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LONGEVITY-INDEXED LIFE ANNUITIES

Abstract.

This paper addresses the problem of the sharitmngevity risk between an annuity provider
and a group of annuitants. An appropriate longewnitiex is designed in order to adapt the
amount of the periodic payments in life annuity tcacts. This accounts for unexpected
longevity improvements experienced by a given exfee population. The approach described
in the present paper is in contrast with Group-8elfuitization where annuitants bear their
own risk. Here, the annuitants only bear the naemifiable risk that the future mortality
trend departs from that of the reference foredaghat respect, the life annuities discussed in
this paper are substitutes for reinsurance andisieation of longevity risk.
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1. Introduction and motivation

In this paper, we address the problem of the spasinlongevity risk between an annuity
provider and a group of annuitants. A conventioapproach to this problem is via
reinsurance. However, reinsurance treaties covaoingevity risk are usually expensive and
many life insurance companies are reluctant to lmmng-term reinsurance coverage (e.g.
because of credit risk).

Securitization offers an interesting alternativerémsurance; see, e.g., Denuit, Devolder &
Goderniaux (2007) and the references therein. &t thspect, the first publicly offered
longevity derivative was issued by the Europearestment Bank (EIB) together with BNP in
November 2004. This was a 25-year bond, issuedBywEth coupon payments linked to the
mortality experience of the base group of male&ngland and Wales who were age 65 in
2003 (precisely, to the proportions of this coh@éching ages 66 and over). The initial
coupon was scaled each year by the survival rateaeobase population group. To actuaries
this is simply a group life annuity on the baseydapon. In this paper, we further investigate
this idea for annuities but no longer in the contek securitization. Rather, we scale the
annuity payments in a similar way.

It should be emphasized here that the danger fauignproviders is in the mid term. Khalaf-
Allah, Haberman & Verrall (2006) have studied thelationship between mortality
differences and the corresponding change in theagd present value of a life annuity. They
provide a simple and effective tool for calculatithg difference in annuity values resulting
from using two different sets of mortality ratefiely investigate which are the age ranges that
contribute most to the additional cost associateth vallowing for future mortality
improvements. In the case of an annuity startinggat 60, the critical age range is 73-80 in



their study. This can be understood as follows. fitsaber of survivors is still large at these
ages and even modest improvements compared tdeghalle which is used for pricing and
reserving result in large additional costs for #mnuity provider. This clearly shows that
annuity providers need financial instruments witmaturity of over 15-20 years in order to
offset the longevity risk. This horizon may be tdgstant for many investors so that
securitization for longevity risk may be difficuti implement in practice.

Considering the cost of these risk management t@olgable alternative might well be to
leave the systematic part of the mortality riskhatlhe annuitants. Indeed, when the insurance
company contracts long-term obligations, it is oftefficient to let the premium evolve
according to some well-chosen index. This createseffective risk sharing mechanism
between the insurance company and the policyhgldeessing the latter with the risk
reflected in the index (often, inflation or soméeat systematic risk that cannot be diversified
across the portfolio). Since immediate life anmgtare sold for a single premium, it is not
possible to let the amount of premium depend omagpropriate index, but it would be
possible to adjust the insurer's payments: if ttteiad longevity exceeds that of a reference
forecast, then the payments are reduced accordivgey acknowledge that the coverage
against individual longevity risk provided by suglproduct is inferior to that of a life annuity
offering guaranteed payments. However, transferanlty part of the longevity risk to the
annuity provider decreases its need for risk chpiégnsurance and/or securitization and is
expected to make the product less expensive fardutetirees. For a given amount of
premium, the policyholders will be granted a highmetial periodic payment in a longevity-
indexed life annuity. Annuitants have then to decuwdhether they prefer fixed periodic
payments or agree to let them vary according toesepecified longevity index. Note also
that, in the case where the actual mortality imprognts turn out to be weaker than expected,
the payments to the annuitants are increased pomdmgly in a longevity indexed contract.
Moreover, periodic payments can be subjected t® @ floors in order to reduce the
adverse effect of longevity improvements on annpi@dyments. For instance, the contract
could specify that, in any case, the annuity payseiil not be smaller than 80%, say, of the
initial amount, whatever the improvements in lorigev

