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Quantum mechanics in time-dependent backgrounds
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A�������: We investigate a quantum mechanical system on a noncommutative space

for which the structure constant is explicitly time-dependent. Any autonomous Hamil-

tonian on such a space acquires a time-dependent form in terms of the conventional

canonical variables. We employ the Lewis-Riesenfeld method of invariants to construct

explicit analytical solutions for the corresponding time-dependent Schrödinger equation.

The eigenfunctions are expressed in terms of the solutions of variants of the nonlinear

Ermakov-Pinney equation and discussed in detail for various types of background fields.

We utilize the solutions to verify a generalized version of Heisenberg’s uncertainty rela-

tions for which the lower bound becomes a time-dependent function of the background

fields. We study the variance for various states including standard Glauber coherent

states with their squeezed versions and Gaussian Klauder coherent states resembling a

quasi-classical behaviour. No type of coherent states appears to be optimal in general with

regard to achieving minimal uncertainties, as this feature turns out to be background field

dependent.

1. Introduction

The study of quantum mechanics and quantum field theories on noncommutative space-
time structures is motivated by the fact that it achieves gravitational stability [1] in almost
all currently known approaches to quantum gravity, such as string theory [2, 3, 4] or loop
quantum gravity [5, 6]. In a quantum mechanical setting the most commonly studied
version of these space-time structures consists of replacing the standard set of commu-
tation relations for the canonical coordinates xµ by noncommutative versions, such as
[xµ, xv] = iθµν , where θµν is taken to be a constant antisymmetric tensor. More interesting
structures, leading for instance to minimal length and generalized versions of Heisenberg’s
uncertainty relations, are obtained when θµν is taken to be a function of the momenta
and coordinates, e.g. [7, 8, 9, 10, 11]. In addition, one may of course also introduce an
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explicit time-dependence in θµν . Although various effective Lagrangians for such type of
noncommutative field theories have been derived, e.g. [12], little is known about explicit
quantum theories on such type of spaces, one of the reasons being that they are far more
difficult to solve.

Here our aim is to find explicit solutions for a simple prototype quantum mechanical
model on a time-dependent background and study the physical consequences such a space
will imply. We focus here on the particular two-dimensional space with nonvanishing
commutators for the coordinates X, Y and momenta Px, Py

[X,Y ] = iθ(t), [Px, Py] = iΩ(t), [X,Px] = [Y,Py] = i�+ i
θ(t)Ω(t)

4�
, (1.1)

where the noncommutative structure constants θ(t) and Ω(t) are taken to be real valued
functions of time t. Of course a multitude of other possibilities exists. The specific form
presented here allows for an elegant representation, as we shall see in detail below. When
considering representations for these phase-space variables one is inevitably lead to time-
dependent Hamiltonians H(X,Y, Px, Py)→ H(t).

We will employ here the method of invariants, introduced originally by Lewis and
Riesenfeld [13], to solve the time-dependent Schrödinger equation

i�∂t |ψn� = H(t) |ψn� , (1.2)

for the time-dependent or dressed states |ψn� associated to the Hamiltonian H(t).

Let us briefly describe the key steps of the method for future reference. The initial
step in that approach consists of constructing a Hermitian time-dependent invariant I(t)
from the evolution equation

dI(t)

dt
= ∂tI(t) +

1

i�
[I(t),H(t)] = 0. (1.3)

In the next step one needs to solve the corresponding eigenvalue system involving the
invariant

I(t) |φn� = λ |φn� , (1.4)

for real and time-independent eigenvalues λ and for time-dependent states |φn�. It was
shown in [13] that the states

|ψn� = eiα(t) |φn� (1.5)

satisfy the time-dependent Schrödinger equation (1.2) provided that the real function α(t)

in (1.5) obeys
dα(t)

dt
=
1

�
�φn| i�∂t −H(t) |φn� . (1.6)

For more details on the derivation of these key equations we refer the reader to [13].

Having obtained the explicit solutions for the wavefunctions one is in the position to
compute expectation values for any desired observable. Of special interest is to investigate
the modified version of Heisenberg’s uncertainty relations resulting from non-vanishing
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commutation relations (1.1). Following standard arguments, the uncertainty for the simul-
taneous measurement of the observables A and B has to obey the inequality

∆A∆B|ψ ≥
1

2
|�ψ| [A,B] |ψ�| , (1.7)

with ∆A|2ψ = �ψ|A2 |ψ� − �ψ|A |ψ�2 and similarly for B for any state |ψ�. Evidently,
for instance the first relation in (1.1) implies that the uncertainty for the simultaneous
measurement of X and Y is greater than the function of time |θ(t)| /2 rather than simply
being greater than a constant. Of special interest is to see whether the time-dependent
bound can be saturated by the use of various types of coherent states in (1.7).

Our manuscript is organized as follows: In section 2 we construct the time-dependent
invariant I(t) for the two dimensional harmonic oscillator on the background described
by (1.1). We compute its time-dependent eigenfunctions |φn�, determine the phase α(t)
thereafter and hence the eigenstates |ψn� of H(t). As all solutions are dependent on the
solutions of the nonlinear Ermakov-Pinney equation we devote section 3 to a discussion of
its solutions. In section 4 we assemble the solutions from section 2 and 3 to investigate the
validity and quality of a generalized version of Heisenberg’s uncertainty relations. Partic-
ular focus is placed on the study of the uncertainty relations when computed with regard
to standard Glauber coherent states, including their squeezed versions and also Gaussian
Klauder coherent states. In section 5 we state our conclusions.

