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Abstract. In this paper we develop an order driver market model with heterogeneous traders that imitate
each other on different network structures. We assess how imitations among otherway noise traders, can
give rise to well known stylized facts such as fat tails and volatility clustering. We examine the impact
of communication and imitation on the statistical properties of prices and order flows when changing
the networks’ structure, and show that the imitation of a given, fixed agent, called ”guru”, can generate
clustering of volatility in the model. We also find a positive correlation between volatility and bid-ask
spread, and between fat-tailed fluctuations in asset prices and gap sizes in the order book.

PACS. -0.2.50.-r Probability theory, stochastic processes and statistics – -0.5.40.-a Fluctuation phenom-
ena, random processes, noise, and Brownian motion – -89.65.Gh Economics, econophysics, financial mar-
kets, business and management – -89.65.-s Social and economic system

1 Introduction

The main purpose of this paper is to understand if and
how herding effects may be responsible for the persistence
of asset price volatility. While stocks returns themselves
are relatively uncorrelated, the squares or absolute val-
ues of returns are autocorrelated, reflecting a tendency
for markets to move from relative quiet periods to more
turbulent ones. Significant positive autocorrelation of ab-
solute stock returns survives for a year or more, and de-
cays at a rate which is slower than exponential. A num-
ber of econometric time series techniques have been in-
troduced for the modelling of time varying variances and
covariances1. However, statistical analysis alone is not suf-
ficient to understand the presence or absence of long-range
memory in volatility, and economic mechanisms that can
explain the origin of this phenomena are needed. Some
insights into volatility clustering have been provided by
agent-based models. Following the pioneering Santa Fe Ar-
tificial Stock Market, SF-ASM[1], several artificial finan-
cial markets have been developed over the last 15 years.
In particular understanding how sophisticated agents may
be able to reproduce volatility clustering has been widely
studied in the economic literature. For instance ([2], [3],
[4], [5], [6]) are examples of agent based models able to
explain the influence of traders’ behaviours on the per-
sistence of asset price volatility. As argued by [7], some
mechanisms of behavioural switching can generate persis-

1 The first instrument developed in 1982 by Engle for ana-
lyzing the variation in higher order moments is the AutoRe-
gressive Conditional Heteroskedastic (ARCH) model.

tent return volatility, even though they are not sufficient
to create long range dependence in absolute returns2.

The models cited above have looked at the effect of co-
ordination of traders strategies via market mediated inter-
actions (for example when agents follow common chartist
trading rules). Collective behaviour nonetheless could re-
flects the phenomenon known as herding which occurs
when agents take actions on the basis of directly imitating
each other ( [8], [9], [10], [11], [12], [13], [14]). Most of the
studies on herding effects have focused on how herding
can lead to large price fluctuation but only a few papers
have investigated its role as a source of volatility clus-
tering ( [14], [15], [16]). As pointed out by the model of
[14] of which this is, in a way, an extension, local com-
munication and imitation among traders, if dynamically
evolving, can induce not only volatility clustering but mul-
tiscaling as well. The originality of this work as regards
[14] is the mechanism of price formation. We introduce
here an order-driven market where limit orders are stored
in the order book and executed using time priority at a
given price and price priority across prices. The advan-
tage of an auction market respect to a dealer market (as
in [14]) is that the price is determined through the trad-
ing mechanism itself without ad-hoc pricing rules or un-
realistic tatonnement mechanism for reaching an equilib-
rium price. Moreover, while in [14] agents were placed on

2 A short memory process has autocorrelations decaying
to zero exponentially as the lag increases. In contrast, the
autocorrela- tion of the long memory process decays to zero
at a hyperbolic rate with an exponent smaller than 1.
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a regular grid and could only interact with their nearest
neighbours, here we introduce a random communication
structure that can evolve dynamically. The communica-
tion network is taken as exogenous. In this setting, we
compare the effects of random interaction versus the imi-
tation of a given, fixed agent, that we name the guru.

