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     Abstract

One of the most extensively investigated topics in the adult memory literature, dual memory
processes, has had virtually no impact on the study of early memory development.  We remove the key
obstacles to such research by formulating a trichotomous theory of recall that combines the traditional dual
processes of recollection and familiarity with a reconstruction process.  The theory is then embedded in a
hidden Markov model that measures all three processes with low-burden tasks that are appropriate for
even young children.  These techniques are applied to a large corpus of developmental studies of recall,
yielding stable findings about the emergence of dual memory processes between childhood and young
adulthood and generating tests of many theoretical predictions.  The techniques are extended to the study
of healthy aging and to the memory sequelae of common forms of cognitive impairment, resulting in a
theoretical framework that is unified over four major domains of memory research: early development,
mainstream adult research, aging, and cognitive impairment.  The techniques are also extended to
recognition, creating a unified dual-process framework for recall and recognition.

Keywords: memory development, dual memory processes, aging, cognitive impairment, hidden Markov
models



Trichotomous Processes in Early Memory Development, Aging, and Cognitive Impairment:

A Unified Theory
This paper has three objectives.  The first is to resolve a fundamental problem in

memory development research; the second is to apply that solution to a large corpus of
developmental studies of recall; and the third is to extend the solution to memory
changes that occur during healthy aging and in certain forms of cognitive impairment.
The problem in question is the scant impact that dual-process distinctions have had on
the study of early (child-to-young-adult) memory development.  The result is a dramatic
disparity in knowledge about dual memory processes in adults, which is vast, versus knowledge about
how those processes first evolve, which is thin and inconsistent.  Our solution, as will be seen, is (a) to
propose a trichotomous theory of recall that subsumes traditional dual-process distinctions, (b) to
implement that theory in a low-burden family of tasks that are appropriate for even very young children,
and (c) to show that a new mathematical model of those tasks can be used to measure the development of
trichotomous memory processes and to test theoretical predictions about them.  Concerning the second
objective, we show that an attractive feature of this solution is that a developmental data base exists that
can be analyzed with the model, thereby closing the gap in knowledge about early memory development.
With respect to the third objective, unlike early development, the study of memory changes during aging
and in cognitive impairment have been strongly influenced by dual-process distinctions.  We show that
another attractive feature of our solution is that it is easily extended to both of these domains, yielding a
theory that is unified over four fields of study:  early memory development, mainstream adult memory
research, aging, and cognitive impairment.

Returning to the problem that motivated this paper, the distinction between
recollection- and familiarity-driven remembering has figured centrally in memory research
with adults for some time (e.g., Atkinson & Juola, 1973; Mandler, 1980).  Of late, this
distinction has also come to play a prominent role in the study of aging (e.g., Anderson,
Jennings, Cabeza, Ebert, Grady, & Graham, 2008; Dennis, Kim, & Cabeza, 2007; Parks,
2007; Skinner, & Fernandes, 2008; Toth & Parks, 2006) and cognitive impairment (e.g.,
Reyna & Mills, 2007; Schacter & Slotnick, 2004; Yonelinas, 2002).  The picture in the
memory development literature is quite different.  On the one hand, some progress has
been made in tracking the early ontogenetic course of dual memory processes, using methodologies
that were originally devised to measure those processes in adults (e.g., Brainerd, Stein, & Reyna, 1998;
Ghetti & Agelini, 2008; Ghetti & Castelli, 2006; Holliday & Hayes, 2000, 2002; Newcombe, & Lie, 1995).
However, such research has been sparse and sporadic, and findings have been inconsistent.
Consequently, dual-process distinctions have not penetrated mainstream developmental theory to any
great degree.  The sparseness problem is well illustrated by the published archive on Tulving’s (1985)
remember/know procedure.  In the adult literature, hundreds of experiments have been reported in which
this procedure has been used to separate recollection from familiarity (for a review of early work, see
Donaldson, 1996; for reviews of subsequent work, see Dunn, 2008; Yonelinas, 2002), but as Ghetti and
Angelini recently pointed out, there is only a single published study in which this procedure was used to
compare the two forms of remembering in children of different ages (Billingsley, Smith, & McAndrews,
2002).1  With respect to empirical inconsistencies, in the majority of studies that have used conventional
adult methodologies, recollection has been found to develop between early childhood and young adulthood
while familiarity has not.  In some studies, however, familiarity has also been found to develop, and in
certain studies, age changes have been more pronounced for familiarity than for recollection (Ghetti &
Angelini, 2008).  Such empirical inconsistencies are common features of literatures in which studies are
few and methodological variability is high.

No doubt, the dearth of developmental dual-process research has many causes,
but there is a pair of obvious impediments that will surely have to be removed if the
situation is to change.  The first is theoretical and is concerned with the types of memory
performance in which dual processes figure.  Beginning with Atkinson’s and Mandler’s
early proposals (Atkinson & Juola, 1973; Mandler, 1980), dual-process distinctions have



been distinctions about mechanisms that underlie recognition.  However, as Wixted
(2007) concluded in a recent review, experimentation has failed to provide convincing
evidence that recognition does, indeed, involve dual processes.  Obviously, it would be
questionable to focus developmental research on a form of memory performance that
may be incapable of distinguishing dual processes in the first place.  A further problem
with recognition is that it has traditionally been of marginal interest to students of development, the reason
being that age variability is limited during the child-to-young-adult age range.  Although performance on
standard recall tasks (cued, free, paired-associate, serial) improves dramatically across this age range (for
reviews, see Bjorklund, 1987; Bjorklund & Muir, 1988), high levels of recognition for the same types of
material are present during the preschool years (e.g., Merriman, Azmita, & Perlmutter, 1988; Morrison,
Haith, & Kagan, 1980).  [A parallel phenomenon occurs late in life, when recall tests are more sensitive to
memory declines during healthy aging and in the emergence of cognitive impairment (e.g., Peterson et al.,
1999, 2001; Spaan, Raaijmaker, & Jonker, 2004).]  Consequently, null age effects have been ubiquitous in
developmental studies of recognition (Ceci, Ross, & Toglia, 1987; Naus, Ornstein, & Kreshtool, 1977;
Orstein & Corsale, 1979).  Further, the developmental literature is replete with examples of important
memory phenomena, such as forgetting, that display striking age changes when they are measured with
recall but were once thought to develop minimally or not all because they had been measured with
recognition (for a review, see Brainerd, Reyna, Howe, Kingma, & Guttentag, 1990).

The second impediment is the developmental inappropriateness of conventional
dual-process methodologies.  The adult paradigms that are most often used to effect
separation of processes—such as remember/know (Tulving, 1985), process dissociation
(Jacoby, 1991), and receiver operating characteristics (ROC; Lampinen, Odegard,
Blackshear, & Toglia, 2005; Lampinen, Odegard, & Neuschatz, 2004; Yonelinas, 1994)—place high
burdens on the capabilities of children.  In those paradigms, the data that are diagnostic of dual processes
are not old/new recognition but, rather, meta-cognitive judgments that supplement recognition.  Such
judgments require subjects to introspect on aspects of the mental experiences that recognition probes
provoke, such as (a) vivid mental reinstatement of realistic details of prior presentations versus global
feelings of familiarity (in the case of remember/know and process dissociation) and (b) feelings of
confidence in old/new responses (in the case of ROC).  The validity of these paradigms therefore turns on
the assumption that subjects can introspect reliably on the mental states that probes stimulate and the
assumption that subjects can comprehend and follow instructions as to how to perform introspections.
Although each of these paradigms has been used in one or a few developmental studies, the extensive
literature on meta-cognitive development (for reviews, see Bjorklund, 2004; Schneider & Bjorklund, 1998)
argues that such assumptions are hazardous before adolescence.  With the remember/know paradigm, for
instance, Ghetti, Mirandola, Angelini, and Ciaramelli (2008; cited in Ghetti, 2008) found that children of age
7 and younger interpret remember/know instructions differently than older children and adults.  Further, as
Ghetti and Angelini (2008) have noted, using these paradigms with children also requires that they be
simplified in various ways.  That is problematical because child and adult measurements are then
noncomparable, and any age differences that are detected may be artifacts of such noncomparability.

   It seems, then, that a developmentally appropriate dual-process framework
should have two features.  First, it ought to be a theory of recall, both because
recognition may not involve dual processes and because recognition displays limited
variability during early memory development.  Second, it ought to measure dual memory
processes with low-burden tasks that elementary schoolers and preschoolers are capable of performing
reliably.  Thus, an ideal methodology would be one that extracts measurements of dual memory processes
directly from performance on standard recall tasks.  A developmentally appropriate framework should have
a third feature, however:  It ought to be easily extended to domains in which dual-process distinctions are
already foci of research—notably, to adult memory, aging, and cognitive impairment.  Otherwise, one
problem (the dearth of developmental research) is being exchanged for another (noncomparable
developmental research).  In the remainder of this paper, we present and evaluate a theory that has all
three of these properties, one that posits that recall is controlled by a pair of dissociated retrieval
operations (direct access and reconstruction) and a slave judgment operation (familiarity) that is triggered
whenever recall is based on reconstruction.