The idea of indexing life insurance products iofirse not new. It is common in actuarial
practice to let the premiums and/or benefits dependthe development of mortality.
However, in the context of life annuities used tovide an income after retirement, the
individual is poorly placed to absorb the longevitgk in the post-retirement phase. In this
respect, insurance companies have provided in rgeans more flexible products including a
significant investment element. For instance, puens are converted into units of an
investment fund or insurance benefits are linkedstone public stock index. Hence,
policyholders buying these products agree to sugpart of) the investment risk compared to
classical policies offering guaranteed interest.r&he volatility implied by these increasingly
popular new products is much higher than that ietplby the longevity indexed annuities
discussed in the present paper. Therefore, inve@saMouring insurance products offered
without guaranteed interest rates could also cendidying longevity indexed products as
long as they offer comparable returns. Increaséaing are made possible since, as noted
above, passing part of the longevity risk to thewstants substantially decreases the insurer's
need for capital or for reinsurance.

The present proposal is related to the conceptrofi®Self-Annuitization (GSA), studied by
Piggott, Valdez & Detzel (2005) and Valdez, PiggottWVang (2006). The term Group Self-
Annuitization (GSA) is used to describe a grouf-aehuity plan which will allow retirees to



pool together and form a fund in order to provide protection against longevity. These
Authors report that annuities where payments re#eolving mortality have for some time
been issued in the US by the Teachers’ InsurandeAanuity Association (TIAA) and that,
historically, the impact of annual mortality adjueints has been relatively modest. Compared
with GSA, the type of annuities discussed in thespnt paper is not a tontine scheme and
offers a superior protection to policyholders. Emauitants only bear the systematic part of
the longevity risk, whereas the insurer coversrirelom fluctuation of mortality as well as
the expected future mortality improvements and iptssdepartures from the guaranteed
interest rates. In the framework of Piggott, ValdeDetzel (2005), Van de Ven & Weale
(2008) discuss the way in which payments from pbaanuity funds need to be adjusted
when future mortality rates are not known with agity. They investigate “mortality
adjusted” annuities in which aggregate mortaligkris transferred from the provider to the
annuitants, allowing for the level of risk averswiithe annuitant.

The approach described in the present paper slsares similarities with the “adaptive
algorithmic annuities” designed by Luthy et al. @2D. These Authors suggest the use of
frequent estimates of the actual mortality in orteadjust the benefits to the policyholders.
More precisely, forecasts of future mortality apdated and produce new expected present
values of life annuity payments. The benefits gaithe annuitants are then scaled according
to these new amounts of premium. Compared to thmaach, the updates of periodic
payments proposed in the present paper are basailficial data published by National
Institute of Statistics or regulatory authoritiem@ not on mortality forecasts). This makes the
indexing mechanism more transparent to policyhslder

Richter & Weber (2009) also discuss annuity comgradgth benefits linked to actual mortality
experience, including an actuarial model for catnb and reserving. These authors discuss
whether and to what extent such products are algsar@ageous for policyholders compared
to conventional annuity products. The proposal ntadRichter & Weber (2009) shares some
similarities with the product designed in this papet is closer to the GSA philosophy. Also,
it relies on a new best-estimate for future mastadiach time the annuity payment is updated,
as in Luthy et al. (2001).

The present paper is organized as follows. Se@&idascribes indexed life annuity products.

Section 3 studies these insurance contracts whehedb-Carter model is used to describe the
trend in future mortality. In Section 4, we limiitet revision of the annuity payment, to protect
annuitants. Section 5 offers numerical illustrasioThe final Section 6 concludes and

discusses the results. Some points are deferrad &ppendix, to avoid distracting the reader
with technicalities.

