = min fN;Tg

� Theorem 1 p145 Bai(2003) As N;T !1

(i) if
p
N=T ! 0; then for each t

p
N( ~Ft �HF 0t ) = V �1NT

�
~F 0F 0

T

�
1p
N

PN
i=1 �

0
i eit +Op(1)

d! N(0; V �1Q�tQ
0V �1);

where VNT is given in section 6; matrix Q is invertible and is given by Q = V 1=2�0��1=2; where

V = diag(v1; v2; :::; vr); v1 > v2::: > vr > 0 are eigenvalues of �1=2� �F�
1=2
� ; and � is the corresponding

eigenvector matrix such that �0� = Ir;and �t = limN!1(1=N)
PN

i=1

PN
j=1 �

0
i�
00
j E(eitejt):

(ii)if lim inf
p
N=T � � > 0; then

T ( ~Ft �HF 0t ) = Op(1):
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� Theorem 2 p147, Bai(2003) As N;T !1

(i) if
p
T=N ! 0; then for each i,

p
T (��i �H�1�0i ) = V �1NT

�
~F 0F 0

T

��
�00�0

N

�
1p
T

PT
t=1 F

0
t eit +Op(1)

d! N(0; (Q0)�1�iQ
�1);

where VNT and �i are de�ned in section 6; matrix Q is invertible and is given by Q = V 1=2�0��1=2;

where V = diag(v1; v2; :::; vr); v1 > v2::: > vr > 0 are eigenvalues of �1=2� �F�
1=2
� ; and � is the corre-

sponding eigenvector matrix such that �0� = Ir;

(ii) if lim inf
p
N=T � � > 0; then

N(~�i �H�1�0i ) = Op(1)

The dominant case is part (i), asymptotic normality. Part (ii) is of theoretical interest.

� Trapani (2012a) Theorem 1. p.130 , for (N;T )!1 and for all i

1
T 2

PT
t=1 FtF

0
t
d! H 0(

R
W�W

0
�)H;

1
T

PT
t=1 Ftuit

d! H 0W�dWu;i

where W� is a k-dimensional Brownian motion with covariance matrix ��F , and Wu;i is a scalar

Brownian motion independent of W�:
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