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Comonotonic approximations to quantiles of life annuity conditional expected 
present values: extensions to general ARIMA models and comparison with the 

bootstrap 
 

M. Denuit, S. Haberman and A.E. Renshaw 
 
 
 
Abstract 
This paper aims to provide accurate approximations for the quantiles of the conditional expected present 
value of the payments made by the annuity provider, given the future path of the Lee-Carter time index.  
Conditional cohort and period life expectancies are also considered.  The paper also addresses some 
associated simulation issues, which, hitherto, have been unresolved. 
 
 
Key words and phrases: Life annuity, life expectancy, mortality projection, Lee-Carter model, 
comonotonicity, simulation. 
 
 
 
1 Lee-Carter stochastic modelling for dynamic mortality 
 
1.1 Motivation 
 
In this paper, we consider present values of life annuity benefits as functions of the 
unknown life table applying in the future to the policyholders of a portfolio when death 
rates are described by the Lee-Carter model. Deriving the exact distribution for this 
random variable requires extensive simulations or numerical evaluations. Therefore, we 
take the comonotic approximations proposed by Denuit & Dhaene (2007) and Denuit 
(2007) in the random walk with drift case and extend these to general ARIMA models. 
This helps avoid the requirement to conduct simulations within simulations in, for 
instance, Solvency 2 reserving calculations. Numerical illustrations show that the 
comonotonic approximations perform well, which suggests that they can be used in 
practice to evaluate the consequences of the uncertainty in future death rates. 
 
1.2 Log-bilinear model for mortality projection 
 
We recall the basic features of the classical Lee-Carter approach.  In this framework, the 
population central death rate at age x in year t, denoted as ( )xm t , is of the form 
 

( )ln x x x tm t α β κ= + .     (1.1) 
 
Interpretation of the parameters involved in model (1.1) is quite simple.  The value of xα  
is an average of ln ( )xm t  over time t so that exp xα  represents the general shape of the 
age-specific mortality profile.  The actual forces of mortality change according to an 
overall mortality index tκ  which is modulated by an age response variable xβ .  xβ  
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indicates the sensitivity of different ages to the time trend so that the shape of the xβ  
profile tells which rates decline rapidly and which slowly over time in response to 
changes in tκ . 
 
An appropriate error structure has to be specified in order to estimate the parameters 
involved in (1.1). Lee & Carter (1992) opted for Normal disturbances and an estimation 
procedure based on Singular Value Decomposition whereas the Authors propose 
Binomial, Poisson or Negative Binomial regression models. Note that the results derived 
in this paper apply whatever the statistical model used for estimation purposes. In the 
empirical illustrations, a Poisson regression model will be used. 
 
1.3 Stochastic modelling of the time index 
 
In order to make forecasts, Lee & Carter (1992) assume that the xα  and xβ  remain 
constant over time and forecast future values of tκ  using a standard univariate time series 
model.  After testing several specifications, they found that a random walk with drift was 
the most appropriate model for their data.  They also make clear that other ARIMA 
models might be preferable for different data sets. 
 Here, we assume that the tκ  obey an ARIMA(p,1,q) model, with arbitrary values 
of p and q, which are to be determined.  Furthermore, we assume that the tκ  are 
positively dependent, in the sense that the covariance between any pair ),(

21 tt κκ  of time 
indices is non-negative. Since the tκ  are multivariate normal, this ensures that the tκ  are 
positively associated, that is, the inequality 
 

( ) ( )1 2 1 21 2, ,..., , , ,..., 0
n nt t t t t tCov κ κ κ κ κ κ⎡ ⎤Ψ Ψ ≥⎣ ⎦  

 
is valid for all values 1 2 ... nt t t< < <  and for all choices of the non-decreasing functions 

1Ψ  and 2Ψ  such that the covariance exists. 
 