Agents in our model imitate the expectations of the Guru
and not its actions. In an order driven market, it is not nec-
essarily the case that this kind of imitation leads to larger
coordination and in turn to larger price fluctuations. In
fact, even if the guru expects a price increase/decrease,
he himself and/or the agents that follow his advice may
submit limit orders to buy/sell instead of market orders,
and the immediate impact of their trades may be negligi-
ble. The long term impact of these imitation lead trades
is also not clear a priori. For example, if imitation results
in an accumulation of limit orders near the bid/ask they
may dampen future price fluctuations instead of amplify-
ing them.

In the last part of our study we investigate the correla-
tion between herding, volatility, bid-ask spread and order
flows. While the availability of order book data has made
possible a number of empirical studies on limit order flows,
only a few papers [5] have analyzed these features is sim-
ulation studies. Empirical analysis has showed fat tails in
the distribution of limit order arrivals ([17] and [18], [19])
and fat tail decay of order distribution in the limit order
book. [20] has also shown that fat tails in the distribution
of returns emerge when large gaps are present between the
best price and the price at the next best quote (and are
not linked, as suggested by [21], to large market orders ar-
rival). We show that our model is capable of reproducing
these stylized facts.

The rest of the paper is organized as follows. In section 2
we describe the model; in section 3 we present the results
of the simulations; section 4 concludes.

2 The mathematical structure of the model

2.1 The market

The market in our model is order-driven. A population of
N traders can either place market orders, which are imme-
diately executed at the current best listed price, or they
can place limit orders. Limit orders are stored in the ex-
change’s book and executed using time priority at a given
price and price priority across prices. A transaction occurs
when a market order hits a quote on the opposite side of
the market.

Trading happens over a number of periods tk, with k =
1, ⋅ ⋅ ⋅T . At the beginning of each period, traders make
expectations about the price at the end of a given time
horizon � (that we take to be the same for all traders).
The future price expected at time tk + � by agent i is

given by

p̂itk,tk+� = ptke
r̂itk,tk+�

√

� (1)

where r̂itk,tk+� is the agent’s expectation on the spot re-
turn which, as we will see later, may be affected by the
expectation of other agents and ptk is the reference price
observed by all agents at the beginning of each period.

After expectations are made, Nt trades are submitted
each period. Agents enter the market, sequentially and
in a random order, determine a limit price and an order
size, and submit their orders. If an agent expects a fu-
ture price increase (decrease) he decides to buy (sell) at a
price bit (a

i
t) lower (higher) than his expected future price

p̂itk,tk+� . Bids and asks are uniformly distributed in an
interval (pmin, pmax) around the current price, calculated
according to the following rules

bit ∼ U(pbmin, p
b
max), p

b
min = pt(1− 1

t ), p
b
max = p̂itk,tk+�

(2)

ait ∼ U(pamin, p
a
max), p

a
min = p̂itk,tk+� , p

a
max = pt(1 + 2

t )
(3)

where 1,2
t are random variables uniformly distributed in

the interval (0, 1) and pt is the price at the time the order
is submitted. The price is recalculated as trading goes on
as follows: pt is given by the price at which a transaction
occurs, if any; if no new transaction occurs, a proxy for pt
is given by the average of the quoted ask aqt (the lowest
ask listed in the book) and the quoted bid bqt (the highest
bid listed in the book), pt = (aqt + bqt )/2; if no bids or
asks are listed in the book a proxy for pt is given by the
previous traded or quoted price. Bids, asks and prices are
positive and investors can submit limit orders at any price
on a prespecified grid, defined by the tick size �3.

We assume that agents have a random demand function
and that the size of their order is bounded only by budget
constraints. Agents hold a finite amount of cash Ci

t and
stocks Si

t in their portfolio. The size si of agent’s i order
is determined as follows:

– if the agent expects a price decrease he sells a random
fraction of his assets si = �tS

i

– if the agent expects a price increase he invests a ran-
dom fraction of his cash in the assets equal to
si = �tC

i
t/a

q
t if he submits a market order

si = �tC
i
t/b

i
t if he submits a limit order

where �t is a random variable uniformly distributed on the
interval (0, 1).

