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Abstract

I design and test a simple English auction and two English auctions with resale,
but with different informational backgrounds. All three treatments theoretically have
the same equilibrium. I find, however, that the possibility of resale alters behavior
significantly. In the two treatments with resale, subjects deviated from both the Nash
prediction and the common results about bidding behavior in English auctions. Sub-
jects tend to overbid, when they are certain they can reap the whole surplus in the
resale market. I employ different models like QRE and levels of reasoning and conclude
that overbidding can be explained as a rational response to the noisy environment in
markets with human participants, that is, as rational decision making when anticipat-
ing others to make errors. When the outcome of the resale market is not certain, there
is significant signaling behavior and auction prices tend to be lower than the the Nash
prediction.

JEL classification: D44, C90
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1 Introduction

Auctions are very often followed by a resale opportunity. For instance, after virtually every

durable good auction, the winner can choose to resell the good to the competing bidders

or other third parties. Even when resale is explicitly prohibited, ways can be found to get

around the prohibition. Consider the case of mobile phone and wireless spectrum licences

where "use-it-or-lose-it" conditions to prevent resale are often imposed. Such restrictions can

still be circumvented. The company holding the licence can be bought and there have even

been cases where special companies were used to buy and resell the licence.

Resale was not studied in auction models until relatively recently. However the work

of Haile (1999, 2000, 2001, 2003) has shown that the existence of resale opportunities is

important and can change many results of auction theory. In order for resale to be meaningful,

the outcome of the initial auction must be ineffi cient with a positive probability. In Haile’s

paper (2003) the highest value player does not necessarily win in the initial auction because

he does not perfectly know his value or because he is not participating. Other ways to induce

resale in equilibrium can be asymmetries in the values of the bidders (Hafalir and Krishna

2008, Garratt and Troeger 2006) or new participants arriving in the resale stage (Haile 1999).

In this paper I test auctions with resale in the laboratory based on a simple model from

Haile (1999) and find an alternative reason for resale, namely noisy or erroneous decision

making. Noise and errors have not yet been considered in the abstract theoretical models,

but are plausible when human players are involved. People make mistakes and anticipate

others to make mistakes. This can lead players to deviate from theoretical predictions in

systematic ways. To see how it can induce resale, consider the following example.

Suppose you are participating in an English auction for works of art, which in the absence

of resale possibilities is often regarded to be a textbook example of private values. Suppose

that the current price for the Picasso painting under sale is 10 euros. Even if you do not

have a taste for cubism and thus your private value is zero you might still want to participate

in the auction, expecting to resell the painting for a higher price. Thus resale introduces a

common value element to the valuations of bidders and can induce overbidding. We could

use a similar argument in the markets for real estate, bonds, operating licences and more.
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Thinking in line with standard models one could note that in such a simple setting,

bidding one’s value is still a symmetric equilibrium. A strategy of overbidding expecting to

resell is not consistent with this equilibrium. If others bid their values, no profitable resale

is possible, as winning with a bid higher than your value can only result in zero or negative

payoffs. Crucially however, this is only true if bidders never make mistakes, as is usually

assumed.

From the economic literature in the lab but also casual observation in the field, we know

humans are prone to making mistakes. Expecting high value bidders to make mistakes can

make it in turn optimal for low value bidders to bid more than their values. In response,

high value bidders have an incentive to bid less, expecting to buy cheaper in the resale stage.

Thus resale opportunities can be exploited even if standard theory predicts they will not and

can give rise to richer bidding strategies than theoretically expected. Let it be emphasized

that this deviation from standard models is quite natural. There is no need for restrictive

assumptions on the structure of markets or the private information of bidders to induce

resale in real life situations. A suffi cient condition, as will be shown, is the presence of a

small amount of noise. Such noise exists in many markets, even in financial markets where

stakes are very high (see Shleifer and Summers 1990). It can stem from experimentation,

lack of experience or misunderstanding of the rules, false transmission of information and

mistakes in the execution of orders, liquidity constraints or other exogenous reasons that

are not adequately modeled in theory but whose presence in real markets cannot be easily

dismissed.

To examine the importance of resale opportunities and the effect of noise in a controlled

environment, I designed and ran two experimental treatments of English auctions with resale.

Although treatments had different informational backgrounds, they had the same equilibrium

bidding functions, prescribing that players bid their values. Subjects exhibited significantly

different behavior with respect to both the theory and previous auction experiments without

resale. Instead of bidding their values in both treatments, they overbid relative to equilibrium

when they can be certain they can reap all the rents in the resale markets, and they tend

to underbid when the resale outcomes are uncertain. Moreover this result should not be

attributed simply to irrational behavior in the laboratory, but seems to have a rational
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explanation. Subjects do try to maximize their profits. But while doing so, they anticipate

the possibility of others making mistakes and they use this knowledge more or less optimally.

In that sense, this paper presents a previously unstudied example of a more general class of

games where the anticipation of noise drastically changes players’best responses1. In such

cases, standard game theory loses much of its predictive power and concepts of bounded

rationality, such as a Quantal Response Equilibrium (McKelvey and Palfrey 1995) and levels

of reasoning (Nagel 1995, Stahl 1995, Camerer 2004, Crawford and Iriberri 2008), perform

much better.

The experimental economics literature has not focused on auctions with resale yet, for the

same reasons that there were precious few theoretical models of resale until recently. To my

knowledge there exist four other experimental papers on auctions with resale. Two of these

analyze symmetric auctions in the spirit of Haile (2003); Georganas (2003) on which part of

the present paper is based and independent work by Lange, List and Price (2004). Their

experimental treatments are similar to the ones in this paper, but they differ in important

ways: first they used first-price sealed-bid auctions and secondly they gave players noisy

signals about their private values. They found deviations from equilibrium predictions, which

they attribute to risk aversion. However risk aversion alone does not change the equilibrium

in the present study’s games, so it cannot explain the data. Jabs-Saral (2009) has conducted

experiments in English auctions with resale, however the division of the surplus in the resale

market is different to the other papers in the literature. Subsequent to the present paper,

Georganas and Kagel (forthcoming) analyze asymmetric first price auctions with resale and

find support for the equilibrium that predicts weak players bidding more aggressively than

without resale, although this result depends on the magnitude of the asymmetry.

Even though the possibility of resale and its potential importance has been recognized in

the theoretical literature (Milgrom andWeber, 1982 andMilgrom 1987 with the first models of

auctions with resale) there has been a striking absence of formal models featuring resale until

recently. A frequent argument has been that resale is covered by the assumption of common

values. However, as shown in Haile (2003) players in the initial auction have common values

when there is a possibility of resale but, importantly, valuations are endogenously determined

1Games with this property include the guessing game, the centipede game and the traveler’s dilemma.
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and equilibrium strategies are not the same as in the simple common value model. Moreover

Revenue Equivalence holds under some assumptions although it does not in the common

value case. In Haile (2003) bidders have noisy signals about their values in the initial auction.

Noisy signals work in a similar way as the noisy bids in this paper, as they lead to ineffi cient

outcomes and profitable resale.

There exist other possibilities, besides noise, to make resale potentially profitable. Haile

(1999) assumes that an a priori known number of bidders is added to the bidder pool in the

second period. These new subjects arriving in the resale auction can have higher private

values than the winner of the first auction, opening up resale possibilities.

One can alternatively construct models with asymmetric equilibria. Resale seems intu-

itively plausible in such an equilibrium, as the asymmetry in players’strategies implies that

the highest value player will not necessarily be the highest bidder in the initial auction. This

option is explored in Garratt, Troeger (2006). In a setup similar to mine they include spec-

ulators with zero valuations and find asymmetric equilibria where the speculator wins with

positive probability. Gupta and Lebrun (1999) and Hafalir and Krishna (2008), on which

the aforementioned Georganas and Kagel paper is based, have bidders with potentially pos-

itive use values, which however are asymmetrically distributed. This setup also gives rise to

ineffi cient outcomes and subsequent resale.

Finally, other models including some flavor of resale are Ausubel and Cramton (1999),

McAfee (1998) and Jehiel and Moldovanu (1999), although their setups are not directly

related to the present paper.

This paper is structured as follows. The experimental procedure is introduced in section

2. Section 3 presents the equilibrium predictions and the results are presented in section 4.

Models of bounded rationality involving some flavor of noisy decision making are presented

in section 5. Ideas for future work are discussed in section 6 and section 7 concludes.

2 Experimental design

There are two stages in the game. In the first stage four bidders i = 1, 2, 3, 4 bid in an

English auction for one unit of an indivisible object. Each bidder has a use value vi, which
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is identically independently drawn from a discrete uniform distribution with support [0,100].

The distribution of the use values is common knowledge, but the actual use values are private

knowledge. We have to emphasize the distinction between a bidder’s use value, i.e. the value a

bidder places on owning the object ignoring any resale possibilities and the bidder’s valuation,

which is the value she places on winning the auction and which is determined endogenously,

taking account of the resale opportunity.

For the auction we use an ascending clock design (see Kagel et al. 1987). There is a

clock on each computer screen, starting simultaneously from zero and synchronously rising

every second in steps of one unit. Each subject can exit the auction at any time by pressing

a button. Once out of the auction no reentry is possible. The other bidders can observe the

price at which one exits. After three bidders have left the auction, the last remaining bidder

obtains the good and has to pay the price p1 at which the last one left. This concludes the

first stage.

