

City, University of London Institutional Repository

Citation: Comuzzi, M., Vonk, J. & Grefen, P. (2012). Measures and mechanisms for

process monitoring in evolving business networks. Data & Knowledge Engineering, 71(1),
pp. 1-28. doi: 10.1016/j.datak.2011.07.004

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4080/

Link to published version: https://doi.org/10.1016/j.datak.2011.07.004

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Measures and mechanisms for process monitoring in evolving business
networks

Marco Comuzzia,∗, Jochem Vonka, Paul Grefena

aSchool of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands

Abstract

The literature on monitoring of cross-organizational processes, executed within business networks, considers
monitoring only in the network formation phase, since network establishment determines what can be
monitored during process execution. In particular, the impact of evolution in such networks on monitoring
is not considered. When a business network evolves, e.g. contracts are introduced, updated, or dropped, or
actors join or leave the network, the monitoring requirements of the network actors change as well. As a
result, the monitorability of processes in the network may be disrupted. This paper proposes a framework
to solve the problem of preserving the monitorability of processes in an evolving business network. We first
propose a formal model of business networks, contracts, and monitoring requirements. Then, we model
network evolution and the mechanisms to preserve the monitorability of the processes in the network for
different types of evolution. In particular, the preservation of monitorability requires the actors in the
network to take appropriate actions in case of dependencies between already established contracts, and
update their monitoring infrastructure to satisfy the new monitoring requirements introduced by evolution.
We also define a set of metrics that can be used for supporting decisions regarding the potential evolution
of a business network. A case study in healthcare and the discussion of a prototype implementation show
the applicability of our framework in real-world scenarios.

Keywords: monitoring, contracts, business networks, business process, business network evolution,
monitoring capabilities, monitoring metrics, service monitoring.

1. Introduction

Faster market dynamics and fiercer competition push organizations to engage in complex, Internet-
enabled, highly dynamic collaborations, referred to as virtual enterprises (organizations) or collaborative
Business Networks (BNs) [28, 68]. Collaboration entails the enactment of cross-organizational business
processes, which are regulated by agreements between the actors constituting the business network [2, 5, 14].
Typical examples of business networks can be found in the automotive industry, where a main player, i.e.
the vehicles manufacturer, coordinates a complex network for the procurement of spare parts [28]. Other
examples can be found in the financial industry where, for instance, an insurance company may outsource
parts of its processes, such as loss adjustment, complaints management, and fraud detection, to external
companies, in order to focus on its core business.

Information technologies (IT) supporting BNs help the network partners to lower coordination costs,
i.e. reducing costs for communication [38], increasing opportunities for matchmaking, and enabling a more
agile switch among business partners [53]. As a form of market-based collaboration, however, BNs, when
compared with in-house business process execution, are characterized by higher control costs [24, 38], which

∗Corresponding author
Email addresses: m.comuzzi@tue.nl, Tel: +31 40 247 2183 (Marco Comuzzi), j.vonk@tue.nl, Tel: +31 40 247

5804 (Jochem Vonk), p.w.p.j.grefen@tue.nl, Tel: +31 40 247 5650 (Paul Grefen)

Preprint submitted to Data & Knowledge Engineering July 14, 2011

IT can help to reduce as well. When part of a business process is outsourced to external business partners,
in fact, an organization faces the need for controlling the execution of the outsourced process. Control is
characterized by risks derived from the possible inability of external providers to meet the expectations of
the outsourcing organizations [69]. Risks may translate into costs for the outsourcing organization. Control
costs can be ascribed either to the opportunistic behavior of the external providers (moral hazard) or to
their unsuitability to perform the task that has been assigned to them (adverse selection) [1, 7].

From a governance perspective [11], organization have to consider a strategy to reduce the risk of in-
creasing control costs. Organizations can choose to establish contracts with other partners in the BN and/or
monitor the execution of the outsourced business processes.

Contracts shift (part of) the risk of the external provider not meeting the expectations of the outsourcing
organization from the outsourcer to the external provider. In case the contract terms are not met, the
contract may define penalties for the external provider or, even in case the contract does not define penalties,
the external provider’s reputation may decrease, making it less likely to be selected in the future by the
same outsourcer [32].

Contracts, however, are a passive element of control, since they are signed before the collaboration
takes place. Contracts should always be coupled with the active monitoring of the business process taking
place during the enactment of the collaboration [55]. By collecting relevant information on the externally
executed business processes, the outsourcer can detect non-compliance of established contracts and decide
which control actions should be taken. Monitoring an external business process can be performed while
it is being executed, or after it has been completed (by reconstructing the relevant aspects of a process).
The former is referred to as on-line monitoring [21], run-time monitoring [9], continuous monitoring [18, 3],
or, simply, process monitoring [35, 76]. The latter is usually referred to as ex-post monitoring [18], off-line
monitoring [21], or process controlling [76]. This paper focuses on the former type of monitoring.

Monitoring is required to improve collaboration, for instance, in cases of synchronization issues on the
consumer side or in the case of dynamic sourcing. Synchronization is needed when a decision point in the
consumer process, e.g. a XOR split, requires information generated by the provider in its own process [30].
The synchronization between the consumer and provider is feasible only if the provider makes available such
information to the consumer, i.e. if the provider matches the consumer’s monitoring requirements on the
outsourced process. Note that each consumer may have different monitoring requirements and, therefore,
the provider cannot embed the provisioning of monitoring information directly in its own process.

Dynamic sourcing represents the case in which a consumer selects a provider at the very last possible
moment during the enactment of a process [28, 68]. Dynamic sourcing scenarios often imply spot collab-
oration, i.e. outsourcing may occur only during the enactment of one specific instance. In this case, the
only way for the consumer to verify the fulfillment of a contract is through monitoring while the outsourced
process is executed. The consumer, in fact, is not guaranteed to make business with the same provider in
the future and, most importantly, the provider may leave the business network before the consumer can run
the contract ex-post verification.

This paper proposes a framework to solve the problems arising in the aforementioned collaborative
scenarios when contract establishment and monitoring are not jointly considered as control mechanisms.
If the consumers monitoring requirements are only written in contracts, but the provider does not make
information available to match those, then the consumer is prevented from verifying the satisfaction of such
contracts. Specifically, in the synchronization scenario the consumer will not be provided with the right
information to synchronize its process, whereas in the dynamic sourcing scenario the consumer will simply
not have a means to verify the fulfillment of the established contracts. Similarly, the dynamic sourcing
scenario becomes particularly critical when monitoring information is available to the consumer, but not
associated to an established contract. Without a contract, the consumer has no guarantee on the behavior
of the provider, e.g. on the provided quality of service.

In collaborative settings, control through contract establishment and business process monitoring be-
comes additionally complex because:

• Process execution is likely to be distributed across a complex network of providers [2]. Contracts
between providers, therefore, should be balanced to make the expectations of the providers contributing

2

to the execution of the process coherent. In other words, outsourcing entails a dependency relation
among contracts. If, for instance, an organization has established an agreement on the completion time
of the activities delegated to an external actor, then the external actor should project such requirement
in the contracts established with its own providers;

• BNs can evolve as new business opportunities arise. Evolution, e.g. partner substitution, outsourcing,
or contract revision, is likely to disrupt the dependency among contracts and their monitorability.
Thus, partners in the network should strive for reestablishing the correct dependencies among contracts
and for updating their monitoring infrastructure as new monitoring requirements arise. As a sample,
outsourcing in highly regulated industries, such as healthcare or finance, often requires the outsourcing
organization to ensure that a process, when outsourced, still complies with strict regulations on privacy
on personal data management or traceability of billing and payments.

Hence, the framework presented in this paper, besides jointly considering contracts and monitoring of
business processes as a means to reduce the risk for synchronization and dynamic sourcing in business
networks, focuses also on the problem of preserving the monitorability of the agreements established in a
BN as it evolves, i.e. partners join or leave the network, or contracts are established, updated, revised,
completed or dropped.

First, we introduce a meta-model for contract-based business networks and their monitorability. Then,
we show that the preservation of the monitorability of the BN relies on a combination of (i) contract
replication (projection), to maintain the correct set of dependencies among the expectations of the partners
in the BN, and (ii) the update of the monitoring infrastructure, which has to the match the new monitoring
requirements introduced by the BN evolution. Additionally, we also propose a set of metrics for quantifying
the monitorability of the contracts established in the BN. The monitorability metrics serve as a further
criterion to evaluate the opportunity, for the whole BN or for specific partners, to make the BN evolve, i.e.
substituting a partner or outsourcing a business process.

An industrial case study and a prototype implementation demonstrate the applicability of the framework.
The case study concerns an evolving BN in healthcare involving both aspects of synchronization and dynamic
sourcing. Through the case study, we show how to use our framework to solve many problems related to
collaboration that are known to arise in current healthcare practice. The prototype shows the technical
feasibility of the framework adopting Web service technology and how the framework can be embedded
within different business process management and execution infrastructures.

This paper is organized as follows. Section 2 discusses the lifecycle of agreements in BNs and introduces a
meta-model for BNs and for the evolution of the contracts that regulate the business relationship among the
BN partners. Section 3 presents the mechanisms for preserving the monitorability of a BN in the presence
of BN evolution. The metrics to quantify the monitorability of a BN are given in Section 4. The case study
is discussed in Section 5, while the prototype implementation demonstrating the case study is presented in
Section 6. Eventually, the paper ends with a discussion on related work in Section 7 and conclusions and
outlining future work in Section 8.

2. Business Networks

To contextualize our framework, this section first discusses the lifecycle of agreements in BNs where
evolution can occur. Then, we introduce a meta-model of evolving business networks, which is later used to
exemplify the mechanisms for preserving the monitorability of agreements as a BN evolves.

2.1. The lifecycle of agreements in evolving Business Networks

We make the assumption that the collaboration within a BN is template-based and regulated by a set
of bilateral agreements, established between a process provider and a process consumer. Template-based
advertisement of providers’ capabilities and establishment of agreements is a typical contracting mechanism
[5, 37, 54], considered also by the service computing research community [17, 50, 53]. It is assumed, for

3

Evolution
Definition

Evolution
Assessment

Agreement Agreement Agreement Agreement

Detect
Opportunity

Implement
Evolution

Agreement
Definition

Agreement
Establishment

Agreement
Enactment

Agreement
Dismissal

Figure 1: Extended Agreement lifecycle of business networks

instance, by the WS-Agreement [75] specification, a de facto standard for the definition of agreements for
the usage of Web services.

Our proposed lifecycle of agreements in a BN extends the agreement lifecycle commonly envisioned in
the service-oriented computing research community [53]. The typical lifecycle of an agreement (or con-
tract) within a BN is shown in white shapes in Figure 1. It involves the phases of agreement definition,
establishment, enactment, and dismissal. In the agreement definition, the parties agree on the terms on
which the agreement can be established, e.g. parties may agree to include specific terms into agreement
templates, such as terms on the completion time of activities. This phase leads to the definition of new
agreement templates, or the update of existing ones. Then, during agreement establishment, the parties
reach an agreement on the terms according to which a process will be provisioned, e.g. parties negotiate
the actual completion time, expressed in days or hours, of the activities in the process. This phase results
in the signing of an actual agreement, which instantiates and completes an agreement template. Then, the
agreement is enacted, i.e. the process on which the agreement has been reached is executed. Eventually,
the agreement can be dismissed. This can occur when a partner leaves the network, when an agreement
is revised, and therefore substituted by an updated version, when one of the parties (or both) decide to
terminate the collaboration, or simply when a contract expires or the obligations specified in it have been
fulfilled.

In the context of evolving BNs, besides the agreement lifecycle, we introduce the evolution lifecycle,
represented in shaded shapes in Figure 1. While the BN is in operation, business actors in the BN may
realize that the network efficiency and/or effectiveness can be increased by changing the BN in some of its
aspects, i.e. if new agreements are introduced or if existing agreements are updated or dropped from the
BN. This phase is represented by the Evolution Definition phase and it leads to the definition of a set of
changes (or, as later defined, evolution types).

The implementation of an evolution type, e.g. the substitution of a partner, may have several impacts
on the BN such as the redefinition of existing contracts or the adaptation of existing protocols [61]. In
this paper, we focus specifically on the impact on monitorability of existing and new agreements in the
BN. More in detail, an evolution type may disrupt the monitorability of existing agreements and agreement
templates. In the case of partner substitution, for instance, the new partner may not be able to provide
monitoring information as its predecessor and, therefore, the agreements with the new partner should be
modified accordingly.

Hence, similarly to Business Process Reengineering (BPR) initiatives [44], the envisioned evolution types
must be assessed (see Evolution Assessment phase), to understand which changes are beneficial from the
monitorability perspective, and therefore worth implementing, and which changes, on the contrary, are not
beneficial, leading to a decreased monitorability of the BN. As for BPR initiatives, where potential change is
assessed against the key performance indicators of the reengineered process, the evolution assessment relies
on a set of monitorability metrics, which we describe in Section 4.

The Evolution Assessment phase objective is twofold. On the one hand, it assesses the actions that
should be undertaken to preserve (or improve, if possible) the monitorability of the BN. On the other hand,
it evaluates the monitorability metrics in the to-be situation, i.e. the one in which such actions are applied
in the BN. The output of this phase, therefore, is a set of actions that must be undertaken to restore the
monitorability of the BN for each evolution type that has been positively assessed. Eventually, the evolution

4

Figure 2: UML Class Diagram of business networks metamodel

types will be implemented within the BN, e.g. through the establishment of new templates and contracts,
or the update of the monitoring infrastucture of the actors constituting the BN.

2.2. A meta-model for Business Networks

The meta-model of BNs considered within our framework is shown in Figure 2. The elements of a BN are
partitioned into three different groups, or overlays, i.e. the structural, agreement, and monitoring overlays.
Overlays are identified in Figure 2 by the corresponding stereotypes.

2.2.1. Structural overlay

The structural overlay defines the BN in terms of the business actors participating in it and the processes
they contribute to it. A business actor can be the provider and/or the consumer (customer, user) of one
or more business processes. Considering the three level process framework introduced in [29], we deal with
processes specified using the public view. The public view of a process retains those aspects that are relevant
for the collaboration among partners in a BN and hides the internal detailed specification required for
process enactment by individual partners (specified in the private view).

