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Abstract Information processing in the brain is strongly

constrained by anatomical connectivity. However, the

principles governing the organization of corticocortical

connections remain elusive. Here, we tested three models

of relationships between the organization of cortical

structure and features of connections linking 49 areas of the

cat cerebral cortex. Factors taken into account were relative

cytoarchitectonic differentiation (‘structural model’), rela-

tive spatial position (‘distance model’), or relative hierar-

chical position (‘hierarchical model’) of the areas.

Cytoarchitectonic differentiation and spatial distance

(themselves uncorrelated) correlated strongly with the

existence of inter-areal connections, whereas no correlation

was found with relative hierarchical position. Moreover, a

strong correlation was observed between patterns of lami-

nar projection origin or termination and cytoarchitectonic

differentiation. Additionally, cytoarchitectonic differentia-

tion correlated with the absolute number of corticocortical

connections formed by areas, and varied characteristically

between different cortical subnetworks, including a ‘rich-

club’ module of hub areas. Thus, connections between

areas of the cat cerebral cortex can, to a large part, be

explained by the two independent factors of relative cyt-

oarchitectonic differentiation and spatial distance of brain

regions. As both the structural and distance model were

originally formulated in the macaque monkey, their

applicability in another mammalian species suggests a

general principle of global cortical organization.

Keywords Anatomical tract tracing � Cerebral cortex �
Connectivity � Cytoarchitecture � Neuroinformatics

Introduction

The intrinsic architecture of cortical and subcortical

regions and their intrinsic and extrinsic connectivity pat-

terns constitute the anatomical substrate for the elaborate

information processing performed in the brain. Evidence

accumulated from detailed quantitative studies of the

connectome of cat, monkey and human cerebral cortex

(Young 1992; Scannell et al. 1995, 1999; Hilgetag et al.

2000a; Kaiser and Hilgetag 2006; Zamora-López et al.

2010; Bassett et al. 2010; Modha and Singh 2010; Harriger

et al. 2012; Goulas et al. 2014) has revealed a common

topology that has been related to both behavioral measures

and disease conditions in humans (Li et al. 2009; Fang

et al. 2012). This topology, observed across several species,

is characterized by dense connectivity among neighboring

areas of the same major processing modules (visual,

auditory, somato-motor, fronto-limbic), with relatively few

direct long-range connections between them (Kaiser and

Hilgetag 2006). Inter-modal integration is largely served by

a collection of spatially delocalized hub-module areas,

which possess widespread connections and are strongly

Electronic supplementary material The online version of this
article (doi:10.1007/s00429-014-0849-y) contains supplementary
material, which is available to authorized users.

S. F. Beul (&) � C. C. Hilgetag

Department of Computational Neuroscience, University Medical

Center Hamburg-Eppendorf, 20246 Hamburg, Germany

e-mail: s.beul@uke.de

S. Grant

Division of Optometry and Visual Science, Henry Wellcome

Laboratories for Visual Sciences, City University London,

London EC1V 0HB, UK

C. C. Hilgetag

Department of Health Sciences, Sargent College, Boston

University, Boston, MA 02215, USA

123

Brain Struct Funct

DOI 10.1007/s00429-014-0849-y



interconnected among themselves, hence their designation

as a ‘rich-club’ (Colizza et al. 2006; Zamora-López et al.

2011; Bullmore and Sporns 2012; Harriger et al. 2012).

While the ‘rich-club’ is a costly feature in several aspects

of cortical organization (Collin et al. 2013), including the

disproportionate occupancy of white matter volume and

associated high energy expenditure, this organization can

also be considered functionally efficient for providing

locally specialized (intra-modal) as well as longer-range

(cross-modal) integration, and has been likened to the

complex global infrastructure underlying human social and

transport networks (Bassett and Bullmore 2006).

Nonetheless, the structural principles that govern the

characteristic organization of global corticocortical con-

nectivity remain elusive. There are several aspects of inter-

areal cortical connections that need to be explained, such as

their existence (i.e., the absence or presence of a connec-

tion), as well as their patterns of laminar origin and ter-

mination. Three main models have been proposed which

consider different features of cortical organization as pre-

dictors for the characteristics of cortical connections.

First, cytoarchitectonic differentiation, measured prin-

cipally in terms of the number and density of cellular

layers, differs between the areas of the cerebral cortex

(Brodmann 1909; von Economo and Koskinas 1925; Sa-

nides 1970). Regularities in the interconnections of areas of

distinct cytoarchitectonic differentiation have been

observed (Rockland and Pandya 1979; Pandya and Yete-

rian 1985), and the structural model suggests that the

laminar patterns of origins and terminations of inter-areal

projections vary according to the relative cytoarchitectonic

differentiation of the projection sources and targets (Barbas

1986; Barbas and Rempel-Clower 1997). Moreover, cyt-

oarchitectonic differentiation has also been related to the

existence and strength of corticocortical connections, such

as within the visual module of cat cortex (Hilgetag and

Grant 2010). To test the structural model, cortical cytoar-

chitecture is often operationalized by ranking cortical areas

into architectural types, an ordinal measure which projects

complex cortical structure into a single parameter (e.g.,

Barbas 1986; Barbas and Rempel-Clower 1997; Rempel-

Clower and Barbas 2000; Barbas et al. 2005; Hilgetag and

Grant 2010).

Second, the distance model proposes that the relative

spatial position of areas across the cortex systematically

influences the existence (Young 1992; Klyachko and Ste-

vens 2003) and strength (Douglas and Martin 2007) of

connections between them. Specifically, the model

assumes that connections are more frequent, and more

dense, among neighboring regions and sparser or absent

between remote regions, an arrangement consistent with

minimization of axonal wiring costs (Young 1992; Ercsey-

Ravasz et al. 2013). Salin and Bullier (1995) further

proposed that the laminar locations of projection origins

and terminations also change gradually according to the

physical distance between connected cortical regions.

Finally, in the hierarchical model, rankings of cortical

areas have been constructed from the laminar origin and

termination patterns of corticocortical projections (Fell-

eman and Van Essen 1991; Scannell et al. 1995). These

patterns were interpreted as directional information on

projections, for example, ‘forward’, ‘backward’ and ‘lat-

eral’ (Rockland and Pandya 1979; Felleman and Van

Essen 1991), and hierarchical rankings were constructed

as to fit projection directions with a minimal number of

constraint violations (Hilgetag et al. 1996, 2000b; Reid

et al. 2009). The level differences separating source and

target areas in such hierarchies were then related to the

areas’ connectivity, in particular quantitative measures of

the relative distribution of projection origins in the upper

and deep cortical layers (Barone et al. 2000; Vezoli et al.

2004).

Here, we test these three models on an extensive col-

lation of corticocortical connectivity in the cat cerebral

cortex compiled by Scannell et al. (1995). This data set

comprises results of numerous anatomical tracing experi-

ments, the traditional standard for measuring cortical

connectivity, and has been utilized by several research

groups to investigate structural and dynamic properties of

the cat cortical connectome (Müller-Linow et al. 2008;

Zamora-López et al. 2009, 2010; Gomez-Gardenes et al.

