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Abstract

An extended version of Hatzopoulos and Haberman (2009) dynamic parametric model is proposed for
analyzing mortality structures, incorporating the cohort effect. A one-factor parameterized exponential
polynomial in age effects within the generalized linear models (GLM) framework is used. Sparse principal
component analysis (SPCA) is then applied to time dependent GLM parameter estimates and provides
(marginal) estimates for a two-factor principal component (PC) approach structure. Modeling the two-factor
residuals in the same way, in age-cohort effects, provides estimates for the (conditional) three-factor age-period-
cohort model. The age-time and cohort related components are extrapolated using dynamic linear regression
(DLR) models. An application is presented for England & Wales males (1841-2006).

Keywords: Cohort; Mortality forecasting; Generalized Linear Models; Sparse Principal Component analysis; Factor
analysis; Dynamic Linear Regression; Bootstrap confidence intervals.

1. Introduction

Many mortality models have been proposed since the Gompertz law of mortality in 1825. Recent developments
in mortality modeling have tended to be extrapolative in nature, with the principal components (PC) approach
being prominent. Thus, Bell and Monsell (1991) extended the Ledermann and Breas (1959) approach, where a
PC approach it is used in forecasting age-specific mortality rates. In a seminal paper, Lee & Carter (1992)
explored a modified version of this approach for forecasting mortality rates. The main statistical tool used was
least-squares estimation via singular value decomposition (SVD) of the matrix of the log age specific observed
forces of mortality.

As has been mentioned by many authors, several weaknesses arise in connection with Lee & Carter (LC)
method (see Pitacco, 2004). Improvements to the LC model occur when the model is adjusted by fitting a
Poisson regression model to the number of deaths at each age (Brillinger 1986; Brouhns et al 2002). Renshaw
and Haberman (2003a) incorporate age differential effects, introducing a double bilinear predictor structure into
the LC forecasting methodology, and optimize the Poisson likelihood, as opposed to optimizing the Gaussian
likelihood, as under the LC approach, and then compare the results. Also, Hyndman and Ullah (2005) use
several PCs in order to capture the differential movements in age-specific mortality rates. They smooth first the
observed log-mortality rates with constrained and weighted penalized regression splines and they decompose
the fitted curves using functional PCA. Recently, many authors have proposed new approaches to mortality
forecasts, utilizing (nonparametric) smoothing. Thus, Currie et al (2004) use bivariate penalized B-splines to
smooth the mortality surface in both the time and age dimensions within a penalized GLM framework.
Hyndman and Ullah (2005) smooth the observed log-mortality rates with constrained and weighted penalized
regression splines. De Jong and Tickle (2006) introduce a state space framework using B-spline smoothing. Gao
and Hu (2009) introduce a Generalized Dynamic Factor method and multivariate BEKK GARCH model to
describe mortality dynamics under conditional heteroskedasticity. Lazar and Denuit (2009) utilize dynamic
factor analysis and the methodology of Johansen cointegration to project mortality through a linear state space
representation which assumes that common factors can be modelled as a multivariate random walk with drift.

Further, in many developed countries (including UK, USA, Japan and Germany), there is evidence of a cohort
effect – thus, in the UK, generations born between 1925 and 1945 approximately seem to have experienced
more rapid mortality decreases than earlier or later generations. Renshaw and Haberman (2006) incorporate this
effect by developing an age-period-cohort version of the LC model which provides an improved fit to the data
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compared to the basic LC model.

Under our proposed approach, the cohort dependent PCs are modelled as random walk time series since,
conditional on age-time effects (according to Hatzopoulos and Haberman (2009) method), the cohort PCs are
mean reverting stochastic processes.

The remainder of the paper is organised as follows. In section 2, we analyse the methodology proposed for the
GLM and SPCA approach, for the extraction of the time and cohort related PCs, and we define the particular
class of DLR models which we utilize for forecast purposes. In section 3, we illustrate an application based on
the recent England &Wales males’ mortality experience. In section 4, we discuss the results and provide some
concluding remarks. Finally, in Appendix A, we implement a closing-out procedure for the highest ages based
on a dynamic variant of the Gompertz law.

2. Methodology

2.1 Using Sparse Principal Component Analysis

In Hatzopoulos and Haberman (2009), a new parametric method for modeling the age-time mortality effects
was introduced. According to this GLM approach, the optimum degree k for the orthonormal polynomials (see
equation 2.1, the age-period full model, Hatzopoulos and Haberman (2009)) is now determined by maximizing
the Bayesian (or Schwarz) Information Criterion (BIC) : 2 ( ) ( ) ( )BIC log l n k log n a       , where, l is the
(maximum) value of the total likelihood for all the n-calendar years and all the a -ages, with n a observations
and n k parameters. The above method produces a random (asymptotically normal) matrix of estimated
parameters, B , of order n by k. In an analogous way with the SVD approach, we apply SVD (or equivalently
PC analysis) to the matrix B to extract the mortality dynamics in age-time effects (see Hatzopoulos and
Haberman (2009)).

PC analysis is a commonly dimension reduction technique to detect possible structures in the relationship
between variables, particularly by reducing the dimensionality of the data and computing a few dominant
eigenvectors of the data’s covariance matrix. It seeks linear combinations of the data variables (often called
factors or principal components) that capture a maximum amount of variance. Although PC analysis is a classic
tool for analyzing multivariate data one of the key shortcomings of PC analysis is that these factors are linear
combinations of all variables, that is, all factor coefficients (or loadings) are non-zero (Luss and Aspremont,
2006).

In addition, if the input data are observed over time in a cross-sectional manner, each column of the data matrix
is a time series and the temporal dependence in the data is summarized in the diagonal (variances) and off-
diagonal (cross-covariances) elements of the variance-covariance matrix. In the case of a non-stationary time
series, simultaneous drifting of the series may register as correlations between the columns, thus potentially
influencing the components (Lansangan and Barrios, 2009). PC analysis usually combines together into the
same component variables with a similar pattern, with similar loadings indicating the equal importance of the
variables. Hence, if the variables have a similar variance pattern, this will be taken as similarity in the
importance of the variables, and this often leads to the first few components “averaging” the variables, and
hence a failure to achieve dimension-reduction. If the input data consist of non-stationary time series, a single
linear combination of all the time series can explain the variability existing in the input data and component
loadings for all input variables will be similar if not all equal (Lansangan and Barrios, 2009). In such cases,
having a few non-zero coefficients in the principal components would greatly improve the relevance and
interpretability of the factors. In sparse PC analysis, we seek a trade-off between the two goals of expressive
power (explaining most of the variance or information in the data) and interpretability (making sure that the
factors involve only a few variables) (Luss and Aspremont, 2006).

Moreover, in studies with various mortality experiences, using a common PCA (or SVD applied to the matrix
B), results in factor loadings structures ( )ig x (see Model 1, Hatzopoulos and Haberman (2009)) with
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significant high values for both positive and negative loadings. This undesirable feature gives high (negative)
interdependence structure for different range of ages, explaining different mortality dynamics with the same
factor, resulting in spurious interpretations and forecasting (see section 3). SPCA improves this problematic
dependent structure by giving a better clustering of significant high factor loading values.

Given a covariance matrix kA S , the problem of finding a sparse factors which explains the maximum
amount of variance in the data can be written as follows:

Maximize ( )Tr A X subject to ( ) 1Tr X  , 1 | | 1X k   , 0X  , kX S
using semidefinite relaxation techniques to compute approximate solutions (Luss and Aspremont, 2006). The
covariance matrix X is the solution of the problem, in which the eigenvectors P denote now matrix with the
eigenvectors resulting from the singular value decomposition of X (with associated vector of eigenvalues  ).
Luss and Aspremont (2006) solve a penalized formulation of the problem:

Maximize ( ) 1 | | 1Tr A X s X     subject to ( ) 1Tr X  , 0X  , kX S
where s is a scalar which defines the sparsity (higher values of s gives more sparsity).

Thus, sparseness can be attained in constructing principal components of non-stationary time series by imposing
constraints on the estimation of the component loadings and dimension-reduction and the search for common
patterns among non-stationary time series can be achieved simultaneously. Using simulation techniques,
Lansangan and Barrios (2009), show that SPCA (sparse principal component analysis) can achieve sparseness
while consistently recognizing the variance patterns among non stationary time series.

In the presence of cohort effects, the number of optimum factors retained for representing the time effect is very
important for the identification of the cohort effects. If we choose fewer factors than the optimum number, then
these disregarded time effects will be carried over as cohort effects, possible in a non-stationary manner, or, if
we choose more factors, then the cohort structure will break down. Thus, keeping an optimum subset p(<k) of
the SPCs (see below), which explains the “majority” of the variance, leads to (see Model 1, Hatzopoulos and
Haberman (2009)) the age-period model:

1
ˆlog( ( ))= ( ) ( ) ( ) ( )

p

x i i x
i

m t A x g x Y t t


   (1)

Under a common factor analysis, ( )ig x are the factor loadings and denote the covariance between the i-factor
for age x and ( )iY t denotes the value of the i-common factor for calendar year t.