We consider single-entry, single-exit, block-structured processes [25, 41]. Hence, a process is constituted
by a set of blocks. As it will be discussed later in this section, blocks are the process decomposition unit
to which clauses constituting agreements are associated. Blocks can be either atomic or structured. A
structured block has one or more children, i.e. sub-blocks (note the self-relation hasChild, which introduces
a hierarchical relation among blocks in a process). Blocks may be internal (InBlock in Figure 2), (atomic)
outsourced (OutBlock), or structured-outsourced (StructOutBlock).

Internal blocks can be either atomic or structured, and are executed by the business actor that performs
the business process to which the blocks belong. Outsourced blocks are delegated by the business actor
contributing the business process to a different business actor, i.e. a provider, in the BN. Hence, an outsourced
block refers to an external process contributed to the BN by a different businss actor (see the relation
refExtProcess). Structured-outsourced blocks are special blocks for which at least one of the children is an

5

ACT1 ACT2

Internal block
Outsourced block
Structured-outsourced block
Outsourcing (see refExtProcess in meta-model)

ACT1 ACT2

ACT3

(a) Outsourced block (b) Structured-outsourced block

A
A

B

X

Figure 3: Business process outsourcing in business networks

outsourced block or a structured-outsourced block again. Structured-outsourced blocks allow the definition
of agreements on blocks for which children can be outsourced to different providers. Their purpose will be
further explained later in this section.

We also consider the following constraints on outsourcing, which are not explicitly captured by the UML
class diagram of Figure 2:

1. An internal block cannot have outsourced or structured-outsourced children;

2. Outsourced block can only be atomic, i.e. they cannot have children, and they are outsourced to at
most one provider (who may then outsource again).

Figure 3 illustrates the possible structural overlays, in example BNs, allowed by our model using a UML
Activity diagram-like notation1. Figure 3a shows the outsourcing of the outsourced block A from ACT1 to
ACT2. Figure 3b exemplifies a structured-outsourced block (X). In particular, X has one internal child
block and two outsourced child blocks A and B that are outsourced to two different providers, i.e. ACT2

and ACT3, respectively. Note that only blocks A and B refer to a corresponding external process, while
the structured-outsourced block itself (i.e. X) is not outsourced and therefore does not refer to an external
process. Note also that the framework is not concerned with the blocks internal control structure. The
reason for this will be discussed later on, while introducing the monitoring overlay.

2.2.2. Agreement Overlay

The agreement overlay sits on top of the structural overlay, modeling the agreements among partners in
the BN.

Providers advertise agreement templates associated to the processes they contribute to the BN. Templates
contain the customizable terms under which an agreement can be established between a provider and a
consumer. Templates are not enforceable and are used by consumers to look for potential partners in the
BN. Consumers and providers establish agreements for the usage of a process contributed by a provider to
the BN. Agreements are enforceable and result from the customization of corresponding templates. Such
customization process is usually a negotiation between the provider and consumer, leading to an agreement

1We do not make an explicit choice on a business process modeling language, since processes in our framework can be
expressed using any language that allows hierarchy among activities and block-structuredness, e.g. UML Activity Diagrams
and BPMN [49].

6

on the terms associated with the process provisioning, which are enforceable during the agreement lifespan,
of which the process enactment itself is a large part (see Agreement Establishment phase in Figure 1).

Besides other information, which is not of interest for the purpose of this paper (e.g. the description
of partners or a human-readable specification of the agreement [5, 54]), templates are constituted by a set
of abstract clauses. Abstract clauses represent customizable constraints on the enactment of the process
and they refer to blocks of the process. Agreements are constituted by clauses, implementing corresponding
abstract clauses. A clause represents a customized constraint on the usage of a process and it is enforceable.
For instance, insurance companies may outsource the loss adjustment phase of their own claim management
process to a risk manager. A template advertised by a specific risk manager (provider) can allow insurance
companies (consumers) to set the number of different loss adjusters, i.e. experts required to provide an
estimate for a given claim. A corresponding clause, which derives from a negotiation, can state that the loss
adjusters will be at least two, providing two separate evaluations for any given claim.

It is worth noticing that our framework does not consider the semantics of abstract clauses and clauses.
Common languages for expressing electronic contracts and SLAs, e.g. WS-Agreement [75] or ebXML [48]
take a similar perspective defining a container structure for expressing service and SLA terms and leaving the
specification of those to domain specific languages. Work in [17, 16], for instance, considers a domain specific
language to express performance-related QoS of enterprise systems which is used within WS-Agreement
contract specifications. Domain specific languages should also embed the semantic of contract clauses, e.g.
by referring to domain specific ontologies. However, a generic contract management framework should
abstract from domain specific aspects and delegate the management of semantics to a domain specific
functionality.

After having introduced clauses and abstract clauses, we can now refine the conceptual motivation for
having structured outsourced blocks in our meta-model. Abstract clauses in templates (and, consequently,
clauses in agreements) are defined over blocks, which can be atomic or structured. An (abstract) clause
concerning a structured block may not be equivalent to the combination of (abstract) clauses over its
children.

In the claim management scenario, introduced before, the insurance company may define abstract clauses
for its prospective customers referring to the damage loss evaluation. The damage loss evaluation process
may have the following structure: the loss adjustment activity is outsourced to a risk manager, the fraud
check is outsourced to an external 3rd party auditor, and the company itself makes some internal processing
to integrate the results of these two activities. An abstract clause may state that the insurance company can
make available information on the internal progress of the damage loss evaluation (this information can be
used by consumers, for instance, to synchronize their own claim management internal process). Since part
of the block to which the abstract clause refers is outsourced, however, the insurance company is required
to establish two new individual abstract clauses, with the risk manager (to get progress information on the
loss adjustment) and the auditor (to get progress information on fraud check). The insurance company
can then integrate the information obtained from outsourcers with its internal progress information to
make progress information for damage loss evaluation available to the consumers. We can model this
situation only introducing the structured outsourced block. The structural and agreement overlays of the
insurance company will therefore include a structured outsourced block (damage loss evaluation) which
has two outsourced blocks as children, i.e. the loss adjustment, outsourced to the risk manager, and the
fraud check, outsourced to the auditor, and an internal block, i.e. the internal processing for integrating
results. Note that this scenario is also modeled by the process in Figure 3b when considering X as the
damage loss evaluation block (structured-outsourced), A as the loss adjustment and B as the fraud check
(both outsourced), and the remaining internally executed block as the processing required by the insurance
company to integrate the results of the two preceding activities.

We define the association projectsTo between abstract clauses of different templates to capture the con-
tract dependency introduced by process outsourcing. In case of an outsourced block, an abstract clause in
a template referring to an outsourced block projects to an abstract clause in a template advertised for the
process to which the block is outsourced. In case of structured-outsourced blocks, an abstract clause can be
projected onto a set of abstract clauses referring to templates of the processes to which the children of the
block have been outsourced.

7

2.2.3. Monitoring Overlay

The monitoring overlay sits on top of the agreement overlay, modeling the monitorability requirements
of the agreements established in the BN. In order to be monitored, in fact, an abstract clause induces
monitoring information requirements of the consumer, i.e. information that the consumer must obtain from
the provider to monitor a clause derived from such abstract clause. In the insurance claim management
scenario, for instance, a consumer requires information on the identity of the damage loss evaluators to
monitor a clause that states that two different experts are required to perform the evaluation of a given
claim.

We define a monitoring capability as the ability of a provider to provide monitoring information, match-
ing the information requirements of consumers to monitor the clauses in agreements. Note that monitoring
capabilities are associated to abstract clauses (see the monitors relation in Figure 2). Therefore, a monitoring
capability is used to monitor a clause that implements the abstract clause to which the monitoring capability
refers. From a technical standpoint, a monitoring capability is a point of access for the consumer to the
monitoring information made available by the provider to monitor a given abstract clause. In our imple-
mentation (see Section 6) the provider exposes a single Web service operation for accessing its monitoring
capabilities. Consumers use a parameterized Web service call to access the right monitoring capability and
to obtain information to monitor a specific clause.

Monitoring capabilities enable the monitoring of clauses derived from abstract clauses, which are as-
sociated to process blocks. The ability of a monitoring capability to make available the right monitoring
information to consumers does not depend on the specific path followed by the enactment (execution) of a
process block. In other words, monitoring capabilities in our framework are associated to process specifica-
tions, rather than process instances. This is the reason why our process model in the structural overlay does
not take into account the internal control structure of blocks. We argue that the provider could optimize
resource usage, for instance, by not guaranteeing monitoring for abstract clauses associated to blocks belong-
ing to branches that are only very seldom executed or by devoting more resources to guarantee monitoring
information on a critical loop structure that must be executed multiple times in every process instance.
However, we consider the aforementioned issues out of scope in this paper and we leave the discussion of
efficient resource allocation for monitoring to future work.

Monitoring capabilities are either native or aggregated. A native monitoring capability is used to retrieve
information to monitor a clause implementing an abstract clause that refers to an internal block. In other
words, monitoring information made available through a native monitoring capability can be captured by
the provider itself, within its own business domain. An aggregated monitoring capability is used to monitor
clauses referring to outsourced blocks or structured-outsourced blocks. The provider builds aggregated
monitoring capabilities as the aggregation of internally captured information and/or information obtained
through the monitoring capabilities exposed by the providers of the processes to which the corresponding
block is outsourced. Note that, in case of abstract clauses referring to structured-outsourced blocks, the
aggregate relation may link a monitoring capability to a set of monitoring capabilities, i.e one for each
children of the structured-outsourced block that is outsourced to a different provider.

It has to be noticed that our framework does not impose any specific constraint on the language for
expressing (abstract) clauses, such as the supported arithmetical or logical operators. The framework
considers (abstract) clauses only to the extent to which they induce monitoring requirements, which are
satisfied by corresponding monitoring capabilities. How the monitoring capabilities acquire the data or
what data is necessary to satisfy the monitoring requirements, and consequently satisfy the clauses in the
agreements is determined (and encapsulated) by the provider and is considered out of scope for this paper.
As an example, the previously mentioned abstract clause between the insurance company and the risk
manager on the number of loss adjusters requires a language in which it is possible to express the ”min”
operator, but what is important for our framework are the induced monitoring requirements, i.e. the risk
manager should make the identity of the loss adjusters available to the insurance company. Similarly, an
abstract clause allowing the consumer to monitor the intermediate progress of a request is identified by its
induced monitoring requirements, i.e. the provider should make intermediate progress information available
to its consumers.

8

Table 1: Set-theoretic representation of the Structural overlay meta-model.

Set Notation Related Predicates

Business
Network

BN = 〈ACT, PRO, TEM,AGR,MCP 〉

Business
Actors

ACT = {acta}a=1,...,A

Processes PRO = {prop}p=1,...,P contribute(acta, prop)

Blocks (ac-
tivities)

BLKp =
{
blkp,bp

}
bp=1,...,Bp

BLK =
⋃P

p=1 BLKp

hasChild
(
blkp,bp , blkp,cp

)
∧ 1 ≤ bp, cp ≤ Bp, bp 6= cp

refExtProcess
(
blkp,bp , proq

)
∧ p 6= q.

Table 2: Set-theoretic representation of the Agreement and Monitoring overlays meta-model.

Set Notation Related Predicates Comments

Templates TEM = {temt}t=1,...,T
hasProvider (temt, acta)
hasTemplate (prop, temt)

acta advertises the template
temt, which refers to process
prop

Abstract
Clauses

ACLt =
{
aclt,lt

}
lt=1,...,Lt

ACL =
⋃T

t=1 ACLt

appliesTo
(
aclt,lt , blkp,bp

)
aclProjectsTo

(
aclt,lt , acls,ls

)
∧ t 6= s

Abstract clause acls,ls is a
projection of aclt,lt

Agreements AGR = {agrg}g=1,...,G

implTem (agrg, temt)
hasCons(agrg, acta)
hasProv(agrg, actb)

The agreement agrg imple-
ments the template temt, and
has acta as a consumer and
actb as provider.

Clauses
CLAg =

{
clag,cg

}
cg=1,...,Cg

CLA =
⋃G

g=1 CLAg

implAcl
(
clag,cg , aclt,lt

)
claProjectsTo

(
clag,cg , claf,cf

)
∧g 6= f

Clause implement abstract
clauses. The clause claf,cf

is a projection of the clause
clag,cg

Monitoring
Capabilities MCP = {mcpm}m=1,...,M

exposes (acta,mcpm)
monitors

(
mcpm, aclt,lt

)
aggregates (mcpm,mcp1, · · · ,mcpJ)

A monitoring capability mcpm

aggregates one or more capa-
bilities mcpj , with 1 ≤ j ≤ J.

2.2.4. Set-theoretic representation of business networks

From the meta-model of Figure 2, we derive the set-theoretic representation of BN overlays shown in
Table 1 and Table 2 for the structural and the agreement and monitoring overlays, respectively. The set-
theoretic representation is required to give a clear specification of the algorithms for the preservation of the
monitorability of the BN presented in Section 3.

Classes in the meta-model are represented by sets, e.g. business actors or templates, whereas predicates
capture the relations among classes. Predicates take as arguments elements of the corresponding sets.
Note that, for the sake of clarity and conciseness of the notation, we do not use predicates for aggregation
relations, but we capture aggregation relations using subscripts of the elements of a set (see, as a sample,
the aggregation of abstract clauses lt, with lt = 1, . . . , Lt in a template temt in Table 2).

The type of a block is a value bt, with bt ∈ {I,O, SO}, for, respectively, Internal, Outsourced, and
Structured-Outsourced blocks. The type of monitoring capabilities is a value mt, with mt ∈ {N,A}, for,
respectively, native and aggregated capabilities. The block and monitoring capability type can be obtained
through the corresponding functions blockType() and mcpType(), with:

blockType : BLK 7→ {I,O, SO}
mcpType : MCP 7→ {N,A}

9

Table 3: Evolution types and related acronyms.

Element Action Acronym

Actor
ADD ADD-ACT

REMOVE REM-ACT

Process
ADD ADD-PRO

REMOVE REM-PRO

Abstract
Clause

ADD ADD-ACL

REMOVE REM-ACL

Template
ADD ADD-TEM

REMOVE REM-TEM

Clause
ADD ADD-CLA

REMOVE REM-CLA

Agreement ADD ADD-AGR

REMOVE REM-AGR

For the sake of clarity, we will also express the type of an element using a superscript. For instance,
blkSO

p,bp
represents a structured-outsourced block.

