

City, University of London Institutional Repository

Citation: Comuzzi, M. & Martinez, R. I. R. (2014). Customized Infrastructures for

Monitoring Business Processes. Paper presented at the 2014 IEEE 8th International
Symposium on Service Oriented System Engineering (SOSE), 07-04-2014 - 11-04-2014,
Oxford, UK. doi: 10.1109/sose.2014.19

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4089/

Link to published version: https://doi.org/10.1109/sose.2014.19

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Customized Infrastructures for
Monitoring Business Processes

Marco Comuzzi
City University London

London, United Kingdom
Email: marco.comuzzi.1@city.ac.uk

Ruben Ivan Rafael Martinez
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: r.i.rafael.martinez@student.tue.nl

Abstract—Process enactment technology provides native tools
and add-ons for monitoring, such as APIs and monitoring
consoles, which are usually highly entangled with the underlying
process enactment logic and not customizable by process users. In
such a case, all users access the same set of monitoring data and
functions and process management resources may be allocated for
monitoring concerns not of interest for users. In this context, we
present a model and a tool for customized process monitoring
infrastructures executing on top of existing process enactment
technology. The model classifies the options about monitoring
over which the preferences of process users may diverge. The tool
implements the proposed model, generating customized process
monitoring infrastructures embedding the business logic of the
monitoring options chosen by process users.

I. INTRODUCTION

Modern Workflow Management Systems (WfMS) provide
native tools and add-ons for the monitoring of deployed
business processes. WfMS log information about processes and
executing process instances in a local database. The monitoring
tools and add-ons are then built as a higher level interface
of the database [1]. Monitoring data can vary from standard
information, such as the status of instances and activities of
active instances, to any process-specific variable logged by the
WfMS, e.g. values of local and global process variables, or
specific events, e.g. process variable updates or expiration of
timeouts [2].

This approach to process monitoring presents limitations
along the flexibility and scalability dimensions. About flexibil-
ity, it prevents monitoring customization, as all users get access
to a common set of monitoring information tools that they may
not need for their specific monitoring purposes. Different users,
in fact, may have different monitoring requirements about the
same process.

WfMS may also provide monitoring APIs that users can
exploit for building their own monitoring infrastructure. Moni-
toring APIs are normally highly entangled with the underlying
process technology [4], which makes them non reusable and
hard to understand to a process developer unfamiliar with the
underlying process technology. Moreover, APIs can support
only the development of ad-hoc monitoring interfaces, which
should evolve as the monitoring APIs evolve over time.

About scalability, the monitoring tools and APIs provided
by WfMS clearly constitute a bottleneck of the monitoring
activity, since all different monitoring requests have to be
served by a single point of access to the data logged by

the WfMS. In this regard, a non-customizable monitoring
infrastructure is likely to lead to a waste of resources. By
eliciting the users’ customer requirements before the actual
monitoring customization occurs, the business process provider
can determine and instantiate only the resources strictly re-
quired for monitoring and create synergies among similar
monitoring requests, e.g. reuse indexes for common queries on
the process logging database. Such a dynamic use of resources
is made also possible by modern cloud technology, which
allows the provisioning of computing resources on-demand.

Note that increased flexibility of monitoring infrastructures
is a pre-requisite for improved scalability. Before it would
be possible to efficiently allocate resources to the monitoring
concerns requiring it most, it is necessary to disentangle
monitoring concerns from the underlying process technology.
This will allow encapsulating monitoring concerns into process
technology-agnostic services, which can be then deployed
efficiently on an elastic computing platform.

This paper focuses on the flexibility issue, leaving scalabil-
ity to be addressed by future work.

In particular, we devise a solution enabling the business
process provider, i.e. the business entity running the WfMS,
to provide customized monitoring tools to process users, sat-
isfying their individual monitoring requirements. Monitoring
requirements may vary for a variety of reasons, such as the
need for monitoring established contracts [5], or predicting
their violation [6], [7], or synchronizing internal and external
processes of the customer organizations [4], [8]. In this paper
we consider the cross-instance monitoring problem. In cross-
instance monitoring, customer organizations (users) require
monitoring across a set of instances, e.g. monitoring the
average execution time of a given activity for all instances of a
given process started in the past week. As such, cross-instance
monitoring represents the basis of several management control
activities, such as Business Activity Monitoring (BAM) [10].