In order to implement the above approach, we give a method to identify the optimum number of SPCs factors
retained (p-value on the age-period model) as well a method to identify the scalar which defines the sparsity in
the SPCA (s-value). Different choices of s-values can define different age-time dynamics (and different
“optimum” p-values).

The log-graduated central mortality rates, in the age-period model, can be alternatively decomposed (see Model
2, Hatzopoulos and Haberman (2009)) as an age-period association model:

1
ˆlog( ( ))= + ( ) ( ) ( ) ( ) ( )

p

x i i x
i

m t x b t f x Y t t  


   (2)

where
1

( ) ( )
p

i i
i

b t m Y t


  for 0 1,i im L e  . We note that the factor loadings ( )ig x can be decomposed as

1 ,
2

( ) ( ) ( )
k

i i j j i i i
j

g x m L x e m f x


     , and the im values then can be viewed as mean indices of the

factor loadings (or associations) for all the ages with the i-factor. The im values are also measures of the
importance (weights) for the i-factor in the construction of the ( )b t term.
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Confidence intervals for these im values can be constructed by bootstrapping techniques. Starting from the
estimated GLM k-dimensional random vector t , at time t, which is (asymptotically) normally distributed with

variance-covariance matrix ( )tVar  , as has been defined in section 2.1, we simulate N bootstrap samples

{ ( )i
tb }, i=1,2,…,N, where ( )i

tb are realizations from the multivariate k-dimensional Normal distribution with

parameters ( t , ( )tVar  ), for each calendar year t. For each bootstrap sample, the associated SPCA gives

bootstrap confidence intervals for the im values. If 0 belongs to these confidence intervals, then we can assume
that the associated components are not sufficiently important to be included in the mortality structure. An
alternative method could also be used to identify the number of factors retained, if we just take the maximum of
the positive or negative im values and express them as percentage on the N bootstrap sample, defining a
confidence coefficient or a confidence level (CL) for each PC. If the im values are near all positive (or
negative) (i.e. if CL 100% ) in the bootstrap procedure, it is an indication of robustness and the significance of
the particular factor. The CL gets values in the interval [50%, 100%].

We can choose the ‘optimum’ value s (the scalar which defines the sparsity in the SPCA), to be the value that
maximizes the number of significant SPC, as defined by the CL criterion (at a given significance level). Among
these significant SPC (according to the CL-criterion), we can specify the key age groups by taking, for each
age, the maximum association value (MAV), defined by:  max

{ }
( ) max ( )ii

g x g x . It is desirable that the above

method should produce distinct key age groups of max ( )g x neighbouring values, which belong to the same
components. This desirable feature would lead to a clear picture for the mortality dynamics.

Utilizing the above bootstrapping technique we can finally obtain a bootstrap CI for the ( )ig x values. Similar
arguments could also be applied to the cohort effects for the derivation of the number of optimum cohort related
factors, as will be explained below. The difference between the method used to derive the period retained
factors and the cohort retained factors is that, in the case of cohort-age modelling the factor dynamics are
assumed to be stationary and also we are not interested in a fine clustering of ( )ig x values. Since cohort
effects normally concern a wide range of relevant ages, we incorporate PCA techniques to capture the mortality
dynamics in cohort manner, taking as an indicator of the number of retained PC, the associated variance
explained.

2.2 Incorporation of Cohort Effects

In the presence of cohort effects, the GLM estimates t are marginal estimates of age and period effects. If we
consider the residual cohort effect conditional on the already estimated age and period effects, then we have:

2

, , , 1 1
1 1

log( ( )) log( ( )) log( ) ( ) ( ) ( ) ( ) ( )
p k

x t x t x x t i i j j
i j

E D R m t R A x g x Y t b c L x 
 

       

in which the ,
1

log( ) ( ) ( ) ( )
p

x t i i
i

R A x g x Y t


   term is treated as an offset, in the rectangle DEBF

(Figure 1). The GLM estimates  1( )j cb  of  1( )jb c , for c = 1c ,…, ncc and j=1,…,k2, can be estimated in
a Poisson model with the fitted values from the age – period effects model treated as an offset. These estimates
are conditional estimates of the cohort effect. In taking this approach to modelling the cohort effects, we follow
the general guidelines adopted by Cairns et al (2008, 2009).

In the same way with the age period effects, we apply the eigenvalue decomposition to the associated
covariance matrix of these conditional estimates (using ordinary PC analysis since the cohort PCs are
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considered to follow a mean reverting process), leading to graduated central mortality rates in age – period –
cohort effects, the age-period-cohort full model:

2

1 1
ˆlog( ( ))= ( ) ( ) ( ) ( ) ( )

kp

x i i i i
i i

m t A x g x Y t D x H t x
 

      
and keeping a subset q(< 2k ) of the PCs, leads to an age-period-cohort model:

1 1
ˆlog( ( ))= ( ) ( ) ( ) ( ) ( ) ( )

p q

x i i i i x
i i

m t A x g x Y t D x H t x t x
 

         (3)

defined in the parallelogram DEBF (Figure 1). Then ( ) ( ) ( )cA x A x A x   if c
c cA L   is the vector of

( )cA x age scores which represents the residual adjustment for the main age profile ( )A x after including the

cohort effects.  1( )c jL xL  is the design matrix in cohort effects of order a by k2, and c denotes a k2-

dimentional vector of mean values for the columns in the matrix of the estimated parameters  1( )j cb  .

( ) c c
i x iD x L e  if c

xL denotes the x-row of the cohort design matrix cL and c
ie denotes the i-eigenvector

from the cohort PCA. ( ) r c
i c iH c e  if r

c is the rescaled vector: r
c c c    and c is a k2-dimensional

random vector which denotes the PC scores from the cohort PCA. c
i is the related i-eigenvalue, and

2

1
( ) ( ) ( )

k

x i i
i q

t x D x H t x
 

    is the residual unexplained variance from the cohort PCA.

If
1, ,,...,

ac c x c x       denotes the associated vector of errors for c = 1c ,…, ncc then the random vectors c

are asymptotically normally distributed with zero mean and variance-covariance matrix cV , estimated by

ˆ ( )tr tr tr tr
c c c cVarV H P P H      , where

21[ , , ]tr c c
c q ke eP   denotes the matrix of the last k2-q

eigenvectors and
21[ , , ]tr

q kH HH   denotes the matrix of the last k2-q cohort PCs.

Figure 1: Diagram of observed and extrapolated data.
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In the method described above for the estimation of the conditional cohort effects, we have not utilized the
observed mortality data in the triangle CEB in terms of the cohort effects (Figure 1). The GLM graduation in
cohort effects needs to have observations for the full age range (from ages x1 to xa). Any forecast method
applied to the ( )iY t or ( )iH c stochastic vectors will not use these observed mortality rates. In order to take

into account these observed mortality rates and to obtain c estimates for all of the n-cohorts, we need to move
from considering the data in the parallelogram DEBF to data in the parallelogram DCGF, and so we propose the
introduction of the following method:
1) obtain forecast ˆ ( )i n kY t  values in age-time effects (from rectangle ABCD), for the next f=a-1 calendar
years (rectangular BCHG), and obtain period forecast values for the central mortality rates, for k=1,…,f and
i=1,…,p
2) obtain forecast ˆ ( )i nc kH c  values in age-cohort effects (from parallelogram DEBF) for the next f
cohorts, for k=1,…,f and i=1,…,q (from parallelogram ECGB) and in combination with the forecast values from
step 1, obtain forecast central mortality rates, say ˆ ( )x n km t  for k=1,…,f, in the triangle BCG, taking account
both of time and cohort effects
3) use the observed death counts, , nx td , from the last calendar year n, to obtain the ‘observed’ values for

the central exposures in the triangle BCG: ,
,

ˆ
ˆ̂ ( )

n
n k

x t
x t

x n k

d
R

m t


 for k=1,…,f

4) fit the death counts ,
ˆ

x td under the age-period-cohort full model in cohort effects, in the parallelogram

DCGF, where the ,
1

ˆ ˆˆ ˆlog( ) ( ) ( ) ( )
p

x t i i
i

R A x g x Y t


   term is treated as an offset, for t= 1t ,…, n ft  , where

,
ˆ̂

x tR = ,x tR are the observed exposures, ˆ̂ ( )iY t = ( )iY t the GLM estimated PCs, and ,
ˆ

x td = ,x td the observed

death counts, if t= 1t ,…, nt , (area DCBF), and ,
ˆ̂

n kx tR


= ,
ˆ

n kx tR


ˆ̂ ˆ( ) ( )i n k i n kY t Y t  and ,
ˆ

n kx td


= , nx td , if

k=1,…,f (triangle BCG), in order to obtain GLM cohort estimates  1( )j cb  of  1( )jb c , for c=t-

x= 1c ,…, nc and j=1,…,k3, and also cohort PCs ˆ ( )iH c estimates, for c=t-x= 1c ,…, nc and i=1,…,q to define the
age-period-cohort expanded full model:

3

1 1

ˆˆlog( ( ))= ( ) ( ) ( ) ( ) ( )
kp

x i i i i
i i

m t A x g x Y t D x H t x
 

      

or the equivalent age-period-cohort expanded model:

1 1

ˆˆlog( ( ))= ( ) ( ) ( ) ( ) ( ) ( )
p q

x i i i i x
i i

m t A x g x Y t D x H t x t x
 

         (3a)

for time effects t= 1t ,…, nt , age effects x= 1x ,…, ax , and cohort effects t-x=c= 1c ,…, nc (parallelogram DCGF).