2. The 2D harmonic oscillator in a time-dependent background

The main features of models on time-dependent backgrounds can be explained by consid-
ering simple two dimensional models. Therefore we will examine here as prototype two
dimensional model the harmonic oscillator of the form

H(X,Y,Px, Py) =
1

2m

�
P 2x + P 2y

�
+
mω2

2
(X2 + Y 2), (2.1)

on the noncommutative space (1.1). From the many possibly representations, we choose
here a Hermitian one obtained from standard Bopp-shifts in the conventional canonical
variables x, y, px and py, with nonvanishing commutators [x, px] = [y, py] = i�, as

X = x− θ(t)

2�
py, Y = y +

θ(t)

2�
px, Px = px +

Ω(t)

2�
y, Py = py −

Ω(t)

2�
x. (2.2)

As anticipated, when converting the Hamiltonian in (2.1) to the standard variables it
becomes explicitly time-dependent

H(t) =
1

2
a(t)

�
p2x + p2y

�
+
1

2
b(t)

�
x2 + y2

�
+ c(t) (pxy − xpy) (2.3)

with coefficients

a(t) =
1

m
+
mω2

4�2
θ2(t), b(t) = mω2 +

Ω2(t)

4m�2
, c(t) =

mω2θ(t)

2�
+
Ω(t)

2�m
. (2.4)
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We notice that for θ(t) = 0 we can view this Hamiltonian with an appropriate identification
of the remaining functions as describing a particle with mass m moving in an axially
symmetric electromagnetic field, see section IV in [13]. It should also be noted that with
a re-definition of the time-dependent coefficient attempts to solve the eigenvalue problem
related to (2.3) can be found in the literature [14, 15]. Unfortunately the solutions provided
are partly incorrect or not useful for our purposes as we shall be commenting on below in
more detail.

The quantum equations of motion for the canonical variables associated to the Hamil-
tonian (2.3) are simply

ẋ =
1

i�
[x,H] = a(t)px + c(t)y, ẏ =

1

i�
[y,H] = a(t)py − c(t)x, (2.5)

ṗx =
1

i�
[px,H] = −b(t)x+ c(t)py, ṗy =

1

i�
[py,H] = −b(t)y − c(t)px, (2.6)

where we adopt the usual convention for the time derivative ∂tf =: ḟ .

2.1 Construction of time-dependent invariants

A non-Hermitian invariant is constructed right away, by following the argumentation al-
ready provided in [13]. Defining the non-canonical variables

Q := (x+ iy)ei
� t c(s)ds and P := (px + ipy)e

i
� t c(s)ds, (2.7)

satisfying [Q,P ] = 0, we find with (2.5) and (2.6) the same equations of motion for these
variables

Q̇ = a(t)P and Ṗ = −b(t)Q. (2.8)

as for the harmonic oscillator with a time-dependent mass term [16]. This is all that
matters for the identification of a formal invariant Ĩ(t) in terms of the variables Q and P

Ĩ(t) =
1

2

�
τ

σ2
Q2 + (σP − σ̇

a
Q)2

�
�= Ĩ†(t), (2.9)

since we may simply take the expression from the literature and adapt the relevant quan-
tities appropriately. Here σ is a new auxiliary quantity that has to satisfy a nonlinear
Ermakov-Pinney (EP) [17, 18] equations including a dissipative term

σ̈ − ȧ

a
σ̇ + abσ = τ

a2

σ3
, (2.10)

with integration constant τ . It is well-known that variations of this equation are ubiquitous
in this context of solving time-dependent Hamiltonian systems, see for instance equation
(5) in [19], which reduces exactly to (2.10) for A→ a, B → 0 and C → τ and [21, 22, 23, 24]
for variations of this equation. Note that σ = 0 implies that a = 0, which is impossible
according to (2.4), such that we can devide by σ without any further concern.

In principle the fact that Ĩ in (2.9) is an invariant means Ĩ Ĩ† or Ĩ†Ĩ constitute Her-
mitian invariants. However, since they will be quartic in the canonical variables and not
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directly suitable to an operator approach to find the corresponding eigensystems we seek
an additional one of lower order in the canonical variables, having however equation (2.10)
in common.

The symmetry of the Hamiltonian suggest to carry out a quantum canonical transfor-
mation using polar coordinates x = r cos θ, y = r sin θ, which indeed turns out to be very
suitable. The canonical coordinates and momenta are then r =

�
x2 + y2, θ = arctan(y/x)

and pr = (xpx + ypy) /r − i�/(2r), pθ = xpy − ypx, such that the canonical commutation
relations are [r, pr] = [θ, pθ] = i�. The last term in pr is not essential for the canonical
commutation relations, but its inclusion ensures the Hermiticity of pr and leads to the
convenient identity p2x + p2y = p2r + p2θ/r

2 − �2/(4r2) allowing to convert the Hamiltonian
(2.3) into the form

H(t) =
1

2
a(t)

�
p2r +

p2θ
r2
− �

2

4r2

�
+
1

2
b(t)r2 − c(t)pθ. (2.11)

Applying now the Lewis-Riesenfeld method of invariants and construct a Hermitian
time-dependent invariant I(t) by using (1.3), we commence with the standard assumption
that the invariant is of the same order and form in the canonical variables as the original
Hamiltonian. Similarly as the Hamiltonian, we assume here that also the invariant does
not depend explicitly on θ and take it to be of the general form

I(t) = α(t)p2r + β(t)r2 + γ(t){r, pr}+ δ(t)
p2θ
r2
+ ε(t)

pθ
r2
+ φ(t)

1

r2
, (2.12)

with unknown time-dependent coefficients α(t), β(t), γ(t) etc. The substitution of (2.12)
into (1.3) then yields the following constraints on these coefficients

α̇ = −2aγ, β̇ = 2bγ, γ̇ = bα− aβ, (2.13)

δ̇p2θ + ε̇pθ + φ̇ = �2aγ − 2aγp2θ, (δ − α) p2θ + εpθ + φ+
α�2

4
= 0. (2.14)

We observe that the equations in (2.13) take on the same form as the equations underlying
the explicit construction for the time-dependent harmonic oscillator [16]. They can be
solved by parameterizing α(t) = σ2(t) and after one integration we are led exactly to the
nonlinear Ermakov-Pinney equations (2.10) underlying the solution for our non-Hermitian
invariant Ĩ(t). The remaining equations (2.14) are consistently solved by

δ = α, ε = 0, and φ = −α�
2

4
. (2.15)