If bit ≤ atq or ait > btq the agent place a limit order at

its limit price. If bit ≥ atq, then the agent places a market

order to buy at the current quoted ask atq. If the supply

available on the book at the ask price atq is not sufficiently
large to fulfil the order, the agent buys all the quantity

3 The tick is the smallest possible change of pt.
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available at the ask and then moves on to check the sec-
ond best ask price, iterating the process until he has no
more stocks to buy or there are no more sell orders in the
book at a price smaller than bit. Symmetrically, if ait < btq,

then the agent places a market order to sell at a price btq.
If the demand available on the book at this price is not
sufficiently large, he fills the available demand at the bid
and then moves on to check the second best bid price, it-
erating the process until the agent has no more stock to
sell or there are no more buy orders in the book at a price
greater than ait. If the order can only be partially filled,
the agent places its unmatched demand/supply as a limit
order. If the limit order is still unmatched at time t + � ,
it is removed from the book.

When agents place a market order, their cash and stocks
positions are updated accordingly. When agents place a
limit order, the cash they commit to buy and the stocks
they commit to sell are also temporarily removed from
their portfolios (even if a limit order does not comport an
immediate transaction). In this way agents can not spend
money or sell stocks that have already committed in the
book. If the order is cancelled, the stocks and cash that
were tied down in the orders are returned to the traders
who had submitted them.

2.2 The interaction network

To model how agents’ decision are influenced by their mu-
tual interaction we introduce a communication structure
in which nodes represents agents and the hedges are the
connective links between them. Links are directional and
go from the agent that requests advice to the agent that
provides advice.

In general local interaction models, agent interacts di-
rectly with a finite number of others in the population.
The set of nodes with whom a node is linked is referred to
as its neighbourhoods. In our model the number of out-
going links is constrained to be one. The reason being
that in a highly connected random network synchronisa-
tion could be achieved via indirect links. The effects of
direct imitation are easier to be tested in a diluted net-
work where indirect synchronisation is less likely to arise.

We start with the case where each agent i makes a
unique link with a randomly chosen agent j. In this case
the probability that any two agents (i, j) are linked is in-
dependent of both i and j. We call this model the random
attachment case. We then move to the case where each
agent i chooses to link, with a probability � (indepen-
dent of i), to a fixed agent j and with probability 1 − �
to a randomly chosen agent. We call this fixed agent j,
who attracts the largest number of in-coming links, the
”guru”. The random attachment case is recovered in the
limit � = 0. When � is equal to one all agents are linked
to the guru and the network becomes star like.

We subsequently introduce a time dependent probability

of attachment that evolves as

d�t

�t

= ���t. (4)

The probability �t is constrained to take values in the in-
terval (0, 1) and is reflected at the boundaries.

2.3 The expectation formation mechanism

At the beginning of each trading period tk, agents make
idiosyncratic expectations about the spot return, r̂itk,tk+�

in the interval (tk, tk + �). We assume that agents are not
informed and have random expectation of future returns.
We also assume that agents are heterogeneous in that they
have different forecasts of the returns’ volatility, �i

t. Ex-
pected returns are thus given by

r̂itk,tk+� = �i
tk
�tk (5)

where �i
tk

is a positive, agent specific, constant and �t ∼
N(0, 1) is a normal noise.

After individual expectation are generated, a consulta-
tion round starts during which agents sequentially, and
in a random order, revise their expectation. The revised
expected return is obtained by weighing agent i’s own ex-
pectation with that of agent j to which i is linked to

ritk,tk+� = wr̂itk,tk+� + (1− w)r̂jtk,tk+� . (6)

When w is equal to zero, i trusts completely the opinions
of j, while when w is equal to one i considers exclusively
his own opinion and agents decisions are fully independent
from each other. At the beginning of each period tk agents
expectations are reset to random values. We stress that
in the model imitation is purely expectation based, and
agents do not imitate the actions of others. This choice is
motivated by the fact that in a real market normally the
order book is not fully visible to traders, and the order
submission is anonymous.