The presentation involves five steps.  In the first section, we introduce a
trichotomous theory of recall and summarize evidence from the adult literature that bears
on its assumptions.  In the second section, we implement the theory in a mathematical
model of recall that separates and quantifies the three processes that are posited in the
theory.  In the third section, that model is exploited (a) to secure stable findings about
age changes in trichotomous processes during child-to-adolescent development and
adolescent-to-young-adult development and (b) to test core theoretical predictions about
these processes.  We rely on a corpus of developmental recall data sets that can be
analyzed with the new model, which includes data from free, cued, and paired-associate
recall tasks.  In the fourth section, we show that this framework is readily extended to the
study of memory changes that occur during healthy aging.  Here, we rely on another
corpus of recall studies of aging that can be analyzed with the new model.  In the fifth
section, we show that this framework is also readily extended to research on cognitive
impairment and provide illustrative findings from studies of the memory sequelae of
Alzheimer’s dementia, mild cognitive impairment, depression, and schizophrenia.

Trichotomous Recall Processes
As we saw, there are three obstacles to using adult recognition methodologies to

study the development of dual memory processes:  Recognition may not involve dual processes,
recognition displays minimal age variability, and adult methodologies place high demands on children.
Those obstacles can be circumvented by using low-burden recall tasks.  In that connection, dual-process
distinctions have recently been proposed for recall in order to account for some otherwise puzzling
findings.  Following some historical remarks that place the present theory within the broader context of
other theories of recall, we summarize those ideas in the second subsection below and then formalize a
trichotomous theory of recall that will be used in developmental research.  In the third subsection, we
review experimental findings from the adult literature that motivate dual-process distinctions about recall. 

Historical Background
                  Relative to other contemporary accounts of recall, the present theory has three distinguishing
features:  (a) It incorporates analogues of recognition processes, (b) it encompasses all of the standard
recall paradigms (cued, free, paired-associate, serial), and (c) it is embedded in a mathematical model that
separates the theory’s processes and provides uncontaminated measurements of them.  Concerning a, at
one time recognition processes were central to theories of recall.  That approach faded with the demise of
generate/recognize theories, which posited that recall consists of whatever processes are involved in
recognition, plus a generation process (e.g., Anderson & Bower, 1972; Kintsch & Morris, 1965).  To recall a
target, it was thought that subjects first, somehow, generate the item and then perform a subjective
recognition test on it.  The ground was cut from under such ideas by Tulving and Thomson’s (1973)
recognition-failure effect.  If recall is just recognition plus an antecedent generation process, it will always
be easier to recognize a target than to recall it (because the target is provided to subjects on recognition
tests but they must first succeed in generating it on recall tests).  Tulving and Thomson found that in
certain types of paired-associate designs, it was easier to recall a target than to recognize it.  A large body
of experimentation on the recognition-failure effect then accumulated, and since, with the notable exception
of some theories of stem completion (e.g., Bodner, Masson, & Caldwell, 2000; Jacoby, Toth, and
Yonelinas, 1993), recognition processes have not figured centrally in recall theories.  The present theory,
unlike those in the generate/recognize vein, does not merely import recognition into its account of recall.
Instead, as will be seen, it implements the theoretical processes that controversial recognition
methodologies have sought to measure in recall tasks.

With respect to the second distinguishing feature, the modal contemporary theory
of recall focuses on a single paradigm, such as free recall (e.g., Polyn, Norman, &
Kahana, 2008), or on some particularly important recall effect, such as retrieval-induced
forgetting (e.g., Norman, Newman, & Detre, 2007).  Indeed, it is commonplace to restrict attention to
particular effects that are produced by specific paradigms, with Kimball, Smith, and Kahana’s (2007) fSAM
theory of intrusions of semantic associates in free recall being a case in point.  In contrast, the theory that
is discussed in the present section can be applied to all standard recall paradigms (see the section



Development from Childhood to Young Adulthood, below), and it is assumed that different recall effects
can be explained as parametric variations in the processes of direct access, reconstruction, and judgment.

The third distinguishing feature of the present theory is that it is embedded in a
mathematical model whose parameters measure the processes of direct access,
reconstruction, and judgment on a common ratio scale (see the section An Identifiable
Model of Direct Access, Reconstruction, and Familiarity Judgment, below).  When a
theory is not embedded in a mathematical model, it poses some fundamental obstacles
in the arena of experimental tests, two well-known examples being lack of quantitative fit
and process impurity.  Concerning fit, without a mathematical model it cannot be
determined whether a theory is able give more than rough, qualitative accounts of
empirical effects.  Concerning process impurity, as Jacoby (1991) showed, separating
the contributions of different processes to performance data with a model and then
measuring those processes with the model’s parameters are the only ways to ensure that
the processes are not confounded with each other in experimental measurements.
When process measurements are impure, manipulations that, theoretically, are predicted
to affect a given process may do so or may fail to do for spurious reasons (i.e., owing to
the contaminating influence of other processes).  Despite these obstacles, some of the
most influential theories of recall (e.g., Roediger et al., 2001; Koriat & Goldsmith, 1996)
are not implemented in mathematical models. 

Direct Access, Reconstruction, and Judgment
Barnhardt, Choi, Gerkens, and Smith (2006), Brainerd, Payne, Wright, and Reyna (2003),

Brainerd, Wright, Reyna, and Payne (2002), and Reyna and Mills (2007) proposed that list items are
recalled via a pair of dissociated retrieval operations, direct access and reconstruction, plus a slave
judgment operation that evaluates the products of reconstruction.  Here, we present a new theoretical
account of direct access, reconstruction, and judgment that goes beyond such proposals, one that is
sufficiently detailed to deliver several novel predictions about the behavior of parameters that measure
these operations.  Importantly, the necessity and sufficiency of these operations are tested later on, as part
of the process of model validation.  The tests that are performed will reject dual processes if they are not
required by the data.
Direct Access

Direct access retrieves episodic traces of the prior presentations of individual items from a study
list (verbatim traces).  That is, this operation follows direct routes to traces of specific presentation events,
and for that reason, it is assumed to be the faster and more accurate of the two retrieval methods.  If this
operation is the faster one, directly accessed items should predominate at the start of a free recall protocol
(Barnhardt et al., 2006), and on paired-associate or cued recall tests, an item should be more likely to have
been directly accessed if it is recalled quickly than if it is recalled slowly.  Concerning accuracy, direct
access supports errorless performance because an item’s surface form is symbolically reinstated, so that
the item can be recalled by merely reading out this surface information as it echoes in the mind’s ear or
flashes in the mind’s eye—much as actors repeat lines that they hear from prompters or as readers
pronounce words that they see on printed pages.  Because episodic traces of surface forms are
processed, direct access induces what is commonly termed recollective phenomenology; that is, vivid
restoration of realistic details of items’ prior presentations.

Despite these desirable properties, rememberers cannot rely solely on direct
access, for two reasons:  Experimental findings suggest that the types of traces that it
accesses are quite sensitive to the output interference that accumulates during the
course of recall and that those traces become rapidly unavailable as time passes (Reyna
& Mills, 2007).  Thus, direct access poses problems on the storage side of learning—the
key problem being that for the operation to be successful, verbatim traces of item
presentations must be available.  Because such representations are interference-
sensitive and labile, the major problem for learning is to store verbatim traces that are so



robust that, under the current experimental conditions, they are able to survive from one
trial to the next until the overall performance criterion can be met, especially when the
criterion is stringent (e.g., errorless recall).
Reconstruction

This retrieval operation regenerates targets from episodic traces of relational information about
studied material, especially from gist traces of meaning content.  Because such traces are not item-specific
(e.g., “household pet” is not a specific animal, “Italian seasoning” is not a specific herb), an explicit
mechanism that explains how rememberers get from such traces to individual candidate items for output is
required.  Here, we posit that reconstruction may be thought of as a classic delimited search operation (cf.
Crowder, 1976), one that uses episodic traces of some of the targets’ features (e.g., “household pet”) to
constrain the generation of candidate sets to ones that are restricted enough to be rapidly searched (e.g.,
dog, cat, parakeet).  For any given list item, a correct search set is defined as one that contains that item.

Using episodic traces of information that does not uniquely identify specific targets
(e.g., meaning features) to create correct search sets is the “construction” part of
“reconstruction.”  With respect to this process, note that a good feature is one that
delivers search sets that are simultaneously correct and small.  Note, too, that the chief
problem for reconstruction is not to identify target features that deliver correct search sets
because any target is necessarily an exemplar of any of its features.  Rather, the
problem is to identify features that deliver small search sets.  For instance, if dog and
tiger are list words, “household pet” is an excellent dog feature, and “jungle cat” is an excellent tiger
feature.  However, “animal” is a poor dog feature and a poor tiger feature, notwithstanding that it is correct
in both cases, because it over identifies a large search set.

Owing to the inherent speed differential between direct access and reconstruction, the probability
that recall is due to the latter should be greater at the end of a free recall protocol than at the beginning
(Brainerd et al., 2002), and this probability should increase with response latency on paired-associate and
cued recall tests.  Phenomenologically, reconstruction is experienced as subjective foraging for studied
items, rather than as recollection of specific presentation events.  Although reconstructive retrieval is
focused on restricted sets of items, the fact that the information that delimits search is sketchy means that
it is inevitable that some of the candidates that are identified for output will not have been part of the
studied material.  Interestingly, when this fact is combined with the notion that reconstruction is slower than
direct access, the classic finding (e.g., Payne, 1986; Payne, Elie, Blackwell, & Neuschatz, 1996) that
intrusions are usually concentrated at the ends of free recall protocols emerges as a straightforward
prediction.