The paper is structured as follows. We first provide a
multi-dimensional model for cross-instance business process
monitoring to structure the customization solution space, i.e.
the space of offered monitoring options over which users’
preferences may diverge (Section II). Then, we provide an
implementation of the model in the form of a Web-based
application that automatically synthesizes customized monitor-
ing tools for the users (customer organizations) of the WfMS
(Section III). Related work is discussed in Section IV, while
we draw our conclusions and discuss future work in Section V.

II. A MODEL FOR CROSS-INSTANCE BUSINESS PROCESS
MONITORING

The aim of our model is to capture the options for cross-
instance process monitoring available to users in a multi-
dimensional space. Such a space will serve as the blueprint
for the implementation of the customized monitoring infras-
tructures specific to each user request. In Section II-A we
discuss the rationale behind the design choices leading to our
monitoring customization space, while Section II-B presents a
formal characterization of our model.

A. Identifying monitoring dimensions for customization

A model for process monitoring customization aims at cap-
turing the possible requirements of users of the process about
monitoring, that is, understanding what could be monitored
and how monitoring should occur. A first distinction within
our model has thus to be made between the monitoring object
and the monitoring lifecycle, which constitute the overarching
dimensions of our monitoring model. The former identifies
the monitoring information that users require from the process
engine, whereas the latter identifies the modality according to
which such information is acquired by or provided to the user
over time.

For understanding the possible sub-dimensions and user
options about the monitoring object, we rely on the inte-
gration of previous work in the area of Business Process
Intelligence [11], BPMN extension for business activity mon-
itoring [12], and on a model for business process analytics
provided by the Workflow Management Coalition (WfMC) [1].

The work in [11] set the basis for identifying relevant
process monitoring metrics for business intelligence. In the aim
of building a data warehouse for business process monitoring,
the paper identifies three types of monitoring data, i.e. Time,
Status, and Resource data, which can be aggregated along the
process granularity dimension. Granularity is defined at the
level of process, service, and node. Processes invoke a set of
services during their execution, and services are executed on
physical nodes. The work in [12] extends BPMN for moni-
toring purposes identifying status and duration as main moni-
toring data and refining the granularity dimension considering
also the process instance level and aggregation operators across
the granularity levels, e.g. average, maximum, minimum, or
frequency of occurrence (e.g. for status information, which is
intrinsically not ordinal). The work in [1] mainly focuses on
the status and time dimensions, providing a more detailed list
of time-related variables relevant for monitoring and refining
the list of possible statuses characterizing activities, instances,
and processes.

To integrate the three proposal discussed above, in our
monitoring model we consider time and status related mon-
itoring variables. About granularity, in particular, we consider
a simple process management model comprising processes,
which are constituted by multiple activities and associated
to multiple instances started by users. When an instance is
executing, the activities belonging to the corresponding process
are instantiated into assigned activities.

As far as status monitoring variables are concerned, our ob-
jective is to devise a generic process monitoring model, which

running suspended

completed failed

terminated

(a)

running suspended

terminated

inactive

(b)

Fig. 1. Instance (a) and Activity (b) state machines

can suit the case of both traditional workflow management
systems and service-based business process enactment technol-
ogy. Hence, we rely on the intersection between specifications
proposed by the Workflow Management Coalition (WfMC) 1

and in the BPEL language 2, i.e. the de facto standard for
service-based business processes.

Figure 1 shows finite state machines for instance and
activity status that we consider in our monitoring model.
Note that there are there are two final states for an instance:
completed, which is reached when an instance is completed
successfully, or failed, when the completion has not been suc-
cessful, i.e. because of an error or because the user aborted the
execution. Note that suspended instances can only terminate
with a failure, whereas a running instance may either terminate
successfully or fail. In particular, we excluded from our model
the states defined for instance compensation in BPEL, as these
do not find a counterpart in the WfMC specification and,
consequently, in traditional workflow technology. Similarly, we
excluded the initiated status defined by the WfMC as this is
not defined in the BPEL state machine.