In the second stage there is the possibility of resale. This is done through an English

auction, where the seller can choose a reservation price. The difference between the two

resale treatments, lies in the informational background of the second stage. As discussed

there are many ways to model the resale stage. I chose two extremes with a big span between

them, to test for a wide range of possibilities. In the first, incomplete information treatment

(hence INC), the only information the bidders get about the others’values is through the bids

in the initial auction. The seller decides about the reservation price r and then the remaining

bidders can see the reserve price and decide simultaneously if they want to participate in the

resale auction or not2. If no bidder chooses to participate then the ownership of the good and

the payoffs remain the same as in the first stage. If only one bidder participates, then she

obtains the good and pays the reservation price to the owner. Thus the final payoffs are r−p1
for the first stage winner and vi − r for the second stage winner. If more than one bidder

decides to participate we have an English auction like in the first stage, with the difference

that this time the clock starts at the reserve price. Again when only one bidder remains,

she obtains the good and has to pay the price p2 where the last bidder left the auction. The

2Sellers did not have the explicit choice not to put the good up for resale, however they were advised to
set a reservation price of 100 if they did not want to resell.
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following payoffs are then communicated to the subjects: p2 − p1 for the first stage winner,

vi − p2 for the winner in the second stage and zero for the others. In the same screen they

can see the price of the initial auction, the reserve price, the number of participants and the

price in the resale auction (zero if there was no resale auction), the highest private value and

information about past periods. The information feedback was so rich in order to facilitate

learning, as otherwise bidders would be getting too few experiences of winning and thus

learning chances. Note that there are 30 periods in each experiment and subjects win on

average only 1/4 of the time, which means that they get to win 7 or 8 times on average.

In the second treatment with complete information (COMP), after the first stage bidders

get to know the use values of the others as in Gupta and Lebrun (1999). Thus in a subgame

perfect equilibrium they will ask for a reservation price equal to the highest private value.

This amounts to a take-it-or-leave it offer to the person with the highest private value equal

to his private value. It is a well known fact however that subjects in experiments very often

deviate from the equilibrium in the direction of a 50-50 split of the surplus, probably because

of fairness considerations (see Chapter 4 from Kagel and Roth 1995 for a review). As it is

not the subject of this paper to treat bargaining games, I force the winner of the first auction

to automatically resell the object in the second stage to the bidder with the highest value,

as well as requiring the highest value bidder to purchase at that price. She then received as

payoff the highest private value minus the price she paid in the first auction. The rest of the

players, including the person who obtains the good after resale, have a payoff of zero. As in

INC, after each auction players can see their payoffs, private values, the auction price, the

private value of the winner, the highest private value and information about past periods.

The resale treatments are to be compared with the bidding behavior in English clock

auctions without resale. Such auctions have been extensively discussed in the literature (see

for example Kagel et al. 1987), however it is important to make sure that the unexpected

results in COMP and INC are not due to some kind of framing effect or an unusual subject

pool. Thus, I also ran a standard English auction (ENG), with IPV drawn from a uniform

distribution [0,100]. The experimental mechanism was in all other respects the same as the

one used in COMP and INC, so ENG can be directly compared to them. As the results in

ENG are very similar to previous studies, this treatment will not be discussed on its own,
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Session Treatment Exchange rate Paying Periods Players Location
1 COMP 20 30 16 UPF
2 COMP 20 30 16 UPF
3 INC 25 30 16 UPF
4 INC 25 35 16 UPF
5 ENG 20 30 16 UPF
6 COMP 20 30 16 Bonn
7 COMP 20 30 16 Bonn
8 INC 25 30 16 Bonn
9 INC 25 30 16 Bonn
10 ENG 20 30 16 Bonn

Table 1: Summary of sessions

but only in comparison with the other treatments.

Observe that the use of the English auction in all treatments does not allow us to observe

the intended bid of the winner, but only a lower bound. One could possibly argue that a

second-price sealed-bid auction in the first stage would suit our purpose better. With this

configuration the unobservable final bid problem is avoided. However behavior in sealed

bid auctions usually presents large deviations from equilibrium, even without resale (see

Kagel 1995 for a survey). Thus it is not feasible to separate the effect of resale from the

other factors which push behavior away from equilibrium. On the other hand the English

auction is widely studied and subjects seem to understand the Nash equilibrium and follow

the predicted strategies quite closely.

The experiment involved 10 experimental sessions, with 16 participants in each. For

the first 5 sessions, subjects were undergraduate students, mainly from the faculties of law

and economics, at the Universitat Pompeu Fabra in Barcelona. The next five sessions were

conducted at the University of Bonn, with subjects from many faculties. The analysis finds

no consistent differences between the two groups (p-value>0.05, Mann-Whitney U test), so

the data are pooled together.

At the beginning of the experiment the participants were divided in two subgroups3 of

8 and then the players in every subgroup were randomly rematched every period in groups

of 4. Subjects did not know what group they had been assigned to or who were the other

3This was done for statistical purposes, in order to have two independent observations in every session.
Still the subjects did not know this and they thought they were being rematched with another 15 players. So
the probability they will try to induce cooperating behaviour and the interperiod effect should remain small.
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members of the group. There were 31 periods in almost4 every experimental session. The

first period was a practice period that did not count for the players’payoffs and was not

used in the statistical analysis of the data. Subsequent to this period, subjects received an

initial capital of 150 units of our experimental currency, the drachma. In the following periods

subjects were rewarded according to their success and their profits or losses were added to the

initial capital. Despite the sometimes quite aggressive bidding, there were no bankruptcies,

although two subjects came close. After the end of each session the experimental currency

was transformed to euros in a ratio of 25 drachmas per euro in COMP and 20 drachmas per

euro in INC. The reason for this difference is that INC is more complicated. Sessions lasted

about thirty minutes longer than COMP and we wished to keep average profits per hour

constant. Thus average profit in COMP was 10.56 euro and in INC 15.5 euro. Naturally,

this difference is not only due to the different exchange rate but due to the different bidding

behavior too.

3 Equilibrium predictions

3.1 Complete information - COMP

In this section I compute the symmetric equilibrium of COMP. An important difference with

respect to usual auction models, is that in the presence of resale, players have a value vi (their

exogenous private value) for the good and a valuation ui , the value she places on winning

the auction. The valuation ui is determined endogenously, as it depends on the outcome in

the resale market too. Use values vi are drawn from a discrete uniform distribution with

support [0, 100]. Consider the two-stage game COMP played by 4 risk-neutral players for a

single indivisible object as described above. Let yi1 = max{vj|j 6= i}, i, j ∈ {1, 2, 3, 4} denote

the highest use value among a given bidder’s opponents and let v−i denote the vector of the

use values of all players, except i. Let f denote the final price of the game, which is equal to

4There was one session with two practice periods, but they did not seem necessary so subsequent sessions
had only one. It does not matter for the analysis, as we always use observations after the 9th paying period.
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f =


p2 , if there was a resale auction

r , if exactly one bidder participates in the resale auction

p1 , if no bidder participates in the resale auction
The following proposition, equivalent to Theorem 1 in Haile (1999), describes the equi-

librium in the first stage.

Proposition 1 The symmetric bid your value equilibrium for an English auction without re-

sale is also a Perfect Bayesian Equilibrium bidding strategy when the same auction is followed

by a resale opportunity, where the private values of the bidders are publicly announced.

Proof. Suppose bidder i with use value vi deviates to a bid ṽ > vi, while all other

bidders follow the proposed equilibrium strategy and bid their use values. This would change

i’s payoff only in the event that ṽ > yi1 > vi. However if this is the case, i would have to pay

yi1 for the object but could only resell it for some price p2 in the interval [r, yi1]. In equilibrium

the reseller will set r = yi1 under complete information in the resale market, but this still

leaves him with nonpositive expected profit. By bidding vi, i would have received zero profit

with certainty. A similar argument shows that bidder i would not profit by bidding less than

vi.

This proposition provides the risk-neutral symmetric Nash equilibrium5 under complete

information in the resale market, but as we shall see the theorem remains valid under risk

aversion and incomplete information. Therefore I will refer to this equilibrium as symmetric6

Nash equilibrium (SNE). Also, this equilibrium covers the special case of the automated

resale market that was actually used in the lab.

A characteristic of the equilibrium that should be noted is, that unlike the simple English

auction, bidding your (use) value is not a weakly dominant strategy in the presence of resale

5Note that we treat the game as a second price sealed bid auction. The equilibrium we find is the
equilibrium for the last stage of the English auction too, where only two bidders remain, as the previous 2
exits do not carry any important information that alters the players’strategies.

6It is worth noting here that in discrete value English auctions there exists an asymmetric equilibrium
where one player bids his value and the other bids her value minus one increment. In the questions we
asked after our experiments, on average 2.3 subjects out of 16 in each session reported that they used such
strategies. However, this was scarcely detected in their bidding (only one person in each treatment was
consistently bidding one unit below value) and a few players employing such a strategy do not significantly
influence the analysis.
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possibilities. If the person with the highest use value were to deviate from equilibrium and

bid less than their value, it is clear that the best response for the others would be to bid up

to this highest value (see Section 5 for an extensive discussion). However, the proof can be

generalized to show that it is a best response for a bidder i to bid their valuation ui of the

good, where this valuation is determined endogenously by the strategies of his opponents.

Remark 1 This equilibrium is unique among subgame perfect equilibria in weakly undomi-

nated strategies.