Reconstruction has two advantages, relative to direct access.  First, the memory
representations that it processes are less susceptible to output interference that accumulates during recall
(Brainerd & Reyna, 1993; Reyna & Mills, 2007), and second, they are more stable over time (Kintsch,
Welsch, Schmalhofer, & Zimny, 1990; Reyna & Kiernan, 1994).  Whereas the learning problem for direct
access is mainly on the storage side, the learning problem for reconstruction is mainly on the retrieval side.
 The relational information that is processed to reconstruct items (e.g., “animal,” “household pet,” “jungle
cat”) does not need to be stored because it is already available in memory.  Such information is simply
activated and episodically tagged as targets are studied.  However, subjects must learn how to use it to
recover specific items.  Because individual targets present multiple features from which contrasting correct
search sets can be constructed, the problem for learning, as we said, is to identify features that deliver
small correct search sets.  Once such retrieval learning is complete for an item, reconstruction will succeed
in finding it on a recall test.  However, there is a remaining problem to be dealt with.
Judgment

That problem is that a search set that is small enough to be rapidly explored will typically contain
non-target items as well as the target (e.g., cat and parakeet in addition to dog).  To reduce the chances of
outputting such plausible reconstructions, we have previously suggested that reconstruction is
accompanied by a judgment operation that performs pre-output confidence checks (Brainerd et al., 2002;
Reyna & Mills, 2007), but we have not proposed an explicit model of how such checks are performed.  To
remove that limitation, we assume that judgment is a signal detection process that consists of a familiarity
signal and a bias parameter (cf. Snodgrass & Corwin, 1988).  Explicitly, when reconstruction delivers a
small set of candidate items, we assume that the items generate familiarity signals, much like probes on a



recognition test.  Also on analogy to recognition probes, we assume that items’ familiarity signals are
processed by setting a decision criterion that executes confidence checks in the standard way:  An item is
output if the strength of its familiarity signal exceeds the decision criterion, but it is withheld otherwise.
Thus, the judgment operation evaluates reconstructed items by passing them through a familiarity filter,
with the probability of outputting such an item increasing as its familiarity signal becomes stronger and
decreasing as the decision criterion becomes more stringent.

Although the judgment operation evaluates the products of reconstruction, it is a
distinct process that can be affected by variables that either do not affect reconstruction
or have opposite effects on reconstruction.  For instance, instructions that encourage
subjects to liberalize their decision criteria (e.g., Koriat & Goldsmith, 1996) should cause
more reconstructed items to be released for output but not more items to be
reconstructed.  Further, Brainerd et al. (2002) proposed that increasing items’
concreteness should make it more difficult to reconstruct them but should increase the
subjective familiarity of any items that are reconstructed.
Basic Model

Consider the standard recall paradigms, in which trials consist of alternating study cycles and
memory tests:  free recall (subjects study lists of items and then recall as many as they can in any order);
serial recall (subjects study lists of items and then recall as many as they can but in the order in which the
items were presented); paired-associate recall (subjects study lists of item pairs and then attempt to recall
the second member of each pair when the first is presented as a retrieval cue); and cued recall (subjects
study lists of items that instantiate different semantic relations (e.g., taxonomic categories) and then recall
as many exemplars of each relation as they can when that relation is presented as a retrieval cue).  For
such paradigms, the influence of direct access, reconstruction, and judgment can be formalized in the
simple expression
Pi(Rc) = Di + (1-Di)Ri Ji,                                                                                                                           (1)

where Pi(Rc) is the probability of correctly recalling a target on the ith trial of an experiment, Di is the
probability of being able to directly access that target on the ith trial, Ri is the probability of being able to
reconstruct that target on the ith trial, and Ji is the probability that a reconstructed target is familiar enough
to pass the judgment check on the ith trial.  (Throughout the remainder of this paper, an experimental “trial”
will refer to one study cycle together with one or more recall tests.)  In the present paper, as will be seen,
the parameters Di and Ri will be treated as inter-state transition parameters.  That is, Di will be the
probability that an item has entered a state in which a verbatim trace can be directly accessed (which
supports recall of that item with probability 1), and Ri will be the probability that an item has entered a state
in which it can be reconstructed (which supports recall of that item with probability Ji).  Once items have
entered these states, they will not fall back to earlier states as long as the experimental conditions remain
unchanged.  Of course, values of Di, Ri, and Ji will depend on those conditions, and as with any
mathematical model, validity tests of process assumptions about these parameters are secured by
introducing manipulations that embody those assumptions.  Although Equation 1 expresses the probability
of correct recall as a function of Di, Ri, and Ji, these parameters are not identifiable; that is, they cannot be
estimated from this equation because there is only one empirical degree of freedom, Pi(Rc).  Identifiability
is a classic problem in model-driven theories of psychological processes (e.g., see Bamber & van Santen,
2000), and it refers to whether the parameters that measure such processes can in fact be estimated in the
target data space (multi-trial recall experiments in this instance).  We return to this question in a later
section, where we introduce an identifiable model of direct access, reconstruction, and familiarity judgment.
Relations to Dual-Process Distinctions

Last, we explicate the relation between the present conceptualization of recall and traditional dual-
process distinctions, that relation being to incorporate the customary distinction between recollection and
familiarity, and to add a third process that is specific to recall.  Direct access is the recall implementation of
recollection, naturally.  This process is accompanied by vivid reinstatement of targets’ prior presentations,
and it may be thought of as recollection that occurs in response to retrieval cues whose levels of specificity
vary from items with which targets were paired on a study list (paired-associate recall) to items that
appeared earlier in a study list (serial recall) to the names of semantic relations and categories that targets
instantiate (cued recall) to generic list-identification cues (free recall).  Turning to reconstruction, this
operation has no analogue in traditional dual-process distinctions.  Reconstruction regenerates items from



partial-identifying information about them, using that information to form delimited search sets that contain
the items.  Last, judgment, as conceptualized here, is the recall implementation of familiarity.  It involves
applying a decision criterion to the familiarity signals of items that may or may not have been studied.  At a
more explicit level, judgment can be viewed as a familiarity process that occurs in response to items that
are cognitively regenerated (via reconstruction) rather than physically presented.  A further important
contrast between the trichotomous view of recall and traditional dual-process distinctions concerns the
temporal sequencing of recollection and familiarity.  In the standard view, familiarity is the faster of the two
operations (e.g., Atkinson & Juola, 1973; Mandler, 1980), whereas in the present recall model, direct
access occurs early and is backed up by familiarity if it is necessary to resort to reconstruction.
Summary

In the present conception, items are recalled either by directly accessing their verbatim traces or
by reconstructing them from relational information and passing the reconstructions through a familiarity
filter.  A further consideration is that these two modes of retrieval seem to be antagonistic, from the
perspective of learning.  Direct access is a rote memorization process inasmuch as its aim is to store
replicas of individual items that will survive long enough for subjects to meet performance criteria.
Reconstruction, on the other hand, is a comprehension process, at least for the meaningful materials that
are presented in developmental studies, because its aim is to understand how to use concepts, semantic
features, and other relational information that studied items instantiate to create search sets that are small
enough to regenerate the items rapidly on recall tests.  These contrasting goals—rote memorization versus
comprehension—suggest that measures of direct access and reconstruction will be dissociated in data, a
possibility that is explored later in this paper.

Some Experimental Evidence
The foregoing distinctions are grounded in particular findings about recall.  An early stimulus for

the distinction between direct access and reconstruction was the cognitive triage effect, a puzzling U-
shaped relation between the order in which items are output during free recall and their associated error
rates—specifically, that items with lower error rates on previous trials tend to be recalled in middle
positions, whereas items with higher error rates tend to be recalled in primacy and recency positions
(Brainerd et al., 2002).  Recently, however, the major impetus for this distinction is a series of dissociations
between true and false recall in experiments in which subjects study lists of meaningfully-related items
(e.g., Payne & Elie, 1997, 1998; Payne et al., 1996), with dissociations being particularly numerous for
recall of Deese/Roediger/McDermott (DRM; Deese, 1959; Roediger & McDermott, 1995) lists and
categorized lists.  Such dissociations are predicted because one of the retrieval operations supports only
true recall, whereas the other supports false as well as true recall.  Thus, manipulations that increase the
contribution of direct access to performance, ought to increase true recall and reduce false recall, whereas
manipulations that increase the contribution of reconstruction to performance ought to increase false recall
and may also reduce true recall or leave it unchanged (because reconstruction does not recover targets as
reliably as direct access does; Brainerd et al., 2003).  For instance, it is well known that intrusions that
preserve the meaning of studied items tend to appear near the ends of free-recall protocols (e.g., Payne,
1987), which is congruent with the notion that intrusions are by-products of an error-prone operation that
waxes during the later stages of recall.  However, other recall patterns are more diagnostic of the direct
access/reconstruction distinction, and we mention six examples from experiments in which subjects
studied and recalled lists of meaningfully-related items.

