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Abstract

This paper presents further development of the QALE-FEM (Quasi Arbitrary Lagrangian-Eulerian Finite 

Element Method) based on a fully nonlinear potential theory to numerically simulate nonlinear responses of 

3D moored floating bodies to steep waves.  In the QALE-FEM (recently developed by the authors and 

applied to 2D floating bodies), the complex unstructured mesh is generated only once at the beginning of 

calculation and is moved to conform to the motion of boundaries at other time steps by using a robust spring 

analogy method specially suggested for this kind of problems, avoiding the necessity of high cost remeshing.  

In order to tackle challenges associated with 3D floating bodies, several new numerical techniques are 

developed in this paper.  These include the technique for moving the mesh near body surfaces, the scheme 

for calculating velocity on 3D body surfaces and the ISITIMFB-M (Iterative Semi-Implicit Time Integration 

Method for Floating Bodies - Modified) procedure that is more efficient for dealing with the full coupling 

between waves and bodies. Using the newly developed techniques and methods, various cases for 3D 

floating bodies with motions of up to 6 degrees of freedom (DoFs) are simulated. These include a SPAR

platform, a barge-type floating body and one or two Wigley Hulls in head seas or in oblique waves.  For

some selected cases, the numerical results are compared with experimental data available in the public 

domain and satisfactory agreements are achieved.  Many results presented in this paper have not been found 

elsewhere to the best knowledge of the authors.

Keywords: QALE-FEM; Nonlinear water waves; Spring analogy method; Iterative procedure; 3D floating 

bodies; freely responses to waves with 6 degrees of freedom (DoFs).
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1. Introduction

To make use of resources in oceans, various moored structures, such as SPAR platforms, FPSOs (Floating 

Production Storage and Offloading vessels), floating breakwaters and floating storage systems, have been 

built and utilised.  There is no doubt that more structures will be built and utilised in a foreseeable period of 

time, though their types or uses may be different.  No matter what type they are and what purpose they are 

used for, one thing is in common, i.e., they are all under actions of waves.  Sometimes these actions are very 

violent.  In order to produce offshore structures that are safe, functional and economical, one must have a 

good understanding of interaction between structures and environmental waves. For this purpose, linear, 

second order or other simplified theories with different degrees of approximation (such as, strip theory, a 

theory based on fully nonlinear conditions on the free surface but linear conditions on body surfaces or linear 

conditions on the free surface but fully nonlinear conditions on bodies) have been well developed.  They are 

often sufficient for routine design, in which one assumes that the motions of waves and/or structures are 

moderate.  Reviews on the work associated with the simplified theories can be found in many publications 

(e.g., Beck & Reed [1] and Eatock Taylor [2]), which will not be given here.  In many situations, however, 

one must consider extremely large steep waves and/or behaviours of bodies subjected to them.  In such cases, 

fully nonlinear theory has to be adopted.  Necessity of using fully nonlinear theory has been justified by 

many researchers, e.g. Liu, Xue & Yue [3] and Beck & Reed [1]. Models based on fully nonlinear theory 

can be divided into two groups.  The first group solves the Navier-Stokes (NS) equations together with the 

continuity equation and proper boundary conditions while the second group deals with the Laplace equation 

with fully nonlinear boundary conditions. For brevity, the first group will be called NS Model and the 

second called FNPT (representing fully nonlinear potential theory) Model as in our previous papers, e.g. Yan 

& Ma [18].  Generally speaking, solving the equations for the NS Model is always a time consuming task 

and is much more difficult, particularly when floating bodies with motions of 6 degrees of freedom (DoFs)

are included. As a result, the FNPT Model has been explored in many publications, which needs much less 

computational resources than the NS Model.  In this model, of course, viscosity could not be precisely 

considered, though some empirical viscosity in motion equations of bodies may be introduced.  Comparison 

with experimental data (e.g., [4] and [5]) has shown that the results obtained by using this model are accurate 

enough in many cases, in which breaking waves do not occur and/or structures involved are large.

Therefore, the FNPT Model, instead of the NS Model, should be preferred if a case considered falls in this 
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category.  However, it does not mean that solving the problems based on the FNPT Model is easy.  Actually 

it is still very difficult, mainly due to the continuously moving of free surface and/or floating bodies and to 

the fact that their positions and attitudes are unknown prior to solution being found.  In this work, the FNPT 

Model is adopted.  On this basis, the review on the work using the NS Model will not be given here.  Readers 

may be referred to, e.g., Beck and Read [1], Yang, Lohner & Lu [6], Idelsohn, Oñate, Del Pin & Calvo [7]

and others therein.

(Table 1. Summary of problems about fully nonlinear interaction between waves and bodies)

In the context of fully nonlinear simulation based on the potential theory, bodies may or may not be 

included.  For the problems without bodies, people are mainly interested in the wave dynamics.  Review on 

this kind of problem will be presented in another paper (Yan & Ma [34]).  Here, our attention will be 

concentrated on the fully nonlinear interaction between floating bodies and steep waves.  In this framework, 

various problems may be summarized in Table 1.  In this table, the problems are first grouped into these with 

fixed bodies (i.e., diffraction), these with bodies subjected to forced (prescribed) motions (i.e., radiation) and 

these with bodies freely responding to excitation of waves, which are listed in different columns from the left 

to the right.  Compared with the problems about fixed bodies, these (about forced motions) to their 

immediate right are more difficult.  That is mainly because the meshes near the body and free surfaces as 

well as their intersecting line (waterline) are required to be finer relative to those in other areas and are not 

easy to maintain such distribution, no matter which numerical method is used.  For example, when a body is 

subjected to a large surge (or sway) motion, the finer mesh areas must follow the motion in the horizontal 
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direction to give good results.  This clearly needs special attention.  The problems about floating bodies 

freely responding to waves are even more difficult.  The difference between freely floating bodies and those 

being fixed or subjected to forced motions is that for the former the coupling between the motions of waves 

and bodies has to be dealt with, which is not necessary for the latter.  This feature leads to many challenging

issues.  The important one is that the position and velocity of body surfaces are unknown and have to be 

found simultaneously together with water waves by solving different dynamic equations.  The second but not

less important issue is to maintain the good mesh near bodies, which is a tougher task than in the situation of 

forced motions since one does not know where the bodies go prior to the solution being found.  In addition, 

the stability is often of concern when body motions are fully coupled with water waves.  A numerical 

procedure for the problems about bodies being fixed or subjected to forced motions may be stable but it is 

not necessarily stable for these with free responses by using the same time steps.  One of examples was 

discussed by Koo & Kim [17].  Within the group of the problems about freely floating bodies, these with 

motions of 6 DoFs are more complicated than those with motions of 3 DoFs.  That is not only because the 

case with 6 DoFs needs more computer resources and CPU time but also because some special issues 

demand more sophisticated numerical techniques.  For example, in a head sea, in which a moored ship may 

undergo only 3-DoF motions, the sharp bow edge of the ship may not cause any numerical difficulty.   

However, if it is in an oblique wave, in which a moored ship must undergo 6-DoFs motions, this edge may 

cause the simulation to fail if no special treatment is applied.  Compared to others, the problems involving 

freely-floating multi-bodies are obviously the most difficult.

Secondly, all the problems are grouped into 2D (two-dimensional) and 3D (three-dimensional) ones in 

Table 1.  The 2D problems are relatively easier and may provide a good approximation in some cases.  

However, they could not generally represent the real problems in most cases, which are always three-

dimensional in nature.

As can be seen in the table, a lot of publications have been devoted to solving the problems about the 2D 

and 3D fixed bodies and bodies with forced motions.  A considerable number of publications are also 

devoted to 2D bodies freely responding to waves.  However, the results on the 3D bodies freely responding 

to waves are still very limited even for simpler cases with 3 DoFs.  The works on 3D bodies with 6-DoFs

free responses are hardly found at present in the public domain.   It is stressed again that the references given 

in Table 1 are only these dealing with fully-nonlinear interaction between bodies and waves by using the 
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fully nonlinear potential theory and thus do not include those using various simplified theories.  Even in this 

context, the references in the table may not be considered as complete, though most typical developments are 

believed to be included.

The problems formulated by the FNPT Model are usually solved by a time marching procedure 

suggested by Longuet-Higgins & Cokelet [35] and used by many others (such as Vinje & Brevig [36]; Lin, 

Newman & Yue [37]; Wang, Yao & Tulin [38]; Grilli, Guyenne & Dias [39]).  In this procedure, the key task 

is to solve boundary value problems (BVPs) by using a numerical method, such as a boundary element

(panel) or boundary integral method (BEM) and a finite element method (FEM).  The conventional BEM

(linear or higher order) has been attempted by many researchers (e.g., Kashiwagi [15, 40]; Ferrant [20]; Liu, 

Xue & Yue[3]; Corte and Grilli[26]).  An alternative one called desingularized boundary integral method was

employed by Cao, Schultz & Beck [41], Cao, Beck & Schultz [13], Celebi, Kim & Beck [30] and Kim, 

Celebi & Kim [31], Celebi [25] and so on.  Recently, Bai and Eatock Taylor [28, 32] combined the BEM 

with domain decomposition technique (extending the idea of Wang, Yao & Tulin [38] to 3D cases) to study 

the diffraction and radiation of cylinders. It is noted that a fast BEM method was recently published by 

Fochesato & Dias [42], which could be 6 times faster than the conventional BEM as shown by their 

numerical tests on 3D overturning waves, but it has not yet been found to be applied to wave-body 

interactions, though it has such potential. The FEM was developed by Wu & Eatock Taylor [43, 44], 

Westhuis & Andonowati [45] and Clauss & Steinhagen [4] for 2D cases and by Ma, Wu & Eatock Taylor 

[23, 24] and Ma [21] for 3D cases.   Wu and Eatock Taylor [16] have suggested a method combining the 

BEM with FEM and applied it to 2D problems about free responses of a submerged cylinder, in which the

BEM is used in a small region surrounding a body while the outer region is modelled by a simple structured 

mesh of finite elements.

Both the BEM and the FEM have been proved efficient but the later requires less memory and therefore 

may be computationally more efficient for fully nonlinear wave-body problems, as indicated by Ma, Wu & 

Eatock Taylor [23] and Wu & Eatock Taylor [43].  A disadvantage of the FEM, however, is that a complex 

unstructured mesh, which is necessary for complicated geometries to achieve accurate results, may need to 

be regenerated at every time step to follow the motions of waves and bodies.  Repeatedly regenerating such a 

mesh may take a major part of CPU time and so makes the overall simulation very slow. In order to reduce 

the CPU time spent on meshing, simple structured meshes have been used by Ma, Wu & Eatock Taylor [23, 
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24], Wu & Eatock Taylor [43, 44] and Ma [21].  These were improved by Wu and Hu [46], Wang & Wu [10] 

and Wang, Wu & Drake [27], in which the unstructured meshes are generated only on the free surface while

the mesh below it are obtained by drawing lines or curves from each node on the free surface, depending on 

the shape of the body.  Turnbull, Borthwick & Eatock Taylor [8] and Heinze [9] adopted a hybrid structured-

unstructured mesh for 2D problems, which is unstructured near a body and structured in the outer region. 