First, note that in any subgame perfect equilibrium, the reserve price in the second stage

is set equal to the highest use value and the first stage winner extracts all rents. This means

only the first stage winner can make positive profits. Then, value bidding weakly dominates

bidding less than value, for any type, since it only lowers their probability of winning in

the first stage in the beneficial cases that the price is lower than their value and it does not

affect their second stage profits, conditional on losing. But then value bidding also dominates

overbidding, since there is no way that the auction price in the first stage will be lower than

the highest value in the second. Thus there is no opportunity for profitable resale and bidding

above value raises the probability of winning for a player only in the unappealing case where

the price is higher than the highest value of all players.

3.2 Incomplete Information - INC

In treatment INC the theoretical prediction is the same as in COMP. The argument is similar

to the one above. The only difference is that since private values do not become common

knowledge in the resale stage, the reserve price has to be calculated in a more complicated

way using the information produced by the signals (bids) in the initial auction. However,

minimal rationality implies that independent of these signals the reserve price has to be

higher than the private value of the first stage winner. This makes sure that in equilibrium

we do not have resale and thus bidding one’s value remains an equilibrium strategy in the

initial auction. More formally:

Proposition 2 Let bidders in INC have following pure strategy:
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i) In the first stage player i bids her value, ie bi = vi

ii) if i wins in the first stage she sets a reserve price ri ∈ [vi, 100)

iii) if i loses in the first stage she participates in the second iff vi ≥ r

iv) bidders in the second stage bid their values, ie bi = vi

All strategies of this kind are equilibrium strategies in INC.

Proof. In the second stage it is optimal for the players to enter the auction if the reserve

price is less than or equal to their values and bid their values, as it reduces to a simple

English auction. Note that given the first period strategies the winner is always the bidder

with the highest value. Due to this and given the second stage strategies of the other bidders,

any reserve price in the second stage that is equal to or higher than the winner’s use value

is optimal and leads to the same payoffs. In the first stage, given such a reserve price and

that other players bid their values, similar to Proposition 1, there is no profitable deviation

for any player. A player i who does not win in the first stage can not expect to buy in the

second stage for a price lower or equal to the highest value among all other bidders. But this

is actually the price she would have to pay if she won in the first stage. Thus players have no

incentive to bid less than their values. Bidding more than their values can not be profitable

either, as similar to Proposition 1, a winning bidder i in the first stage pays a price that is

equal to the highest use value among the other bidders yi1 and can never expect to get more

than yi1 in the second stage.

Note that in treatment INC, unlike in COMP, losing bidders can make positive profits

in the second stage in principle. This makes analyzing the uniqueness of equilibrium more

complex. Still in a monotonic symmetric separating equilibrium this will not be the case7,

winners always extract all rents. Thus, for this class of equilibria, we have the same result

as in treatment COMP.

Remark 2 This equilibrium is unique among subgame perfect monotonic symmetric sepa-

rating equilibria in weakly undominated strategies.

7Recall that the first stage winner observes the highest losing bid. In a monotonic symmetric separating
equilibrium the winner can invert the bid function and deduce the highest value, which allows him to extract
all the rents.
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The argumentation is similar to Remark 1.

Another result is also possible, if we do not require monotonicity and separation. Define

as underbidding, a player employing a bid function in the first stage that involves bidding less

than value for at least one possible use value and value bidding for all others. For example, a

bid function equal to zero for all values amounts to underbidding according to this definition.

Equivalently denote as overbidding bidding more than value for at least one possible use

value and value bidding for all others.

Remark 3 This equilibrium is unique among subgame perfect symmetric equilibria in weakly

undominated strategies where bidders in the first stage can either overbid, bid their values or

underbid.

Consider the case where players underbid, in the sense described above. Underbidding is

weakly dominated by value bidding for the player with the highest value, since he can win

the object for sure and pay less than the highest value among his opponents. Thus he avoids

having to buy in the second stage where the minimum offer he will get will be at least as

high as the highest value among his opponents. For the players who do not have the highest

value, underbidding is obviously weakly dominated by value bidding.

Now, consider the case where players overbid. Overbidding by the highest value player

is weakly dominated by value bidding, since it increases the probability of winning only for

those cases that the price exceeds his value. On the other hand, in case he loses, a lower bid

will lead to a weakly lower resale offer, as the optimal reserve price in the second stage rises

in the first stage price. For all other players, overbidding is also weakly dominated by value

bidding since it can only lead to a win when they bid more than the highest value of any

player in the auction and thus negative expected payoffs.

4 Experimental Results

In the following I present the general results and in the subsequent sections I offer explanations

for the data. When making the statistical analysis of the results I will start with period 10
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unless otherwise stated, to abstract from any learning/adjustment processes.8

The main question posed, is if resale possibilities alters behavior in auctions. The answer

from the data is a definite yes. Figure 1 compares bidding in the first stage of the three

treatments, using boxplots which include all but the winning bids.9
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Figure 1: Series of boxplots of private values vs exits in the various treatments. Each box drawn
represents the distribution of the bids for a block of values. The circle in the box is the median.The
length of the box represents the interquartile range (IQR). The whisker extends from the box to the
most extreme data value within 1.5 times the IQR. The dots represent outliers beyond that range.

We can see that although the three games have symmetric equilibria with the same

bidding functions in the first stage, actual bidding behavior is quite different. The mere

presence of a resale market makes subjects deviate systematically from the equilibrium, in

marked contrast to their behavior in the simple English auction.10 Table 2 also shows that

8See also Kagel et al (1987), p. 1286 where the authors claim “subjects’ adjusting to experimental
conditions argue for throwing out the first three auction periods”or Fehr/Schmidt (1999) who only use last
period values.

9Keep in mind that the exit price of the last bidder is not equal to the maximum bid he was prepared to
make, because he exits automatically once the last-but-one bidder exits the auction. As a consequence we
only have a lower bound on the actual bidding strategy of these players. For the graphs and other statistics
we exclude the winning bids. Although it leads to some bias, including them leads to an even greater
bias. Techniques such as censored regressions do not completely eliminate this problem and they introduce
new ones, e.g. they would rely on the restrictive assumptions that bidding is symmetric and follows some
particular functional form.
10Bidding in COMP is significantly different from the bidding in the treatment ENG (without resale).

Comparing INC with ENG we do not always have statistic significance. This can be attributed to several
reasons. First, we do not have many observations for the simple English auction. Most previous experiments
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bids in simple English auctions are in some cases significantly different from the predicted

equilibrium. So, it is not just the significance that is impressive in the case of the treatments

with resale (COMP and INC), as much as the systematic deviations that are large and

significant, which is obvious from Figure 1. This result shows that studies of auctions should

take resale possibilities explicitly into account.

That is not the only interesting result. The specific structure of the resale market makes

a difference for the bidding strategies. We see in Figure 1 that in COMP, when subjects have

common knowledge of the private values before the second stage, resale gives the low value

types an incentive to overbid.11 On the other hand, low value types bid close to their values

in INC and ENG. High value types bid close to their values in COMP and ENG but not

in INC. In general, bids in COMP are highly significantly different from bids in INC for all

possible values.

Note that the underbidding of the high types in INC is not a spurious phenomenon due

to the censoring of winning bids or to a presence of extreme observations driving the average

down. Among bidders with use values greater than 50, the percentage of bids lower than

20 in INC are 5.5% versus 1.8% in COMP (one sided Fisher exact test p value = 0.007).

Comparing high value bidders who bid less than 50 we get an even higher difference with

17.6% versus 6.23% respectively (p value<0.000).

Theoretically the only difference between the two treatments is in the informational struc-

ture of the resale stage. Naturally it is possible that differences in the bidding strategies of

the subjects are not only due to the theoretical difference, but also due to the different

mechanisms used in practice. In particular there is evidence from bargaining games where

subjects do not behave “rationally”and split the surplus in ways that do not follow the Nash

prediction. In COMP I did not allow subjects to deviate, enforcing on them exogenously the

predicted outcome of the second stage. In INC this was not possible and as a consequence

however, have found bidding which is very close to the bid-your-value equlibrium, and including these ex-
periments we would get a significant difference between ENG and INC. The second problem is that for high
values, where bidding differs most from the equilibrium , in INC, we have a strong problem of unobservable
bids. We tried to control for this by running a censored regression of bids on values including data from
ENG and INC. The dummy and interaction terms were highly significant, which supports the hypothesis
that bidding in ENG and INC was indeed different.
11I use the term overbidding/underbidding loosely, to describe bids higher/lower than a subject’s use value,

even when such bids are not necessarily irrational.
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Values
Treatments 0-20 21-40 41-60 61-80 81-100
COMP - SNE -20.23 -13.80 —5.69 -1.12 1.91

(0.000) (0.000) (0.006) (0.083) (1)
INC - SNE -4.47 -0.99 2.16 7.97 20.25

(0.000) (0.404) (0.0404) (0.000) (0.000)
ENG - SNE -8.03 -2.70 -0.27 -0.40 5.73

(0.004) (0.004) (0.150) (1) (0.000)
COMP - INC -15.75 -12.81 -7.85 -9.09 -18.33

(0.003) (0.001) (0.015) (0.003) (0.008)
COMP - ENG -12.20 -11.10 -5.42 —0.71 —3.81

(0.072) (0.008) (0.072) (0.808) (0.153)
INC - ENG 3.55 1.71 2.43 8,38 14.52

(0.682) (0.153) (0.808) (0.004) (0.153)

Table 2: Differences in average deviations (private values minus bids), calculated excluding the
censored observations. The numbers in parentheses are the p values of a Mann Whitney U test.

subjects were allowed to play the resale game themselves. This difference in the mechanisms

used could be a problem, however the data about the rationality in the choice of reserve prices

and in the choice of participation presented in Section 4.2 indicates that subject’s behavior

in the second stage was fairly rational and competitive, even though we cannot show that

they were completely following the Nash prediction.12

The difference in strategies between treatments translates into different prices in the

auction. As we can see in Table 3, average prices in COMP were almost 18% higher than

in INC (p-value=0.002, Mann Whitney U-test comparing the 8 independent observations of

each treatment) and 15% higher than in ENG (p-value=0.008, U-test using the 4 independent

observations in ENG), whereas the average private values were very similar, as happened with

the average equilibrium prices too. This difference is not only highly significant but also quite

large and economically important. The average highest value in every auction was about 80

so revenues in COMP were almost halfway between the Nash prediction and the maximum

rents the seller could possibly appropriate. Prices in ENG were slightly higher than in INC

but the difference is not so big and not significant. It should be noted that prices in both

are a bit lower than the predicted ones though13.

