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On Ext2 between Weyl modules for quantum GLn
By ANTON COX1 and KARIN ERDMANN

Mathematical Institute, 24–29 St. Giles’, Oxford, OX1 3LB, England.

In the study of highest weight categories, the class of Weyl modules ∆(λ) and their duals

∇(λ) are of central interest; this is for example motivated by the problem of finding the

characters of the simple modules. Weyl modules form the building blocks for the category

F(∆), whose objects have a filtration 0 = M0 ≤ M1 ≤ · · · ≤ Mi−1 ≤ Mi = M with

quotients isomorphic to ∆(λ) for various λ. Knowing Extr(∆(λ),∆(µ)) is essential for the

understanding of this category.

In [3, 13], we determined Ext1 for Weyl modules of SL(2, k) and q-GL(2, k) over an

infinite field k of characteristic p > 0. Here we are able to extend these results to determine

Ext2 for Weyl modules in both these cases (see (4.6)). Moreover, this also gives Ext2 between

any pair of Weyl modules ∆(λ), ∆(µ) for q-GL(n, k) (where n ≥ 2) such that both λ and

µ have at most two rows or two columns, or where they differ by some multiple of a simple

root (see Section 7).

Consider (for simplicity) polynomial representations of degree d for GL(n, k). A partition

of d which has at most two rows is uniquely determined by the difference in the row lengths,

which we use as a label for the partition. In this case our main result is

Theorem Suppose λ and µ are partitions of d with at most two rows. We label these by the

difference in row lengths as above. Let λ = pn + i < µ = pm + r lie in the same block with

0 ≤ i ≤ p− 2 and j = p− 2− i.

(i) If r = i and m− n is even then

Ext2(∆(λ),∆(µ)) ∼=

{

k if m− n = 2
Ext1(∆(0),∆(m− n− 2)) if m− n > 2.

(ii) If r = j and m− n is odd then

Ext2(∆(λ),∆(µ))∼=























0 if m− n = 1
k if m− n = 3

Ext2(∆(n),∆(m− 1)) if m− n 6= 2pa + 1 and m− n > 3
k2 if m− n = 2pa + 1> 3 and n 6≡ −1 (mod pa)
k if m− n = 2pa + 1> 3 and n ≡ −1 (mod pa).
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(iii) Ext2(∆(pn + p− 1),∆(pm+ p− 1)) ∼= Ext2(∆(n),∆(m)).

To prove this, we exploit the representation theory of the first Frobenius kernel, via the

Lyndon–Hochschild–Serre spectral sequence. Most of the proof consists of a refinement of

the methods in [3, 13]. However, the case p = 2 cannot be solved in this way, and for this

we use a new filtration of certain tilting modules.

It is a basic general question to characterise ∆-finite quasi-hereditary algebras; that is

those for which F(∆) has only finitely many indecomposable objects. The main motivation

for this paper is to answer this question for the class of (q-)Schur algebras. By [3, 13] the Ext1-

spaces are only one-dimensional and hence do not give information in this direction. However,

in certain cases (as indicated in the theorem above) the Ext2-spaces are two-dimensional —

and we show that this implies the existence of infinitely many non-isomorphic indecomposable

modules in F(∆). Combining this with our main result, we obtain the following sufficient

condition for Sq(n, d) to be ∆-infinite. (For simplicity we shall consider the classical Schur

algebra in odd characteristic; the general case is given in Section 6.)

Corollary Suppose that p > 2. If d ≥ 2p2 + p− 2, then for all n ≥ 2 the algebra S(n, d) is

∆-infinite.

Let H = Hq(d) be the Hecke algebra corresponding to Σd over k. For each partition λ

of d there is a Specht module Sλ of H. Denote by F(Sp≤n) the full subcategory of Mod(H)

consisting of those modules filtered by Specht modules Sλ for partitions λ of at most n parts.

As a consequence of the last corollary, we obtain a sufficient condition for F(Sp≤n) to be of

infinite type (see (7.7)).

1 Preliminaries

In this section we briefly survey the main results and conventions that will be needed later.

We consider the quantum general linear group q-GL(2, k) defined by Dipper and Donkin [5],

over an infinite field k of characteristic p > 0. If q is not a root of unity, then by [10, 4(8)]

the corresponding module category is semisimple, so we will always assume that q is either

1 or a primitive lth root of unity. In either case, we shall denote our group by G.

We largely follow the notation and conventions of [3]. This will be our basic reference

in the quantum setting; the corresponding classical results can be found in [13]. In both

cases there is a Borel subgroup B in G, and we can define for each dominant weight λ the
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corresponding induced module ∇(λ). Then the Weyl modules ∆(λ) are defined as the duals

of appropriate induced modules as in the classical case (see [10, Section 4]). Since this duality

fixes the simple modules, we have Exts(∆(λ),∆(µ)) ∼= Exts(∇(µ),∇(λ)) for all s ≥ 0. We

shall also need to consider the tilting module T (λ), the unique indecomposable module of

highest weight λ in F(∆) whose dual is also in F(∆) (see [7, 8]).

There is a Frobenius morphism F : G −→GL(2, k) and a corresponding Frobenius kernel

G1. The definition of these, along with some of the basic representation theory of G1, can

be found in [11, Chapter 3]. There is a related factor group Ḡ ∼=GL(2, k) which defines G1

(see [10, Remark after Corollary 1.4]).

Our main tool will be the Lyndon–Hochschild–Serre spectral sequence, which will allow

us to exploit the representation theory of G1. More precisely, if V is a G-module, then we

have a spectral sequence with E2-page given by Ers
2 = Hr(Ḡ,Hs(G1, V )), and converging to

H∗(G, V ) (see [10, Proposition 1.6]).

We next recall some notation from [3]. Let λ = (λ1, λ2) = (µ+ δ, δ) with 0 ≤ µ ≤ l − 2,

and note that henceforth we shall reserve the symbol λ for elements of this form. Define µ̄

by µ+ µ̄ = l − 2. Then we set

λ̃ = (λ2 − 1, λ1 + 1− l) = µ̄ρ+ (µ− l + 1 + δ)̟,

where ̟ = (1, 1) and ρ = (1, 0). Note that
˜̃
λ = λ− l̟. Our results will concern Hom and

Ext between ∆(λ+ lnρ+ t̟) and either ∆(λ̃+ lmρ) or ∆(λ+ lmρ). The integer t will always

be chosen so that the degrees of each module agree; in the former case we shall assume that

2t = l(m− n− 1), and in the latter that 2t = l(m− n), and we shall set t = lu.

Consideration of these cases will be sufficient by the description of the blocks of G in [3,

Theorem 2.1], along with the fact that for all r ≥ 0, integers a and dominant weights θ and

χ we have

ExtrG(∆(θ + a̟),∆(χ+ a̟)) ∼= ExtrG(∆(θ),∆(χ)).

This follows from the isomorphism ∆(θ+ a̟) ∼= ∆(θ)⊗ q-deta, where q-det is the quantum

analogue of the determinant module (see [5, 2.1.8]). As noted in [3] we may also assume that

θ < χ, as otherwise Exti(∆(θ),∆(χ)) = 0 for i ≥ 0. This is clear for i = 0, and follows for

i > 0 as in the classical case [1, 3.2 Corollary].

Finally, we should note certain conventions that we shall follow during the course of this

paper. So as to provide a uniform proof in both the classical and quantum cases, we shall
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adopt the convention that when q = 1, we shall work in the appropriate classical setting.

Thus in this case G1 will just be the usual Frobenius kernel, F the usual Frobenius morphism

etc. Consequently we shall set l = p when considering the classical versions of our results.

The one remaining complication involves proof by induction. In the classical setting this

will be as usual, but for the quantum version we shall often assume that the corresponding

classical result is already known instead.

2 Two short exact sequences

In this section we shall consider two short exact sequences of G-modules from [3], quantum

analogues of corresponding sequences due to Xanthopoulos [20]. These were the main tool

used in [3, 13] and shall also play a central role in what follows. As our first application

of these we conclude this section by determining the Hom-spaces between pairs of Weyl

modules.

Recall from [3, Proposition 3.4] that for n ≥ 0 there exists an exact sequence of G-

modules

0 → ∆(λ̃+ l(n + 1)ρ) → ∆(nρ)F ⊗Q(λ) → ∆(λ+ lnρ) → 0, (1)

where Q(λ) = T (λ̃ + lρ), the indecomposable tilting module of highest weight λ̃ + lρ. As

noted in the proof of [3, Corollary 3.5], this is also the injective hull of L(λ) as a G1-module.

If n > 0, we also have [3, Proposition 3.3] the exact sequence

0 → ∆((n− 1)ρ)F ⊗∆(λ̃ + l̟) → ∆(λ+ lnρ) → ∆(nρ)F ⊗∆(λ) → 0. (2)

These two sequences will allow us to proceed in many cases by induction on the size of

weights. When using the second sequence, the following result will be useful.