The modelling of the structural overlay is complemented by the definition of the function children(),
which takes as argument a block and returns the set of its children, i.e. sub-blocks:

children : BLK 7→ PBLK

children
(
blkp,bp

)
=
{
blk ∈ BLKp : hasChild

(
blkp,bp , blk

)}
Note that the function children() returns a set when called on structured-outsourced blocks and a single

element when called on outsourced blocks.

3. Evolution and Monitorability of Business Networks

Evolution of a business network may occur at the structural and agreement overlay levels, e.g. actors
may join or leave a BN and templates or agreements within the BN may be added or dropped.

More specifically, we classify evolution in a BN into different types according to the element of the BN
that will be modified, i.e. evolution of actors, processes, clauses, agreements, abstract clauses, and templates,
and the action to be taken on the considered element, i.e. add or remove to/from the BN (see Table 3 for
the evolution types acronyms). Note that the update of an element, e.g. the update of an agreement, is
modeled as the sequential combination of removing the current element and adding a new version of it.

For each evolution type in Table 3, we first list the corresponding pre- and post-conditions. Pre-conditions
should be verified in order for the evolution type to take place, whereas post-conditions describe the status
of the BN after the evolution type has occurred. Then, we discuss mechanisms that define how the BN
should react to the application of the evolution type. An evolution type, in fact, may lead the BN in a state
characterized by different types of inconsistencies. The mechanisms aim at guaranteeing the monitorability
of the elements that are added to the BN and preserving the monitorability of the elements already in use
in the BN. If mechanisms are not run, in fact, several inconsistencies in the BN may remain. Examples of
possible inconsistencies are abstract clauses that are not monitorable and, consequently, clauses that cannot
be monitored by consumers, templates and contracts that do not respect the correct dependencies, or clauses
linked to wrong monitoring capabilities, that is, capabilities that monitor the wrong abstract clause.

3.1. Structural evolution of a BN

Table 4 shows the pre- and post-conditions for the evolution types of the structural overlay of a BN. Note
that we consider the addition or removal of the generic actor acta and process prop and that we express pre-

10

Table 4: Pre- and post-conditions for Structural overlay evolution types.

Evolution type Pre-conditions Post-conditions

ADD-ACT(actA+1) actA+1 6∈ ACT ACT to−be = ACT ∪ {actA+1}

REM-ACT(acta)
acta ∈ ACT∧
{pro ∈ PRO : contribute(acta, pro)} = ∅ ACT to−be = ACT \ {acta}

ADD-PRO(proP+1, acta)
acta ∈ ACT∧
proP+1 6∈ PRO

PROto−be = PRO ∪ {proP+1}∧
contribute(acta, proP+1)

REM-PRO(prop)
prop ∈ PRO∧
{tem ∈ TEM : hasTemplate(prop, tem)} = ∅ PROto−be = PRO \ {prop}

Table 5: Actions for preserving monitorability.

Name Action

Abstract Clause Projection acls,Ls+1 ← ProjectAcl(aclt,lt , tems)

Clause Projection claf,Cf+1 ← ProjectCla(clag,cg , agrf)

Native Monitoring Capability Creation mcpN
M+1 ← CreateNatMcp(acta, aclt,lt)

Aggregated Monitoring Capability Creation mcpA
M+1 ← CreateAggMcp(acta, aclt,lt ,mcpmj

|j=1,...,J)

Internal re-sourcing of process block blkI
p,bp

← ReSource(blkO
p,bp

)

and post-conditions comparing the sets constituting the BN in the current situation in which the evolution
type has not yet been applied, i.e. the as-is situation, with the to-be situation, i.e. the one in which the
evolution type has been applied. The post-conditions also contain the predicates becoming true after the
implementation of the evolution type (see, as a sample, the predicate contributes(), which evaluates to true
after the evolution type ADD-PRO has been applied).

Concerning Table 4, the pre-condition for the introduction of new actors ensures that the actor to be
added does not exist yet in the BN. New processes can be introduced only by actors that already belong to
the BN. As post-condition, the new actor or process will be added to the corresponding actor or process set
of the BN. Only existing actors and processes can be removed from the BN. Additional pre-conditions state
that a process can only be removed if no templates referring to that process exist and an actor can only be
removed if it does not contribute a process to the BN.

From the point of view of the monitorability of the BN, introducing or removing actors and processes
do not modify the monitoring requirements of the actors belonging to the BN. Therefore, when structural
evolution occurs, no specific actions have to be taken to preserve the monitorability of the BN.

3.2. Actions to support monitorability

Before discussing the mechanism for reacting to evolution at the agreement overlay level, i.e. abstract
clause- and template-level evolution (in Section 3.3) and clause- and agreement-level evolution (in Sec-
tion 3.4), we describe the set of standard actions that may need to be undertaken by actors to preserve the
monitorability of the BN (see Table 5). Actions may concern (i) the projection of clauses or abstract clauses
made by a provider towards agreements or templates of external providers, (ii) the creation of native or
aggregated monitoring capabilities, and (iii) the internal sourcing of an outsourced block by an actor. Note
that (i) concerns the maintenance of correct dependencies among agreements established in the BN, (ii)
concerns the update of the monitoring infrastructure of the actors belonging to the BN, and (iii) concerns
the reconfiguration of the BN process in case a service provider is removed from the BN.

The projection of clauses is required, for instance, when new (abstract) clauses referring to a process
block that is outsourced by a provider are introduced. In this case, in fact, the provider should project the

11

new clause towards the actors to which the block (or part of it) is outsourced, in order to be able to reduce
the risk of not being able to deliver what is promised to its consumers.

Projections may concern either abstract clauses or clauses. Thus, we define two different projection
actions:

• aclr,Lr+1 ← ProjectAcl(aclt,lt , temr), which projects the abstract clause aclt,lt into a new abstract
clause aclr,Lr+1 belonging to the template temr; Besides the creation of the new abstract clause,
the projection also creates the link, made by the provider of the template temr, between the new
abstract clause and one of the blocks in the process proq to which the template temr refers, say
blkq,bq . In other words, from the modeling perspective, after the execution of the action, the predicates
aclProjectsTo(aclt,lt , aclr,Lr+1) and refersTo(aclr,Lr+1, blkq,bq) will evaluate to true.

• claf,Cf+1 ← ProjectCla(clag,cg , agrf), which projects the clause clag,cg , which complies to an ab-
stract clause, say aclt,lt , into a new clause claf,Cf+1 belonging to the agreement agrf , which com-
plies to an abstract clause aclr,lr . Note that the projection can be executed only if the predicate
projectsTo(aclt,lt , aclr,lr) evaluates to true. Furthermore, as for the projection of abstract clauses,
after the execution of the action the predicate claProjectsTo(aclt,lt , aclr,Lr+1) will evaluate to true.

For the structured outsourcing case, when a (abstract) clause referring to a structured-outsourced block
needs to be projected, the projection results in a set of projections actions, one for each external actor to
which the execution of parts of the children blocks is delegated. For example, as previously indicated, if an
insurance company outsources part of its damage loss evaluation to a risk manager (loss adjustment) and
a 3rd party auditor (fraud check), then an abstract clause allowing customers of the insurance company
to monitor the intermediate progress of the damage loss evaluation should be projected into two separate
clause, i.e. a clause in the agreement with (and consequently an abstract clause in the template defined by)
the risk manager, allowing to monitor the intermediate states of the loss adjustment, and a clause in the
agreement with (and an abstract clause in the template defined by) the auditor, allowing to monitor the
intermediate states of the fraud check.

Also, as previously introduced, since our framework does not consider the semantic of (abstract) clauses,
we make the hypothesis that projection can always occur always occur between semantically related clauses.
The implementation of this requirement is left specific to the application domain at hand.

The creation of monitoring capabilities is required, for instance, when adding a new abstract clause.
The creation of monitoring capabilities may involve only the provider of the block to which the abstract
clause refers (native monitoring capability) or it may concern also the partners to which such block has been
outsourced (aggregated monitoring capability). Hence, we define the following actions:

• mcpNM+1 ← CreateNatMcp(acta, aclt,lt), which returns a native monitoring capability mcpM+1 for
allowing the monitoring of the abstract clause aclt,lt . The monitoring capability is created by the
actor acta. After the execution of the action, the predicate monitors(mcpM+1, aclt,lt) will evaluate
to true. The new capability mcpM+1 is exposed by the provider of the template to which the clause
aclt,lt belongs;

• mcpAM+1 ← CreateAggMcp(acta, aclt,lt ,mcpm1
, · · · ,mcpmJ

), which returns an aggregated monitor-
ing capability mcpM+1 for allowing the monitoring of the abstract clause aclt,lt . The monitoring
capability is created by the actor acta. The capability is obtained through the aggregation of the
capabilities mcpmj

, with j = 1, . . . , J and J ≤ M . If the clause aclt,lt refers to an outsourced
block blk, with blockType(blk) = O, then the aggregation will involve only one external capabil-
ity, i.e. J = 1. If the block blk is structured-outsourced, i.e. blockType(blk) = SO, the aggre-
gation may involve more than one external capability, i.e. one for each of the child blocks of blk
that is outsourced to an external provider. After the execution of the action sets, the predicate
aggregates(mcpM+1,mcpm1

, · · · ,mcpmJ
) will evaluate to true. The new capability mcpM+1 is ex-

posed by the provider of the template to which the abstract clause aclt,lt belongs.

12

Table 6: Pre- and post-conditions for Abstract Clause- and Template-level evolution types.

Evolution type Pre-conditions Post-conditions

ADD-ACL(aclt,Lt+1,
blkp,bp , acta)

prop ∈ PRO ∧ temt ∈ TEM ∧
acta ∈ ACT
hasProvider (temt, acta)∧
hasTemplate (prop, temt)∧
aclt,Lt+1 6∈ ACLt

ACLto−be
t = ACLt ∪

{
aclt,Lt+1

}
∧

appliesTo(aclt,Lt+1, blkp,bp)

ADD-TEM(temT+1,
prop, acta)

acta ∈ ACT ∧ prop ∈ PRO∧
contributes (acta, prop)∧
temT+1 6∈ TEM

TEMto−be = TEM ∪ {temT+1}∧
hasTemplate(prop, temT+1)∧
hasProvider(temT+1, acta)

REM-ACL(aclt,lt) aclt,lt ∈ ACLt ACLto−be
t = ACLt \

{
aclt,lt

}
REM-TEM(temt) temt ∈ TEM ∧ ACLt = ∅ TEMto−be = TEM \ {temt}

Eventually, actors should be able to in-source a block of the processes that they contribute to the BN
in order, for instance, to preserve the monitorability of the BN when an actor, to which part of a process is
outsourced, leaves the BN.

Hence, we define the following action:

• blkIp,bp ← InSource(blkOp,bp), which changes the type of a block blkp,bp from outsourced,

i.e. blkType(blkp,bp) = O, to internal i.e. blkType(blkp,bp) = I , signifying the in-sourcing made by the
consumer of a block originally outsourced to an external provider. Note that only outsourced blocks
blk, with blockType(blk) = O, can be used as arguments of this action.

Since we focus on the monitoring problem, we assume that the projection of clauses and abstract clauses
and the internal sourcing of a block by a provider is always successful, i.e. the execution of the action always
leads to the correct creation of the expected outcome. Conversely, the creation of monitoring capabilities may
not be successful, i.e. a provider may not be able to create a mechanisms for providing monitoring information
to the consumers or it may not be able to aggregate correctly the monitoring information obtained by its
own providers. The actions CreateNatMcp() and CreateAggMcp() will return the conventional value null
to signify the failure of the creation of a monitoring capability. Note that the outcome of the creation of a
monitoring capability will have an impact on the value of the monitorability metrics for the evolving BN,
e.g. failure to create a monitoring capability associated to an abstract clause can decrease the monitorability
of the agreements with clauses derived from such an abstract clause.

3.3. Abstract clause- and Template-level evolution

The pre- and post conditions for Abstract Clause- and Template-level evolution types are shown in
Table 6.

ADD-ACL evolution type. In this case, a new abstract clause aclt,Lt+1 is added to a template temt

for which acta is the provider. The abstract clause aclt,Lt+1 must be added to an existing template and, as
post-condition, the abstract clause will be added to the set of existing abstract clauses and associated to a
specific block blkp,bp , belonging to the process prop to which temt refers.

ADD-TEM evolution type. In this case, a new empty template temT+1 referring to the process prop
and for which the actor acta is the provider is added to the BN. As post-condition, temT+1 is added to the
set of existing templates and associated to the process prop and provider acta.

REM-ACL evolution type. In this case, an existing abstract clause aclt,lt , with 1 ≤ lt ≤ Lt is removed
from the BN. As a post condition, the abstract clause will be removed from the set ACLt of abstract clauses
belonging to the template temt.

REM-TEM evolution type. In this case, an existing empty template temt, with 1 ≤ t ≤ T is removed
from the BN. As a post-condition, the template is removed from the set of existing templates.

13

ttem rtem

1, +tLtacl 1, +rLracl

extmcp1+Mmcp

aclProjectsTo()

refersTo() refersTo()

refExtProcess()

ttem rtem

pbpblk ,

refExtProcess()
pact oact AS-IS

TO-BE

ppro
qbqblk ,

qpro

pbpblk ,
pact oact

ppro
qbqblk ,

qpro

Internal Block
Outsourced block

Native monitoring
capability

Structured-outsourced
block

Template

Aggregated Monitoring
capability

Figure 4: Preserving monitorability for ADD-ACL evolution type

Note that template-level evolution considers only empty templates. In real-world scenarios, we model
the addition of a new template as the sequential combination of adding a new empty template and adding
each new abstract clause that appears in it. Similarly, a template can be deleted only when it is empty, i.e.
when all its abstract clauses have been previously deleted.

Algorithm 1 shows the mechanisms for preserving the monitorability of the BN in case of adding a new
abstract clause to an existing agreement (ADD-ACL evolution type, see Figure 4 for a graphical representa-
tion).

In order to guarantee the monitorability of the template in which the new abstract clause is introduced,
the provider actp of the template should create a corresponding new monitoring capability. The results of
the creation of the new monitoring capability may be either successful or not. In the former case, the new
abstract clause will be monitorable, whereas in the latter case the new abstract clause could still be included
in the template (for example to allow ex-post monitoring), but it will not be monitorable. Note that the
creation of a monitoring capability is not successful when the value of the created monitoring capability is
null.