Assembling everything, the Hermitian invariant I(t) for the time-dependent Hamiltonian
(2.3) then acquires the form

I(t) =
τ

σ2
r2 +

�
σpr −

σ̇

a
r

�2
+
σ2p2θ
r2

− σ2�2

4r2
, (2.16)

with σ(t) determined by the Ermakov-Pinney equation (2.10). As argued already in [13]
the arbitrary constant τ may be scaled away, thus that from now on we simply set it to 1
for convenience without introducing a new quantity.
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Next we solve the eigenvalue equation (1.4) by expressing the invariant I(t) in terms
of time-dependent creation and annihilation operators

â(t) =
1

2
√
�

��
σpr −

σ̇

a
r

�
− i

�
r

σ
+
σ

r
(pθ +

�

2
)

��
e−iθ, (2.17)

â†(t) =
1

2
√
�
eiθ
��

σpr −
σ̇

a
r

�
+ i

�
r

σ
+
σ

r
(pθ +

�

2
)

��
, (2.18)

satisfying [â, â†] = 1, by means of the identity

�

�
â†â+

1

2

�
− pθ =

1

4
I(t)− 1

2
pθ =: Î(t). (2.19)

Clearly Î(t) is also an invariant, where the factor 1/4 simply amounts to a new value for
the integration constant τ and pθ may be added to I(t) since [H(t), pθ] = 0.

2.2 Eigensystem for the time-dependent invariant

We can now employ the standard argumentation from [13] to construct the eigenstates and
eigenfunctions for the invariant Î(t). Noting first that [Î(t), pθ] = 0, one concludes that
Î(t) and pθ possess simultaneous eigenvectors, say |n, ℓ�, with

Î |n, ℓ� = �
�
n+

1

2

�
|n, ℓ� , pθ |n, ℓ� = �ℓ |n, ℓ� , �n, ℓ |n, ℓ� = 1. (2.20)

Computing therefore �n, ℓ| â†â |n, ℓ� = n + ℓ ≥ 0 implies that for given n we have ℓ ∈
{−n, . . . , 0, 1, 2, . . .}. The eigenstates of this sequence therefore obey

â |n,−n� = 0, |n,m− n� = 1√
m!

�
â†
	m
|n,−n� , with n,m ∈ N0. (2.21)

For all observables that can be expressed in terms of the time-dependent creation and
annihilation operators â† and â, we can simply use operator techniques to compute their
expectation values. However, the former is not possible for our observables X, Y , Px and
Py. We therefore use the explicit representations in coordinate space pθ = −i�∂θ and
pr = −i�[∂r + 1/(2r)] to compute the eigenstates. Assuming now �r, θ |n, ℓ� = ψn,ℓ(r, θ) =

ϕn(r)e
iℓθ we have the desired property pθψn,ℓ(r, θ) = �ℓψn,ℓ(r, θ). For given n, the lowest

states are then found from solving the differential equation âψn,−n(r, θ) = 0, that is

ie−iθ−iθn

2arσ
√
�


�
a�nσ2 − ar2 + ir2σσ̇

�
ϕ(r)− a�rσ2∂rϕ(r)

�
= 0. (2.22)

The solution to (2.22) is then easily found to be

ψn,−n(r, θ) = λnr
ne−

r2(a−iσσ̇)

2a�σ2 e−iθn, λ2n =
1

πn!(�σ2)(1+n)
. (2.23)

We have fixed here the constant of integration by demanding the ground state to be nor-
malized. Subsequently we construct the normalized excited states from the second relation
in (2.21) to

ψn,m−n(r, θ) = λn

�
i�1/2σ

�m
√
m!

rn−meiθ(m−n)−
a−iσσ̇

2a�σ2
r2U

�
−m, 1−m+ n,

r2

�σ2

�
, (2.24)
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with U(a, b, z) denoting the confluent hypergeometric function. The orthonormality rela-
tion

� 2π
0 dθ

�∞
0 dr rψ∗n,m−n(r, θ)ψn′,m′−n′(r, θ) = δnn′δmm′ is verified by using the standard

properties of the latter function.
It should be noted here that our solution differs from those found in the literature

[14, 15]. As was pointed out in [15] the solutions provided in [14] are incorrect as they
lead to time-dependent eigenvalues and thus contradict the basic foundations of the Lewis-
Riesenfeld theory, i.e. equation (1.4). Our solution differs also slightly from those in [15].
Moreover, in [15] the normalization constant was left undetermined, which is, however,
crucial in concrete computations following below.

2.3 Eigensystem for the Hamiltonian

The last step in the Lewis-Riesenfeld procedure consists of computing the phase α(t) in
(1.5) by solving the equation

α̇n,ℓ =
1

�
�n, ℓ| i�∂t −H |n, ℓ� . (2.25)

As already argued in [13], this may be achieved by constructing a recursive equation for the
right hand side of (2.25), computing some explicit expectation values, using the freedom
to choose the phase for the vacuum state and a subsequent integration.

We commence by simply replacing |n, ℓ� = â†/
√
n+ ℓ |n, ℓ− 1� in (2.25), obtaining

�n, ℓ| i�∂t−H |n, ℓ� = �n, ℓ− 1| i�∂t−H |n, ℓ− 1�+
1

n+ ℓ
�n, ℓ− 1| [â, i�∂t −H] â† |n, ℓ− 1� .