Proposition 2.1 For n ≥ 0, k ≥ 1 and τ ∈ {λ, λ̃} we have

ExtkG(∆(λ + lnρ+ t̟),∆(mρ)F ⊗Q(τ))

∼=























Extk
GL2

(∆(nρ+ v̟),∆(mρ))

{

if m− n even and τ = λ

if m− n even, τ = λ̃ and µ = µ̄

Extk
GL2

(∆((n− 1)ρ+ w̟),∆(mρ))

{

if m− n odd, τ = λ̃ and n > 0
if m− n odd, τ = λ, µ = µ̄ and n > 0

0 otherwise

where v = 1
2
(m− n) and w = 1

2
(m− n+ 1).
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Proof: Let V = ∆(mρ)F ⊗Q(τ))⊗∆∗(λ+ lnρ+ t̟). We have

Hk(G1, V ) = ∆(mρ)F ⊗ ExtkG1
(∆(λ+ lnρ+ t̟), Q(τ)).

As Q(τ) is injective as a G1-module, this implies that Hk(G1, V ) = 0 for k ≥ 1. Now from

the Lyndon–Hochschild–Serre spectral sequence we obtain an exact sequence

0 → Hk(Ḡ, V G1) → Hk(G, V ) → Hk(G1, V ) = 0

and hence Hk(Ḡ, V G1) ∼= Hk(G, V ). Next we calculate V G1. Clearly V G1 = ∆(mρ)F ⊗WG1 ,

where W = Q(τ)⊗∆∗(λ+ lnρ+ t̟). First suppose that n > 0. Then we have a short exact

sequence

0 → ∆((n− 1)ρ)F ⊗∆(λ̃+ (l + t)̟) → ∆(λ+ lnρ+ t̟) → ∆(nρ)F ⊗∆(λ+ t̟) → 0.

Applying HomG1
(−, Q(τ)) to this we obtain the exact sequence

0 → HomG1
(∆(λ+ t̟), Q(τ))⊗∆∗(nρ)F →WG1

→ HomG1
(∆(λ̃+ (l + t)̟), Q(τ))⊗∆∗((n− 1)ρ)F → 0.

Arguing as in the proof of [3, Lemmas 4.2 and 4.3], we see that

WG1 ∼=























∆∗(nρ+ v̟)F
{

if m− n even and τ = λ

if m− n even, τ = λ̃ and µ = µ̄

∆∗((n− 1)ρ+ w̟)F
{

if m− n odd and τ = λ̃
if m− n odd, τ = λ and µ = µ̄

0 otherwise

When n = 0 set W = Q(τ)⊗∆∗(λ+ t̟). Then WG1 = ∆∗(v̟) if m− n is even and either

τ = λ or τ = λ̃ and µ = µ̄ (and zero otherwise).

Now with Y F = WG1 we obtain

Hk(G, V ) ∼= Hk(Ḡ,∆(mρ)F ⊗ Y F ) ∼= Hk(GL2,∆(mρ)⊗ Y )

which gives the result.

Our first main application of the above sequences is to determine the Hom-spaces between

Weyl modules. By the remarks in the last section, it is enough to consider the cases covered

by the following proposition, as all other Hom-spaces will be zero. Most of the work for this

has already been carried out in [3], using the sequences above, and it just remains to collect

these various results together.
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Proposition 2.2 For τ ∈ {λ, λ̃} we have

(i) If m− n > 0 then

HomG(∆(λ+ lnρ+ t̟),∆(τ + lmρ))

∼=







HomGL2
(∆(nρ+ v̟),∆((m− 1)ρ))

{

if m− n odd and τ = λ̃
if m− n odd and µ = µ̄

0 otherwise

where v = 1
2
(m− n− 1).

(ii) If m = 2s then

HomG(∆(s̟),∆(mρ)) ∼=

{

k if m = 2(lpa − 1) or 0
0 otherwise.

(iii) Suppose that n = l − 1 + lN and m = l − 1 + lM . Then we have

HomG(∆(nρ+ lu̟),∆(mρ)) ∼= HomGL2
(∆(Nρ+ u̟),∆(Mρ)).

Proof: First consider (i). Denoting the given weights in each case by θ and χ, we have

HomG(∆(θ),∆(χ)) ∼= [(∆(χ)⊗∆∗(θ))G1]G.

By [3, Lemmas 4.8–9] we see that if m − n even, or τ = λ and µ 6= µ̄ then this is zero.

Otherwise

[(∆(χ)⊗∆∗(θ))G1]G ∼= [(q-det−v ⊗∆((m− 1)ρ)⊗∆∗(nρ))F ]G

∼= HomGL2
(∆(nρ+ v̟),∆((m− 1)ρ)),

as required. For the last part, we note that ∆(nρ+ lu̟) ∼= ∆(Nρ+ u̟)F ⊗∆((l− 1)ρ) by

[3, Proposition 3.1(ii)], and similarly for ∆(mρ). So we have

HomG(∆(nρ+lu̟),∆(mρ)) ∼= (HomG1
(∆((l−1)ρ),∆((l−1)ρ))⊗∆(Mρ)F⊗∆∗(Nρ+u̟)F )G

which implies the result. Finally, (ii) is just [3, Lemma 2.3].

We shall give a closed form for this result in Section 5.

3 The spectral sequence

Our main tool in the following sections will be the Lyndon–Hochschild–Serre spectral se-

quence, which will allow us to deduce results about the cohomology of G from that of the
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Frobenius kernel. In this section we review the construction of this sequence, and conclude

with a pair of lemmas that will allow us to calculate the desired Ext-spaces.

Consider the G-module V = ∆(χ)⊗∆∗(θ). By [10, Proposition 1.6] we have a spectral

sequence converging to H∗(G, V ) with E2-page given by

Ers = Hr(Ḡ,Hs(G1, V )) ∼= Hr(GL2,Ws)

where W F
s = ExtsG1

(∆(θ),∆(χ)). This gives rise to the five term exact sequence

0 → H1(GL2,W0) → H1(G, V ) → H0(GL2,W1) → H2(GL2,W0) → H2(G, V ).

In certain circumstances this sequence can be extended. In particular we have

Lemma 3.1 (i) If Ers
2 = 0 for s = 0, 2 when r ≤ 2 then we have

H1(G, V ) ∼= H0(G,W1) and H2(G, V ) ∼= H1(G,W1).

(ii) If H i(GL2,W1) = 0 for i = 1, 2, then we can extend the above sequence to

· · · → H0(GL2,W1) → H2(GL2,W0) → H2(G, V ) →WGL2

2 → H3(GL2,W0) → H3(G, V ).

Proof: (i) The first part follows from the five term sequence above. For the second part,

consider the terms Ers
2 with r + s = 2. The only term which can be non-zero is E11

2 , and

this is in the kernel of the map d2 : E
11
2 −→ E30

2 = 0.

(ii) Clearly all maps d2 are zero, and so the terms in the E2-page coincide with those in

the E3-page. Consider the line r+ s = 2 on the E3-page. The only possible non-trivial map

starting or ending on this line is d3 : E
02
3 −→ E30

3 , and E30 is in the kernel of all maps and

does not intersect with any other image. Hence the result follows.

To apply this result, we need to calculate the Wi. Note that in the following lemma (and

throughout this paper) we adopt the notation and conventions from Section 1.

Lemma 3.2 Let θ = λ + lnρ + t̟ < χ = τ + lmρ, where τ = λ or λ̃ and m ≥ n ≥ 0. Set

W F
s = ExtsG1

(∆(θ),∆(χ)). Then

(i) if s = 0 then

Ws
∼=







∆((m− 1)ρ)⊗∆∗(nρ+ v̟)

{

if m− n is odd and τ = λ̃
if m− n is odd, τ = λ and µ = µ̄

0 otherwise
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(ii) if 0 < s < m− n then

Ws
∼=























∆((m− n− s− 1)ρ− v̟)















if m− n even, s odd and τ = λ

if m− n odd, s even and τ = λ̃

if m− n even, s odd, τ = λ̃ and µ = µ̄
if m− n odd, s even, τ = λ and µ = µ̄

0 otherwise

(iii) if s = m− n then

Ws
∼=























∆(0)















if m− n odd and τ = λ̃
if m− n even and τ = λ

if m− n even, τ = λ̃ and µ = µ̄
if m− n odd, τ = λ and µ = µ̄

0 otherwise

where v = 1
2
(m− n− s− 1).

Proof: (i) is just [3, Lemmas 4.8–9]. For the remaining cases, let 1 ≤ s ≤ m− n. Just as in

[3, Lemma 4.5] we have

ExtsG1
(∆(θ),∆(χ)) ∼= ExtsG1

(Ω−n∆(θ),Ω−n∆(χ)) ∼= Ext1G1
(Ω−n∆(θ),Ω−(n+s−1)∆(χ)).

By [3, Lemma 4.1 and the preceding remark] this equals















Ext1G1
(∆(λ+ (2u+ n) l

2
̟),∆(τ̃ + xlρ + (n+ s) l

2
̟)) if n and s even

Ext1G1
(∆(λ + (2u+ n) l

2
̟),∆(τ + xlρ+ (n + s− 1) l

2
̟)) if n even and s odd

Ext1G1
(∆(λ̃+ (2u+ n + 1) l

2
̟),∆(τ + xlρ+ (n+ s− 1) l

2
̟)) if n odd and s even

Ext1G1
(∆(λ̃+ (2u+ n+ 1) l

2
̟),∆(τ̃ + xlρ+ (n+ s) l

2
̟)) if n and s odd

where x = m− n− s+ 1, and the result now follows from [3, Lemmas 4.6–7].