First, when recall produces appreciable levels of intrusions, true and false recall
probabilities are inversely related (e.g., Gallo & Roediger, 2003; Roediger, Watson
McDermott, & Gallo, 2001).  Negative correlations are expected because increased
levels of false recall mean greater reliance on reconstruction, and greater reliance on
reconstruction means less accurate true recall.  Second, repeated testing has opposite
effects on true and false recall:  If subjects respond to a series of recall tests for a list,
without further opportunities to study it, the false recall probability drifts upwards over
tests while the true recall probability drifts downwards (e.g., Brainerd et al., 2003; Ceci &
Bruck, 1995; Payne et al., 1996).  This trend is expected because the sensitivity of direct
access to the accumulation of output interference means that repeated testing will shift
recall in the direction of reconstruction.  Third, the length of the study list also has



opposite effects on true and false recall because as length increases, the false recall
probability increases and the true recall probability decreases (for a review, see Brainerd,
Reyna, & Ceci, 2008).  This result is expected because longer lists generate more of the
output interference that interferes with direct access, which shifts recall in the direction of
(error-prone) reconstruction.  Fourth, when subjects study lists of items that share
meaning but recall is delayed for a few hours or days, the true recall probability declines
steeply, the false recall probability remains relatively constant, and consequently, false
recall increases substantially as a proportion of total recall (e. g., Brainerd et al., 2008;
Gallo, 2006; Seamon et al., 2002a; Toglia, Neuschatz, & Goodwin, 1999).  This pattern is
expected on the ground that the representations that are processed by direct access
versus reconstruction are forgotten at different rates, with those that support
reconstruction being more likely to remain accessible as time passes.  Fifth, when
subjects of different ages study and recall lists of items that share meaning, the false
recall probability increases dramatically between early childhood and young adulthood
while the true recall probability increases more modestly, so that net recall accuracy
declines with age (e.g., Howe, 2006; Metzger et al., 2008).  This developmental trend is
expected because the forms of semantic processing that extract the meaning relations
that reconstruction operates on develop more slowly than the ability to store targets’
surface features (e.g., Bjorklund, 1987, 2004).  Sixth, encoding manipulations that make
targets’ surface features more distinctive while leaving their semantic content unchanged
(e.g., presenting targets as pictures rather than as printed words, generating visual
images of the orthographies of orally-presented words versus listening only) increase the
true recall probability but suppress the false recall probability (for reviews, see Brainerd &
Reyna, 2005; Gallo, 2006).  This result is expected because making targets’ surface
forms more distinctive ought to shift recall in the direction of direct access.

Finally, a series of recent experiments by Barnhardt et al. (2006) tested two, rather
precise, predictions of the direct access/reconstruction distinction.  First, suppose that
subjects study a list of words that share meaning, but within the list, a few unrelated
words are also presented—e.g., a list of 25 words is studied that consists of 20 city
names, plus 5 unrelated words inserted at random positions.  The prediction is that
unrelated words ought to be recalled relatively early in output because reconstructive
retrieval waxes as recall proceeds, which favors targets that share salient meaning.
Barnhardt et al. observed that pattern.  Second, suppose that subjects study a list of
words that share meaning.  One of them, a word that is an especially good exemplar of
the shared meaning content and is apt to be falsely recalled if it is not presented,
appears on the study list for half the subjects but is omitted from the list for the other half.
 Theoretically, the former subjects can recall this word via either direct access or
reconstruction, whereas the latter subjects can only recall it via reconstruction.  The
prediction is that when this single item is falsely recalled by the latter subjects, it will
appear later in output, on average, than when it is correctly recalled by the former
subjects.  Barnhardt et al. also observed this pattern in their experiments.

In short, the direct access/reconstruction distinction about recall has proved to be
quite productive in the study of false memory.  Although this distinction has figured as a
working hypothesis in several experiments, its application to the study of memory
development demands a more formal treatment that embeds direct access,
reconstruction, and familiarity judgment in a mathematical model that separates and



quantifies them, so that their relative contributions to age changes in performance can be
determined.  That is the matter to which we now turn.

An Identifiable Model of Direct Access, Reconstruction, and Familiarity Judgment
As we have seen, a developmentally appropriate framework for the study of

dual memory processes should be focused on recall and should supply a low-burden methodology in
which simple recall responses are used to measure those processes (rather than requiring children to
perform supplementary meta-cognitive tasks).  In this section, we show how the second criterion is met.
To do that, we return to a problem that was mentioned in passing—namely, parameter identifiability.
Equation 1, which expresses the probability of successful recall on trial i as a function direct access,
reconstruction, and judgment, is not identifiable; there are more memory processes to estimate than there
are empirical degrees of freedom.

Below, this limitation is removed by implementing Equation 1 as a two-stage
absorbing Markov chain.  In the first subsection, the basic features of such models and
their history in memory research are briefly recounted.  In the second subsection, the
generic two-stage absorbing Markov chain is used to find an implementation of Equation
1 that will measure direct access, reconstruction, and familiarity judgment in low-burden
recall designs.  Although this initial implementation of Equation 1 greatly reduces the
number of parameters that need to be estimated, we show that it, too, is not identifiable.
In the third subsection, we present another Markov chain whose parameters are
identifiable.  The statistical machinery for estimating its parameters, for testing global fit,
for generating predicted-observed comparisons of fine-grain performance statistics, and
for testing hypotheses about parameters is also developed.

Markov Models of Memory and Cognition
It is commonplace to treat memory and reasoning processes as specifying distinct cognitive states,

so that changes in those processes over experimental trials (learning) are conceptualized as transitions
through a discrete state space.  In such conceptualizations, finite Markov chains are the standard
formalism for fitting data and extracting measurements of memory and reasoning processes (e.g.,
Busemeyer, Wang, & Townsend, 2006).  The core assumptions of such models are just that (a) some type
of performance (e.g., free recall, mental addition, probability judgment) consists of a small number of
cognitive states C1, C2, …, Ck, each of which produces that performance with some average probability pi,
and that (b) the state that a subject occupies on Trial i of an experiment depends only on the state that was
occupied on the immediately preceding trial.  These assumptions are testable with the usual model-fitting
procedures; that is, fits will be poor when either assumption is violated.  Historically, data fits have usually
been good (see illustrative recall fits in Figures 1 and 2).  Consequently, finite Markov chains have long
been popular devices for modeling memory processes (e.g., Bower & Theios, 1963; Greeno, 1968), a
tradition that continues in contemporary research (e.g., Batchelder, Chosak-Reiter, Shankle, & Dick, 1997;
Faglioni, Bertolani, Botti, Merelli, 2000a; Faglioni, Saetti, & Botti, 2000b; Katsikopoulos & Fisher, 2001),
and they are an influential modeling technology in contemporary studies of judgment and decision making
(see Busemeyer et al., 2006; Myung, Karabatsos, & Iverson, 2005).

A final consideration, one that is not widely appreciated, is that Markov models of
memory and reasoning subsume many other commonly used modeling technologies.
One especially popular technology, multinomial modeling, is a case in point.  In a single-
trial experiment, a multinomial model is the starting vector and response vector of a
Markov chain, and in a multi-trial experiment, a multinomial model is the starting vector,
response vector, and transition matrix of a Markov chain (see Riefer & Batchelder, 1988).
 Thus, such multinomial models as process dissociation (Jacoby, 1991), conjoint
recognition (Brainerd, Reyna, & Mojardin, 1999), and source monitoring (Batchelder &
Riefer, 1999) are all finite Markov chains.

The Generic Markov Chain for Recall
Returning to the identifiability problem with Equation 1, it is easy to see that this problem is a

consequence of the assumption that there are distinct D, R, and J parameters for each trial of a recall



experiment.  As there is only one empirical probability for each trial, P(Rc), nonidentifiability is inevitable.
The solution, of course, is to reduce the number of memory parameters to a more manageable
value—specifically, to a value that is below the number of empirical degrees of freedom—thereby securing
an identifiable set of memory parameters and leaving some residual degrees of freedom for fit evaluation.
This can be done by taking advantage of the history of modeling research on multi-trial recall, which has
provided a modeling framework for recall data that has many fewer parameters than Equation 1 and is
applicable throughout the lifespan.

That framework consists of a family of two-stage absorbing Markov chains.  The
fine-grain structure of adults’ recall data—by which we mean the empirical distributions of
various error and success statistics in standard recall paradigms—is known to conform
closely to the predictions of such chains (for a review, see Brainerd, Howe, &
Desrochers, 1982).  Although Miller (1952) was the first to propose that finite Markov
chains are applicable to memory paradigms, the earliest two-stage models of recall were
Theios and Hakes’ (1962) model of paired-associate recall and Waugh and Smith’s
(1962) model of free recall.  Various investigators soon confirmed that two-stage
absorbing Markov chains delivered excellent fits to paired-associate, cued, free, and
serial recall data (e.g., Bower & Theios, 1963; Estes & DaPolito, 1967; Greeno, 1968;
Halff, 1977; Kintsch, 1963; Kintsch & Morris, 1965; Pagel, 1973).  Illustrations of the
close correspondence between the predictions of two-stage models and the distributions
of three statistics of recall data are shown in Figure 1.

Crucially for present purposes, these baseline results for adults were eventually
extended to memory development, where it was found that, likewise, two-stage
absorbing Markov chains delivered excellent fits to the recall data of younger children,
older children, and adolescents (e.g., Brainerd & Reyna, 1991; Brainerd et al., 1990).
Illustrations of such fits for child data are shown in Figure 2.  It was also found that two-
stage absorbing Markov chains provided excellent fits to the recall data of children with
certain cognitive impairments (e.g., Howe, O’Sullivan, Brainerd, & Kingma, 1989;
Kingma, 1987) and older adults (e.g., Batchelder et al., 1997; Howe & Hunter, 1985,
1986).  As things stand, then, the accumulated literature on two-stage absorbing Markov
chains shows that they fit the recall data of normal subject populations from the
preschool years through late adulthood, and that they also fit the recall data of child
populations with some forms of impairment.