To end with, let us introduce some notation useouthout this paper. Henceforth, we
analyze the changes in mortality as a functionadh lagex and calendar time This is the so-
called age-period approach. The remaining lifetmhen individual ageck on January the
first of yeart is denoted ag,(t .)Thus, this individual will die at age+T,(t ir) calendar
year t+T,(t). Then, q,(t) = P[T,(t)<1] is the probability that anc-aged individual in
calendar yeart dies before reaching agetl and px(t):l—qx(t):P[TX(t)>1] is the
probability that arx-aged individual in calendar yetareaches aget1.



2. Longevity indexed life annuities

Let us consider an individual buying an immediategevity indexed life annuity at aggin
calendar yeat,. According to this contract, the annuitant recgiga annual payment as long
as he or she survives. The amount specified ircdmnéract is one monetary unit, scaled by a

longevity index.

ref

Let p,w(t, +K), k=0,...,w-X,, be a forecast for the survival of some refergrmaulation

to which the individual belongs, whewe denotes the ultimate age (for which the one-year
survival probability vanishes). This forecast mag jprovided by governmental agencies
performing mortality projections (National Instiéuof Statistics or insurance regulators). The
reference population may be the general populaifoa given country or some market life
table.

As time passes, the observed values of the onesygaival probabilities become available.

In an indexed life annuity contract, the risk remag with the annuitants is the spread
between the forecagh™,, (t, + k) and its actual valug®*, (t, + k) . Specifically, the annual

Xo K Xo tkK

payment due at timleis adjusted by the factor

_ P () _ Pl (G + )

o S ——po o = _
B ) L e+ )

Hence, if the contract specifies an annual paynoérit, the annuitant receives a stream of
payments, ,,,i; .»,...as long as he or she survives.

Seen fromt,, this index is of course a random variable afuh&e survival probabilities are

unknown (but their distribution function can beided from the mortality projection model).
Hence, it becomes

ref t
o = P, () 2.1)
« P (t)

where , P_(t, )is the future unknown survival probability from agg to age x, +k. The
distribution of the random variablgP, (t, g¢an be derived from the mortality projection

model used to forecast future longevity. In thipgrawe concentrate on the Lee-Carter model
but the approach nevertheless applies to any atbdel.

The scaling factor (2.1) can be intuitively seenhasratio of the proportion of the population
reaching agex, +k based on the reference forecast to the actuabprop of the population

reaching that age. If the predictions containethi reference forecast are actually realized
over time, the payout rates determined at the pofnéntry will remain constant. If the
increases in longevity turn out to be larger thaticgpated, then the annuity payments are
reduced accordingly. Note that the insurer retéingsinterest rate risk as well as the non-
systematic mortality risk and only transfers to pladicyholder the systematic longevity risk.



3. Distribution of the conditional expected present value of longevity indexed life annuity
paymentsin the Lee-Carter model

3.1. Lee-Carter moddl

We recall the basic features of the classical LageC approach. In this framework, the
population central death rate at aga calendar yedr, denoted as, (t) , is of the form

Inm (t) =a, + Bk, (3.1)

Interpretation of the parameters involved in mg@el) is straightforward. The value of,

is an average olnm,(t) over timet so thatexpa, represents the general shape of the age-
specific mortality profile. The actual forces obrtality change over time according to an
overall mortality index «, which is modulated by an age response varigple The
coefficient S, indicates the sensitivity of different ages to timee trend so that the shape of
the B, profile indicates which rates decline rapidly avitich slowly over time in response to
changes irk, .

An appropriate error structure has to be specihearder to estimate the parameters involved
in (3.1). Lee & Carter (1992) opted for Normal drftances and an estimation procedure
based on Singular Value Decomposition, i.e.

N0 = a, + Bk, + &,

where m (t ) is the observed death rate at age calendar year and the error terms,, are

independent and Normally distributed with zero mear constant variance. Binomial,
Poisson or Negative Binomial regression modelsatao be used to estimate the parameters
entering the decomposition (3.1). For more detalbout inference issues, we refer the
interested reader to Pitacco et al. (2009).