While agents are noise traders in our model, we assume
that they correctly anticipate the impact of herding on
asset prices. In particular if an agent has several incoming
links, and w is small (in which case the agent expects to
be able to influence the decisions of others), he forecast a
larger price volatility. This is incorporated in the model by
assuming that the volatility of forcasted returns is propor-
tional to the number of incoming links and to the weights
w, such that

�i
tk

= �i
0(A+ l%i,tk(1− w)) (7)

where l%i,tk in the percentage of existing links that point
to agent i at time tk and A is a constant parameter. The
values of �i

0 are chosen, with uniform probability, in the
interval (0, �0). The effect of this rule is to favour market
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order submission over limit order submission from agents
who have many incoming links. This happens because the
interval over which the limit price is chosen is wider when
�i
tk

is larger and the selected limit order are more likely
to be immediately marketable. Not only the guru is more
likely to submit a market order in this way, but also his
followers are, because of the expectation formation mech-
anism in equation (6). A sequence of market orders in the
same direction will in turn generate large price fluctua-
tions fulfilling the original expectation of the guru.

3 Simulations and results

The model is studied numerically for different values of
the parameters � and w. We focus the analysis on the sta-
tistical properties of the probability distribution of stock
returns and on the auto-correlation of market volatility.
We also analyse some properties of the order submission
strategies such as the spread, the distance between best
price (bid/ask) and the price at the next best quote and
the trading volume.
In the simulations the number of traders is set at N = 100.
Each agent is initially given a random amount of stocks,
uniformly distributed in the interval S0 ∈ [0, 100] and an
amount of cash uniformly distributed in the interval C0 ∈
[0, 100]. The initial stock price is chosen at p0 = 1000.
We fix � = 200, � = 0.01, n0 = 0.01, �� = 0.01. The
results reported here are the outcome of simulations of
T = 2000 periods and Nt = 200 trades per periods. With
about 200 transactions per period, a trading period would
be of the order of few minutes to few hours, depending on
the the liquidity of the market. Simulations are repeated
M = 100 times with a different random seed. While 100
agents may appear quite small, the number of agents in
real markets, who monitor each other expectations is not
large. Adding a number of pure noise traders to the sys-
tem, may make the simulations more realistic but would
not change qualitatively the results, because noise traders
transactions would, on average, offset each others.

3.1 Returns and volatility

We first analyse the statistical properties of returns in a
network with a fixed guru as we increase the (constant)
probability of attachment �.
Figure (1) displays a sample path of the return time series
for � = 0, � = 0.5 and � = 1 when w = 0.1.

Figure (2) shows the return time series when the prob-
ability of attachment follows equation (4), for different
values of w.

A more precise measure of fat tails is provided by the
Hill exponent. In figure (3)(left side) we plot the hill ex-
ponent as a function of � when w=0.5, and in the right
side we plot it as a function of w for � = 0, � = 1, and �
time dependent.

Empirically the tail exponent is found to take values
between 2 and 4. Changing the parameters of the model
our simulations generates values for the Hill exponent in

the same range. When w = 1 or � = 0, that is in absence of
imitation, the tail exponent approaches the normal value
of 4. Nonetheless this limit value is never reached, because
of the budged constrain.

