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LONGEVITY-INDEXED LIFE ANNUITIES 
 

 
 
 
 
Abstract. 
 
This paper addresses the problem of the sharing of longevity risk between an annuity provider 
and a group of annuitants. An appropriate longevity index is designed in order to adapt the 
amount of the periodic payments in life annuity contracts. This accounts for unexpected 
longevity improvements experienced by a given reference population. The approach described 
in the present paper is in contrast with Group Self-Annuitization where annuitants bear their 
own risk. Here, the annuitants only bear the non-diversifiable risk that the future mortality 
trend departs from that of the reference forecast. In that respect, the life annuities discussed in 
this paper are substitutes for reinsurance and securitization of longevity risk. 
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1. Introduction and motivation 
 
In this paper, we address the problem of the sharing of longevity risk between an annuity 
provider and a group of annuitants. A conventional approach to this problem is via 
reinsurance. However, reinsurance treaties covering longevity risk are usually expensive and 
many life insurance companies are reluctant to buy long-term reinsurance coverage (e.g. 
because of credit risk).  
 
Securitization offers an interesting alternative to reinsurance; see, e.g., Denuit, Devolder & 
Goderniaux (2007) and the references therein. In that respect, the first publicly offered 
longevity derivative was issued by the European Investment Bank (EIB) together with BNP in 
November 2004. This was a 25-year bond, issued by EIB, with coupon payments linked to the 
mortality experience of the base group of males in England and Wales who were age 65 in 
2003 (precisely, to the proportions of this cohort reaching ages 66 and over). The initial 
coupon was scaled each year by the survival rate of the base population group. To actuaries 
this is simply a group life annuity on the base population. In this paper, we further investigate 
this idea for annuities but no longer in the context of securitization. Rather, we scale the 
annuity payments in a similar way. 
  
It should be emphasized here that the danger for annuity providers is in the mid term. Khalaf-
Allah, Haberman & Verrall (2006) have studied the relationship between mortality 
differences and the corresponding change in the expected present value of a life annuity. They 
provide a simple and effective tool for calculating the difference in annuity values resulting 
from using two different sets of mortality rates. They investigate which are the age ranges that 
contribute most to the additional cost associated with allowing for future mortality 
improvements. In the case of an annuity starting at age 60, the critical age range is 73-80 in 
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their study. This can be understood as follows. The number of survivors is still large at these 
ages and even modest improvements compared to the life table which is used for pricing and 
reserving result in large additional costs for the annuity provider. This clearly shows that 
annuity providers need financial instruments with a maturity of over 15-20 years in order to 
offset the longevity risk. This horizon may be too distant for many investors so that 
securitization for longevity risk may be difficult to implement in practice. 
 
Considering the cost of these risk management tools, a viable alternative might well be to 
leave the systematic part of the mortality risk with the annuitants. Indeed, when the insurance 
company contracts long-term obligations, it is often efficient to let the premium evolve 
according to some well-chosen index. This creates an effective risk sharing mechanism 
between the insurance company and the policyholders, leaving the latter with the risk 
reflected in the index (often, inflation or some other systematic risk that cannot be diversified 
across the portfolio). Since immediate life annuities are sold for a single premium, it is not 
possible to let the amount of premium depend on an appropriate index, but it would be 
possible to adjust the insurer's payments: if the actual longevity exceeds that of a reference 
forecast, then the payments are reduced accordingly. We acknowledge that the coverage 
against individual longevity risk provided by such a product is inferior to that of a life annuity 
offering guaranteed payments. However, transferring only part of the longevity risk to the 
annuity provider decreases its need for risk capital, reinsurance and/or securitization and is 
expected to make the product less expensive for future retirees. For a given amount of 
premium, the policyholders will be granted a higher initial periodic payment in a longevity-
indexed life annuity. Annuitants have then to decide whether they prefer fixed periodic 
payments or agree to let them vary according to some specified longevity index. Note also 
that, in the case where the actual mortality improvements turn out to be weaker than expected, 
the payments to the annuitants are increased correspondingly in a longevity indexed contract. 
Moreover, periodic payments can be subjected to caps and floors in order to reduce the 
adverse effect of longevity improvements on annuity payments. For instance, the contract 
could specify that, in any case, the annuity payments will not be smaller than 80%, say, of the 
initial amount, whatever the improvements in longevity. 
 