In order to make forecasts, Lee & Carter (1992umesthat thex, and B, remain constant
over time and forecast future values Qf using a standard univariate time series model. In

the majority of studies based on the Lee-Cartertaity projection model, a simple random
walk with drift, or ARIMA(0,1,0 model, is used to describe the dynamics of tme tindex
K,; see, e.g., Denuit, Haberman & Renshaw (2010koime cases, higher-order ARIMA

models are needed to appropriately describe the tmdex. We retain the ARIMA(1,0
assumption in the text and we defer to the appetidixstudy of the general ARIMA(L,9
case. Henceforth, we assume that

K =Ky +O+E

for some drift parametef, where the random variable§ are independent, Normally
distributed with zero-mean and constant variaoée



3.2. Conditonal survival probabilitiesin the L ee-Carter model

Let us denote asP, (t, |x) the randond-year survival probability for an individual ag&dn
yeart,, that is, the conditional probability that thislinidual reaches age+ din yeart, +d,
given the vectok of thek,. Itis formally defined as

d-1

P[Tx(to) > d|K] = d Px(to |K) = exp{_ eXF(ax+j + ﬁx+jKt0+j )} .

j=0

Let us define

d_

Sd :dz_ieXp(axﬂ +:8x+jKto+j) =Zdl exr(;),

1
j=0 j=0

where 9, = exp(ax+j) >0andZ; =4, K, Clearly ;P (t, |k) =exp(=S,). Conditional on

ot "
K, , it follows that Z; is Normally distributed with meap; = f,,,(x, + j6) and variance
o =(B,.;)* jo” subject to the convention that a Normally distrésitandom variable with

zero variance is constantly equal to its mean. Nb& the mean and variance are taken
conditionally on past values of the time index.

3.3. Lifeannuity conditional expected present value

Let us consider a basic life annuity contract pgyirunit of currency at the end of each yeatr,
as long as the annuitant survives. The randomdifauity single premium, that is, the
conditional expectation of the payments made taramuitant aged in the yeart, given the

time index, is

LTxO (to)J w-Xo
a, (to|x) = E{ ZV(O, k)|K:| = Z, P, (t[)V(O0,K)

whereV(.,.) is the deterministic discount factor (prebrse/(s t) is the present value at tirse

of a unit payment made at tinle Note thata,(t, |k) corresponds to the generation ageql
calendar yeart,, and accounts for future mortality improvementpexienced by this
particular cohort. Clearlya, (t, |«) is a random variable that depends on the futajediory

of the time index (that is, or, ,K, ..k ..,.-). It can be seen as the systematic risk per

contract in a sufficiently large portfolio. An agatal computation of the distribution
function of a (t, |x) seems to be out of reach.

For a longevity indexed contract, the annuity pdiiopayments are no longer constantly
equal to 1 but becomk ., given in (2.1). In the Lee-Carter modé,,, depends onx and

is given by



Lo = 1 ()=, explS, (x))

so that the conditional present value of the paymender a longevity indexed contract is

w—Xoy w-Xg

2 (K)exp=S N OK) = 3, PEVOK).

k=1

Thus, we see that the annuity provider is no lorsgdgject to longevity risk when annuity
payments are scaled Hy ., : all of the systematic longevity risk is passedhe annuitants

and the provider is allowed to operate as if tHeremce life table exactly applies. In Section
4, we introduce caps and floors g, in order to limit the impact of indexing.

3.4. Comonotonic approximations

Assuming a random walk with drift model for the’s, Denuit & Dhaene (2007) have

proposed comonotonic approximations for the quesitdf the random survival probabilities
+P.(t, |k). Since the expression fa(t, |x) involves the weighted sum of thé (t, |k) s,

Denuit (2007, 2008) supplemented this first comonit approximation with a second one.
Denuit, Haberman & Renshaw (2010) have extendedethresults to general ARIMA
dynamics for thex,'s. Here, we show that a similar idea applies ®ltdngevity-indexed life

annuities.