However, these techniques are either still time-consuming or restricted to the cases for bodies with special 

shapes and/or undergoing only translational motions.  The problem with meshing has become a bottleneck in 

the development of more efficient methods dealing with the interaction between water waves and freely 

floating bodies by using the FEM.  To overcome the difficulty, Ma and Yan [47] have invented a new method 

called QALE-FEM (Quasi Arbitrary Lagrangian-Eulerian Finite Element Method). The main idea of this 

method is that the complex unstructured mesh is generated only once at the beginning of calculation and is 

moved at other time steps to conform to motions of boundaries by using a robust method.  This allows one to 

use an unstructured mesh with any degree of complexity without the need of regenerating it at every time 

step and to model complex motions of 6 DoFs.  Its promising features have been shown by simulating 

various 2D problems in Yan & Ma [18, 19].  In the cited papers by the authors, the QALE-FEM was 

compared with conventional FEM in terms of computational efficiency and accuracy for various 2D cases.  It 

was concluded that the QALE-FEM required less than 15% of the CPU time demanded by the conventional 

FEM at the same accuracy level.  In Yan and Ma [34], the efficiency of the method is further compared with 

the fast BEM by Fochesato & Dias [42]. Both the methods are applied to simulate 3D overturning waves

with the same level of accuracy, which last for the same duration and propagate in the same domain.  The 

comparison showed that the QALE-FEM can be at least 10 times faster.

To deal with full coupling between waves and freely-responding bodies, one needs to evaluate the time 

derivative of velocity potential.  This may be achieved by applying a direct finite difference scheme but it has 

been proved to be unstable by many researchers.  The better way is to solve a boundary value problem (BVP) 

about the term.  However this BVP depends on the body velocity that is unknown at the current step prior to 

finding the time derivative of velocity potential.  To overcome this difficulty, four types of approach have 

been suggested by other researchers for different numerical methods. These are the iterative procedure (Cao, 

Beck & Schultz [13]), Dalen & Tanizawa’s method (Dalen [12], Tanizawa [48]), the mode-decomposition 

method (Vinje & Brevig [36]) and the indirect method (Wu & Eatock Taylor [11]). Using one of these
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methods and the BEM, Tanizawa [49], Tanizawa & Minami [50] and Tanizawa, Minami & Naito [51]

simulated 2D barge-type freely-floating body, followed by Koo & Kim [17].  Kashiwagi, Momoda & Inada 

[52], Kashiwagi [15] and Contento [14] investigated the wave-induced motions of 2D floating bodies with 

more complicated shapes. Tanizawa [53] and Tanizawa & Minami [33] simulated the interaction between 

waves and 3D Wigley Hull with motions of 3 DoFs.  In the community of researchers who employ the FEM, 

Wu and Eatock Taylor [16] applied the indirect method to model the problems about a 2D submerged 

cylinder.  However, in all the papers, the body velocity is estimated explicitly. The explicit procedure may be 

satisfactory if time steps and so changes in the velocity and acceleration in one step are sufficiently small; 

otherwise, it may degrade the accuracy and even lead to instability.  Yan & Ma [18] developed an iterative

procedure called ISITIMFB (Iterative Semi-Implicit Time Integration Method for Floating Bodies) 

procedure that is based on the similar principle to that of Cao, Beck & Schultz [13] but is different from the 

later in that the body velocity and acceleration in the ISITIMFB procedure is estimated implicitly. This 

procedure has been demonstrated to be efficient and to be the best one matching the QALE-FEM by using 

the cases for 2D floating bodies.

As has been indicated, all the references cited above have presented results for 2D bodies or for 3D 

bodies only with motions of up to 3 DoFs, no matter what numerical methods and procedures were used.  In 

this paper, the QALE-FEM is further developed to deal with the problems about 3D floating bodies with free 

responses of 6 DoFs, fully coupled with nonlinear water waves.  In order to tackle challenges associated with 

3D floating bodies, several new numerical techniques are developed.  These mainly include the technique for 

moving mesh near body surfaces, the scheme for calculating fluid velocity on moving 3D body surfaces and 

the modified version of the iterative procedure - the ISITIMFB-M, which is more efficient for dealing with 

the full coupling between waves and bodies.  Using the new developed techniques and methods, various 

cases associated with the nonlinear interaction between waves and different types of floating body, i.e., 

SPAR platforms, barge-type 3D floating bodies and Wigley Hulls, are simulated.  Many results are not found 

to be published before to our best knowledge.

2. Mathematical model and FEM formulation

Similar to our previous papers ([18-19,47 and 55]), waves are generated by a piston-like wavemaker in a 

rectangle tank as shown in Fig. 1. The wavemaker is mounted at the left end and a damping zone with a 
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Sommerfeld condition (see [21, 23], for details) is applied at the right end of the tank in order to suppress the 

reflection.  A Cartesian coordinate system is used with the oxy plane on the mean free surface and with the z-

axis being positive upwards.  A floating body is centred at x=0 initially and moored to the bed or walls of the 

tank unless mentioned otherwise.  To describe the attitude of the floating body, a body-fixed coordinate 

system ( bbbb zyxO ) is employed, in which all axes go through the centre of gravity of the body with xb-axis 

parallel to the keel and zb-axis initially parallel to z-axis.

[Figure1]

Fig. 1.  Sketch of fluid domain

2.1. FNPT Model for fluid

Similar to the usual formulation for the FNPT Model, the velocity potential (φ ) satisfies Laplace’s 

equation,

02 =∇ φ (1)

in fluid domain. On the free surface ( )tyxz ,,ζ= , it satisfies the kinematic and dynamic conditions in the 

following Lagrangian form,

zDt

Dz

yDt

Dy

xDt

Dx

∂
∂

=
∂
∂

=
∂
∂

=
φφφ

,, (2)

2

2

1 φφ
∇+−= gz

Dt

D
(3)

where
Dt

D
 is the substantial (or total) time derivative following fluid particles and g is the gravitational 

acceleration.  In Eq. (3), the atmospheric pressure has been taken as zero.  On all rigid boundaries, such as 

the wavemaker and the floating body, the velocity potential satisfies

)(tUn
n

rr
⋅=

∂
∂φ

, (4)
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where ( )tU
r

 and n
r

 are the velocity and the outward unit normal vector of the rigid boundaries, respectively. 

2.2. Motion equations of a floating body

The displacements, velocities and accelerations of a floating body are governed (see, e.g., [18, 21, 54]) by 

FUM c

rr
& =][ , (5) 

NII
rrrr

& =Ω×Ω+Ω ][][ , (6) 

cU
dt

Sd r
r

= , (7) 

 Ω=
r

r

dt

d
B

θ
][ ,  (8)

where F
r

and N
r

 are the external forces and moments acting on the floating body, cU
r

and cU
r
&  the translational 

velocity and acceleration of its gravitational centre, Ω
r

 and Ω
r
&   its angular velocity and acceleration, 

),,( γβαθ
r

 the Euler angles and S
r

 the translational displacements.  In Eq. (5) and (6), [M] and [I] are the mass 

and inertia-moment matrixes, respectively; and [B] in Eq. (8) is the transformation matrix formed by Euler 

angles and defined as,

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

10sin

0cossincos

0sincoscos

β
γγβ
γγβ

B  (9)

Once cU
r

 and Ω
r

 are known, the velocity at a point on the body surface is determined by 

bc rUU
rrrr

×Ω+= ,  (10)

where br
r

 is the position vector of a point on the body surface relative to the gravitational centre.

2.3. Force and moment calculation

The external forces ( F
r

) and moments ( N
r

) acting on a body in Eqs. (5) and (6) can be evaluated by,

m

S

fdsngz
t

F

b

rrr
+⎟

⎠
⎞

⎜
⎝
⎛ +∇+
∂
∂

−= ∫∫ 2

2

1 φφρ , (11)

m

S

b Ndsnrgz
t

N

b

rrrr
+×⎟

⎠
⎞

⎜
⎝
⎛ +∇+
∂
∂

−= ∫∫ 2

2

1 φφρ ,  (12)
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where Sb denotes the wetted body surface, mf
r

and mN
r

are forces and moments due to mooring lines.  

Because this paper focuses on wave-body interaction, the mooring lines are approximated by using nonlinear 

springs, i.e.,

mmm Skf
rr

=  (13)

mmm frN
rrr

×= (14)

in which mS
r

is the displacement of a mooring point, km is the spring stiffness (possibly depending on mS
r

) 

and mr
r

 is the position vector of a mooring point relative to the gravitational centre of the floating body. 

As can be seen, the time derivative of the velocity potential ( t∂∂ /φ ) is required and is critical for 

accurately calculating forces and moments.  Although it may be estimated by using a time difference scheme, 

it is more stable to find the term by solving a BVP about it. The BVP about t∂∂ /φ is defined by,

02 =⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∇
t

φ
(15)

in the fluid domain.  On the free surface ( )tyxz ,,ζ= ,  it is estimated by

2

2

1 φζφ
∇−−=

∂
∂

g
t

.  (16)

On all rigid boundaries, it satisfies

)]([][ φφφ
∇−×

∂
∂
⋅Ω+

∂
∂∇
⋅−⋅×Ω+=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

cbcbc Ur
nn

UnrU
tn

rr
r

rrrrr
&

r
& .  (17)

As mentioned in §1 and evidenced in Eq. (17), there is a difficulty with solving Eqs. (15) to (17) together 

with Eqs. (1) to (12) if bodies freely respond to the excitation of waves.   As can be seen from Eq. (17), the

velocity and acceleration of the body must be known to solve the BVP about t∂∂ /φ .  However, in the cases 

involving free-response floating bodies, they depend on the forces and moments in Eqs. (11) and (12) as 

shown in Eqs. (5) and (6).  In turn, to find the forces and moments, one needs the term of t∂∂ /φ . The 

schemes to overcome this dilemma will be discussed in §3.4 below.

2.4. FEM formulation

The full details about the FEM formulation have been described in our previous publications (see, for 

example [23]).  Only a summary is given herein. The problem described by Eqs. (1) to (4) is solved by using 

a time step marching procedure as mentioned before.  At each time step, the free surface and the potential 
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values on it are known.  Thus, the boundary condition for the potential on the free surface can be replaced by 

a Dirichlet condition:

pf=φ ,  (18)

where pf  is the potential value on the free surface, which can be estimated by using Eq. (3) and a time 

integration scheme.  Therefore, the unknown velocity potential in the fluid domain can be found by solving a 

mixed BVP which is defined by Eqs. (1), (4) and (18).  To do so, the fluid domain is discretised into a set of 

small tetrahedral elements and the velocity potential is expressed in terms of a linear shape 

function, ( )zyxN J ,, :

∑=
J

JJ zyxN ),,(φφ ,  (19)

where Jφ is the velocity potential at Node J. Using the Galerkin method, the Laplace equation and the 

boundary conditions are discretised as follows,

∑∫∫∫∫∫∫ ∫∫∑
∈

∀∀

∉

∀∇⋅∇−=∀∇⋅∇

P

n

P SJ
J

JJpI
S

nI

SJ
J

JJI dNfNdSfNdNN )(φ ,  (20)

where SP represents the Dirichlet boundary, on which the velocity potential fp is known, and Sn represents the 

Neumann boundary, on which the normal derivative of the velocity potential fn is known.  Eq. (20) can 

further be written in the matrix form:

[ ]{ } { }BA =φ , (21a) 

where

{ } [ ] )(,,,,, 321 P
T

I SI ∉= KK φφφφφ , (21b)

( )PPJIIJ SJSIdNNA ∉∉∀∇⋅∇= ∫∫∫
∀

, , and (21c)

( )P
SJ

JJpI

S

nII SIdNfNdSfNB
Pn

∉∀∇⋅∇−= ∫∫∫ ∑∫∫
∀ ∈

)( . (21d)

The algebraic Eq. (21) is solved by using a conjugate gradient iterative method with SSOR pre-conditioner 

and optimised parameters ([21]). 