There is only one final state for activity execution, because
the WfMC specification does not distinguish between states for
successful and unsuccessful termination (as an unsuccessful
termination should push the corresponding instance in the
failed status).

As far as time-related monitoring variables are concerned,
the time-related information in our monitoring model can be
defined using status changes timestamps. As we will discuss
later, in fact, process enactment technology usually logs the
timestamps related to status changes of instances and activities.
In particular, it has to be noted that, during their lifecycle,
instances and activities may assume some states only once,
whereas the state running and suspended can be assumed
more than once.

For an instance insj we define the individual timestamps
ttj , tcj , and tfj representing the instant in time in which
the instance has reached the status terminated, failed, or
completed, respectively. Note that, depending on the status in
which an instance terminates, ttj coincides with either tcj or
tfj . Similarly for an activity actj we define the individual
timestamps tij and tcj representing the instants in time when
an activity becomes inactive and completes, respectively.

About the statuses running and suspended, for both
activities and instances, we can define a set of timestamps TRj

and TSj representing the time instants in which an instance
or activity becomes running or suspended, respectively:

1http://www.wfmc.org/reference-model.html
2http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/index.jsp

TABLE I. TIME-RELATED MONITORING VARIABLES.

Granularity Name Defnition

instance Duration DUR(insj) = ttj − trj,1

instance Processing Time PIT (insj) =
∑I

i=0(tsj,1 − trj,i) +

{
ttj − trj,I if ∃trj,I ,
0 otherwise

instance Suspended Time SIT (insj) =
∑I−1

i=0 (trj,i+1 − tsj) +

{
tfj − tsj,I if ∃tfj ,
0 otherwise

activity Duration DUR(actj) = tcj − trj

activity Waiting time WAT (actj) = trj,1 − tij

activity Turnaround time TUT (actj) = tcj − tij

activity Processing Time PAT (actj) =
∑I

i=0(tsj,i − trj,i) + (tcj − trj , I)

activity Suspended Time SAT (actj) =
∑I−1

i=0 (trj,i+1 − tsj,i) +

{
ttj − tsj,I if ttj > trj,I ,

trj,I − tsj,I otherwise

TRj = {trj,i}i=1,...,I , with trj,i+1 > trj,i,∀i (1)
TSj = {tsj,k}k=1,...,K , with tsj,k+1 > tsk,j ,∀j (2)

Table I shows the time-related monitoring variables that
we consider in our model. These are a restriction over the set
of time-related process control variables defined in [1] on the
basis of the states and related timestamps defined for instances
and activities in our model.

For identifying the possible user options about the moni-
toring lifecycle, we refer to our previous work on customiz-
able single-instance process monitoring [9]. In that work, we
identified a standard lifecycle for business process monitoring,
leading to the definition of two dimensions over which users
can specify their options about monitoring, i.e Management
and Notification

Management. Users may express options about the way
monitoring data will be managed by the monitoring infrastruc-
ture before being provided. For instance, monitoring informa-
tion can be stored in a batch or provided as soon as a new value
is captured. The data may be stored, for instance to provide
historical series to the user, or destroyed in the monitoring
infrastructure once communicated to the user. Specifically, new
values acquired can overwrite existing values (rewrite - rw) or
being persisted (persist - pe) by the monitoring infrastructure.
When notified to the user, monitoring values currently stored
by the monitoring infrastructure may be consumed (co), i.e.
they will be no longer available in the future, or they may
be only read (re) and remain persisted by the monitoring
infrastructure, e.g. to build historical time series. The options
available to the user for the management monitoring design
are derived from the combination of the modalities discussed
before, that is, we identify a total of four possible options, i.e.
rw-co, rw-re, pe-co, pe-re.

Notification. According to a well-recognized paradigm in
distributed computing [13], there are two main ways monitor-
ing data can be notified to the user. Users may pull information
as they wish, or they may be pushed information by the
monitoring infrastructure according to a pre-specified policy,
e.g. periodically.