4 Ext2 calculations

In this section we shall determine Ext2 between all possible pairs of Weyl modules. We begin

by considering certain special pairs of weights, starting with those that are ‘close together’.

Lemma 4.1 We have for n ≥ 0 that

ExtrG(∆(λ + lnρ),∆(λ̃+ l(n + 1)ρ)) ∼=

{

k if r = 1
0 if r > 1
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Proof: Apply HomG(∆(λ+ lnρ),−) to (1) and note that by (2.1), we have

ExtrG(∆(λ+ lnρ),∆(nρ)F ⊗Q(λ)) ∼= Extr
GL2

(∆(nρ),∆(nρ)) = 0

for r ≥ 1. If r = 1 then the result follows from [3, Lemma 5.3], while for r ≥ 2 we get

ExtrG(∆(λ+ lnρ),∆(λ̃ + l(n + 1)ρ)) ∼= Extr−1
G (∆(λ+ lnρ),∆(λ + lnρ)) = 0

as required.

Lemma 4.2 We have for n ≥ 0

ExtrG(∆(λ+ lnρ+ l̟),∆(λ+ l(n + 2)ρ)) ∼=

{

k if r = 1, 2
0 if r > 2

Proof: The case r = 1 follows from [3, Lemma 5.4], so we assume that r ≥ 2. First, we

exploit the spectral sequence using (3.2). For m − n = 2 we have W1 = W2 = ∆(0) and

W0 = 0. But H i(GL2,∆(0)) = 0 for i = 1, 2. So we apply (3.1)(ii) and get

· · · → H2(GL2,W0) → H2(G, V ) → k → H3(GL2,W0)

which gives the Ext2G result.

Now we use the long exact sequence. Apply HomG(∆(λ+ lnρ+ l̟),−) to the sequence

0 → ∆(λ+ l(n + 2)ρ) → ∆((n+ 1)ρ+̟)F ⊗Q(λ̃) → ∆(λ̃ + l(n+ 1)ρ+ l̟) → 0.

By (2.1), we have

ExtrG(∆(λ+ lnρ+ l̟),∆((n+ 1)ρ+̟)F ⊗Q(λ̃)) ∼= Extr
GL2

(∆((n− 1)ρ+̟),∆((n+ 1)ρ))

(or zero if n = 0) for r ≥ 1. This is zero unless n−1 = pN +(p−2) and n+1 = p(N+1). In

this case (4.1) gives this is zero for r ≥ 2. Returning to the long exact sequence, we deduce

that

ExtrG(∆(λ + lnρ+ l̟),∆(λ+ l(n + 2)ρ)) ∼= Extr−1
G (∆(λ+ lnρ),∆(λ̃ + l(n + 1)ρ)) = 0

for r ≥ 3, by (4.1).

The last small case that we consider is
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Lemma 4.3 We have for n ≥ 0 that

ExtrG(∆(λ+ lnρ+ l̟),∆(λ̃+ l(n + 3)ρ)) ∼=

{

k if r = 2, 3
0 if r > 3

Proof: We first exploit the spectral sequence. By (3.2) we have W1 = 0, W0 = ∆((n +

2)ρ)⊗∆∗(nρ+̟), and W2 = ∆(0), so we can apply (3.1)(ii) to obtain

0 → Ext2
GL2

(∆(nρ+̟),∆((n+ 2)ρ))

→ Ext2G(∆(λ+ lnρ+ l̟),∆(λ̃+ l(n+ 3)ρ)) → k → Ext3
GL2

(∆(nρ+̟),∆((n+ 2)ρ)).

The first and last terms are zero, as either nρ + ̟ and (n + 2)ρ are in different blocks, or

we can apply (4.1). This gives the case r = 2.

For r ≥ 3 we use the long exact sequence. Apply HomG(∆(λ+ lnρ+ l̟),−) to the exact

sequence

0 → ∆(λ̃+ l(n + 3)ρ) → ∆((n + 2)ρ)F ⊗Q(λ) → ∆(λ+ l(n + 2)ρ) → 0.

Consider terms of the form ExtrG(∆(λ + lnρ + l̟),∆((n + 2)ρ)F ⊗ Q(λ)). By (2.1) this is

isomorphic to Extr
GL2

(∆(nρ+̟),∆((n+2)ρ)), and this is zero for r ≥ 2 as in the last lemma.

So we deduce that for r ≥ 3,

ExtrG(∆(λ + lnρ+ l̟),∆(λ̃+ l(n + 3)ρ)) ∼= Extr−1
G (∆(λ + lnρ+ l̟),∆(λ+ l(n+ 2)ρ)),

and the result now follows from (4.2).

Lemma 4.4 Assume that n ≥ 0. Then we have

Ext2G(∆((l − 1 + ln)ρ+ lu̟),∆((l− 1 + lm)ρ)) ∼= Ext2
GL2

(∆(nρ+ u̟),∆(mρ)).

Proof: We exploit the spectral sequence using (3.1). As ∆((l−1+ln)ρ+lu̟) is projective as

a G1-module, we have that W1 = W2 = 0. So by (3.1(ii)) we have H2(GL2,W0) ∼= H2(G, V ).

The result now follows from [3, Lemma 4.10].

Lemma 4.5 Assume that n ≥ 0 and a ≥ 1. Then

(i) if n ≡ −1 (mod lpa−1) then ExtsG(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= 0 for s ≥ 2;

(ii) if n 6≡ −1 (mod lpa−1) then Ext2G(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= k.
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Proof: First consider the case n ≡ −1 (mod lpa−1). Writing n = l − 1 +Nl, we have

ExtsG(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= Exts
GL2

(∆(Nρ+ pa−1̟),∆((N + 2pa−1)ρ)).

When a = 1 this is zero as in the proof of (4.3), while for a > 1 the result follows by

induction. For (ii), we proceed by induction on a. The case a = 1 follows from (4.2), so we

assume that a ≥ 2. Now if n ≡ −1 (mod l) then writing n as above we have

Ext2G(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= Ext2
GL2

(∆(Nρ+ pa−1̟),∆((N + 2pa−1)ρ)).

Since n 6≡ −1 (mod lpa−1), we have N 6≡ −1 (mod pa−1), and we get the desired result by

induction. Finally, if n 6≡ −1 (mod l) then write nρ = λ + lNρ. Then (n + 2lpa−1)ρ =

λ+ l(N +2pa−1)ρ = λ+ lMρ. IfM −N = 2 then the result follows from (4.2). IfM −N > 2

then we apply (3.1). We have Wq = 0 for 0 ≤ q < M −N if q is even. So by (3.1(i)) we have

Ext2G(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= Ext1
GL2

(∆((pa−1 − 1)̟),∆((2pa−1 − 2)ρ)),

and the result now follows from [13, Theorem 3.6].

We are now in a position to prove our main result which will enable us to calculate Ext2G

between Weyl modules. Note that by consideration of the blocks of G, the following result

(in conjunction with (4.4)) includes all possible cases where this could be non-zero.

Theorem 4.6 (i) Assume that m− n is even, and let v = 1
2
(m− n− 2). Then we have

Ext2G(∆(λ+ lnρ+ t̟),∆(λ+ lmρ)) ∼=

{

k if m− n = 2
Ext1

GL2
(∆(v̟),∆((m− n− 2)ρ)) if m− n > 2.

(ii) Assume that m− n is odd, and let u = 1
2
(m− n− 1). Then we have

Ext2G(∆(λ+ lnρ+ t̟),∆(λ̃+ lmρ))

∼=























0 if m− n = 1
k if m− n = 3

Ext2
GL2

(∆(nρ+ u̟),∆((m− 1)ρ)) if m− n 6= 2pa + 1 and m− n > 3
k if m− n = 2pa + 1 and n ≡ −1 (mod pa)
k2 if m− n = 2pa + 1, n 6≡ −1 (mod pa).

(iii) Suppose that µ = µ̄. If m − n is odd and τ = λ, or m − n is even and τ = λ̃ then we

have

Ext2G(∆(λ+ lnρ+ t̟),∆(τ + lmρ)) ∼= Ext2G(∆(λ+ lnρ+ t′̟),∆(τ̃ + lmρ))

where t′ = t− 1
2
l.
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Proof: Part (iii) follows immediately from the definition of τ̃ . For the remaining two parts,

if m − n ≤ 3 then the result follows from (4.1), (4.2) and (4.3). So we may assume that

m − n > 3. If m − n is even, then the result follows from (3.1(i)) and (3.2). Now suppose

that m− n is odd. From (3.1(ii)) and (3.2) we have an exact sequence

0 → Ext2
GL2

(∆(nρ+ u̟),∆((m− 1)ρ)) → Ext2G(∆(λ + lnρ+ t̟),∆(λ̃+ lmρ))

→ HomGL2
(∆((u− 1)̟),∆((m− n− 3)ρ)) → Ext3

GL2
(∆(nρ+ u̟),∆((m− 1)ρ)). (3)

If m− n 6= 2pa + 1 then HomGL2
(∆((u− 1)̟),∆((m− n− 3)ρ)) = 0 by (2.2), and the first

two terms are isomorphic as required.