The idea of indexing life insurance products is of course not new. It is common in actuarial 
practice to let the premiums and/or benefits depend on the development of mortality. 
However, in the context of life annuities used to provide an income after retirement, the 
individual is poorly placed to absorb the longevity risk in the post-retirement phase. In this 
respect, insurance companies have provided in recent years more flexible products including a 
significant investment element. For instance, premiums are converted into units of an 
investment fund or insurance benefits are linked to some public stock index. Hence, 
policyholders buying these products agree to support (part of) the investment risk compared to 
classical policies offering guaranteed interest rate. The volatility implied by these increasingly 
popular new products is much higher than that implied by the longevity indexed annuities 
discussed in the present paper. Therefore, investors favouring insurance products offered 
without guaranteed interest rates could also consider buying longevity indexed products as 
long as they offer comparable returns. Increased returns are made possible since, as noted 
above, passing part of the longevity risk to the annuitants substantially decreases the insurer's 
need for capital or for reinsurance. 
 
The present proposal is related to the concept of Group Self-Annuitization (GSA), studied by 
Piggott, Valdez & Detzel (2005) and Valdez, Piggott & Wang (2006). The term Group Self-
Annuitization (GSA) is used to describe a group self-annuity plan which will allow retirees to 
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pool together and form a fund in order to provide for protection against longevity. These 
Authors report that annuities where payments reflect evolving mortality have for some time 
been issued in the US by the Teachers’ Insurance and Annuity Association (TIAA) and that, 
historically, the impact of annual mortality adjustments has been relatively modest. Compared 
with GSA, the type of annuities discussed in the present paper is not a tontine scheme and 
offers a superior protection to policyholders.  The annuitants only bear the systematic part of 
the longevity risk, whereas the insurer covers the random fluctuation of mortality as well as 
the expected future mortality improvements and possible departures from the guaranteed 
interest rates. In the framework of Piggott, Valdez & Detzel (2005), Van de Ven & Weale 
(2008) discuss the way in which payments from pooled annuity funds need to be adjusted 
when future mortality rates are not known with certainty. They investigate “mortality 
adjusted” annuities in which aggregate mortality risk is transferred from the provider to the 
annuitants, allowing for the level of risk aversion of the annuitant. 
 
The approach described in the present paper shares some similarities with the “adaptive 
algorithmic annuities” designed by Luthy et al. (2001). These Authors suggest the use of 
frequent estimates of the actual mortality in order to adjust the benefits to the policyholders. 
More precisely, forecasts of future mortality are updated and produce new expected present 
values of life annuity payments. The benefits paid to the annuitants are then scaled according 
to these new amounts of premium. Compared to this approach, the updates of periodic 
payments proposed in the present paper are based on official data published by National 
Institute of Statistics or regulatory authorities (and not on mortality forecasts). This makes the 
indexing mechanism more transparent to policyholders. 
 
Richter & Weber (2009) also discuss annuity contracts with benefits linked to actual mortality 
experience, including an actuarial model for calculating and reserving. These authors discuss 
whether and to what extent such products are also advantageous for policyholders compared 
to conventional annuity products. The proposal made by Richter & Weber (2009) shares some 
similarities with the product designed in this paper but is closer to the GSA philosophy. Also, 
it relies on a new best-estimate for future mortality each time the annuity payment is updated, 
as in Luthy et al. (2001). 
 