This brings us back to the identifiability problem.  In Equation 1, the number of
memory parameters to be estimated increases linearly with the number of trials in a
recall experiment.  In contrast, two-stage absorbing Markov chains contain fewer free
parameters, and the number of free parameters does not increase as trials increase.  For instance,
Greeno (1968) integrated various early examples of such chains into a generic Markov model of recall,
using the canonical outcome space S1T1,S2T2, S3T3, …, where Si is the ith study cycle, Ti is the ith recall
test, and the ellipses mean that trials continue until recall is errorless.  Intertrial changes in the probability
of successfully recalling a target are controlled by transitions through a state space that consists of an
initial state U (unlearned), in which the item cannot be recalled at all (success probability is 0), an
intermediate state P (partially learned) in which successful recall occurs with some average probability 0 <
p < 1, and a terminal absorbing state L (learned), in which successful recall occurs with probability 1.  For
convenience, P is partitioned into a substate PC, in which recall succeeds, and a substate PE, in which
recall fails.  The number of identifiable parameters in this generic model, or in any Markov chain, can be
determined with mathematical techniques that are in common use in the literature on hidden Markov
models (or HMM; e.g., Bordes & Vandekerkhove, 2005; Chopin, 2007; Spezia, 2006; Welton & Ades,
2005).2

As this model fits recall data throughout the lifespan and contains a small, fixed number of
parameters, it presents a tractable solution to the identifiability problem with Equation 1—namely, convert



the latter to the former by rewriting Equation 1 as the generic two-stage absorbing Markov chain, so that Di,
Ri, and Ji become parameters of that chain.  We follow this tack in the next subsection.  Along the way,
however, it is shown that the identifiability problem remains because the resulting Markov model contains
two more memory parameters than the number that can be estimated in the canonical outcome space.  It
is then shown that a fully identifiable model (i.e., all values of Di, Ri, and Ji can be estimated) can be
produced by slightly modifying the canonical outcome space.

Converting Equation 1 to the Generic Markov Chain for Recall
The generic Markov chain for recall is represented by a certain matrix expression (cf. Brainerd,

Howe, & Kingma, 1982; Greeno, 1968):
W1 = [L(1), PE(1), PC(1), U(1)] = [a’b’, a’(1-b’)r, a’(1-b’)(1-r), 1- a’];



           L(n+1)       PE(n+1)             PC(n+1)         U(n+1)                    P(correct)

        L(n)          1                0                        0                   0                                 1

        PE(n)             d               (1-d)(1-g)                (1-d)g            0                                 0
M1 =                                                                                                     ;   C1 =                    .                (2)
     PC(n)             c               (1-c)(1-h)                 (1-c)h            0                                 1

        U(n)          ab                 a(1-b)e          a(1-b)(1-e)             1-a                              0

The notation for Equation 2’s parameter set {a’, a, b’, b, c, d, e, f, g, h, r} preserves the notation in the prior
literature on this model.  The use of this traditional notation means that the parameters are theory-neutral;
that is, they are mathematical variables that do not yet involve any process interpretations.  Later, when
process interpretations from the trichotomous model are introduced, the notion will be altered to indicate
that the parameters now have process definitions (see Equation 3).  W1 is a row vector (usually called a
starting vector) that denotes the probabilities of being in each state on the first recall test (T1), M1 is a 4 × 4
matrix that denotes the probabilities of the possible interstate transitions on consecutive study-test trials of
an experiment, and C1 is a column vector that denotes the probability of successful recall in each state.  As
can be seen, there are four types of parameters: U escape probabilities (a’ and a), L entry probabilities
from state U (b’ and b), L entry probabilities from state P (c and d), and recall probabilities while in state
P (e, g, h, and r).  Equation 2 describes the process of learning how to recall a target, in abstract terms, as
consisting of two types of events:  (a) escaping from the initial no-success state and (b) escaping from the
intermediate partial-success state.  That Equation 2 is an absorbing Markov chain is indicated by the top
row of the M1, which specifies that p(Ln+1|Ln), the probability of being in the errorless recall state on test
Tn+1 if the process was in that state on test Tn, is unity, as long as experimental conditions do not change.
Contrary to this assumption, it might be thought that L is not absorbing and that there is some probability
that once items have reached L, they can fall back to P or U.  This idea is testable.  If it is incorrect, tests of
global fit will fail because the top row of the M1 must contain additional free parameters (rather than only
the fixed parameters 0 and 1), and the observed asymptotes of curves like those in Figures 1 and 2 will be
consistently higher than the asymptotes of the corresponding predicted curves.  However, in recall
experiments of the canonical form, it is well established that global fit tests produce satisfactory results and
that, as can be seen in Figures 1 and 2, there is close correspondence between observed and predicted
asymptotes.  Therefore, empirically, the assumption that Equation 2 is absorbing has proved to be true to a
statistically tolerable approximation.

  Equation 1 can be converted to the generic Markov chain by mapping its
parameter space with that of the generic model. This mapping is effected in three steps.
First, it is assumed (a) that items that occupy state L of the generic model can be directly
accessed (because direct access is errorless recall), (b) that items that occupy state P can be
reconstructed but not directly accessed (because reconstruction is imperfect recall), (c) that items that
occupy state U can be neither reconstructed nor directly accessed, and (d) that the level of recall in state P
is an index of the familiarity level of reconstructed items and the stringency of decision criteria for
outputting reconstructed items.  Second, a subset of 10 parameters from Equation 1 are defined, which are
exhibited in Table 1.  Third, it is easy to see that the 10 parameters in Table 1 map with the 10 parameters
of the generic Markov chain as follows:  D1 = a’b’, D2 = ab, D3E = d, D3C = c, R1, = [a’(1-b’)]/(1-D1), R2 = [a(1-
b)]/(1-D2), J1 = 1-r, J2 = 1-e, J3E = g, J3C = h.

 The mathematical relation between Equations 1 and 2 is that the parameter
space of Equation 2 maps one-for-one with a subset of the parameter space of Equation
1.  That is because for a recall experiment that consists of k trials, a series of k versions of
Equation 1 can be written that contains a total of 3k parameters, whereas Equation 2 contains only 10
parameters.  This mapping of Equation 2’s parameters onto a subset of Equation 1’s parameters does not
in any way constrain empirical estimates that are ultimately obtained for Equation 1’s parameters (or
produce spurious relations between them) when Equation 2 is applied to recall data.  The mapping is



merely a mathematical solution to the identifiability problem with Equation 1; neither model “knows” that its
parameters have been mapped with those of the other model.

Worked Example of Learning to Recall via Reconstruction and Direct Access
We saw that once Equation 1 is converted to the generic Markov chain for recall, learning how to

recall targets via direct access, reconstruction, and familiarity judgment can be described in two simple
stages: escaping the no-success state and escaping the partial-success state.  To make the memory
processes that the parameters in Table 1 measure as concrete as possible, consider a simple experiment
in which a group of subjects learns a list of 20 words to an errorless criterion under standard free recall
conditions.  That is, subjects study the list, then recall as many of the words as they can remember, then
study the list again, then recall as many of the words as they can remember, and so on until all 20 words
can be recalled.
Escaping the No-Success State

All words are assumed to begin in state U because subjects do not know the composition of the list
before the first trial of the experiment.  Each word can escape state U on the first study cycle or any
subsequent study cycle if subjects learn how to directly access it or how to reconstruct it.  On the first study
cycle, escape from U is governed by the probabilities in the starting vector, W1.  A word can escape U on
Trial 1 by becoming directly accessible, with probability D1.  If a word becomes directly accessible, it enters
state L (errorless recall), and recall is successful with probability 1 on the first recall test and on all
subsequent tests.  If a word does not become directly accessible on the first study cycle, it can also escape
U by becoming reconstructable, with probability (1-D1)R1.  If a word becomes reconstructable but not
directly accessible, it enters state P (imperfect recall) as it leaves U.  If a word escapes U by becoming
reconstructable, the judgment operation will output it with probability J1 on the first recall test.  If a word
does not escape state U on the first study cycle, it can do so on any subsequent study cycle.  Specifically,
(a) a word can become directly accessible, with probability D2, in which case it enters L as it leaves U and
recall is successful with probability 1 on all subsequent tests, or (b) it can become reconstructable but not
directly accessible with probability (1-D2)R2, in which case it enters P as it leaves U and the judgment
operation outputs it with probability J2.
Escaping the Partial-Success State

We know that if a word escapes U by becoming reconstructable but not directly accessible, it
enters state P.  Once a word has entered state P, it can be reconstructed but a familiarity judgment may
not output it.  Words that enter state P can escape from P to state L on some subsequent trial by becoming
directly accessible.  Escape from P to L is governed by the direct access parameters D3C and D3E, and the
accuracy of recall while a word occupies state P is governed by the familiarity judgment parameters
J3C and J3E.  Whenever recall of a word is unsuccessful in P, (i.e., familiarity judgment does not output
reconstructions of the word), it either escapes to state L on the next study cycle, with probability D3E, or it
remains in P, with probability 1 - D3E.  If a word escapes to L, recall is successful on the next recall test and
on all subsequent tests with probability 1.  If a word remains in P, the judgment operation either outputs the
reconstruction of the word with probability J3E on the next recall test or withholds it with probability 1 - J3E.
On the other hand, whenever recall of a word is successful in P, it either escapes to state L on the next
study cycle, with probability D3C, or it remains in P, with probability 1 - D3C.  If a word escapes to L, recall is
successful on the next recall test and on all subsequent tests with probability 1.  If a word remains in P, the
judgment operation either outputs the reconstruction of the word with probability J3C on the next recall test
or withholds it with probability 1 - J3C.