B. Formal model

The monitoring model discussed in the previous section
can be formally characterized as presented in Table II. The
formalization of Table II gives us a model to specify suc-
cinctly the monitoring customization options of users. Such a
representation of users’ monitoring requirements is exploited
by the implementation of our tool (see Section III).

Specifically, a monitoring customization ci,j is a request
to the process engine of the provider organization to monitor
a certain (set of) variable(s) var over a possible restriction
of the processes currently deployed within the engine. Such a
restriction is defined on features characterizing the elements
of the process management model introduced before, i.e.
processes (pro), instances (ins), and activities (act).

For the pro, ins, and act sub-dimensions, we consider the
following restriction options:

• ALL: it refers to all the processes/instances/activities
currently associated to the user ui by the process
engine;

• [USER SELECTION]: it restricts the set of pro-
cesses/instances/activities to a list specified by the
user, e.g. a set of process IDs;

• [TIME FRAME]: it restricts the set of
processes/instances/activities to the ones
deployed/started/allocated within a specific time
frame, i.e. before and/or after a specific date;

For the elements ins and act we consider also the follow-
ing restriction options:

• [STATUS BASED]: it restricts the set of in-
stances/activities to the ones in a certain status at the
moment a monitoring request will be issued to the
process engine;

Note that the monitoring options are not mutually ex-
clusive. For example, a user can specify options on both
TIME FRAME and STATUS BASED to restrict monitoring
of a certain variable to all instances (and/or activities) started
in a certain timeframe and currently in a certain status, e.g.
running or terminated.

TABLE II. MONITORING MODEL.

Element Name Notation

Process Users U = u1, . . . , uI

Monitoring Customizations specified by
users

C = {ci,j}i=1,...,I
j=1,...,J

with ci,j = 〈MO,ML〉

Monitoring Object (in a customization) MO = 〈var, pro, ins, act, agg〉

Monitoring Variable var ∈ {i status, a status,DIN, PIT, SIT,DAC,WAT, TUT, PAC, SAC}

Aggregation Options agg ∈ {count, avg,max,min, sum}

Monitoring Lifecycle (in a customiza-
tion) ML = 〈man, not〉

Monitoring Management Options man ∈ {rw − co, rw − re, pe− co, pe− re}

Monitoring Notification Options not ∈ {push(policy), pull}

As previously discussed, the monitoring variables can
relate to the status of instances, i status, and activities,
a status, and to the time-related variables of Table I.

Eventually, the agg element in MO specifies the possible
aggregation of monitoring data required over the restrictions
applied. We adopt in this work the aggregation operators of
the SQL language, i.e. agg ∈ {sum, avg,max,min, count}.
Note that not all combinations of options are feasible. For
instance, it is not possible to apply aggregation operators such
as sum or avg to non-numeric values, e.g. activity or instance
status. Similarly, operators max and min can be applied only
to monitoring variables for which a total order relationship is
defined, i.e. all the time related monitoring variables.

As far as the monitoring lifecycle ML is concerned, the
Notification dimension not involves two possible possible
options. The user can in fact pull data from the monitoring
infrastructure when needed, or the monitoring infrastructure
can push monitoring data to the user according to a certain
policy. In this work we consider only periodic push of mon-
itoring data. Hence, the policy element represents the notifi-
cation period, expressed in time units. For the Management
dimension man we consider the four options discussed in the
previous section.

As a sample, Eq. 3 captures the monitoring requirements
of user u1 interested in counting the number of activities in
the instances of process p1 started before January 1st and
terminated in the status failed; u1 wants to pull the information
when required from the monitoring infrastructure and requires
the monitoring information to be persisted by the monitoring
infrastructure as long the customization is active (therefore,
man = {pe− re}.

c1,1 = 〈MO,ML〉
MO = {a status; p1;

< 2013− 01− 01T00 : 00 : 00 + 00 : 00;

ALL; failed; count}
ML = {pull; pe− re}

(3)

Eq. 4 captures the requirements of users u2 interested in
monitoring the average processing time of instances of all
instances of the process p2 terminated in the status completed.
The user wants to be notified this information every six hours.
Each time, the user requires only the average processing time

of instances completed in the last six hours (that is, the user
is not interested in building time series of monitoring data;
man = {rw − co}).