The present paper is organized as follows. Section 2 describes indexed life annuity products. 
Section 3 studies these insurance contracts when the Lee-Carter model is used to describe the 
trend in future mortality. In Section 4, we limit the revision of the annuity payment, to protect 
annuitants. Section 5 offers numerical illustrations. The final Section 6 concludes and 
discusses the results. Some points are deferred to an appendix, to avoid distracting the reader 
with technicalities. 
 
To end with, let us introduce some notation used throughout this paper. Henceforth, we 
analyze the changes in mortality as a function of both age x and calendar time t. This is the so-
called age-period approach. The remaining lifetime of an individual aged x on January the 
first of year t is denoted as )(tTx . Thus, this individual will die at age )(tTx x+ in calendar 

year )(tTt x+ . Then, [ ]1)()( ≤= tTPtq xx  is the probability that an x-aged individual in 

calendar year t dies before reaching age x+1 and [ ]1)()(1)( >=−= tTPtqtp xxx  is the 

probability that an x-aged individual in calendar year t reaches age x+1. 
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2. Longevity indexed life annuities 
 
Let us consider an individual buying an immediate longevity indexed life annuity at age 0x in 

calendar year 0t . According to this contract, the annuitant receives an annual payment as long 

as he or she survives. The amount specified in the contract is one monetary unit, scaled by a 
longevity index. 
 
Let )( 00

ktpref
kx ++ , 0,,0 xk −= ωK , be a forecast for the survival of some reference population 

to which the individual belongs, where ω  denotes the ultimate age (for which the one-year 
survival probability vanishes). This forecast may be provided by governmental agencies 
performing mortality projections (National Institute of Statistics or insurance regulators). The 
reference population may be the general population of a given country or some market life 
table. 
 
As time passes, the observed values of the one-year survival probabilities become available. 
In an indexed life annuity contract, the risk remaining with the annuitants is the spread 
between the forecast )( 00

ktpref
kx ++  and its actual value )( 00

ktpobs
kx ++ . Specifically, the annual 

payment due at time k is adjusted by the factor 
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Hence, if the contract specifies an annual payment of 1, the annuitant receives a stream of 
payments K,, 21 00 ++ tt ii as long as he or she survives. 

 
Seen from 0t , this index is of course a random variable as the future survival probabilities are 

unknown (but their distribution function can be derived from the mortality projection model). 
Hence, it becomes 
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ref
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kt =+                                                       (2.1) 

 
where )( 00

tPxk is the future unknown survival probability from age 0x  to age kx +0 . The 

distribution of the random variable )( 00
tPxk  can be derived from the mortality projection 

model used to forecast future longevity. In this paper, we concentrate on the Lee-Carter model 
but the approach nevertheless applies to any other model. 
 
The scaling factor (2.1) can be intuitively seen as the ratio of the proportion of the population 
reaching age kx +0  based on the reference forecast to the actual proportion of the population 

reaching that age. If the predictions contained in the reference forecast are actually realized 
over time, the payout rates determined at the point of entry will remain constant. If the 
increases in longevity turn out to be larger than anticipated, then the annuity payments are 
reduced accordingly. Note that the insurer retains the interest rate risk as well as the non-
systematic mortality risk and only transfers to the policyholder the systematic longevity risk. 
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3. Distribution of the conditional expected present value of longevity indexed life annuity 
payments in the Lee-Carter model 
 
3.1. Lee-Carter model 
 
We recall the basic features of the classical Lee-Carter approach.  In this framework, the 
population central death rate at age x in calendar year t, denoted as ( )xm t , is of the form 

 

( )ln x x x tm t α β κ= + .     (3.1) 

 
Interpretation of the parameters involved in model (3.1) is straightforward.  The value of xα  

is an average of ln ( )xm t  over time t so that exp xα  represents the general shape of the age-

specific mortality profile.  The actual forces of mortality change over time according to an 
overall mortality index tκ  which is modulated by an age response variablexβ .  The 

coefficient xβ  indicates the sensitivity of different ages to the time trend so that the shape of 

the xβ  profile indicates which rates decline rapidly and which slowly over time in response to 

changes in tκ . 