 
2 Life annuity and life expectancy 
 
2.1 Life annuity conditional expected present value 
 
Let us denote as 0( |d xP t )κ  the random d-year survival probability for an individual aged 
x in year 0t , that is, the conditional probability that this individual reaches age x + d in 
year 0t d+ , given the vector κ  of the tκ .  It is formally defined as 
 

0( |d xP t )κ ( )0

1

0

exp exp
d

x j x j t j
j

−

+ + +
=

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭
∑ α β κ . 
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Let us consider a basic life annuity contract paying 1 unit of currency at the end of each 
year, as long as the annuitant survives.  The random life annuity single premium, that is, 
the conditional expectation of the payments made to an annuitant aged x in the year 0t  
given the time index, is  
 

0 0
1

( | ) ( | ) (0, )x d x
d

a t P t v dκ κ
≥

= ∑ , 

 
where v(.,.) is the discount factor (precisely, ( , )v s t  is the present value at time s of a unit 
payment made at time t).  Note that 0( | )xa t κ  corresponds to the generation aged x in 
calendar year 0t , and accounts for future mortality improvements experienced by this 
particular cohort.  Clearly, 0( | )xa t κ  is a random variable that depends on the future 
trajectory of the time index (that is, on 

0 0 01 2, , ,...t t t+ +κ κ κ ).  An analytical computation of 
the distribution function of 0( | )xa t κ  seems to be out of reach. 
 The random variable 0( | )xa t κ  can be regarded as the residual risk per annuity 
contract in a sufficiently large portfolio.  Indeed, let us consider a group of annuitants 
who are all aged x in year 0t , with respective remaining life times 1 2 3, , ,...T T T .  Given the 
time index, these random variables are assumed to be independent and identically 
distributed, with common conditional d-year survival probability 0( |d xP t )κ . Formally, 
 

] [ ] .)(,...,[
1

0
1

11 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
>=>> ∏∏

==

n

i
xd

n

i
iinn tPEdTPEdTdTP

i
κκ  

 
 Let us denote as [ ]ξ  the integer part of ξ , and as 
 

[ ]

1

(0, )
i

i

T

T
d

a v d
=

= ∑  

 
the present value of the payments made to annuitant i (with the convention that the empty 
sum is zero).  Now, since the 

iT
a  are exchangeable, we have from Proposition 1.1 in 

Denuit & Vermandele (1998) that the stochastic inequality 
 

0( | )xa t κ [ ]κ
iT

aE=  
1

...
1

... 1

1

1
TCXCX

n

i
T

CX

n

i
T

CXCX a
n

a

n

a
ii

≤≤≤
+

≤≤
∑∑
=

+

= , 

 
is valid for any n, where CX≤  denotes the convex order, defined for random variables X 
and Y as X CX≤ Y if E[g(X)]≤E[g(Y)] for all the convex functions g for which the 
expectations exist. In words, X CX≤ Y means that X is less variable, or less dangerous than 
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Y. Increasing the size of the portfolio makes the average payment per annuity less 
variable (in the CX≤ -sense), but this average remains random whatever the number of 
policies comprising the portfolio, being bounded from below by 0( | )xa t κ  in the CX≤ -
sense. It is interesting to note that, even if 1 2 3, , ,...T T T  are positively dependent, some 
diversification remains as long as the economic capital is computed from a risk measure 
agreeing with CX≤ . 
 
 
2.2 Period life expectancies 
 
Demographic indicators can be calculated in two ways.  Period indicators are worked out 
using age-specific mortality rates for a given year, with no allowance for any later actual 
or projected changes in mortality.  Cohort indicators are worked out using age-specific 
mortality rates which allow for known or projected changes in mortality in later years.  In 
this section, we consider the period life expectancy, computed from the set of death rates 
corresponding to a given calendar year. 
 Let us denote as 

00( | )x t ke t k κ↑
++  the period conditional life expectancy at age x in 

year 0t k+ , given 
0t kκ + .  Assuming that the deaths are uniformly distributed over the 

calendar year, this demographic indicator is given by 
 

( )0 0

1

0
1 0

1( | ) exp exp
2

d

x t k x j x j t k
d j

e t k κ α β κ
−

↑
+ + + +

≥ =

⎧ ⎫
+ = + − +⎨ ⎬

⎩ ⎭
∑ ∑ . 