Approximating S, by a sum of perfectly dependent random variablgs, the same marginal
distributions, gives the approximation

d-1
S, =S =).9,exp(, +0, 2), with Z~ N(O,1.

j=o

Since S; is a sum of comonotonic random variables, its tleafunction is additive. The
guantile functionFS’gl of S, is given by

Foi(2) = ;_051. exp(, +0,07 (2), (3.2)

where®™ is the quantile function of the standard Normatritution.

Another approximation ofS, is S, = E §|A ], where A, is taken as the first-order

approximation ofS, , that is,\, = ZT;;&'J exp(y, XZ; . A straightforward computation gives

§ =3 g0 + 1 @), 25 (- (F @)



wherer.(d), i =0,1,...d — 7, is the correlation coefficient betweéy), andZ , that is

,

In the applications we have in ming,,; andg,,; typically have the same sign so that all of

d-1

5] expwj)lg)(+ilgx+j min{i’ J}UZ

r(d)=

| 1l
[l k=]

(3.3)

o |[—-

3.0, explld; + 1) Bes; By min{ j K}

=0

— o
1l |
o [iN

=~

the r’s are non-negative. This means that t8g's are sums of comonotonic random
variables and allows us to take advantage of tbpesty of quantile additivity. Specifically,
the quantile function o, is given by

FS“!l(z) = ;5} exp(,uj +rdo o™ (z)+% a- (7 (d))szj. (3.4)

From the approximation§ and S, derived forS,, we get the following approximations for
the random survival probabilities

4Pt %) zexp(—FS‘dul (1-uU )) and P (t, | k) zexp(—FSle (1-uU ))

whereU is uniformly distributed on the interval (0,1).oté that the same random variable
is used for all of the values af, making the approximations to the conditional swalv

probabilities comonotonic. Hence, we obtain tH®Wing approximations foi, (t, | «)

a (k)= Zexp( F‘l(l—U ))v(Od‘

d=1

and

a,(t, 1K) = Y exp(-F (1=U v (0d )

d=1

Since these approximations are sums of comonotcmclom variables, their quantile
functions are additive. We then obtain the follogvapproximations for the quantile function

F. %rop() of a,(t, |«)

Fotun(2) = Y exp(-F2 (- 2)) v(0.d)

d=1

(3.5)
where Fs‘du1 is given in (3.2), and

Foo (D = Zexp( F‘l (- z)) v(0,d)

d=1

(3.6)



where stdl is given in (3.4).

These approximations can be used to derive clam®d-formulas for the quantiles of the
present value of future annuity payments in theyémity indexed contract, as shown in the
next section.

4. Capsand floors

The concept underlying longevity indexed life aniesi is essentially a profit share: the
insurer absorbs risk and profit from interest raaesl idiosyncratic mortality risk, and the
annuitants share with the insurer the pooled syaierftongevity risk.

If the annuitants absorb all of the systematic, reshknuity payments may become arbitrarily
low in old ages in the case of adverse experieiitgs situation appears to be highly
undesirable given that longevity insurance is tr@nnpurpose of annuities. One could think
of using safe side estimates of longevity riskilsat the expected outcome is an increase in
old ages. However, past experience shows that sdéeforecasts of longevity have often
been exceeded and this approach may make the coweey expensive (or at least as
expensive as traditional annuities).

A more efficient design would be to limit the sysggic longevity risk passed to the
annuitants, as discussed next.