We have now obtained everything except the cases in (ii) when m− n = 2pa + 1 > 3. If

n ≡ −1 (mod pa) then the Ext2
GL2

and Ext3
GL2

terms of the exact sequence are zero by (4.5)

and we get k, otherwise (as the first term is non-zero by (4.5)) we either get k or k2. Before

continuing with the proof we note

Lemma 4.7 If p > 2 then for all s and b ≥ 0 we have

Ext2G(∆(sρ+ (lpb − 1)̟),∆((s+ 2(lpb − 1)ρ)) = 0.

Proof: We proceed by induction on b. If s 6≡ 0 (mod l) then s and s + 2(lpb − 1) are in

different blocks. Now let s = lN , then s+ 2(lpb − 1) = lM + l− 2 where M = N + 2pb − 1.

If b = 0 then we are done by the first case in (ii) above. Otherwise, by the last case in the

proof above, we have

Ext2G(∆(sρ+(lpb−1)̟),∆((s+2(lpb−1)ρ)) ∼= Ext2
GL2

(∆(Nρ+(pb−1)̟),∆((N+2(pb−1)ρ))

which is zero by the inductive hypothesis.

This lemma no longer holds when p = 2, as when l = 1 and b = 2 we have M = N + 3,

and Ext2 is then non-zero by (4.3). It is for this reason that the remainder of the proof of

our main result — to which we now return — will consider the p = 2 case separately. So we

first assume that p > 2.

Suppose that m−n = 2pa+1. Then the third term in (3) is isomorphic to k by (2.2(ii)).

By (4.5) we know that the first term in (3) is 0 if n ≡ −1 (mod pa) and isomorphic to k

otherwise. So we shall be done if we can show that the last term in (3) is zero. Thus the

following lemma will complete the proof for p odd.
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Lemma 4.8 If p > 2 and a ≥ 1 then we have

Ext3G(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) = 0.

Proof: We proceed by induction on a. Assume first that a = 1. If n 6≡ −1 (mod l), the

result follows from (4.2), while in the case n = l − 1 + lN we have

Ext3G(∆(nρ+ l̟),∆((n+ 2l)ρ) ∼= Ext3
GL2

(∆(Nρ+̟),∆((N + 2)ρ)).

This is zero either by (4.1), or because the weights lie in different blocks. So we may assume

that a ≥ 2. Suppose first that n ≡ −1 (mod l). Write n = l − 1 + lN , and then

Ext3G(∆(nρ+ lpa−1̟),∆((n+ 2lpa−1)ρ)) ∼= Ext3
GL2

(∆(Nρ+ pa−1̟),∆((N + 2pa−1)ρ))

and the result follows by induction.

Finally, suppose that n 6≡ −1 (mod l). Write nρ = τ + lNρ, where |τ | ≤ l− 2, and then

(n+ 2lpa−1)ρ = τ + l(N + 2pa−1)ρ = τ + lMρ. We have the exact sequence

0 → ∆(τ + lMρ) → ∆((M − 1)ρ)F ⊗Q(λ) → ∆(λ+ l(M − 1)ρ) → 0

for some λ such that λ̃ = τ . Applying HomG(∆(nρ+ lpa−1̟),−) to this we obtain

· · · → Ext2G(∆(nρ+ lpa−1̟),∆(λ+ l(M − 1)ρ)) → Ext3G(∆(nρ+ lpa−1̟),∆((n+2lpa−1)ρ))

→ Ext3
GL2

(∆((N − 1)ρ+ pa−1̟),∆((M − 1)ρ)) → · · ·

by (2.1), where if N = 0 the last term is taken to be zero. By the third case of (4.6(ii)), the

left-hand term in this sequence is isomorphic to Ext2
GL2

(∆(Nρ+(pa−1−1)̟),∆((M −2)ρ)),

which is zero by the last lemma. Hence we are left with

0 → Ext3G(∆(nρ+ lpa−1̟),∆((n+2lpa−1)ρ)) → Ext3
GL2

(∆((N−1)ρ+pa−1̟),∆((M−1)ρ)).

The last term is zero either by definition if N = 0 or by induction, and we are done.

It remains to consider the case when p = 2 and m−n = 2pa+1, with n 6≡ −1 (mod pa).

We shall show that in this case the Ext2-space is 2-dimensional. The proof of this will take

the rest of this section, and requires a new filtration of certain tilting modules, described

below. We shall also require this filtration without restriction on p in Section 6, so in what

follows p will be arbitrary.
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Given a dominant weight τ , we define the module X(τ) via the short exact sequence

0 → ∆(τ) → T (τ) → X(τ) → 0. (4)

Note that by [11, 2.1(13)], or [7, Proposition 3.1], X(τ) is filtered by ∆(γ)’s with γ < τ .

Now let τ = λ̃ + lρ + lα where α = rρ with r > 0. Since ExtiG(−, T (τ)) vanishes on F(∆)

for i ≥ 1 (by [10, Section 4 (2)]), we have that for any dominant weight θ,

Ext2G(∆(θ),∆(τ)) ∼= Ext1G(∆(θ), X(τ)). (5)

Hence it is enough to show that the latter Ext-space is 2-dimensional. By the remarks after

(3), it has dimension at most two. We begin by considering a new filtration of X(τ). By

[11, 3.3(7)] we have

T (λ̃+ lρ)⊗ T (α)F ∼= T (τ)

and hence we obtain the short exact sequence

0 → T (λ̃+ lρ)⊗∆(α)F → T (τ) → T (λ̃+ lρ)⊗X(α)F → 0.

As Q(λ) ∼= T (λ̃+ lρ), we obtain from (1) and (4) the sequence

0 −→ ∆(λ+ lα) −→ X(τ)
π

−→ T (λ̃+ lρ)⊗X(α)F −→ 0. (6)

We now claim that there exists a short exact sequence

0 → ∆(λ + lα)⊕
(

∇(λ)⊗X(α)F
)

→ X(τ) → ∇(λ̃+ lρ)⊗X(α)F → 0. (7)

The proof of this is postponed until the end of this section; we first consider some of its

consequences. For this we shall use

Lemma 4.9 Suppose that l is odd, or M ≡ N (mod 2). Then we have

HomG(∆(λ+ lNρ+ t̟),∇(λ̃+ lρ)⊗ L(Mρ)F ) = 0.

Hence if X is any module such that all of its composition factors have highest weights Mρ+

w̟ with M ≡ N (mod 2) then HomG(∆(λ + lNρ+ t̟),∇(λ̃+ lρ)⊗XF ) = 0.

Proof: In the first part, any non-zero homomorphism must map the weight λ+ lNρ+ t̟ to

λ̃ + lρ+ lMρ, by the ordering of weights. By inspection this cannot occur under the above

hypotheses. The second part is now immediate.
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We now assume that m − n = 2pa + 1, with n 6≡ −1 (mod pa) (but p still arbitrary).

Apply the functor HomG(∆(λ+lnρ+t̟),−) to the exact sequence in (7) with α = (n+2pa)ρ.

By the preceding lemma, the last homomorphism space is zero, and we obtain

0 → Ext1G(∆(λ+ lnρ+ t̟),∆(λ+ lα))⊕ Ext1G(∆(λ+ lnρ+ t̟),∇(λ)⊗X(α)F )

→ Ext1G(∆(λ + lnρ+ t̟), X(τ)). (8)

The first Ext-space is isomorphic to k by [3, Theorem 5.5], so it remains to show that the

second space is non-zero. By the remarks after (5), this will complete the proof of (4.6) when

p = 2. It will also be needed in the general case in Section 6.

We consider the exact sequence

0 → ∆((n− 1)ρ)F ⊗∆(λ̃+ l̟ + t̟) → ∆(λ+ lnρ+ t̟) → ∆(nρ)F ⊗∆(λ+ t̟) → 0

coming from (2), and apply HomG(−,∇(λ) ⊗ X(α)F ). Consider HomG(∆((n − 1)ρ)F ⊗

∆(λ̃ + l̟ + t̟),∇(λ) ⊗ X(α)F ). By Steinberg’s tensor product theorem [11, 3.2(5)], the

two sides have no common composition factors unless µ = µ̄. But in this latter case, as

n − 1 6≡ n + 2pa (mod 2), the two twisted modules lie in different blocks, and so the Hom-

space is zero. Hence we have an injection

0 → Ext1G(∆(nρ)F ⊗∆(λ+ t̟),∇(λ)⊗X(α)F ) → Ext1G(∆(λ+ lnρ+ t̟),∇(λ)⊗X(α)F ).

From the five term exact sequence, we obtain an injection

0 → Ext1
GL2

(∆(nρ+ u̟), X((n+ 2pa)ρ)) → Ext1G(∆(nρ)F ⊗∆(λ+ t̟),∇(λ)⊗X(α)F )

where lu = t, and hence it is enough to show that the first of these spaces is non-zero. But

applying the dimension shift arising from the defining sequence for X , and (4.5(ii)) we have

Ext1
GL2

(∆(nρ+ u̟), X((n+ 2pa)ρ)) ∼= Ext2
GL2

(∆(nρ+ u̟),∆((n+ 2pa)ρ)) ∼= k

as required.