12There is evidence that subjects cannot calculate diffi cult equilibria. Setting an optimal reserve price given
your beliefs is a fairly complex task even for theorists. Also, Davis, Katok and Kwasnica (2009) investigate
reserve price setting experimentally and find frequent and significant deviations from the theory, especially
regarding the sellers’response to a different number of buyers.
13The results regarding the simple English auction should be received a bit carefully as we do not have

many observations. I did not run many experiments, as there exists already a very large literature on simple

15



COMP INC ENG
Average Observed Price 67.04 56.85 57.97
Average Equilibrium Price 60.41 60.99 60.68
Average Private Value 50.37 51.34 50.68

Table 3: Average Prices, Equilibrium Predictions and Private Values. The Difference between
COMP/INC and COMP/ENG are highly significant

In the following I analyze these results in more depth individually for every treatment

and I compare a variety of models of bounded rationality that could explain them.

4.1 Complete Information - COMP

Figure 2 graphs average14 prices in the initial auction, average resale prices15 p2 and SNE

predictions - which as shown in Proposition 1 are equal to second highest values in the

groups- over time, for the pooled data of all sessions of COMP. There were differences between

individual sessions but the general tendency to overbid was the same in all of them, so it is

not necessary to present individual session data. Table 2 reports mean deviations from the

SNE predictions pooled over all sessions of treatment COMP.

In treatment COMP some underbidding is observed in the first few periods. As explained

above, we can view these periods as adaptation periods. In the next periods mean prices

in the initial auction lie always above the theoretical prediction, sometimes substantially so.

Nonetheless, resale occurred in about 25.6% of the cases and mean resale prices are still

higher than the initial auction prices, so the winners in the initial auction realize positive

profits on average.

Mean overbidding over all subjects and for all values was about 8.4 units. Overbidding

was strong on the individual level too. In COMP, 40 out of 64 players bid on average five

units higher than their value or more. Setting the bar at 10 units, 31 out of 64 subjects still

overbid even higher than that. For a closer view of individual bidding behavior depending on

the drawn private value, the box plot of values versus exits in Figure 1 is very informative.

Note that under the SNE prediction, all bids should lie on the 45-degree line through the

English auctions. Thus, for comparison purposes I refer to these older results too.
14In every period we take the average over the four groups that were formed in every experiment.
15Recall the resale price of the good is automatically equal to the highest value in group. Thus, the profit

of the initial auction winner is just the difference between the highest value and the initial auction price.
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Figure 2: Mean prices, highest values and SNE predictions over time in first stage of treatment
COMP.

origin. In this plot the overbidding is even clearer than if we only look at auction prices,

especially if we compare bids in this plot with the bidding in ENG or INC. We also see that

the high auction prices come almost entirely from the overbidding of the low value players.

In fact low value players overbid 40% of the time and in about 83% of the cases where they

do so, the highest value bidder does not win the auction. But since there were 4 bidders

in every group, overbidding did not necessarily lead to winning. Thus, players who did not

have the highest value could keep overbidding without obvious punishment, as they did not

win the auction very often and when they won their profits were not very low16.

The persistent excess of bids and prices above the equilibrium predictions has to be

compared with the results of ENG and the previous results in the literature, like the English

auction experiment in Kagel et al. (1987). In that study the fast learning and eventual

convergence to the equilibrium predictions was attributed partly to the negative profits of

subjects who started by overbidding in the first periods. This effect, pushing subjects towards

equilibrium behavior does not exist in sessions 1 and 6 and was very weak in sessions 2 and

7.

16Mean profit of bidders who did not have the highest value but won was 0.77 over all periods and -0.20
in the last 15.
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Thus subjects were not always best responding to the other bidders, but they were still

choosing strategies that yielded payoffs close to their best response payoffs. Section 5 presents

models that allow for this kind of behavior, by assuming that subjects do not play pure best

responses but have a mixed strategy, choosing a probability for an action depending on its

expected payoff. I show that such a model rationalizes overbidding as a response to high

value players underbidding with a positive probability and explains behavior better than the

SNE.

4.2 Incomplete Information - INC

Figure 3 graphs average prices in the initial auction, average highest values and SNE predic-

tions over time, for treatment INC. Table 3 reports mean deviations from the SNE model’s

predictions pooled for all sessions of treatment INC.
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Figure 3: Mean prices, highest values and SNE predictions over time in first stafe of treatment INC.

Similar to treatment COMP we observe some learning in the first periods, as prices are

systematically below those predicted under the SNE, after which behavior tends to stabilize.

We do not observe any big differences from session to session of treatment INC. It has to

be noted that in this treatment the asymmetric information in the resale stage makes richer
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strategic behavior possible. In particular signaling can be expected to play a significant role,

so that looking just at prices or at aggregate values is less informative and a closer look on

individual bidding behavior should be more revealing. Still there are some important facts

to notice in Figure 3. The most obvious is that the overbidding from COMP has virtually

disappeared, replaced by underbidding in most periods. This underbidding is substantial

for higher valued bidders and as a result the highest value player loses the initial auction

in about 13.4% of the cases. In the resale stage, prices are always higher than the prices in

the initial auction, but still sometimes lower than the second highest value. In these cases it

has to be that the subject with the second highest value does not participate in the resale

auction or that she exits this auction before her use value has been reached. Measuring the

rationality of subjects’behavior in the second stage is warranted.

To this end I have prepared a rationality index, RatR, which is a measure of the optimality

of the reserve prices in the resale auction. The optimal reserve price depends on the beliefs of

the subjects and the beliefs depend on the signals from the initial auction, so it is impossible

for us to calculate the optimal reserve price and deviations from it without knowing the

subjects’beliefs. However we can expect that when all subjects are rational, the seller has

to set a reserve price that is weakly higher than her use value for the good.17 RatR measures

the fraction of sellers who choose a reserve price r > vi − 3.18 Averaged over periods 10-30

and all sessions, mean RatR was equal to 0.89. There was some variation in the four sessions.

In the first session of INC it ranged from 0.5 to 1 with no trend to disappear over time. In

session 2, RatR was higher and time had an effect. While in the first 10 periods it mostly

ranges from 0.5 to 0.75, in subsequent periods it is always between 0.75 and 1 with an overall

average of 0.88. In sessions 3 and 4 RatR was quite high, at 0.97 after the 10th period

in both treatments. It is not clear why some subjects set reserve prices with such errors.

The seller has her use value as an outside option and she should ask for this value at least.

17Note that if one of the subjects is not rational setting a reserve price becomes even more complex. The
reasons for such irrationality vary. For instance it is possible and it was observed in some extreme cases that
subjects do not participate in the auction when the reserve price is 10 units lower, or less, than their use
value. This can be due to fairness considerations. Subjects may find an offer unfair if it gives them a small
part of the available rent.
18Some bidders might set reserve prices slightly lower than their value due to rounding. I choose a difference

of three units between r and v as a threshold but the result is robust with other thresholds too.
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However as noted above there are subjects who do not participate in an auction where the

starting price is below their value but very close to it, so maybe setting these reserve prices

was a rational response to this behavior.19 A second explanation is that subjects just did not

understand that when calculating the optimal reserve price they should think about their use

values.20 In an experiment such as this one, which was arguably more complex than usual

auction experiments, such mistakes could occur, so one might think more learning periods

are necessary. However, this argument is contradicted by the apparent rationality of players

choosing to participate in the resale auction.

Apart from a few mistakes in the early periods, the percentage of subjects who chose to

participate in the resale auction, when their use value was higher than the reserve price, was

almost 100%. This result is encouraging and suggests that probably the low RatR figures

are also not due to miscalculation of the profits, but deliberate choices.

Looking at the boxplots of values versus bids in Figure 1, the stark contrast to COMP

becomes clear. Low value players bid close to their values with a small tendency to overbid,

while high value players greatly underbid. Furthermore there are some cases, many more

than in COMP, where subjects bid 0 or very close to it. These characteristics of the bids can

also be explained with the anticipation of noisy bidding or signalling, as we shall see in the

next section.

5 Bounded rationality and noisy decision making

In this section I present a variety of models of bounded rationality which are prominent in

the literature, to explain subjects’behavior. The explanations differ in the consistency of

the beliefs they require of the players, but have in common that they consider noise.