The residuals are given by
3

1

ˆ( ) ( ) ( )
k

x i i
i q

t x D x H t x
 

    , and we assume that the random variables

( )x t x  are normal with zero mean and variance ,x t xV  , which is estimated by

 
3

2
,

1

ˆ ˆ( ) ( )
k

x t x i i
i q

V D x Var H t x
 

   .
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Under this approach, we obtain forecast estimates in the triangle BCG that utilize all of the observed mortality
data. This approach can be viewed as being related to credibility theory, if we note that the cohort ( c ) GLM
conditional estimates, for the last f cohorts, are estimated by combining the observed mortality rates (triangle
ECB) with the ‘prior’ ( ˆ ( )x n km t  ) forecast estimates (triangle BCG), giving different weights (credibility

factor) to each cohort. Also, by using the death counts, ,x nd , from the last calendar year n, to obtain values for
the central exposures in step 3, we utilize the distribution structure of deaths in age effects from the last calendar
year. This approach can be justified by the well reported “rectangularization” feature shown by many recent
mortality experiences (i.e. the increasing concentration of the probability density of the random lifetime
function around the mode) and the importance of the information content of the latest data point.

Using similar arguments with the age-period association model (model structure 2), the log-graduated central
mortality rates, can be alternatively decomposed as an age-period-cohort association (expanded) model:

1 1
 Y ˆˆlog( ( ))= + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

p q
c

x i i i i x
i i

m t x b t c t x f x t d x H t x t x  
 

            (4)

where ( )c t x denotes the independent main cohort effect:
1

ˆ( ) ( )
q

c
i i

i
c t x m H t x


    for 0 1,

c c c
i im L e  ,

c     with 0 0
c c cL   , ( ) ( ) ( )cx x x     with 1 1

2
( ) ( )

k
c
j j

j
x L x   


 , and

, 1
2

( ) ( )
k

c c c
i j i j

j
d x e L x


  .

2.3 Forecasting

2.3.1 Dynamic Linear Regression models

Based on the age-period-cohort expanded model (model structure 3a), forecast estimates ˆ ( )iY t and ˆ̂ ( )iH t x

are needed for the time and cohort dynamics: ( )iY t and ˆ ( )iH t x respectively. For forecast purposes, we note
the importance of linear and log-linear extrapolation structures (see, for example Sithole et al 2000; Renshaw
and Haberman 2003b; Pitacco et al 2009). With this as background, we extend the conventional linear modeling
approaches of regression analysis and low order ARIMA models that have been widely used and advocate, for
each time related PC, a specific class of dynamic linear regression (DLR) models:

, ,( )i i i t i tY t b t e   
for each calendar year t (the so-called regressor) and for each time related PC i=1,…,p, with the slope being a
stochastic time variable parameter that follows a random walk process: , , 1 , 1i t i t i tb b    . The innovations ,i te
and ,i t are assumed to be white noises random variables.

The DLR time series models are simply regression models in which the explanatory variables are functions of
time and the parameters are time-varying. State space models employ the Kalman filter technique to provide a
computationally efficient framework through which we can derive estimates of the stochastic parameters and
predicted future values. Predictions are made by extrapolating the estimated components into the future, while
smoothing algorithms give the best estimate of the state at any point within the sample (Harvey, 1991).
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Experiments with various mortality experiences have shown that the time related non-stationary PCs can be
represented adequately under this particular DLR model structure. The crucial feature of the model is the signal-

noise ratio, or the so-called the noise-variance ratio hyper-parameters (NVR): ,

,

2
2
, 2

i t

i t

i t
e





 . If necessary, a pre-

determined NVR value can be used to control the required level of smoothness: thus, small values enhance the
smoothness. The computations have been implemented in Matlab using the Captain Toolbox (Taylor, 2007).

In contrast, the cohort related PCs are modelled as independent RW plus noise time series model since,
conditional on the age-time effects, we assume that the cohort related PCs are mean reverting (stationary)
stochastic processes:

, ,
ˆ ( )i i c i cH c b e  and , ,

ˆ̂ ( )i i c i cH c b e  

where , , 1 , 1i c i c i cb b    and , , 1 , 1i c i c i cb b      , for each cohort c=t-x and for each cohort related PC
i=1,…,q. As above, we employ state space models and the Kalman filter technique for providing a
computationally efficient framework for carrying out the estimation.

We can define the rate of cohort-log-mortality improvement, for positive age related ( )iD x values, due to the i-

PC:
ˆ̂ ( )ˆ̂ ( ) 1 ˆ̂ ( 1)

i
i

i

H cH c
H c

  


if ˆ̂ ( )iH c >0, or - ˆ̂ ( )iH c otherwise. For negative age related ( )iD x values we

can define the opposite of the cohort-log-mortality improvement ˆ ( )iH c . We can also define the overall rate of

cohort-log-mortality improvement:
ˆ( )ˆ( ) 1

ˆ( 1)
c cc c

c c
  


if ˆ( )c c >0, or - ˆ( )c c otherwise, where c=t-x is the

cohort index. These rates of improvement can be used to describe the dynamics in age-cohort effects, in
connection with the sign of the associated PC values (or the sign of values from the main cohort trend) and the
sign of the age related values.

The above modelling gives the age-period-cohort forecast model:

1 1

ˆˆ ˆ ˆˆlog( ( ))= ( ) ( ) ( ) ( ) ( )
p q

x i i i i
i i

m t A x g x Y t D x H t x
 

       (5)

(where ( ) + ( ) ( ) ( )cA x x A x A x      ) for time effects t= 1t ,…, n ft  , age effects x= 1x ,…, ax , and

cohort effects c=t-x= 1c ,…, n fc  (parallelogram DHKF).

2.3.2 Confidence Intervals

The combination of the age-period-cohort forecast model (model structure 5) with the age-period-cohort
complete model (see Appendix, model structure A1) give the age-period-cohort forecast-complete model:

1 1

ˆˆ ˆ ˆ ˆˆ ˆlog( ( ))= ( ) ( ) ( ) ( ) ( )
p q

x i i i i
i i

m t A x g x Y t D x H t x
 

       (6)

There are several sources of randomness in the above modelling. The true value of log( ( ))xm t , assuming the
model specification is correct, is given by

        
1

ˆ ˆˆlog( ( )) ( ) ( ) ( ) ( ) ( ) ( )
p

x i i i i
i

m t A x e A x g x e g x Y t e Y t


       

     
1

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) e ( )
q

i i i i x x
i

D x e D x H t x e H t x t x t x
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where  e denotes the errors in estimating the relevant quantity, ( )x t x  is the residual error in fitting the
model for age x and cohort t-x using a finite set of PC functions, and e ( )x t x is the observation error which
comes from the random variation of deaths in the Poisson distribution.