 
An appropriate error structure has to be specified in order to estimate the parameters involved 
in (3.1). Lee & Carter (1992) opted for Normal disturbances and an estimation procedure 
based on Singular Value Decomposition, i.e. 
 

xttxxx tm εκβα ++=)(ˆln  

 
where )(ˆ tmx  is the observed death rate at age x in calendar year t and the error terms xtε  are 

independent and Normally distributed with zero mean and constant variance. Binomial, 
Poisson or Negative Binomial regression models can also be used to estimate the parameters 
entering the decomposition (3.1). For more details about inference issues, we refer the 
interested reader to Pitacco et al. (2009). 
 
In order to make forecasts, Lee & Carter (1992) assume that the xα  and xβ  remain constant 

over time and forecast future values of tκ  using a standard univariate time series model. In 

the majority of studies based on the Lee-Carter mortality projection model, a simple random 
walk with drift, or ARIMA(0,1,0) model, is used to describe the dynamics of the time index 

tκ ; see, e.g., Denuit, Haberman & Renshaw (2010). In some cases, higher-order ARIMA 

models are needed to appropriately describe the time index. We retain the ARIMA(0,1,0) 
assumption in the text and we defer to the appendix the study of the general ARIMA(p,1,q) 
case. Henceforth, we assume that 
 

ttt ξθκκ ++= −1  

 
for some drift parameter θ , where the random variables tξ  are independent, Normally 

distributed with zero-mean and constant variance 2σ . 
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3.2. Conditonal survival probabilities in the Lee-Carter model 
 
Let us denote as 0( |d xP t )κκκκ  the random d-year survival probability for an individual aged x in 

year 0t , that is, the conditional probability that this individual reaches age x + d in year 0t d+ , 

given the vector κκκκ  of the tκ .  It is formally defined as 

 

[ ]=> κdtTP x )( 0 0( |d xP t )κκκκ ( )
0

1

0

exp exp
d

x j x j t j
j

−

+ + +
=

 
= − + 

 
∑ α β κ . 

 
Let us define 
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where ( )exp 0j x jδ α += >  and 
0j x j t jZ β κ+ += .  Clearly 0( |d xP t )κκκκ exp( )dS= − .  Conditional on 

0t
κ , it follows that jZ  is Normally distributed with mean )(

0
θκβµ jtjxj += +  and variance 

222 )( σβσ jjxj += subject to the convention that a Normally distributed random variable with 

zero variance is constantly equal to its mean. Note that the mean and variance are taken 
conditionally on past values of the time index. 
 
3.3. Life annuity conditional expected present value 
 
Let us consider a basic life annuity contract paying 1 unit of currency at the end of each year, 
as long as the annuitant survives.  The random life annuity single premium, that is, the 
conditional expectation of the payments made to an annuitant aged x in the year 0t  given the 

time index, is  
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where v(.,.) is the deterministic discount factor (precisely, ( , )v s t  is the present value at time s 

of a unit payment made at time t).  Note that 0( | )xa t κκκκ  corresponds to the generation aged x in 

calendar year 0t , and accounts for future mortality improvements experienced by this 

particular cohort.  Clearly, 0( | )xa t κκκκ  is a random variable that depends on the future trajectory 

of the time index (that is, on 
0 0 01 2, , ,...t t t+ +κ κ κ ).  It can be seen as the systematic risk per 

contract in a sufficiently large portfolio. An analytical computation of the distribution 
function of 0( | )xa t κκκκ  seems to be out of reach. 

 
For a longevity indexed contract, the annuity periodic payments are no longer constantly 
equal to 1 but become ktI +0

 given in (2.1). In the Lee-Carter model, ktI +0
 depends on κ  and 

is given by 
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ref
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so that the conditional present value of the payments under a longevity indexed contract is 
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Thus, we see that the annuity provider is no longer subject to longevity risk  when annuity 
payments are scaled by ktI +0

: all of the systematic longevity risk is passed to the annuitants 

and the provider is allowed to operate as if the reference life table exactly applies. In Section 
4, we introduce caps and floors on ktI +0

 in order to limit the impact of indexing. 