19This is related to the phenomenon of "auction fever". In the field auctioneers sometimes start the auction
at prices lower than the bidders’values on purpose. Bidders have more time to get excited and this results
in more aggressive bidding.
20In the short quiz that followed the reading of the instructions, a number of subjects had answered the

questions about second stage profits wrongly. Instructors took great care to make these points clear after
observing these mistakes. However, it could be the case that some players mistakenly thought the profit from
the first period to be their outside option and set a reserve price that was just higher than this number but
possibly lower than their value.
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5.1 Complete information in the resale market - COMP

Let us start from the basic observation that the Nash equilibrium of the games we tested is not

robust to noisy behavior, as will be shown. That is, it is not robust to small perturbations

of the bidding strategies. Human players make mistakes and anticipate others to make

mistakes. In general, as has been shown for example in Goeree et al. (2002), adding noise

to the equilibrium bids can shift subjects’best responses quite radically. It remains to be

seen if the same effect can be found in the present experiment. In the complete information

treatment, if the other players use the SNE strategy, the expected payofffunctions of a subject

contemplating a deviation from this strategy are broadly the same as in a simple English

auction with no resale. However, I will show that if there exists some kind of noisy behavior,

which means that subjects make errors when choosing their bids, the payoff functions are

quite different.

The following graphs in Figure 4 plot expected profits, depending on one’s bid, in the case

of a simple English auction (ENG) and an auction with resale (COMP). There are 4 curves

plotted in every figure, representing expected profits calculated for use values of, 20, 30, 40

and 50. The upper left graph represents expected profits in ENG when three opponents bid

their values without any noise, averaged over every possible value of the opponents. Notice

that a bid is a best response given a use value, if it lies at the point where the expected profits

reach their maximum value. In this case, payoff is maximized when a player bids her value.

For example, the curve drawn for a use value of 50 reaches its highest value exactly for a bid

of 50. In the upper right figure I calculate the expected profits, again given that other three

subjects bid according to the Nash equilibrium but adding a normally distributed noise to

these bids. This means that an opponent with a value of v is assumed to bid v + ε, where

ε ~N(0, σ2) and σ = 9. I proceed to calculate by numerical simulation the expected profit

functions of a player facing three opponents employing this noisy Nash bidding21. Bid-your-

21This is calculated by independently drawing 2 million sextuples of private values v and errors ε for the
three opponents. For every opponent I obtain the noisy bid b̃ = v + ε. I then calculate for every possible
bid bi of player i the winning frequency given this bid and the mean highest bid and highest value of her
opponents, conditional on the highest bid max{b̃−i} being lower than bi. A player’s expected profit is then
caclulated for any given private value vi as

Πi = prob{bi > max{b̃−i}}E[max{vi, v−i} −max{b−i}|bi > max{b̃−i}]
The numerical simulation is helpful because we can calculate these functions for any noise specification
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value is still a best response. This is to be expected, as bid-your-value is a weakly dominant

strategy in English auctions, i.e. an optimal strategy regardless what others do.

The lower graphs depict the same for COMP. Starting from a bid of zero in the x axis, the

utility functions without noise look the same as in ENG, up to the point where the bid equals

the use value for which the line is drawn. From that point on expected utility is constant.

For any value there now is a lower bound equal to zero. Winning bidders never pay more

than the highest value in the auction, given their opponents are value-bidding, but receive

exactly this amount in the second stage, so that a negative payoff is not possible. Still, there

is a maximum at exactly the same points as in ENG. This corresponds to Proposition 1,

which states that bidding-your-value is the equilibrium strategy in COMP. However when we

add noise as described previously, the curves change dramatically, as is evident in the lower

right figure.22 For every use value there is a new maximum and its exact position depends

on one’s value. For all use values however, it is now optimal to bid very high (approximately

90).

A new hump arises23, even when opponents bid with small errors, and the peak of this

hump is in the upper region of the bid interval. This means that best responses change

discontinuously with noise; optimal bids jump from being equal to player’s value to a bid that

is significantly higher than a bidder’s value, especially when this bidder’s value is low. The

best response discontinuity exists for many different specifications regarding the functional

and the accuracy of the method is very high, as I have verified in the cases where an algebraic solution
is straightforward to obtain. Note that when noise is added, modelling the English auction as a second
price auction is not necessarily valid. However given the numerical complexity of the simulations, any more
complex model would not be feasible.
22The intuition of how mistakes can make overbidding with a low value profitable, is as follows. There are

two cases of possible mistakes, opponents can (A) underbid or (B) overbid. In A there is a chance of winning
and reselling at a profit. On the other hand in case B defeating opponents who have accidentally overbid
is a bad idea, as there will be no profitable resale. Overbidding is a best response because, conditional on
winning, case A is more likely than case B.
23It is interesting to note how the emergence of the new maximum is the result of the resale opportunity.

The expected profit of a first stage bidder is a maximum of two values, expected utility if she consumes the
good now and expected profit if she resells it in the second stage. The utility functions graphed are thus
the maximum of these two utilities. In the right part of these curves, the resale effect dominates. In the left
part, the usual utility enjoyed when she consumes the good herself is dominant. Without noise the utility
from resale is zero, as the expected revenue in the second stage equals the expected price in the first auction
(both equal the highest value among the other bidders). With noise however this not true anymore, as the
expected price in the first stage becomes smaller than expected revenue in the second. This difference is
maximized for a bid of around 90 (which is actually higher than the unconditional expected highest value,
75), depending on the size of the errors.
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Figure 4: Expected utilites in ENG (upper two figures) and COMP (lower two) without and with
noise (normally distriubuted with a σ of 9). The curves are drawn for private use value signals
equal to 20, 30, 40 and 50. In the lower left panel utility is very flat but still maximized at a bid
equal to value.

form of the noise distribution (e.g. triangle, logistic, uniform, Laplace) and even when the

standard deviation is very small (a standard deviation of σ = 1 is enough in the case of the

normal distribution). The intuition is that the hump rises higher the more noisy the bids,

but its position on the x axis does not change much. Even with small amounts of noise that

lead to a low hump, it will still be higher than the utility derived from a bid equal to or lower

than one’s value and its peak will be positioned in the upper part of the interval [0, 100].

In that way, even the lowest value players should overbid massively in the presence of small

amounts of noise.

To test in a systematic way if the characteristics of the game discussed above are indeed

influencing the bidders’behavior we consider the following model. Suppose a player believes

her 3 opponents want to bid their values but make small errors, distributed normally24 with

24I choose here a σ that is lower than the minimum of the actual estimated standard deviation σ of players’
bids in the various sessions of COMP, assuming errors are distributed normally, as can be seen in Table 4. I
also tried other distributions and the result was robust to these variations.
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σ = 15. Then this player’s best response25 given such beliefs is approximated by:

BRnaive = 0.000057v3 − 0.0046v2 + 0.098v + 79

This is a concave bidding function that starts at 79 for a value of zero and reaches

approximately 100 for a value of 100. An alternative to this model is to calculate the best

response to the actual bidding distribution (and not to the one predicted by the theory). It

predicts serious overbidding of approximately26 the following form:

BRact =

 47, v ≤ 39

0.87(v − 39) + 47, v > 39

The hypothesis that subjects were responding optimally to the actual play of the others

can be tested using the BRact model. The fit of both these models is presented in table 4.

Levels of reasoning A model that has been found to explain many anomalies in experi-

ments is a level of reasoning model (see for example Nagel 1995, Stahl 1995, Camerer 2004).

In specific I will use the level-k version (Crawford and Iriberri, 2008). The idea is simple

and rather intuitive. There exist k types of players, varying in their degree of sophistication.

Level 0 (L0) players bid randomly with a uniform distribution. Their bids can be interpreted

as pure noise, given that values do not correlate with bids at all. In this way this version of

the levels of reasoning model used in the literature has built-in the idea of noisy behavior.

Level 1 players believe they are playing against L0 players and play a best response, Level

2 players play a best response to Level 1 and so on. I first derive the strategy for a Level

1 player best responding to N players who bid randomly. Her expected profit will equal

25The BR and other alternative models we present will be under the assumption that bidders do not update
their beliefs after they observe the exits of other players. It does not change the results by much but it greatly
simplifies the calculations. Additionally it is confirmed by the data, the main determinant of a player’s bid
was her use value and the unconditional distribution of the other player’s values. Actual observed exits were
not a significant factor.
26To calculate this best response I first estimated a joint bid-value distribution using the data from the

experiments. Then I find by numerical simulation the bidding function that maximises a player’s expected
payoffwhen playing against 3 opponents who are employing this empirical bidding strategy. The best response
is not exactly piecewise linear, but well approximated by the given function. Note that I use only non censored
data when calculating this model and fitting the other models. This can be a problem for high bids, where
excluding censored bids can introduce a bias. However the bias when including them can be even stronger.
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the maximum of her value and the expected highest value among the opponents minus the

expected highest bid, given that the latter is lower than her own bid.