So it now just remains to verify that the sequence (7) exists, as claimed. For this we

shall use the following general result.

Lemma 4.10 Let L be a simple G-module, that remains simple on restriction to G1. Then

for any finite-dimensional G-module M we have an isomorphism of G-modules

HomG1
(L,M)⊗ L ∼= (socG1

M)L

where (socG1
M)L is the isotypic component of socG1

M of type L.
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Proof: This follows just as in [17, I 6.15(2)], using that the G1 fixed points of a G-module

themselves have a G-module structure by [10, Proposition 1.5(i)].

With the above lemma we can now prove

Lemma 4.11 Let α = rρ and τ = λ̃ + lρ + lα, with r > 0. Then we have a short exact

sequence of G-modules

0 → ∆(λ + lα)⊕
(

∇(λ)⊗X(α)F
)

→ X(τ) → ∇(λ̃+ lρ)⊗X(α)F → 0.

Proof: Since ∇(λ) ≤ T (λ̃+ lρ) with quotient ∇(λ̃+ lρ) we have an injection

θ : ∇(λ)⊗X(α)F → T (λ̃+ lρ)⊗X(α)F

and so it is enough to show that this map factors through π in (6). In order to do this

we shall consider the G1-socle of X(τ) using the last lemma. By block considerations we

must consider HomG1
(Y,X(τ)), where Y is either ∆(λ) or ∆(λ̃) . Since this is trivial as a

G1-module it is of the form W (Y )F for some GL2-module W (Y ) by [10, Proposition 1.5(i)].

Applying HomG1
(Y,−) to (6) we get

0 → HomG1
(Y,∆(λ+ lα)) →W (Y )F → HomG1

(Y, T (λ̃+ lρ)⊗X(α)F )

→ Ext1G1
(Y,∆(λ+ lα)) → Ext1G1

(Y,X(τ)) → 0 (9)

where the last term is zero as T (λ̃+ lρ) is injective as a G1-module.

Since T (τ) is injective as a G1-module by [11, 3.3(2)], we have

Ext1G1
(Y,X(τ)) ∼= Ext2G1

(Y,∆(τ)) ∼= Ext1G1
(Y,Ω−1∆(τ)).

Now by [3, Lemma 4.1] we have Ω−1∆(τ) ∼= ∆(λ + lα) and so the two Ext1G1
-terms in (9)

are isomorphic. Hence for each Y there is a short exact sequence

0 → HomG1
(Y,∆(λ+ lα)) →W (Y )F → HomG1

(Y, T (λ̃+ lρ)⊗X(α)F ) → 0.

The G1-socle of T (λ̃ + lρ) ⊗ X(α)F is just ∇(λ) ⊗ X(α)F , so using [3, Lemmas 4.2–3] we

deduce that this sequence splits as one of the outer terms is zero. Hence by tensoring up

(9) with Y and using the previous lemma, we deduce that the G1-socle of X(τ) is the direct

sum of the G1-socles of the outer terms in (6).
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Now the G1-socle of T (λ̃ + lρ) ⊗ X(α)F is just ∇(λ) ⊗ X(α)F , which by the above is

a direct summand of the G1-socle of X(τ), and hence is a G-submodule of X(τ). But this

cannot intersect ∆(λ + lα) by the G1-socle considerations above, and so the result now

follows.

As noted after (8), this completes the proof of (4.6).

5 Closed forms

In this section we shall provide a closed form for the results on Hom- and Ext-spaces obtained

so far. For simplicity we shall first just deal with the classical case. We wish to define certain

sets which will play a similar role to the set Ψ(r) in [13].

For any integer a with 0 ≤ a ≤ p−1. we define â by a+ â = p−1. Also, if r =
∑v

i=0 rip
i,

we let rs =
∑

i>s rip
i−s−1. Note that for any r we have r = r0 + pr0. We now define

Ψ0(r) =

{

u−1
∑

i=0

r̂ip
i : u ≥ 0

}

,

Ψ1(r) =

{

u−1
∑

i=0

r̂ip
i + pu+a : r̂u 6= 0, a ≥ 1, u ≥ 0

}

⋃

{

u
∑

i=0

r̂ip
i : r̂u 6= 0, u ≥ 0

}

,

Ψ2,1(r) =

{

pu+a,
u

∑

i=0

r̂ip
i + pu+a,

u−1
∑

i=0

r̂ip
i + pu+a + pu+b : r̂u 6= 0, b > a ≥ 1, u ≥ 0

}

,

Ψ2,2(r) =

{

u
∑

i=0

r̂ip
i + pu+a+1 : r̂u 6= 0, ru 6≡ −1 (mod pa), a ≥ 1, u ≥ 0

}

.

With these sets, we can now give a closed form for our previous results.

Theorem 5.1 Let θ = (r + d, d) and χ = (s+ d′, d′). Then we have

HomGL2
(∆(θ),∆(χ)) ∼=

{

k if r + 2d = s+ 2d′ and s = r + 2e with e ∈ Ψ0(r)
0 otherwise.

Ext1
GL2

(∆(θ),∆(χ)) ∼=

{

k if r + 2d = s+ 2d′ and s = r + 2e with e ∈ Ψ1(r)
0 otherwise.

Ext2
GL2

(∆(θ),∆(χ)) ∼=







k2 if r + 2d = s + 2d′ and s = r + 2e with e ∈ Ψ2,2(r)
k if r + 2d = s + 2d′ and s = r + 2e with e ∈ Ψ2,1(r)\Ψ2,2(r)
0 otherwise.
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Proof: The Ext1G result is just [13, Theorem 3.6]. In each of the remaining cases, we shall

rewrite the appropriate conditions from (2.2), (4.4) and (4.6) to describe the desired sets by

a series of recurrence relations. It will then be straightforward to verify that the sets above

are determined by the same relations, and hence obtain the result. Before beginning, we

note that all these relations imply that for a non-zero result we must have the homogeneity

condition in each case. So we assume that r + 2d = s + 2d′. As we show below, in each

non-zero case we also have s = 2e, so we express our relations in terms of this variable e.

To begin we consider the Hom case. Let Φ0(r) be the set of e such that the corresponding

Hom-space is isomorphic to k. Then by (2.2) we have e ∈ Φ0(r) if and only if one of the

following conditions hold:

(1) e0 = r̂0 > 0 and e0 ∈ Φ0(r0)
(2) e = pa − 1, r = 0 and a ≥ 0
(3) e0 = r̂0 = 0 and e0 ∈ Φ0(r0)
(4) d = 0

where the last condition is obvious. Clearly we can combine (1) and (3) to obtain

(1′) e0 = r̂0 and e0 ∈ Φ0(r0).

Now it is straightforward to verify that (1′), (2) and (4) also generate the set
{

u−1
∑

i=0

r̂ip
i : u ≥ 0

}

⋃

{

v
∑

i=0

r̂ip
i + pa+v+1 − pv+1 : a ≥ 0

}

where r =
∑v

i=0 rip
i. But clearly this equals

{

u−1
∑

i=0

r̂ip
i : u ≥ 0

}

⋃

{

w
∑

i=0

r̂ip
i : w ≥ v

}

=

{

u−1
∑

i=0

r̂ip
i : u ≥ 0

}

and so Φ0(r) = Ψ0(r) as required. Next we consider the Ext2 case for p > 2. We write

Φ2,2(r) for the set of e’s giving rise to a two-dimensional Ext2 case, and Φ2,1(r) for the set

of e’s for which Ext2 is non-zero. Now by (4.4) and (4.6), we have e ∈ Φ2,2(r) if and only if

one of the following conditions hold:

(5) e0 = r̂0 > 0, e0 ∈ Φ2,2(r0) and e0 6= pa for some a > 0
(6) e0 = r̂0 = 0 and e0 ∈ Φ2,2(r0)
(7) e0 = r̂0 > 0, e0 = pa for some a > 0 and r0 6≡ −1 (mod pa).

Consider (5). If e0 = pa for some a > 0 then the case is covered by (7) if r0 6≡ −1 (mod pa).

So to show that the last condition in (5) is redundant it is enough to show that if r ≡
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−1 (mod pa) then pa 6∈ Φ2,2(r). But this follows immediately from (4.5). Hence, we may

replace (5) and (6) by the condition

(5′) e0 = r̂0 and e0 ∈ Φ2,2(r0).

It is now straightforward to verify that conditions (5′) and (7) generate Ψ2,2(r) as required.

Finally, we consider the remaining case. For this it will be easier to calculate when Ext2

is non-zero. It is enough to show that Φ2,1(r) = Ψ2,1(r). Now by (4.4) and (4.6), we have

e ∈ Φ2,1(r) if and only if one of the following conditions hold:

(8) e0 = r̂0 > 0, e0 ∈ Φ2,1(r0) and e0 6= pa for some a > 0
(9) e0 = r̂0 = 0 and e0 ∈ Φ2,1(r0)

(10) e0 = r̂0 > 0 and e0 = pa for some a > 0
(11) e0 = r̂0 > 0 and e0 = p0

(12) e0 = 0, r̂0 > 0 and e0 = 1
(13) e0 = 0, r̂0 > 0 and e0 ∈ {pu+1, pu + pu+a : u ≥ 0, a ≥ 1}.