 
3.4. Comonotonic approximations 
 
Assuming a random walk with drift model for the tκ ’s, Denuit & Dhaene (2007) have 

proposed comonotonic approximations for the quantiles of the random survival probabilities 

0( |d xP t )κκκκ .  Since the expression for 0( | )xa t κκκκ  involves the weighted sum of the 0( |d xP t )κκκκ ’s, 

Denuit (2007, 2008) supplemented this first comonotonic approximation with a second one.  
Denuit, Haberman & Renshaw (2010) have extended these results to general ARIMA 
dynamics for the tκ ’s. Here, we show that a similar idea applies to the longevity-indexed life 

annuities. 
 
Approximating dS  by a sum of perfectly dependent random variables, with the same marginal 

distributions, gives the approximation 
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Since u

dS  is a sum of comonotonic random variables, its quantile function is additive.  The 

quantile function 1
u
dS

F −  of u
dS  is given by 
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where 1−Φ  is the quantile function of the standard Normal distribution. 
 
Another approximation of dS  is [ ]|l

d d dS E S= Λ , where dΛ  is taken as the first-order 

approximation of dS , that is, 
1

0
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d j j jj
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Λ =∑ .  A straightforward computation gives 
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where ( ),  0,1,..., 1ir d i d= − , is the correlation coefficient between dΛ  and iZ , that is 
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In the applications we have in mind,  and x i x j+ +β β  typically have the same sign so that all of 

the ir ’s are non-negative.  This means that the l
dS ’s are sums of comonotonic random 

variables and allows us to take advantage of the property of quantile additivity.  Specifically, 
the quantile function of l

dS  is given by 
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From the approximations  and u l

d dS S  derived for dS , we get the following approximations for 

the random survival probabilities 
 

0( |d xP t )κκκκ ( )1exp (1 )u
dS

F U−≈ − −  and 0( |d xP t )κκκκ ( )1exp (1 )l
dS

F U−≈ − −  

 
where U is uniformly distributed on the interval (0,1).  Note that the same random variable U 
is used for all of the values of d, making the approximations to the conditional survival 
probabilities comonotonic.  Hence, we obtain the following approximations for 0( | )xa t κκκκ  
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and 
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Since these approximations are sums of comonotonic random variables, their quantile 
functions are additive.  We then obtain the following approximations for the quantile function 

0

1
( | )xa tF −

κκκκ  of 0( | )xa t κκκκ  
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where 1
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F −  is given in (3.2), and 
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where 1
l
dS

F −  is given in (3.4). 

These approximations can be used to derive closed-form formulas for the quantiles of the 
present value of future annuity payments in the longevity indexed contract, as shown in the 
next section. 
 
 
4. Caps and floors 
 
The concept underlying longevity indexed life annuities is essentially a profit share: the 
insurer absorbs risk and profit from interest rates and idiosyncratic mortality risk, and the 
annuitants share with the insurer the pooled systematic longevity risk. 
 
If the annuitants absorb all of the systematic risk, annuity payments may become arbitrarily 
low in old ages in the case of adverse experience. This situation appears to be highly 
undesirable given that longevity insurance is the main purpose of annuities. One could think 
of using safe side estimates of longevity risk, so that the expected outcome is an increase in 
old ages. However, past experience shows that safe side forecasts of longevity have often 
been exceeded and this approach may make the contract very expensive (or at least as 
expensive as traditional annuities). 
 
A more efficient design would be to limit the systematic longevity risk passed to the 
annuitants, as discussed next. 
 