2010; Zamora-López et al. 2011; Tang et al. 2012; Bailey

et al. 2013; de Reus and van den Heuvel 2013). One reason

for this popularity is that the data set collates data from

direct anatomical methods for tracing cortical connections

in both anterograde and retrograde directions. The spatial

resolution (at the level of individual cells and synapses)

and reliability of this approach exceed that of indirect

diffusion-based tractography methods (Alger 2012; Griffa

et al. 2013).

Importantly, the conceptual models outlined above that

we examine here have been developed and tested exten-

sively for connections of the visual (Young 1992; Barone

et al. 2000; Vezoli et al. 2004; Douglas and Martin 2007)

and prefrontal cortex of the macaque monkey (Barbas

1986; Barbas and Pandya 1989; Barbas and Rempel-

Clower 1997; Klyachko and Stevens 2003; Barbas et al.

2005; Medalla and Barbas 2006). Thus, their application to

connections spanning the whole cortex in a different spe-

cies provides an excellent test of the models’ generality.

Materials and methods

We first introduce three anatomical variables that are

hypothesized to constrain cortical connectivity in the
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context of the structural, distance, and hierarchical

models of cortical organization. Then, we present the

available data set of cat corticocortical connectivity, and

describe measures and procedures used in the analyses.

Distance

To characterize the spatial separation of areas across the

cortical sheet, we computed their border distance, which

is a pragmatic and widely used measure (Young 1992;

Barbas et al. 2005) for estimating inter-areal distance in

the absence of reliable three-dimensional area coordinates

(also see ‘‘Discussion’’). As part of their connectivity

collation, Scannell et al. (1995) published a spatial

adjacency matrix for their parcellation that indicates

common area borders (their Fig. 6). In some cases, there

was an apparent mismatch between the information in

this adjacency matrix and the parcellation shown in the

paper (Scannell et al. 1995, their Fig. 1). In most of these

cases, we gave priority to information from the matrix,

except where the map was unambiguous. Specifically, the

following changes were made to the spatial adjacency

matrix: we removed adjacencies of area 17 with areas

CGp and RS; and we added adjacencies of area 18 with

areas 20a and 20b; of area CGa with areas 17, 4 and 6 m;

of area SVA with areas 18, 20b and RS; of area SIV with

area Ig and of area 4 g with area 6 m (Online Resource 1

provides a list of abbreviations used for area names, see

Scannell et al. (1995) for further details). From the spatial

adjacency relations, we calculated the shortest distances

between all pairs of areas, Ddist; that is, we determined

the minimum number of borders separating any two areas

within the cortical parcellation adopted by Scannell and

colleagues.

Structural type ranking

To evaluate the structural model, we computed the struc-

tural type difference between all pairs of areas. To this end,

we rated cat cortical areas on an ordinal scale based on

several criteria for their cytoarchitectonic differentiation,

assigning a structural type to each area. One major feature

was the relative width, density and granularization of layer

IV (cf. Barbas 1986). Our classification thus follows the

classical tradition of using cytoarchitectonic features for

characterizing cortical areas as practiced since the early

20th century (Brodmann 1909; von Economo 1927).

Modern techniques for quantification of cortical cytoar-

chitecture (e.g., by neuron density) have been applied to

the macaque monkey (Dombrowski et al. 2001; Medalla

and Barbas 2006), but such data were not available for the

entirety of the cat cortex in the present study. We therefore

determined structural types by qualitative criteria (also see

‘‘Discussion’’). In our ranking procedure, first, areas of

highest and lowest cytoarchitectonic differentiation were

identified and assigned to the structural types 5 and 1,

respectively. Second, areas in which cortical layers could

be distinguished almost as well or as badly as in areas of

types 5 and 1 were assigned the structural types 4 and 2,

respectively. All remaining areas, necessarily of an inter-

mediate differentiation, were assigned to structural type 3.

For a more detailed description of the ranking procedure as

well as photographic examples of structural types see

Hilgetag and Grant (2010). Here we used these criteria to

rank 49 areas across the whole cat cortex. Figure 1 depicts

the assigned structural types in the cortical parcellation of

Scannell et al. (1995). From our ranking scheme, we

determined the difference between the structural types,

Dtype (cf. Barbas 1986), of any two of the 49 cortical areas

Fig. 1 Parcellation of the cat cortex, adapted from Scannell et al. (1995). Areas were assigned to structural types 1–5 according to their level of

cytoarchitectonic differentiation. Type n.a. no structural type was assigned. Abbreviations as in Online Resource 1
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for which we defined a structural type, where Dtype =

typesource area - typetarget area.

Hierarchical level ranking

To evaluate the hierarchical model, we computed the

hierarchical level difference between any two areas within

the visual system. This analysis was confined to the visual

module, because no equivalent hierarchical schemes exist

for the other major modules of the cat cortical connectome.

We used the hierarchy of the cat visual system as derived

by Scannell et al. (1995, their Fig. 2) to determine the

difference in hierarchical level, Dlevel, where Dlevel =

levelsource area - leveltarget area (Barone et al. 2000;

Hilgetag and Grant 2010). To exclude the possibility that

our results hold only for this particular hierarchy, we

alternatively computed Dlevel from the hierarchy of the cat

visual system as proposed by Hilgetag et al. (2000b, their

Fig. 12). In the analyses, we rectified an oversight in the

published hierarchy diagram by reducing the level of area

17 to level 1, placing it on the same level as area 18.

Projection data

Qualitative measures of corticocortical connections were

extracted from an extensive collation of published reports

of anatomical tract-tracing experiments in the cat (Scannell

et al. 1995). The database that was provided for download

in conjunction with the article includes 1,400 projections,

which are mapped onto a parcellation consisting of 65

brain regions. The data set comprises the most complete

summary of corticocortical connections in the cat to date.

Even close to 20 years after its publication, this collation

from 96 articles still represents the majority of anatomical

tracing data available for this species, since few new tract-

tracing results on the cat cortex have been published in the

meantime. The data set has been widely interrogated (and

cited 246 times to date, according to Web of Science,

http://apps.webofknowledge.com).

Existence of projections

Existence of projections was given qualitatively as either

absent (‘0’) or present, where the presence was described by

ordinal weights as sparse (‘1’), intermediate (‘2’), or dense

(‘3’). Importantly, projections weighted as ‘0’ were

explicitly reported to be absent in the original literature,

whereas no assumption was made about unknown projec-

tions (67 % of all potential projections among the areas).

This distinction between absent and unknown projections

was made in the companion database provided for down-

load by Scannell et al. (1995), but not in the results pub-

lished in the article itself. We conducted the majority of

analyses on a version of the database converted to binary

projection status, which rated projections as either absent or

present and discarded information on projection density.