c2,1 = 〈MO,ML〉 (4)
MO = {PIT ; p2;ALL;−; completed; avg}
ML = {push(6hr); rw − co}

III. A TOOL FOR CUSTOMIZED CROSS-INSTANCE PROCESS
MONITORING

In this section we describe the tool we implemented. Our
tool generates customized process monitoring infrastructures
exploiting the monitoring model described in the previous
section. We first provide a conceptual outline of our tool, in
Section III-A, and then discuss its technical implementation in
Section III-B.

A. Conceptual Architecture

The conceptual architecture of the tool is shown in Fig-
ure 2(a). The design aims at isolating components for each of
the monitoring dimensions in the monitoring model of Table II.
Conceptually, user interaction with the system can occur at
customization time, i.e. when monitoring customizations are
requested, and at run time, i.e. when the monitoring starts [14].

At customization time, users access the Monitoring
Customization Console (MCC). This comprises the
Customization Interface (CI), through which
users specify their customization options. Customization
requests are received by the Monitor Generator
(MG), which instantiates a Custom Monitoring
Infrastructure (CMI) for each monitoring
customization request. The CMI contains the Monitoring
Console (MC), through which users get access to the
monitoring data according to the monitoring options specified
in the customization. It also comprises three components
in charge of realizing the business logic of the monitoring
options identified in our model:

• Query Engine (QE): It instructs the BPE
Handler to capture the appropriate monitoring
variable(s) requested by the user in the customization;

Business Process

Engine (BPE)

BPE Handler

Monitoring

Generator (MG)

Customization

Interface (CI)

Query

Engine

(QE)

Notific.

Engine

(NE)

Monitoring Console

(MC)

Customized Monitoring Infrastructure

(CMI)

Customization-time Run-time

Management

Engine (ME)

communication

instantiation

Monitoring Customization

Console (MCC)

(a)

Login

Customization
Interface

Monitoring
Console

Action
Action

Login Action

Notification Engine
Logic

Management Engine
Logic

Query Engine Logic

BPE Handler

Action Configurator

struts.xml

.jsp

.jsp

.jsp

Local
db

Log DB

getValue()

setValue() execute()

Apache ODE

View
Model

Controller

(b)

Fig. 2. Conceptual (a) and Technical (b) architecture of the implemented
tool

• Management Engine (ME): It realizes the logic
chosen by the user about the management of the
monitoring data obtained by the BPE; this module
requires an internal database, since it may need to
persist the data acquired from the BPE;

• Notification Engine (NE): It realizes the
logic chosen by the user about the notification of
monitoring results (namely, push and pull).

Eventually, both customization time and run time modules
interact with the BPE through the BPE Handler. This acts as
the gateway between our tool and the specific business process
technology chosen for the execution of monitored business
processes.

At customization time, the BPE Handler allows the MCC
to obtain information about running processes and related
instances. At run time, it translates the instructions received
by QE into executable queries over the logging database of
the business process engine and sends back the query results
obtained from the BPE.

The design pattern driving the design of the architecture of
our tool is clearly the Model-View-Controller (MVC) pattern.
CI and MC represent the view for customization- and run-
time, respectively, as they are the interfaces through which

the user can interact with our tool. The MG represents the
controller in our architecture, connecting the interfaces to the
CMI, which implements the model driving the cross-instance
process monitoring, i.e. the monitoring options described in
Section II.

B. Technical Realization

The tool has been implemented as a Java Web application,
using Struts 2 as a framework supporting the MVC design
pattern. We experimented with the Apache ODE BPEL engine,
which is freely available and open source, that is, a specific
BPE Handler has been developed for Apache ODE.

Figure 2(b) shows the technical architecture of our tool.
The MG component in the conceptual architecture is im-
plemented by the controller component. It comprises the
struts.xml file, which is used to configure the appropriate
actions in the model component to implement the monitoring
options requested by the user. The controller implements the
business logic of the customized monitoring infrastructure.
Specifically, the BPE Handler issues query over the Apache
ODE database, whereas the Management Engine component
controls a local database where data acquired from Apache
ODE may be stored in case the user requests monitoring data
to be persisted.