The total error, ,x t xE  , is the difference between the true value of log( ( ))xm t and expression (6):

        ,
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( )
p p

x t x i i i i i
i i

E e A x g x e g x e Y t e g x Y t
 

       

      
1 1

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) e ( )
q q

i i i i i x x
i i

D x e D x e H t x e D x H t x t x t x
 

          

Assuming independence among all of those different sources of error, the total variance of ,x t xE  is given by

        ,

2 2 2 2 2 2 2
( ) ( ) ( )( )

1 1

ˆˆ ( ) ( )
x t x i ii

p p

E i ie A x e g x e g xe Y t
i i

g x Y t    
 

 
       

      
2 2 2 2 2 2 2

( ) e ( )ˆ( ) ( )( )
1 1

ˆˆ ˆ( ) ( )
x xi ii

q q

i i t x t xe D x e D xe H t x
i i

D x H t x      
 

       
where  

2
( )e A x  correspond to the variance of the error in estimating ( )A x and can be estimated using the DLR

model structure (see Appendix);  
2

( )ie g x and  
2

( )ie D x correspond to the variance of the error in estimating

( )ig x and ( )iD x respectively and can be estimated using the DLR model structure (see Appendix);  
2

( )ie Y t


denotes the variance of the error in estimating ( )iY t and can be estimated using the DLR model structure (see

section 2.3);  
2

ˆ ( )ie H t x


denotes the variance of the error in estimating ˆ ( )iH t x and can be estimated using the

DLR model structure (see section 2.3); 2
( )x t x  denotes the variance of the residual error in fitting the model

using a finite set of PC functions and can be estimated by the ‘residual sum’  
3

2

1

ˆ ˆ( ) ( )
k

i i
i q

D x Var H t x
 

  ; and

2
e ( )x t x  denotes the variance of the observation error in the Poisson distribution and can be estimated with the

terms
,

ˆt x

x t xd
j 


, where t xj  is the over-dispersed parameter and can be estimated by the ratio of the deviance

divided by the associated degrees of freedom for each cohort from model structure (3), and ,x t xd  denote the
observed number of deaths for each cohort c=t-x=1,…,nc and each age 1,..., ax x x . Outside of the cohort
range, the ,x t xd  can be substituted by the observed number of deaths from the last calendar year:

, ,
ˆ

nx t x x t xd d  for cohorts c=t-x= 1ncc  ,…, n fc  , and outside the age range, the ,x t xd  can be substituted

by the observed number of deaths from the last observed age: , ,
ˆ

ax t x x t xd d  for ages 1,...,ax x x .

In order to generate an interval forecast, assuming a normal distribution for the variable ,x t xE  , we can obtain

the following 95% confidence interval estimate for ( )xm t :

, ,1.96 1.96ˆ ˆˆ ˆ( ( )) ( ) , ( )E Ex t x x t x
x x xCI m t m t e m t e
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where  , ,
ˆ ˆˆ ˆ(t)= expx x x t x c xm a b x f t f f      if ,

1

ˆ ˆ
p

p
x i x i

i
f b a


  , , , ,

1

ˆ ˆ
p

p
t x i x i t

i
f b b


  and

, , ,
1

ˆ ˆ
q

c
c x i c i x

i
f b b


  .

2.3.3 Reduction Factors

From the age-period-cohort forecast-complete model (model structure 6), we obtain that

 , ,
1 1

ˆ ˆ ˆˆ ˆˆˆ ˆlog( ( ))= ( ) ( ) ( )
p q

x i i i t i i t x
i i

m t A x g x b t D x b 
 

        . If we set the first observed year as the base

year, i.e. year where t=0, and if we forecast backwards the RW time series ,0î xb  , which can be estimated by its

first smoothed value: ,0 ,0
ˆ ˆ
i x ib b  , it follows that

,0
1 1

ˆ ˆˆ ˆˆˆ ˆlog( (0))= ( ) ( ) ( )
p q

x i i i i
i i

m A x g x D x b
 

     

In this way, we can define a reduction factor model in time effects, as discussed by several authors including
Renshaw and Haberman (2003c, 2006):

,
ˆ ˆˆ ˆ( )= (0)x x x tm t m RF if  , , , ,0

1 1

ˆ ˆ ˆˆˆ=exp ( ) ( )
p q

x t i i t i i t x i
i i

RF g x b t D x b b
 

              
 

For projected cohorts, where c=t-x> nc , the estimates , ,
ˆ ˆ

ni t i tb b and , ,
ˆ ˆ

ni c i cb b  become constant, and the

reduction factors are:  , , , , ,0 ,
1 1

ˆ ˆ ˆ ˆ ˆ=exp
n n

p q
p c

x t i x i t i c i i x
i i

RF b b t b b b
 

              
  , i.e. on the logarithmic scale, a

linear function in time effects, for each age. In addition, for projected ages, where ax x , the log-reduction
factors become identical.

2.3.4 Calculation of Life Expectancy

Based on the age-period-cohort forecast-complete model (model structure 6) and in a similar way with
Hatzopoulos and Haberman (2009), we can obtain estimates of the cohort-based expected remaining lifetime,

( )xe c , by constructing a life table for each cohort c=t-x= 1c ,…, n fc  and complete age range 1,...,x x x
(parallelogram DHK F  , Figure 1), under the assumption of the constant force of mortality (CFM), for any age
x and cohort c: ( ) ( )x z xc cm m  for 0 1z  , and ( ) ( )x xc m cm  .

Associated confidence intervals for the expected remaining lifetime can then be obtained using parametric
bootstrapping. Starting from the estimated GLM k-dimensional random vector t , for each calendar year t,

with variance-covariance matrix ( )tVar  , we simulate N bootstrap samples { ( )i
tb }, i=1,2,…,N, where ( )i

tb
are realizations from the multivariate k-dimensional Normal distribution with parameters ( t , ( )tVar  ), for
each calendar year t. For each bootstrap sample, we obtain estimates for model structure (6). This yields N
realizations for the expected remaining lifetimes and then the 95% CIs for the expected remaining lifetimes are
determined by the percentiles, that is  95 0.025 0.975,CI p p , for each forecast cohort.
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3. Applications

3.1 The data

In order to illustrate the methodology, we present a case study based on England & Wales male total population
mortality experience, for calendar years 1841-2006 and individual ages 0,1,…,89. The data are freely provided
by the “Human Mortality Database” (www.mortality.org). We use ages up to age 89 because whilst data on
numbers of deaths are generally available by single year of age above age 89, official population estimates are
not available.

3.2 Residuals

Figure 2, shows the standardized deviance residuals (SDR) plotted against age, time and cohort effects, for
England & Wales for the period 1841-2006 and ages 0-89, under the age-period model (model structure 1). The
left graphs (graphs 2.a1 2.b1 & 2.c1) correspond to the age-period full model (where we use all the SPCs, i.e.
when p=k, with k=25, see Hatzopoulos and Haberman (2009): model structure 2.1) and the right graphs
(graphs 2.a2 2.b2 & 2.c2) correspond to the age-period model (with p=7 SPCs). For the age-period full model,
the overall patterns of the total SDR against age, time and cohort effects (graphs 2.a1 2.b1 & 2.c1) indicate an
appropriate fit. We note two distinct outliers for the cohorts with years of birth 1919-1920 (graph 2.c1), leading
to mostly positive SDRs for cohort 1920 and mostly negative SDRs for cohort 1919. This feature has been
transferred into the age and time SDR (graph 2.a1 & 2.b1 respectively), which becomes apparent after age 60
and after the 1970s. For the age-period model, i.e. after keeping only the first 7 PCs, the SDR show clear
patterns for the cohort effects, and this prompts us to investigate further the cohort effects.

2.a1 2.a2

2.b1 2.b2
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2.c1 2.c2
Figure 2: SDR vs. age, time and cohort effects for the age-period full model (left) and the age-period model (right)

Figure 3, shows the standardized deviance residuals (SDR) plotted against age and cohort effects, under the
age-period-cohort model (model structure 3), defined in the parallelogram DEBF (Figure 1). The left graphs
(graphs 3.a1 & 3.b1) correspond to the age-period-cohort full model (where we use all the cohort PCs, i.e. when
q= k2, with k2=20) and the right graphs (graphs 3.a2 & 3.b2) correspond to the age-period-cohort model (with
q=2 cohort PCs). For the age-period-cohort full model, the overall patterns of the total SDR against age and
cohort effects (graphs 3.a1 3.b1) indicate an appropriate fit. For the age-period-cohort model, the SDR do not
show any age or cohort patterns (graphs 3.a2 & 3.b2).

3.a1 3.a2

3.b1 3.b2
Figure 3: SDR vs. age and cohort effects for the age-period-cohort full model (left) and the age-period-cohort model

(right)

Figure 4, shows the standardized deviance residuals (SDR) plotted against age and cohort effects, under the age-
period-cohort expanded model (model structure 3a), defined in the parallelogram DCGF (Figure 1). The left
graphs (graphs 4.a1 & 4.b1) correspond to the age-period-cohort expanded full model (where we use all the
cohort PCs, i.e. when q= k3, with k3=16) and the right graphs (graphs 4.a2 & 4.b2) correspond to the age-
period-cohort expanded model (with q=3 cohort PCs). For the age-period-cohort expanded full model, the
overall patterns of the total SDR against age and cohort effects (graphs 4.a1 4.b1) indicate an appropriate fit.
For the age-period-cohort expanded model, the SDR do not show any age or cohort patterns (graphs 4.a2 &
4.b2).
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4.a1 4.a2

4.b1 4.b2
Figure 4: SDR vs. age and cohort effects for the age-period-cohort expanded full model (left) and the age-period-cohort

expanded model (right)

3.4 Model Components and Forecasts

As in the age-period model (model structure 1), and the discussion of the construction of complete mortality
tables in Appendix (model structure A1), the age main effects, ( )A x , are modelled with a DLR model with age
varying slope parameter: ( ) x xA x a b x e    where xb follows an IRW model, and xe is white noise.
Figure 5, shows the evolution of the IRW parameter xb and the main age effect. The inflection point, for this
range of calendar years (1841-2006) is near the age ipx =84. As expected, beyond age 89, the confidence

intervals for xb and ( )A x are very wide.