Now (8–11) simplify to give:

(8′) e0 = r̂0 and e0 ∈ Φ2,1(r0)
(10′) e0 = r̂0 > 0 and e0 = pa for some a ≥ 0,

while (12) and (13) become

(12′) r̂0 > 0 and e ∈ {pa, pa + pb : b > a ≥ 1}.

As before, it is now routine to verify that (8′), (10′) and (12′) also generate Ψ2,1(r) as required,

which completes the proof.

A similar result holds in the quantum case, with appropriate modifications as in [3,

Theorem 5.5], and is left to the reader.

6 ∆-infinite q-Schur algebras

In this section we shall consider representations of the q-Schur algebra of Dipper and James.

The definition of this, along with a review of its basic properties, can be found in [18] (or

[14] in the classical case).

Our previous results have shown that there exist 2-dimensional Ext2-spaces between

certain Weyl modules. By dimension shifting, this gives rise to certain modules M and N in

F(∆) for an appropriate q-Schur algebra, such that Ext1G(M,N) is 2-dimensional. We shall
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show that this implies that the category F(∆) contains infinitely many indecomposable

modules. For this we will use a general result concerning modules for an arbitrary finite

dimensional quasi-hereditary k-algebra A, with respect to (Λ,≤), for which we need the

following lemma.

Lemma 6.1 Suppose that P = P (θ) is an indecomposable projective A-module. If σ : P →

P is a homomorphism, then σ maps Ω(∆(θ)) into itself.

Proof: First assume that σ is an isomorphism. We have the exact sequence

0 → U(θ) → P → ∆(θ) → 0

where U(θ) is defined to be the sum of the images of all homomorphisms ψ : P (χ) → P

with χ 6≤ θ (see for example [7]). We identify U(θ) with Ω(∆(θ)). Now consider x ∈ U(θ).

Without loss of generality, we may assume that x = ψ(w) where ψ : P (χ) → P and χ 6≤ θ.

As σ−1 : P → P is onto, there exists a homomorphism η : P (χ) → P such that ψ = σ−1η.

Now η(w) ∈ U(θ), so x ∈ σ−1(U(θ)) and hence σ(U(θ)) ⊆ U(θ).

If σ is not an isomorphism, then it is nilpotent. Hence 1 + σ is an isomorphism, and by

the above takes U(θ) into U(θ). Thus for any x ∈ U(θ) we have x+ σ(x) ∈ U(θ), and hence

σ(x) ∈ U(θ) as required.

Remark 6.2 The above argument also implies that every homomorphism from Ω(∆(θ)) to

P maps into Ω(∆(θ)).

We wish to study modules ∆(θ) and indecomposable projective modules X such that

Ext1A(∆(θ), X) is two-dimensional. Let 0 → Ω(∆(θ)) → P → ∆(θ) → 0 be a projective

cover of ∆(θ). We regard Ext1A(∆(θ), X) as HomA(Ω(∆(θ)), X)/Im(HomA(P,X)). Thus it

is a module both for EndA(X) and for EndA(Ω(∆(θ))).

Proposition 6.3 Let X be an indecomposable projective A-module such that Ext1A(∆(θ), X)

is at least two-dimensional for some θ ∈ Λ. Assume that Ext1A(∆(θ), X) is semi-simple as a

module for EndA(X) and also for EndA(Ω(∆(θ))). Then there is a family of modules

0 → X → Ea → ∆(θ) → 0

with a ∈ k\{0} such that Ea 6∼= Eb for a 6= b.
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Proof: Take two fixed maps φ1 and φ2 from Ω = Ω(∆(θ)) → X which are linearly indepen-

dent in Ext1A(∆(θ), X). For 0 6= a ∈ k we define fa = φ1+ aφ2 and let Ea be the push-out of

fa along the projective cover. We want to show that if Ea
∼= Eb then a = b. By definition,

Ea
∼= (X ⊕ P )/Ia where Ia = {(faw,w) : w ∈ Ω}. So we have an exact sequence

0 → Ia → X ⊕ P → Ea → 0.

Suppose that Ea
∼= Eb. Then, as X is projective, the given isomorphism lifts to a homomor-

phism ψ : X ⊕ P → X ⊕ P which takes Ia into Ib.

For p ∈ P , we write ψ(0, p) = (ρ(p), σ(p)). Now σ is an isomorphism of P , as L(θ) occurs

in the top of both Ea and Eb. Similarly, for x ∈ X we write ψ(x, 0) = (δ(x), η(x)). Since ψ

maps Ia into Ib, there is an endomorphism ǫ of Ω such that

ψ(faw,w) = (fbǫ(w), ǫ(w))

for all w ∈ Ω(∆(θ)). Hence we deduce that for w ∈ Ω(∆(θ)),

ρ(w) + δfa(w) = fbǫ(w), and σ(w) + ηfa(w) = ǫ(w).

Thus fbǫ − δfa = ρ|Ω ∈ Im(HomA(P,X)). We wish to show that there is a k-linear combi-

nation of fa and fb in Im(HomA(P,X)). There are two cases to consider.

First suppose that HomA(X,∆(θ)) = 0. Then η maps into Ω(∆(θ)), and hence fbη is an

endomorphism of X . Substituting for ǫ, we obtain (on Ω∆(θ))

fbσ − (δ − fbη)fa = ρ. (10)

Now the endomorphism ring of X is local, so δ−fbη = d ·1+ν where ν is nilpotent. Similarly

σ = c · 1 + γ where γ is nilpotent, and c 6= 0. By (6.1), we have that γ maps Ω(∆(θ)) into

itself. Since Ext1A(∆(θ), X) is semi-simple as a module for EndA(X) and for EndA(Ω(∆(θ))

the left hand side of (10) equals cfb − dfa, modulo maps which factor through P . As c 6= 0

it follows that fa and fb are linearly dependent in Ext1A(∆(θ), X), and hence that a = b.

Next suppose that HomA(X,∆(θ)) 6= 0. Then X is not a direct summand of Ω(∆(θ)),

since HomA(Ω(∆(θ)),∆(θ)) = 0 for a quasi-hereditary algebra. Note that ηfa maps into

Ω(∆(θ)) by (6.2). We show that in this case ηfa must be nilpotent.

If ηfa is not nilpotent, then fa(ηfa)η : X → X is not nilpotent and hence must be an

isomorphism. Then it follows that X is a summand of Ω(∆(θ)), a contradiction. Now we
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get as before that ǫ = c · 1 + ν with ν nilpotent and c 6= 0, and similarly for δ. Then, again

as before, fa and fb are linearly dependent modulo the image of HomA(P,X), implying that

a = b. This completes the proof of (6.3).

Suppose now that θ = λ + lnρ + t̟ and χ = λ̃ + lmρ with m − n = 2pa + 1 and

n 6≡ −1 (mod pa). Then by (4.6) we have Ext2G(∆(θ),∆(χ)) = k2. As remarked in Section

4, this implies that

Ext1G(∆(θ), X(χ)) = k2

where X(χ) is defined as in (4). Setting X = X(χ)⊗ q-det−1 and A = Sq(2, |χ|−2) we have

Ext1A(∆(θ −̟), X) ∼= Ext1G(∆(θ −̟), X) = k2.

Thus, if we can show that X and Ext1A(∆(θ−̟), X) satisfy the conditions in (6.3), this will

imply that Sq(2, |χ| − 2) is ∆-infinite. We first show that X is a projective indecomposable

module for A, using the following property of tilting modules.

Lemma 6.4 The tilting module T (χ) is an indecomposable injective and projective module

for Sq(2, |χ|).

Proof: Consider first the classical case. By [8, Example 1], T (χ) has simple socle, which we

denote by L(sχ). So it is enough to show that

(T (χ) : ∆(τ)) = [∆(τ) : L(sχ)]

for all τ ≤ χ. But this follows from [16, 5.9 Satz] and [8, Proposition 2.1 and Example

2]. Now consider the quantum case. As the results in [8] used above all generalise to the

quantum setting (using [11, Sections 3.3 and 3.4] and [2, Lemmas 3.2 and 5.1]), it is enough

to show that an appropriate analogue of [16, 5.9 Satz] holds. But using (1), (2) and [11,

3.3(7)] we obtain that this holds for q-GL(2, k) from the corresponding classical case.

Corollary 6.5 The module X is a projective indecomposable module for A.

Proof: Let π = Λ+(2, |χ|)\{χ}. This is a saturated subset of weights, so we have the

associated generalised q-Schur algebra S(π) and truncation functor Oπ as in [11, Section

4.2]. Clearly

Oπ(Sq(2, |χ| − 2)⊗ q-det) = Sq(2, |χ| − 2)⊗ q-det
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has a natural algebra structure induced from Sq(2, |χ| − 2), and the same dimension as S(π)

by the dimension arguments in [10, Section 4]. Thus S(π) ∼= Sq(2, |χ| − 2)⊗ q-det.