As the annuitant is unlikely to be in a position to absorb all of the longevity risk, it seems 
reasonable to limit the impact of the index on the annuity payments. Therefore, instead of 
using the longevity index ti , only part of it impacts on the annuity payment. For instance, if at 

most 20% of variation is allowed, then { }{ }8.0,2.1,minmax
0 kti +  is used to scale the annuity 

payment. This means that the index kti +0
is replaced with its capped version 

 
{ }{ }minmaxmaxmin ,,minmax),(

00
iiiiii ktkt ++ =  

(4.1) 
for some maxmin 10 ii <<< . 

 
Let ),( maxmin0

iiI kt +  be the index applying to the annuity periodic payments, that is, 
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where ktI +0

 is given in (2.1). After k years, its realization is just ),( maxmin0
iii kt +  defined in 

(4.1). The random variable ),,( maxmin00
κiitax  is the corresponding conditional expectation if 

the payments are subject to the index ),( maxmin0
iiI kt + , k=1,2,…, that is, 
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The comparison of 0( | )xa t κκκκ  with ),,( maxmin00
κiitax  helps to quantify the risk passed from the 

annuity provider to the annuitant. Thus, ),,( maxmin00
κiitax  is the systematic risk remaining 

with the annuity provider. 
 
Now, in the Lee-Carter model, ),( maxmin0

iiI kt +  depends on κ  and is given by 
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Let us now consider the longevity indexed annuities. It is easily seen that each term included 
in the sum over k defining ),,( maxmin00

κiitax  in the Lee-Carter framework is non-increasing in 

)(κkS  so that natural approximations are 
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and 
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(4.3) 
These approximations turn out to be comonotonic sums so that their quantile functions are 
additive. Hence, the quantile functions of ),,( maxmin00

κiitax  can be approximated as 
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5. Numerical illustrations 
 
In the numerical examples, we use the England & Wales 1983-2004 male insured pensioners 
data set, for ages 60-99, in combination with a variety of reference distributions. The 
mortality projection for this data set is performed with the help of the Lee-Carter model using 
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an ARIMA(0,1,0) for the dynamics for the time index. The reference life tables are as 
follows: 
 
Ref.1 the point-wise projection (on a cohort basis) obtained for the England & Wales 1983-

2004 male insured pensioners data set, using a Lee-Carter model, is taken as the 
reference life table.  In this case, the reference forecast relates to the insurance market 
and not to the general population, and corresponds to the population being simulated, 
thereby reducing the “basis risk”.  This particular choice of reference life table results 
in the vertical alignment that is visible for each age 0x in Fig 1. 

 
Ref.2 the point-wise projection (on a cohort basis) obtained for the England & Wales  male 

1961-2005 general population using the Age-Period-Cohort version of the Lee-Carter 
model (as in Renshaw and Haberman (2006)) with  ( )0,1,0ARIMA dynamics is used as 

the reference life table in Fig 2. 
 
Ref.3 the point-wise projection (on a cohort basis) obtained for the England & Wales  male 

1961-2005 general population using the standard Lee-Carter model with 
 ( )0,1,0ARIMA  dynamics is used as the reference life table in Fig 3. 

 
Ref.4 the CMI Bureau Life Office Pensioners current period standard life table (for male 

lives who have retired at normal retirement age – ultimate experience) is used as the 
reference distribution in Fig 4. 

 
Ref.5 the empirical periodic life table obtained by averaging the England & Wales male 

 1961-2005 general population experience over time for each age (that is, the term 
( )exp xα  when fitting the conventional Lee-Carter model) is used as the  reference life 

table in Fig 5. 
 
The ultimate age ω , with one-year survival probability ( ) 0p tω = , is set as 120ω =  for all 5 

reference life tables.  The details of the construction of Refs.2-3 for the cohort years 

02005 x−  and also the method used to “top-out” 4 of the 5 reference life tables (Refs.1-3, 5) 

is available from the Authors.   
 