(2.26)
Using next the expression (2.17) for the annihilation operator and the Hamiltonian in polar
coordinates (2.11), we compute

[â, i�∂t −H] = �

�
c(t)− a(t)

σ2(t)

�
â, (2.27)

upon replacing σ̈ by means of the EP-equation in the form (2.10). Substitution of (2.27)
into (2.26) allows for the computation of the expectation value, thus leading to the recursive
equation

�n, ℓ| i�∂t −H |n, ℓ� = �n, ℓ− 1| i�∂t −H |n, ℓ− 1�+ �
�
c(t)− a(t)

σ2(t)

�
. (2.28)

We may now iterate this equation until we reach the expectation values for vacuum
state �n,−n| i�∂t − H |n,−n�. As argued in [13], the matrix element �n,−n|∂t |n,−n�
involves an arbitrary constant, which we conveniently choose to set to �n,−n|∂t |n,−n� =
�n,−n|H |n,−n�. Therefore we obtain the expectation value

�n, ℓ| i�∂t −H |n, ℓ� = (n+ ℓ)�

�
c(t)− a(t)

σ2(t)

�
, (2.29)

allowing us to compute the phase to

αn,ℓ(t) = (n+ ℓ)

 t�
c(s)− a(s)

σ2(s)

�
ds. (2.30)

— 7 —
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Our result for αn,ℓ(t) differs from the phase computed in [15], where the c(s)-term is absent.
We have now obtained explicit eigenfunctions for the Hamiltonian (2.1) for any time-

dependent background field in terms of the solutions of the EP-equation. Mostly in the
literature the analysis is abandoned at this stage and the invariants and wavefunctions are
simply expressed in terms of the yet to be determined solution to the EP-equation. How-
ever, for concrete computations of measurable quantities one needs to address the auxiliary
problem and solve the equations explicitly for the time-dependent functions appearing in
the Hamiltonian. Surprisingly little attention has been paid to this problem in the context
of solving time-dependent Hamiltonian systems and therefore we will discuss the solutions
of our auxiliary equation (2.10) in the next subsection.

3. The Ermakov-Pinney equation

The simplest special solution arises when taking θ(t) = const, such that ȧ = 0 and conse-
quently the dissipative term vanishes. For this case particular solutions were already found
by Pinney [18]

σ =

�

u21 + τa2
u22
W 2

, (3.1)

where u1, u2 are the two linearly independent solutions of the equation

ü+ ab(t)u = 0, (3.2)

and W = u1u̇2 − u̇1u2 is the corresponding Wronskian.
When ȧ �= 0 no general solution to (2.10) is known, although one can construct a

variety of explicit solutions following the procedure proposed in [25, 26]. We briefly outline
the method and use it to construct some new solutions, which we employ later on. We
start by considering the ordinary differential equation of the general form

d2σ

dt2
+ g(σ)

dσ

dt
+ h(σ) = 0, (3.3)

for which the EP-equation can be seen as a special case with the appropriate choices for
g(σ) and h(σ). Introducing the new quantity η(σ) := dσ/dt, the equation (3.3) is easily
converted into the first order differential equation

η
dη

dσ
+ g(σ)η + h(σ) = 0. (3.4)

This implies that when having solved (3.4), a solution to the original equation (3.3) can
be obtained simply from inverting

� σ
η−1(s)ds = t. It can be shown by direct substitution

that (3.4) admits the solution

η(σ) = λκ
h(σ)

g(σ)
with λ±κ =

−1±
√
1− 4κ
2κ

, (3.5)

if the Chiellini integrability condition [27]

d

dσ

�
h(σ)

g(σ)

�
= κg(σ), (3.6)

— 8 —
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with κ ∈ R holds. Based on this we may then find exact analytical solutions for instance
by starting with a given g(σ) and subsequently compute

η(σ) = κλκ

 σ

g(s)ds and h(σ) = κg(σ)

 σ

g(s)ds, (3.7)

or by starting with a given h(σ) and subsequently evaluate

η(σ) = ±λκ

�

2κ

 σ

h(s)ds and g(σ) =
h(σ)

�
2κ
� σ

h(s)ds
. (3.8)

Following this solution procedure means of course that we are not pre-selecting our back-
ground fields θ(t) and Ω(t), but instead we determine them by primarily insisting on the
integrability of the EP-equation. Comparing (3.4) with the EP-equation (2.10) we identify

g(σ) = − ȧ
a
= −∂t lna = −

2m2ω2θθ̇

4�2 +m2ω2θ2
, (3.9)

h(σ) = abσ − τ
a2

σ3
=

�
4�2 +m2ω2θ2

� 

m2ω2

�
4�2σ4 − τθ2

�
− 4�2τ + σ4Ω2

�

16�4m2σ3
. (3.10)

The virtue of this method is that it leads to exact solutions. Nonetheless, one might also
be interested in concrete types of background fields for which the integrability condition
(3.6) does not hold, in which case we will resort to a numerical analysis.

3.1 Non-dissipative solutions

For the special case θ(t) = const, i.e. ȧ = 0 we can simply pre-select any explicit form
for Ω(t), and thereby b(t), to construct the solutions from the general formula (3.1). For
instance for a(t) = α and b(t) = βeγt, α, β, γ ∈ R, i.e. θ(t) = ±2�/mω

√
mα− 1 and

Ω(t) = ±2�
�
mβeγt −m2ω2, we solve (3.2) in terms of Bessel functions and subsequently

obtain the particular solution by means of (3.1)

σ(t) =

�
π2α2τ

γ2c21
Y 20

�
2
√
αβeγt/2

γ

�
+ c21J

2
0

�
2
√
αβeγt/2

γ

�
, (3.11)

with integration constant c1 ∈ R and J0, Y0 denoting the Bessel functions of first and
second kind, respectively. Similarly different solutions are easily constructed for any other
explicit choice of b(t) for which (3.2) admits a solution.

3.2 Exponentially decaying solutions

Let us now switch on the dissipative term and take ȧ �= 0 by making the additional
assumption g(σ) = γ ∈ R. Then the second equation in (3.7) together with the explicit
form of h(σ) from (2.10) yields the consistency equation

κγ2σ = abσ − τ
a2

σ3
, (3.12)

from which we deduce that ab = const and a ∼ σ2. Since we may find a(t) simply
from −ȧ/a = γ, all other functions follow from the proportionality relations. We find
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exponentially decaying and increasing background fields θ(t) = ±2�/mω
√
mαe−γt − 1 and

Ω(t) = ±2�
�
mβeγt −m2ω2 corresponding to exponentially decaying solutions of the EP-

equation

a(t) = αe−γt, b(t) = βeγt, and σ(t) = µe−γt/2, (3.13)

with α, β, γ ∈ R, together with the constraint µ4 = τα2/(αβ− κγ2) resulting from (3.12).
The Chiellini constant κ is not fixed at this point, but simply determined by substituting
the expressions from (3.13) into (2.10), leading to κ = 1/4. A special case of our solution
corresponds to the one reported in [19] where the EP-equation of the type (2.10) appears
as an auxiliary equation in the solution procedure for the Caldirola-Kanai Hamiltonian
[28, 29].