The problem about t∂∂ /φ  described in Eqs. (15) to (17) is solved also by using the above method with φ

and the boundary conditions for it are replaced by t∂∂ /φ  and corresponding boundary conditions for t∂∂ /φ .

Nevertheless, Eq. (17) is more complicated than its counterpart (Eq. 4) because the former contains the 
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second order derivative in the normal vector direction, which can degrade the numerical accuracy.  To avoid 

this, that equation is equivalently changed to:

)()(][ bccbc rU
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where 1τ
v and 2τ

v are two tangential unit vectors at the same point on the body surface as n
r

.  More details 

about derivation and numerical implementation of these equations are given by Yan [55].

3. QALE-FEM for problems about 3D floating bodies

As mentioned in the Introduction, the QALE-FEM published in [18, 47] will be further developed in 

this paper to deal with more complicated problems about 3D floating bodies. This method includes three key 

elements in comparison with the conventional FEM method presented in [23]: (1) the scheme for moving 

mesh, (2) the method for estimating the velocity on the free surface and body surfaces and (3) the iterative 

procedure to deal with the full coupling between freely-responding floating bodies and water waves.  All 

these elements have been described for 2D floating bodies in [18].  In this section, the three elements will be 

discussed again but with emphasis on new developments that are necessary for solving problems about 3D 

floating bodies.

3.1. Scheme for moving mesh

The main idea of dealing with mesh in the QALE-FEM is that the mesh is generated only once at the 

beginning of calculation and is moved at other time steps to conform to the motion of boundaries. The initial 

mesh can be unstructured and generated using an in-house mesh generator based on the mixed Delaunay 

triangulation and the advancing front technique (e.g. [56]) in this paper. To reflect the complexity of the 

fluid domain, one may assign different representative mesh size (ds) for different areas of the fluid domain to 

the mesh generator, which indicates the characteristic distance between two connected nodes.  For example, 

near the free surface but far from the bodies, ds would be equal to about thirtieth of a wave length while it is 

reduced near the body surface, such as by half.  Although ds is not precisely equal to the real mesh size, it 

largely indicates how fine the mesh is.  It should be noted that the initial mesh can be generated using any 
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mesh generator with any degrees of complexity, either structured or unstructured, or even mixed.  There is no 

limitation on the mesh structure for the QALE-FEM.

[Figure2]
Fig. 2. Illustration of the methodology for moving mesh

Obviously, the technique for moving the mesh is more crucial than generating the initial mesh in this 

method to achieve high robustness and high efficiency.  For this purpose, a novel methodology has been

suggested and adopted, in which interior nodes and boundary nodes are considered separately; and the nodes 

on the free surface and on rigid boundaries are considered separately.  Furthermore, the nodes on the free 

surface and on the rigid boundaries are split into three groups: these on waterlines, these (inner-free-surface 

nodes) on the free surface but not on waterlines and these (inner-body-surface nodes) on the rigid boundaries 

but excluding those on waterlines.  Different methods are employed for moving different nodes.  The 

sequence and the method are illustrated in Fig. 2.

3.1.1 Moving interior nodes

To move the interior nodes which do not lie on boundaries, a spring analogy method is used.  In this 

method, nodes are considered to be connected by springs and the whole mesh is then deformed like a spring 

system.  Specifically, the nodal displacement is determined by

∑∑
==

Δ=Δ
ii N

j
ij

N

j
jiji krkr

11

rr
, (23) 
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where ir
r
Δ  is the displacement of Node i;  kij is the spring stiffness and Ni is the number of nodes that are 

connected to Node i.  As pointed out in [47], the spring analogy method was originally adopted to cope with 

aerodynamic problems (e.g, [57-59]) without the free surface and without surface-piercing floating bodies.

To apply it to the problems associated with the large deformation of the free surface, particularly together 

with the large motion of such floating bodies, the authors of this paper have modified the method 

considerably by proposing a robust and distinctive method for computing the spring stiffness:

bsfs
ijij kk ΨΨ= 0 , (24)

where 0
ijk  is determined by

2
0 1

ij
ij

l
k = (25)

with lij being the distance between Nodes i and j. fsΨ and bsΨ are the correction functions associated with 

the free surface and the moving rigid boundaries, respectively.  These two functions are defined as

( )[ ]dzzfs jife
21 ++=Ψ γ , (26)

ijwwbs qe jib

min
)2/ˆˆ( +=Ψ γ , (27)

where zi and zj are the vertical coordinates of Nodes i and j; d is the water depth; and γf is an coefficient that 

should be assigned a larger value if the springs are required to be stiffer at the free surface. It is found that 

7.1=fγ  is suitable for all the cases tested so far. ŵ  is a weight function given by,

⎩
⎨
⎧

≤−
>

=
ffff

ff

DdDd

Dd
w

/1

0
ˆ ,                                           (28)

where df is the minimum distance from the concerned node to the body surface as shown in Fig. 3; Df is the 

distance between the body surface and the boundary of a near-body-region and is estimated by,

),2/,2/min( rbbf DLBD ε= , (29)

where bb BL , and rD are the length, breadth and draft of the body, respectively.  Numerical tests show that 

the coefficientε  = 1.5 is suitable.
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[Figure3]
Fig. 3. Region near moving body surface

The bγ  in the correction function bsΨ  was chosen to be the same as fγ  in [18].  However, as well 

known, the curvature of the body surface, particularly in 3D cases, is an important factor to be considered 

when generating a good computational mesh, i.e., the areas with a larger curvature should have smaller 

elements.  This kind of mesh may be easily generated at the first time step.  However, such quality may not 

be retained during a long time simulation if the effect of curvature is not considered when moving the mesh.  

To take this effect into account, the bγ is not chosen as a constant here; instead, it is evaluated by

ijfbr ωγ ~= , (30a) 

where ijω
~  is a function related to the curvature of the body surface and is determined by

⎩
⎨
⎧

Κ≠ΚΚ−ΚΚ−Κ
Κ=Κ

=
minmaxminmaxmin

minmax

)/()(

1~
ij

ijω . (30b) 

In the equation, Κ is defined as

2
2

2
1 κκ +=Κ , (31) 

in which 1κ and 2κ  are the curvatures of the intersecting curves between the body surface and each of two 

inter-perpendicular planes normal to the body surface at a node. maxΚ  and minΚ  are, respectively, the 

maximum and minimum values of Κ  at all nodes on the smooth part of body surfaces. ijΚ  is the value of 

Κ at a body-surface node that is the nearest to the centre of Spring i-j. It should be noted that the value of K 

at a node may vary with time since the node is continuously moving on the body surface; however, it is not 

necessarily updated at every time step because one just needs its approximate value to move the mesh.  In 

fact, it is taken as the initial value calculated at the first time step in this paper, which works well.

Nevertheless, it is envisaged that the value may need to be updated at a frequency of a certain number of 

steps for other cases considered in future and that there is no extra difficulty for doing so.

In addition, the motion of a 3D floating body may have 6 DoFs and thus the elements near body surfaces
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generally undertakes a larger degree of distortion than those in 2D cases.  To enhance the ability of resisting 

such distortion, ijqmin is introduced in Eq. (27) for 3D cases, which is the minimum value of the quality 

indexes of all the elements sharing Spring i-j.  The quality index for an element e is defined as (e.g. [55, 60]):  

e
c

e
i

e
R

R
q

3
= (32)

where iR and cR  are the inradius and circumradius of the element, respectively.  This quality index is based 

on the fact that the best tetrahedronal element is a regular tetrahedron whose circumradius is three times its

inradius (see, for example, [55, 60]).  The range of the quality index is from 0 to 1.  It equals to 1 for regular 

tetrahedrons and 0 for elements whose 4 points are located on a plane.

[Figure4]

Fig. 4. Region near waterlines

3.1.2 Moving nodes on waterlines and on the free surface

The positions of nodes on the free surface and waterlines are determined by physical boundary conditions, 

i.e., following the fluid particles, at most time steps.  The nodes moved in this way may become too close to 

or too far from each other.  To prevent this from happening, these nodes are relocated at a certain frequency, 

e.g., once every 40 time steps.  However, it should be noted that the frequencies for relocating the nodes in 

different regions of the free surface and waterlines are not necessarily the same.  Actually, it is found that the 

nodes in the near-waterline-region (those on the waterline of floating bodies and those on the free surface 

near the waterline, as shown in Fig. 4) often require higher frequency of redistribution in order to achieve 

high computational efficiency.  For example, the nodes in the near-waterline-region are redistributed every 5 

time steps while other inner-free-surface nodes may be redistributed once every 40 time steps.

When re-distributing the nodes on the waterline, a principle for a self-adaptive mesh is adopted, i.e., the 

weighted arc-segment lengths satisfy
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sii Cs =Δϖ (33)

where isΔ is the length of i-th arc-segment between two successive nodes on the waterline and Cs is a 

constant. iϖ in the equation is a weighted function that may be related to the curvature of the waterline [47] 

but can be chosen as 1 based on all numerical tests so far.

In order to relocate the inner-free-surface nodes, two methods have been suggested. In the first method, 

the nodes are firstly projected on to a horizontal plane and then are moved using the spring analogy method

in this plane, which results in new coordinates x and y.  Using the new coordinates, the elevations of the free 

surface are evaluated by using an interpolating method as described in [23].  In order to take into account of 

the local gradient of the free surface and also the fact that the quality of mesh near floating body surfaces 

should be well preserved, the spring stiffness coefficients used for moving the nodes are different in x- and y-

directions and given, respectively, by:
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, (34) 

where 
x∂
∂ζ

 and 
y∂
∂ζ

are the local slopes of the free surface; and other parameters are the same as defined in 

Eq. (27).  For brevity, this method is called MNPP (Moving Nodes in Projected Plane) method in this paper. 

Obviously, this method could not deal with the cases with multiple-valued surfaces, e.g., where overturning 

waves occurs.  In those cases, the second method is suitable, which is the same as the one described in the 

following subsection for moving nodes on body surfaces.

3.1.3 Moving inner-body-surface nodes

Depending on shapes of floating bodies, the inner-body-surface nodes may be further split into three 

groups: these on wetted corners (submerged, intersecting points of two or more edges), these on edges and 

these on smooth parts of a body surface.  Nodes on wetted corners are not moved relative to bodies.  Nodes 

on edges are moved by using the spring analogy method for a line (special case of Eq. (24)) or by using Eq. 

(33).  Both approaches are found to be satisfactory.

In order to redistribute the inner-body-surface nodes, a method similar to MNPP may be used.  However, 

a floating body surface may become multiple-valued (more than one intersecting points between a vertical 

line and the body surface) due to large rotational motions, rendering the MNPP method inapplicable.  To 

move nodes on such surfaces, another form of the spring analogy method is suggested here, which is based 

Page 17 of 87

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review Only

18

on a local coordinate system formed by the local tangential lines and the normal line at the node concerned. 