This binarization enabled us to normalize projection fre-

quencies across the tested variables, for example controlling

for the fact that the data set contained information about a

larger number of connections of distance 1 than of distance

5. An alternative approach for treating connection weights

would have been to normalize projection frequencies sep-

arately for each ordinal density category. This approach

would have yielded separate results for each density class,

but not provided a comprehensive picture of the impact of

the structural variables on connectivity overall.

For 954 of the 1,400 projections in the database (218

absent, 736 present) we were able to assess both Ddist and

Dtype. For a subset of 308 projections (93 absent, 215

present), we could include additional information for Dlevel

in the analyses. An overview of all available projection

data together with the associated structural parameters is

given in Online Resource 2.

Qualitative information on the presence or absence of

connections is an undirected measure, as is the distance

between two cortical areas, Ddist. To meaningfully correlate

these undirected variables with the directed variables Dtype

and Dlevel, we reduced the latter two variables to their

magnitude, that is, their absolute values, |Dtype| and |Dlevel|.

To assess the distribution of present and absent projec-

tions across the considered anatomical variables, we cal-

culated the cumulative percentage of present projections.

For each anatomical variable, the cumulative percentage at

each of its values was calculated as the sum of the number

of present projections found up to this value, divided by the

total number of present projections and multiplied by one

hundred.

Relative projection frequencies were calculated sepa-

rately for each value of each anatomical variable by con-

sidering all connections between pairs of areas at a

particular distance, type difference or hierarchical level

difference and assessing how many of them were indeed

connected (e.g., determining the frequency of connections

among all areas separated by 5 borders). Relative projec-

tion frequencies were, thus, calculated as the number of

present projections with a specific value for a given ana-

tomical variable, divided by the total number of examined

projections (i.e. absent plus present projections) with that

specific value.

Laminar projection patterns

Laminar projection patterns were available for a subset of

133 projections linking 22 cortical areas of the cat visual

system. Scannell and colleagues classified the direction of

projections as ‘ascending’, ‘lateral’, or ‘descending’

Brain Struct Funct

123



according to criteria laid out by Felleman and Van Essen

(1991). Specifically, projections were classified as

‘ascending’, if they originated from the supragranular

layers or in a bilaminar pattern from supra- and infra-

granular layers, and terminated predominantly in layer IV.

‘Lateral’ projections originated from both supra- and in-

fragranular layers, and terminated in a columnar pattern

throughout all cortical layers. ‘Descending’ projections

originated either from infragranular layers or from both

supra- and infragranular layers, and terminated in supra-

and/or infragranular layers, avoiding layer IV in their ter-

minations (Felleman and Van Essen 1991, their Fig. 3).

Based on this classification of projection directions,

Scannell and colleagues derived an anatomical hierarchy of

the cat visual system by arranging cortical areas such that a

maximum number of ‘ascending’ projections pointed to

higher levels and a maximum of ‘descending’ projections

pointed to lower levels of the hierarchy.

The projection directions (Scannell et al. 1995; Hilgetag

et al. 2000b, their Fig. 4) contain information on laminar

projection origins and terminations in a pre-interpreted

form. To assess the relationship between laminar projection

patterns and structural factors, we used this set of 133

classified projections to calculate rank correlations of

projection direction with Dtype as well as Dlevel. For these

calculations, projection direction was consolidated in three

categories: ‘ascending’, ‘lateral’, and ‘descending’. We

included all projections whose direction classification had

been marked as unreliable, due to insufficient or contra-

dictory data (Hilgetag et al. 2000b, their Fig. 4), into the

laminar categories that were indicated for them. For one

projection analyzed by Scannell et al. (1995) and Hilgetag

et al. (2000b), no Dtype was available, because it targeted a

region which had not been assigned a structural type. The

present analyses were thus conducted on 132 projections.

The relation of projection direction to distance between

cortical areas could not be evaluated using this data set,

because distance is an undirected measure. Projection

direction classified into three categories as used here,

however, has no magnitude which could be evaluated

independent of its direction, so that no meaningful com-

bination of distance with an undirected adaptation of

laminar projection patterns could be obtained.

Topological measures

Modules of cortical areas

Zamora-López et al. (2010) used the database provided by

Scannell et al. (1995) to analyze the connectivity of the

entire cerebral cortex in the cat from a network-theoretical

perspective and identified a ‘rich-club’ module of 11 hub

areas, based on the internal density of links between high-

degree nodes. The cortical areas constituting this hub meta-

module were part of four other anatomical modules (visual,

auditory, somatosensory-motor, and fronto-limbic) previ-

ously identified by different network-theoretical approa-

ches (Scannell and Young 1993; Young 1993; Young et al.

1994; Hilgetag et al. 2000a; Sporns et al. 2004). These

module classifications provide an opportunity to study the

association between anatomical parameters and connection

features at a larger-scale level of cortical organization. As

Zamora-López and colleagues included only 53 of the 65

cortical areas of the original data set in their analyses, we

restricted our analyses of the module features to the 48

areas which were both included in their analyses and

possessed a structural type rating.

Node degree and weighted node degree

The node degree of a cortical area is the number of pro-

jections it takes part in. Here we added the number of

afferent projections (in-degree) to the number of efferent

projections (out-degree) for each area to obtain its overall

node degree. Projections commonly comprise a strongly

varying number of neurons, with projection strengths

ranging over several orders of magnitude from only a few

neurons to several thousand neurons (Scannell et al. 2000;

Hilgetag and Grant 2000; Markov et al. 2011, 2014). We

also computed node strength (the weighted node degree) by

weighting each projection with its strength prior to sum-

ming up the present projections. As projection strength was

rated ordinally in the data set provided by Scannell et al.

(1995), we approximated the actual metric projection

strength to vary over three orders of magnitude across

sparse, intermediate and dense projections. We assigned

weights of 100, 101, and 102 to these respective descriptive

categories to take into account the typical exponential

distribution of projection densities (Hilgetag and Grant

2000; Markov et al. 2014). Moreover, we separately rank-

correlated the number of projections with structural type

for the projections of each ordinal strength.

Node connection range

We characterized the spatial range of the projections of

cortical areas by assessing the distances of all afferent and

efferent connections to and from each area, by computing

the proportions of its projections formed by short (distance

1 and 2) as well as long (distance 4 and 5) connections,

respectively. These proportions provided a simplified and

robust measure of the projection distance profile of indi-

vidual areas, from which we computed aggregate measures

of node ranges for groups of areas.
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Statistical analyses

While type difference and border distance are inherently

ordinal measures, projection directions can also be con-

sidered as ordinal values, by arranging them in the order of

(‘ascending’, ‘lateral’, ‘descending’). To assess relations

between these ordinal variables, we computed Spearman’s

rank-correlation coefficient q. We also computed Spear-

man’s q to assess relations between relative projection

frequencies and the respective anatomical variables.