Figure 5:  The IRW age varying slope parameter x̂b (left) and the main age profile ˆ( )A x values (right), based on model
structures (1) and (A1), with associated CIs.

Table 1, gives the eigenvalues ( i -values), in significant order, based on the age-period model (model
structure 1), with the associated percentage variance explained (%var), mean association values im and
associated (bootstrap) confidence level (CL) values (N=10.000 bootstrap samples). According to the CL
criterion there are seven significant SPCs (with minimum CL value 98,5%), which together explain the 100% of
the total variance (with E-10 precision), with an ‘optimum’ sparse value s=36.



14

PC
index i % var im %CL

1 6,32E+01 8,71E-01 7,50E-02 99,9
2 8,25E+00 1,14E-01 7,33E-02 99,9
3 1,05E+00 1,45E-02 -1,06E-02 100,0
4 5,48E-02 7,55E-04 1,01E-03 100,0
5 6,01E-04 8,28E-06 -1,68E-04 99,9
6 2,77E-04 3,82E-06 -3,95E-04 98,5
7 7,39E-08 1,02E-09 -8,24E-06 99,9

25 5,49E-10 7,57E-12 -2,82E-06 56,0
8 1,36E-12 1,87E-14 1,59E-07 71,0
9 2,46E-14 3,39E-16 6,19E-09 67,8

10 5,23E-15 7,21E-17 -4,00E-10 54,0
11 3,04E-15 4,19E-17 -1,89E-10 51,3
12 4,95E-16 6,82E-18 5,51E-11 51,9
24 4,41E-16 6,07E-18 -3,38E-11 51,8
23 2,99E-16 4,13E-18 -2,17E-13 50,7
13 2,39E-16 3,29E-18 -5,12E-11 50,4
22 1,73E-16 2,38E-18 6,16E-12 50,5
21 1,08E-16 1,49E-18 -1,43E-11 53,9
14 6,04E-17 8,33E-19 -4,60E-12 51,2
15 3,81E-17 5,24E-19 -9,15E-12 50,2
20 3,16E-17 4,36E-19 1,01E-11 51,4
16 1,78E-17 2,45E-19 4,59E-12 51,3
19 7,18E-18 9,89E-20 6,97E-12 50,2
18 1,77E-18 2,43E-20 1,71E-12 51,0
17 9,07E-19 1,25E-20 -5,08E-12 51,8

Table 1: Eigenvalues based on the age-period model (model structure 1), with the associated percentage variance
explained, im values and related bootstrap confidence levels (CL).

Table 2, gives the eigenvalues ( c
i -values), in significant order, based on the age-period-cohort model (model

structure 3), with the associated percentage variance explained. According to the confidence level criterion
(CL), there are two PCs, with minimum CL value 92,3%, which explain the 46% of the total residual variance.

PC
index

c
i % var im %CL

1 3,18E-02 2,48E+01 5,84E-03 92,3
2 2,78E-02 2,16E+01 6,33E-02 99,1
3 1,39E-02 1,08E+01 -6,75E-03 50,3
4 1,15E-02 8,90E+00 -3,88E-02 53,2
5 9,16E-03 7,10E+00 4,18E-02 52,8
6 7,28E-03 5,70E+00 -2,49E-02 53,1
7 5,61E-03 4,40E+00 3,33E-02 53,5
8 4,09E-03 3,20E+00 -2,90E-02 53,2
9 3,49E-03 2,70E+00 1,27E-02 53,2

10 3,16E-03 2,50E+00 -3,00E-03 52,8
11 2,61E-03 2,00E+00 2,66E-03 51,8
12 1,71E-03 1,30E+00 -1,59E-03 52,2
13 1,44E-03 1,10E+00 1,31E-02 50,5
14 1,35E-03 1,00E+00 -4,18E-03 52,0
15 1,12E-03 9,00E-01 4,33E-03 50,3
16 7,44E-04 6,00E-01 -2,06E-02 51,8
17 6,18E-04 5,00E-01 1,13E-02 51,3
18 5,57E-04 4,00E-01 -5,28E-03 50,1
19 3,52E-04 3,00E-01 -9,63E-03 52,9
20 2,69E-04 2,00E-01 -1,21E-02 50,7

Table 2: Eigenvalues based on the age-period-cohort model (model structure 3), with the associated percentage variance

explained, c
im values and related bootstrap confidence levels (CL).
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Table 3, gives the eigenvalues ( c
i -values), in significant order, based on the age-period-cohort expanded

model (model structure 3a), defined in the parallelogram DCGF (Figure 1), with the associated percentage
variance explained. According to the confidence level criterion (CL), there are 3 significant PCs with minimum
CL value 80%, which explain 68% of the total (conditional in time) residual variance.

PC
index

c
i % var im %CL

1 2,90E-02 2,60E+01 6,32E-02 80
2 1,99E-02 1,79E+01 -2,98E-02 92
3 1,59E-02 1,43E+01 4,93E-02 92
4 1,16E-02 1,04E+01 -5,20E-02 76
5 9,76E-03 8,80E+00 2,18E-03 77
6 6,08E-03 5,50E+00 -9,72E-03 76
7 5,04E-03 4,50E+00 2,00E-02 76
8 3,94E-03 3,50E+00 -1,28E-02 75
9 2,53E-03 2,30E+00 1,39E-02 73

10 1,95E-03 1,80E+00 -1,05E-02 71
11 1,80E-03 1,60E+00 3,59E-03 66
12 1,18E-03 1,10E+00 -5,12E-03 61
13 1,06E-03 1,00E+00 2,57E-03 54
14 7,84E-04 7,00E-01 4,99E-03 53
15 5,72E-04 5,00E-01 -5,50E-03 52
16 2,22E-04 2,00E-01 -5,27E-03 51

Table 3: Eigenvalues based on the age-period-cohort expanded model (model structure 3a), with the associated percentage

variance explained, c
im values and related bootstrap confidence levels (CL).

Figure 6, displays the most important components for the age-period model (model structure 1), according to
the methodology in section 2.1, with associated forecasts and (bootstrap) CIs. For the ( )iY t values, the
calendar years 1914-1919 and 1940-1945 are treated as missing values and are estimated by smooth values
according to the DLR model structures (section 2.3.1).

The first two interaction terms, which account for the 100% of the total variance (with E-02 precision), describe
different the dynamics of age groups. Among these first two components, we can specify the key age groups by
taking, for each age, the maximum association value (MAV). According to the MAV, the first interaction term,
which explains the 87,1% of the total variation (Table 1), refers to ages 0-44 and its time component shows a
steady linear trend after the 1970s. The second interaction term, which explains 11,4% of the total variation,
refers to ages 45+ and its time component shows a steady downward trend especially after the 1980s. In this
way, we split the whole age range into two age groups which experience different dynamics over time.

The other five interactions explain relative deviations mainly from the first interaction term. We can specify the
key age groups, from the last five components, by taking, for each age, the maximum association value (MAV)
among all the 7 components. Specifically, the third interaction term, according to the MAV, refers to ages 15-
19, and its time component shows a rapid relative deterioration after the 1950s with a relative improvement
after the 1980s. The fourth interaction term, according to the MAV, refers to ages 20-30, and its time
component shows a rapid relative deterioration after the 1970s with a relative improvement after the year 2000
which could be explained by the well-known “accident hump” effect. The fifth interaction term, according to
the MAV, refers to ages 10-14 and age 1 and its time component shows a relative improvement. The sixth
interaction term, according to the MAV, refers to ages 31-41 and ages 5-7, and its time component shows a
significant relative deterioration after the 1980s which could be influenced by the AIDS effect. The seventh
interaction term, according to the MAV, refers to ages 42-48 and age 0, and its time component shows a relative
deterioration after the 1960s. In Figure 6, it is clear that ages 0 and 1 have ( )ig x values which differ from those
of other ages. This feature indicates low dependence with the other ages, and explains the MAV for seventh and
fifth interaction term respectively. Ages 5-7, referring to the sixth interaction term, experience the lowest death
counts among all the ages and explain the MAV inherent to the sixth interaction term. Also, notable is the large
improvement for the combined effects, as can be illustrated by the additive ( )b t term, for calendar years 1946-
1955.
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( )A x ( )b t

1( )g x 1( )Y t

2 ( )g x 2 ( )Y t

3( )g x 3( )Y t
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4 ( )g x 4 ( )Y t

5 ( )g x 5 ( )Y t

6 ( )g x 6 ( )Y t

7 ( )g x 7 ( )Y t
Figure 6:  Dynamics in age-time effects based on the age-period model (model structure 1) in the rectangular ADCB
(Figure 1). ( )A x (with associated CI) and ( )b t (with associated CI under the DLR structure) are the main additive

effects, ( )ig x & ( )iY t are the interaction components in significant order, ( )ig x are the age related components and

bootstrap associated CI (left) and estimated, smoothed and predicted ˆ ( )iY t time related components and associated CI
(right), under the DLR structure.
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Figure 7, displays the most important age-cohort components, with associated forecasts and CIs under the DLR
structure, in order of significance, based on the age-period-cohort model (model structure 3).