In this local coordinate system, the surface is always single-valued, i.e., there is only one intersecting point 

between the body surface and a line parallel to the local normal line (of course, perpendicular to the local 

tangential lines).  A node, e.g., i, is firstly moved along the tangential plane formed by tangential lines using

∑∑
==

Δ=Δ
ii

ii

N

j
ij

N

j
jiji krkr

11
ττ
rr

rr
,                       (35) 

where 
iir τr

r
Δ represents the tangential displacement of node i and Ni is the number of nodes connected to Node 

i.  After that, the new position of the node on the body surface is found by interpolation in the local

coordinate system, similar to that in the MNPP method.  The spring stiffness in Eq. (35) is taken as 2/1 ijij lk = .  

It is noted that the effects of body surface curvatures are implicitly taken into account even with such simple

spring stiffness due to the use of the local coordinate system. For brevity, this method is called MNLTP 

(Moving Nodes in Local Tangential Plane) method in this paper.

The MNLTP method can also be used to move the inner-free-surface nodes but it is generally more 

computationally expensive than the MNPP method.  Therefore, for the cases without overturning waves, the 

better choice should be the MNPP method; otherwise, the MNLTP method should be chosen to relocate the 

inner-free-surface nodes.  Details are to be discussed in [34].

3.2. Calculation of fluid velocities on the free surface

The mesh used in the QALE-FEM may be arbitrarily unstructured and is continuously moving during 

the calculation.  An effective method to calculate the fluid velocity on the free surface under this condition 

has been developed in [47] and used for problems about 2D floating bodies in [18].  The basic idea of this 

method is that the velocity at a node is split into normal and tangential components that are estimated 

separately.  The normal component is computed by a three-point method and the tangential components are 

determined by using a least square method.  This approach is also used for problems about 3D floating 

bodies.  Details will not be repeated here and readers are referred to those two papers.

3.3. Calculation of fluid velocities on 3D body surfaces

The fluid velocities on body surfaces are required to calculate the pressure and to update the position of 

waterlines.  The basic idea to calculate fluid velocity on body surfaces is similar to that mentioned above for 
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estimating the velocity on the free surface, i.e., the fluid velocity is split into the normal component and the 

tangential components. Nevertheless, the normal component on body surfaces is not necessarily estimated 

from the velocity potential because it must satisfy the boundary condition (Eq. 4).  Actually, it can be 

determined by

)()( bcn rUntUnv
vvrvrrr

×Ω+⋅=⋅= .                                             (36)

After the normal component of the velocity is determined, a central difference scheme was applied to 

find the tangential velocity component at the inner-body-surface nodes in the cases for 2D floating bodies 

[18]. For the cases with 3D floating bodies considered here, the tangential velocity components at the inner-

body-surface nodes are calculated using a least square method similar to that for the inner-free-surface nodes, 

in which each of equations is given by

kkkk IJnIJIJIJ lvllvlv
rrrrrrr
⋅−∇⋅=⋅+⋅ φττ 21

 ( k=1,2,3, ……, m) (37)

where 
kIJl

r
is the unit vector from Node I  to Node Jk that are neighbours of Node I on the body surface; 

1τv
r

and 
2τv

r
 represent the velocity components in the tangential 1τ

r
 and 2τ

r
 directions, respectively.  1τ

r
 and 2τ

r

can be any two vectors perpendicular to n
r

.  For certainty, 1τ
r

 is chosen to be xben
rrr

×=1τ (or yben
rrr

×=1τ if 

xben
rr

× =0), where xbe
r

and ybe
r

 are the unit vectors along xb- and yb- axes in the body-fixed coordinate system,

while 2τ
r

 is determined by n
rrr

×= 12 ττ .

However, at the nodes on the waterline, Eq. (37) become similar to a backward finite difference scheme 

due to unsymmetrical distribution of nodes about waterlines and so becomes less accurate.  At such a node, 

a special treatment is adopted, i.e., the tangential velocity components are replaced by those along another 

two orthogonal vectors: one is tangent to the waterline (τw) and the other (nw) is perpendicular to it but, of 

course, both are located in the plane tangential to the body surface at the node, as illustrated in Fig. 5.  The 

velocity component nwv
r

 in the direction of Vector wn
r

 is estimated by using a three-point method:

wI
II

I

I
I

II
I

II

II

I
nw n

hh

h

hhhhh

hh

h
v

rr

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+

= 2
21

1

2
1

1221

21

1 3

21

3

2

2

12

3

2 φφφ , (38)

where I1 and I2 represent two points selected along the line wn
r

, which is not necessarily coincided with any

nodes; hI1 and hI2 are the distances between I and I1 and between I1 and I2, respectively; and Iφ , 1Iφ  and 

2Iφ  denote the velocity potentials at Node I and the two points.  The values of 1Iφ  and 2Iφ  are found by a 
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moving least square method (MLS) similar to that described in [61].  Eq. (38) is very similar to the equation 

for estimating the normal velocity on the free surface in [47].

[Figure5]

Fig. 5. Illustration of tangential and normal vectors of waterline

The velocity component wvτ
r

, in the direction of wτ
r

 , can be computed by using Eq. (37) with 
1τv

r
and

2τv
r

being replaced by  nwv
r

 and wvτ
r

, respectively. Only two neighbour nodes (J1 and J2) of Node I on the 

waterline is considered for this purpose.  Therefore, Eq. (37) actually become a central difference scheme 

for determining the component wvτ
r

if the segments from J1 to J2 are on a same straight line.

It should be noted the above method is only applicable for smooth body surfaces.  If a body surface has 

some edges, particular care needs to be taken, depending on whether the edges intersect with the waterline.

If an edge does not intersect with any waterline, the velocity at nodes on it is simply replaced by those in 

the elements nearby.  If an edge does intersect with a waterline, the special treatment must be applied with 

considering that the formulation needs the velocity component of fluid along the edge and the velocity 

potential at the corner point where the waterline and the edge joint, in order to update the position of the 

corner point and the value of the velocity potential on it.  The three-point method given in Eq. (38) is used 

to compute the velocity component.  The velocity potential at this point is interpolated from surrounding

free-surface nodes by using the moving least square method mentioned above. 

3.4. ISITIMFB-M procedure

It has been noted above that there is a difficulty with solving the BVP for the term t∂∂ /φ due to the

fully nonlinear coupling between floating bodies and wave motions.  As discussed in §1, four types of 

methods have been suggested in the literature to tackle the difficulty, which include the indirect method (Wu 

& Eatock Taylor [11, 16]), the mode-decomposition method (Vingi & Brevig [36], Koo & Kim, [17]), the 

Dalen & Tanizawa’s method (Dalen [12]; Tanizawa [48]) and the iterative method (Cao, Beck & Schultz
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[13]).  In the indirect method, six auxiliary functions were introduced and thus the time derivative of the 

velocity potential is not explicitly required if the pressure on body surfaces is not of interest. (If the pressure 

is required, another BVP for t∂∂ /φ may need to be solved after the body acceleration and velocity are

obtained by using the auxiliary functions.) In the mode-decomposition method, the body acceleration is 

decomposed into several modes (7 modes in 3D cases).  In both the methods, every mode or auxiliary 

function is found by solving a BVP similar to that for the velocity potential but under different boundary 

conditions, i.e., seven such BVPs to be solved.  The matrixes for all the BVPs are the same and so the CPU 

time is almost the same as that for solving one BVP of this kind if a direct solution scheme (such as Gauss 

Elimination) is employed.  However, the direct method is unlikely to be suitable for solving a linear algebraic 

system containing a very large number of unknowns, such as in the cases involving 3D floating bodies.  In 

such cases, an iterative scheme for solving the linear algebraic system is much more efficient in terms of 

CPU time and storage requirement.  When using an iterative scheme, solving each of the BVPs needs almost 

the same CPU time, even they have the same matrix. That means that the indirect method and the mode 

decomposition method may require considerably more CPU time due to the need of solving several extra 

BVPs. In the method proposed by Dalen and Tanizawa, the body accelerations are implicitly substituted by 

the Bernoulli’s equations and thus the velocity potential and its time derivative are solved without the need of 

explicitly calculating accelerations of the floating bodies.  However, this method results in a special matrix 

for t∂∂ /φ  which is different from the one for the velocity potential and whose properties have not been

sufficiently studied.  This is likely to increase the difficulty for solving the algebraic equations associated 

with t∂∂ /φ  and also needs more CPU time for generating such a special matrix.  That would be the main 

reason for this method not to be commonly used. In the iterative procedure for dealing with the full

coupling, suggested by Cao, Beck & Schultz [13], the acceleration and velocity of bodies are explicitly and 

iteratively calculated at each time step; in this way, the need to solve extra equations in the first two methods 

and the problem with the third method is eliminated.  It is noted that for the purpose of time marching, a 

standard explicit 4th-order Runge-Kutta scheme is generally used in all these methods, which requires extra 

three sub-step calculations at one time step forward.  In each sub-step, the geometry of the computational 

domain may or may not be updated.  If it is not updated, it is called a frozen coefficient method; otherwise, it 

is called a fully updated method.   The CPU time spent on updating in the fully updated method is roughly 
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equal to 4 times that in the frozen coefficient method.  However, the frozen coefficient method may not lead 

to stable and reasonable results for problems about large motions of floating bodies, as indicated by Koo & 

Kim [17]. It is also noted that the body velocity is estimated from the acceleration at previous time steps in 

all the above methods; i.e., the corresponding time marching procedure is explicit, which may degrade the 

accuracy and even lead to instability unless sufficient small time steps are used.

The authors of this paper have developed an iterative method called ISITIMFB (Iterative Semi Implicit 

Time Integration Method for Floating Bodies) procedure in [18]. The distinct feature of this procedure is

that body velocities are estimated implicitly and iteratively by considering the acceleration at both the

previous and current time steps.  This feature enables one to use relative larger time step without the need of 

sub-step calculations.  As demonstrated by numerical tests by Yan & Ma [18], the ISITIMFB procedure is 

accurate, stable and efficient, and is the best one matching the QALE-FEM.  In this paper it is still adopted

but some modification is made to further improve its efficiency. 

The basic idea of the modification is to update more parameters implicitly and iteratively.  As is known, 

apart from body velocities, the positions of and the velocity potential on the free surface are also updated in 

the time marching procedure. In the ISITIMFB procedure, they are obtained at each time step by explicitly

integrating Eq. (2) and Eq. (3), respectively. For the same reason to use implicit scheme for updating body 

velocities, it is also better to update the above two physical quantities implicitly. However, if the positions of 

the free surface are updated implicitly, more CPU time is spent not only on finding the new free surface but 

also on forming the new coefficient matrix for Eq. (21) during the iteration. Considering these factors, the 

ISITIFMB procedure is modified by including implicit and iterative update of the velocity potential on the 

free surface in addition to dealing with the body velocity in such a way in the paper.  The modified 

ISITIFMB procedure (referred as ISITIMFB-M) is described as follows.

Suppose that all calculations until t=tn-1 (n>0) have been completed, and so the velocity on the free

surface and the positions of all boundaries including the free surface and the body surface have been 

obtained.  The computation at time tn is performed by the following procedure:

1) Predict the body acceleration )0(nA
r

 by a curve fitting of accelerations ( 1−n
bA
r

and 2−n
bA
r

) at previous 

time steps using a least square method and then estimate the corresponding body velocity by using the 

Adams-Moulton method [62], its order of accuracy being ( )4tO Δ , as follows, 
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where 1−n
bU
r

 is the velocity at the previous time step and ( )0n
bU
r

represents the predicted velocity for the 

current time step, which is used as the initial values of iteration.  Here the velocity and the acceleration 

include translational and rotational components.