To test two groups of ordinal measures for equality of

their medians, we computed Wilcoxon rank sum test sta-

tistics (W). To test for equality of more than two groups of

ordinal measures, we computed Kruskal–Wallis test sta-

tistics (H). We calculated Jonckheere–Terpstra test statis-

tics (JT) to assess trends across multiple groups of ordinal

measures. JT was computed using IBM SPSS Statistics

Version 19 (IBM Corporation, Armonk, NY, USA). All

tests were pre-assigned a two-tailed significance level

a = 0.05. If not indicated otherwise, all analyses were

performed using MATLAB Release 2012B (The Math-

Works, Inc., Natick, MA, USA).

Linear discriminant analysis

To assess the distribution of present and absent projections

across the variables |Dtype| and Ddist more closely, we per-

formed a linear discriminant analysis (LDA) (Klecka 1980;

Burns and Burns 2008). LDA determines a linear combi-

nation of predictive variables that optimally separates dis-

tinct classes of a dependent variable. Here, we used |Dtype|

and Ddist as predictive variables, and existence of projec-

tions as the dependent variable. Given the non-significant

correlation of relative projection frequencies with |Dlevel|

(see ‘‘Results’’), we did not include |Dlevel| into the LDA.

We assumed uniform prior probabilities for the classes of

the dependent variable (‘absent’ and ‘present’). LDA then

provides a posterior probability for each combination of

|Dtype| and Ddist, which can be used to classify new data

points (unknown connections) as either absent or present.

To account for the fact that not all combinations of the

predictive variables can occur equally often (e.g., combi-

nations of |Dtype| = 1 and Ddist = 1 are frequent in this

cortical parcellation, while combinations of |Dtype| = 4 and

Ddist = 4 are not), we normalized the numbers of absent

and present projections of a specific combination of |Dtype|

and Ddist by the maximally possible number of co-occur-

rences of that combination. This resulted in proportions

%absent and %present of projections at each point in the

predictive variable space. Note that %absent ? %pres-

ent = 100, which reflects the fact that there is a remaining

percentage of projections which have not been examined.

To transform the resulting percentages into cases suitable

as input for LDA, we constructed, for each combination of

|Dtype| and Ddist, na = %absent cases with the respective

values of the predictive variables and a dependent variable

rating of ‘0’ (absent), and np = %present cases with the

same predictive variables but a dependent variable rating of

‘1’ (present). Compared to using the raw data as input for

the LDA, this procedure adjusts the relative importance of

examined projections by taking into account how thor-

oughly the underlying predictive variable space was

sampled.

Cross-validation was performed by randomly excluding

10 % of the data from the training set and using this test set

to validate the obtained model. We tested model perfor-

mance at seven different classification thresholds, starting

at 0.60 and increasing in 0.05 increments to 0.90. Con-

nections were assigned the status ‘present’, if the posterior

probability for the presence of connections at their asso-

ciated |Dtype| and Ddist was equal to or larger than the

classification threshold, and assigned the status ‘absent’, if

their associated posterior probability was equal to or

smaller than 1 minus the classification threshold (i.e., 0.40,

decreasing in 0.05 increments to 0.10). We did not classify

the status of connections with associated posterior proba-

bilities that fell into the intermediate range. We performed

200 cross-validation cycles and report averaged results.

Results

To test the structural, distance, and hierarchical models of

cortical organization, we first assessed how informative

they were regarding the presence or absence of intercon-

nections between cortical areas, putting a special focus on

the possibility of predicting connectivity. We then explored

how cytoarchitectonic differentiation may relate to topo-

logical properties of cortical connectivity, such as mem-

bership in a ‘rich-club’ hub module or node degree.

Finally, shifting perspective to further properties of the

cortical connectome, we examined whether laminar pro-

jection patterns were well explained by structural type

difference.

Relationship of projection existence to anatomical

variables

We evaluated the association among qualitative projection

strength and the variables distance, Ddist, structural type

difference, Dtype, and hierarchical level difference, Dlevel.

Figure 2 shows the distribution of present projections for

each parameter. It also depicts the cumulative percentage

of present projections. About 75 % of present connections

were found within values of Ddist = 1–3 (of the range 1–6
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possible in the used cortical parcellation; Fig. 2a), within

|Dtype| = 0–1 (of the range 0–4 possible between the 5

types; Fig. 2b), or within |Dlevel| = 0–5 (of the range 0–10

occurring in this data set or 0–13 possible in the employed

hierarchy; Fig. 2c). That is, the great majority of existing

connections were short range and between areas of rela-

tively similar intrinsic cytoarchitecture and hierarchical

position.

Rank-correlation analyses revealed no significant rela-

tionship between Ddist and |Dtype| (q = 0.06, p [ 0.05,

Fig. 3a), or between Ddist and |Dlevel| (q = 0.04, p [ 0.05,

Fig. 3b), suggesting that Ddist was a largely independent

factor. However, there was a strong correlation between

Dtype and Dlevel (q = -0.63, p \ 0.001, Fig. 3c), discussed

below.

Relative projection frequencies (i.e., relative propor-

tions of present connections) were maximally negatively

correlated with both Ddist (q = -1.00, p \ 0.01, Fig. 4a)

and |Dtype| (q = -1.00, p \ 0.05, Fig. 4b). This mono-

tonic decline for both factors indicates that the more

distant or the more structurally dissimilar cortical areas

are, the fewer projections are present between them. The

results did not change substantially when the analyses

were conducted only on the subset of 308 projections for

which Dlevel was available (Ddist: q = -1.0, p \ 0.05,

|Dtype|: q = -1.00, p \ 0.05). By contrast, the relative

proportion of present projections was not correlated with

|Dlevel| (q = -0.36, p [ 0.05, Fig. 4c), indicating that the

level difference between areas within the hierarchy pro-

posed by Scannell et al. (1995) does not contain

A B CFig. 2 Cumulative percentages

of present projections. For each

anatomical variable, the

absolute number of present

projections is shown for each of

its values (bars, left axis).

Additionally, the cumulative

percentage of present

projections is indicated

(diamonds, right axis). a Border

distance Ddist. b Absolute type

difference |Dtype|. c Absolute

hierarchical level difference

|Dlevel|

CA B

Fig. 3 Interrelations of anatomical variables. a Distance Ddist was

not correlated with absolute structural type difference |Dtype| or b with

absolute hierarchical level difference |Dlevel|. c Structural type

difference Dtype and hierarchical level difference Dlevel were strongly

correlated. Marker size indicates number of projections
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information about whether two areas are connected by an

anatomical projection. Such a correlation was also absent

for an alternative hierarchical ranking described by Hil-

getag et al. (2000b) (see Methods: ‘‘Hierarchical level

ranking’’).

Combination of structural type difference and distance

We performed a LDA to distinguish between present and

absent projections by their associated |Dtype| and Ddist.

The LDA assigned a significant contribution to classifi-

cation performance to both variables, with standardized

canonical discrimination function coefficients of 0.95 and

0.71 for |Dtype| and Ddist, respectively. Figure 5a depicts

the posterior probabilities that resulted from the LDA

across the predictive variable space. Projections were

confidently labeled as ‘present’ (ppresent C 0.75) if both

|Dtype| and Ddist were in their lower range, that is

|Dtype| \ 2 and Ddist B 3, and as ‘absent’ (ppresent B 0.25)

if the variables were in their upper range of |Dtype| [ 2

and Ddist C 4.