As noted in [11, Section 2.1], we have an indempotent e = ξ(r) ∈ S = Sq(2, |χ|) corre-

sponding to the weight (r). Now Se is an indecomposable projective module, isomorphic to

∆(χ). More generally, if S is an algebra containing an idempotent e, we consider S/SeS-

modules as S-modules which are annihilated by the ideal SeS. For any projective module

P we have that P/SeP is an S/SeS-module, and is projective as such since

HomS/SeS(P/SeP,−) ∼= HomS(P,−)|Mod(S/SeS)

is an exact functor.

Now take S and e as above. Setting P = T (χ) we have SeP = ∆(χ), and hence X(χ) is

projective as an S/SeS-module. But S/SeS ∼= S(π), and so we are done.

We use the exact sequence

0 → ∆(λ+ lα)⊕
(

∇(λ)⊗X(α)F
)

→ X(χ)
π
→ ∇(λ̃+ lρ)⊗X(α)F → 0 (11)

from (7), where α = (n + 2pa)ρ. By (4.6) and the calculations after (4.9) this induces an

isomorphism

Ext1G(∆(θ), X(χ)) ∼= Ext1G(∆(θ),∆(λ+ lα))⊕ Ext1G(∆(θ),∇(λ)⊗X(α)F ). (12)

Tensoring both sides with q-det−1 we see that Ext1A(∆(θ −̟), X) is the direct sum of two

one-dimensional modules for EndA(Ω∆(θ−̟)) as required. So it just remains to show that

it is also semi-simple as a module for EndA(X). Indeed, it is enough to show that (12)

is semi-simple as a module for EndG(X(χ)), as the result again follows by tensoring with

q-det−1.

Recall from earlier in this section our identification of Ext1A(∆(θ), Y ) with the space

HomA(Ω(∆(θ)), Y )/Im(HomA(P, Y )). We fix homomorphisms

φ1 : Ω(∆(θ)) → ∆(λ+ lα) and φ2 : Ω(∆(θ)) → ∇(λ)⊗X(α)F

whose push-outs are non-split exact sequences. We can now show

Lemma 6.6 The EndG(X(χ))-module Ext1G(∆(θ), X(χ)) is semi-simple.
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Proof: Let γ be an endomorphism of X(χ). As λ+ lα is the highest weight of X , and occurs

with multiplicity one, we have γ(∆(λ + lα)) ⊆ ∆(λ + lα). Now φ1 maps into ∆(λ + lα),

and hence so too does γφ1. Thus we have γφ1 = cφ1 for some c ∈ k (modulo the image

of HomA(P,X(χ))). Thus it is enough to show that γφ2 maps into ∇(λ)⊗X(α)F (modulo

maps factoring through P ).

By the first part we have that γ induces an endomorphism γ̄ ofX(χ)/∆(λ+lα), which by

(6) is isomorphic to T (λ̃+lρ)⊗X(α)F . As ∇(λ) is a submodule of T (λ̃+lρ), the composition

of this map with that induced by π from (11), gives a homomorphism from ∇(λ)⊗X(α)F

to ∇(λ̃+ lρ)⊗X(α)F . Writing X ′ for X(α) we have

HomG(∇(λ)⊗X ′F ,∇(λ̃+ lρ)⊗X ′F ) ∼= (HomG1
(∇(λ),∇(λ̃+ lρ))⊗X ′F ⊗ (X ′F )∗)G

and this is zero by arguments as in [3, Lemmas 4.2–3]. Thus γ maps ∇(λ) ⊗ X(α)F into

ker π = ∆(λ+ lα)⊕ (∇(λ)⊗X(α)F ). Hence we will be done if we can show that

HomG(∇(λ)⊗X(α)F ,∆(λ+ lα)) = 0.

Apply HomG(∇(λ)⊗X(α)F ,−) to the short exact sequence

0 → ∆(α− ρ)F ⊗∆(λ̃+ l̟) → ∆(λ + lα) → ∆(α)F ⊗∆(λ) → 0 (13)

from (2). This gives an exact sequence

0 → HomG(∇(λ)⊗X(α)F ,∆(α− ρ)F ⊗∆(λ̃+ l̟)) →

→ HomG(∇(λ)⊗X(α)F ,∆(λ+ lα)) → HomG(∇(λ)⊗X(α)F ,∆(α)F ⊗∆(λ)).

Let f ∈ HomG(∇(λ) ⊗ X(α)F ,∆(λ + lα)), and suppose that it is non-zero. By [19, 3.9,

Theorem], the socle of ∆(λ + lα) is simple, and hence must be contained in Im(f). By

(13) the socle of ∆(λ + lα) is also contained in soc(∆(α − ρ)F ⊗ ∆(λ̃ + l̟)) and hence

∇(λ)⊗X(α)F and soc(∆(α− ρ)F ⊗∆(λ̃ + l̟)) must share a common composition factor.

By Steinberg’s tensor product theorem [11, 3.2(5)] all composition factors of ∇(λ) ⊗

X(α)F are of the form ∇(λ)⊗ L(β)F . However, setting η = α− ρ, we have

HomG(∇(λ)⊗L(β)F ,∆(η)F⊗∆(λ̃+l̟)) ∼= (HomG1
(∇(λ),∆(λ̃+l̟))⊗(L(β)F )∗⊗∆(η)F ))G

and this is zero by arguments as in [3, Lemma 4.3]. Thus ∇(λ) ⊗ X(α)F and soc(∆(α −

ρ)F ⊗∆(λ̃+ l̟)) have no common composition factors, which gives the desired contradiction

and completes the proof.

Combining the results of this section we obtain

24



Corollary 6.7 Assume that θ and χ satisfy the conditions given before (6.4). Then the

category F(∆) for Sq(2, |χ| − 2) contains infinitely many non-isomorphic indecomposable

modules.

We next show that, if Sq(2, d) is ∆-infinite, then so is Sq(N, d) for all N ≥ 2. In order to

prove this, we shall briefly consider once again the more general setting of quasi-hereditary

algebras.

Suppose that A is a quasi-hereditary algebra with respect to the partially ordered set

(Λ,≤) labelling the simple modules. Let Γ be a coideal in Λ — that is, that Λ\Γ is saturated.

Consider a set of orthogonal primitive idempotents {eλ : λ ∈ Γ} in A, such that Aeλ is

indecomposable projective, with simple quotient L(λ). Then, for e =
∑

λ∈Γ eλ, the algebra

AΓ = eAe is also quasi-hereditary, with weight poset Γ (see [12, 1.6 Lemma] for details). We

wish to consider the functor induced by the map X 7−→ eX from A-mod to eAe-mod. In

[12, 1.6 Lemma], it was shown that for λ ∈ Λ, we either have e∆(λ) = 0 if λ /∈ Γ, or e∆(λ)

is the Weyl module for AΓ of highest weight λ otherwise. We shall require the following

slightly stronger result.

Theorem 6.8 The above functor induces an equivalence of categories

FΓ(∆) ∼= FAΓ
(∆)

where FΓ(∆) is the full subcategory of FA(∆) with objects those modules all of whose ∆-

quotients have highest weights in Γ.

Proof: This is [4, Theorem 1.2], an easy consequence of [7, Theorem 2].

Clearly FB(∆) is equivalent to FC(∆) for any pair of Morita equivalent algebras B and

C. In conjunction with the last result this gives

Corollary 6.9 If Sq(n, d) is ∆-infinite, then so is Sq(N, d) for any N ≥ n.

Proof: Take Γ = {λ ∈ Λ+(N, d) : λ has at most n parts}. Then the complement of Γ in

Λ+(N, d) is saturated. Taking ē ∈ Sq(N, d) to be the idempotent as in [6, remarks after

Corollary 8.9], we have that ēSq(N, d)ē is isomorphic to Sq(n, d). Moreover, as ēL(λ) is

non-zero if and only if λ ∈ Γ by [6], we also have that ēSq(N, d)ē is Morita equivalent to

Sq(N, d)Γ. The result now follows from the preceding proposition.
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Let F r denote the composition of the Frobenius morphism of Section 1 with the (r−1)th

power of the classical Frobenius morphism, as in [2, Section 3]. Then we have

Lemma 6.10 The functor Φ : mod GL(n, k) → mod G given by

Φ(V ) = (q-det)a ⊗ Str ⊗ V F r

and Φ(φ) = 1⊗ 1⊗ φ

induces an equivalence of categories between appropriate blocks of the corresponding (q-)Schur

algebras.

Proof: This is an easy generalisation of [9, Section 4, Theorem]. That Φ gives rise to a map

between blocks has been shown in [2, Proposition 5.4]. For the equivalence of categories, the

arguments in [9, Section 1(3) and Section 4, Theorem] also hold here, once we have proved

an analogue of [17, 10.4 Proposition]. But the proof given there also holds in this setting,

using (4.10).

To conclude this section, we combine (4.6), (6.7) and (6.9) to obtain

Corollary 6.11 For n ≥ 2 we have

(i) Sq(n, d) is ∆-infinite if (a) l > 2 and d ≥ 2lp+ l − 2, or

(b) l = 2 and d ≥

{

4p if d even
4p2 + 2p− 3 if d odd.