Parameter Identifiability
Thus, for any recall experiment that follows the canonical design S1T1, S2T2, S3T3, …, Equation 1

can be converted to a two-stage absorbing Markov chain that contains only the 10 free parameters in
Table 1—4 direct access parameters, 2 reconstruction parameters, and 4 judgment parameters.  [The
outcome space of such an experiment consists of sequences of responses to individual list items on T1, T2,
T3, …]  This is a considerable reduction in Equation 1’s parameter space and, hence, represents
substantial progress in the direction of identifiability.  Nevertheless, the parameters in Table 1 are not
identifiable; none can yet be estimated from recall data.  The reason is that when the generic Markov chain
in Equation 1 is analyzed with mathematical techniques that are used to evaluate HMMs (Bordes &
Vandekerkhove, 2005), it is found to have only 8 (rather than 10) identifiable parameters (see Appendix A,
Equations A1, A2, and A3).  As we show in Appendix A, these eight identifiable parameters, which are
denoted by the set {w, z, ?, ?, u, v, ?, ?}, are the only ones that can be independently estimated in recall
experiments that follow the canonical design.  This means that whenever a model that implements the



generic chain contains more than eight parameters, those parameters will turn out to be expressible as
functions of one or more of the parameters in the set {w, z, ?, ?, u, v, ?, ?}.  The exact functions that map
the parameters in Table 1 onto the parameters of the identifiable set can be determined with algorithms
that have been developed for this purpose (e.g., Bamber & van Santen, 2000; Rabiner, 1989).

We conducted such an analysis and derived the 8 functions that map the 10
parameters of Equation 2 onto the identifiable set of parameters, {w, z, ?, ?, u, v, ?, ?}.  Those
functions are displayed in Table 2, where the eight identifiable parameters appear on the left and the
functions that map them with the 10 parameters that measure direct access, reconstruction, and familiarity
judgment {D1, D2, D3E, D3C, R1, R2, J1, J2, J3E, J3C} appear on the right.  A glance at Table 2 reveals a deep
conceptual difficulty.  Whereas the second set contains memory parameters that have straightforward
meanings that refer to direct access, reconstruction, and familiarity judgment, the identifiable parameters in
the first set are merely mathematical variables that do not have process meanings.  As can be seen in
Table 2, each identifiable parameter is a function of two or more of the memory parameters, and except for
w and z, those functions are rather complex.  Further, four of the eight identifiable parameters (?, ?, ?, and
?) are complex functions of the memory parameters for Trial 1 and for later trials.

In short, rendering the parameter space of Equation 1 more manageable by
implementing it in the generic Markov chain for recall poses a dilemma.  On the one
hand, it is known that the generic chain is an appropriate HMM because it fits recall data
to a very close approximation throughout the life span.  Thus, direct access,
reconstruction, and familiarity judgment should be measured by converting Equation 1 to
a two-stage absorbing Markov chain.  Once this conversion is effected, however, the
result is a model (Table 1) whose parameters cannot be individually estimated because
they are functions of a smaller set of identifiable parameters. 

Converting Equation 1 to an Identifiable Markov Chain
Several developmental studies have been reported that used a slightly modified version of the

canonical design over which the generic Markov chain for recall is defined (see Brainerd et al., 1990; Howe
et al., 1989; Kingma, 1987; Reyna & Brainerd, 1995).  This alternative design is S1T1T2, S2T3, S3T4, …; that
is, the only change is to insert an additional recall test (T2) between the first recall test (T1) and the second
study cycle (S2).  It turns out that this solves the identifiability problem because it allows a slightly modified
version of Equation 2 to be written, which contains 11 parameters rather than 10.  When we analyzed this
modified model, using the aforementioned HMM algorithms, its parameters proved to be fully identifiable.
We introduce this identifiable model in the present subsection, and refer readers to Appendix A for the
identifiability proof for its parameters and for the statistical machinery for estimating parameters, evaluating
goodness of fit, and testing within- and between-condition hypotheses about the parameters.
Identifiable Markov Chain

Because we have already shown that the parameters in Table 1 map with the parameters of the
nonidentifiable Markov chain (Equation 2), we use those parameters in developing the identifiable chain.
For the alternative outcome space S1T1T2, S2T3, S3T4, …, the modified version of Equation 2 is:
W2  =     [L(1)L(2), L(1)PE(2), L(1)PC(2), L(1)U(2), PE(1)L(2), PE(1)PE(2), PE(1)PC(2), PE(1)U(2),

PC(1)L(2), PC(1)PE(2), PC(1)PC(2), PC(1)U(2), U(1)L(2), U(1)PE(2), U(1) PC(2), U(1)U(2)] =

[D1, 0, 0, 0, 0, R1(1- D1)(1-J1)(1-Rf)(1-J3E), R1(1- D1)(1-J1)(1- Rf)J3E, R1(1- D1)(1-J1)Rf , 0,
R1(1- D1)J1(1- Rf)(1- J3C), R1(1- D1)J1(1- Rf) J3C, R1(1- D1)J1 Rf, 0, 0, 0, (1- D1)(1-R1)];

                      L(n+1)       PE(n+1)                  PC(n+1)             U(n+1)                       P(correct)

         L(n)           1               0                        0                    0                                     1

        PE(n)             D3E            (1- D3E)(1-J3E      )     (1- D3E)J3E     0                                     0
M2 =                                                                                                         ;    C2 =                   .        (3)
     PC(n)             D3C            (1- D3C)(1-J3C      )     (1- D3C)J3C     0                                     1

        U(n)          D2             R2(1- D2)(1-J2)   R2(1- D2)J2    (1- D2)(1-R2)                       0



Note that Equation 3 is very similar, algebraically, to Equation 2.  The key difference between them
lies in their respective starting vectors:  W2 is a new starting vector that denotes the probabilities of being in
each of the states on the first two recall tests (T1 and T2), whereas the previous starting vector, W1,
denotes the probabilities of being in each of the states on the first recall test.  Thus, like the transition
matrix, W2 contains 16 cells, because it is defined over two consecutive tests on which an item can be in
any of 4 memory states (L, PE, PC, and U) on each test.  Note that all 10 parameters in Table 1 appear in
Equation 3 and measure exactly the same memory processes as before.  There is also an eleventh
parameter, Rf.  This is a forgetting parameter that allows for the possibility that if recall escapes from U on
T1 by becoming reconstructable, it may fall back to U on T2 because there is no study cycle between them.
Thus, our earlier description of how recall on Trial 1 is controlled by direct access, reconstruction, and
familiarity is the same for Equation 3, save for the sole difference that items that have escaped state U by
becoming reconstructable on the first study cycle are allowed to fall back from state P to U between T1 and
T2, with some probability Rf.  This single difference does not seem to be very important when it comes to
actual recall performance.  In the corpus of developmental recall studies that we explore in the next section
of this paper, empirical estimates of Rf did not differ significantly from zero, except in rare instances.  For
that reason, this parameter is only considered in the later section on cognitive impairment. Importantly,
however, note that the fact that the estimated value of this parameter is normally zero is consistent with the
reconstructive interpretation of State P:  If it is true that recall in this state involves processing highly stable
meaning properties, forgetting in State P ought to be rare over such a short interval as a single recall test.
Identifiability Proof, Parameter Estimation, Goodness of Fit, and Hypothesis Testing

To prove that the parameters of any HMM, such as Equation 3, are identifiable in
an outcome space, the standard mathematical technique (e.g., Bordes & Vandekerkhove,
2005) involves three steps.  The first is to formulate an observable-states process (one in which the states
are actual data events) that is implied by the HMM.  Because such a process consists of data events, all of
its parameters are necessarily identifiable, and by Bernoulli’s theorem, a likelihood function can be written
from which maximum likelihood estimates of those parameters can be computed for sample data.  The
second step is to analyze the (fully identifiable) parameter space of the observable-states process to derive
a set of functions that maps its parameters onto the parameter space of the HMM (Equation 3 in this case);
that is, a set of equations that expresses individual parameters of the observable-states process as
functions of some of the parameters of the HMM.  The third step is to solve this set of functions to
determine whether they deliver unique estimators for each of the parameters of the Markov chain of
interest; that is, an equation for each parameter of the HMM that expresses that single parameter as a
function of some of the parameters of the observable-states process.

We conducted such an identifiability analysis of Equation 3 and found that all of its
parameters were identifiable.  As the identifiability proof is tedious, it has been relegated
to Appendix A.  Once identifiability is established, three other developments are
necessary before Equation 3 can be applied to sample data: a method of estimating its
parameters, a method of evaluating goodness of fit, and methods of testing within- and
between-condition hypotheses about parameter values.  These developments are also
presented in Appendix A, following the identifiability proof.

Development from Childhood to Young Adulthood:
Age Trends in Direct Access, Reconstruction, and Familiarity Judgment

We turn now to the second objective of this paper, which is to apply the foregoing
theoretical distinctions and modeling techniques to a large corpus of developmental
recall studies. This will begin to close the gap between the developmental and adult
literatures on dual memory processes by securing stable evidence about age trends in direct access,
reconstruction, and familiarity judgment during child-to-young-adult development.  (Evidence about age
trends in these processes during healthy aging is considered in a later section.)  The principal resource for
the production of these findings is a corpus of 207 developmental recall data sets from studies that used
the S1T1T2, S2T3, S3T4, … design that, as we have seen, is required by our identifiable model.  These data
sets are described more fully in the Appendix B.  When our identifiable model was fit to these data sets, it
gave statistically acceptable accounts of all of them.  Actually, two types of fit tests were conducted for
each data set:  (a) a comparative fit test for the two-stage model versus a one-stage model followed by (b)



a fit test for the two-stage model.  Concerning a, the logical alternative to the present model is one that
assumes that learning to recall involves only a single process and, therefore, only one stage.   A goodness-
of-fit test for that alternative one-process model is described in Appendix A (Equation A22).  That test was
computed for the data sets in our corpus, and in all instances, the null hypothesis that learning to recall
involves only a single stage was rejected at high levels of confidence.  Concerning b, the fit test for the two-
stage model, which is also described in Appendix A (Equation A17), evaluates the null hypothesis that
learning to recall involves two stages, which are interpreted as learning how to directly access items versus
learning how to reconstruct items.  This test was computed for the data sets in our corpus, and the level of
fit was satisfactory in each case (i.e., the value of the G2 statistic in Equation A17 did not produce a null
hypothesis rejection).  As discussed in Appendix A, this pair of fit tests establishes that learning to recall
did not involve less than two stages or more than two stages.