Notice that for our background fields the requirement that θ(t),Ω(t) ∈ R implies that
this solution leads to cutoff times tc after which the background field needs to be vanishing,
that is t < tc = ln(mα)/γ for α, γ > 0. It should also be noted that the constraint on
the constants is quite severe and one might change the overall qualitative behaviour of the
solution from a decaying solution to an oscillatory behaviour when relaxing the integrability
condition.
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Figure 1: (a) Exactly integrable solution (3.13) (red, dashed) versus a non-Chiellini integrable
solution for pre-selected exponential backgrounds θ(t) = αe−γt and Ω(t) = βeγt (black, solid).
(b) Non-Chiellini integrable solution for pre-selected sinusoidal background θ(t) = α sin(γt) and
Ω(t) = β sin(γt/2). In both panels the constants are α = 5, β = 2, γ = 2, m = � = τ = ω = 1,
κ = 1/4 and µ =

�
5/3.

3.3 Rationally decaying solutions

Next we assume g(σ) = γσn with n ∈ N. The consistency equation then reads

κγ2
σ2n+1

n+ 1
= abσ − τ

a2

σ3
, (3.14)

which implies that ab ∼ σ2n and a ∼ σn+2. Determining a(t) simply from −ȧ/a = γσn, we
compute all other functions from the proportionality relations. We find rational solutions
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to the background fields and the EP-equation

a(t) =
α
�
n+2
n

�n+2
n

(γt− µ)(n+2)/n
, b(t) =

β
�

n
n+2

	 2
n
−1

(γt− µ)1−
2
n

, and σ(t) =

�
n+2
n

� 1
n

(γt− µ)1/n
, (3.15)

with constraint γ2 = (n+1)(αβ − τα2)/κ. The Chiellini constant is subsequently fixed to
κ = (n+ 1)/(n+ 2)2. To maintain real solutions requires here a cutoff time t < tc = µ/γ

for γ, µ > 0.

3.4 Non-Chiellini integrable solutions with pre-selected background

As pointed out, the solutions constructed in the previous subsections are special in the
sense that the Chiellini integrability has been superimposed onto them. Nonetheless, given
a specific background we may always find numerical solutions. In figure 1 we depict some
solutions for exponential and sinusoidal background fields which we shall employ below in
our solutions for the time-dependent wavefunctions.

4. The generalized uncertainty relations

4.1 The generalized uncertainty relations for eigenstates

We have assembled now all the necessary ingredients for the explicit computation of ex-
pectation values. We are therefore in the position to test the generalized uncertainty
relations (1.7). Having obtained explicit expressions for the wavefunctions in coordinate
space, we simply use the representation in polar coordinates x = r cos θ, y = r sin θ,
px = −i� cos θ∂r + i�/r sin θ∂θ, py = −i� sin θ∂r − i�/r cos θ∂θ and the corresponding re-
lations for the operators in (2.2) to compute the relevant matrix elements. We comence
with the verification of the standard uncertainty relations for the auxiliary variables x, y,
px, py. By evaluating the explicit integrals we obtain their matrix elements

�n,m− n|x
��n,m′ − n

�
= i

√
�

2
σ
�√

m′eiα0,1δm′,m+1 −
√
me−iα0,1δm,m′+1

	
, (4.1)

�n,m− n| y
��n,m′ − n

�
= −

√
�

2
σ
�√

m′eiα0,1δm′,m+1 +
√
me−iα0,1δm,m′+1

	
, (4.2)

�n,m− n| px
��n,m′ − n

�
=

√
�

2

�
χ+
√
m′eiα0,1δm′,m+1 + χ−

√
me−iα0,1δm,m′+1

�
, (4.3)

�n,m− n| py
��n,m′ − n

�
= i

√
�

2

�
χ+
√
m′eiα0,1δm′,m+1 − χ−

√
me−iα0,1δm,m′+1

�
, (4.4)
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and

�n,m− n|x2, y2
��n,m′ − n

�
=
�

2
(n+m+ 1)σ2δm,m′ ∓ �σ2

2
√
2
µ(m,m′)eiα0,2δm′,m+2

∓ �σ
2

2
√
2
µ(m′,m)e−iα0,2δm,m′+2, (4.5)

�n,m− n| p2x, p2y
��n,m′ − n

�
=
�

2
(n+m+ 1)χ+χ−δm,m′ ± �χ

2
+

2
√
2
µ(m,m′)eiα0,2δm′,m+2

±�χ
2
−

2
√
2
µ(m′,m)e−iα0,2δm,m′+2, (4.6)

�n,m− n|xpy
��n,m′ − n

�
=
�

2
(m− n)δm,m′ − �σχ+

2
√
2
µ(m,m′)eiα0,2δm′,m+2

−�σχ−
2
√
2
µ(m′,m)e−iα0,2δm,m′+2, (4.7)

�n,m− n| ypx
��n,m′ − n

�
=
�

2
(n−m)δm,m′ − �σχ+

2
√
2
µ(m,m′)eiα0,2δm′,m+2

−�σχ−
2
√
2
µ(m′,m)e−iα0,2δm,m′+2, (4.8)

where we abbreviated χ± :=
1
σ ± i σ̇a and µ(x, y) :=

��
x
2 + 1

�
(y − 1).