From the posterior probabilities we made predictions

about the existence of connections using different clas-

sification thresholds for the assignment of connections

into the categories ‘present’ and ‘absent’. Figure 5b

shows the cross-validated prediction accuracy of our

model within the test sets across the used range of clas-

sification thresholds. Prediction accuracy increased as

thresholds became more conservative, while at the same

time the number of connections that were predicted

decreased. A sensible choice for the classification

threshold appeared to be ppresent = 0.75 and ppresent =

0.25 for ‘present’ and ‘absent’ connections, respectively.

In this case the classification accuracy for both prediction

categories exceeded 75 %, while the number of predic-

tions remained substantial. These results illustrate how

the combination of the two independent factors of

absolute structural type difference and distance allowed

us to confidently determine, for the subset of cortical

connections that link cortical areas of appropriate |Dtype|

and Ddist, whether two cortical areas were connected. We

therefore applied the posterior probabilities resulting from

the model to predict the existence of connections that

have not yet been investigated. Figure 5c depicts the

classification of 926 as yet unexamined projections

between cat cortical areas, where the classification

threshold surpassed by the predicted connections is indi-

cated by cell color saturation. At a classification threshold

of 0.75 for present connections and 0.25 for absent con-

nections, we made predictions about the existence of 418

unknown connections.

Modules of cortical areas

The 11 cortical areas considered to constitute a ‘rich-club’

hub module by Zamora-López et al. (2010) had signifi-

cantly lower structural types than all the remaining areas

not belonging to the ‘rich-club’ (hub-module areas: med-

ian = 1.5, non-hub-module areas: median = 3;

W = 146.5, z = -2.6, p = 0.01, Fig. 6a). Furthermore,

the modality-specific clusters differed in their structural

type medians (visual cluster: median = 3, auditory cluster:

median = 3, somatosensory cluster: median = 2, fronto-

limbic cluster: median = 1; H(3) = 11.1, p \ 0.05,

Fig. 6b). Post hoc tests, Bonferroni-corrected for multiple

comparisons, revealed that the visual cluster had a higher

median structural type than the fronto-limbic cluster

(W = 255.0, z = 2.7, p = 0.0006, acorr = 0.0008); all

other pairwise differences in structural type between the

four modality-specific clusters were not significant after

correcting for multiple comparisons. However, structural

type decreased gradually from the visual to the auditory,

then to somatosensory and finally to the fronto-limbic

cortices (JT = -2.0, p \ 0.05).

CBAFig. 4 Correlation of

anatomical variables with

relative frequencies of present

projections. a, b Distance Ddist

and absolute structural type

difference |Dtype| were

negatively correlated with

relative projection frequency.

c Absolute hierarchical level

difference |Dlevel| was not

correlated with relative

projection frequency
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C

A B

correct total
correct present
correct absent
number of predictions

Fig. 5 Results of linear discriminant analysis (LDA). a Posterior

probabilities for presence of projections across the predictive variable

space. Black borders enclose ranges of ppresent[0.75 and ppresent\0.25.

b Results of cross-validation at different prediction thresholds. Mean

prediction accuracy for projections that were predicted to be present and

absent (light green) as well as overall mean prediction accuracy (dark

green) are shown. Mean number of predictions at each threshold is

shown in black. Error bars indicate standard deviations. c Matrix of

corticocortical connections in the cat, adapted from Scannell et al.

(1995). Projections of known status are coded dark red (absent) and

dark blue (present). Additionally, predicted connectivity for 926

unexamined projections is indicated. Projections predicted to be absent

are shown in lighter reds, predictions predicted to be present are shown

in lighter blues. Color saturation indicates how conservative a

prediction threshold a particular prediction survived. White cells are

unexamined connections for which no prediction has been made. The

diagonal of intra-areal connections has been marked black. Projections’

source regions are arranged on the vertical axis, target regions are

arranged on the horizontal axis. Abbreviations as in Online Resource 1.

Note that area labels are split across left/top and right/bottom axes
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Node degree and weighted node degree

The node degree (number of present projections) of cortical

areas was negatively correlated with their structural type

(q = -0.53, p \ 0.001, Fig. 7a), such that areas with

lower cytoarchitectonic differentiation had more connec-

tions. However, the weighted node degree (connection

strength or density) of cortical areas was not correlated

with their structural type (q = 0.004, p [ 0.05, Fig. 7b).

When calculated separately for projections of each ordinal

projection strength, the correlation with structural type

remained unaffected for sparse (q = -0.49, p \ 0.001)

and intermediate (q = -0.50, p \ 0.001) projections, but

disappeared for dense projections (q = 0.06, p [ 0.05),

thus explaining the lack of an overall correlation between

structural type and node strength.

We present this remarkable observation in a different

form in Fig. 8, which depicts the mean number of dense,

intermediate and sparse projections averaged across areas

of a structural type. This representation underlines that the

number of dense projections remains roughly constant,

while the number of intermediate and sparse projections

decreases notably with structural type, as revealed by the

above correlation analyses.

Since the hub-module areas were originally identified, in

part, by their very large number of connections and were

found to be concentrated at the low end of the cytoarchi-

tectonic differentiation spectrum, it is possible that the

‘rich-club’ module was mainly responsible for the strong

association between high node degree and low structural

type. To examine this possibility, we repeated the analyses

with the ‘rich-club’ areas excluded. While this procedure

had a quantitative impact, reducing the strength of the

correlations, the relationship between low cytoarchitectonic

differentiation and high node degree remained significant

(q = -0.41, p \ 0.01), and there was no qualitative effect

on the lack of correlation with weighted node degree

(q = 0.29, p [ 0.05).

We observed an unexpected correlation between struc-

tural type and the total number of projections studied for a

cortical area (comprising projections found to be absent as

well as projections found to be present) (q = -0.40,

p \ 0.01). This effect raises the possibility that the corre-

lation of node degree with structural type was a result of

unequally distributed sampling efforts. However, it needs

to be considered what impact additional data could have on

the results. If all remaining unknown projections were to be

examined, only a proportion of them would be found

present. We verified that, if this proportion was equal

across all structural types, the correlation we observed

between node degree and structural type would remain

moderate and significant up to an added proportion of

present projections of 87 %. In the current data set, 77 %

of examined projections were found to be present, whereas

A B

Fig. 6 Distribution of structural types across modules of cortical

areas. a Hub-module areas had a lower median type than non-hub-

module areas. b Structural type gradually decreased across four

anatomical modules of cortical areas. Markers inside circles indicate

median degree, diamonds indicate outliers

A BFig. 7 Degree distribution of

cortical areas. a Node degree of

cortical areas across structural

types. b Weighted node degree

of cortical areas across

structural types. Node degree

was correlated with structural

type, while weighted node

degree was not. Markers inside

circles indicate median degree
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cortical connectivity levels have previously been estimated

to reach about 50 % (Felleman and Van Essen 1991) or

66 % (Markov et al. 2014). Thus, even assuming the

uncommonly high connectivity level of the examined data

set (which likely reflects a lack of probing for absent

projections in the literature, rather than a genuinely

increased proportion of present projections), a uniform

increase of present projections would still yield a correla-

tion between node degree and structural type of q =

-0.37, p \ 0.01. A perhaps more probable proportion of

present projections, such as 60 %, would result in a cor-

relation of q = -0.44, p \ 0.01. Thus, notwithstanding the

possible undersampling of high structural type areas, our

results suggest that areas of lower structural type are more

frequently interconnected within the cortical connectome,

and regardless of whether or not they are members of the

‘rich-club’ hub module.