The corpus contains a subgroup of 152 data sets in which samples of children
(mean age = 7-8) and young adolescents (mean age = 11-12) learned to recall the same
lists under identical conditions.  There is another subgroup of 44 data sets in which
samples of young adolescents (mean age = 11-12) and young adults (mean age = 20-
21) learned to recall the same lists under identical conditions.  The former collection of
data sets is the focus of discussion in the first subsection, below, and the latter collection
is the focus of discussion in the second subsection.

Childhood to Adolescence 
In this subsection, we examine the development of direct access, reconstruction, and familiarity

judgment during the child-to-adolescent years, relying on the 152 data sets in which groups of children and
young adolescents learned to recall lists of varying length and composition under paired-associate, free, or
cued recall conditions (see Appendix B).  The exploration of these data sets has two complementary aims.
The first is to document that it is possible to make rapid progress on developmental questions about
trichotomous memory processes by deriving estimates of the parameters of Equation 3 from the recall
performance of subjects of different ages.  The other, more fundamental purpose is to test theoretical
hypotheses—explicitly, to produce findings that bear on the theoretical interpretations of the D, R, and
J parameters.  This is done by determining whether those parameters behave in ways that are consistent
with the interpretations that we have discussed.  In order to accomplish both objectives simultaneously,
descriptive findings about age variability in the parameters are not the centerpiece of the presentation,
although findings of that sort are considered.  Rather, the focus is on particular predictions about the
parameters that follow from theoretical conceptions of the corresponding memory processes and from
recent analyses of how those processes might be expected to evolve during early memory development
(e.g., Ghetti, 2008; Ghetti & Angelini, 2008; Holliday & Hayes, 2000, 2002; Lampinen, Leding, Reed, &
Odegard, 2006).  Hence, the evidence that we present is organized into four groups of parametric results,
each of which bears on a particular group of theoretical hypotheses: (a) global developmental trends in
direct access, reconstruction, and familiarity judgment; (b) negative relations between direct access and
reconstruction; (c) direct access, with and without reconstruction; and (d) variations in familiarity judgment
as a function of variations in items’ familiarity.
Global Developmental Trends

We begin with overall changes in direct access, reconstruction, and familiarity judgment during
childhood, testing three predictions about those changes that follow from theoretical distinctions and from
extant developmental work on dual processes (using other methodologies).  The first is an age-variance
prediction about values that are observed for the D and R parameters.  For two pairings of these
parameters, D1 vs. R1 and D2 vs. R2, the parameters are estimated at the same time, as items escape state
U on Trial 1 (D1 vs. R1) or on later trials (D2 vs. R2).  Without a process theory of what these parameters
measure, there is no basis for making predictions about whether it is easier to escape U by jumping to L or
jumping to P, but the earlier theoretical distinctions provide a basis for directional predictions about both
pairs of parameters.  We saw that when items are in U, learning to directly access them is harder, in
principle, than learning to reconstruct them because storing verbatim traces that can survive from trial to
trial, in the face of accumulating interference, is a more difficult proposition than simply selecting meaning
features of targets that will deliver small, correct search sets.  Therefore, if D1 and D2 measure the first type
of learning and R1 and R2 measure the second, the relations D1 < R1 and D2 < R2 should be observed.

The other two predictions are age-change predictions that are based on prior



developmental research and concern direct access vs. familiarity judgment.  It was
previously noted that although the number of extant developmental dual-process studies
is small, recollection has usually been found to increase more than familiarity during
childhood and familiarity has sometimes failed to increase at all (but cf. Ghetti & Angelini,
2008).  Thus, the other two predictions are that recollection parameters will increase
more than familiarity judgment parameters and that the latter may not increase at all.

The mean values of the four direct access parameters, the two reconstruction
parameters, and the four familiarity judgment parameters for the complete collection of
data sets are plotted by age level in the upper panel of Figure 3.  Age differences in
parameter values were tested for statistical significance with t tests.  The average age
improvement in direct access was reliable, t (150) = 3.35, p < .001, the average age improvement in
reconstruction was reliable, t (150) = 3.69, p < .0001, but the average age improvement in familiarity
judgment was not reliable, t (150) = 1.52.  The first prediction, that R parameters ought to have larger
values than D parameters, regardless of age level, was tested with a 2 (age) x 2 (parameters: the mean of
R1 and R2 vs. the mean of D1 and D2) analysis of variance (ANOVA).  There was a main effect in the
predicted direction (reconstruction parameters being larger than direct access parameters), F (1, 150) =
248.04, MSE = .02, p < .0001, and the Age x Parameter interaction was not reliable, F (1, 150) = 2.85.3

The absence of an interaction is instructive not only because it confirms the predicted parametric relation
but also because it suggests that although direct access and reconstruction both become easier with age,
memory development (during childhood at least) does not strongly favor one over the other.  Concerning
the other two predictions, both have already been confirmed by the t tests.   Those tests showed that the
mean value of the direct access parameters increased with age but the mean value of the familiarity
judgment parameters did not, so that direct access increased more than familiarity judgment and, indeed,
familiarity judgment did not exhibit reliable increases.

The global picture of developmental change during childhood, then, is that direct
access and reconstruction both improve and by comparable amounts, whereas familiarity
judgment does not.  With respect to the latter result, age-invariance in the familiarity
judgment parameters does not automatically mean that the familiarity of reconstructed
items is age-invariant.  Remember, here, that the probability that a reconstructed item is
deemed to be familiar enough to output depends on two factors, the strength of the
item’s familiarity signal and the stringency of the decision criterion.  These factors have opposite
effects on the familiarity judgment parameters, with parameter values increasing as the familiarity signal
becomes stronger and decreasing as the criterion becomes more stringent.  However, interpretation is
aided by the fact that there is a developmental literature on recognition in which signal detection estimates
of criterion stringency have been computed for subjects who have ranged in age from young children to
older adults (both healthy and impaired subjects).  The life-span pattern runs as follows:  (a) Decision
criteria become much more stringent between childhood and adolescence (e.g., Holliday & Weekes, 2006);
(b) decision criteria become slightly more stringent between adolescence and young adulthood (e.g.,
Brainerd & Mojardin, 1998); (c) decision criteria remain invariant between young and late adulthood (e.g.,
Budson, Todman, & Schacter, 2006b); (d) decision criteria are less stringent for older adults who are
cognitively impaired than for healthy older adults (e.g., Budson et al., 2006b).  Thus, in light of the first
element of this pattern, the most likely interpretation of the age-invariance result for the familiarity judgment
parameters is not that familiarity is age-invariant but, rather, that familiarity and criterion stringency both
increase with age and these increases cancel each other out at the level of parameter values.

This interpretation can be tested by using the signal detection model in Figure 4 to
separate familiarity from criterion stringency at both age levels.  This model is just the
standard signal detection representation (e.g., Snodgrass & Corwin, 1988) of the
distributions of familiarity values of presented items versus unpresented items—in this
case, the familiarity distributions of reconstructions of presented versus unpresented items.  Thus, the
signal detection parameters d’ and C have the usual interpretations:  d’ is the measure of familiarity
(specifically, of the distance between the two familiarity distributions), and C is the measure of criterion
stringency.  To estimate these parameters for recall, using signal detection equations, two empirical



quantities are required: the value of the J parameter and the intrusion probability (i.e., the probability of
recalling unpresented items).  The former quantity is available, but the intrusion probability is not because,
in the original analyses of these data sets, recall protocols were not scored for intrusions.  The raw
protocols for most of 152 data sets were no longer available, and hence, they could not be rescored.
However, raw protocols were still available for 28 matched data sets (14 for children and 14 for
adolescents).  When they were rescored, the mean intrusion probability was .051 for children and .016 for
adolescents.4  To compute values of d’ and C, we used these two values, together with the mean value of
the four J parameters for children (.61) and adolescents (.64).  The estimated values of d’ were 1.92
(children) and 2.51 (adolescents) and the estimated values of C were .68 (children) and 1.07
(adolescents).  Thus, although estimates of the judgment parameters were age-invariant, the signal
detection results suggest that familiarity signals were becoming stronger with age, while decision criteria
were becoming more stringent.
Separability of Direct Access and Reconstruction

Next, we use these data sets to test some predictions about empirical dissociations between direct
access and reconstruction that are analogous to predictions that have long been regarded as fundamental
in adult dual-process research, though the latter predictions have focused on recollection and familiarity
(rather than reconstruction).  In the adult literature, since Mandler’s (1980) seminal paper, a featured
hypothesis has been that manipulations that stimulate the types of processing that underlie recollection
ought to selectively affect measures of that memory process, whereas manipulations that stimulate the
types of processing that underlie familiarity ought to selectively affect measures of that memory process
(see Jacoby & Kelley, 1992).   Mandler, for instance, discussed evidence of recollection/familiarity
dissociations in patient populations in which one operation was thought to be deficient and the other was
thought to be spared.  In the subsequent literature, two basic forms of dissociation have been studied (for a
review, see Yonelinas, 2002).  By far the most commonly studied variety consists of single dissociations,
circumstances in which theoretically-motivated manipulations affect measures of one process but not
measures of the other (e.g., Donaldson, 1996; Jacoby, 1991; Gardiner & Java, 1991).  The less commonly
studied variety consists of double dissociations, circumstances in which theoretically-motivated
manipulations drive measures of the two processes in opposite directions (e.g., Buchner & Wippich, 2000;
Dunn & Kirsner, 1988; Howe, Rabinowitz, & Grant, 1993).  Technically, as Dunn and Kirsner pointed out,
there are two types of double dissociations, crossed and uncrossed, with circumstances in which a
manipulation drives two measures in opposite directions being the crossed variety.  Although, as Dunn and
Kirsner also pointed out, it is possible to devise one-process models that will produce double dissociations,
such interpretations can be ruled out with additional evidence that other manipulations drive the same two
measures in the same direction (see below).