It is clear from the figures that the introduction of a fixed
guru in the model leads to fat tails but is not capable of
generating volatility clustering. This is due to the fact that
synchronisation effects become more and more important
when � increases and this can induce large fluctuations at
all times. Volatility clustering instead reflects the transi-
tion from relatively quite trading period to more turbu-
lent ones. To generate volatility clustering in our model we
need to have a probability of attachment � that increases
and decreases over time.
A simple way to check if volatility is persistent is to mea-
sure the autocorrelation function of absolute returns for
different time lags. Empirically it is observed that absolute
returns are autocorrelated over lags of several weeks and
decay slowly to zero. In fact, several authors (see [23], [24]
and[25], [26], [27], [28] and [7] for evidence), have shown
that the autocorrelation function of absolute returns, de-
creases hyperbolically with the time lag � :

∣C(�)∣ ∼
B

��
(8)

with � ∈ [0.2, 0.4] and is B a positive constant called the
tail or scale parameter. In figure (4) we plot the autocorre-
lation of absolute returns (left) and of return (center) for
w=0.1 and � = 0 (black line), � = 1 (red line) and time
dependent � (green line). We note that while the autocor-
relation of returns is insignificant in all cases, a positive
and slowly decaying autocorrelation of absolute returns is
present in the case of time dependent �. The autocorrela-
tion function of absolute returns is well fitted by a power
law with � = 0.32 as seen in figure (4) (left side).

A more precise measure of long term memory is provided
by the R/S statistics. In the modified R/S analysis the
parameter that allows to discriminate between short and
long term memory is the exponent �. If only short mem-
ory is present � converges to 1/2 while with long memory,
it converges to a value larger than 1/2. In figure (5) we
plot the modified R/S exponent � for absolute returns as
a function of w. We observe that, only for time dependent
�, � becomes significantly larger that 0.5. In this case we
also observe that � increases when w decreases reflecting
that the memory is longer when the imitation is stronger.

The attachment mechanism in equation (4) shows that
the dynamic of creating, sustaining and destroying the
guru is a plausible source of volatility clustering and long
memory. The � in our model evolves according to a re-
flected Geometric Brownian Motion. The exact dynamic
of � is not crucial but volatility clustering only arises if
� does not change too quickly4. Here � is updated every

4 In the endogenous version of the model oscillations on the
number of incoming links to the guru are generated by allow-
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Fig. 1. Return time series for � = 0 (left) and � = .5 (center) and � = 1 (right) and w=0.1
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Fig. 2. Returns time series with a time dependent � and w=0.2 (left), w=0.5 (center) and w=0.8 (right). The evolution of p
is described by the red line.
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Fig. 3. Hill exponents of the returns distribution as as a function of constant � for w = 0.5 (left side). Hill exponents of the
returns distribution as a function of w for � = 0, � = 1 and � time dependent, respectively black, red and green lines (right
side).

trading period, but the value of �� used for the simula-
tions is small (�� = 0.01). Figure (2) indeed shows that
significative changes in �, and the burst of volatility, oc-

ing agents to choose to whom to link. In fact, we implement an
algorithm where agents link to the most successful agent, and
not to a fixed guru. In that contest we introduce a switching
probability smaller than one, to avoid that a new guru substi-
tutes himself too quickly to the previous one.

cur over a few hundreds periods that correspond, approxi-
mately, to periods of months. A more precise fine tuning of
the exponent � could be achieved by optimizing the ratio
between the time scale at which the information network
evolves and the time scale at which the trading decision is
updated. A different ratio between these two time scales
could explain the different values of � observed empirically
in different markets.
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Fig. 4. Autocorrelation of absolute returns (left) and of returns (center) for w=0.1 and � = 0 (black line), � = 1 (red line) and
time dependent � (green line). Autocorrelation of absolute returns for w=0.5 and time dependent � (black line) and the power
law best fit (red line) (left side).
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Fig. 5. R/S exponent for absolute returns as function of w for � = 0 (black line), � = 1 (red line) and the time dependent case
(green line).
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Fig. 6. DDF of limit order placement distance from the midpoint, respectively for w equal to 0 (black line), 0.1 (red line),
0.3 (green line), 0.5 (blue line), 0.7 (yellow line), 0.9 (cyan line) and 1 (magenta line) (right side). DDF of bid-ask spread,
respectively for w equal to 0 (black line), 0.1 (red line), 0.3 (green line), 0.5 (blue line), 0.7 (yellow line), 0.9 (cyan line) and 1
(magenta line) (left side).
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Fig. 7. DDF of trading volume, respectively for w equal to 0 (black line), 0.1 (red line), 0.3 (green line), 0.5 (blue line), 0.7
(yellow line), 0.9 (cyan line) and 1 (magenta line).