Node connection range

The projection distance profiles of cortical areas varied

across structural types. When we compared aggregate

node connection ranges for all areas of a given structural

type across all five possible types, we found a positive

relation for the proportion of short projections, such that

areas of a higher structural type had higher proportions of

short-range connections than areas of a lower structural

type (JT = 3.1, p \ 0.01). We also found an inverse

relation between structural type and the proportion of long

projections, such that areas of a lower structural type had

a higher proportion of long projections than areas of a

higher structural type (JT = -2.9, p \ 0.01). For exam-

ple, the average proportions of short- versus long-range

connections for areas of the highest cytoarchitectonic

differentiation (type 5) were 65 % and 9 %, respectively,

compared to 45 % and 25 % for those of the lowest

differentiation (type 1).

Laminar projection profiles

We investigated the relationship between the laminar

projection patterns of connections, as coded in their

assigned directions of ‘ascending’, ‘lateral’, and

‘descending’, and the associated Dtype, as well as Dlevel.

The Dtype was strongly correlated with both projection

direction (q = -0.53, p \ 0.001, Fig. 9a) and Dlevel

(q = -0.73, p \ 0.001, Fig. 9b, compare also Fig. 3c).

Projection direction was also strongly correlated with Dlevel

(q = 0.74, p \ 0.001, Fig. 9c), which was to be expected,

as the hierarchical arrangements, and therefore the level

differences, were derived from the projection directions in

the first place. Results did not change if all projections

classified as less reliable by Scannell et al. (1995) were

excluded from the analysis.

Discussion

We used an extensive database (Scannell et al. 1995) of

anatomical tracing experiments to assess, employing a

variety of analytical approaches, the extent to which dif-

ferent anatomical variables associated with cortical orga-

nization can account for the local and global inter-areal

connectivity of the cat cerebral cortex. Three anatomical

factors were considered: differences between the cytoar-

chitectonic differentiation of cortical areas, particularly in

the cellular density of cortical layers; border distances

between areas; and their positions in the anatomical hier-

archy originally constructed by Scannell and colleagues.

There were four main findings: first, the relative cytoar-

chitectonic differentiation of areas, measured as structural

type difference, contained significant information about

several aspects of inter-areal corticocortical connectivity,

including the existence (Fig. 4b) and laminar origin and

termination patterns of projections (Fig. 9a). Second, the

separation of areas across the cortical sheet, measured as

border distance, also contained information about whether

connections are present or not (Fig. 4a). Therefore, a linear

combination of the two independent factors of structural

type and distance allowed us to predict the existence of

connections in the data set with more than 85 % accuracy

at moderately conservative classification thresholds

(Fig. 5b). Third, the relative position of areas in previously

suggested hierarchical orderings, measured as level
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Fig. 8 Mean number of projections across structural types. Means for

ordinal projection strengths are indicated separately for each struc-

tural type. The maximal standard deviation across all structural types

is 5 for the number of dense projections, 7 for the number of

intermediate projections, and 9 for the number of sparse projections
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difference, was not informative about their inter-areal

connectivity. Fourth, the cytoarchitectonic differentiation

of areas was related to several of their topological prop-

erties. This included their membership in a densely con-

nected ‘rich-club’ hub module as well as, more generally,

the number of projections maintained by different areas

(Fig. 7a) and the short- or long-range character of their

connections (node connection range). Figure 10 summa-

rizes these findings by depicting all existing connections in

the data set between areas of determined structural type,

with the brain regions arranged concentrically according to

their structural type and clustered into the four major

anatomical/functional modules of the cat cerebral cortex.

Note that, already by visual inspection, connections of type

difference 0 (blue) and 1 (blue-grey) clearly prevail,

illustrating that most connections in the cat cerebral cortex

link areas of similar cytoarchitectonic differentiation, and

that areas of low cytoarchitectonic differentiation have the

most connections.

Methodological considerations

The present findings hinge on the reliability of the database

and analyses employed. We used border distance to

quantify the spatial separation of areas, rather than their

Euclidean distance. This was partly because no detailed

three-dimensional atlas quantifying the absolute distance

between the mass centers of each area is currently available

for the cat cortex. To obtain all the Euclidean area sepa-

rations in the absence of such reliable information would

thus have necessitated a number of unsubstantiated

assumptions, whereas the use of border distances requires

fewer constraints. Border distances are, however, poten-

tially distorted by unequal area sizes and do not account for

the actual projection lengths, as axons run under gyri and/

or around sulci between their origins and destinations.

Despite these complications, border distances generally

correlate strongly with Euclidean distances where these

latter are known (e.g., in macaque monkey visual cortex,

our unpublished observation).

The connectivity database that we used comprises the

most detailed information currently available about cat

corticocortical connectivity, but some of its limitations

warrant discussion. The database derives from anatomical

studies published between 1968 and 1991 using intracel-

lular transport of tracers. While this methodology usually

enables the unambiguous detection of direct inter-areal

connections, tracing studies are subject to technical cave-

ats, which affect especially older results. For example,

tracer uptake in fibers of passage can lead to false-positive

results, while false-negative results can be caused by

unsatisfactory tracer uptake, transport and/or detection (see

Heimer and Robards 1981; Lanciego and Wouterlood 2011

for reviews). The database could therefore diverge from the

CBA

Fig. 9 Correlation of anatomical variables with assigned direction-

alities of projections. a Structural type difference Dtype was strongly

correlated with projection directions and b hierarchical level

difference Dlevel. c Hierarchical level difference Dlevel was strongly

correlated with projection directions. Marker size indicates number of

projections

Brain Struct Funct

123



actual pattern of connectivity especially by erroneous

‘absences’ of projections, which cannot be detected in a

single tracing experiment. Notwithstanding these limita-

tions, tract tracing remains the gold-standard technique for

evaluating structural connections.