Πi =
bi∫
0

(max{vi, E[max{v−i}]} − x)NF (x)N−1dx

Note that opponents’values and bids are not correlated. Rearranging and taking first

order conditions (see appendix) leads us to following strategy for a level 1 player when we

have 4 bidders in total and values are uniform in [0,100]

bL1 = 25(vi/100)4 + 75

Thus, Level 1 players bid an increasing concave function of their values, from a bid of 75

for a zero value type to a bid of 100 for a bidder with value 100. Level 2 types best respond

to Level 1. It is simple to show that this results in a bid your value strategy. Given that the

opponents all bid at least equal to their values there is no opportunity for profitable resale,

thus the game reduces to a simple English auction with no resale and bid your value is a best

response.27 However the expected profit curves are not the same as in the Nash equilibrium,

as the probability of winning with a bid lower than 75 is zero. This will be important when

fitting the model to the data using logistic errors, as they depend on the exact structure of

the expected payoff curves. L3 is then exactly equal to the Nash equilibrium, with the same

expected payoff functions.

The model is fit assuming that each observed bid is a draw from a common distribution

over the three types. The frequency of L1 players in the population is χ1, χ2 is the frequency

of L2 players and the remaining 1 − χ1 − χ2 is the frequency of L3. L0 just exists in the

mind of L1, as has been found in Crawford and Iriberri’s (CI) work. In CI there is also an

alternative specification of the model with truthful bidding as an L0 starting point. Truthful

bidding is not useful here, as it would lead to the L1 type (and all higher levels) bidding their

value and thus no difference with the SNE.

27The best response to a level one player is actually a correspondence and not a function, for private
values under 75. Any bid up to 75 is in principle part of the best response, however bid your value is the
obvious focal part of this best response. I accordingly expect L2 players to bid their values. Note this is only
important for the calculation of L3 as a response to L2. For the actual fitting of L2, the errors are logistic,
which means that every action yielding the same payoff is treated as equally likely, thus every action in the
best response correspondence is treated the same.
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For each type we can calculate expected utility for every possible action, given the beliefs

of this type. I assume that a player of a certain type makes errors with a frequency that

depends on the expected utility of each action, according to a logit specification. This means

the probability for a subject i playing a particular action j out of all actions J is calculated

in the following way:

pij(λ) =
eλUij

J∑
k=1

eλUik

The numerator is the utility from each action transformed by an exponential function, in

the denominator we have the sum of all these exponential weights as a scaling factor, so the

probabilities add up to one. The parameter λ determines how sensitive errors are to payoff

differences. Bids become uniform as λ→ 0 and errors are eliminated when λ→∞.

QRE The last model I calculate is a Quantal Response Equilibrium which captures the

idea of noisy behavior but predicts that players’deviations will be systematic. Similar to

the level-k model, I use a logit specification that has been found to give intuitive theoretical

predictions in auctions (see Anderson et al. 1998) and to fit experimental data well (see

Goeree et al. 2002). Bidders with a given use value have a probability distribution over

every possible bid which depends on their payoff sensitivity parameter λ and the actual

payoffs.

Players correctly anticipate the bidding distributions of their opponents and all choose

the probabilities according to the rule above. Thus, a best response will be played with a

higher probability, but not with certainty. The equilibrium is a fixed point of a mapping

from choice probabilities to choice probabilities. Note, that although a QRE approaches a

Nash equilibrium in the limit when the noise parameter tends to infinity, it can be far away

from it for intermediate values of the parameter.

Calculating a QRE with such a large strategy space is a daunting task. With the usual

differential equations approach (used for example by Goeree et al. 2002) it is even considered

numerically impossible, to the best of my knowledge, as it involves solving a system of 101

simultaneous non-linear differential equations. Therefore I use a less frequently used method
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to calculate the QRE, namely a Cournot iterative process.28 Starting with a random bidding

function, the expected utility of a player facing three bidders employing such a bidding

function is calculated. I proceed to calculate a quantal response by weighing the utility, to

get choice probabilities according to the formula above. This process is then iterated until

the quantal responses converge to a stable state. Convergence is usually reached after about

15 iterations and does not depend much on the initial bid function.
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Figure 5: Comparison of the different models for treatment COMP. The QRE predicts a distribution
of bids for every use value, so the mean of these bids is presented. Keep in mind however, the model
with the best fit is not the one closest to the mean actual behaviour but the one where the whole
predicted distribution is closest to the actual one.

Note that in a QRE, different values of λ can lead to radically different predictions.29 I

28To my knowledge an iterative method has been used once before to calculate a QRE in coordination
games and the traveller’s dilemma using a simple spreadsheet (see chapters 25-26 in Holt 1996). Note that
the iterative method reveals an interesting relationship to LOR models. Every iteration of the process
corresponds to a level of reasoning. A somewhat similar analysis is done in Goeree and Holt (2004), where
they propose a model of noisy introspection using logit response functions, but relaxing the equilibrium
assumption. Their model can be seen as an alternative to the level-k model (which it includes as a special
case), where there is more noise associated with players’beliefs about higher levels of iterated expectations.
29Haile et. al (2006) note that a QRE with two parameters, suitably chosen, can be used to fit any data.
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find that the values estimated in other experiments, including auctions, gave a very good fit

for our data too30, which indicates that the QRE is an appropriate model to explain behavior

in a wide range of auction experiments.

Comparison of models The different models calculated above for treatment COMP are

fit to the data in this section and compared with the same models for treatment ENG. The

predictions of the various models in the simple English auction are straightforward. The

strategy is actually equal to bid your value for all models except QRE, as this is the weakly

dominant strategy in simple English auctions with IPV. Note that unlike in treatment COMP,

L0 is exactly equivalent to bid your value, as the L1 type’s payoff is not influenced any more

by the values of his opponents but just by their bids, which are uniform in both L0 and Nash.

The QRE predictions are calculated by simulation, as in the case of COMP.

Results are shown in Figure 5 and the goodness of fit can be found in Table 4. Maximized

log likelihood values for each model are presented in the first row. In the case of the pure

strategy models (Nash and BR), where no dispersion is predicted by theory, I allowed for

normally distributed errors and the estimated σ is shown in brackets. The QRE predicts a

dispersion according to the logit formula presented above, so there was no need for additional

errors. For the levels of reasoning models I posit logistic errors as described above and

calculate them numerically. I assume that λ is independent of subject or type.31 Thus in

total the model has three parameters, the common precision λ, χ1 and χ2.

Lastly I estimate a Nash model but with logistic instead of normal errors. This yields

a fairer comparison to the QRE and level-k. Note that Nash+logit is equivalent to the

L3 model fitted with logistic errors. Since the models are in general not nested I use the

This critique does not apply to this analysis, as with the logit structure of the errors, the payoff perturbations
are i.i.d. See Goeree, Holt and Palfrey (2005) for a discussion.
30Note that λ depends on the payoff space and has to be adjusted accordingly. For example, in Goeree et

al (2002), where the private values have a support of [0,11], λ is found to be on average 10 (actually they use
a parameter µ which is equivalent to 1/λ and they find µ = 0.1). Then for this auction where values are in
[0, 100], the values of λ should be close to 1.
31In Crawford and Iriberri’s study they compared such a model to models where precisions can be type-

specific or subject-specific. Forcing subjects to be of a single type in COMP leads to a very large increase
in the number of parameters, without adding much to the fit. Also the estimated population frequencies do
not change much. If we assume type-specific precisions we get a LL of 4199.6, BIC=8433.8, a frequency of
4.3% L1 types with precision λ = 0.039, 33.3% L2 with λ > 18 and 62.4% L3 with λ = 12.7.
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Bayesian Info Criterion (BIC) for model selection. It punishes the level-k model for having

more free parameters than all other models, which only have one. Recall that we have more

observations for treatment COMP than ENG so the respective likelihoods are not directly

comparable.

Model Nash BRnaive BRact L1 L2 L1+L2+L3 QRE L3/Nash+logit
LL COMP -4469.2 -5044.5 -4391.5 -4555.8 -4492.8 -4312.9 -4207.7 -4367.5
BIC 8945.3 10095.9 8789.9 9118.6 8992.6 8646.6 8422.3 8741.9
Est. λ or σ 20.9 37.1 19.4 0.1 0.22 1.84 1.23 0.87
LL ENG -2706.2 -2706.2 -2706.2 -2732.4 -2732.4 -2732.4 -2715.1 -2732.4
BIC 5419 5419 5419 5485.4 5485.4 5485.4 5436.8 5485.4
Est. λ or σ 10.38 10.38 10.38 1.13 1.13 1.13 1.1 1.13

Table 4: Goodness of fit of different models for treatments COMP and ENG. LL is the maximised log
likelihood. The Bayesian Information Criterion (BIC) is used for selection; the lower its magnitude,
the better the fit.

The model that performs best in explaining the results in COMP, as indicated by the BIC,

is the QRE model, followed by the mixed levels of reasoning model. A Vuong test rejects

that the two models fit equally well at the 0.01 level, in favor of the QRE. The estimated

type frequencies for the mixed levels of reasoning (LOR) model was 1% for L1, 24.8% for

L2 and 74.2% for L3. Nash with normal errors does not fit the data well, while BRact (the

best response to actual behavior model) performs better. There is a leap in the likelihood

when we estimate the Nash model with logistic errors instead of normal. Other symmetric

error specifications (triangle, uniform) under-perform similarly with respect to logit. Still,

the QRE with logistic errors performs even better than Nash+logit which shows that logistic

errors are not enough to explain the subjects’behavior. Players not only make errors in a

systematic way as is modelled through the logistic distribution, but anticipate others to make

errors too, which leads them away from the Nash prediction and towards a quantal response

equilibrium. These results are reinforced by the fact that the estimated error parameter λ

was quite similar for both treatments and for both models, Nash and QRE.