The creation of the new monitoring capability is made by calling the BuildCapability() procedure. Three
cases may occur. In the first case (lines 2-3), the new abstract clause acl refers to a block that is internally
executed by actor act. Consequently, actor act creates a new native monitoring capability.

In the second case (lines 4-10), the new abstract clause acl refers to an atomic outsourced block. In
such situation, the outsourced block refers to an outsourced process proq executed by an external actor acto.
This outsourced process is governed by an agreement, which implements a specific template temr of that
external actor. The new abstract clause should be projected to that specific template (see line 5-6)2. After
the projection of the abstract clause, the external actor should create a suitable monitoring capability. If
the creation of such capability is successful, then act will create an aggregated monitoring capability for the
newly introduced abstract clause. Note that this process is recursive (see recursive call on line 9), i.e. it is
iterated until the projected clause refers to a block executed internally by the external actor.

In the third case (lines 11-26) the new abstract clause acl refers to a structured outsourced block. In
this situation, the mechanism for preserving the monitorability of the BN consists of recursively building
monitoring capabilities and projecting the abstract clause if required for each of the child blocks of the
structured outsourced block, after which those monitoring capabilities are aggregated by actor act. Note
that the creation of monitoring capability by act can be successful only if all the providers to which the child
blocks are outsourced are able to create their own monitoring capability and native monitoring capabilities

2We assume that only one agreement exists per outsourced process and argue that in situations where an outsourced process
could be governed by multiple agreements, these can be combined into one agreement containing conditional statements.

14

Algorithm 1 Restoring monitorability for ADD-ACL evolution type

1: procedure ADD-ACL(aclt,Lt+1, blkp,bp , actp)
2: mcpM+1 ← BuildCapability(aclt,Lt+1, blkp,bp , actp)
3: end procedure

1: procedure BuildCapability(acl, blk, act)
2: if blockType (blk) = {I} then {block is internal}
3: mcp← CreateNatMcp(act, acl)
4: else if blockType (blk) = {O} then {block is outsourced}
5: temr ← {tem ∈ TEM : hasTemplate(proq, tem) ∧ refExtProcess(blk, proq) ∧ implTem(agr, tem)

∧hasConsumer(agr, act)} {find the template implemented by the agreement that governs the out-
sourced process proq, referenced to by block blk}

6: aclr,Lr+1 ← ProjectAcl(acl, temr) { Project the abstract clause}
7: acto ← {act ∈ ACT : hasProvider(temr, act)}
8: blkq,bq ← {blk ∈ BLKq : appliesTo(aclr,Lr+1, blk)}
9: mcpext ← BuildCapability(aclr,Lr+1, blkq,bq , acto) { recursive call to external actor}

10: mcp← CreateAggMcp(act, aclt,Lt+1,mcpext)
11: else {block is structured outsourced}
12: MCPagg ← ∅ ; agg ← true {define set of monitoring capabilities to aggregate}
13: for all blkch : blkch ∈ children(blk) do
14: mcpch ← BuildCapability(acl, blkch, act)
15: if mcpch = null then
16: agg ← false; break {depth-first scan of the outsourcing tree}
17: else
18: MCPagg ←MCPagg ∪mcpch
19: end if
20: end for
21: if agg then
22: mcp← CreateAggMcp(act, acl,MCPagg) {Create aggregated monitoring capability}
23: else
24: mcp← null
25: end if
26: end if
27: return mcp
28: end procedure

can be created for all child blocks that are executed internally. The mechanism adopts a depth-first scan of
the outsourcing tree, i.e. the mechanism stops (see line 16) when a provider is not able to provide the native
monitoring capability required by its consumer for aggregation. Depth-first analysis is more efficient than
breadth-first analysis in this case, since the mechanism stops as soon as one of the capability required by
the actor act for aggregation cannot be created or when act cannot create a native monitoring capability
for internal blocks.

The time complexity of Algorithm 1 is O(n), where n is the number of children blocks of blkp,bp , under
the hypothesis that the non-recursive part of procedure BuildCapability() executes in constant time. From
a scalability point of view, the time complexity of BuildCapability() is determined by the time required
to physically create or to instantiate a new monitoring capability (line 22), which in many cases can be a
manual activity.

Since, as previously discussed, we consider empty templates, adding a new template in the BN (ADD-
TEM evolution type) does not represent a critical evolution type from the point of view of monitorability,
i.e. no specific action should be undertaken to preserve the monitorability of the BN.

Algorithm 2 shows the algorithm for preserving the monitorability of the BN in case of deletion of an

15

Algorithm 2 Preserving monitorability for REM-ACL evolution type

1: procedure REM-ACL(aclt,lt)
2: if @acl ∈ ACL : projectsTo(acl, aclt,lt) then
3: ACLt ← ACLt \ {aclt,lt}
4: end if
5: end procedure

Algorithm 3 Preserving monitorability for REM-TEM evolution type

1: procedure REM-TEM(temt)
2: if ACLt = ∅ then
3: TEM ← TEM \ {temt} {Remove the template}
4: else
5: prop ← {pro ∈ PRO : hasTemplate(pro, temt)}
6: actp ← {act ∈ ACT : contributes(act, prop)}
7: for all aclt,lt ∈ TEMt do
8: for all acls,ls ∈ ACL : projectsTo(acls,ls , aclt,lt) do
9: blkOc,bc ← {blk ∈ BLKq : appliesTo(acls,ls , blk)}

10: blkIc,bc ← InSource(blkOc,bc , prop) {in-source the external process}
11: actc ← {act ∈ ACT : hasProvider(tems, act)}
12: mcpM+1 ← BuildCapability(acls,ls , actc, blkc,bc , proc); {Build the new native capability}
13: end for
14: end for
15: TEM ← TEM \ {temt} {Remove the template}
16: end if
17: end procedure

abstract clause from an existing template (REM-ACL evolution type). The abstract clause aclt,lt to be
deleted (see Figure 5) may either be a projection of one or more clauses acls,ms

in templates published by
actp’s consumers, or not. In the former case (see conditional statement on line 2), the abstract clause cannot
be deleted straight away, but can be deleted only when the template to which it belongs is deleted (this case
is discussed later in this section). The deletion of the projected abstract clause aclt,lt , in fact, would result
in an incorrect dependency between future agreements, since actc will not be able to project clauses of an
agreement with its own consumer into the agreement with actp, because the corresponding abstract clause
aclt,lt has been deleted. In the latter case (aclt,lt is not a projection), the abstract clause can be simply
removed from the template (line 3).

When an abstract clause is deleted, the corresponding monitoring capability that monitors it should not
be deleted. Agreements can still exist in the BN that include clauses that implement the abstract clause that
is deleted, i.e. the deletion of an abstract clause does not lead to the deletion of the corresponding clause in
agreements. Consumers of agreements in the BN may still need to access the capability for monitoring those
clauses (for which the corresponding abstract clause is deleted). This principles draws from the literature
on dynamic workflow evolution, where evolution of a process should maintain consistency not only for the
new process instances, but also for instances that have not terminated by the time the evolution occurs
[12, 60, 19]. Note that garbage collection will also be needed when, for instance, a monitoring capability is
no longer used by any consumer and the provider wants to free the resources allocated to the implementation
of such capability. This considerations are out of scope in this paper.

For what concerns deleting an existing template, the algorithm for preserving monitorability for REM-
TEM evolution type is reported in Algorithm 3. If the template temt is empty, then it can be removed from
the BN (lines 2-4). If the template temt is not empty, then it contains one or more abstract clauses that are
the projection of other clauses acls,ls (see Figure 5). For each of these clauses, the corresponding consumer,
e.g. actc in Figure 5, needs first to in-source internally the block to which the abstract clause acls,m refers,

16

ttem

tltacl ,

pbpblk ,

2mmcp

refersTo() pact

stem

slsacl ,

cbcblk ,

1mmcp

refersTo()cact
refExtProcess()

aclProjectsTo()

stem

slsacl ,

1mmcp

refersTo()

AS-IS

TO-BE

monitors()
ppro

cpro
monitors()

aggregates()

cbcblk ,

cact

monitors()
cpro pbpblk ,

2mmcp

refersTo()
pact

ppro
monitors()

Internal Block
Outsourced block

Native monitoring
capability

Structured-outsourced
block

Template

Aggregated Monitoring
capability

Figure 5: Preserving monitorability for REM-ACL and REM-TEM evolution types

e.g. block blkc,bc (lines 9-10). Second, in order to preserve monitorability, actc is required to create a new
native monitoring capability for the monitoring of the clause acls,ls (lines 11-12).

The time complexity of Algorithm 3 is O(n ·m), where n is the number of abstract clauses in temt and
m is the average number of abstract clauses in other templates that project to abstract clause in temt. This
means that the time required to react to evolution depends, in this case, on both the structures of templates
and on the structure of the BN.

3.4. Clause- and Agreement-level evolution

The pre- and post-conditions for Clause- and Agreement-level evolution types are shown in Table 7.

Table 7: Pre- and post-conditions for clause-level evolution types.

Evolution type Pre-conditions Post-conditions

ADD-CLA(clag,Cg+1,

aclt,lt)

aclt,lt ∈ ACLt ∧ agrg ∈ AGR∧
implAbsClause(clag,Cg+1, aclt,lt)∧
clag,Cg+1 6∈ CLAg

CLAto−be
g = CLAg ∪

{
clag,g,Cg+1

}

ADD-AGR(agrG+1,
temt, acta)

temt ∈ TEM ∧ acta ∈ ACT∧
implTem (agrG+1, temt)∧
agrG+1 6∈ AGR

AGRto−be = AGR ∪ {agrG+1}∧
hasConsumer(agrG+1, acta)

REM-CLA(clag,cg) clag,cg ∈ CLAg CLAto−be
g = CLAg \

{
clag,cg

}
REM-AGR(agrg) agrg ∈ AGR ∧ CLAg 6= ∅ AGRto−be = AGR \ {agrg}

ADD-CLA evolution type. In this case, a new clause clag,Cg+1 is added to an existing agreement
agrg. Note that, in this paper, we do not focus on the mechanism to determine the compliance of clauses to
abstract clauses. In other words, only clauses compliant with abstract clauses (templates) can be added to
the BN. As a consequence, the predicate implAbsClause() appears as a pre-condition for the implementation
of the evolution type. As post-condition, the clause is added to the set of existing clauses for the agreement
agrg.

ADD-AGR evolution type. In this case, a new agreement agrG+1 for which acta is the consumer is
added to the BN. Similar as for clauses, only an agreement compliant with an existing template temt can
be added. As post-condition, the agreement is added to the set of existing agreements and associated to the
actor acta (as consumer).

17

REM-CLA evolution type. In this case, a clause clag,cg , with 1 ≤ c ≤ Cg, is removed from an existing
agreement agrg.

REM-AGR evolution type. In this case, an empty agreement agrg, with 1 ≤ g ≤ G, is removed from
the BN. As a result of the application of the evolution type, the agreement is removed from the set of existing
agreements.

Note that we consider the addition or deletion of empty agreements. Usually, however, agreements are
not empty, but they contain a set of clauses. The establishment of a new agreement in real-world settings
is the sequential combination of adding a new empty agreement and then adding all the clauses that have
been agreed by the provider and the consumer during the agreement establishment process. Similarly, an
agreement can be removed from the BN only when it is empty, i.e. when it does not contain clauses.

The mechanism for preserving monitorability in case of addition of a new clause is shown in Algorithm 4
and illustrated in Figure 6. If the new clause clag,Cg+1 implementing abstract clause aclt,lt refers to an
block blkp,bp internally executed by actp, then the new clause will be automatically linked to the monitoring
capability exposed by actp for the monitoring of the corresponding abstract clause aclt,lt (note that this
operation is not made explicit in the algorithm).

Algorithm 4 Preserving monitorability for ADD-CLA evolution type

1: procedure ADD-CLA(clag,Cg+1, aclt,lt)
2: blkp,bp ← {blk ∈ BLK : refersTo(aclt,lt , blk)} {identify the block refered to}
3: if blockType(blkp,bp) = {O} then {block is ousourced}
4: agrf ← {agr ∈ AGR : aclProjectsTo(aclt,lt , acls,ls)∧implTem(agr, tems)∧hasConsumer(agr, act)∧

hasProvider(temt, act)} {identify the agreement to which to project to}
5: claf,Cf+1 ← claProject(clag,Cg+1, agrf)
6: acls,ls ← {acl ∈ ACL : implAcl(claf,Cf+1, acl)}
7: ADD-CLA(claf,Cf+1, acls,ls) {recursive call in case the block is further outsourced}
8: else if blockType(blkp,bp) = {SO} then {block is structured outsourced}
9: for all blkch : blkch ∈ children(blkp,bp) do

10: ADD-CLA(clag,Cg+1, aclt,lt)
11: end for
12: end if
13: end procedure

If the new clause clag,Cg+1 refers to a block that is outsourced (see conditional statement on line 3), then
the clause should be projected to the agreement that governs the outsourced block. In line 4, the agreement
to which to project to is identified and the projection is performed in line 5. Because the outsourced block
can, in turn, also be outsourced, the ADD-CLA() procedure is called recursively(line 7) with the clause and
abstract clause identified in lines 5 and 6. If the new clause clag,Cg+1 refers to a block that is structured
outsourced, the clause should be projected to all agreements involved in the outsourced blocks that are part
of this structured outsourced block (see the recursive call on line 10). The time complexity of Algorithm 4
is O(n), where n is the number of children of the block to which clag,gc refers, under the hypothesis that
the non-recursive part of procedure ADD − CLA() executes in constant time.

Algorithm 5 shows the mechanism for preserving monitorability in case of deletion of a clause from an
existing agreement. A clause can be deleted only if it does not represent the projection of other clauses in
agreements that an actor has established with its own consumers. In other words, in order to preserve the
monitorability of the BN, a clause cannot be deleted if other clauses rely on it to project the monitoring
requirements on the actors to which the block to which the clause refers is outsourced. A clause can always
be removed if it has projections, since the removal does not introduce additional monitoring requirements
for the actors in the BN.