These graphs show the limited information we derive for the study of the cohort dynamics, without being able
to utilize all of the observed mortality data.

( )cA x ( )c t x

1( )D x 1( )H t x

2 ( )D x 2 ( )H t x
Figure 7:  Dynamics in age-cohort effects based on the age-period-cohort model (model structure 3) defined in the

rectangular DEBF (Figure 1). ( )cA x and ( )c t x are the main additive effects, ( )iD x & ( )iH t x are the

interaction components in significant order, estimated, smoothed and projected ˆ ( )iD x age related components and

associated CI (left) and estimated, smoothed and predicted ˆ ( )iH t x cohort related components and associated CI (right)
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Figure 8, displays the most important age-cohort components, with associated forecasts and CIs under the DLR
structure, in order of significance, based on the age-period-cohort expanded model (model structure 3a), and
defined in the parallelogram DCGF (Figure 1). The third interaction term, which explains 14,3% of the residual
variance refers mostly to ages 30+, with positive values for the age related component 1( )D x . The cohort

associated PC, 1
ˆ ( )H t x , has negative values for the cohorts born in the period 1904-1937, indicating a

positive cohort effect for these cohorts. Particularly, for cohorts born in the period 1904-1913, the cohort rate of
improvement is positive, which implies that this positive cohort effect will be more noticeable for cohorts born
in that period. The second interaction term, which explains 17,9% of the residual variance, refers mostly to ages
24+, with negative values for the component 2 ( )D x . The cohort dependent PC has significant negative values
for cohorts born in the period 1920-1930, indicating a negative cohort effect for these cohorts, and has
significant positive values for cohorts born in the period 1904-1919 and 1931-1950, indicating a positive cohort
effect for these cohorts. The first interaction term, which explains 26% of the residual variance, refers mostly to
ages 10-20, with positive values for the component 3( )D x . The cohort dependent PC has significant positive
values for the most cohorts born in the period 1903-1932 (except for cohorts born in the period 1917-1919),
indicating a negative cohort effect for these cohorts. This effect seems to describe unexplained residual variance
due to the World Wars I & II.

Many authors have observed and analyzed these cohort effects. Renshaw and Haberman (2006), Booth and
Tickle (2008) and Cairns et. al. (2008, 2009) identify that individuals born around the period 1925 to 1935 have
experienced rather larger improvements in mortality compared with people born before or after this period.
Cairns et. al. (2008) note that cohorts born around 1930 have experienced strong rates of mortality improvement
between ages 40 and 70 relative to, say, cohorts born 10 years earlier or 10 years later and, for its part, the
cohort born around 1950 seems to have experienced worse mortality than the immediately preceding cohorts.
Possible explanations for this `golden' cohort include a healthy diet in the 1940s and early 1950s (or, to be more
precise, an absence of unhealthy food), and the introduction of the National Health Service in 1948. Also,
Richards et al (2005) report that the ‘cohort effect’ in this context is the observed phenomenon that people born
in the U.K. between 1925 and 1945 (centered on the generation born in 1931) have experienced more rapid
improvement in mortality than generations born on either side of this period. This study shows that there are
two ‘sub-cohorts’ of the 1925 to 1945 cohort: an earlier group where the improvements may be largely due to
smoking; and a later one where other factors, such as diet in early life, may have played a greater role. It is also
notable in this study that the second ‘sub-cohort’ of high mortality improvement, applying to people born in the
early 1940s, is found in both national population and insurance experiences. In this context, Willets (2004)
comments that the cohort effect in the U.K. is perhaps less about a `healthy generation benefiting from wartime
rationing and the Welfare State', and rather more the result of preceding generations being particularly
unhealthy and, indeed, `damaged' through, for example, exposure to smoking. Thus, the second cohort
component could relate to this ‘smoking’ effect, which describes death due to diseases heavily related to
smoking, such as chronic obstructive pulmonary disease, ischemic heart disease, stroke and cancer, mainly of
the lung, head and neck, oesophagus, stomach and the urinary bladder. Also, Booth & Tickle (2008), report
negative cohort effects (i.e. lower mortality) that have been identified at ages 65+ for cohorts born after 1900
and Richards et al. (2007) create two cohorts for this period: years of birth 1903–1909, 1910–1923.

The overall combined effects of the above cohort dynamics can be expressed by the main cohort effect
( )c t x . Figure 8 reveals that the main cohort effect, in the 20th century, has significant negative values, for

cohorts born in the periods 1912-1918 with positive cohort rate of improvement (implying a relative
improvement for successive cohorts), and also significant negative values for the cohorts born in the period
1929-1946, indicating a positive cohort effect for both those cohorts (“golden cohort” effect). In addition, the
main cohort effect has significant positive values, for cohorts born in the periods 1921-1928, indicating a
negative cohort effect for these cohorts (“smoking cohort” effect). A very interesting feature is also revealed for
cohorts 1918-1919 and 1946, where their values are distinct from their neighbourhoods, especially for cohort
1919.  In association with their negative values these cohorts have experienced relative higher improvements in
mortality compared with cohorts before or after these cohorts. The years 1918-1919 refer to time just after the
1st World War and the Spanish flu and the year 1946 refers to the time just after the 2nd World War.
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( )cA x ( )c t x

1( )D x 1
ˆ ( )H t x

2 ( )D x 2
ˆ ( )H t x

3( )D x 3
ˆ ( )H t x

Figure 8:  Dynamics in age-cohort effects based on the age-period-cohort expanded model (model structure 3a), in the

rectangular DCGF (Figure 1). ( )cA x and ( )c t x are the main additive effects, ( )iD x & ˆ ( )iH t x are the

interaction components in significant order, estimated, smoothed and projected ˆ ( )iD x age related components and

associated CI (left) and estimated, smoothed and predicted
ˆ̂ ( )iH t x cohort related components and associated CI (right)
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In the age-period-cohort expanded model (model structure 3a), and the discussion of the construction of
complete mortality tables in Appendix, the age main effects, ( )A x , are modelled with a DLR model with age
varying slope parameter: ( ) x xA x a b x e     where xb follows an IRW model, and xe is white noise.
Figure 9 shows the evolution of the IRW parameter xb . The inflection point, for this range of calendar years
(1841-2006) is again near the age ipx =84.

9.1 9.2
Figure 9:  The IRW age varying slope parameter x̂b , based on the age-period-cohort expanded model (model structure 3a),

with associated CIs (graph 9.1), and the corresponding ( )A x values with smoothed and projected estimations, with
associated CIs (graph 9.2).

Figure 10, shows the bootstrap 95% percentile bootstrap CIs for cohort life expectancies at birth ( 0 ( )e c , graph
10.1), and for cohort expected age at death given survival at age 65 ( 6565 ( )e c ,graph 10.2), for cohorts c=t-
x=1841,…,2006 and the complete age range 1 130,...,x x x (based on the age-period-cohort forecast-complete
model (model structure 6), parallelogram DHK F  , Figure 1). We note that the difference between the two
curves diminishes with time, and this convergence is in accordance with the reported “rectangularization”
feature for latest mortality experiences. The difference between the upper limit and the lower limit of the 95%
CIs for 0 ( )e c life expectancies have values from 0.5 to 1, and for 65( )e c life expectancies have values from
0.1 to 0.5. Particularly, in Figure 10.1 the difference between the upper limit and the lower limit of the CIs does
not become wider at the last cohorts and this feature is due to the procedure employed in section 2.2, treating
the extrapolated crude rates as a real data, in the incorporation of cohort effects.

10.1 10.2
Figure 10: Bootstrap 95% percentile CIs for cohort life expectancies at birth (graph 10.1) and cohort expected age at death
given survival at age 65 (graph 10.2), for E&W males, based on the age-period-cohort forecast-complete model (model
structure 6).
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Figure 11, shows the difference between successive observed-projected cohort life expectancies at birth
( 0 0 0( ) ( 1) ( )e c e c e c    ) and observed-projected cohort expected age at death given survival at age 65
( 65 65 65( ) ( 1) ( )e c e c e c    ), for cohorts c=t-x=1841,…,2006 and the complete age range 1 130,...,x x x
(based on the age-period-cohort forecast-complete model, model structure 6), parallelogram DHK F  , Figure
1). We note that for graph 11.2, the differences in cohort life expectancies have the biggest values for cohorts
born in the period 1901-1932, with an outlier at cohort 1919.

11.1 11.2
Figure 11: Difference between successive observed-projected cohort life expectancies at birth (graph 11.1) and at age 65

(graph 11.2), for cohorts c=t-x=1841,…,2006 and complete age range 1 130,...,x x x , for E&W males.