As the annuitant is unlikely to be in a positionaiasorb all of the longevity risk, it seems
reasonable to limit the impact of the index on #mmuity payments. Therefore, instead of
using the longevity index, only part of it impacts on the annuity paymermdr Fstance, if at

most 20% of variation is allowedhen max{min{ito+k 12408} is used to scale the annuity
payment. This means that the indg, is replaced with its capped version

it0+k (imin 'imax) = ma){min{itﬁk ’ imax}’ imin}

(4.1)
for someO<i,,, <1<i_ .,
Let I, . (iminimax) PE the index applying to the annuity periodic pewts, that is,
ot ) = MARMIN e
where I, ,, is given in (2.1). Afterk years its realization is just ., (i, 1ma  gefined in

(4.1). The random variable, (t,,i |/() is the corresponding conditional expectation if

k31,2,.., that is,

min ’ max

the payments are subject to the indgx (i

min max 1

. . \-TXO (tO)J . .
ax0 (tO' Imin ' Imax|K) =E Z It0+k (Imin ’ Imax)v(ol k)|K
k=1



The comparison o&, (t, | k) with &, (to,i,,] max|/() helps to quantify the risk passed from the

min ’ max|

annuity provider to the annuitant. Thua, (t,,i
with the annuity provider.

|K) Is the systematic risk remaining

Now, in the Lee-Carter model, (i ) depends orx and is given by

min ’ max

max) -

l tot+k (imin ! I t0+k (Imln ’ max|K) ma){mln{k p:f eXF(S< (K))’ imax}’ imin}

so that

a‘xo (tO’ imin ' imax|K) = _ZOI to +k(imin ' imax|K) eXd_ S< (K))V(O’ k)

Let us now consider the longevity indexed annuitieis easily seen that each term included
in the sum ovek defining a, (t,,i |K) in the Lee-Carter framework is non-increasing in

min ’ max|

S.(«x) so that natural approximations are

8, (tosirin i) = ai‘jma){min{k D" eXES! e i JEXH~ S M (O, K)

(4.2)
and

8, (tosirin i) = aﬁ’max{min{k 0" xRS, )i fEXP= S V(O K)

(4.3)
These approximations turn out to be comonotonicsssmhat their quantile functions are

additive. Hence, the quantile functionsaf(t,, | |/() can be approximated as

min ’ max

Faj(toyimmimaxk)(g)zgma{min{ ref exp(F a- 5)) max}, mm}exp( Fo t- 5))\/(0 k)

and

Faj(toyimmimaxk)(g)zgma{min{ ref exp(F a- 5)) max}, mm}exp( F‘l(l 5))\/(0 k)

5. Numerical illustrations
In the numerical examples, we use the England &4/aB83-2004 male insured pensioners

data set, for ages 60-99, in combination with aietyarof reference distributions. The
mortality projection for this data set is performeith the help of the Lee-Carter model using

10



an ARIMA(0,1,0) for the dynamics for the time indekhe reference life tables are as
follows:

Ref.1

Ref.2

Ref.3

Ref.4

Ref.5

the point-wise projection (on a cohort basis) oigd for the England & Wales 1983-
2004 male insured pensioners data set, using aCheer model, is taken as the
reference life table. In this case, the referdocecast relates to the insurance market
and not to the general population, and corresptmdise population being simulated,
thereby reducing the “basis risk”. This particuthoice of reference life table results
in the vertical alignment that is visible for eadex,in Fig 1.

the point-wise projection (on a cohort basis) wigd for the England & Wales male
1961-2005 general population using the Age-Periotgtt version of the Lee-Carter

model (as in Renshaw and Haberman (2006)) WARIMA(0,1,0) dynamics is used as
the reference life table in Fig 2.

the point-wise projection (on a cohort basis) wigd for the England & Wales male
1961-2005 general population using the standard -Gaéer model with

ARIMA(0,1,0) dynamics is used as the reference life table graFi

the CMI Bureau Life Office Pensioners current perstandard life table (for male
lives who have retired at normal retirement agdtimate experience) is used as the
reference distribution in Fig 4.

the empirical periodic life table obtained by agng the England & Wales male
1961-2005 general population experience over ftioneeach age (that is, the term

exp(ax) when fitting the conventional Lee-Carter modelyised as the reference life
table in Fig 5.