Agreement-level evolution is not critical from the point of view of the preservation of the uous moni-

18

stem

slsacl ,

refersTo()

ttem

tltacl ,

pbpblk ,

refersTo()

refExtProcess()

aclProjectsTo()

AS-IS

TO-BE

gagr

1, +gCgcla
claProjectsTo()

fagr

1, +fCfcla

implTem()
implTem()

stem

slsacl ,

refersTo()

ttem

tltacl ,

pbpblk ,

refersTo()

refExtProcess()

aclProjectsTo()

gagr fagr

implTem() implTem()

implAcl() implAcl()

Internal Block
Outsourced block

Native monitoring
capability

Template

Aggregated Monitoring
capability

Structured-outsourced
block

Agreement

Figure 6: Preserving monitorability for ADD-CLA evolution type

Algorithm 5 Preserving monitorability for REM-CLA evolution type

1: procedure REM-CLA(clag,cg)
2: if @cla ∈ CLA : claProjectsTo(cla, clag,cg) then
3: CLAg ← CLAg \ {clag,cg}
4: end if
5: end procedure

torability of the BN, i.e. the removal or addition of empty agreements in the BN do not entail any specific
actions. Note that, as previously remarked, an agreement can be removed only when it is empty, i.e. when
all the clauses that appeared in it have been deleted.

4. Monitorability metrics

As discussed in Section 2.1, the evolution assessment phase of the extended lifecycle of agreements in
evolving business networks requires the definition of a set of monitorability metrics. Monitorability metrics
are required to assess the possible evolution of the BN with respect to changes in monitorability within the
BN. Every evolution of the BN can potentially lead to an increase or decrease of the monitorability. The
monitorability metrics are used in determining whether an evolution is beneficial for the actors involved in
the evolution and/or for the BN in its entirety. Again, note that the monitorability metrics are concerned
with the possibility of monitoring, and do not include ex-post monitoring possibilities.

We define monitorability metrics along four different perspectives, i.e. basic, provider, consumer, and
network (see Table 8 for the list of monitorability metrics). Basic monitorability metrics refer to the evalu-
ation of the monitorability of an individual template or agreement in the BN. In the provider and consumer
perspectives we define metrics of individual actors within the BN. Specifically, the provider perspective
concerns the evaluation of the monitorability of the templates offered and agreements established within
the BN by a generic actor actp as a provider. The consumer perspective concerns the monitorability of the
agreements established by a generic actor actc as a consumer. Eventually, in the network perspective we
define the global monitorability of the whole set of templates or agreements in the BN.

The basis for the monitorability metrics is the mon() function, which takes as argument an abstract
clause acl and returns 1 if the provider of the template to which acl belongs exposes a monitoring capability

19

Table 8: Monitorability metrics.

Metric Perspective Comments

TM (temt) basic Monitorability of a template temt (Template Monitorability)

AM (agrg) basic Monitorability of an agreement agrg (Agreement Monitorability)

TMPRO (actp) provider Average monitorability of all templates for which actp is a provider

AMPRO (actp) provider
Average monitorability of all agreements for which actp is a provider,
i.e. agreements that implement templates advertised by actp

AMCON (actc) consumer Average monitorability of all agreements for which actc is a consumer

TMNET (BN) network Average monitorability of all templates in a BN

AMNET (BN) network Average monitorability of all agreements in a BN

mcp associated to acl, i.e. the clauses derived from acl are monitorable by consumers, and 0 otherwise. In
other words, the mon() function determines whether an abstract clause is monitorable or not:

mon : ACL 7→ {0, 1}

mon (acl) =

{
1 if ∃mcp ∈MCP : monitors (mcp, acl)

0 otherwise.

We define the monitorability of a template TM(temt) as the percentage of abstract clauses in the
template for which a corresponding monitoring capability is exposed by the provider of the template:

TM : TEM 7→ [0, 1] ⊆ R

TM(temt) =
1

|ACLt|
·

[∑
acl∈ACLt

mon (acl)

]

The monitorability of an agreement AM(agrg) is defined as the percentage of clauses in the agreement
agrg that can be monitored through an exposed monitoring capability. Because an agreement contains
clauses and monitoring capabilities are associated to abstract clauses, monitorability of an agreement cannot
be determined directly. First, the set of abstract clauses that are implemented by clauses in the agreement
need to be determined. In this regard, we define the set IMPL(agrg) as the set of abstract clauses in
the template temt, with implTemp(agrg, temt), that are implemented by the entire set of clauses in the
agreement agrg:

IMPL(agrg) = {acl ∈ ACLt : implTempl(agrg, temt) ∧ (∃cla ∈ CLAg : implAcl(cla, acl))}. (1)

The percentage of abstract clauses in the set IMPL(agrg) for which a monitoring capability is exposed
provides the monitorability of the agreement agrg:

AM : AGR 7→ [0, 1] ⊆ R

AM(agrg) =
1

|IMPL(agrg)|
·

 ∑
acl∈IMPL(agrg)

mon (acl)

From the provider point of view, we define the metrics TMPRO(actp) and AMPRO(actp), which

evaluate the average monitorability of the set of templates offered and set of agreements established as a
provider, respectively, by the actor actp.

20

Let us define the set TADV (actp), as the set of templates advertised by actor actp:

TADV (actp) = {tem ∈ TEM : hasProvider(tem, actp)} (2)

The metric TMPRO(actp) is defined as:

TMPRO : ACT 7→ [0, 1] ⊆ R

TMPRO(actp) =
1

|TADV (actp)|
·

 ∑
tem∈TADV (actp)

TM(tem)

Similarly, to determine the average monitorability of an agreement, in which the actor actp is a provider,

we need to define the set of agreements AESTpro(actp) established by actp as provider:

AESTpro(agrp) = {agr ∈ AGR : implTem(agr, tem) ∧ hasProvider(tem, actp)}. (3)

The metric AMPRO(agrg, actp) is subsequently defined as:

AMPRO : ACT 7→ [0, 1] ⊆ R

AMPRO(actp) =
1

|AESTpro(actp)|
·

 ∑
agr∈AESTpro(actp)

AM(agr)

The provider monitorability metrics are useful for a provider to determine monitoring deviations in the

advertised templates and established agreements. For example, if the monitorability of templates is higher
than the monitorability of corresponding agreements, then it means that, from a monitorability point of
view, the templates advertised by the provider offer more monitoring capabilities than are actually desired
(and chosen) by prospective consumers. As such, the resources used by the provider to guarantee the offered
monitoring capabilities are not used in the actual agreement established with a consumer, i.e. of the set
of monitorable abstract clauses, only a few are actually implemented as clauses in the agreement, or the
clauses in the agreement implement mostly those abstract clauses of the template that are not monitorable
(that have no monitoring capability associated to them). The definition of provider metrics allows providers
to detect such discrepancies so that they can decide to use such resources for other purposes, i.e. those
resources can be freed for other uses instead of being reserved as monitoring capabilities for abstract clauses
that will not be implemented as agreements (and for which monitoring is not required).

From the consumer point of view, we define the metric AMCON(actc), which evaluates the average
monitorability of the set of agreements established as a consumer by the actor actc. Note that, in the
consumer perspective, we cannot define a metric regarding templates, since, as we already discussed, a
template is not directly linked to a consumer (but only through an agreement).

Similar as with the provider perspective, we first define the set AESTcon(actc) to be the set of established
agreements by actc as a consumer:

AESTcon(actc) = {agr ∈ AGR : hasConsumer(agr, actc)}. (4)

The metric AMCON(actc) is then defined as:

AMCON : ACT 7→ [0, 1] ⊆ R

AMCON(actc) =
1

|AESTcon(actc)|
·

 ∑
agr∈AESTcon(actc)

AM(agr)

A high value of the AMCON(actc) metric can be advantageous for a consumer from a risk management

point of view, since the consumer can be aware of the service status of its providers. Moreover, a situation

21

in which consumer monitoring is linked to consumer control on the service execution enables consumers to
immediately take suitable control actions if the service execution deviates from an established agreement [6].
If it is less necessary for a consumer to be constantly aware of the status at its service providers, a lower
value of the AMCON(actc) metric can be acceptable.

Finally, in the network perspective, the metric TMNET (BN) is defined as the average monitorability
of all the templates belonging to the BN:

TMNET : BN 7→ [0, 1] ⊆ R

TMNET (BN) =
1

|TEM |
·

[∑
tem∈TEM

TM(tem)

]

Similarly, the metric AMNET (BN) is defined as the average monitorability of all the agreements be-
longing to the BN:

AMNET : BN 7→ [0, 1] ⊆ R

AMNET (BN) =
1

|AGR|
·

 ∑
agr∈AGR

AM(agr)

Both network metrics provide an indication on possible improvements in monitorability for the network,

by comparing the AMNET (BN) with the TMNET (BN). These metrics can be helpful for organizations
that play a coordinator role in the business network. If the monitorability can be improved for the entire
network, the coordinator organization can enforce a BN evolution, e.g., by exchanging/replacing actors in
the network.

For a more precise indication of where monitorability can be improved in the BN, it is useful to provide a
metric that determines the average monitorability of only those templates that refer to the processes/services
that are actually executed within the BN, and compare the value of that metric with the AMNET (BN)
metric. Note, in fact, that there could be processes in the BN referred to by templates that are never instan-
tiated into agreements. The monitorability of such templates is not important from a network perspective,
since the corresponding processes are actually never executed within the BN. In other words, the set of
processes in use in the BN is kept fixed in this case, to determine if the monitorability can be improved
by changing the set of templates (and consequently the set of agreements governing those processes). The
definition of such metric can be achieved in a few steps:

First we define the set of templates that correspond to the set of agreements defined in the BN:

TEMA(AGR) = {tem ∈ TEM : ∃agr ∈ AGR ∧ implTem(agr, tem)} (5)

Then we define the set of processes that are actually executed within the BN. As each template refers to
a process, but not all templates lead to agreements, this set contains only those processes that are governed
by an agreement:

PROA(AGR) = {pro ∈ PRO : ∃tem ∈ TEMA(AGR) ∧ hasTemplate(pro, tem)} (6)

Using the set of processes executed in the BN (PROA(AGR)), the set of templates that refer to those
processes is defined:

PROT (PRO) = {tem ∈ TEM : ∃pro ∈ PROA(AGR) ∧ hasTemplate(pro, tem)} (7)

Finally, the monitorability metric can be defined over the set that contains all templates that refer to

22

processes that are executed in the BN (PROT (PRO)):

TMPRO : BN 7→ [0, 1] ⊆ R

TMPRO(BN) =
1

|PROT (PRO)|
·

 ∑
tem∈PROT (PRO)

TM(tem)

If the value of TMPRO(BN) is higher than the value of AMNET (BN), then the monitorability of

the templates, and, consequently, processes, actually in use in the BN can possibly be improved. Deter-
mining improvements requires further investigation, as the change for improvement depends on the actual
abstract clauses that are implemented as clauses in the agreements. If TMPRO(BN) is lower or equal than
AMNET (BN), then monitorability cannot be improved and evolution in the BN should not take place
(at least not with respect to monitorability; other reasons for evolution could exist though, such as process
execution times, costs, etc.).

As illustrated for the TMPRO(BN) metric above, it is (relatively) easy to derive metrics other than the
ones defined in Table 8. More advanced metrics can be envisioned that distinguish among the importance of
abstract clauses for consumers or among the types of monitoring capabilities associated to abstract clauses,
or a combination thereof. Generally, our monitoring framework facilitates the evaluation and the design
of monitorabiliy metrics. The evaluation of monitorability metrics should rely on monitoring dashboards
that, similarly to Key Performance Indicators (KPI) dashboard, continuously assess their value during the
operation of a BN.

For a consumer, certain clauses in an agreement and/or template may be more important than others.
This can be accommodated by adding a weight factor to the (abstract) clauses, so that the monitorability
metric takes the importance of certain (abstract) clauses into account.

A provider could distinguish the monitorability of templates and/or agreements according to the nature
of the monitoring capabilities, i.e. native or aggregated. In this way, a provider may discover whether a low
monitorability of its own templates is due to shortcomings of its own monitoring infrastructure or of the
monitoring options made available by the actors to which parts of the process are outsourced. Aggregated
monitorability can be further separated into (i) aggregation of a structured outsourced block in which all
children are outsourced (ii) aggregation of a block for which the monitorability of all children is native,
or (iii) a combination thereof, i.e. the children of an structured outsourced block are outsourced and/or
performed in house.

We consider the definition of advanced metrics, such as the ones mentioned above, as future work.

5. Case study: teleradiology as an evolving business network

To show the applicability of our framework, we present an example scenario derived from a case study
in the teleradiology domain. The case study is extensively described, without reference to monitorability
issues, in [72] For reasons of clarity, we simplified the scenario to contain only parts relevant for this paper.

Process monitoring, support for providing reminders and alerts, and the ability to capture real-time pro-
cess information are considered crucial aspects for automated process support in the healthcare domain [64].
Additionally, improving collaborations between healthcare providers [34], linking hospitals with numerous
other organizations, e.g. general practitioners, insurance companies, and governmental departments, re-
quires a monitoring framework to enable synchronization of processes and to check collaboration agreement
adherence (and to act upon it) [6]. Within the healthcare domain, teleradiology is an already well-established
area in which collaborations between different organizations is commonplace and succesful [23, 45, 57], al-
though collaborations are usually considered to be static. In our view, collaborations (and thus agreements)
should be established much more dynamically. Hence, the example scenario presented here considers such
dynamic possibilities as appropriate.

Consider the situation as depicted in Figure 7. A Hospital (HOS) performs a radiology process, which
contains two activities performed in-house (Acquire, to acquire the required radiology scans and Diagnose

23

X_Int.

HOS

XSI

Radiology
Interpret

Acqui
re

XRay MRI

Diagn
ose

Internal block
Outsourced block / Placeholder

Structured outsourced block

Outsourcing (refExtProcess in meta-model)

X_Sch
edule

X_An
alysis

X_Rep
ort

MRI_Int.

M_Sch
edule

M_Dist
ribute

MSI

TXSI

mcp1

Native monitoring capability

mcp2TMSI

1,Macl

1,Xacl
AHS1

AHS2

1,1HScla

1,2HScla

Other relations (e.g. hasConsumer(), implAcl(), etc.)