Figure 12, shows observed log central mortality rates, smoothed and projected log-central mortality rates and
associated 95% CIs (based on the age-period-cohort forecast-complete model, model structure 6), (only values
inside the parallelogram DCG F  , Figure 1).

x=10 x=20 x=30

x=40 x=50 x=60

x=70 x=80 x=90
Figure 12: Observed log central mortality rates, smoothed and predicted log central mortality rates and associated CIs, for

ages x=10,20,30,40,50,60,70,80 and 90, for E&W males.
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3.5 Using Principal Component Analysis

In order to compare the SPC approach with the conventional PC approach (see Hatzopoulos and Haberman
(2009)), we present the results for the same data set (E & W males), using the conventional PC analysis
approach. Figure 13, shows the standardized deviance residuals (SDR) plotted against age, time and cohort
effects, for England & Wales for the period 1841-2006 and ages 0-89, under the age-period model (model
structure 1, with p=6  PCs). For the age-period model, i.e. after keeping only the first 6 PCs, the overall
patterns of the total SDR against age and time (graphs 13.a 13.b) indicate an appropriate fit and show clear
patterns for the cohort effects (graph 13.c), very similar results with Figure 2.

13.a 13.b 13.c
Figure 13: SDR vs. age, time and cohort effects for the age-period model, using PC analysis

Table 4, gives the eigenvalues ( i -values), in significant order, based on the age-period model (model structure
1 and PC approach), with the associated percentage variance explained (%var), mean association values im and
associated (bootstrap) confidence level (CL) values. Although the CL criterion gives three only significant PCs,
in order to compare the two approaches we demonstrate the first six PCs (which together explain the 99,78% of
the total variance).

PC
index i % var im %CL

1 6,09E+01 9,49E-01 -8,77E-02 100,0
2 2,15E+00 3,36E-02 -7,42E-03 100,0
3 5,34E-01 8,33E-03 -4,90E-02 100,0
4 3,00E-01 4,67E-03 -1,91E-02 72,8
5 7,00E-02 1,09E-03 1,15E-03 95,1
6 5,12E-02 7,98E-04 1,54E-02 53,1
7 2,43E-02 3,79E-04 -1,36E-02 78,8
8 1,99E-02 3,10E-04 6,55E-03 56,3
9 1,67E-02 2,60E-04 -3,98E-03 59,9

10 1,55E-02 2,42E-04 -7,62E-03 57,5
11 1,34E-02 2,09E-04 -2,47E-03 56,4
12 1,13E-02 1,76E-04 3,28E-03 56,2
13 1,04E-02 1,63E-04 -4,65E-03 56,0
14 7,54E-03 1,18E-04 1,13E-03 55,6
15 6,06E-03 9,45E-05 -9,47E-04 55,1
16 4,48E-03 6,99E-05 2,94E-03 54,7
17 3,28E-03 5,11E-05 -2,16E-03 54,3
18 2,93E-03 4,57E-05 7,08E-04 54,0
19 2,21E-03 3,44E-05 -5,48E-04 53,4
20 1,69E-03 2,64E-05 9,71E-04 52,9
21 1,11E-03 1,72E-05 -9,91E-04 52,7
22 9,18E-04 1,43E-05 2,02E-04 50,1
23 8,19E-04 1,28E-05 -1,58E-04 50,1
24 5,77E-04 8,99E-06 -7,48E-05 50,5
25 1,17E-04 1,83E-06 -4,17E-04 50,2

Table 4: Eigenvalues based on the age-period model (model structure 1 with PC analysis), with the associated percentage
variance explained, im values and related bootstrap confidence levels (CL).
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Figure 14, displays the first six components for the age-period model (model structure 1, with PC analysis). As
was expected, the first interaction term dominates the mortality dynamics, which explains the 94,9% of the total
variation (Table 4), and refers to the whole age range (0-89). The other five interactions explain relative
deviations from the first interaction term. The second interaction term, which explains 3,36% of the total
variation, refers to ages 19-30, according to the maximum association value (MAV). We note that the age
component 2 ( )g x , is very similar with the 4 ( )g x age component under the SPC approach (Figure 6), which
explained as the “accident hump” effect. The third interaction term, according to the MAV, refers to ages 53-82,
and its time component shows a rapid relative improvement after the 1980s. The fourth interaction term,
according to the MAV, refers to ages 7-15 and 31-43. It is very complicated to explain this interaction term
because it is a combined effect from those two age groups. We note, that the age groups 10-14 and 31-41
explain the fifth and sixth interaction term respectively under the SPC approach (Figure 6). The same
difficulties arise for the other two interaction terms as well. The fifth interaction term, refers to ages 44-52 and
83-89. We note, that the age group 42-48 explains the seventh interaction term under the SPC approach (Figure
6). The sixth interaction term, refers to ages 1-2 and 16-18. We note, that the age group 16-18 explains the third
interaction term under the SPC approach (Figure 6). Also, we note the main additive terms, ( )A x and ( )b t , are
almost identical under both approaches (Figure 6).

( )A x ( )b t

1( )g x 1( )Y t

2 ( )g x 2 ( )Y t
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3( )g x 3( )Y t

4 ( )g x 4 ( )Y t

5 ( )g x 5 ( )Y t

6 ( )g x 6 ( )Y t
Figure 14:  Dynamics in age-time effects based on the age-period model (model structure 1, under PC approach) in the
rectangular ADCB (Figure 1). ( )A x (with associated CI) and ( )b t (with associated CI) are the main additive effects,

( )ig x & ( )iY t are the interaction components in significant order, ( )ig x are the age related components and bootstrap

associated CI (left) and estimated, ( )iY t time related components and associated CI (right).
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4. Discussion

We have investigated a new approach to the modeling and projected of mortality rates for the age-time-cohort
effects. An extended version of Hatzopoulos and Haberman (2009) dynamic parametric model is presented
incorporating the cohort effect. A one-factor parameterized exponential orthonormal polynomials in age effects
within the GLM framework treating calendar year as a factor. Then, we apply SPCA to the time dependent
GLM non-stationary time series parameter estimates in order to provide (marginal) estimates for a two-factor
PC approach structure (the age-period model). Then, we model the age-period residuals by one-factor
parameterized exponential orthonormal polynomials in age effects treating now cohort as a factor. Finally, we
apply PCA to cohort dependent GLM parameter estimates in order to provide (conditional) estimates for a two-
factor structure in age and cohort effects. Overall, in this way a three-way structure is derived in age-period-
cohort effects (the age-period-cohort model).

Utilizing SPCA, the proposed method differentiates from the LC and the Hatzopoulos and Haberman (2009)
method by providing estimates which are based on the eigenvalue decomposition of the sparse covariance
matrix of the GLM non-stationary time series parameter estimates. SPCA with E&W male mortality experience
implies two main age groups (see section 3), in contrast with the Hatzopoulos and Haberman (2009) approach
where only the first PC dominates the age-time dynamics. SPCA approach avoids the high interdependence
structure for different range of ages, with possible spurious interpretations and forecasting (see Figure 14), and
improves this problematic dependent structure by giving a better clustering of significant high factor loading
values (see Figure 6). In empirical studies with various mortality experiences we get similar results, where the
first age group corresponds to childhood-middle ages and the second age group corresponds to senescent
mortality. This result is in accordance with many of the well-known parameterized mathematical laws, which
have been proposed for the construction of mortality tables (Pitacco et al, 2009). Thus, Heligman and Pollard
(1980) introduce an eight-parameter model with three terms capturing the age pattern of mortality in childhood,
young adulthood and senescence; Rogers and Planck (1983) apply a four-term nine-parameter formula with
exponentially declining child mortality, a double exponential accident hump and a Gompertz term representing
senescent mortality; Siler (1983) propose an eight-parameter model with three independent terms describing
mortality during ‘immaturity’, adulthood and senescent. Also Mode and Busby (1982), and Rogers and Little
(1993), inter alia, each propose a mathematical law, where they use different mathematical formulae for
different age groups, usually involving 3 or 4 different age groups, in order to describe the whole mortality in
age effects. Although the above parameterized mathematical laws can adequately describe the age variation in
mortality experience, for each successive time period, the deficiency of this approach comes from the high
interdependencies between the time series for the different parameters which cause serious difficulties for
forecasting and for estimating the forecast prediction intervals. In contrast, with our proposed method, the
columns of the GLM parameter time series estimates 1{ ( )}j tb B in the age-period(-cohort) model
encompass a high correlation structure, and this correlation structure is exploited and modelled by the proposed
method. The only difference with the other parameterized approaches is that all of the GLM parameter
estimates are on the same scale and this facilitates the application of PCA to the variance-covariance matrix.