2) Predict the velocity potential on the free surface for this time step using the scheme in [23],
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3) Solve the BVP for φ  using ( )0n
bU
r

 in Eq. (4) for the boundary condition on the body surface and 

)0(n
sfφ  for the boundary condition on the free surface.

4) Calculate the fluid velocity, and then
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on the free surface.

5) Calculate the fluid velocity ( )0n
bV
r

on the body surface.

6) Using the following loop to refine the solution:

(a) Solve the BVP for 
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 and ( )1−kn
bV  in its boundary condition on the 

body surface (Eq. (17) and 
( )1−

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ kn

t

φ
for its boundary condition on the free surface (Eq.16)), 

where the subscript n(k-1) indicates the variables at time tn but at k-th iteration (k=1,2,3……) in 

the loop;

(b) Calculate the forces or moments (generally represented by )(knF
r

) and then the acceleration by

[ ] ( )[ ])1()(1)( 1 −− −+= knnknnkn
b FFMA

rrr
αα , (41) 

in which the mass matrix [ ]M should be changed to the matrix of the inertia moment [ ]I if the 

angular acceleration is concerned.  αn is a relaxation coefficient determined in the same way as 

in [18].

(c) Estimate the new body velocity using the similar method to Eq. (39) but with the new value of 

the acceleration )(kn
bA
r

:

( ) ( ) )85(
12

211 −−− −+
Δ

+= n
b

n
b

kn
b

n
b

kn
b AAA

t
UU

rrrrr
; (42) 
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(d) Update the velocity potential on the free surface using,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛Δ

+=
−−−

−
21)1(

1)( 85
12

nnkn
n
sf

kn
sf Dt

D

Dt

D

Dt

Dt φφφφφ (43) 

 (e) Solve the BVP for φ  using the new body velocity ( )kn
bU
r

 in Eq. (4) for the boundary condition

on the body surface and the new potential value )(kn
sfφ  for the boundary condition on the free 

surface;

(f) Calculate the fluid velocity, and then 
( )kn

t
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂φ

as well as
)(kn

Dt

D
⎟
⎠
⎞

⎜
⎝
⎛ φ

on the free surface

(g) Calculate the fluid velocity ( )kn
bV
r

 on the body surface;

(h) Check if the relative error of accelerations (or forces) is small enough; if not, go to a); otherwise 

go to 7).

7) Update the position of the body using the final body velocity and acceleration in the above loop by 

using the 3rd order Taylor expansion,

dt

Udt
U

t
tUSS

un
ununn

b
n

b

)(3
)(

2
)(1

62

r
&r

&
rrr Δ

+
Δ

+Δ+=+ (44)                     

where 1+n
bS
r

is the translational or angular displacement of the body used for the calculation of the 

next time step; )(unU
r

and )(unU
r
&  represent the final values of body velocities and accelerations

(translational or angular) in the above loop, respectively; and 
dt

Ud un )(
r
&

is calculated by using the 

finite difference scheme, i.e., tUU
dt

Ud unun
un

Δ⎟
⎠
⎞⎜

⎝
⎛ −= − )(1)(

)( r
&

r
&

r
&

.

8) Update the positions of the free surface using the same method as in [23].

9) Go to next time step.

Compared to ISITIMFB, the ISITIMFB-M procedure includes two extra steps: 6(d) and 6(f). The 

efficiency of the iterative procedure is signified by the iteration counter in the above loop.  For a given 

accuracy requirement, time step and wave/body oscillating period, the iteration counter depends on the 

quality of the predicted values of the acceleration, the velocity, the velocity potential and its time derivative.  

These two extra steps in the loop help give better prediction to all the parameters and so reduce the iteration 

counter.  Of course, introducing the two extra steps inevitably increases the computational time for each 
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iteration.  However, the increase in the CPU time due to them is insignificant according to the numerical tests.  

Consequently, as long as the iteration counter in the ISITIMFB-M procedure is less than that for the original 

one, its overall efficiency should be improved.  More discussion will be given in §4.4. The control error 

(accuracy requirement) in Step 6(h) is chosen as 0.5% based on numerical tests carried out in [18] and on the 

cases presented in this paper (details about this will not be given here as they are similar to those in [18]). In 

the end, it is noted that the iteration is not necessary for problems about fixed bodies or those with forced

motions.

[Figure6]

Fig. 6. Illustration of the initial mesh near a 3D floating body

4. Validation and convergence tests

The QALE-FEM has been validated in various cases including 2D waves [47], interaction between waves 

and 2D floating bodies [18] and 3D overturning waves [34] by using various available results. In this section, 

the method newly extended to problems about 3D floating bodies will be validated by comparing its 

numerical predictions with some experimental results from other papers.  Its convergent properties are also 

investigated here.  Due to the fact that availability of experimental data for general 3D floating bodies with 

6-DoFs motions in steep waves is very limited in the public domain, only two special cases are selected for 

the purpose of validation: a SPAR platform and a barge-type floating body.  Nevertheless, one may agree that 

investigations on these two quite different cases should shed significant light on whether the method is 

reliable and accurate.

All the investigations below are carried out by using a numerical tank where a damping zone together 

with Sommerfeld condition is applied to absorb the reflection from the far end wall [23], as mentioned 

before.  It should be noted that in 3D cases the reflection from the side walls is also unexpected.  One may 
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use similar technique to absorb the reflection from the side walls.  Nevertheless, a sufficient wide tank is 

applied in this paper to eliminate these effects, rather than making much effort on the absorbing techniques.

The initial mesh to be used is unstructured near the body, as illustrated in Fig. 6.  

In the rest of the paper, the parameters with a length scale are nondimensionalised by the water depth d;

and other parameters by ρ, g and d, such as the time (t), frequency (�) and forces (F) becoming

gdt /τ→ , dg /ωω→  and 3gdfF ρ→ ,

unless mentioned otherwise.  Sometime, the wave length determined by using the linear wave dispersive 

relation, )2tanh(
2

2
λπ

ω
πλ = , is used as a characteristic length.  The motion of the wavemaker is specified as 

( )ωτcosa− for generating monochromatic waves or as ( ) ( )τωτω 2211 coscos aa −− for bichromatic waves.

4.1. Responses of a moored SPAR platform

A SPAR platform is basically a large vertical cylindrical floating structure which may be moored by 

mooring lines to the sea bed.  For the SPAR platform considered here, the diameter is 0.135; the initial draft 

is 0.6607; the mass and the radius of gyration (pitch and roll) are 0.005926 and 0.2078, respectively. The 

centre of gravity from its keel is 0.308 and the fairlead of mooring lines from its keel is 0.3087.  The 

mooring line is considered as a nonlinear spring with its stiffness taken as 2.163×10-4 up to an offset of 

0.04567 and 4.512×10-4 beyond it. Two cases are considered here. In the first one, a monochromatic wave 

with the amplitude of 0.02 and the period of 1.7 is generated while in the second one, the body is subjected 

to a bichromatic wave with the amplitudes and periods being (0.02, 0.02) and (1.943, 2.125), respectively.  

The cases are the same as in [54] and [63]. The length and width of the numerical tank are taken as L=8

and B=2.  The mesh is unstructured with the representative mesh size on the free surface but not near the 

body being specified by 30/λ≈ds  (roughly 30 nodes in a wavelength). The time step is taken as T/128, 

where T is the wave period defined by ωπ /2 . Figs. 7 and 8 show, respectively, the comparison of the pitch

motions of the SPAR platform subjected to the monochromatic wave and the bichromatic wave, which are 

obtained by the QALE-FEM and experiments (Weggel et al [63]).
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[Figure7]

Fig. 7. Comparison between numerical and experimental results for the pitch of a SPAR subjected to a 

monochromatic wave (experimental data are from Weggel et al [63])

[Figure8]

Fig. 8.  Comparison between numerical and experimental results for the pitch of a SPAR subjected to a 
bichromatic wave (experimental data are from Weggel et al [63])

[Figure9]

Fig. 9. Comparison of the pitch of a SPAR in tanks with different widths

As can be seen, the numerical results obtained by the QALE-FEM agree reasonably well with the 

experimental data in both cases.  The same level of agreement for surge motions has also been achieved,

though the figure is not given here for brevity.

An investigation is made on the effects of side walls, in which the width of the tank is extended to 3.  

The comparison of the responses of the SPAR platform corresponding to two widths is shown in Fig. 9, 

where the numerical result for the case with B=2 is the same as that shown in Fig. 8.  From this figure, it is 

observed that the difference between the results for B=2 and B=3 are very small.  This means that B=2 is 

sufficient wide for this case in the duration of the simulation.
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4.2 RAOs of surge, heave and pitch of a barge-type floating body

Only the waves with two specified frequencies in cases shown in Figures 7 and 8 are considered. As is

well known, incident waves with different frequencies may lead to different responses of a floating body.  

In order to further validate the QALE-FEM for the cases with incident waves of various frequencies, the 

RAO (response amplitude of operator) of a barge-type floating body are investigated in this sub-section. 

For this purpose, the QALE-FEM is applied to a similar case in experiments on a barge-type floating body 

by Shashikala, Sundaravadivelu & Ganapathy [64]. These experiments were carried out in a tank with water 

depth of 2.35m.  Based on this, other parameters nondimensionlised by the water depth are chosen as follows.  

For the barge-type floating body, the length (Lb), breadth (Bb) and draft (Dr) are taken as 0.8511, 0.1702 and 

0.04255, respectively; its mass is 6.164×10-4 and its centre of gravity above base (KG) is 0.03829; its

moment of inertia about longitudinal, transverse and vertical axis are 2.344×10-4 , 5.326×10-4 and 5.326×10-4 , 

respectively. A mooring line with the stiffness of 0.1846 is attached on the body with a distance of 0.03404 

above the centre of gravity. The measured natural frequency for surge, heave and pitch are 5.475, 3.408 and 

3.074, respectively.  The RAOs in the experiments are determined by the amplitudes of motions in the steady 

state divided by the wave amplitude. In the numerical simulation, the RAOs are estimated by performing 

FFT analysis on the steady-state portion of the time histories of corresponding motions. The cases presented 

in this subsection are simulated in a numerical tank with L=9 and B=2.  Numerical testes are also carried out

in wider tanks but do not show significant difference from the results presented here.  The computational 

mesh is unstructured with about 30 nodes in each wave length on the free surface but away from the body 

and with the representative mesh size near the body being about half of that in the other area. The 

wavemaker is located at x= -5 initially.  The amplitudes of the wavemaker are adjusted properly so that the 

generated incident wave steepness (wave height/wavelength) is about 0.02.   The time step is taken as T/128. 
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[Figure10a]

Fig. 10 (a) Surge RAO

[Figure10b]

Fig. 10 (b) Heave RAO

[Figure10c]

Fig. 10 (c) Pitch RAO

Fig. 10. Comparison of responses of a floating barge in regular waves
(Experimental data are from Shashikala et al [64])

The RAOs of surge, heave and pitch motions corresponding to different incident waves as a function of 

2/* 2
bLωω = are plotted in Fig. 10, together with the experimental data from Shashikala et al [64]. It can 

be found from this figure that the present numerical results generally agree well with experimental data in a 
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wide range of frequencies, though visible discrepancies at some points inevitably exist.