The view part of our tool comprises a set of dynamic Web
pages, which are configured by the data requested through the
actions implemented in the controller. The tool comprises a
page for the login of the user and pages implementing the
Customization Interface and the Monitoring Console.

As introduced before, the main objective of the BPE
Handler is to translate a monitoring customization expressed
according to the formal model of Section II-B into a query
for the Apache ODE database logging monitoring information.
In particular, the translation process concerns the monitoring
object MO element of a customization ci,j .

A typical strategy adopted by current process management
technology to log relevant process monitoring information is
event-based. Relevant monitoring information in this case is
captured in events logged by the BPE. Events refer to entities
of the process management model, have a timestamp, and
log different types of occurrences in the process engine, e.g.
status changes, variable value changes, faults. An event-based
logging strategy is followed by most process engines available
on the market. As far as open source and freely available
engines are concerned, this strategy is for instance adopted
by the Apache ODE BPEL engine and YAWL. The event-
based strategy is opposed to the entity-based strategy, adopted
for instance by the OpenESB BPEL engine. The limitation
of this strategy is that monitoring information is stored at the
level of individual entities of the process management model,
i.e. processes, instances, and activities. This prevents logging
multiple status changes timestamps (in OpenESB, for instance,
only the last status change is persisted at a given moment in
time).

IV. RELATED WORK

Data warehousing and OLAP (On Line Analytical Process-
ing) [11] exploit the concept of cross-instance monitoring, but

taking a rather static perspective about monitoring, supporting
the more static use case of executive decision making. In
this work, we focus on a more dynamic perspective about
monitoring, supporting scenarios such as cross-organizational
business process synchronization [15] or online Business Ac-
tivity Monitoring (BAM) [10].

The Monita [18] approach to process monitoring highlights
the issue of entanglement between monitoring concerns and
workflow specification and it proposes to implement the former
as aspects blended within workflow specifications. The defini-
tion of monitoring aspects has to be performed by monitoring
experts and cannot be delegated to process users, since the set
of possible monitoring concerns is not abstracted into a high-
level model understandable by non-expert users. A framework
for ECA rules to support advanced process monitoring is
presented in [19]. Also in this case, the expertise required
for the specification of ECA monitoring rules prevents the
delegation of the monitoring customization activity to process
users.

Several approaches [2], [20], [21] to business process
monitoring have been developed in the context of service-
based business processes and, more specifically, processes
specified using BPEL. An architecture for self-supervision of
BPEL processes has been proposed in [2]. It involves the
definition of aspects for the analysis and recovery of running
BPEL processes, which are blended at runtime within the
Active BPEL engine execution logic. This approach represents
a typical example in which the resulting monitoring logic is
highly entangled with the chosen process engine technology.
The language defined for the definition of monitoring concerns,
i.e. WsCol, is more expressive than our model of monitoring
customization. Hence, it could be exploited to extend the
range and complexity of user-defined monitoring variables and
concerns of this work. A visual approach to specify monitoring
queries on running BPEL processes is presented in [20].
Visual queries are then translated into one or more Xpath and
SQL queries on the BPEL process specification and/or data
logged by the BPEL engine. Although, also in this case, the
range and complexity of monitoring concerns is higher when
compared to our formal model, the approach is specific only
to BPEL processes and does not specifically address the need
for customizing the resulting monitoring infrastructure.

V. CONCLUSIONS AND OUTLOOK

This paper considers the issue of customized business
process monitoring infrastructures in the context of cross-
instance process monitoring. The design of our tool decouples
the monitoring concern from the underlying process engine,
making our approach generic, i.e. replicable using alternative
process enactment technology. In this work we focused on the
flexibility of current process monitoring technology. As stated
in the Introduction, our future work will also concentrate on
the scalability issue. In particular, we plan to work in two
different directions. A first optimization will concern the access
to the BPE database, such as indexes for highly requested
monitoring configurations. A second optimization will concern
the deployment of our Customized Monitoring Facilities on
a cloud infrastructure. Individual CMIs can be deployed on
virtualized appliances using only the resources that are strictly
necessary, improving the performance of our tool.