The next table displays the life expectancies at the given ages for the different reference life 
tables: 
 

ages 60 65 70 75 
Ref.1 25.24 20.41 15.78 11.83 
Ref.2 24.55 19.58 15.22 11.16 
Ref.3 23.10 18.42 14.25 10.68 
Ref.4 21.55 17.41 13.64 10.37 
Ref.5 17.07 13.61 10.61 8.09 

 
This allows us to rank the reference life tables considered in the numerical illustrations from 
the point of view of longevity.  Note also, that Refs.1-3 are constructed by the cohort method 
(with the Age-Period-Cohort model for Ref.2 providing a better fit to the data than the Age-
Period model for Ref.3, as noted for a similar data set by Renshaw & Haberman (2006)), 
while Refs.4-5 are constructed by the period method.  
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Figures 1-5 depict the results. For each age 0 60,65,70,75x = , and each reference distribution, 

2.5, 5, 50, 95, 97.5 u-type quantiles (4.2) and l-type quantiles (4.3) are displayed for the 
longevity indexed life annuities together with (3.5)-(3.6) where there is no indexing. In the 
figures, the values of ),( maxmin ii  are given to make visible the effect of indexing. Here, (1,1) 

corresponds to no indexing and (0, ∞+ ) corresponds to using actual mortality experience and 
so the confidence intervals shrink to a point. Thus, the effect of  mini  decreasing and 

maxi increasing is to cause the intervals to become smaller. Note that in the (1,1) case, we are 

in the case considered by Denuit, Haberman & Renshaw (2010). 
 
The more dispersed the quantiles, the more risk is retained by the annuity provider and the 
more expensive the indexed life annuity product. Discussing the attractiveness of the 
longevity indexed annuity contract is rather difficult, as it depends on the amount of premium 
charged by the insurance company for the different types of contracts and of the annuitant’s 
risk appetite. Nevertheless, the following discussion suggests that a good compromise could 
be found, offsetting most of the systematic longevity risk while limiting the impact of the 
indexing to an acceptable range. 
 
We comment in more detail on the results as follows: 
 

- Setting the bounds to be (1,1) means that the reference distribution does not feature in 
the calculations and there is no indexation. This reproduces the results in Denuit, 
Haberman & Renshaw (2010). 

- In all of the cases, the intervals decrease in width as the bounds are increased. If we 
allow for more indexing then the width of the prediction intervals for the conditional 
expected present values of the annuity decreases as less risk is borne by the insurance 
company providing the longevity indexed annuity. 

- Using Ref.1, the vertical alignment is a natural consequence of using the model 
predictions for the reference distribution. 

- For the other 4 reference distributions, the predictions are in decreasing order of 
longevity (as measured by life expectancy) with increasing bounds (with one 
exception), indicating the effect of indexation. This effect does not appear to depend 
on whether or not the reference distribution was constructed on a period or cohort 
basis. The medians (and other quantiles) also react to the choice of the reference life 
table: thus, if the longevity expressed by the reference life table is smaller compared to 
the point forecast of the mortality projection model, then the index is more likely to be 
less than 1 and future annuity payments will probably be reduced. 

- Also note that, where there is “basis risk” between the population and the reference 
distribution, the prediction intervals shift to the left as we move down the page (and 
the bounds widen). This is especially noticeable in Figure 5 which has the reference 
distribution with the lowest life expectancy. This effect is least noticeable in Figure 1 
(as noted above) where there is a close match between the reference distribution and 
the distribution being simulated. 

- In many cases, we see that allowing for +/-20% in the annuity payments greatly 
reduces the risk borne by the annuity provider. 

 
Thus, taking %80min =i  and %120max =i  offsets almost all of the longevity risk (if the Lee-

Carter model applies) while accepting a 20% variation in the periodic annuity payments may 
be regarded as acceptable from the policyholder’s point of view. Of course, we must keep in 
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mind that the model risk has not been accounted for in the computations so that the views 
expressed here may be too optimistic. We come back to this point in the final discussion. 
 
6. Discussion 
 
Life annuities will certainly become an essential product in the future, as our Western 
societies are progressively ageing. Actuaries have to make these products more attractive than 
they are today. The present paper makes some concrete proposals in that direction. 
 