4.3. Discussion on convergence

In above subsections, the QALE-FEM for the responses of 3D moored floating bodies has been validated 

using two different cases by specifying a time step and a mesh size.  Reasonable agreement with 

experimental data has been achieved.  However, one may wonder what would happen if other values of time 

steps and mesh sizes are used. In this sub-section, the convergence properties in the cases with a 3D floating 

body are discussed in order to shed some light on whether the time steps and mesh sizes used above are 

appropriate and also on the choice of these parameters in other calculations.  Although similar investigations 

have been carried for all the cases discussed above, only those corresponding to Figure 8 are present here.

[Figure11a]

(a) different time steps

[Figure11b]

(b) different mesh sizes

Fig. 11. Tome histories of pitch obtained by using different time steps and mesh sizes

For this purpose of investing the effect of time steps, they are chosen as T/200, T/128 and T/64 

respectively.  For all these time steps, the representative mesh size is roughly 30/λ . Fig. 11 (a) shows the 

time history of pitch obtained by using different time steps for the same case in Fig. 8. It is observed that the 

results appear to be the same when the time step is smaller than T/128; while the result for the case with the 

time step of T/64 is slightly different from the results of other two cases.  The relative difference is about 1%, 

which is estimated by using the same method in [18].  This implies that a time step of T/64 may also be 

acceptable.  To investigate the effect of mesh sizes, the time step is taken as T/128 and the representative 
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mesh sizes are specified as 40/λ  (the number of elements: 1,663,276) , 30/λ (the number of elements:

739,247) and 20/λ (the number of elements: 337,764), respectively.  Fig. 11(b) shows the time history of 

pitch obtained by using the different mesh sizes.  It can be seen that the difference between the results 

obtained by the mesh sizes of 30/λ  and 40/λ  is negligible but the result obtained by the mesh size of 

20/λ  is different from other two.  This implies that in the 3D case, the mesh size should be smaller 

than 30/λ .

These investigations seems to suggest that time steps (T/128) and mesh sizes ( 30/λ ) selected for above 

validation are appropriate.  Nevertheless, it should be noted that the investigations on how numerical results 

are related only to mesh sizes without considering mesh structures may not be considered as complete

because the results depend on both.  However, it is impractical to consider all possible mesh structures as the 

unstructured meshes are used in this paper and that the mesh sizes constantly change with time due to the 

motions of the free surface and floating bodies.  Therefore, mesh sizes used above should only be considered 

as an indicator of different meshes.  It should also be noted that the minimum time steps and mesh sizes for a 

specified error may also depend on the motion of floating bodies, wave amplitudes and so on.  Considering 

these uncertainties, the conclusion about the selection of time steps and mesh sizes may not hold for general 

cases, though it would be considered as a good indication.  On this basis, the results for all the cases 

presented in §5 have been validated by using different time steps and mesh sizes, though the results obtained 

by only using T/128 for the time step and 30/λ for the mesh size are presented.

4.4. Comparison between ISITIMFB-M and ISITIMFB procedures

In this paper, the ISITIMFB procedure has been modified into the ISITIMFB-M procedure. The 

efficiency of the ISITIMFB compared to the mode-decomposition method with the 4th-order Runge-Kutta 

scheme has been discussed in [18] for 2D floating body problems.  The latter needs to solve 20 BVPs in one 

step forward in those cases.  It was concluded that the ISITIMFB was more efficient as long as the average 

iteration counter in the ISITIMFB in one step forward was smaller than 10.  In 3D cases, the mode-

decomposition method with the 4th-order Runge-Kutta scheme may need to solve 32 BVPs in one step 

forward, implying that our iterative procedure would be more efficient if the average iteration counter is 

smaller than 16 in one step forward.  The smaller the counter, the more efficient the procedure is.  

As has been discussed in §3.4, it is expected that the new ISITIMFB-M procedure would require a fewer
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iteration counter than the ISITIMFB.  In the current sub-section, this will be shown by comparing the 

average iteration counters required by two procedures. Because the iteration counters depend on both time 

steps and natural frequencies of floating bodies as pointed out in [18], the comparison is made by looking at 

both the effects.  The change of natural frequencies is achieved by varying the mass of the body with other 

parameters remaining the same.

The case used here is the same as that used for investigating the properties of the ISITIMFB in [18] but 

the 2D barge-type body is projected along y-direction to form a 3D body.  The dimensional water depth is the 

same as the characteristic wave length (λ). The frequency of the incident wave is specified by 

2/2
bBωξ = =0.4 and the dimensionless wave height generated is about 0.018.  For this body, the width (Bb) 

is 0.1273; the draft (Dr) is 0.06366; the gravitational centre is located at 0.02929 from the keel of the barge.  

The mooring line is modelled by a horizontal spring through the gravitational centre with the spring stiffness 

taken as 7.188×10-4. This case is run in a nondimensionalised numerical tank with 13≈L and B=0.3. The 

initial mesh used is unstructured with about 35 elements on the free surface in each wavelength. 

[Figure12]

Fig. 12. Average iteration counters in one step forward corresponding to different time steps

The average iteration counters in one step forward corresponding to different time steps are shown in 

Fig.12. with the mass (m0) being 1.135×10-3 and the moment of inertia about the gravitational centre is 

2.384×10-6. In the figure, there are two rows of numbers under the horizontal axis.  The first row represents 

the number of time steps in each wave period and the second row gives the value of the time step, i.e. the 

period divided by the number in the first row.  As could be seen, the average iteration counter for the 

ISITIMFB-M procedure is not larger than 5 for this case and is averagely about 26% less than that for the 

ISITIMFB procedure in the same situation.
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Fig. 13 shows the iteration counters corresponding to a range ( 1001.0 0 ≤≤ mm ) of the body mass with 

the mooring stiffness and the shape of the floating body remaining the same, resulting in different natural 

frequencies. The time step is taken as T/128 and all other parameters are the same as those in Fig. 12.  Again, 

the iteration counter of the ISITIMFB-M procedure is generally significantly smaller than that of the 

ISITIMFB procedure.  It is noted that the iteration counter for the ISITIMFB procedure are different from 

that published in [18]. That is because the computer code is further optimized here.

The iterative counters may be problem-dependent.  Nevertheless, for problems about floating bodies of 

different configurations presented in §5, the iteration counter for the ISITIMFB-M procedure never exceeds 

10, actually less than 7 in most of the cases.  This may indicate that the ISITIMFB-M procedure is more 

efficient than the mode-decomposition method with the 4th-order Runge-Kutta scheme if the latter would 

have been used in the QALE-FEM.

[Figure13]

Fig. 13 Average iteration counters in one step forward corresponding to different masses
(dt = T/128 and m0=1.135×10-3)

5. Numerical results for 3D floating bodies and discussions

One of distinctive aspects of this paper is to present some numerical results for one or two floating bodies, 

freely responding with up to 6 DoFs to the excitation of waves, obtained by the QALE-FEM based on the 

fully nonlinear and full coupling theory.  Although the QALE-FEM can be applied to any form of floating 

bodies, Wigley Hulls are selected as a representative because it is easier for parameter studies and also 

because it is similar to many practical floating bodies, such as FPSOs and LNG (Liquefied Natural Gas)

carriers, in terms of their composite shapes composed of smooth surfaces and sharp edges piercing the free 

surface.  As pointed out before, although the method is based on the potential theory, the viscous effects on 

the motions of floating bodies may be modelled by adding empirical damping in the dynamic equations of 
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floating bodies.  This is a usual approach in ship dynamics when the potential theory is applied.  To show this 

flexibility, an artificial viscous damping is added in all the motion components in this section, for which the 

damping coefficient is specified as 0.1% of the critical damping in each component.  All the results presented 

in this section are obtained by using a time step of T/128 and a representative mesh size of λ/30 unless 

mentioned otherwise.  However, as pointed out before, these results have been checked with smaller time 

steps and mesh sizes.

5.1. Single Wigley Hull floating over a flat seabed

The shape of the Wigley Hull used here is expressed as 

3282222 )1)(1()2.01)(1)(1( ξςςξξςη −−++−−= ,  (50)

where

rbb DzByLx /,/2,/2 === ςηξ  (51)

and rbb DBL ,,  are the length, breadth and draft of the Wigley Hull. To make more sense, forces and 

moments are nondimensionlised in this subsection by using different quantities: forces by ∀gρ (where ∀ is 

the volume of the submerged part of the hull), the pitch and yaw moments by bLg∀ρ  and the roll moment 

by bBg∀ρ . Other parameters are nondimensionlised in the same way as above.

As indicated by Yan & Ma [18] for 2D floating body cases, the amplitudes of motions in the transient 

period may be considerably larger than those in the steady state and depend on natural frequencies of 

floating bodies.  The corresponding characteristics of 3D floating bodies are discussed here.

For this purpose, a Wigley Hull in a head sea with Lb=1.0, Bb=0.2 and Dr=0.15 is considered. This is 

referred as ‘Hull-1L’. The dimensionless mass and the pitch moment of inertia are taken as 0.01677 and 

0.00875, respectively. The centre of gravity is located at 0.025 above its keel.  Two mooring lines are 

connected to the bow and the stern of the Wigley Hull, respectively, in the longitudinal direction and at the 

water level initially. The spring stiffness of the mooring lines is taken as 0.015. Without considering the 

added mass, the natural frequencies of surge, heave and pitch are roughly 1.3355, 3.1666 and 1.3363, 

respectively.  The numerical tank for these cases has the length of 15 and the width of 6. The incident wave 

is generated by the piston wavemaker located at x= -8 with the amplitude (a) of 0.05 and frequency (ω ) of 

1.7691.  The characteristic wavelength (λ ) is about 2, twice the length of the Wigley Hull.  The wave 
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steepness is about 0.088. Numerical tests have been carried out for this configuration by using a wider

tank and indicate that the reflection from the side walls is negligible when 100<τ . 

[Figure14] 

Fig. 14 Snapshots of the part of the free surface near the body at (a) ≈τ 27.69 and (b) ≈τ 61.78 

 (a=0.05, 7691.1=ω , km=0.015, L=15, B=8)

Fig. 14 shows some snapshots of the wave elevation and the body motion at a transient instant and in the

nearly-steady state.  Fig. 15 gives the time history of the pitch motion.  One may see from this figure that 

the maximum transient pitch motion is much larger than the amplitude in the steady state, the latter being 

usually estimated by using the RAOs in engineering practice.  Similar property is also observed for the 

surge motion but not shown here. This implies that the transient responses rather than RAOs should be 

considered in design in order to determine the maximum motion of a floating body subjected to a transient 

wave. Due to this fact, presentations in the following subsections focus on the transient effects.

[Figure15]

Fig. 15 Time history of pitch motion (a=0.05, 7691.1=ω , km=0.015, L=15, B=8)

[Figure16a]

Fig. 16 (a) surge force
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[Figure16b]

Fig. 16 (b) heave force

Fig. 16 Hydrodynamic forces acting on the Wigley Hull in cases with different wave amplitudes
(a=0.05, 7691.1=ω , km=0.015, L=15, B=8)

To show the effect of nonlinearity, the dimensionless hydrodynamic forces, divided by the dimensionless 

wavemaker amplitude a, acting on the floating body are plotted in Fig. 16 for two cases with a=0.004 and 

a=0.05.  It can be observed that the ratio of the surge force amplitude to the wavemaker amplitude (and so 

the wave amplitude) tends to decrease as the increase of the later in the steady state. The profile of the

surge force in the case with the steeper wave (a=0.05) is not symmetric about the apex point in one wave 

period.  On the other hand, the ratio of the heave force for the larger wave amplitude has a significantly

larger transient value and a more complicated profile, though the steady amplitude does not exhibit 

considerable difference (Fig. 16(b)).  This indicates that design based on the forces estimated by using a 

linear or even second order theory in frequency domain may not be safe as they could only predict the 

amplitude in steady states.