Another potential limitation is the adequacy of the

specific cortical parcellation scheme used by the data col-

lators, since alternative subdivisions have been proposed

for all regions of cat cortex to that adopted by Scannell

et al. (1995) which we followed here. The determination of

area boundaries directly relates to connectivity patterns,

with subtle differences in the latter often used to demarcate

borders between neighboring areas. However, global

organizational aspects of brain networks appear to be rel-

atively robust to different parcellation schemes (de Reus

and van den Heuvel 2013). The collators also necessarily

averaged connectivity across areas, thus masking any

inhomogeneities within and between them, such as possible

differences in selective connectivity strengths between

areas of the visual module containing ‘over-representa-

tions’ of central versus peripheral or of upper versus lower

fields, or between tonotopic and non-tonotopic areas of

auditory cortex. A further related question concerns the

validity of the criteria used by the collators to assess rel-

ative inter-areal connection strengths (including apparent

‘absences’) across pathway tracing experiments that used

techniques with differing sensitivities. While we thus

acknowledge that future resolution of these matters may

result in changes to our connectional summary (Fig. 10),

we do not expect them to obscure the systematic properties

of the global cortical connectome that we have identified.

We would further note that, because the database contains

information exclusively about ipsilateral corticocortical

connections, our findings provide no insight into principles

governing the connectivity across the cortical hemispheres.

Relationships among anatomical variables

The absolute structural type difference and border distance

of all pairs of areas were not correlated in our data set

(Fig. 3a). This finding arose even though cytoarchitectonic

differentiation frequently changes gradually across the

cortical surface of cats (Hassler and Muhs-Clement 1964;

Sanides and Hoffmann 1969) and primates (Sanides 1970;

Barbas and Pandya 1989; Zilles and Amunts 2012), which

intertwines structural type difference with the spatial dis-

tance between areas. However, the gradual change in cyt-

oarchitectonic differentiation repeats multiple times across

the cortical sheet, for instance, between primary and more

remote ‘association’ areas within modules. In our

approach, we assessed the border relationships of areas

along all spatial directions, not just along a select axis (e.g.,

Fig. 10 Visualization of the

corticocortical connections

collated in Scannell et al.

(1995). All present projections

between cortical areas for which

a structural type was defined (49

of 65 areas) are displayed.

Circles correspond to structural

types, cortical areas are placed

accordingly. Structural type

increases from center to

periphery. Projections are color-

coded according to the absolute

structural type difference of the

connected areas. Ordinal

projection strength (sparse,

intermediate, or dense) is coded

by increasing projection width.

Nodes are grouped and color-

coded according to anatomical

modules as indicated. Node

sizes indicate the areas’

(unweighted) degree. Hub-

module areas, as classified by

Zamora-López et al. (2010), are

marked by a white outline
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caudal to rostral), obscuring potential correlations for

specific spatial gradients of cytoarchitecture. The resulting

absence of a correlation thus indicates that the two factors

of structural type and distance capture largely independent

structural aspects at the global cortical level, justifying our

treatment of them as independent variables. Moreover,

border distance and hierarchical level difference were not

correlated in our data set (Fig. 3b), indicating that they,

too, describe independent aspects of cortical organization.

In contrast, structural type difference and hierarchical level

difference were found to be interdependent factors

(Figs. 3c, 9b). This association arises inevitably from the

fact that structural type differences and laminar patterns are

strongly correlated and that cortical hierarchies are con-

structed from the laminar patterns, so that differences in

hierarchical levels actually emerge from the strong rela-

tionship between cytoarchitectonic differentiation and

laminar projection patterns.

Structural model

Previous studies which were restricted largely to fronto-

limbic regions of macaque monkey cortex (Barbas 1986;

Barbas and Rempel-Clower 1997; Rempel-Clower and

Barbas 2000; Barbas et al. 2005) or only to the visual

module in the cat (Hilgetag and Grant 2010) have dem-

onstrated strong associations between cytoarchitectonic

differentiation and laminar connectivity. Our present find-

ings, therefore, show that this anatomical principle extends

across species and from the local, intra-modal level to the

global organization of the cerebral cortex as a whole.

Furthermore, the relative frequency by which two areas

located anywhere in the cortex were linked by a direct

anatomical projection decreased monotonically with their

absolute difference in structural type (Fig. 4b), a result

which concurs with previous findings for the cat visual

cortex (Hilgetag and Grant 2010).

Assessing the hub-module areas identified by Zamora-

López et al. (2010), we found that these areas were of a

lower structural type than non-hub-module areas (Fig. 6a).

Topological hubs, by definition, have a high node degree,

that is, a large number of connections (Bullmore and

Sporns 2009). We found, more generally, that there was a

systematic inverse relationship between structural type and

the number of connections across the whole data set, such

that cortical areas of lower structural type had a higher

node degree (Fig. 7a). More specifically, areas of a lower

type appeared to possess a larger number of sparse and

intermediate projections added to a backbone of dense

connections which remains uniform across areas of all

structural types (Fig. 8). We also found a relationship

between structural type and the distances profile of areas,

such that areas of a lower structural type had larger

proportions of long connections and smaller proportions of

short connections than observed in areas of a higher

structural type. Thus, areas of a lower structural type

appear to be more widely interlinked with other brain

regions, both in terms of the number and the spatial range

of their connections, compared to regions of higher struc-

tural type which typically correspond to the primary and

immediately neighboring areas of each major uni-modal

module.

Concerning the distribution of structural types within the

four major uni-modal cortical communities (Scannell et al.

1995; Hilgetag et al. 2000a; Hilgetag and Kaiser 2004), we

found a systematic variation in median structural type

across the clusters, with the lowest median structural type

in the fronto-limbic module and the highest in the visual

module (Fig. 6b). This difference in average degree of

cortical differentiation in different modules may partly

explain their strong intra-modular connections—since

minimal structural type differences are associated with

dense connectivity between areas (Fig. 10)—and ulti-

mately the separation of corticocortical connections into

modular subnetworks linking areas of different sensory and

motor functions. However, the actual mechanisms leading

to the formation of cortical modules are still unresolved

(Kaiser and Hilgetag 2007).

Generally, the principles governing the intriguing rela-

tionships among structural type, degree distribution and

module location in the cerebral cortex are still unclear. A

tentative explanation might be that these factors are

developmentally interrelated. Higher node degree could,

for example, be mediated by the relative time windows of

the development of different areas, with lower-type areas

appearing earlier in development than higher-type cortices

and thereby being able to connect more widely and fre-

quently with newly emerging areas. A similar mechanism

has been proposed to account for the degree distribution of

single neurons in Caenorhabditis elegans (Varier and

Kaiser 2011; Towlson et al. 2013). Indeed, developmental

evidence suggests that the time course of neurogenesis and

cellular maturation in the mammalian cerebral cortex fol-

lows a broad rostral-to-caudal gradient (Sidman and Rakic

1973; Smart 1983; Smart et al. 2002), thus matching the

lower-to-higher structural types and relative connectivity

of frontal-to-occipital cortical regions.