In ENG all models exhibit a similar performance, which is not surprising given that their

predictions are very similar and the greatest difference stems from the different distributions

of the errors (logit vs normal). The Nash and BR models have the lowest log likelihood

with the QRE performing a bit worse (the difference not being significant according to a

Vuong test) and the mixed LOR and Nash+logit with significantly higher LL (p-value<0.01,
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Vuong test). Overall however the great improvement in fit given by the last three models in

COMP means that the total predictive power of these models is higher. If we use the average

performance in the two treatments as a selection criterion, the levels of reasoning model and

QRE emerge as clear winners, while Nash+logit is close but significantly worse (a likelihood

ratio test of LOR with the nested L3/Nash+logit model yields p<0.001).

5.2 Incomplete information in the resale market - INC

As in treatment COMP, the anticipation of noisy behavior can be used to explain the data in

INC. Very high value players know they will win with a very high probability. But if they try

to win in the first stage they would possibly have to pay a price higher than the second highest

value in the group because some low value players can be (relatively costlessly) overbidding.

They prefer to signal low values32 and wait for the second stage auction where they know

that overbidding for the low value players is exactly as costly as in a simple English auction

and will thus be avoided. Given actual behavior such a strategy would be more profitable

than the Nash prediction.

Note that this logic is exactly captured by the logistic errors which allow for the fact that

players do not always best respond, but still try to avoid the most costly mistakes. Low

value types can costlessly overbid in the first stage but avoid overbidding in the second stage.

High value types will not avoid underbidding in INC as much as in COMP or ENG, since

in case of losing in the initial auction they can still make some profit in the second stage.

The question that arises is which of the previously discussed models employing logistic errors

will fit the actual behavior better. The QRE assumes that subjects correctly anticipate the

logistic errors of their opponents and arrive at an equilibrium where subjects play noisy best

responses to each other. On the other hand the level-k model assumes bidders do not think

past a limited number of iterated best responses. They intend to play a best response to

their opponents, given the beliefs that correspond to their level of reasoning, but make logistic

32Suppose there are two biders. Imagine a bidder with value 50 believes the other player is playing the
bid your value equilibrium with small symmetric mistakes of maximum magnitude 10, as described in the
previous section. He will then bid more than his value, say 60, expecting to resell. In that case, his opponent
will have an incentive to bid much less, if he has a high value, say 90. For example if he bids 40 he will lead
the winner to believe that he has a value of maximally 50 and he will thus get the good in the second stage
for a price of 50. See example 1 in Hafalir and Krishna (2008) for a similar argumentation.
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errors. Finally the Nash+logit model just assumes players intend to play the Nash strategies,

but make logistic errors.

Due to the interdependence of the two stages and the additional complexity, it is not

straightforward to calculate the logistic errors and the QRE and level-k models for treatment

INC. One has to use a shortcut, building a reduced form of the game to make it tractable.

I therefore assume that the reserve price in the second stage is equal to the use value of

the seller and that players who have a higher value than the reserve, do participate in the

auction. I also assume that players who have decided to participate in the second stage

auction proceed to play exactly as in a simple English auction, bidding their values. These

assumptions are largely consistent with actual behavior and partly with theoretical arguments

too33. I then plug the expected continuation payoffs from the second stage subgame in the

first stage payoffs. The resulting game allows the various models’predictions to be calculated

as in treatment COMP, with the exception of BRact where the number of observations in the

second stage was not adequate to estimate the empirical distribution of reserve prices and

participation strategies. The main difference of this reduced version of INC with COMP is

that the winner of the first stage can only expect to get the second highest value among the

other bidders in the second, but the losers now have a chance to win in the second stage and

appropriate a part of the rent (for example in case they have the highest value, they will get

the difference between this value and the second highest). Note that in this reduced game,

bid your value is still a Nash equilibrium.

Level 1 play, meaning a best response against opponents who are bidding randomly, results

in a bidding function that starts at (N − 1)/(N + 1) for a value of zero (see appendix). It

rises monotonically to N/(N + 1) for a value of 100. Level 2 players bid their values34, up

to a maximum bid of N/(N + 1) and level 3 do the same, but have different expected payoff

functions and thus different error distributions.

33The bidding behaviour prescribed for the second stage bidders is rational. For the second stage seller on
the other hand, setting a reserve price equal to her use value is not an optimal choice. However, when the
number of bidders is high enough, the reserve price becomes irrelevant. When selling to 3 bidders as in our
experiments, with values uniformly distributed in [0,1] the expected revenue under the optimal reserve price
is around 0.53 and the second highest value (which is the expected revenue without a reserve price) is 1/2;
the reserve price enhances revenues by not more than 6%.
34As with treatment COMP, the best response to level 1 is a correspondence. Where multiple bids are

possible for a given value, bid your value is chosen as the obvious focal one.
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Model Nash L1+L2+L3 QRE Nash+logit
LL INCred -4659.8 -4559.3 -4216 -45863
BIC 9326.6 9152 8466 9179.6
Est. λ or σ 18.1 0.65 1.1 0.73

Table 5: Goodness of fit of different models for the reduced form of treatment INC. LL is the
maximised log likelihood, BIC is the Bayesian Information Criterion for model selection.

The estimated frequencies for the mixed levels of reasoning mode are 31.5% for L1, 1%

for L2 and 67.5% for L3, relatively close to the values estimated in the previous section

for COMP. The simple Nash model with symmetric normal errors performs once more very

badly35. All the models using logistic errors fit the data better. As in treatment COMP,

the QRE outperforms the mixed levels of reasoning model and the Vuong test statistic again

rejects the hypothesis that the models fit the data equally well at the 0.01 level.

5.3 Alternative explanations

Several models that have been used to explain overbidding in other auction experiments,

like first-price auctions (see Cox et al. 1992), cannot explain the data in this study fully.

Consider "joy of winning”, meaning that a player’s utility is increased by a fixed amount

if they manage to get the object and realize profits in the auction. A pure joy-of-winning

model predicts the same absolute value of overbidding for all private values, unless the joy

of winning is somehow correlated with use values (see Georganas et al. 2009). However, as

we saw in the previous section, low value bidders bid much higher than their values whereas

high value players’bids are very close to their values. More evidence against this hypothesis

is that in the simple English auction no systematic overbidding is observed - after the initial

learning periods.

A second explanation, used for example in Cox et al. (1985), is risk aversion. If subjects

are risk averse they could value the higher probability of winning, when bidding above their

values, more than the loss in their expected profit. In English auctions with no resale the

equilibrium is, as noted before, in weakly dominant strategies, so risk aversion does not induce

35Note that the existence of better fitting asymmetric Perfect Bayesian equilibria in INC is possible. But
the symmetric equilibrium, which is the usual suspect in most applications in the literature, does not perform
well in this case.
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different behavior. In COMP and INC, risk aversion alone does not change the equilibrium

predictions. However risk aversion combined with some noise in the bidding could be a factor

influencing the results.

Another motive for low value players overbidding is spite, as has been found for example

in Andreoni et al. (2007). The authors gave subjects information about other bidders’values

in second price private value auctions. When players have a low chance of winning due to a

low value, but know that some other player has a high value they sometimes tend to overbid

in order to lower the winner’s earnings. The authors observe that when subjects get more

information about others’value, this behavior becomes less risky and overbidding is more

frequent. Note that if we model the auction as a series of stages (see Milgrom and Weber

1982), entering a new stage every time a bidder leaves the auction, this behavior is compatible

with individual rationality. The SNE equilibrium described in Section 3 is unique only in

the last stage of the auction when there are only two bidders left, while in the earlier stages

other equilibria are possible, which all lead to the same outcome regarding the identity of

the winner and the auction price.

While this explanation is plausible, it cannot account for the entire amount of overbidding

observed. The first reason is that in simple English auctions with no resale, the extent of

overbidding in early stages is much lower although the risk from overbidding is in theory

exactly the same as in INC and COMP. Secondly, in the last stage of the initial auction in

COMP when only two bidders are left, overbidding is indeed less risky than in ENG, but

unlike the previous stages it is still not part of any symmetric equilibrium strategy and can

lead to negative profits36.

The QRE and level-k models improve upon Nash in INC mainly by predicting some

underbidding for the high types. An alternative reasoning for very low bids is reported in

Kamecke (1994). In this study it has been found that some subjects tended to bid very low

when they thought they did not have a good chance of winning in order to raise the profits

of the winner. In Cox et al. (1982) this tendency for low value holders to throw away bids

was argued to make economic sense, once one accounts for subjective costs of calculating a

36In fact it can be part of an asymmetric equilibrium, where everyone bids their value except for one player
who overbids. This strategy however is very risky. If for example there are two spiteful players with low
values and they both overbid, the winner of the two will suffer a serious loss.
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more meaningful bid under the circumstances. A low chance of winning with a bid close to

one’s value, however, cannot explain why so many players were underbidding when they had

high values. Additionally, there is no obvious reason why the effect of calculation cost and

low winning chances should be different in INC than in COMP, so it cannot account for the

significantly smaller frequency of low bids in INC.

A model that has recently been found to explain non Nash behavior in auctions is an-

ticipated regret, which losers feel when they fail to obtain the item although the price was

favorable (Ozbay and Ozbay 2007). The authors show such considerations lead to overbid-

ding in first-price auctions, although there is no effect in standard English auctions and it is

unclear what the effect would be if we allow for resale. Other-regarding preferences have also

been used extensively to explain experimental resutls (e.g. Bolton and Ockenfels 2000, Fehr

and Schmidt 1999) and might be able to explain part of the behavior in the second stage

of the game. A full formal analysis using these models is however outside the scope of this

paper.