Using the above expressions the relevant variances are computed to

∆x|2ψn,m−n = ∆y|
2
ψn,m−n

=
�

2
(n+m+ 1)σ2, (4.9)

∆px|2ψn,m−n = ∆py|
2
ψn,m−n

=
�

2
(n+m+ 1)

�
1

σ2
+
σ̇2

a2

�
. (4.10)

It is then easy to verify that the standard uncertainty relations indeed hold

∆x∆px|ψn,m−n = ∆y∆py|ψn,m−n =
�

2
(n+m+ 1)

�

1 +
σ2σ̇2

a2
≥ �

2
, (4.11)

∆x∆y|ψn,m−n =
�

2
(n+m+ 1)σ2 ≥ 0, (4.12)

∆px∆py|ψn,m−n =
�

2
(n+m+ 1)

�
1

σ2
+
σ̇2

a2

�
≥ 0. (4.13)

However, for our model (2.1) these quantities are mere auxiliary objects. Therefore, we need
to compute the corresponding relations for the noncommutative quantities in our original
system (2.1) on the time-dependent background. In the light of (1.1) and (1.7) they should
produce a generalized version of the uncertainty relations with a time-dependent lower
bound. We find �n,m− n| O |n,m− n� = 0 for O = X,Y, Px, Py, not reported here, and
afterwards

∆X|2ψn,m−n = ∆Y |
2
ψn,m−n

= ∆x|2ψn,m−n +
n−m

2
θ(t) +

n+m+ 1

8�

�
1

σ2
+
σ̇2

a2

�
θ2(t),(4.14)

∆Px|2ψn,m−n = ∆Py|
2
ψn,m−n

= ∆px|2ψn,m−n +
n−m

2
Ω(t) +

n+m+ 1

8�
σ2Ω2(t), (4.15)
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from which we deduce the generalized version of the uncertainty relations

∆X∆Y |ψn,m−n =
n−m

2
θ(t) +

n+m+ 1

8�

�
4�σ2 +

�
1

σ2
+
σ̇2

a2

�
θ2(t)

�
≥ θ(t)

2
, (4.16)

∆Px∆Py|ψn,m−n =
�

2
(n+m+ 1)

�
σ2Ω2(t)

4
+

�
1

σ2
+
σ̇2

a2

��
+
n−m

2
Ω(t) ≥ Ω(t)

2
, (4.17)

∆X∆Px|ψn,m−n = ∆Y∆Py|ψn,m−n ≥
�

2
+
θ(t)Ω(t)

8�
. (4.18)

To prove the validity of these inequalities we note for instance that the smallest value for
the left hand side of (4.16) results from ∆X∆Y |ψ0,0 . Therefore demonstrating that the
quantity f [θ(t)] := ∆X∆Y |ψ0,0−θ(t)/2 is always nonnegative will establish (4.16). Noting

for this purpose that f [0] = �σ2/2, limθ(t)→∞ f [θ(t)] → ∞ and that the local minimum
at θmin(t) = 2�σ2a2/(a2 + σ2σ̇2) acquires the value f [θmin(t)] = �σ4σ̇2/(2a2 + 2σ2σ̇2) ≥ 0
guarantees that f [θ(t)] ≥ 0 and therefore the validity of (4.16). One may argue similarly
for (4.17) and (4.18), which we will not present here.

In order to display the deviation from the lower bound we depict in figure 2-4 the
uncertainty for backgrounds corresponding to the solutions of the EP-equation displayed
in figure 1. As expected from our analytical expressions in (4.16) and previous results, the
smallest uncertainties are observed for the smaller quantum numbers.
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Figure 2: Uncertainties ∆X∆Y |ψn,m−n
versus the generalized lower bound (a) for background

fields θ(t) = αe−γt and Ω(t) = βeγt and (b) for background fields θ(t) = α sin(γt) and Ω(t) =
β sin(γt/2). In both panels the constants are α = 5, β = 2, γ = 2, m = � = τ = ω = 1, κ = 1/4
and µ =

�
5/3.

4.2 The generalized uncertainty relation for coherent states

As is well known coherent states are convenient to use in a number of fields of quantum the-
ory, especially in quantum optics, because of the fact that by definition they constitute the
transition from a classical to a quantum mechanical formulation of a given system. Starting
with Schrödinger’s investigations [30], the first systematic and formal way was developed by
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Figure 3: Uncertainties ∆Px∆Py|ψn,m−n

versus the generalized lower bound (a) for background

fields θ(t) = αe−γt and Ω(t) = βeγt and (b) for background fields θ(t) = α sin(γt) and Ω(t) =
β sin(γt/2). In both panels the constants are α = 5, β = 2, γ = 2, m = � = τ = ω = 1, κ = 1/4
and µ =

�
5/3.
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Figure 4: Uncertainties ∆X∆Px|ψn,m−n
versus the generalized lower bound (a) for background

fields θ(t) = αe−γt and Ω(t) = βeγt and (b) for background fields θ(t) = α sin(γt) and Ω(t) =
β sin(γt/2). In both panels the constants are α = 5, β = 2, γ = 2, m = � = τ = ω = 1, κ = 1/4
and µ =

�
5/3.

Glauber [31], who also coined the term coherent states. Since some of properties are very
specific to the harmonic oscillator several types and generalizations of coherent states have
been proposed thereafter to accommodate different types of situations, see for instance [32]
for a review on the developments up to 2001. Fo instance, so-called Klauder [33, 34] and
Gazeau-Klauder [35] cherent states, for which the quantum classical correspondence was
recently investigated in [36, 37], are extremely useful.