 
The superscript ↑  is used to indicate that we work along a vertical band in the Lexis 
diagram.  Henceforth, we denote the distribution function of 

00( | )x t ke t k κ↑
++  by 

0 0( | )x t ke t k
F

κ↑
++

.  Note that computation of life annuity values in a period setting cannot be 

justified when computation in the cohort setting is possible, since this approach 
underestimates the liabilities of the annuity provider when mortality declines. 
 In many applications of the Lee-Carter model, we find that all of the x jβ +  

typically have the same sign.  It is then easy to see that 
00( | )x t ke t k κ↑
++  appears as a 1-1 

monotone function of 
0t kκ +  (and only depends on a single time index).  Let us assume 

that all of the x jβ +  are positive.  Then, 
00( | )x t ke t k κ↑
++  is a decreasing function of the 

time index 
0t kκ + .  The quantile function of 

00( | )x t ke t k κ↑
++  is then given by 

 

( ){ }0 00 0

1
1 1
( | )

1 0

1( ) exp exp [ ] [ ]. (1 )
2x t k

d

x j x j t k t ke t k
d j

F z E Var z
κ

α β κ κ↑
+

−
− −

+ + + ++
≥ =

⎡ ⎤
= + − + + Φ −⎢ ⎥

⎣ ⎦
∑ ∑  (2.1) 

 
Where the expectation and variance are conditional to past values of the time index and 

1−Φ  is the quantile function of N(0,1). 
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2.3 Cohort life expectancies 
 
Cohort life expectancies forecast the expected remaining lifetime taking into account 
future changes in mortality.  They are usually computed at the end of the observation 
period (at time 0t ).  Specifically, 0( | )xe t κ  is the expected remaining lifetime of an 
individual aged x in year t.  Keeping the assumption that deaths are uniformly distributed 
over each calendar year, this demographic indicator is given by 
 

0 0
1

1( | ) ( | )
2x d x

d

e t P t
≥

= +∑κ κ . 

 
We use the  superscript to indicate that we work along a diagonal band in the Lexis 
diagram.  Note that 0( | )xe t κ  is a random variable that depends on the future trajectory 
of the tκ ’s (and not on a single time index, as period life expectancies).  Except for the 

additive constant 1 2 , 0( | )xe t κ  coincides with 0( | )xa t κ  if we let the interest rate tend 
to zero.  As was the case for 0( | )xa t κ , an analytic computation of the distribution 

function of  0( | )xe t κ  thus seems to be out of reach. 
 
 
3 Comonotonic approximations 
 
3.1 Comonotonic approximations to life annuity conditional expected present value 
 
Assuming a random walk with drift model for the tκ ’s, Denuit & Dhaene (2007) have 
proposed comonotonic approximations for the quantiles of the random survival 
probabilities 0( |d xP t )κ .  Since the expression for 0( | )xa t κ  involves the weighted sum of 
the 0( |d xP t )κ ’s, Denuit (2007) supplemented this first comonotonic approximation with 
a second one.  Here, we extend these results to general ARIMA dynamics for the tκ ’s. 
 Let us define 
 

( ) ( )
0

1 1

0 0

exp exp
d d

d x j x j t j j j
j j

S Zα β κ δ
− −

+ + +
= =

= + =∑ ∑ , 

 
where ( )exp 0j x jδ α += >  and 

0j x j t jZ β κ+ += .  Clearly 0( |d xP t )κ exp( )dS= − .  

Conditional on 
0t

κ , it follows that 2~ ( , )j j jZ N μ σ  with 
 

( )
0 0

22 and j x j t j j x j t jE Varμ β κ σ β κ+ + + +⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  
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subject to the convention that a Normally distributed random variable with zero variance 
is constantly equal to its mean (note that the mean and variance are taken conditionally 
on past values of the time index). 

Approximating dS  by a sum of perfectly dependent random variables, with the 
same marginal distributions, gives the approximation 
 

1

exp( ), with ~ (0,1)
d

u
d d j j j

j o

S S Z Z Nδ μ σ
−

=

≈ = +∑ . 

 
Since u

dS  is a sum of comonotonic random variables, its quantile function is additive.  
The quantile function 1

u
dS

F −  of u
dS  is given by 

 

( )
1

1 1

0

( ) exp ( )u
d

d

j j jS
j

F z zδ μ σ
−

− −

=

= + Φ∑ ,    (3.1) 

 
where, as above, 1−Φ  is the quantile function of N(0,1). 
 Another approximation of dS  is [ ]|l

d d dS E S= Λ , where dΛ  is taken as the first-

order approximation of dS , that is, 1

0
exp( )d

d j j jj
Zδ μ−

=
Λ = ∑ .  It is expected that dS  and 

l
dS  are “close” to each other.  A straightforward computation gives 

 
1

2 2

0

1exp ( ) (1 ( ( ))
2

d
l
d j j j j j j

j

S r d Z r d
−

=

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

∑δ μ σ σ  

 
where ( ),  0,1,..., 1ir d i d= − , is the correlation coefficient between dΛ  and iZ , that is 
 