3.2 Book and order flows

In this subsection we investigate the impact of the imita-
tion on the order flows when the probability of attachment
follows equation (4) (the case that leads to volatility clus-
tering).
Figure (6) (left side) displays the decumulative distribu-
tion function (DDF) of the limit order placement distance
from the midpoint for different values of w. We observe
that, increasing imitation, limit orders are placed at large
distance from the midpoint. Figure (6) (right side) shows
the DDF of the bid-ask spread when changing w. For small
values of w we observe that the DDF becomes power-law,
in agreement with the empirical observation that spread
and volatility are positively correlated. These results are
consistent with the empirical analyses of [19] and [18].

Next, we investigate the relationship between fat-taild fluc-
tuations in asset prices and trading volume and gap sizes.
According to [21], power-law tails in price fluctuation are
driven by power-low fluctuations in the volume of trans-
actions. The power-law decay of trading volume nonethe-
less is not well establishes empirically and varies from ex-
change to exchange. [20] have suggested an alternative ex-
planation for the large fluctuation in returns. They show
empirically that order submission typically results in a
large price change, not when the order is large but when a
large gap is present between the best price (ask- bid) and
the price at the next best quote. Figure (7) displays the
DDF of the trading volume in our model for different val-
ues of w. We observe that, when imitation increases, trad-
ing volume also increases, but the DDF does not change
shape to become more fat tailed, thus contradicting the
argument of [21]. Figure (8) shows the DDF of the first
gap on the ask side (left) and bid side (right) in our model
as a function of w. We observe that the gap distribution
does become power law as imitation increases. This re-
sult indicates that the formation of large gaps is the lead-
ing mechanism generating large price fluctuations in the

model. Large gaps in our model are created when imitation
is large because limit orders are placed at a wider range
of distances from the midpoint (as seen in Figure (6)).
This in turn is due to the larger volatility predicted by
the Guru, via equation (7), which affects both the choice
of p̂itk,tk+� and of the interval (pmin, pmax).

4 Conclusion

In this paper we have investigated the impact of imitating
a fixed guru on the statistical properties of asset prices.
We have shown that the model can reproduce a number
of stylised facts observed in real financial time series.

The model proposed in this paper is a toy model that
relies on a number of ad-hoc exogenously imposed rules
whose purpose is not to describe the behaviour of real
agents in real markets, but to identifying the main condi-
tions under which imitiation leads to fat tails and volatility
clustering in a limit order market. In particular imitation
of believes in itself does not generate trading synchronisa-
tion and large price fluctuations unless the guru is capable
of anticipating the impact of herding on the asset price.
Furthermore for clustering to appear the popularity of the
guru need to change, slowly, over time.

The main limitation of this study is in that the comu-
nication structure is imposed exogenous on the system. In
a forthcoming paper [22] we extend the analysis allowing
imitation to arise endogenoulsy via a fitness mechanism
based on agents wealth. In this more general setting we
also study under which conditions a guru may endoge-
nously rise and fall over time, and how imitation affects
the distribution of agents wealth. Furthermore we intro-
duce a proper utility function from which to derive agent’s
demand, like the one in [5] and [29] and we perform a more
careful study of how the results depend on the system size
and on the ratio between the time scale at which the in-
formation network evolves and the time scale the trading
decision is updated.
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Fig. 8. DDF of gap sizes for ask (left) and bid (right) side, respectively for w equal to 0 (black line), 0.1 (red line), 0.3 (green
line), 0.5 (blue line), 0.7 (yellow line), 0.9 (cyan line) and 1 (magenta line).
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