Organizational Boundary

Template Agreement

Figure 7: Teleradiology example: initial setting

to determine a diagnosis on the bases of those acquired scans). HOS outsources the interpretation of the
acquired scans (Interpret) to two specialized scan interpretation service providers (XSI and MSI), each
performing its own process, i.e., X Int. and MRI Int. for the interpretation of X ray scans and MRI scans,
respectively. Both scan interpretation service providers have established an agreement with HOS (AHS1 and
AHS2 in Figure 7), based on the templates they have advertised, i.e. TXSI and TMSI, respectively. For
simplicity, each template contains only one abstract clause and each agreement contains only one clause (the
numbering is for referencing only and does not have a specific meaning). As can be seen in the figure, XSI
exposes monitoring capability mcp1 through abstract clause aclX,1, which is related to block X Analysis and
MSI exposes monitoring capability mcp2 through abstract clause aclM,1, related to block MRI Int.. The
set-theoretic notation (leaving out subscripts where the meaning is clear) of this initial collaborative setting
is shown in Table 9.

The templates and, consequently, the agreements, may contain clauses regarding the possibility for HOS
to monitor the identity of the experts performing the interpretation or to be able to monitor the progress
of the interpretation process. Hospitals, for instance, may require the identification of scan interpreter for
maintaining compliance to internal quality policies or they may need information on the progress of a request
to synchronize their own internal processes with the outsourced scan interpretation service. The monitoring
requirements derived from the templates MSI and XSI are matched by the monitoring capabilities mcp1 and
mcp2 exposed by XSI and MSI, respectively.

To illustrate evolution of the teleradiology business network, we first consider the case of adding a
consumer organization making use of the radiology service of the hospital. A second evolution consists of
the removal of one of the scan interpreters from the business network.

5.1. Evolution example 1: adding a service consumer

Because of spare capacity of the radiology department, HOS decides to offer the radiology process as a
service to other parties. To accomplish this, HOS defines a template that advertises the offered service. We
first consider a template defining a clause on the acquisition activity Acquire. HOS may allow consumers to

24

Table 9: Set-theoretic representation of the initial teleradiology scenario.

Set
Name

Set Value Predicates with true value

Business
Network

BN = 〈ACT, PRO, TEM,AGR,MCP 〉

Business
Actors

ACT = {HOS,XSI,MSI}

Processes PRO = {Radiology,X Int.,MRI Int.}
contribute(HOS,Radiology)
contribute(XSI,X Int.)
contribute(MSI,MRI Int.)

Blocks
(activ-
ities)

BLKRadiology =
{
RadiologySO, AcquireI , InterpretSO,

XRayO,MRIO, DiagnoseI
}

BLKX Int. =
{
X Int.I , X ScheduleI , X AnalysisI , X ReportI

}
BLKMRI Int. =

{
MRI Int.I ,M ScheduleI ,M DistributeI

}
BLK = BLKRadiology

⋃
BLKX Int.

⋃
BLKMRI Int.

hasChild (Radiology,Acquire)

hasChild (Radiology, Interpret)
hasChild (Radiology,Diagnose)
hasChild (Interpret,XRay)
hasChild (Interpret,MRI)
hasChild (X Int.,X Schedule)
hasChild (X Int.,X Analysis)
hasChild (X Int.,X Report)
hasChild (MRI Int,M Schedule)
hasChild (MRI Int.,M Distribute)
refExtProcess (XRay,X Int.)
refExtProcess (MRI,MRI Int.)

Templates TEM = {TXSI, TMSI}

hasProvider (TXSI,XSI)
hasProvider (TMSI,MSI)
hasTemplate (X Int., TXSI)
hasTemplate (MRI Int., TMSI)

Abstract
Clauses

ACLTXSI = {aclX,1}
ACLTMSI = {aclM,1}
ACL = ACLTXSI

⋃
ACLTMSI

appliesTo (aclX,1, X Analysis)
appliesTo (aclM,1,MRI Int.)

Agreements AGR = {AHS1, AHS2}

implTem (AHS1, TXSI)
implTem (AHS2, TMSI)
hasCons (AHS1, HOS)
hasCons (AHS2, HOS)
hasProv (AHS1, XSI)
hasProv (AHS2,MSI)

Clauses
CLAAHS1 = {claHS1,1}
CLAAHS2 = {claHS2,1}
CLA = CLAAHS1

⋃
ACLAHS2

implAcl (claHS1,1, aclX,1)
implAcl (claHS2,1, aclM,1)

Monitoring
Capabilities MCP = {mcp1,mcp2}

exposes (XSI,mcp1)
exposes (MSI,mcp2)
monitors (mcp1, aclX,1)
monitors (mcp2, aclM,1)

monitor the quality level of acquired scans. Getting information on the scan quality may be important for
specialized clinics managing complex cases, since low quality scans may prevent the application of advanced
diagnosis techniques. In other cases a lower level of quality may be sufficient, e.g. when patients are referred
to HOS by a General Practitioner (acting as a consumer of the Radiology process).

The evolution of the BN, as described above, includes adding a new template (ADD−TEM() evolution
type), followed by the addition of an abstract clause (ADD−ACL() evolution type) to that new template.
In order to maintain full monitorability of the published template, i.e. TMNET (BN) = 1, adding a new
abstract clause requires the addition of a monitoring capability.

If, for instance, the new abstract clause aclHOS,4 in the new template THOS concerns the ability of
customers to get information on the quality of the acquired scans, then the new native monitoring capability
mcp3 will represent a point of access for customers to the quality of the scan, as obtained by HOS during
the execution of the activity Acquire in the Radiology process. Note that the creation of the monitoring
capability is implied by the application of Algorithm 1 to restore the monitorability of the BN. The changes
to the set-theoretic representation, as a result of applying those evolution types, are listed in Table 10.

Now that the radiology service is offered (through template THOS), it can be used by service consumers.

25

Table 10: Changes as a result of offering the radiology process as a service.

Set
Name

Set Value Predicates with true value

Templates TEM = {THOS, TXSI, TMSI} hasProvider (THOS,HOS)
hasTemplate (Radiology, THOS)

Abstract
Clauses

ACLTHOS = {aclHOS,4}
ACL = ACLTHOS

⋃
ACLTSI

⋃
ACLTSIS

appliesTo (aclHOS,4, AcquireRadiology)

Monitoring
Capabilities MCP = {mcp3,mcp1,mcp2}

exposes (HOS,mcp3)
monitors (mcp3, aclHOS,4)

Visit

GP

Visit
Patient

Refer
Patient

Follow-
up

X_Int.

Radiology
HOS

XSI

Interpret

Acqui
re

XRay MRI

Diagn
ose

MRI_Int. MSI

TMSI

1,Macl

AHS2

1,2HScla

TXSI

1,Xacl

AHS1

1,1HScla

THOS

4,HOSacl
mcp3

AGH1

1,HOScla

Figure 8: Adding a service consumer to the teleradiology scenario

A general practitioner (GP) is added to the BN and establishes an agreement (AGH1) with HOS on the
basis of the advertised template (THOS). The resulting BN is shown in Figure 8 and the changes to the
set-theoretic representation are listed in Table 11.

As an additional complexity in the evolution of the BN, the radiology service consumer (GP) poses
an additional monitoring requirement after the agreement has already been established. The desired extra
monitoring involves the ability to monitor intermediate states and data during the process execution. The
GP, for instance, may not want to loose track of a patient, who is referred to HOS for a MRI scan, and
requires to monitor the progress of the patient throughout the Radiology process execution.

In this case, the following steps will take place:

1. A new abstract clause (aclHOSnew) is added to the template THOS, because the new monitoring
requirement is not covered by the existing abstract clauses in the template. The expanded template
can subsequently be advertised to other parties, if desired by HOS. It is up to HOS, as the service
provider, to decide either to create a new template with the new abstract clause, to update the existing
one, or to employ a versioning strategy on the evolution of templates. In this example, we choose to
add the new clause to the existing template THOS;

2. aclHOSnew is associated with the entire process, which is a block of the structured outsourced type.
Therefore, it is (also) linked to the structured outsourced interpret block. Then, HOS needs to make
sure that its providers can also accommodate for the monitoring specified in aclHOSnew. As a conse-
quence, the abstract clause needs to be projected to the templates that are associated to the externally
executed (outsourced) processes. In this case, aclHOSnew needs to be projected to TXSI and TMSI
(see abstract clauses aclXnew and aclMnew, respectively). Again, new templates can be created, or
existing ones can be updates and/or versioned;

26

Table 11: Changes as a result of adding a consumer for the radiology service.

Set
Name

Set Value Predicates with true value

Business
Actors

ACT = {GP,HOS,XSI,MSI}

Processes PRO = {V isit, Radiology,X Int.,MRI Int.} contribute(GP, V isit)

Blocks
(activ-
ities)

BLKV isit =
{
V isitSO, V isitPatientI , ReferPatientO, Follow − upI

}
BLK = BLKV isit

⋃
BLKRadiology

⋃
BLKX Int.

⋃
BLKMRI Int.

hasChild (V isit, V isitPatient)
hasChild (V isit, ReferPatient)
hasChild (V isit, Follow − up)
refExtProcess (ReferPatient, Radiology)

Agreements AGR = {AGH1, AHS1, AHS2} implTem (AGH1, THOS)
hasCons (AGH1, GP)

Clauses
CLAAGH1 = {claHOS,1}
CLA = CLAAGH1

⋃
CLAAHS1

⋃
ACLAHS2

implAcl (claHOS,1, aclHOS,4)

3. To maintain the full monitorability of the template THOS, according to Algorithm 1, an aggregated
monitoring capability needs to be created for this block, i.e., for the entire process. This aggregated
monitoring capability aggregates the monitoring capabilities that are created for each of the blocks’
children (native for an internal block, aggregated for a (structured) outsourced block). This needs
to be done for each of the structured outsourced blocks in a recursive fashion. i.e. for the interpret
block, XSI and MSI are required to develop native monitoring capabilities concerning the progress of
the process, which will be integrated by HOS to let GP monitor intermediate states and data of the
Radiology process. Note that if HOS cannot create the aggregated monitoring capability, then the
monitorability of the BN will decrease in several aspects, in particular, the monitorability of THOS
(TM(THOS) = 0.5), the monitorability of GP’s agreement (AMCON(GP) = 0.5), and of the BN as
a whole (TMNET = 0.83, resulting from a total of three templates, for one of which only half of the
abstract clauses are monitorable).

4. The new clause claHOSnew, which is the implementation of the abstract clause aclHOSnew, can now
be added to the agreement following Algorithm 4, which will lead to the clause being projected to
the existing agreements between HOS and XSI and between HOS and MSI (claXnew and claMnew,
respectively).

Table 12 presents the changes in the set-theoretic representation as a result of adding the new monitoring
requirement of the general practitioner (GP) to the agreement with HOS. Note, only changes with respect
to tables 9 to 11 are given.

5.2. Evolution example 2: removing an agreement

For a second example, consider removing the agreement between HOS and one of its interpretation
service providers, e.g. the agreement AHS2 with MSI. The following steps need to be taken to achieve the
removal of AHS2 :

1. The functionality provided by MSI has to be insourced by HOS, so that MRI scans are still being
interpreted after the agreement with MSI is removed;

2. The monitoring provided by MSI, has to be provided by HOS natively;

3. The agreement between HOS and MSI, i.e. AHS2 can now be deleted. Note that the premature
deletion of an agreement usually results in some penalties for the party dissolving the agreement.

Note that (2) is required to maintain the monitorability of the template THOS exposed by HOS. HOS
may also decide not to create the monitoring capability after insourcing the MRI scan interpretation. In
this case, the monitorability of the template THOS will decrease and, consequently, the monitorability of
the agreement AGH1 will also decrease.

27

Table 12: Changes as a result of adding a new clause to the existing agreement.

Set
Name

Set Value Predicates with true value

Abstract
Clauses

ACLTHOS = {aclHOSnew, aclHOS,4}
ACLXSI = {aclXnew, aclX,1}
ACLXMSI = {aclMnew, aclM,1}

appliesTo (aclHOSnew, Radiology)
appliesTo (aclXnew, X Int.)
appliesTo (aclMnew,MRI Int.)
aclProjectsTo(aclHOSnew, aclXnew)
aclProjectsTo(aclHOSnew, aclMnew)

Clauses

CLAAGH1 = {claHOSnew, claHOS,1}
CLAAHS1 = {claXnew, claHS1,1}
CLAAHS2 = {claMnew, claHS2,1}

implAcl (claHOSnew, aclHOSnew)
implAcl (claXnew, aclXnew)
implAcl (claMnew, aclMnew)
claProjectsTo(claHOSnew, claXnew)
claProjectsTo(claHOSnew, claMnew

Monitoring
Capabilities

MCP =
{
mcpA

new,mcpN
Acquire,

mcpA
Interpret,mcpN

Diagose,

mcpN
X Int.,mcpN

MRI Int.,
mcp3,mcp1,mcp2}

exposes
(
HOS,mcpA

new

)
exposes (XSI,mcpX Int.)
exposes (MSI,mcpMRI Int.)

monitors
(
mcpA

new, aclHOSnew

)
monitors

(
mcpA

X Int., aclXnew

)
monitors

(
mcpA

MRI Int., aclMnew

)
aggregates(mcpA

new, (mcpN
Acqiure,mcpA

Interpret,mcpN
Diagnose))

aggregates(mcpA
Interpret, (mcpN

X Int.,mcpN
MRI Int.))

Figure 9 shows the resulting collaboration setting. Even though AHS2 was removed from the collabora-
tion, the actor MSI has not been removed from the BN itself. Therefore, MSI still advertises the MRI Int.
service with the associated TMSI template. This template contains the original abstract clauses, but also
the abstract clause that was added to it as a result of the projection of the abstract clause that was in-
troduced by the service consumer GP, i.e. the intermediate results monitoring abstract clause. The actor
MSI can be removed after the template TMSI is removed from the BN (REM − TEM evolution type),
through the application of a REM − ACT evolution type. This scenario helps to clarify the role of the
advanced monitorability metrics given in Section 4. The template TMSI, in fact, belongs to the BN, but
it is not instantiated in any agreement and, therefore, it does not refer to any process currently execut-
ing in the BN. Let us make the hypothesis that THOS and TXSI have full monitorabiity (TM() = 1),
whereas TMSI is not monitorable (TM(TMSI) = 0). In this case, the monitorability of the BN will be low
(TMNET (BN) = 0.66), although the processes that are actually executed in the BN are fully monitorable,
i.e. TMPRO(BN) = 1.

In the next section, a prototype implementation for the monitoring framework is described, using the
radiology example scenario as introduced in this section.