0 0

0 0

1

0

1 1

0 0

exp( ) [ , ][ , ]( )
exp( ) [ , ]d

d
j j x i x j t i t jji d

i d d
i i j k j k x i x j t i t jj k

CovCov Zr d
Cov

δ μ β β κ κ

σ σ σ δ δ μ μ β β κ κ

−

+ + + +=

− −
Λ

+ + + += =

Λ
= =

+

∑
∑ ∑

. (3.2) 

 
 In the applications we have in mind,  and x i x j+ +β β  typically have the same sign so 

that all of the ir ’s are non-negative.  This means that the l
dS ’s are sums of comonotonic 

random variables and allows us to take advantage of the quantile additivity.  Specifically, 
the quantile function of l

dS  is given by 
 

1
1 1 2 2

0

1( ) exp ( ) ( ) (1 ( ( ))
2l

d

d

j j j j j jS
j

F z r d z r dδ μ σ σ
−

− −

=

⎛ ⎞= + Φ + −⎜ ⎟
⎝ ⎠

∑ .  (3.3) 

 
 From the approximations and u l

d dS S  derived for dS , we get the following 
approximations for the random survival probabilities 
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0( |d xP t )κ ( )1exp (1 )u
dS

F U−≈ − −  and 0( |d xP t )κ ( )1exp (1 )l
dS

F U−≈ − −  

 
where U is uniformly distributed on the interval (0,1).  Note that the same random 
variable U is used for all of the values of d, making the approximations to the conditional 
survival probabilities comonotonic.  Hence, we obtain the following approximations for 

0( | )xa t κ  
 

0( | )xa t κ ( )1

1

exp (1 ) (0, )u
dS

d

F U v d−

≥

≈ − −∑  

 
and 
 

0( | )xa t κ ( )1

1

exp (1 ) (0, )l
dS

d

F U v d−

≥

≈ − −∑ . 

 
 Since these approximations are sums of comonotonic random variables, their 
quantile functions are additive.  We then get the following approximations for the 
quantile function 

0

1
( | )xa tF −

κ  of 0( | )xa t κ  
 

0

1
( | ) ( )

xa tF zκ
− ( )1

1

exp (1 ) (0, )u
dS

d

F z v d−

≥

≈ − −∑  

where 1
u
dS

F −  is given in (3.1), and 

 

0

1
( | ) ( )

xa tF zκ
− ( )1

1

exp (1 ) (0, )l
dS

d

F z v d−

≥

≈ − −∑  

 
where 1

l
dS

F −  is given in (3.3). 

 
 
3.2  Comonotonic approximation for the cohort conditional life expectancy 
 
From the approximations u

dS  and l
dS  derived for dS , we get the approximations for 

0( | )xe t κ  
 

0( | )xe t κ
1

1 exp( )
2

u
d

d

S
≥

≈ + −∑  or 0( | )xe t κ
1

1 exp( )
2

l
d

d

S
≥

≈ + −∑ . 

 



 8

Since the u
dS ’s are sums of comonotonic random variables, their quantile functions are 

additive.  Moreover, the z th quantile of ( )exp u
dS−  is ( )1exp (1 )u

dS
F z−− − .  This provides 

the following approximations for the quantile function 
0

1
( | )

( )
xe t

F z
κ

−  of 0( | )xe t κ  

 

0

1
( | )

( )
xe t

F z
κ

− ( )1

1

1 exp (1 )
2 u

dS
d

F z−

≥

≈ + − −∑  

 
where 1

u
dS

F −  is given by (3.1).  Now, assuming that the l
dS ’s are comonotonic, we get 

 

0

1
( | )

( )
xe t

F z
κ

− ( )1

1

1 exp (1 )
2 l

dS
d

F z−

≥

≈ + − −∑  

  
where 1

l
dS

F −  is given by (3.3). 