The ultimate agew, with one-year survival probabilityp (t) =0, is set asw=120 for all 5

reference life tables. The details of the consibacof Refs.2-3 for the cohort years
2005- x, and also the method used to “top-out” 4 of theference life tables (Refs.1-3, 5)

is available from the Authors.

The next table displays the life expectancies atdiven ages for the different reference life

tables:

ages 60 65 70 75
Ref.l 25.24 20.41 15.78 11.83
Ref.2 2455 19.58 15.22 11.16
Ref.3 23.10 18.42 14.25 10.68
Ref.4 2155 17.41 13.64 10.37
Ref.5 17.07 13.61 10.61 8.09

This allows us to rank the reference life tablessidered in the numerical illustrations from

the point of view of longevity. Note also, thatfR&-3 are constructed by the cohort method
(with the Age-Period-Cohort model for Ref.2 providia better fit to the data than the Age-
Period model for Ref.3, as noted for a similar dsgd by Renshaw & Haberman (2006)),

while Refs.4-5 are constructed by the period method

11



Figures 1-5 depict the results. For each gge 60, 65,70, 7!, and each reference distribution,

2.5, 5, 50, 95, 97.5 u-type quantiles (4.2) angpktquantiles (4.3) are displayed for the
longevity indexed life annuities together with (8(8.6) where there is no indexing. In the
figures, the values ofi ;,,i.., #re given to make visible the effect of indexiktgre, (1,1)

corresponds to no indexing and (B¢ ) corresponds to using actual mortality experiesog
so the confidence intervals shrink to a point. Thie effect of i, decreasing and

ImaxiNCreasing is to cause the intervals to becomelem&lote that in the (1,1) case, we are
in the case considered by Denuit, Haberman & Rem$2@10).

The more dispersed the quantiles, the more risktaned by the annuity provider and the
more expensive the indexed life annuity productscDssing the attractiveness of the
longevity indexed annuity contract is rather diffic as it depends on the amount of premium
charged by the insurance company for the diffetgmes of contracts and of the annuitant’s
risk appetite. Nevertheless, the following discosssuggests that a good compromise could
be found, offsetting most of the systematic longevisk while limiting the impact of the
indexing to an acceptable range.

We comment in more detail on the results as follows

- Setting the bounds to be (1,1) means that theamderdistribution does not feature in
the calculations and there is no indexation. Tligraduces the results in Denuit,
Haberman & Renshaw (2010).

- In all of the cases, the intervals decrease intwadt the bounds are increased. If we
allow for more indexing then the width of the prohin intervals for the conditional
expected present values of the annuity decreadessassk is borne by the insurance
company providing the longevity indexed annuity.

- Using Ref.1, the vertical alignment is a naturahseguence of using the model
predictions for the reference distribution.

- For the other 4 reference distributions, the ptgahis are in decreasing order of
longevity (as measured by life expectancy) withreéasing bounds (with one
exception), indicating the effect of indexation.idleffect does not appear to depend
on whether or not the reference distribution wasstmcted on a period or cohort
basis. The medians (and other quantiles) also teatte choice of the reference life
table: thus, if the longevity expressed by thereziee life table is smaller compared to
the point forecast of the mortality projection mbhdieen the index is more likely to be
less than 1 and future annuity payments will prdyphk reduced.

- Also note that, where there is “basis risk” betwdles population and the reference
distribution, the prediction intervals shift to theft as we move down the page (and
the bounds widen). This is especially noticeabl&igure 5 which has the reference
distribution with the lowest life expectancy. TleBect is least noticeable in Figure 1
(as noted above) where there is a close match batihe reference distribution and
the distribution being simulated.

- In many cases, we see that allowing for +/-20%he &annuity payments greatly
reduces the risk borne by the annuity provider.

Thus, takingi;,, =80% andi.,, =120% offsets almost all of the longevity risk (if theeé-

Carter model applies) while accepting a 20% vamatn the periodic annuity payments may
be regarded as acceptable from the policyholderistf view. Of course, we must keep in
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mind that the model risk has not been accountednféhe computations so that the views
expressed here may be too optimistic. We come tuattks point in the final discussion.