6. Prototype implementation

To validate the feasibility of the monitoring framework presented in this paper, we have extended our
PROXE prototype system [70]. The PROXE system has been first introduced in [6] offering enhanced control
over outsourced business processes to the consumers of such business processes. The system is based on the
Business Process Web Service (BPWS) concept [30]. A BPWS is an extension of a regular Web Service (WS)
using predefined port types, so that the internal structure of the Web service can be exposed. Through this,
it becomes possible to monitor and control the outsourced business process (contained within the service
offered and performed by the service provider [71]). What exactly can be monitored and/or controlled is
specified in the accompanying electronic contract. The predefined port types in a BPWS are: ACT to invoke
a service, MON to monitor a service, CTRL to control a service, SYNC to synchronize with a service, and
SPEC to retrieve the specification of the service (process specification, contract, etc.). Because the focus
in this paper is on the monitoring framework in relation to business network evolution, the elements of the

28

Visit

GP

X_Int.Radiology
HOS

XSI

MRI_Int. MSI

TMSI

TXSI

Xnewacl

Mnewacl

THOS

HOSnewacl

AGH1

HOSnewcla

AHS1

Xnewcla

projectsTo()

claProjectsTo()1,HOScla

4,HOSacl 1,Xacl

1,Macl

1,1HScla

Figure 9: Removing an agreement (AHS2) from the teleradiology scenario

Radiology
BPWS Acquire

CMonI

Act

DB

DB Wrapper

XRay

MRI

Diagnose

DB Wrapper

YAWL Monitor

XSI
BPWS

MSI
BPWS

Proc. Eng. Wrapper

BPEL Engine

BPEL Monitor

Radiology
Process

Invocation calls

Monitoring calls

YAWL

YAWL Observer

X_Int & MRI_Int
Processes

ACT

MON

Figure 10: Implementation Architecture

system dedicated to controlling or synchronizing business processes, to retrieve specifications, or to validate
against electronic contracts, are not considered here.

Also, the focus of the implementation is on the run-time of the monitoring framework. In particular, we
show how we implemented the dynamic sourcing of process blocks and the implementation and instantia-
tion of monitoring capabilities in different process monitoring infrastructures, that is the OpenESB BPEL
engine [51] (a BPEL engine) and YAWL [65] (a workflow management system). The implementation does
not concern the design time of the framework and, in particular, the automated detection of evolution.

The example scenario used in the PROXE system is the teleradiology business network introduced in
the previous section. The radiology process is offered as a service to a service consumer, while two of
the activities that are part of the radiology process (X Int and MRI Int) can be outsourced to two other
service providers (XSI and MSI, respectively). The system architecture is shown in Figure 10. Rounded
rectangles represent services, either a BPWS or a regular WS. Normal rectangles represent components of
the system. Communication between the components and/or services is either related to service invocation
(dashed arrows) or to service monitoring (solid arrows).

The Radiology BPWS can be invoked (through ACT) and monitored (through MON). When the radi-
ology process is invoked, the call is passed on to the Act component, which validates the call against the
electronic contract associated with the process (we use a simple, ad-hoc, XML-based contract language),
and in case it is valid, instructs the BPEL engine to start an instance of the radiology process (see Figure 7
for the process structure). Each activity in the BPEL process calls a similarly named WS that performs the
tasks associated with that WS. The DB WS is used to store information required to correlate the BPEL

29

process instance with the specific consumer on which behalf the instance has been started. Within the XRay
and MRI Web Services, the choice whether or not these activities should be outsourced, is offered. In case
of outsourcing, the appropriate BPWS is called. In other words, outsourcing can be dynamically chosen
while the radiology process is executing.

On a call to the ACT interface of either XSI or MSI BPWSs, the PROXE system generates the ap-
propriate monitoring infrastructure based on the clauses specified in the corresponding electronic contract.
This means that for each monitoring clause in the electronic contract, the associated monitoring capability
will be instantiated and registered in the CMonI component, which is discussed more detail later in this
section. After registering the monitoring capabilities, the XSI BPWS calls the YAWL workflow manage-
ment system to start an instance of the X Int process, which performs the interpretation of XRay scans.
The YAWL Monitor Web Service acts as the monitoring service for processes running on the YAWL engine.
It receives the events generated by the YAWL engine (e.g. case termination or change of status, variables
and timestamps) via a custom implementation of the YAWL Observer gateway [65] and stores the included
information into a database. On receiving a monitoring request, it will query the database for relevant data
and returns the desired information back to its caller. For the MRI interpretation, the MSI BPWS acts in
a similar way as explained for the XSI BPWS, except that it is associated to the MRI Int process in the
YAWL engine. For efficiency reasons, we are using one YAWL system and one database for both XSI and
MSI. In reality, these two services could be performed by two different organizations.

Suppose a service consumer has invoked the radiology service and subsequently wants to monitor the
process state of this invoked service. In this case, the service consumer calls the MON interface, which relays
the call to the monitoring component, called CMonI. Naturally, a check against the electronic contract is
made. If the call is considered valid, the internal logic of the CMonI determines if part of the radiology
process is outsourced (i.e. XRay, MRI, or both). If nothing is outsourced, the monitor dispatcher, as
part of CMonI, will call the native monitoring capability associated with the specific monitoring request,
i.e. with the retrieve process status monitoring capability in this example case. This native monitoring
capability calls the BPEL Monitor component, a native monitoring component provided by the OpenESB
BPEL engine collecting basic information on process instances, such as status and variable values. The
result received from the BPEL Monitor is returned to the CMonI, which in turn passes it on to the service
consumer. In contrast, if outsourcing takes place, the aggregate monitoring capability that is associated with
process state information retrieval, is called. This aggregate monitoring capability calls the MON interface
of the outsourced activities and, upon receipt of the result, combines the information so that the correct
process state can be returned to the service consumer (via the CMonI). At XSI and MSI similar operations
take place as a result to a call to their MON interfaces. As these two BPWSs do not further outsource
any of their activities, only native monitoring capabilities exist for these services. Within the PROXE
system, additional monitoring capabilities are available to monitor the state of a specific activity. However,
other monitoring capabilities can be easily added. The PROXE system is available as a demonstrator in a
virtualized computing platform via SHARE (Sharing Hosted Autonomous Research Environments, [67]).

7. Related Work

Monitoring of business processes is situated within the broader context of continuous assurance, which can
be defined as the set of methodology and tools for issuing audit reports and assessing contract compliance
simultaneously with, or within a reasonably short period after, the occurrence of relevant events in the
process. Compared to ex-post assurance, i.e. building ex-post audit trails to check the compliance of the
process execution to overarching agreements, continuous assurance enables providers and consumers to
achieve unprecedented benefits, in terms of reduced costs for information collection, search, and retrieval,
and more timely and complete detection of deviations from contracts and regulations. Moreover, continuous
assurance allows the application of recovery actions on-the-fly, further reducing the risk and costs associated
with violations occurrence [3, 6, 15, 32].

Research on monitoring in cross-organizational processes shows three main limitations. First, monitoring
is usually not linked to contracts and limited to the reporting of the status of a process to interested parties
[27, 68, 59]; second, the setup of the monitoring infrastructure is considered only in the network formation

30

phase [27, 28]; third, monitoring and the setup of the IT monitoring infrastructure is always considered
in 1:1 settings, i.e. the monitoring of one consumer of the processes outsourced to one specific provider
[68, 73]. Concerning electronic contracting, the issue of contract dependency has been often identified as
a prerequisite for reducing the risks in inter-organizational cooperation [63, 5, 73, 13]. Besides the lack
of a comprehensive analysis on how to ensure correct dependencies among contracts as a BN evolves, we
also argue that the issue of contract dependency has never been considered together with the setup of the
monitoring infrastructure.

From the perspective of monitoring, our framework overcomes the above mentioned limitations of current
research. In our approach, monitoring is not limited to the status of processes, but it rather concerns
monitoring requirements of a consumer derived from any clause that may be included in an agreement.
Moreover, we consider the need for the IT monitoring infrastructure to be constantly updated during the
network operation as agreements in the network, and, consequently, the monitoring requirements of actors,
evolve. Eventually, network evolution leads us to extend the scope of monitoring beyond 1:1 settings,
since the monitoring requirements may be transitive along the chains derived from process outsourcing in a
business network.

The problem of monitoring and control of cross-organizational business processes has been tackled by
research from several point of views. Specifically, we consider the point of views of workflow management
systems and Web services.

7.1. Workflow Management Systems Perspective on Cross-Organizational Process Monitoring

From a requirements engineering perspective, the work in [20] provides a high level overview of coordi-
nation mechanisms for cross-organizational enterprise resource planning. In order to achieve a successful
collaboration, the authors stress the importance of process- and communication-oriented mechanisms among
collaborating parties, i.e. mechanisms that transmit information across the networked organization and that
are highly integrated with the process that is collaboratively executed.

The work in [33] presents a classification of control patterns for business networks in the healthcare
industry. In this context, our work can be seen as a specialization of the monitoring pattern, in which a
primary actor, who delegates a task to a counter-actor, faces the need for monitoring the execution of the
delegated task. While the monitoring pattern can be applied to elicit the monitoring capabilities required
by actors in a given collaboration setting, the work in [33] does not consider evolution of business networks,
and, consequently, of monitoring requirements.

The design of cross-organizational workflows with evolving requirements is tackled in [22]. This work
focuses on how to flexibly support the evolution of process specifications as requirements, determined for
instance by external regulations, evolve, and does not explicitly consider the corresponding evolution of
monitoring requirements.

The mechanisms described in this paper hold a close relationship with mechanisms to manage workflow
evolution [12, 74]. Workflow evolution considers the problem of maintaining structural and behavioral
consistency of flow structure when the specification of the workflow changes, e.g. by adding or removing
activities or roles. While workflow evolution focuses on flow structure, this paper focuses on the consistency
of agreements and monitoring capabilities of actors in the BN. Workflow evolution focuses on both static
evolution of the flow structure and dynamic evolution, i.e. how to maintain consistency for the process
instances or cases that have already started. In our framework, we guarantee consistency for static evolution
by projecting clauses and creating new monitoring capabilities when a new abstract clause is added to an
existing template. Consistency for dynamic evolution is guaranteed by mechanisms to manage evolution
when (abstract) clauses or agreements are deleted. The cancellation of an abstract clause, for instance, does
not imply the cancellation of the correspondent monitoring capabilities, since instances (cases) that have
already started may rely on those monitoring capabilities for monitoring until their termination.

At the architectural and conceptual levels, monitoring in the CrossFlow project [27] concerns only infor-
mation on the progress of an outsourced process, which is accessible at specific monitoring points specified
in the contract. Moreover, CrossFlow considers one-to-one outsourcing scenario and does not account for
the transitivity/aggregation of monitoring information in a business network. Dynamic cross-organizational

31

collaboration is also considered in the CrossWork project [28]. In CrossWork, however, contracts are not
considered and monitoring still concerns the progress of outsourced services. Moreover, the impact of the
business network evolution on the monitorability of cross-organizational processes is not taken into account.
Recursive mechanisms for the definition of goals and processes during the formation of virtual enterprises
are considered by the SUDDEN project [40]. Monitoring requirements and evolution of a formed network
are, however, not considered.

Similarly to the monitoring capabilities defined in this paper, the E-Adome workflow engine [14] in-
troduces the notion of external information requirement, i.e. information required by a consumer from its
providers to enforce and monitor a contract. External information requirements are not directly linked with
contract clauses. Moreover, the architectural support for monitoring based on such external information is
not specified.

Eventually, from a more technical standpoint, business process monitoring has been largely investigated
under the labels of Business Process Intelligence (BPI) [31] and Business Activity Monitoring (BAM) [39].
BPI and BAM, however, are situated in the context of stand-alone organizations and mostly concern process
optimization. Auditing for compliance checking has been investigated by research on process mining [66, 36]
and normative reasoning applied in the context of business process management [58]. Process mining does
not represent a viable solution for continuous assurance, since it relies on the ex-post analysis of process logs.
Normative reasoning is focused on defining languages for the formal definition of compliance. Approaches
in this category are usually not focused on cross-organizational processes and they tend to overlook the
architectural aspects related to cross-organizational collaboration enactment.

7.2. Web service Perspective on Cross-Organizational Process Monitoring

Research on Web service management has also focused on business process monitoring and assurance.
Research in this area, however, maintains a technological focus, concerning the definition of XML-based
languages for the definition of clear and precise SLAs [63] or the design of monitoring engines compliant
with Web service technology [43, 10, 8]. Monitoring in this context may regard the correctness of Web service
conversations [56, 73], functional and non-functional requirements of Web service compositions [10, 62], or
verification of composite services transactional behavior [26]. An approach for the controlled evolution
of Web service contracts is discussed in [4], but without reference to how such an evolution impacts the
monitoring of the service execution. A methodology for auditing Web service-based processes is discussed
in [52]. Such a methodology, however, can be applied only within the domain of the orchestrator of the
collaboration, who captures data for process auditing from its partners, i.e. Web services invoked by the
orchestrating process. Our framework extends this perspective by introducing the transitive definition of
monitoring requirements along the outsourcing chain and, consequently, the recursive construction of suitable
monitoring capabilities.

Being Web service-based, our implementation can be seen as an instance of the OASIS WSDM-MUWS
(Management Using Web Services) [46] standard, where monitoring is the only considered management
aspect. In particular, from the architecture point of view, the CMonI component of the consumer represents
the Manageability Consumer in the MUWS standard, whereas the MON interface of providers represents the
endpoint of the manageable, i.e. monitorable, resources. In this context, the implementation of coordination
protocols among consumers and providers could be implemented extending the existing WS-Transaction [47]
family of standards.

Eventually, our Web service-based implementation can be seen as multi-tenant [42], since each consumer
of processes contributed by a provider has a customized view on monitoring, i.e. it can only access the mon-
itoring capabilities associated with abstract clauses implemented in the specific contract with the provider.
Besides being packaged as SaaS (Software as a Service), as in our implementation, the infrastructure re-
quired to expose a monitoring capability could be virtualized and made specific to the customer (IaaS). In
this way, consumers may be billed not only when accessing monitoring capabilities, but also for the amount
of resources that the execution of a monitoring capability actually requires.

The work presented in [18] contains a preliminary investigation of the issues related to monitoring
in evolving business networks. This paper extends [18] by considering template-based contracting and

32

multiple outsourcing of process blocks, by considering all possible evolution types of a BN in an exhaustive
way, by discussing a set of candidate monitorability metrics, and, eventually, by presenting a prototype
implementation and the application of the proposed mechanisms in a real-world scenario.