 
4 Associated simulation methods 
 
4.1 Background 
 
Consider a rectangular mortality data array ( ),xt xtd e , comprising the numbers of deaths, 

xtd , with matching (central) exposures to the risk of death xte . We model the numbers of 
deaths as independent Poisson responses in combination with the log-bilinear structure 
(1.1), to target the central death rate (or force of mortality).  Let ( )ˆˆ ˆexpxt xt x x td e= +α β κ  

and xtr  denote the respective fitted values and deviance residuals.  Model extrapolation is 
subsequently achieved by applying the most appropriate ( ),1,ARIMA p q  model to { }ˆtκ  
and then the indices of interest are computed.  These include life expectancy and fixed 
rate annuities, computed either by the cohort or period approach, involving future 
predicted central rates of mortality. 
 In a comparative study of various proposed simulation approaches for 
constructing prediction intervals of future life expectancy using the log-bilinear structure 
(1.1) in combination with an ( )0,1,0ARIMA  time series 
 

2
1 ,  ~ (0, ),  . . .t t t t N i i dκ κ θ ξ ξ σ−= + + , 

 
Renshaw & Haberman (2008) include a report of their findings on applying the following 
algorithm to the UK male pensioners’ mortality experience (collected by the Continuous 
Mortality Investigation Bureau): 
 
Algorithm 
 For 1,2,3,...,m M=  
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1. simulate responses *
,xt md , (preserving any empty data cells), either 

(a) by sampling ( )ˆ
xtPoi d , or 

(b) by randomly sampling { }*
,xt mr  from { }xtr  with replacement 

and mapping * *
, ,xt m xt mr d  

2. obtain estimates * * *ˆˆ ˆ, ,x x tα β κ  by fitting the log-bilinear structure to *
,xt md  

3. obtain estimates ( )* 2*ˆ ˆ,m mθ σ  by fitting the ( )0,1,0ARIMA  time series { }*ˆtκ  
4. for Kk ,...,1,0=  

set ( )0 0 0

* * *
, ,

ˆ t k m t k m t mE kκ κ κ θ+ +⎡ ⎤= = +⎣ ⎦  

5. compute the statistics of interest. 
 
 Such simulation algorithms were originally proposed in the belief that both the 
log-bilinear model fitting error and time series forecast error were captured in Step 2 and 
Step 3 respectively (Brouhns et al. (2002)).  However, two key inter-related unresolved 
issues arising from the Renshaw & Haberman (2008) study concern (i) the general 
narrowness of the prediction intervals for future life expectancies and therefore annuity 
values, and (ii) the failure of these algorithms to capture the full magnitude of the forecast 
error in the time series.  We address this issue next.  
 
4.2 Bootstrapping the forecast error in the ARIMA time series 
 
Bootstrapping is possible either by ignoring the error in the log-bilinear model and 
formulating: 
 
Algorithm A1 
 For 1,2,3,...,m M=  

1. for Kk ,...,1,0=  
(i) randomly sample *

mz  from N(0,1) 

(ii) set 
0 0 0

* *
, , , .t k m t k m t k m mE Var zκ κ κ+ + +⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ , for the same ARIMA model 

2. compute the statistics of interest. 
 
or, by additionally allowing for the error in the log-bilinear model and formulating:  
 
Algorithm A2 
 For 1,2,3,...,m M=  

1. simulate responses *
,xt md  either 

a. by sampling ( )ˆ
xtPoi d , or 

b. by randomly sampling { }*
,xt mr  from { }xtr  with replacement 

and mapping * *
, ,xt m xt mr d  
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2. obtain estimates * * *ˆˆ ˆ, ,x x tα β κ  by fitting the log-bilinear structure to *
,xt md  

3. obtain the same ARIMA parameter estimates by fitting the time series { }*ˆtκ  
For 1,2,...,n N=  
4. for Kk ,...,1,0=  

(i) randomly sample *
mnz  from N(0,1) 

(ii) set 
0 0 0

* * * *
, , , .t k mn t k m t k m mnE Var zκ κ κ+ + +⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

5. compute the statistics of interest. 
 
We stress the difference between these two approaches, with A1 merely replicating the 
prediction (forecast) error in the time series while conditioning on the fitted log-bilinear 
structure and associated parameter estimates throughout the simulation process.  This 
contrasts with A2, which additionally includes provision for the error in the log-bilinear 
model. 
 