[Figure17]

Fig. 17 Relative run-up recorded at the bow of the hull (a=0.05, 7691.1=ω , km=0.015, L=15, B=8)

Apart from the forces, the relative run-up, which is defined as the displacement of the waterline at a point 

measured in the vertical direction of the body-fixed coordinate system, is also of interest for design of 

floating bodies and is useful for predicting the possibility of green water occurrence.  The relative run-up 

( kη ) at the bow is plotted in Fig. 17 for the same case in Fig. 16.  It obviously shows that the shape of the 

run-up history becomes unsymmetrical about the apex points and more importantly that the highest run-up 

for the case with the larger amplitude is considerable larger than that would be predicted by a linear theory.  
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The later may just result in no green water when the phenomenon actually happens.

[Figure18]

Fig. 18 Responses of the Wigley Hull for different spring stiffness of mooring lines (a=0.05 and 7691.1=ω )

It could be understood that the transient characteristics may be affected by the natural frequency of 

floating bodies.  This will be demonstrated by the same case as above with different spring stiffness of the 

mooring lines.  To do so, another case with km = 0.00025 is selected.  Without considering the added mass, 

the corresponding natural frequencies of surge, heave and pitch for this case are roughly 0.545, 2.9225 and 

1.0133, respectively.  All other parameters are the same as those in Fig. 15.  The comparison of the 

responses of the hull associated with different stiffness are depicted in Fig. 18, where the time histories for 

km = 0.015 shown in Fig. 15 are re-plotted. This figure illustrates a feature that the transient responses are

considerably different for different natural frequencies.  For example, the maximum oscillating amplitude of 

the transient pitch motion for km = 0.015 is significantly larger than the steady amplitude while for km = 

0.00025 both are almost the same.  That may be because the natural frequency of pitch in the former case is 

closer to the incident wave frequency than that in the latter case.  In addition, there is an evident drift 
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motion in surge direction for km = 0.00025.  This is caused by the steady drift force which has a larger effect 

in the second case where the spring representing the mooring lines is softer.

[Figure19]

Fig. 19 Pitch and surge motions of Wigley Hulls with different hull sizes (a=0.05 and 7691.1=ω )

Another factor that may affect the responses of a floating body is its sizes.  In order to investigate this 

effect, other two Wigley Hulls apart from Hull-1L are considered.  They are ‘Hull-2L’ with Lb=2.0, Bb=0.4

and Dr=0.2; and ‘Hull-3L’ with Lb=3.0, Bb=0.6 and Dr=0.3.  For the Hull-2L, the spring stiffness of the 

mooring lines, the mass and pitch moment of inertia are taken as 0.08, 0.089442 and 0.15634, respectively.  

For Hull-3L, they are 0.27, 0.30234 and 1.0237, respectively.  Using these parameters, Hull-2L and Hull-3L 

have the same natural frequencies as Hull-1L if the added mass is ignored.   All other parameters are the 

same as those in the case for Fig. 14 and thus the lengths of Hull-1L, Hull-2L and Hull-3L are roughly equal 

to 0.5λ , 1.0λ  and 1.5λ , respectively.  The responses of these three Wigley Hulls are plotted in Fig. 19 

and Fig. 20.   It is seen that transient and steady amplitudes of the surge (Fig. 19a) and pitch motion (Fig. 

19b) are considerably reduced as the increase of the hull sizes while the heave motions of Hull-2L and Hull-

3L in Fig. 20 are much smaller than that of the Hull-1L but themselves are quite similar.   On the other hand, 

these observations imply that the transient behaviour of a floating body with given sizes may be different in 

different waves.
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[Figure20]

Fig. 20 Heave motion of Wigley Hulls with different hull sizes (a=0.05 and 7691.1=ω )

It should be noted at the end of this subsection that the specific values of transient amplitudes may be 

different from what have been shown above if the real damping for the bodies are used.  Nevertheless, these 

cases clearly demonstrate that transient phenomena should not be ignored without careful investigations, 

particularly by using methods based on fully nonlinear theory.

5.2 Single Wigley Hull floating over a complex seabed

In many applications, one can see structures floating in a shallow water region, such as offshore LNG 

terminals and floating oil storage bases.  For those floating bodies, the effects of the local bathymetry of the 

seabed should be considered. Yan & Ma [19] studied effects of the seabed on 2D floating bodies using the 

QALE-FEM.  In this subsection, the method is applied to study the behaviours of a single Wigley hull 

floating near a bump on the seabed.  The bump is expressed as 
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where (xc,yc) is the centre of the bump, zsb is its maximum height, and rx, ry and αsb are coefficients.

[Figure21]

Fig. 21 Example of a seabed geometry (zsb =0.7, 3,7 == yx rr , 1=sbα )

Page 39 of 87

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review Only

40

Specifically, a bump, centred at xc=-0.5 and yc =3,  with zsb =0.7, 3,7 == yx rr  and 1=sbα as shown in 

Fig. 21 is considered, which is in a tank with the length of 15 and width of 6.  In addition, this bump is

adjacent to a vertical wall at y=3, making a situation similar to that a floating body is moored to a position 

near a coastal wall. The amplitude and frequency of the wavemaker are 0.03 and 1.7691, respectively. 

These yield a wave steepness of about 0.058. The Wigley hull is centred at x=0, and y=2, i.e., the distance 

between the hull centre and the wall at y=3 is db =1. The mass of the hull is 0.01677 and its inertia 

moments of roll, pitch and yaw are taken as, 0.003282, 0.00875 and 0.025, respectively.  Thus the natural 

frequencies of surge, heave and pitch are the same as before and the natural frequencies of roll, yaw and 

sway are 1.2883, 0.5477 and 1.3355 without considering added masses and moments.  Other parameters are 

the same as those for the case in Figs. 14-17.

[Figure22] 

Fig.22 Comparison of the free surface in cases with (a) or without the bump (b)
(zsb =0.7, 3,7 == yx rr , 1=sbα , 7691.1=ω , a=0.03 17.50≈τ  )

Fig. 22 shows a snapshot for this case (Fig.22a) and for the case (Fig.22b) without a bump on the seabed 

but all others being the same.  This figure clearly demonstrates that the wave in the former case is 

significantly different from that in the latter case.  Particularly, the wave in the former evolves into short-

crested after the body, while the wave in the latter still remains to be long-crested.  In addition, the wave 

near the wall for the case with the bump becomes shorter, higher and so steeper than the wave for the case 

without the bump. This phenomenon can be seen more evidently in Fig. 23, where the wave profiles at the 

wall (y=3) for the two cases are compared.  Because the wave becomes shorter, one can deduce that the 

celerity of the wave near the shore becomes less, which is consistent with the fact pointed out by Grilli & 

Horrillo [65] that the wave celerity reduces as a result of decreasing water depth.
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[Figure23]

Fig. 23 Wave profiles at y=3 and 92.36≈τ (zsb =0.7, 3,7 == yx rr , 1=sbα , 7691.1=ω , a=0.03 )

The features discussed above are obviously related to the height of the bump (zsb).  To investigate the 

effects of zsb, another two cases with zsb =0.35 and zsb =0.525 are also considered.  All other parameters in 

the two cases are the same as those of the case with the bump in Fig. 22.  The comparison of the responses 

of the Wigley Hull for all the cases is shown in Figure 24.  The difference between these results exists in the 

phases and the amplitudes.   The shift in the phase relative to the curve for the flat seabed (zsb=0) becomes 

larger with the increase of zsb,(Fig. 24 a-f).  The change in the amplitude is different for different motion 

components.  The amplitudes of the surge, heave and pitch (Fig. 24 a-c) seem not to change dramatically 

but those of sway, roll and yaw (Fig. 24 d-f) increase significantly as the increase of zsb.  That is perhaps 

because these three components are mainly caused by the appearance of the bump; without it, they are very 

small as shown in the figure for the case with zsb=0.  In addition, it is interesting to note that for zsb=0.7, the 

magnitude of sway is larger than that of heave and the magnitude of roll is similar to that of pitch, 

indicating how important the effect of a high bump is on the magnitudes.

[Figure24a]

Fig. 24 (a) surge

[Figure24b] 

Fig. 24 (b) heave
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[Figure24c] 

Fig. 24 (c) pitch

[Figure24d] 

Fig. 24 (d) sway

[Figure24e]

Fig. 24 (e) roll

[Figure24f]

Fig. 24 (f) yaw

Fig. 24 Responses of the Wigley Hull in cases with different heights of the bump
( 7=xr , 3=yr , 1=sbα , 7691.1=ω , a=0.03 , db=1)

As shown in Fig. 22, the bump may result in very different forms of wave: from long crested to short 

crested in some area, and different amplitudes at different positions. That means that a floating body may 

have different responses if it is put into different positions.  To partly show this, more cases are presented

here, in which the distance (db) of the floating body centre from the wall at y=3 varies in the range of (0.5, 1, 

2, 3) with other parameters remaining the same as for Fig. 24 with the bump. The second case in this series 

is actually the one discussed in that figure.  To illustrate the effect of the position variation, the sway, roll 

and yaw motions of the Wigley hull located at different positions are depicted in Fig. 25. As can be seen, 

the maximum magnitudes of all these components are increased when the floating body become closer to 

the wall from db =3 to db =1.  However, when the position changes from db =1 to db =0.5, the maximum 
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amplitudes of sway and roll become smaller while that of yaw remains similar. Thus, the results confirm

that the responses of the floating body are sensitive to where it is located when the seabed is not flat.

[Figure25]

Fig. 25 Response of the Wigley Hull located at different positions
(zsb =0.7, 3,7 == yx rr , 1=sbα , 7691.1=ω , a=0.03  )

[Figure26]

Fig. 26 Snapshots of the part of the free surface near two identical Wigley Hulls in waves
 ( 7691.1=ω , a=0.04; L=15, B=6; ≈τ 52.1)

5.3. Two Wigley Hulls floating over a flat seabed

So far, all discussions have focused on the problems about a single body.  In many applications, one 

may deal with situations where two vessels are close to each other.  Configurations of the two vessels may 
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vary, such as both in a head sea, both in oblique waves or one in a head sea with the other in an oblique 

wave.  No matter which configuration is used, the vessels in all the cases undergo 6-DoFs motions.  Fully

nonlinear analysis on this kind of problem is extremely challenging and has not yet been found so far in the

public domain.  In this subsection, the presentation is devoted to some cases of this kind analysed by the 

method described in previous sections.