Even though the model under consideration here is of course not the harmonic oscil-
lator, we still have the invariant I(t) expressed in terms of the time-dependent creation
and annihilation operators. This enables us to employ techniques used for the construction
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of Glauber coherent states [31]. Defining therefore the coherent states by means of the
time-dependent displacement operator D(α, t) as

|α, t� := D(α, t) |0, 0� , with D(α, t) := eαâ
†(t)−α∗â(t), (4.19)

it is immediately verified that they constitute eigenstates of the annihilation operator â(t),
i.e. â(t) |α, t� = α |α, t�. Using the matrix elements for the expectation values with respect
to the eigenfunction (4.1)-(4.8), we compute the expectation values with respect to the
Glauber coherent states

�α, t|x |α, t� = −
√
�σ Imα, �α, t|x2 |α, t� = �σ2

�
1

2
+ Im2 α

�
, (4.20)

�α, t| y |α, t� = −
√
�σReα, �α, t| y2 |α, t� = �σ2

�
1

2
+ Re2 α

�
, (4.21)

�α, t| px |α, t� =
√
�

�
Reα

σ
− σ̇ Imα

a

�
, �α, t| p2x |α, t� =

�

2

�
1

σ2
+
σ̇2

a2

�
+ �α, t| px |α, t�2 ,

�α, t| py |α, t� = −
√
�

�
Imα

σ
+
σ̇Reα

a

�
, �α, t| p2y |α, t� =

�

2

�
1

σ2
+
σ̇2

a2

�
+ �α, t| py |α, t�2 ,

such that

∆x|2|α,t	 = ∆y|2|α,t	 =
�σ2

2
, ∆px|2|α,t	 = ∆py|2|α,t	 =

�

2

�
1

σ2
+
σ̇2

a2

�
. (4.22)

Notice that the uncertainties are the same as those computed with respect to the ground
state ψ0,0. Likewise we compute

∆X|2|α,t	 = ∆Y |2|α,t	 = ∆X|2ψ0,0 , ∆Px|2|α,t	 = ∆Py|2|α,t	 = ∆Px|
2
ψ0,0

, (4.23)

such that the uncertainty relations are identical to those in (4.16)-(4.18) with ψ0,0 replaced
by |α, t�. The crucial difference is of course that ψ0,0 is annihilated by a(t), whereas |α, t�
constitutes an eigenstate for â(t).

Having creation and annihilation operators at our disposal we can use standard tech-
niques from quantum optics to construct squeezed states [38] and improve on the uncer-
tainties obtained so far. Employing for this purpose the so-called squeezing operator S(β, t)
by defining

|α, β, t� := S(β, t)D(α, t) |0, 0� , with S(β, t) := e
β

2
[â2(t)−â†2(t)], (4.24)

we may compute the relevant matrix elements for these states, not reported here. Using
those we may subsequently deduce the uncertainties for the auxiliary variables to

∆x|2|α,β,t	 = ∆y|2|α,−β,t	 =
�

2
σ2eβ coshβ, (4.25)

∆px|2|α,β,t	 = ∆py|
2
|α,−β,t	 =

�

2

�
1

σ2
e−β +

σ̇2

a2
eβ
�
coshβ, (4.26)
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and for our noncommutative variables to

∆X|2|α,β,t	 = ∆Y |2|α,−β,t	 =
�

2

�
σ2eβ +

θ2(t)

4�2

�
1

σ2
eβ +

σ̇2

a2
e−β

��
coshβ +

θ(t)

4
(1− e2β),

∆Px|2|α,β,t	 = ∆Py|2|α,−β,t	 =
�

2

�
1

σ2
e−β +

σ̇2

a2
eβ +

Ω2(t)

4�2
σ2e−β

�
coshβ +

Ω(t)

4
(1− e2β).

As expected these expressions reduce to (4.22) and (4.23) when β → 0.
We can now use the freedom to choose the function β(t) to minimize the uncertainties

further. For instance, it is easily found that the uncertainty ∆x ∆px||α,β,t	 is minimal

for β(t) = βmin(t) = 1/2 ln
��
a
�
a2 + 8σ2σ̇2 − a2

	
/(4σ2σ̇2)

�
. Thus taking this value we

should find ∆x ∆px||α,βmin,t	 < ∆x ∆px||α,t	, which is indeed confirmed in figure 5, where
we observe that squeezing leads to a considerable reduction in the uncertainties.
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Figure 5: Uncertainties with respect to Glauber coherent states versus squeezed Glauber coherent
states and Gaussian Klauder coherent states for the auxiliary variables x, px , ∆x∆px||α,t� versus
∆x∆px||α,β,t� versus ∆x∆px||GK> (a) for background fields θ(t) = αe−γt and Ω(t) = βeγt and
(b) for background fields θ(t) = α sin(γt) and Ω(t) = β sin(γt/2). In both panels the constants are
α = 5, β = 2, γ = 2, m = � = τ = ω = 1, κ = 1/4 and µ =

�
5/3.

The minimization for the uncertainties involving our noncommutative variables is less
obvious. Due to the complexity of the expressions we can not perform this task for generic
β(t), but only for specific instances in time. For instance, we find numerically the minimum
for ∆X ∆Px||α,β,t=4	 at β = −1.88203. Indeed, as seen in figure 6 panel (a), at t = 4 this
value leads to a reduction in the uncertainties when compared to ∆X ∆Px||α,t=4	.

However, for different values of time the uncertainties have grown considerably. It
appears that the squeezing works only well for momentum-coordinate uncertainties as for
instance ∆X ∆Y ||α,β,t	 is always minimal at β(t) = 0, such that the squeezing does not
lead to any reduction in these uncertainties. Figure 6 panel (b) exhibits these findings.