 
5 An application 
 
5.1 UK male pensioner 1983-2004 experience: ARIMA(1,1,0)  
 
We consider the UK male pensioner 1983-2004 mortality experience (ages 60-99): this is 
an updated version of the 1983-2003 experience which was reported in Renshaw & 
Haberman (2008).  For these data, we depict the results on fitting the Poisson log-bilinear 
model structure (1.1) in Fig 1.  In addition to plotting the parameter estimates (Fig 1 
(a),(c),(d)), the deviance residual plots (Fig 1 (e)) show that the log-bilinear structure 
adequately captures the main age-period effects, while confirming the absence of any 
residual systematic cohort effect.  We remark that the appearance of the discontinuity in 
the residual plot against year of birth (lower right frame) coincides with the 1919 
influenza pandemic.  The irregularities in the ˆxα  and ˆ

xβ  plots, in particular at the 
extremities of the age range, are due to the paucity of exposure at these extreme ages.  
For the purpose of this study, we choose not to apply smoothing, (illustrated in Fig 1), 
since it does not contribute anything additional to the comparative aspects of the 
prediction intervals reported in this study.  We note that the diagnostic plot (Fig 1 (b)), 
displaying the annual differences in the actual and fitted total deaths, is also pattern free. 
 The time index { }tκ  is modelled as an (1,1,0)ARIMA  process, for which 
 

( )2
1 1,  ;  ~ 0,  . . .t t t t t t ty y y N i i dκ κ θ φ ξ ξ σ− −= − = + +  

 
with forecasts 

0
: 1,2,3,...t k kκ + = , where 

 

( ){ }0 0 0
1

,  
1

k
j

t k t t
j

E y θκ κ μ φ μ μ
φ+

=

⎡ ⎤ = + + − =⎣ ⎦ −∑  
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( ) ( ) ( ){ }0

2 22 2 2 1 21 1 1 ... 1 ... k
t kVar κ φ φ φ φ φ φ σ−
+⎡ ⎤ = + + + + + + + + + + +⎣ ⎦  

 
(e.g. Section 15.3, pp 438-444, Hamilton 1994).  As noted by Lee and Carter (1992), it is 
necessary to impose 2 constraints on the parameters in order to ensure that the model is 
identifiable.  As in Renshaw and Haberman (2008), we adopt the following choice of 
constraints  
 

1x
x
β =∑  and 0

otκ =  

 
Numerical investigations (not reported here) show that adopting the standard constraints 
advocated by Lee and Carter (1992) viz  
 

 
1x

x
β =∑  and 0t

t
κ =∑  

 
 
would lead to identical numerical answers.  
 
 
Details of the parameter estimates (with standard errors in brackets) are as follows: 
 

θ̂  φ̂  2σ̂  
-1.2785 
(0.3180)

-0.4702 
(0.2084)

1.3397

with 
ˆ 0.8696μ = −

0
0tκ =

0
0.5384ty = −

 
for fitting by least squares: applied consistently throughout the subsequent application of 
of simulation algorithm A2.  Again, the use of more sophisticated methods of fitting is 
not essential, given the comparative nature of the study.  

Prediction intervals based on the comonotonic approximations to the quantile 
function derived in Section 3 (called henceforth theoretical prediction intervals) and 
simulated prediction intervals for (a) life expectancy and (b) a 4% fixed rate annuity are 
depicted in Figs 2a&b respectively.  For computation of the cohort-based values (upper 
frames), for period 2004 coupled with ages 65, 70, 75, 80, 85, the l-type theoretical 
intervals (lower continuous lines) are computed using 
 

0

1
( | )

( )
xe t

F z
κ

− ( )
1

2 2 1

1 0

1 1exp exp 1 ( ) ( ) (1 )
2 2 j

d

j j j j j
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r d r d zδ μ σ σ
−

−
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⎡ ⎤⎧ ⎫≈ + − + − + Φ −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

∑ ∑  
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1exp exp 1 ( ) ( ) (1 ) 0,
2 j
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j j j j j
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−

−

≥ =

⎡ ⎤⎧ ⎫≈ − + − + Φ −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

∑ ∑  

 
based on Sections 3.1 & 3.2 above, and the u-type intervals computed on setting 

( ) 1  ,jr d j d= ∀  in the above relationships.  For the ( )1,1,0ARIMA  time series, the 

evaluation of ( )ir d , expression (3.2), requires the d d×  matrix of co-variances 
 

( )0 0
,t i t jCov κ κ+ +

⎡ ⎤ =⎣ ⎦

2
2

21
1

T.A.T φ σ
φ

⎛ ⎞′ +⎜ ⎟−⎝ ⎠
; , 0,1,2,..., 1i j d= −        (5.1) 

where 
 

2 2
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2 4
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φ φ φ
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φ φ φ
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⎢ ⎥
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A , 
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1 1 1 1 0
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T