6 Discussion and extensions

All the models except Nash predict overbidding in the resale treatment COMP. Thus there

is no way to separate them based on the qualitative predictions. They differ however in

their predictions when we vary the number of bidders in the auction. While Nash predicts

no effect, LOR clearly predicts a monotonic rise in the magnitude of overbidding while the

QRE predicts an initial rise up to 4 bidders and then a slight fall in parts of the bidding

function37. In specific, for middle-of-the-range use values, the QRE prediction falls when

there are many bidders. Thus an experiment with COMP and 5 or more bidders would allow

a neat separation of the models.

As an extension of the present study, in order to test the hypothesis of subjects an-

37The reason for the fall has to do with the feature of the QRE, where strategies with a payoff of zero are
played with a positive probability. As the number of players grows the probability of winning with a low to
middle bid falls dramatically. Thus the part of the bidding function that gives an expected payoff of zero
grows and the bidding distribution for a given value comes close to uniform. Thus while for n = 3 the QRE
predicts a bidder with a value of 70 to bid on average close to 60, for n = 8 she will bid close to the average
of the uniform distribution in [0,100] which equals 50.
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ticipating mistakes, one could run an experiment where human players face computerised

opponents. As computerised opponents do not make mistakes, we should expect very simi-

lar behavior in all three treatments. On the other hand it is questionable whether players’

behavior when playing against machines allows us useful predictions of how they will play

against real humans.

A promising idea for future research is the explicit inclusion of a speculator in the game

as in the Garratt and Troeger (2006) paper. This experiment will be very useful to compare

with INC and will give us valuable insights to the source of the asymmetric behavior in our

data.

Finally, experiments with sealed bid auctions would allow a test of the theoretical result

of revenue equivalence of the English and second-price sealed-bid auctions under complete

information in the resale stage (see Haile 2003). It would be useful additionally, to design

these experiments in a way that makes the results comparable with the results of the empirical

study in Haile (2001), which has found evidence of the effect of resale markets on US Forest

Service timber auctions. As already mentioned, independent work of List et al. (2004) has

run first-price sealed bid experiments and compared them with these timber auctions. They

seem to have found a significant presence of risk aversion in the data. While this seems like

a plausible explanation, it is very likely that the combination of risk aversion with noisy

behavior can enhance their results.

7 Conclusions

In the resale treatment under complete information we have a case similar to the “ten little

treasures” in Goeree and Holt (2001). The simple English auction represents the “treasure

treatment”, where Nash theory seems to work perfectly, predicting subjects’behavior with

a very high accuracy. When we change the game a bit, adding the resale opportunity, the

Nash equilibrium is still valid, prescribing that players bid their values. Nonetheless, subjects

seem to see a difference where theory does not see one. Players significantly overbid in the

presence of a resale opportunity, under complete information in the resale market, and this

overbidding does not tend to fade away with the passage of time and the effect of learning.
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However when there is no complete information in the resale market, the results are

quite different. Subjects with low values tend to bid a bit more than their values, whereas

high value bidders bid much less than their values. This indicates that instead of the usual

separating equilibria there is pooling similar to Haile (2000); high value players pretend to

have smaller values and expect to get a better offer in the resale market.

What is common in both treatments, comparing to common results in simple English

auctions, is that the addition of the resale opportunity alters the strategic behavior of the

subjects significantly. The resulting change in the bidding behavior leads to substantially

different revenues for the initial seller. Thus, the presence of a resale opportunity is an

important feature of an auction environment and has to be included in the analysis.

The second and more general result of this paper stresses the importance of considering

noisy decision making and looking at the exact form of expected payoff functions.38 The three

treatments that were tested had the same Nash equilibrium, but subjects’behavior was quite

different in each one of them. It was argued that the reason for this is the presence of errors

(even small ones suffi ce) on behalf of some players. Such apparent errors can be attributed to

experimentation with different strategies, trembling or idiosyncratic preferences. In auctions

in the field, not adequately modelled liquidity constraints can also lead to behavior that looks

noisy. Errors and noise are present even in the most important financial markets where the

stakes are very high (see Shleifer and Summers 1990). Although errors exist, they should not

be thought of as being entirely random. Whatever the reason for making errors, the present

study finds that subjects systematically try to avoid the most costly ones, thus the shape of

the payoff functions is a good indicator for the empirical distribution of players’errors.

The reaction to errors can be more important than the errors themselves. In cases where

the anticipation of errors on behalf of some players does not alter best responses by much,

the Nash prediction can be valid, at least qualitatively. However, in cases such as the present

experiments, where best responses are sensitive even to small amounts of noise, the anticipa-

tion of errors rationally leads human subjects far away from the Nash equilibrium strategies

38This feature is demonstrated very strongly in a recent analysis of second price sealed bid auctions by
Georganas et al. (2009). The authors use a manipulation of the payoffs that leaves the weakly dominant
strategy of bid-your-value unchanged. However this manipulation is used, with different parameters, to lead
from extreme overbidding to virtually no overbidding at all.
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in a way that can even invalidate comparative statics, e.g. regarding the number of players.

For policy prescription purposes these findings should be taken carefully into account.

While some features of a laboratory experiment will probably not apply in real markets (for

instance it is not clear that real-life investors will have fairness concerns or display altruistic

behavior), others like noisy behavior and the anticipation thereof are surely present and of

significant importance. Thus the results of this study must possess some external validity

and imply that models of noisy behavior (including QRE and level-k) can yield more realistic

results than simple Nash equilibrium analysis.

A Appendix

A.1 Derivation of level 1 bids in treatment COMP

All values are scaled to be in the interval [0,1], N is the number of opponents.

Πi =
bi∫
0

(E[max{vi, v−i}]− x)NF (x)N−1dx

=
bi∫
0

(E[max{vi, v−i}]− x)NxN−1dx =
bi∫
0

N(E[max{vi, v−i}]xN−1 − xN)dx

= [N(E[max{vi, v−i}] 1N x
N − 1

N+1
xN+1)]bi0 = N(E[max{vi, v−i}] 1N b

N
i − 1

N+1
bN+1i )

Taking first order conditions:

N(E[max{vi, v−i}]bN−1i − bNi ) = 0→ bi = E[max{vi, v−i}]

E[max{vi, v−i}] = prob(vi > max{v−i})vi + (1− prob(vi > max{v−i}))E[max{v−i}|vi <

max{v−i}]

= vNi vi + (1− vNi )

1∫
vi

xNx
N−1

1−vNi
dx = vN+1i + (1− vNi )

1∫
vi

NxN

1−vNi
dx

= vN+1i + (1− vNi )[ NxN+1

(N+1)(1−vNi )
]1vi = vN+1i +

N(1−vN+1i )

N+1
=

N+vN+1i

N+1

In the case of N = 3, as in the experiments, we have bi = 1
4
v4i + 3

4
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A.2 Derivation of level 1 bids in treatment INC

(for N > 1)

Πi =
bi∫
0

(E[max{vi, sec max{v−i}}]− x)NxN−1dx+ prob(bi < max{b−i})
∫ vi
0

(vi − x)NxN−1dx

=
bi∫
0

(E[max{vi, sec max{v−i}}]− x)NxN−1dx+ (1− bNi )
∫ vi
0

(vi − x)NxN−1dx

Taking first order conditions:

N(E[max{vi, sec max{v−i}}]bN−1i − bNi )−NbN−1i

∫ vi
0

(vi − x)NxN−1dx

b = E[max{vi, sec max{v−i}}]−
∫ vi
0

(vi − x)NxN−1dx

Thus we have the familiar result, bids are equal to the value of winning in the first stage

minus the value of winning in the second.

Lemma 1: The value of winning in the first stage equals E[max{vi, sec max{v−i}}]

= prob(vi > sec max{v−i})vi + (1− prob(vi > sec max{v−i}))E[sec max{v−i}|vi <

sec max{v−i}]

omit index i for vi and let p = prob(vi > sec max{v−i}) = [vN +N(vN−1 − vN)]

= pv + (1− p)
1∫
v

xN(N − 1)xN−2(1− x)

1− vN − n(vN−1 − vN)
dx = pv + (1− p) N(N−1)

1−vN−n(vN−1−vN )

1∫
v

xN−1 − xNdx

= pv + (1− p) N(N−1)
1−vN−n(vN−1−vN ) [x

N/N − xN+1

(N+1)
]1v =

pv + (1− p) N(N−1)
1−vN−n(vN−1−vN )(1/N − 1/(N + 1)− vN/N + vN+1

(N+1)
)

= (vN+N(vN−1−vN))v+(1−vN−N(vN−1−vN)) N(N−1)
1−vN−n(vN−1−vN )(1/(N

2+N)−vN/N+ vN+1

(N+1)
)

In the case of N = 3, as in the experiments, we have
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E[max{vi, sec max{v−i}}] = 2v4 + 3v3 + (1− 4v3 − 3v2) 6
1−4v3−3v2 (1/12− v3/3 + v4

4
)

Lemma 2: The value of losing in the first stage auction equals

N
∫ vi
0
vix

N−1 − xNdx = [vix
N − N

N+1
xN+1]vi0 = vi

N+1 − N
N+1

vN+1i = (1− N
N+1

)vN+1i =
vN+1i

N+1

When N = 3 this becomes v4i /4
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