Let us next compare our findings with the uncertainties computed with respect to
Gaussian Klauder coherent states defined as [39, 40, 41]

|GK� = |n,m0, φ0, s� :=
1

�
N(m0)

∞�

m=0

exp

�
−(m−m0)2

4s2

�
eimφ0 |n,m− n� , (4.27)
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Figure 6: Uncertainties with respect to Glauber coherent states versus squeezed Glauber coherent
states for the noncommutative variables X,Y, Px for background fields θ(t) = α sin(γt) and Ω(t) =
β sin(γt/2). In both panels the constants are α = 5, β = 2, γ = 2, m = � = τ = ω = 1, κ = 1/4
and µ =

�
5/3.

with normalization factor N(m0) :=
�∞
m=0 exp



−(m−m0)

2/(2s2)
�
, initial phase factor

φ0 and Gaussian standard deviation s. Using the matrix elements (4.1)-(4.8) we readily
compute the expectation values with respect to these states

�GK|x |GK� = −
√
�

N(m0)
σ sin(φ0 + α01)S1(m0), (4.28)

�GK| y |GK� = −
√
�

N(m0)
σ cos(φ0 + α01)S1(m0), (4.29)

�GK| px |GK� =
√
�

N(m0)

�
1

σ
cos(φ0 + α01)−

σ̇

a
sin(φ0 + α01)

�
S1(m0), (4.30)

�GK| py |GK� = −
√
�

N(m0)

�
1

σ
sin(φ0 + α01) +

σ̇

a
cos(φ0 + α01)

�
S1(m0), (4.31)

and

�GK|x2, y2 |GK� = �σ2

2N(m0)

�
S2(n+ 1,m0)∓

√
2 cos(2φ0 + α02)S3(m0)

�
, (4.32)

�GK| p2x, p2y |GK� =
�

2N(m0)

��
1

σ2
+
σ̇2

a2

�
S2(n+ 1,m0) (4.33)

±
√
2

��
1

σ2
− σ̇2

a2

�
cos(2φ0 + α02)− 2

σ̇

aσ
sin(2φ0 + α02)

�
S3(m0)

�
,

�GK|xpy, ypx |GK� =
�

2N(m0)

�√
2

�
σ̇σ

a
sin(2φ0 + α02)− cos(2φ0 + α02)

�
S3(m0) (4.34)

±S2(−n,m0)} .
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We abbreviated G(m,m0) := exp


−(m−m0)

2/(4s2)
�
and the sums

S1(y) : =
∞�

k=0

√
k + 1G(k, y)G(k + 1, y), (4.35)

S2(x, y) : =
∞�

k=0

(k + x)G2(k, y), (4.36)

S3(y) : =
∞�

k=0

µ(k, k + 2)G(k, y)G(k + 2, y). (4.37)

One could make some approximations here for the sums by replacing them with Gaussian
integrals, as for instance in [40, 42]. However, these sums converge very fast with only some
of the initial terms taken into account and therefore it suffices here for our purposes to
present numerical values. When the Gaussian enveloping function is very sharp we notice
that the main contribution simply results from the center of the Gaussian. For instance,
for s = 0.1, we compute S1(0) < 10−10, S2(n, 0) = n, S3(0) < 10−10 and N(0) = 1, such
that

∆o|2ψ0,0 = ∆o|
2
|α,t	 = ∆o|2|GK	 for o = x, y, px, py. (4.38)

This behaviour is clearly observable in figure 5. For a broader Gaussian enveloping
function other modes start to contribute. For instance, for s = 0.5 we compute S1(0) =
0.3774, S2(0, 0) = 0.1360, S2(1, 0) = 1.2717, S3(0) = 0.0184 and N(0) = 1.1357 and for
s = 0.75 we find S1(0) = 0.7998, S2(0, 0) = 1.9092, S2(1, 0) = 0.4693, S3(0) = 0.1897 and
N(0) = 1.4400. For these values the uncertainties for the auxiliary variables are depicted
in figure 5 for two different types of background fields. We observe that depending on the
instance of time the uncertainties might be lowered or increased.

When comparing with the uncertainties for the squeezed coherent states it appears that
optimal minimum is dependent on the type of background field. We observe in figure 5
that for sinusoidal background fields the squeezed Glauber coherent states lead to minimal
uncertainties which can not be undercut when using Gaussian Klauder coherent states
instead, whereas for exponential backgrounds Gaussian Klauder coherent states allow for
a further minimization.

5. Conclusions

We have formulated and investigated a prototype model on a time-dependent background.
For an explicit representation of the underlying noncommutative algebra the Hamiltonian
naturally acquire a time-dependent form. Using the Lewis-Riesenfeld method of invariants
we constructed the time-dependent invariants together with their eigensystem. Following
the standard procedure allowed to compute the eigenfunctions for the original Hamiltonian.
As common in the context of the invariant method all solutions are expressed in terms the
solutions of the nonlinear Ermakov-Pinney equation and variations thereof. In general
this auxiliary problem is not dealt with in this context and all expressions are left as still
dependent on an unknown function, σ(t) in our case. In order to make the solutions more
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explicit and to allow also for numerical studies thereafter, we have included here a detailed
discussion of some solutions.

Our explicit solutions then allow for a analysis of the generalized uncertainty relations
for which the lower bounds become time-dependent functions. Since our invariants are ex-
pressed in terms of time-dependent creation and annihilation operators, standard Glauber
coherent states were constructed by means of the displacement operator in a straightfor-
ward manner. We found that the uncertainties for these states are identical to those of
the ground state annihilated by a(t). By constructing the so-called squeezing operator we
demonstrated that these uncertainties can be further minimized for momentum-coordinate
uncertainties, where the absolute lower bound was only be reached for certain instances
in time. For coordinate-coordinate uncertainties the minimal uncertainties were already
reached by the Glauber coherent states and squeezing does not lead to any further im-
provement. We compared these findings with an analysis for so-called Gaussian Klauder
coherent states. A major difference towards the forgoing computations is that the phase
αn,ℓ(t) becomes a relevant quantity. While in the computation of expectation values for
eigenstates the phase always cancels due to the sum in |GK� it leads here to interferences.
We observe that also for the Gaussian Klauder coherent states the uncertainties resulting
from the computations for the ground state and the nonsqueezed Glauber coherent state
can be undercut. The answer to the question which type of the coherent states is optimal
appears to be background field dependent. The time-dependent lowest bounds are well
respected for all investigated scenarios.

There remain a multitude of challenges. First of all it would be highly desirable to
investigate models on different types of time-dependent backgrounds rather than (1.1),
possibly even those leading to minimal length. As always the study of different types of
models will complete and enrich the understanding. The interesting question in all these
different types of scenarios is whether they still allow for explicit solvability, which is one of
the main virtue of our investigations, or if one needs to resort to additional approximations.
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