−⎡ ⎤
⎢ ⎥−⎢ ⎥

−⎢ ⎥
= ⎢ ⎥−⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥−⎣ ⎦

 

 
(e.g. using Brockwell and Davis (2002), Section 3.2), and reducing to 
 

( ) { }
0 0

2, min ,t i t jCov i jκ κ σ+ +
⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦ ; , 0,1,2,..., 1i j d= −  

 
when 0φ =  for ( )0,1,0ARIMA . 

For computation of the period-based values (lower frames), for age 65 coupled 
with periods 2008, 2012, 2016, 2020, the life expectancy theoretical intervals use (2.1), 
while, for completeness, we also depict the period-based theoretical annuity intervals 
using: 
 

( ){ } ( )
0 00 0

1
1 1
( | )

1 0
( ) exp exp . (1 ) 0,

x t k

d

x j x j t k t ka t k
d j

F z E Var z v d
κ

α β κ κ↑
+

−
− −

+ + + ++
≥ =

⎡ ⎤
⎡ ⎤ ⎡ ⎤= − + + Φ −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦
∑ ∑

. 
 
The simulated prediction intervals involve a total of  M = 5,000 simulations in the case of 
algorithm A1, and M = 75, N = 75, and a total of 5625 simulations in the case of 
algorithms A2 a & b.   
 Although not strictly justified on the basis of the exploratory time series analysis 
of the period index tκ , we repeat the theoretical and simulated prediction intervals, 
computed with the (0,1,0)ARIMA  process (random walk) replacing the ( )1,1,0ARIMA  
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time series, and these results are depicted in Figs 3a&b, for which 
( ) 2ˆ ˆ0.8698 0.2715 , 1.5482 θ σ= − = . 

 
 
 
5.2 Results 
 
First, we acknowledge the relative short time span of this data set, thus compromising the 
full potential of time series methods to some extent.  However, we justify their use on the 
basis of our primary aim, which is to conduct a comparative study of the choices 
involved: while the data are shown to fit adequately the Lee-Carter model structure. 
 
In conclusion, referring to Figs 2a&b and Figs 3a&b, we note the following: 

• The close vertical alignment of the medians, for each batch of results (viz. fixed x 
and t), within each frame. 

• The close agreement of matching simulated and theoretical u-type prediction 
interval widths, depicted above the theoretical l-type prediction interval in the 
upper frames throughout.  In this respect, neither the simulated intervals nor the 
theoretical u-type prediction intervals make use of the co-variance terms (5.1). 

• The impact of the co-variance terms (5.1) in reducing the width of the theoretical 
u-type prediction intervals (upper frames). 

• The dominance of the (correctly) simulated forecast error in the time index, over 
the log-bilinear simulated model fitting error. This is implied by the close 
agreement of the widths of simulated prediction intervals using algorithm A1 
compared with both versions of algorithm A2.  This finding is consistent with that 
of Lee and Carter (1992) (Appendix B), based on a different simulation approach, 
who conclude ‘that for life expectancy forecasts, it is reasonable to restrict 
attention to the errors in forecasting the [time] index and to ignore those in fitting 
the [bilinear structure], even for short run forecasts’.  This extends to fixed rate 
annuity forecasts on the basis of the evidence provided here.  We note the relative 
simplicity of A1 over A2a&b which has implications for forecasts using an age-
period-cohort parametric model (Renshaw and Haberman (2006), (2009)), where 
model fitting is slow to converge: this would be compounded by repeated 
application of simulation algorithm A2 but would be avoided under algorithm A1 
or by theory. 

• The more focused nature of the prediction intervals under (1,1,0)ARIMA  time 
series modelling (Figs 2a&b) compared with (0,1,0)ARIMA  time series 
modelling (Figs 3a&b), while the central point predictions are essentially the 
same under the two different time series models. 