6. Discussion

Life annuities will certainly become an essentiabduct in the future, as our Western
societies are progressively ageing. Actuaries aveake these products more attractive than
they are today. The present paper makes some ¢temeoposals in that direction.

As an alternative to securitization, we have exaimdexed life annuities, where periodic
payments are scaled by the ratio of the proportibthe population still alive compared to
some reference forecast. The systematic risk is plagsed to the annuitants. Considering the
difficulties that have been experienced in issumggevity-based financial instruments, this
might well be an efficient alternative to help insts to write annuity business.

As recalled in the introduction to this paper, st usually considered that middle range
longevity is the key risk to the insurer. The exteeold age systematic risk can be retained by
the insurer, as it concerns a few policyholders laasl thus limited financial impact. Fixing
the annuity amount from some advanced age canefptne design. This amounts to split
the life annuity into a temporary annuity, subjectongevity indexing, and a fixed advanced-
life delayed annuity (ALDA) in the terminology ofiMvsky (2005).

Note that the idea of indexing also applies to ALAder this deferred life annuity contract,
the deferment period can be seen as a deductitdgydlicyholder finances his consumption
until some advanced age, 80, 85 or even 90, saytheninsurer starts paying the annuity at
this age provided the annuitant is still alive. Eegnthe ALDA transforms the consumer
choice and asset-allocation problem from a stoahdste of death to a deterministic one in
which the terminal horizon becomes the annuity payncommencement date. If the index is
publicly available then the annuitant is able tquatdhis or her consumption level during the
deferred period. Note that we could also thinkltdraative indexing mechanisms for ALDA.
Considering a deferred life annuity bought at agevéh payments starting at age 80, say, we
could let the starting age vary according to acloalgevity improvements: if longevity
increases more than expected, then payments stagé 82 instead of 80, for instance.

In this paper, interest rates have been assumeel deterministic (so that tlw€0,ks also are).

If the interest rates were allowed to be stochasiien conditional independence given
needs to be postulated. This conditional indepecelemy be justified by the fact that interest
rates are influenced by the age pyramid of the labjom but not by the mortality itself.
However, we note that Hanewald (2009) has foundifseggnt correlations between the Lee-
Carter time index and real GDP growth rates anti witemployment rate changes in several
OECD countries.

To end with, let us stress that model risk hasbeei considered in the present study. To the
best of our knowledge, the evaluation of the impdatodel risk has not been addressed so
far in the literature. Model averaging, i.e., combg different projections obtained from
different models, appears as a convenient apprtaessess model risk; see, for example,
Denuit (2009). The weights assigned to each moelat their appropriateness given the
data. Model selection criteria are good candidatethat respect. However, this goes well
beyond the scope of the present paper and coulteltepic of a forthcoming work.
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Appendix

Here, we assume that the obey an ARIMAp,1,g) model, with arbitrary values @f andq,
which are to be determined. Furthermore, we asshatehex, are positively dependent, in
the sense that the covariance between any(ggi, ) of time indices is non-negative. Since

the x, are multivariate Normal, this ensures that #heare positively associated, that is, the
inequality

Cov[lPl(Ktl,Ktz,...,/(tn) ,WZ(Ktl K., Kt):| = (

is valid for all valuest, <t, <...<t, and for all choices of the non-decreasing funstiéh
and ¥, such that the covariance exists.

In general, conditional ok, , we still have thaZ; ~ N(4, ,sz) with moments

2
K, = B E[ K, ] ando} = (4, ) Var[ k., |
that can be computed according to the ARIMA speaiion retained.

The correlation coefficient betweeh, andZ , r.(d), i =0,1,...d = ., is given by

d-1
£ (d) = CoJ Z’/\d] _ zjzoa_j exp(:uj )ﬁx+iﬁx+jCOV[Kto+i Ko+ ]
O O\ A0 XD+ B COVI K, ]

which reduces to (3.3) in the ARIMA(0,1,0) case.
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