8. Conclusions and future work

In this paper, we presented a framework for monitorability of processes governed by agreements in
evolving networks. In particular, we focused on how to preserve the monitorability of agreements as the
network evolves, e.g. new actors join the network, or contracts in the network are revised or dropped.

After having introduced a meta-model for business networks, we classified the types of evolution that may
occur in a business network and, for each of them, we presented algorithms to preserve monitorability. In
order to preserve the monitorability of contracts, actors in the network should be able to project clauses and
abstract clauses, in order to maintain the coherence with already established contracts, and update their
monitoring infrastructure, developing monitoring capabilities that can match the consumers’ monitoring
requirements that may arise from evolution.

By jointly considering contract replication and the update of the monitoring infrastructure, the framework
presented in this paper solves the problem of maintaining control over outsourced activities in the case of
dynamic sourcing or in cases where the process consumer requires monitoring information from the provider
to synchronize its own internal processes when a network evolves, e.g. in case of partner substitution or
update of existing contracts.

In order to show the applicability of our framework, we discussed its application in a real-world healthcare
business network. The need for increasing flexibility in healthcare business collaborations has been widely
recognized in the literature. In this context, the case study demonstrates how the framework proposed in
this paper can preserve the monitorability of a healthcare BN during its evolution. The prototype demon-
strates the feasibility of our approach in practice, showing, in particular, how to interface the monitoring
infrastructure with existing business process execution engines.

Our work can be extended along several lines. First, the monitoring framework can be coupled with
control actions, to be undertaken when a contract violation is detected during the process enactment. Along
this line, we are working on generic patterns for integrated monitoring and control. In particular, given
a process specification, our objective is to obtain an extended and executable process specification that
includes the monitoring and control options required by the process consumers.

Second, we plan to extend the analysis of the monitorability metrics as a tool for supporting decision
regarding the evolution of a business network. Specifically, we want to analyze the suitability of metrics in
different types of networks, such as peer-to-peer networks or complex supply chains in which a chain leader
orchestrates the activities of all involved partners.

References

[1] G. A. Akerlof. The market for lemons: Quality uncertainty and the market mechanism. Q. J. Econ., 84(3):488–500, 1970.
[2] A. Albani and J. Dietz. Current trends in modeling inter-organizational cooperation. Journal of Enterprise Information

Management, 22(3):275–297, 2009.
[3] M. G. Alles, A. Kogan, and M. A. Vasarhely. Feasibility and economics of continuous assurance. Auditing: Journal of

Practice and Theory, 21:1–14, 2002.
[4] V. Andrikopoulos, S. Benbernou, and M. Papazoglou. Evolving services from a contractual perspective. In Proc. Int.

Conf. on Advanced Information Systems Engineering, pages 290–304, 2009.
[5] S. Angelov and P. Grefen. An E-contracting reference architecture. J. Syst. Software, 81(11):1816–1844, 2008.
[6] S. Angelov, J. Vonk, K. Vidyasankar, and P. Grefen. Enhancing business collaborations with client-oriented process

control. International Journal of Cooperative Information Systems, 20(01):1+, 2011.
[7] B. A. Aubert, M. Patry, and S. Rivard. A framework for information technology outsourcing risk management. SIGMIS

Database, 36(4):9–28, 2005.
[8] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of instances and classes of Web service

compositions. In Proceedings of the IEEE International Conference on Web Services, pages 63–71, Washington, DC,
USA, 2006. IEEE Computer Society.

[9] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web service compositions. IET Software,
1(6):219–232, 2007.

33

[10] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti. Dynamo + Astro: An integrated approach for BPEL monitoring. In
Proc. IEEE International Conference on Web services, 2009.

[11] A. Brown and G. Grant. Framing the frameworks: A review of IT governance research. Communications of the AIS,
15:696–712, 2005.

[12] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data & Knowledge Engineering, 24(3):211–238, 1998.
[13] J. C. Cheng, K. H. Law, H. Bjornsson, and S. R. D. Jones, Albert. Modeling and monitoring of construction supply

chains. Advanced Engineering Informatics, 24:435–455, 2010.
[14] D. K. W. Chiu, K. Karlapalem, Q. Li, and E. Kafeza. Workflow view based E-contracts in a cross-organizational E-services

environment. Distrib. Parallel. Dat., 12:193–216, 2002.
[15] D. Coderre. Continuous auditing: Implications for assurance monitoring and risk assessmen. Technical report, The

Institute of Internal Auditors Research Foundation, 2005.
[16] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann, U. Winkler, and G. Zacco. A framework for multi-level SLA

management. In ICSOC/ServiceWave Workshops, pages 187–196, 2009.
[17] M. Comuzzi and B. Pernici. A framework for QoS-based Web service contracting. ACM Transactions on the Web,

3(3):1–52, 2009.
[18] M. Comuzzi, J. Vonk, and P. Grefen. Continuous Monitoring in Evolving Business Networks. In R. Meersman, T. Dillon,

and P. Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2010, volume 6426 of Lecture Notes in
Computer Science, chapter 14, pages 168–185. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

[19] P. Dadam and M. Reichert. The adept project: a decade of research and development for robust and flexible process
support. Computer Science - R&D, 23(2):81–97, 2009.

[20] M. Daneva and R. Wieringa. A requirements engineering framework for cross-organizational ERP systems. Requirements
Engineering, 11:194–204, 2006.

[21] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime software-fault monitoring tools. IEEE
Transactions on Software Engineering, 30(12):859–872, Dec. 2004.

[22] N. Desi, A. K. Chopra, and M. P. Singh. Amoeba: A methodology for modeling and evolving cross-organizational business
processes. ACM Transactions on Software Engineering and Methodology, 29(2), 2009.

[23] S. L. Dimmick and K. D. Ignatova. The diffusion of a medical innovation: where teleradiology is and where it is going. J
Telemed Telecare, 12(suppl 2):51–58, September 2006.

[24] K. M. Eisenhardt. Agency theory: An assessment and review. The Academy of Management Review, 14(1):57–74, 1989.
[25] R. Eshuis and P. Grefen. Constructing customized process views. Data and Knowledge Engineering, 64(2):419–438, 2008.
[26] W. Gaaloul, S. Bhiri, and M. Rouached. Event-based design and runtime verification of composite service transactional

behavior. IEEE Transactions on Services Computing, 3(1):32–45, 2010.
[27] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: cross-organizational workflow management in dynamic

virtual enterprises. Comput. Syst. Sci. & Eng., 5:277–290, 2000.
[28] P. Grefen, R. Eshuis, N. Mehandijev, G. Kouvas, and G. Weichart. Internet-based support for process-oriented instant

virtual enterpises. IEEE Internet Comput., pages 30–38, 2009.
[29] P. Grefen, H. Ludwig, and S. Angelov. A three-level framework for process and data management of complex E-Services.

International Journal of Cooperative Information Systems, 12(4):487–531, 2003.
[30] P. Grefen, H. Ludwig, A. Dan, and S. Angelov. An analysis of web services support for dynamic business process

outsourcing. Information & Software Technology, 48(11):1115–1134, 2006.
[31] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.-C. Shan. Business process intelligence. Computers in

Industry, 53:321–343, 2004.
[32] A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service provision. Decision Support

Systems, 43:618–644, 2007.
[33] V. Kartseva, J. Hulstijn, J. Gordijn, and Y.-H. Tan. Control patterns in a health-care network. European Journal of

Information Systems, 19:320–343, 2010.
[34] R. Lenz and M. Reichert. IT support for healthcare processes â“ premises, challenges, perspectives. Data & Knowledge

Engineering, 61(1):39–58, April 2007.
[35] F. Leymann, D. Roller, and M. T. Schmidt. Web services and business process management. IBM Systems Journal,

41(2):198–211, 2002.
[36] C. Lia, M. Reichert, and A. Wombacher. Mining business process variants: Challenges, scenarios, algorithms. Data Knowl.

Eng., 70(5):409–434, 2011.
[37] P. F. Linington, Z. Milosevic, J. B. Cole, S. Gibson, S. Kulkarni, and S. W. Neal. A unified behavioural model and a

contract language for extended enterprise. Data and Knowledge Engineering, 51(1):5–29, 2004.
[38] T. Malone, J. Yates, and R. Benjamin. Electronic markets and electronic hierarchies. Commun. ACM, 30(6):484–497,

1987.
[39] D. W. McCoy. Business activity monitoring. Technical report, Gartner Group Research Report ID LE-15-9727, 2002.
[40] N. D. Mehandjiev, I. D. Stalker, and M. R. Carpenter. Recursive construction and evolution of collaborative business

processes. In Proc. 2nd Int. Workshop on Collaborative Business Processes, 2008.
[41] J. Mendling, H. Reijers, and W. van der Aalst. Seven process modeling guidelines (7PMG). Information and Software

Technology, 52(2), 2010.
[42] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to support customization and deployment of

multi-tenant-aware Software as a Service applications. ICSE Workshop on Principles of Engineering Service Oriented
Systems, 0:18–25, 2009.

[43] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation for WS-BPEL. In Proc. World

34

Wide Web Conference, 2008.
[44] J. Motwani, A. Kumar, J. Jiang, and M. Youssef. Business process reengineering: A theoretical framework and an

integrated model. International Journal of Operations & Production Management, 18(9/10):964–977, 1998.
[45] S. K. Mun, W. G. Tohme, R. C. Platenberg, and I. Choi. Teleradiology and emerging business models. J Telemed Telecare,

11(6):271–275, September 2005.
[46] OASIS. Web Services Distributed Management (WSDM) Technical Committee. http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wsdm, 2011.
[47] OASIS. Web Services Transaction (WS-TX) technical committee. http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=ws-tx, 2009.
[48] OASIS. ebXML Collaboration Protocol Profile and Agreement (CPPA). http://www.oasis-open.org/committees/tc_

home.php?wg_abbrev=ebxml-cppa, 2011.
[49] Object Management Group (OMG). Business Process Model and Notation (BPMN), January 2011.
[50] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-Agreement partner selection. In Proceedings of the

15th international conference on World Wide Web, pages 607–706, 2006.
[51] Oracle Inc. OpenESB: The open enterprise service bus, 2011. http://wiki.open-esb.java.net/Wiki.jsp/.
[52] B. Orriens, W.-J. van den Heuvel, and M. Papazoglou. On the risk management and auditing of SOA based business

processes. In Proc. 3rd Int. ISoLA Symposium, 2008.
[53] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing: a Research Roadmap. Int. J.

Cooperative Inf. Syst, 17(2):223–255, 2008.
[54] P. Radha Krishna, K. Karlapalem, and D. Chiu. An EREC framework for e-contract modeling, enactment, and monitoring.

Data and Knowledge Engineering, 51:31–58, 2004.
[55] W. Robinson. A requirements monitoring framework for enterprise systems. Requirements Engineering, 11:17–41, 2006.
[56] W. Robinson and S. Purao. Monitoring service systems from a language-action perspective. IEEE Transactions on

Services Computing, (forthcoming), 2011.
[57] C. Ruggiero. Teleradiology: a review. J Telemed Telecare, 4(1):25–35, March 1998.
[58] S. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business process compliance. In Proc. 5th

Business Process Management Conference, pages 149–164, 2007.
[59] M. Sailer and M. Morciniec. Monitoring and execution for contract compliance. Technical Report HPL-2001-161, E-Service

Markets Department, HP Labs Bristol, 2005.
[60] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der Aalst. Process flexibility: A survey of contemporary

approaches. In J. L. G. Dietz, A. Albani, and J. Barjis, editors, CIAO! / EOMAS, volume 10 of Lecture Notes in Business
Information Processing, pages 16–30. Springer, 2008.

[61] R. Seguel, R. Eshuis, and P. Grefen. Generating minimal protocol adaptors for loosely coupled services. In Proc. 8th
IEEE International Conference on Web Services, pages 417–424, 2010.

[62] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and J. Waterhouse. Runtime monitoring of Web
service conversations. IEEE Trans. Serv. Comput., 2:223–244, July 2009.

[63] J. Skene, F. Raimondi, and W. Emmerich. Service-level agreements for electronic services. IEEE Transactions on Software
Engineering, 36(2):288–304, 2010.

[64] X. Song, B. Hwong, G. Matos, A. Rudorfer, C. Nelson, M. Han, and A. Girenkov. Understanding requirements for
computer-aided healthcare workflows: experiences and challenges. In ICSE, pages 930–934, 2006.

[65] A. ter Hofstede, W. van der Aalst, M. Adamns, and N. Russell, editors. Modern Business Process Automation: YAWL
and its Support Environment. Springer, 2010.

[66] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Conformance checking of service behavior.
ACM Transactions on Internet Technology, 8(3), 2008.

[67] P. Van Gorp and P. Grefen. Supporting the internet-based evaluation of research software with cloud infrastructure.
Software & Systems Modeling, May 2010.

[68] E. van Heck and P. Vervest. Smart business networks: How the network wins. Communications of the ACM, 50:28–37,
2007.

[69] P. Vicente and M. Mira da Silva. A conceptual model for integrated governance, risk and compliance. In Proc. 23rd Int.
Conf. on Advanced Information Systems Engineering, pages 199–213, 2011.

[70] J. Vonk and M. Comuzzi. Proxe v3.0: PROcess eXecution Environment with monitoring, March 2011.
http://is.ieis.tue.nl/research/share.html.

[71] J. Vonk, T. Wang, and P. Grefen. A Dual View to Facilitate Transactional QoS. IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprise, 0:381–383, 2007.

[72] J. Vonk, T. Wang, P. Grefen, and M. Swennenhuis. An analysis of contractual and transactional aspects of a teleradiology
process. Beta Technical Report WP-263, Eindhoven University of Technology, December 2008.

[73] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, and D. Zwink. Cross-organizational process monitoring based on
service choreographies. In Proc. 25th ACM Symposium on Applied Computing, pages 2485–2490, 2010.

[74] E. Withana, B. Pale, R. Barga, and N. Araujo. Versioning for workflow evolution. In Proc. 19th ACM International
Symposium on High Performance Distributed Computing, pages 756–765, 2010.

[75] WS-AGREEMENT. WS-Agreement Framework. https://forge.gridforum.org/projects/graap-wg, September 2003.
[76] zur Muehlen. Workflow-based Process Controlling. Springer-Verlag, 2005.

35