(ii) S(n, d) is ∆-infinite if (a) p > 2 and d ≥ 2p2 + p− 2, or

(b) p = 2 and d ≥

{

8 if d even
17 if d odd.

Proof: We prove part (ii), the quantum case is similar. First, we reduce to the case n = 2

using (6.9). For (ii)(a), it is enough to show, by (6.7), that for d ∈ {2p2 + p, 2p2 + p + 1},

there exist a pair of weights θ and χ such that Ext2G(∆(θ),∆(χ)) = k2, as the result then

follows for d ≥ 2p2 + p by tensoring up with an appropriate power of the determinant

representation. But in these cases we can take θ = (p− 2)ρ+ (p2 +1)̟ and χ = (2p2 + p)ρ,

and θ = (p− 3)ρ+ (p2 + 2)̟ and χ = (2p2 + p+ 1)ρ, respectively.

We next consider (ii)(b). If d = 2e with e ≥ 5 take θ = e̟ and χ = 10ρ + (e − 5)̟.

Then we have Ext2G(∆(θ),∆(χ)) = k2 by (5.1), and the result follows from (6.7). Finally,

suppose d = 2e+1, with e ≥ 8. If e = 8 the result follows from the even case above and the

classical analogues of (6.10) and [2, Lemma 5.1]. We obtain the result for e > 8 by tensoring

up with an appropriate power of the determinant representation.
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7 Further consequences

In this section we shall extend our results on Ext between Weyl modules to G = q-GL(n, k),

for certain special families of partitions. We shall also consider a related question concerning

modules with a Specht filtration for Hecke algebras. We begin by recalling the following

result from [11].

Theorem 7.1 Let Σ be a subset of the simple roots of G, and GΣ be the corresponding Levi

subgroup (see [11, Section 4.2]). If λ and µ are partitions such that λ−µ ∈ ZΣ, then for all

i ≥ 0 we have

ExtiG(∆(λ),∆(µ)) ∼= ExtiGΣ
(∆Σ(λ),∆Σ(µ)).

When |Σ| = 1 and i ≤ 2 the right-hand side can be obtained from (5.1) by identifying GΣ

with q-GL(2, k).

Proof: See [11, 4.2(17)] (or [13, Section 4] in the classical case).

Assume that A is a quasi-hereditary algebra, with respect to the poset (Λ,≤) ordering

the simple modules. Let T be a full tilting module for A, and A′ = EndA(T ) be the Ringel

dual of A (which is unique up to Morita equivalence). Now A′ is also quasi-hereditary, but

with respect to (Λ,≤op). Further, the functor HomA(T,−) induces an equivalence FA(∇) →

FA′(∆) which takes ∇(θ) to ∆(θ). From this we obtain

Proposition 7.2 For θ,χ ∈ Λ and s ≥ 1 we have

ExtsA(∇(θ),∇(χ)) ∼= ExtsA′(∆(θ),∆(χ)).

Proof: See for example [11, Proposition A4.8].

Taking A = Sq(n, d) we have

Theorem 7.3 Suppose θ and χ are partitions of d, and that i ≤ 2.

(i) If θ and χ have two rows then

ExtiG(∆(θ),∆(χ)) ∼= Extiq−GL2(2,k)
(∆(θ),∆(χ)).

(ii) If θ and χ have two columns and at most n parts then

ExtiG(∆(θ),∆(χ)) ∼= Extiq−GL2(2,k)(∆(χ′),∆(θ′)).

In each case the right-hand side is given by (5.1).
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Proof: For polynomial representations of degree d we have ExtsG(−,−) = ExtsA(−,−). Let

Γ be the coideal of Λ+(n, d) such that eAe ∼= Sq(2, d) as in the proof of (6.9). By [11,

Proposition A3.13] (or a small refinement of (6.8)) we have

ExtsA(∆(θ),∆(χ)) ∼= ExtseAe(e∆(θ), e∆(χ)).

But e∆(θ) ∼= ∆eAe(θ) for θ ∈ Γ, and ExtseAe is the same as Extsq−GL2(2,k)
for polynomial

modules of degree d. This proves (i). Now (ii) follows from (i) and [11, Proposition 4.1.5(iii)]

(as A is Morita equivalent to its own Ringel dual when d ≤ n).

We have the following application to Specht modules for Hecke algebras. Details can be

found in [11, Section 4.7] (or [12] in the classical case). For fixed d > 2, let H = Hq(d) be

the Hecke algebra corresponding to the symmetric group Σd over k, and set A = Sq(2, d).

Taking E to be the natural module for q-GL(2, k), there is an action of H on E⊗d such that

EndH(E
⊗d) is isomorphic to A. Moreover, the natural map H → EndA(E

⊗d) is surjective,

and hence EndA(E
⊗d) ∼= H/I where I is the kernel of the above action.

Corollary 7.4 Let θ and χ be partitions of d with at most two parts. Then unless d is even

and either l = 1 and p = 2, or l = 2, we have

Ext2H/I(S
χ, Sθ) ∼= Ext2A(∆(θ),∆(χ))

and the right-hand side is given by (5.1).

Proof: Let T = E⊗d, which is a tilting module for A. The functor HomA(T,−) takes ∇(θ)

to the Specht module Sθ, if θ is a partition of d with at most two parts. Under the given

hypotheses, T is a full tilting module for A, and hence A′ = H/I is a Ringel dual of A.

Further, ∆A′(θ) is identified with the Specht module Sθ. The result now follows from (7.2).

Note that the hypotheses of the last result cannot be omitted. For example, take p = 2

and l = 1; then H/I is isomorphic to kΣ2. In this case we have S(2) ∼= k, and ExtsΣ2
(k, k) 6= 0

for all s ≥ 1. However, for a quasi-hereditary algebra ExtsA(∆(θ),∆(θ)) = 0 for all s ≥ 1

and θ ∈ Λ.

It is natural to ask whether Exts between Specht modules is the same for H/I and H.

If s = 1 and l > 2 then this follows from [11, 4.7(5)]. In the case s = 2 we have
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Proposition 7.5 Let R = H/I, and θ and χ be partitions of d with at most two parts. Then

there is a canonical inclusion

Ext2R(S
θ, Sχ) −→ Ext2H(S

θ, Sχ).

Proof: Suppose that A is any ring with ideal J , and let B = A/J . If W is a B-module such

that Ext1A(B,W ) = 0, then it is easily verified that Ext1B(−,W ) agrees with Ext1A(−,W ) on

Mod(B). Further, this condition is satisfied if HomA(J,W ) = 0. Thus to show that

Ext1R(−, S
χ) = Ext1H(−, S

χ) (14)

on Mod(R), it is enough to show that HomH(I, S
χ) = 0. For this we use the inclusion

HomH(I, S
χ) → HomH(I,M

χ), where Mχ is the q-permutation module corresponding to χ.

This module is filtered by Sγ where γ /∈ Λ+(2, d). By [6, 8.7 Corollary] (or [15, Theorem

13.13] in the classical case), we have HomH(S
γ,Mχ) = 0, and hence (14) follows.

Let PR be a projective cover of Sθ as an R-module, with corresponding kernel ΩR.

Applying HomH(−, S
χ) to

0 → ΩR → PR → Sθ → 0

we get an exact sequence

· · · → Ext1H(PR, S
χ) → Ext1H(ΩR, S

χ) → Ext2H(S
θ, Sχ) → Ext2H(PR, S

χ).

The first term is zero by (14). Again by (14), we have Ext1H(ΩR, S
χ) ∼= Ext1R(ΩR, S

χ) and

this equals Ext2R(S
θ, Sχ) by dimension shift. This completes the proof of the proposition.

Remark 7.6 This inclusion need not be an isomorphism. For example, take p = d = 3 in the

classical case. If θ = (2, 1) then Sθ is projective as an R-module, and hence Ext2R(S
θ,−) = 0.

On the other hand, Ext2H(S
θ, Sχ) ∼= Ext1H(Ω(S

θ), Sχ), and Ω(Sθ) ∼= Dθ. Taking χ = (3) we

have Sχ ∼= k ∼= rad(Sθ), and hence Ext1H(Ω(S
θ), Sχ) 6= 0.

Finally, we use our results on ∆-infinite Schur algebras to show that certain categories

of modules with a Specht filtration have infinite representation type. Define Fd(Sp≤n) to

be the full subcategory of Mod(H) whose objects are all modules with filtrations by Specht

modules Sθ for partitions θ of at most n parts.
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Corollary 7.7 The category Fd(Sp≤n) is of infinite type for all n ≥ 2 in each of the following

cases:

(i) l > 2 and d ≥ 2lp + l − 2.

(ii) l = 2, d odd, and d ≥ 4p2 + 2p− 3.

(iii) l = 1, p > 2, and d ≥ 2p2 + p− 2.

(iv) l = 1, p = 2, d odd, and d ≥ 17.

Proof: Let A = Sq(2, d), and H/I be as above. As in (7.4), we have that H/I is isomorphic

to a Ringel dual of A, and hence that FH/I(Sp≤2) is equivalent to FA(∇) by (7.2). This is

dual to FA(∆), and hence is of infinite type in the cases listed by (6.11). The result now

follows as FH/I(Sp≤2) is a full subcategory of FH(Sp≤n).
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