The age-period-cohort association model (model structure 4) provides estimates for a statistical association
model for a three-way cross-classification table with age, time and cohort being the three main random effects.
Under this approach, the components ( )b t and ( )c t x are important terms, since they describe the overall
mortality trend in time and cohort effects, providing additional insights into the overall mortality dynamics,
especially in cases where many dynamic factors are present. Also, the main age random effect component ( )A x
is very informative about the correlation structure among the ages.

We utilize DLR models for modelling and forecasting the age-time and cohort related components. The
statistical treatment of the DLR models is based on the state space framework and the Kalman filter. The period
dependent PCs are modelled as linear functions in time, under DLR modelling, with the slope following a RW
time series process. The cohort dependent PCs are modelled as RW plus noise time series, since conditional on
age-time effects, the cohort PCs are assumed to be mean reverting stochastic processes. For the construction of
a complete life table, we introduce a dynamic variant of the Gompertz law, applied to the age related
components, assuming that the slope term of Gompertz law is an IRW time series process, under DLR
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modelling. These DLR estimates in age-period-cohort effects ensure that we have continuity and smoothness
across all three variants for the mortality rates (the degree of smoothness, if desired, can be controlled by the
appropriate NVR hyper-parameters).

In the literature, many authors point out that, in order to assess whether any stochastic mortality model is a good
model or not, it is important to consider certain criteria against which the model can be tested. Following Cairns
et. al. (2008), we consider the following key criteria:

1. Mortality rates should be positive; positive mortality central values are assured in our model structure
since the log link function is being used with a Poisson GLM structure.
2. The model should be consistent with the historical data; the proposed model incorporates a great degree
of flexibility in order to capture historical mortality trends and dynamic mortality changes. With dynamic
linear regression modeling, we are able to utilize all of the available historic mortality patterns without the
restricted assumption that the logarithms of the mortality rates are approximately a linear function of time,
an assumption which imposes restrictions in the dominant time component. Further, under the age-period
full model structure (see Model 1, Hatzopoulos and Haberman (2009)), the polynomial expansion approach
for modelling age patterns of mortality renders great flexibility in the graduation process since most
continuous functions can be approximated by a polynomial to any degree of accuracy in the form of a
Taylor power series.
3. Long-term dynamics under the model should be biologically reasonable; under the age-period-cohort
expanded model (model structure 3a), the PC scores, ( )iY t and ˆ ( )iH t x estimates, describe the long-
term dynamics, and in association with the age profiles, ( )ig x and ( )iD x respectively, they are dynamic
factors and they can be labelled in association with SPCA. SPCA enables the construction of a few
stochastic PCs, which describe the dynamics of different age group. The England and Wales mortality
experience leads to 7 factors, where each one describes certain dynamics in the mortality evolution. For
example the 4th factor can be labelled as the “accident hump” effect or the 2nd factor, in age-period-cohort
effects, can be labelled as the “golden cohort effect”.
4. Parameter estimates and model forecasts should be robust relative to the period of data and range of
ages employed; Empirical studies with various mortality experiences verify this criterion.
5. Forecast levels of uncertainly and central trajectories should be plausible and consistent with historical
trends and variability in mortality data; Figure 12, which displays observed and projected log central
mortality rates for some ages, exhibits smoothed estimates which are plausible and consistent with historical
and future trends.
6. The model should be straightforward to implement using analytical methods or fast numerical
algorithms; all the computations have been implemented in Matlab.
7. The model should be relatively parsimonious; in the presence of cohort effects, the model is expressed
by the simple model structure (3).
8. It should be possible to use the model to generate sample paths and calculate prediction intervals; the
proposed method utilizes parametric bootstrapping and gives bootstrap confidence intervals for the mean
association values (CL-criterion) and confidence intervals for the expected remaining lifetime.
9. The structure of the model should make it possible to incorporate parameter uncertainty in simulations;
the proposed method utilizes parametric bootstrapping and for each bootstrap sample, the GLM parameters

( )iB are estimated.
10. At least for some countries, the model should incorporate a stochastic cohort effect; the age-period-
cohort model (model structure 3) incorporates a stochastic cohort effect.
11. The model should have a non-trivial correlation structure; under the age-period-cohort model (model
structure 3), there are p-time PCs and q-cohort PCs, leading to a non-trivial correlation structure.
12. The model is applicable for the full age range; the model applied to England and Wales male mortality
experience over the whole range of ages (0-89).
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Appendix

From various mortality investigations in developed countries, it has been observed that life expectancy at birth
has increased steadily during the 20th century without showing any sign of approaching a fixed limit. In
addition, it has been observed that the number of people surviving up to the older ages (for example 80 years
and above) has increased considerably. Although crude mortality rates (i.e. population estimates and reported
deaths) at these ages are available, they are biased by poor age reporting regarding both those alive and those
who die and the pattern at the very old ages is heavily affected by random fluctuations because of the scarcity of
the data. Thus, these rates lack the required quality needed for the construction of complete life tables.

Various methodologies have been proposed for estimating mortality rates at the oldest ages, projecting the
mortality indices along the age axis up to the ultimate age ω using extrapolation techniques. Empirical
observation shows that the curve of mortality rates, on a logarithmic scale, presents a concave shape for the
oldest ages in contrast with the simple Gompertz law which assumes that the exponential rate of mortality
increase is constant (the Gompertz law, on a logarithmic scale, is  ln xm a b x   ). In order to capture this
empirical evidence, many models have been proposed by various authors.

One of the most well known approaches is the Coale-Kisker method (Coale and Kisker, 1990), which assumes
that the exponential rate of mortality increase at the oldest ages is not constant but declines linearly, a pattern
empirically confirmed by a number of studies (e.g., Horiuchi and Wilmoth, 1998).

The rate of mortality increase at age x is defined as
1

ln x
x

x

mk
m 

 
  
 

, up to age ω (usually ω=110 or 120), and,

in the Coale-Kisker method, this is assumed to be a linear function of the ages. We note that in the Gompertz
law, xk b .

A possible extension to the Gompertz law is obtained if we assume that the slope term , b, follows an integrated
random walk (IRW) time series model in order to capture the empirical patterns of mortality at oldest ages, i.e.
we assume that:

 ln x x xm a b x e    if 1 1x x xb b     

where x is white noise, 1x x xb b b    denotes the difference operation, and the ages have been rescaled:

mx x x   where mx denotes the median age (  1 / 2m ax x x  ).

This kind of modelling belongs to the class of DLR models with the slope now modelled as a stochastic age
variable parameter that follows an IRW process, and such can be estimated by state space models and Kalman
filter techniques. Empirical studies with mortality data supports this modelling.
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The smoothed estimated rate of mortality increase now becomes 1
ˆ ˆ ˆ
x x xk b b x     for 1,..., ax x x and the

projected rate of mortality increase is estimated by  1
ˆ ˆ ˆ 2

a a ax h x x a mk b b x h x        for

1,..., ah x x  , i.e. as a linear function of the oldest ages.

Empirical studies with the England & Wales males population on a cross-sectional basis, with ax =89, show
that the “inflection point”, say ipx , where the curvature changes sign and the log-mortality curve changes from

being convex to concave, i.e. the age in which the slope ( ˆ
xb ) becomes negative, varies as follows: from 1841-

1945 80ipx  , for 1945-1990 40 50ipx   , for 1990-2000 60ipx  , and for 2001-2006 89ipx  .

Due to the instability of this approach, instead of applying this model to the crude mortality rates in each
calendar year, we apply the above model structure to the age profile ( )A x (or to the age profile ( )A x in the
presence of cohort effects), which captures the age mortality patterns for all calendar years combined:

( ) x xA x a b x e   

if xb follows an IRW model, and xe is white noise. This approach gives more robust estimates, since the ( )A x
estimates are more reliable than the crude mortality rates, especially at the oldest ages.

Following this approach we also need smooth and extrapolated ( )ig x and ( )iD x values. We apply a simple
DLR model based on an independent RW plus noise time series model, and employ state space models and the
Kalman filter technique for estimation purposes:

, ,( ) p p
i i x i xg x b e  and , ,( ) c c

i i x i xD x b e 

if ,
p

i xb and ,
c
i xb follow an RW model and ,

p
i xe and ,

c
i xe are white noise. Applying this type of structure, we are

assured of smoothness and continuity to the mortality rates in age effects.

Thus, the final smoothed and projected model structure, in log scale, can be summarized as an age-period-
cohort complete model:

1 1

ˆ ˆ ˆˆ ˆlog( ( ))= ( ) ( ) ( ) ( ) ( )
p q

x i i i i
i i

m t A x g x Y t D x H t x
 

       (A1)

with ˆˆ ˆ( ) xA x a b x    if xb follows an IRW model, ,
ˆˆ ( ) p

i i xg x b and ,
ˆˆ ( ) c

i i xD x b if ,
p

i xb and ,
c
i xb follow an

RW model, for 1,..., ,...,ax x x x , and c=t-x= 1c ,…, n fc  .