As an alternative to securitization, we have examined indexed life annuities, where periodic 
payments are scaled by the ratio of the proportion of the population still alive compared to 
some reference forecast. The systematic risk is thus passed to the annuitants. Considering the 
difficulties that have been experienced in issuing longevity-based financial instruments, this 
might well be an efficient alternative to help insurers to write annuity business. 
 
As recalled in the introduction to this paper, it is usually considered that middle range 
longevity is the key risk to the insurer. The extreme old age systematic risk can be retained by 
the insurer, as it concerns a few policyholders and has thus limited financial impact. Fixing 
the annuity amount from some advanced age can be part of the design. This amounts to split 
the life annuity into a temporary annuity, subject to longevity indexing, and a fixed advanced-
life delayed annuity (ALDA) in the terminology of Milevsky (2005). 
 
Note that the idea of indexing also applies to ALDA. Under this deferred life annuity contract, 
the deferment period can be seen as a deductible: the policyholder finances his consumption 
until some advanced age, 80, 85 or even 90, say, and the insurer starts paying the annuity at 
this age provided the annuitant is still alive. Hence, the ALDA transforms the consumer 
choice and asset-allocation problem from a stochastic date of death to a deterministic one in 
which the terminal horizon becomes the annuity payment commencement date. If the index is 
publicly available then the annuitant is able to adjust his or her consumption level during the 
deferred period. Note that we could also think of alternative indexing mechanisms for ALDA. 
Considering a deferred life annuity bought at age 65 with payments starting at age 80, say, we 
could let the starting age vary according to actual longevity improvements: if longevity 
increases more than expected, then payments start at age 82 instead of 80, for instance. 
 
In this paper, interest rates have been assumed to be deterministic (so that the v(0,k)s also are). 
If the interest rates were allowed to be stochastic, then conditional independence given κ  
needs to be postulated. This conditional independence may be justified by the fact that interest 
rates are influenced by the age pyramid of the population but not by the mortality itself. 
However, we note that Hanewald (2009) has found significant correlations between the Lee-
Carter time index and real GDP growth rates and with unemployment rate changes in several 
OECD countries. 
 
To end with, let us stress that model risk has not been considered in the present study. To the 
best of our knowledge, the evaluation of the impact of model risk has not been addressed so 
far in the literature. Model averaging, i.e., combining different projections obtained from 
different models, appears as a convenient approach to assess model risk; see, for example, 
Denuit (2009). The weights assigned to each model reflect their appropriateness given the 
data. Model selection criteria are good candidates in that respect. However, this goes well 
beyond the scope of the present paper and could be the topic of a forthcoming work. 
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Appendix 
 
Here, we assume that the tκ  obey an ARIMA(p,1,q) model, with arbitrary values of p and q, 

which are to be determined.  Furthermore, we assume that the tκ  are positively dependent, in 

the sense that the covariance between any pair ),(
21 tt κκ  of time indices is non-negative. Since 

the tκ  are multivariate Normal, this ensures that the tκ  are positively associated, that is, the 

inequality 
 

( ) ( )
1 2 1 21 2, ,..., , , ,..., 0

n nt t t t t tCov κ κ κ κ κ κ Ψ Ψ ≥   

 
is valid for all values 1 2 ... nt t t< < <  and for all choices of the non-decreasing functions 1Ψ  

and 2Ψ  such that the covariance exists. 

 
In general, conditional on 

0t
κ , we still have that 2~ ( , )j j jZ N µ σ  with moments 
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0 0

22 and j x j t j j x j t jE Varµ β κ σ β κ+ + + +   = =     

 
that can be computed according to the ARIMA specification retained. 
 
The correlation coefficient between dΛ  and iZ , ( ),  0,1,..., 1ir d i d= − , is given by 
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which reduces to (3.3) in the ARIMA(0,1,0) case. 
 
 
 