One caveat applying to our structural type classification

is that cytoarchitectonic differentiation of the mammalian

cerebral cortex likely forms a gradual continuum (Sanides

and Hoffmann 1969; Sanides 1970), as do laminar pro-

jection patterns within each of the three ordinal classes

(Grant and Hilgetag 2005). Therefore, a measure objec-

tively capturing gradual transitions across the cortex would

be superior to the discrete structural types we assigned to

brain regions. One such measure is neural density, which
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has been used by Medalla and Barbas (2006) to assess the

structural model for projections of parietal to prefrontal

cortices in the macaque monkey. Neuronal densities across

cortical layers have previously been reported to vary sys-

tematically between areas classified into structural types by

the criteria used here (Dombrowski et al. 2001). We are

confident, therefore, that our discrete structural type clas-

sification captured genuine and relevant effects of cytoar-

chitectonic differentiation.

Distance model

Due to the nature of the data, we could not evaluate the

correspondence between (undirected) border distance and

(directed) laminar projection patterns (see Methods: ‘‘Pro-

jection data’’). However, we showed that pairs of areas are

less frequently interconnected, the further they are separated

across the cortical surface (Fig. 4a). This result is consistent

with a large number of studies that investigated constraints of

brain connectivity and found neural wiring length to be of

critical importance (Bullmore and Sporns 2012). However,

brain connectivity does not appear to be exclusively opti-

mized with respect to physical wiring length, because trade-

offs exist, for instance, with minimal topological path length

(Kaiser and Hilgetag 2006; Bullmore and Sporns 2009).

Thus, the distance model appears useful mainly as a predictor

of the numerical neuron strength (high versus low) and

existence (presence versus absence) of connections between

neighboring versus widely separated cortical areas.

Hierarchical model

Hierarchical level difference was strongly correlated with

the assigned ‘hierarchical’ direction of projections

(Fig. 9b). But this finding is neither surprising nor

instructive, as the anatomical hierarchy had been con-

structed from these connection orientations in the first

place (Scannell et al. 1995), so that the correlation between

the two variables was based on a circular approach. Con-

cerning the absence or presence of projections, the relative

position of two areas within the hierarchical ordering was

uninformative (Fig. 4c), with areas on adjacent levels of

the hierarchy being no more frequently interconnected than

those separated by more levels. This finding is contrary to

the common understanding of hierarchical cortical schemes

(Felleman and Van Essen 1991). It also resonates with

several other shortcomings of hierarchical processing

schemes, such as their failure to account for the level-

skipping nature of many corticocortical (and thalamo-cor-

tical) pathways (Symonds and Rosenquist 1984; Goldman-

Rakic 1988; Mountcastle 1995; Hilgetag et al. 2000b;

Petroni et al. 2001) or physiological features of cortical

processing, in terms of near-synchronous response

latencies (Nowak and Bullier 1997; Schmolesky et al.

1998) and similarities in receptive field size and com-

plexity for the same stimulus (Hegdé and Van Essen 2007)

at ‘lower’ and ‘higher’ hierarchical levels. Moreover, an

optimal hierarchy has hitherto proven elusive, as large

numbers of different orderings comply equally well with

the constraints provided by the anatomical data (Hilgetag

et al. 1996, 2000a). While the great laminar regularity of

inter-areal projection patterns is certainly intriguing, it

remains open for discussion whether elaborate schemes for

ordering brain areas hierarchically are fundamentally

helpful for understanding cortical organization (Hegdé and

Felleman 2007; Markov et al. 2013).

Predicting cortical projections

To integrate the information that the two independent

parameters of structural type difference and border distance

contain about the existence of projections, we combined

them in a linear model. From this approach, we obtained a

posterior probability of the existence of projections

depending on both absolute structural type difference and

distance (Fig. 5a). Projections between areas with both low

absolute type difference and small border distance were

very likely to be present, whereas the likelihood of a present

projection strongly decreased once absolute type difference

and border distance between areas grew larger. While there

was considerable uncertainty about the status of projections

between cortical areas possessing combinations of inter-

mediate absolute type difference and intermediate border

distance, we were able to derive predictions for the exis-

tence of as yet unstudied projections between cortical areas

which fall into those ranges of absolute type difference and

border distance which were confidently associated with

either absence or presence of projections (Fig. 5c). Delib-

erate investigation of these currently unknown projections

will allow gathering evidence to corroborate or contradict

the structural and the distance model. Such data will also

contribute to determining the relative importance of these

two factors. Currently, the data set contains insufficient data

to resolve the question of which of the factors dominates in

cases of opposing predictions.

Our model predicts symmetric connectivity, that is,

connections from areas of low to areas of high structural

type are expected to be as likely as connections from high

to low type. This prediction disregards the possibility that

mechanisms may exist which preferentially mediate con-

nections of one direction over the other, thus leading to

asymmetric connectivity profiles. Furthermore, the data set

provided an unequal sampling of the predictive variable

space, which may have biased the resulting model. None-

theless, our integrated model hints at a possible regularity,

by revealing the high likelihood of corticocortical
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connections between areas of similar cytoarchitectonic

differentiation, even across comparatively long distances.

This finding is consistent with previous results indicating

that neural networks are not optimized solely with respect

to cost-conserving principles of reducing axonal wiring

length (Kaiser and Hilgetag 2006), since connections

across longer distances can provide network shortcuts that

boost efficiency from a functional perspective. In the

present study we did not explore the impact of potential

functional constraints, such as topological path length

(which may be related to functional efficiency), on con-

nectivity features. Naturally, our approach for predicting

the existence of connections could be augmented by con-

sidering additional functional or topological properties that

have been explored previously (Jouve et al. 1998; Costa

et al. 2007). Incorporating a broader range of factors could

potentially enable us to reproduce features of the connec-

tome that are not resolved by our model in its current form,

such as modularity and hub features, which have been

suggested to result from a combination of spatial and

topological properties (Chen et al. 2013).

Conclusion

Our study assessed models of corticocortical connectivity in

the cat across a more comprehensive set of cortical areas

and more functional modules than previous studies (Hil-

getag and Grant 2010), considered topological area-based

features, and integrated the relative cytoarchitectonic dif-

ferentiation and spatial distance among areas into a pre-

dictive model of the global cortical connectome of the cat.

We provide support for the structural model originally

proposed by Barbas (1986), by showing that cytoarchitec-

tonic differentiation contains information about different

dimensions of brain connectivity, namely laminar patterns

and the existence of inter-areal projections. Furthermore,

the structural type of cortical areas appears to be related to

their topological properties, for example, the degree of

connectedness, with lower type (‘limbic’) areas possessing

more connections. In addition, we found that the distance

model also partly explains the existence of inter-areal

connections. By contrast, our findings suggest that the

hierarchical model has little explanatory value regarding the

existence of inter-areal connections. In summary, relative

cytoarchitectonic differentiation as well as spatial relations

are good predictors of cortical connectivity in the cat brain,

and can be combined to tentatively predict unexamined

connections. While additional parameters remain to be

tested for their impact on the cortical connectome, our

results suggest that some of the general principles govern-

ing its organization have already been recognized.
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