 
As expected, the small differences between prediction intervals simulated from A1 and 
A2 shows that the uncertainty is mainly due to the future path of the time index. These 
computations also show that the u-type theoretical prediction intervals based on the 
comonotonic approximation (3.1) gives a very accurate approximation to the simulated 
prediction intervals. This suggests that we could resort to this approximation in actuarial 
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applications. The comparison between prediction intervals obtained from ARIMA(1,1,0) 
and ARIMA(0,1,0) dynamics stresses the importance of selecting the appropriate order of 
the ARIMA model. Routinely using a random walk with drift produces wider prediction 
intervals compared to the ARIMA(1,1,0) model, which is optimal in this case. 
 
 
 
6. Discussion 
 
In this paper, we have studied the accuracy of the comonotonic approximations to 
prediction intervals for cohort life expectancies and life annuity premiums viewed as 
functions of future death rates in the Lee-Carter model. Our main finding is that the u-
type approximation seems to be efficient for actuarial purposes. 
 
The comonotonic approximations used in this paper are derived for the single-factor Lee-
Carter model. They could nevertheless be extended to models with multiple sources of 
randomness such as those by Renshaw and Haberman (2003), Cairns, Blake & Dowd 
(2006) or by Plat (2009), for instance. Thinking about sums of conditional survival 
probabilities (i.e. conditional life expectancies) or weighted sums of such probabilities 
(i.e. life annuity premiums as functions of the life table), the basic idea of the 
comonotonic approximation considered in this paper is to take the one-year survival 
conditional probabilities for a given cohort as comonotonic random variables. In the Lee-
Carter case, this means that the future tκ  are taken to be comonotonic with a marginal 
distribution that is inherited from the ARIMA dynamics. The same idea should provide 
good results in multi-factor models, too, providing that the factors are strongly correlated 
for each given calendar year and also strongly correlated over time. Then, taking all the 
random variables to be comonotonic might give a reasonable approximation. 
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(a) (b)

(c) (d)

(e)

Fig 1.  UK male pensioner 1983-2004 mortality experience, ages 60-99.
Poisson log-biliear model: log{m(t,x)} = alpha(x) + beta(x).kappa(t)
Parameter estimates: (a) main age effects, (d) main period effects,
(c) period effect modulating age-factor.  Diagnostics: (b) marginal
annual age differences, (e) deviance residual plots against period,

age, cohort, respectively.  Alpha & beta parameter smoothing using
S-Plus 2000 "Supersmooth".
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(a) computations by cohort, period 2004, various ages (x).

(b) computations by period, age 65, various periods (t > 2004).

Fig 2a.  UK male pensioner 1983-2004 mortality experience: predicted
life expectancies using a log-bilinear structured Poisson model

with ARIMA(1,1,0) times series. Comparison 2.5, 50, 97.5 quantiles:
(i) By theory. (ii) By bootstrapping the time series predicton error
only (A1). (iii) By bootstrapping the time series prediction error

and the log-bilinear Poisson model error (A2(a) or A2(b)).
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(a) computations by cohort, period 2004, various ages (x).

(b) computations by period, age 65, various periods (t > 2004).

Fig 2(b).  UK male pensioner 1983-2004 mortality experience: predicted
4 percent annuities using a log-bilinear structured Poisson model

with ARIMA(1,1,0) times series. Comparison 2.5, 50, 97.5 quantiles:
(i) By theory. (ii) By bootstrappingthe time series predicton error
only (A1). (iii) By bootstrapping thetime series prediction error

and the log-bilinear Poisson model error (A2(a) or A2(b)).
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(a) computations by cohort, period 2004, various ages (x).

(b) computations by period, age 65, various periods (t > 2004).

Fig 3(a).  UK male pensioner 1983-2004 mortality experience: predicted
life expectancies using a log-bilinear structured Poisson model

with ARIMA(0,1,0) times series. Comparison 2.5, 50, 97.5 quantiles:
(i) By theory. (ii) By bootstrapping the time series predicton error
only (A1). (iii) By bootstrapping thetime series prediction error

and the log-bilinear Poisson model error (A2(a) or A2(b)).
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(a) computations by cohort, period 2004, various ages (x).

(b) computations by period, age 65, various periods (t > 2004).

Fig 3(b).  UK male pensioner 1983-2004 mortality experience: predicted
4 percent annuities using a log-bilinear structured Poisson model

with ARIMA(0,1,0) times series. Comparison 2.5, 50, 97.5 quantiles:
(i) By theory. (ii) By bootstrapping the time series predicton error
only (A1). (iii) By bootstrapping the time series prediction error

and the log-bilinear Poisson model error (A2(a) or A2(b)).
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