REFERENCES

[1] M. zur Muehlen and R. Shapiro, “Business process analytics,” in
Handbook on Business Process Management 2, 2010, pp. 137–157.

[2] L. Baresi and S. Guinea, “Self-supervising BPEL processes,” IEEE
Transactions on Software Engineering, vol. 37, no. 2, pp. 247–262,
2011.

[3] M. zur Muehlen and D. T.-Y. Ho, “Risk management in the BPM
lifecycle,” in Business Process Management Workshops, 2006, pp. 454–
466.

[4] W. Robinson and S. Purao, “Monitoring service systems from a
language-action perspective,” IEEE Transactions on Services Comput-
ing, vol. 4, pp. 17–30, 2011.

[5] M. Comuzzi and G. Spanoudakis, “Dynamic set-up of monitoring
infrastructures for service based systems,” in ACM SAC, 2010, pp.
2414–2421.

[6] D. Lorenzoli and G. Spanoudakis, “Predicting software service avail-
ability: Towards a runtime monitoring approach,” in IEEE ICWS, 2011,
pp. 736–737.

[7] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring,
prediction and prevention of SLA violations in composite services,” in
Proc. 2010 IEEE International Conference on Web Services, 2010, pp.
369–376.

[8] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani,
and J. Waterhouse, “Runtime monitoring of Web service conversations,”
IEEE Trans. Serv. Comput., vol. 2, pp. 223–244, July 2009.

[9] M. Comuzzi, S. Angelov, and J. Vonk, “Patterns to enable mass-
customized business process monitoring,” in Proc. CAiSE, no. 445-459,
2012.

[10] “Business activity monitoring: Calm before the storm,” Gartenr Group
Research, http://www.gartner.com/resources/105500/105562/105562.
pdf, Tech. Rep. LE-15-9727, 2002.

[11] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.-C.
Shan, “Business process intelligence,” Computers in Industry, vol. 53,
pp. 321–343, 2004.

[12] J.-P. Friedenstab, C. Janiesch, M. Matzner, and O. Muller, “Extending
bpmn for business activity monitoring,” in Proc. 45th Hawaii ICSS,
2012, pp. 4158–4167.

[13] L. Aldred, W. van der Aalst, M. Dumas, and A. ter Hofstede, “Di-
mensions of coupling in middleware,” Concurrency and Computation :
Practice & Experience, vol. 21, pp. 2233–2269, 2009.

[14] F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, and M. La Rosa,
“Configurable workflow models,” IJCIS, vol. 17, pp. 177–221, 2008.

[15] R. Eshuis and P. Grefen, “Constructing customized process views,” Data
and Knowledge Engineering, vol. 64, no. 2, pp. 419–438, 2008.

[16] M. Reichert, S. Bassil, R. Bobrik, and T. Bauer, “The proviado access
control model for business process monitoring components,” Enterprise
Modelling and Information Systems Architectures, vol. 5, no. 3, pp. 64–
88, 2010.

[17] H. Reijers, R. Mans, and R. van der Toorn, “Improved model man-
agement with aggregated business process models,” Data Knowl. Eng.,
vol. 68, no. 1, pp. 221–243, 2009.

[18] O. Gonzalez, R. Casallas, and D. Deridder, “Monitoring and analysis
concerns in workflow applications: from conceptual specifications to
concrete implementations,” International Journal of Cooperative Infor-
mation Systems, vol. 20, no. 4, pp. 371–404, 2011.

[19] J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control of workflow
processes using ECA rules,” IEEE TKDE, vol. 16, no. 8, pp. 1010–1023,
2004.

[20] C. Beeri, A. Eyal, T. Milo, and A. Pilberg, “Query-based monitoring of
BPEL business processes,” in Proceedings ACM SIGMOD, 2007, pp.
1122–1124.

[21] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring
and service adaptation for WS-BPEL,” in Proc. World Wide Web
Conference, 2008.