[Figure27]

Fig. 27 Responses of two Wigley Hulls to waves (a=0.04,ω =1.7691, dsb=0.6)

Fig. 26 shows an example of two identical Wigley Hulls in the waves generated by the wavemaker with 

7691.1=ω  and a=0.04, resulting in a wave steepness of about 0.075.  In this case, each of the two Wigley 

Hulls is the same as that used in Fig. 22.  The centres of the Wigley hulls are initially located at x=0, y=-0.3 

(No. 1) and x=0, y=0.3 (No.2), respectively.  The distance between the centres of these two hulls (dsb) is 0.6 

(3 times the width of the hull).  They are all in head sea.  Nevertheless, each of them will undergo motions 

of 6 DoFs with the sway, roll and yaw being solely caused by the interaction between the two hulls.  The 

width of the tank is 6 and its length is 15.  According to the numerical tests, the responses of the hulls 

calculated by using this tank have less than 0.1% difference with those from the case with the tank width of 

8 when 60≤τ .  The time histories of sway, roll and yaw of these two hulls are shown in Fig. 27.  As can be 

seen, although they are not very large in terms of the amplitude, the time histories clearly contain many 
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components of different frequencies.  One may also see that the three motion components of one hull are 

anti-symmetrical with these of the other because the problem as a whole is symmetrical about the oxz plane.  

Based on this, it is possible to simulate the case using half of the domain and one of the two bodies by 

applying a symmetrical boundary condition at y=0.  To show this, Fig. 28 gives the comparison of the sway 

force acting on the No. 1 Hull calculated by using the whole domain and the half-domain, respectively.  The 

difference seems to be negligible.  Therefore, the half-domain may be used for similar configurations to 

save CPU times. 

[Figure28]

Fig. 28 Comparison of the sway force acting on the No.1 Hull calculated by using the whole domain and 
the half-domain with a symmetrical boundary (a=0.04,ω =1.7691, dsb=0.6)

As illustrated in Fig. 28, the sway force includes higher frequency (about twice the wave frequency)

components.  It must result from the nonlinear effects.  To further show this, the hydrodynamic 

forces/moments due to waves generated by different amplitudes (a=0.004 and a=0.04) of the wavemaker

are compared in Fig. 29.  One may observe that the higher frequency components clearly exist in the forces

or moments for the case with the larger amplitude while they are not evident in the case with the smaller 

amplitude.  For the sway force (Fig. 29a), the apparent period between two successive zero up-crossing 

points is about half of the wave period.  In addition, the maximum value of sway force or roll moment is

larger than that predicted by using the smaller amplitude (a=0.004). This fact calls for the necessity of using

the nonlinear theory to numerically predict the responses of two Wigley Hulls in order to ensure the safety.

[Figure29a]

Fig. 29 (a) sway force
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[Figure29b] 

Fig. 29 (b) roll moment

[Figure29c] 

Fig. 29 (c) yaw moment

Fig. 29 Hydrodynamic force/moment acting on Wigley Hull No.1 subjected to waves with different 
amplitudes

[Figure30]

Fig. 30 Snapshots of the part of free surface and the position of Wigley hulls

( 7691.1=ω , a=0.03; L=15, B=6; (a): ≈τ 58.69, Lb=1.0,Bb=0.2 and Dr=0.15, o
i 30=θ ; (b) ≈τ 53.7

, Lb=2.5,Bb=0.4 and Dr=0.3, 0=iθ  for No.1 and Lb=1.0,Bb=0.2 and Dr=0.15, o
i 20=θ  for No.2)

Although the case shown in Fig. 26 may be modelled using a half-domain for a single body, one may 

have to perform the analysis in the whole domain for two bodies in many other unsymmetrical applications. 

For example, two bodies are in oblique waves or one body is larger than the other.  We could not present all 

such results in one paper but some illustrations will be given in the rest of this subsection with more details 

discussed elsewhere.  For this purpose, some snapshots are shown in Fig. 30.   Fig. 30 (a) depicts the case 

for the two identical Wigley Hulls in the oblique wave with the incident angle ( )iθ of 30o.   The sizes of the

hull are assigned as Lb=1.0, Bb=0.2 and Dr=0.15 and the distance between them is dsb=1.0.  Fig. 30(b) shows 

the case for two hulls of different sizes that are Lb=2.5 Bb=0.4 and Dr=0.3 for the larger one, and that are

Lb=1.0 Bb=0.2 and Dr=0.15 for the smaller one.  The incident angle of the wave to the larger one is zero 
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while it is 20o for the smaller one. The distance between their centres is dsb =1.5.  In both figures, the 

incident waves are generated by a piston wavemaker with 7691.1=ω and a=0.03 in a tank with length of 

15 and width of 6.

6. Discussions on the mesh quality and the efficiency of the QALE-FEM for 3D floating bodies

One of the distinctive features of the QALE-FEM is that the unstructured mesh is moved at every time 

step to conform to the motions of boundaries.  It is understood that the mesh quality is continuously varying

during simulation.  Therefore, how the mesh quality varies needs to be examined. For 2D cases with or 

without floating bodies, the mesh quality has been investigated qualitatively and illustrated by plotting the 

mesh in [18], [19] and [47]. In 3D cases, it is difficult to illustrate the internal elements by just plotting the 

mesh; and the quantitative analysis, in place of the qualitative analysis, is more convincing.  In this paper, 

two different methods are used to look at the mesh quality quantitatively:  quality distribution and aggregate 

quality.  The quality distribution denotes how the quality index ( eq ) of elements calculated by Eq. (32) is 

distributed at a certain instant. The aggregate quality of the mesh ([60]) is estimated by

( ) ∑
=

=
M

e e
s q

MtQ
1

1
/ , (53)

where M is the number of elements in the whole fluid domain.  The aggregate quality ( )tQs  has only one 

value at one time step.   The larger the value, the better the mesh quality is.  It is obvious that the quality 

distribution is suitable to show the mesh quality at a time step while the aggregate quality is convenient for

illustrating how the mesh quality varies during the whole period of simulation.

For all the cases presented in this paper, the mesh quality has been examined by using the two methods to 

ensure that the mesh quality is satisfactory during the simulation.  One typical example is presented here;

that is the case shown in Fig. 28.  In this case, the two Wigley Hulls are involved but only half the domain 

with a single body is considered due to symmetry. The half fluid domain is discretised into about 847,254

elements and 154,342 nodes.  The aggregate quality of the mesh during the long-time calculation is shown in 

Fig. 31.  One can see that the aggregate quality is about 0.64 initially and it always remains larger than 0.62, 

though it fluctuates in a small range. Fig. 32 depicts the quality distribution of all elements at two time steps

apart from that at the initial step, where the horizontal axis denotes the ranges of quality index and the 

vertical axis gives the percentage of elements whose quality indexes fall in a range of quality index.  For 
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instance, about 40% elements fall in the range 0.6-0.7.  The aggregate quality at the two time steps (τ=30 and 

τ=60) almost reaches the minimum as could be seen from Fig. 31. Even at such instants, the quality 

distributions are almost the same as that of the initial step - about 80% of elements having the quality index 

larger than 0.5, as seen in Fig. 32. More importantly, very bad elements (quality indexes less than 0.1) never 

appear during the calculation.  All these facts imply that the quality of the mesh is retained throughout 

simulation.

[Figure31]

Fig. 31 Change of aggregate quality with time 
( 7691.1=ω , a=0.04, two identical Wigley Hulls with Lb=1.0, Bb=0.2, Dr=0.15 and dsb=0.6)

To give some information about how efficient the QALE-FEM is, it is noted that all the cases presented in 

the paper can be run on normal PCs.   More specifically, the above case (related to Figs. 31 and 32) is 

calculated on a PC with a Pentium �� 2.53GHz processor and 1G RAM.  The average CPU time spent on 

every time step is about 25s in a simulation of 2000 time steps.  It takes about 13.3 hours to achieve results 

of 15 wave periods.  Even for the cases shown in Figs. 30 where the whole domain must be used, similar 

results can be achieved in just over one day.  These demonstrate that the numeral analysis on the complicated 

problems about the fully-coupling and fully-nonlinear interaction between floating bodies and waves can be 

performed on a normal PC within an acceptable time.  Such efficiency has not been demonstrated by other 

numerical methods based on the same nonlinear theory in literature.

[Figure32]
Fig. 32 Quality distribution at three time steps

( 7691.1=ω , a=0.04, two identical Wigley Hulls with Lb=1.0, Bb=0.2, Dr=0.15 and dsb=0.6)

7. Conclusion 

In this paper, the QALE-FEM has been further developed to model problems about fully-nonlinear and 
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fully-coupling interaction between 3D floating bodies and waves. In this method, the boundary value 

problems for the velocity potential and its time derivatives are solved by using a finite element method in a 

time marching procedure.  Compared with the conventional finite element method for water wave problems, 

the QALE-FEM contains three distinctive techniques: 1) mesh moving using a robust spring analogy method 

specially developed for problems associated with the oscillating free surface and floating bodies, 2) velocity 

calculation on the free surface and body surfaces and 3) the iterative procedure for dealing with the full 

coupling between bodies and waves.

The main technical developments in this paper, as discussed in §3, are the techniques required for dealing 

with 3D nonlinear wave-body interactions. These include the technique for moving mesh near and on body 

surfaces, the scheme for calculating fluid velocity on body surfaces and a more efficient iterative procedure 

called ISITIMFB-M for tackling the full coupling between the motions of waves and bodies. The main 

application developments, as discussed in §5, lie in fully-nonlinear simulation of various cases associated 

with free responses of one or two 3D floating bodies to excitation of steep waves over a flat or complex 

seabed.  These include a single body located over a flat bed, a single body floating near a big bump, two 

identical bodies in a head sea, two identical bodies in an oblique wave and two different bodies having 

different incident angles with respect to the incoming wave.  These results reveal some interesting points. 

For example, the transient behaviour may be considerably affected by the natural frequencies and incident 

angles; the waves in the case for a body floating near a large bump on the seabed could become short-crested 

even the incoming wave is long-crested; and the interaction between multiple vessels should be carefully 

investigated by using fully nonlinear methods. Most of the results are first time published to the authors’ 

best knowledge.

The method has been validated by comparing its numerical predictions with experimental data for two 

cases: a moored SPAR platform and a barge-type floating body.  Good agreement has been achieved in all 

the comparisons.  Although more validations may be done in future, the comparisons in this paper shed 

significant light on the accuracy of the method.  The quality of mesh is examined, which shows that the good 

quality of mesh is retained during a long-period simulation.   Assessments are also made on the efficiency of 

the method, which demonstrate that some useful results about the complicated cases could be obtained by 

using a normal PC within an acceptable time, such as 13 hours or one day.  Such efficiency has never been 

achieved by using other numerical methods for fully nonlinear wave-body interaction problems as far as we 
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known.
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Table 1. Summary of problems about fully nonlinear interaction between waves and bodies

Fixed body Forced motion Free response with 
3 DoFs 

Free responses 
with 6 DoFs
(single body)

Free responses 
with 6 DoFs
(multi-bodies)

2D 
bodies

Turnbull, et al [8]; 
Heinze [9];
Wang et al[10];

Wang et al[10]; 
Wu et al[11]

Dalen[12]; Cao et al 
[13]; Contento[14]; 
Kashiwagi[15]; Wu 
et al[16]; Koo et 
al[17]; Yan et 
al[18,19]; 

N/A N/A

3D 
bodies

Ferrant [20]; Ma 
[21]; Büchmann et 
al [22]; Ma et al 
[23,24];Celebi 
[25];Corte et 
al[26]; Wang et 
al[27]; Bai et al 
[28];

Scorpio et al  
[29]; Celebi et 
al[30];Kim et al 
[31];
Wang et al[10]; 
Bai et al [32]; 

Tanizawa et al[33] Very rare if not 
nothing

Very rare if not 
nothing
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