In the present conception of recall, the two methods of recovering items are
distinct and separable inasmuch as they operate on dissimilar types of episodic traces,
with the formation of one type of trace being akin to rote memorization and the formation
of the other type being akin to conceptual understanding.  For that reason, direct access
and reconstruction pose different problems for learning, so that they ought to be
dissociable within given age levels.  We investigated this possibility in the broadest way
that was open to us, by using our child versus young adolescent data sets to test for
opposing effects of a manipulation that is present in all 152 data sets, repetition of study-
test trials.  We also evaluated the related prediction that within each age level estimates of
D and R should be negatively correlated over the pool of data sets.  We consider the two types of evidence
separately.
Repetition Has Opposite Effects on Direct Access from Reconstruction

When trials are repeated, this means that both study and test cycles are repeated.  Many findings
show that these cycles have different effects on recall (e.g., Halff, 1977) and that some of the effects are
negative (e.g., Brainerd & Reyna, 1993), even though sheer accuracy improves over trials.  Test cycles, in
particular, have been found to have negative as well as positive effects.  On the negative side, recall tests
generate output inference and because direct access is a rote memorization process that involves
interference-sensitive verbatim traces, accumulation of interference impairs it (Brainerd et al., 2002).  On
the positive side, because learning how to reconstruct a target is a comprehension process, additional
recall tests provide practice at using targets’ features to quickly regenerate them (Brainerd et al., 2003).



Taken together, this means that, other things being equal, direct access will become more difficult but
reconstruction will become easier as recall tests accumulate.

Now, consider the two parameters that measure the difficulty of learning how to
directly access targets in the unlearned state, D1 and D2, and the two parameters that measure
the difficulty of learning how to reconstruct targets in the same state, R1 and R2.  Remember from Equation
3 that D1 and R1 measure the difficulty of direct access and reconstruction on the first recall test, while
D2 and R2 measure the difficulty of direct access and reconstruction on the third recall test.  The
reconstruction practice provided by the first two recall tests should benefit R2, relative to R1, but the
accumulated output interference from those tests should disadvantage D2, relative to D1.  Thus, it should
be harder for a target that is in state U to become reconstructable on the first trial (i.e., R1 < R2), but it
should be easier for a target that is in state U to become directly accessible on the first trial (i.e., D1 > D2).
The prediction, then, is that repetition should drive reconstruction up and direct access down.  The second
half of this prediction is counterintuitive, of course.  Because the net accuracy of recall improves over trials,
the baseline expectation is that all parameters that make performance more accurate should have larger
values on later trials than on earlier trials.  The theory says otherwise.

The relevant data are displayed in the upper panel of Figure 5.  Pooling across the
data sets for each age level, it can be seen that repetition of study-test trials has opposite
effects on direct access and reconstruction at each age level.  For both children and
young adolescents, repetition increased the chances that targets would become reconstructable by
roughly 60%, but it decreased the chances that they would become directly accessible by roughly 40%.  To
test this pattern for statistical reliability, we computed a 2 (age) x 2 (trial: first vs. later) x 2 (memory
process: direct access vs. reconstruction) ANOVA, using estimates of the D and R parameters as
dependent variables.  The principal result, as Figure 5 implies, was a large Trial x Memory Process
interaction, F (1, 150) = 207.36, MSE = .01, p < .0001.  When the interaction was decomposed with post
hoc tests (paired-samples t tests that controlled alpha at the .05 level), it was found that D1 was larger than
D2 but that R1 was smaller than R2.  There was also an instructive Age x Trial x Memory Process
interaction, F (1, 150) = 11.57, MSE = .01, p < .001, the nature of which is apparent in Figure 5.  A classic
finding about memory development is that when children study and recall meaningful items, younger
children are less likely than older children and adolescents to benefit from opportunities to extract meaning
content (Bjorklund, 1987, 2004; Bjorklund & Muir, 1988).  Another, less well-known, result is that output
interference has more pronounced effects on older children’s recall than on younger children’s (e.g.,
Brainerd, Olney, & Reyna, 1993).  Consistent with these results, post hoc analysis of the Age x Trial x
Memory Process interaction revealed that (a) the age improvement in reconstruction was smaller on Trial 1
than on subsequent trials, whereas (b) the age improvement in direct access was larger on Trial 1 than on
subsequent trials.  In other words, repetition magnified developmental improvements in reconstruction, but
it did the opposite to improvements in direct access.

Summing up, analysis of the parameter pairs (D1, D2) and (R1, R2) yielded evidence of the
anticipated opposite effects of repetition of study-test trials.  Although this pattern was present at both age
levels, it was amplified by development.  Specifically, the tendency of repetition to make reconstruction
easier was more marked in older children, as was its tendency to make direct access more difficult.
Further, this pattern cannot be interpreted as showing that the (D1, D2) and (R1, R2) pairs measure a
single process and that they just happen to respond in opposite ways to the repetition variable.  As Dunn
and Kirsner (1988) showed, such an interpretation can be ruled out if there are other variables that produce
positive associations between the (D1, D2) and (R1, R2) pairs.  As can be seen in Figure 6A, age produces
such a positive association; that is, all parameter values rise with age.
Parameter Correlations in Children and Adolescents

We test some further predictions about correlations within and between the parameter pairs (D1,
D2) and (R1, R2).  As mentioned, certain variables that are known to affect the difficulty of recall were
manipulated across the list conditions in our corpus, such as the types of targets that were studied (e.g.,
abstract nouns, concrete nouns, pictures, category exemplars), the types of recall tests that were
administered (e.g., paired-associate, cued, free), and the lengths of lists (see Appendix B).  Such
manipulations were included in the designs of individual experiments pursuant to the aims of those
experiments and not with the objective of evaluating theoretical predictions about direct access,
reconstruction, and familiarity judgment.  Although those manipulations were not designed to test



theoretical predictions, the fact that they affected the accuracy of children’s recall means that they must
have affected some of the parameters of the present model.  Because the nature of the manipulations
varied widely, their parametric effects (i.e., which specific parameters were influenced) should
correspondingly vary.  This also allows one to ask how values of the reconstruction and direct access
parameters should covary over these list conditions.

Here, two types of predictions bear on the earlier analysis of direct access and
reconstruction.  The first is about positive correlations.  Ostensibly, D1 and D2 both measure
the same process (the tendency of targets to become directly accessible when they escape state U), and
likewise, R1 and R2 both measure the same process (the tendency of targets to become reconstructable
when they escape state U).  Thus, as parameter values vary over the list conditions in our data sets,
D1 and D2 ought to covary positively and so should R1 and R2, and this should be true at both age levels.
The other prediction is about negative correlations.  Theoretically, direct access and reconstruction do not
enable each other but, rather, rely on rather different forms of learning.  Generally speaking, the list
conditions that ought to help targets escape state U by becoming directly accessible are ones that make
their surface forms more distinctive, whereas the list conditions that should help targets escape state U by
becoming reconstructable are ones that make it easier to extract certain meanings.  Such manipulations
have been studied in the contemporary false-memory literature (for a review, see Brainerd & Reyna, 2005),
and a common finding has been that making targets’ surface forms more distinctive reduces semantic
processing and making particular meanings more accessible reduces surface processing (e.g., Arndt &
Gould, 2006; Hege & Dodson, 2004; Koutstaal, 2003; Reyna & Kiernan, 1995; Schacter, Israel & Racine,
1999; Seamon et al., 2002a, 2002b).  The implication for our data sets is that conditions that enable direct
access will be apt to interfere with reconstruction and vice versa, so that correlations between (D1, D2) and
(R1, R2) should be negative.

To evaluate such predictions, we computed the 4 x 4 matrix of bivariate
correlations for D1, D2, R1, and R2 for the pool of data sets for children, and we computed the same
matrix of bivariate correlations for the corresponding pool of data sets for young adolescents.  The results
are reported in Table 3, where it can be seen that the bivariate correlations fell out as theory expects.
Concerning the first prediction, there were positive correlations between D1 and D2 and between R1 and
R2 at both age levels, which is congruent with the idea that the two D parameters are measuring the same
type of memory process and the two R parameters are measuring the same type of memory process.  With
respect to the second prediction, there were negative correlations between D1 and R1, between D2 and R2,
between D1 and R2, and between D2 and R1, at both age levels.  Thus, the correlational evidence, like the
findings for repetition, was consistent with the notion that the D parameters do not measure the same type
of memory process as the R parameters and with the further conclusion that these processes can interfere
with each other.
Direct Access, With and Without Reconstruction

Although R1 and R2 are the exclusive measures of reconstruction, there are two further measures
of direct access, D3C and D3E.  The latter parameters take account of the fact that (a) subjects can learn
how to directly access a target when it is in state U or when it is in state P and the fact that (b) a target in
state P can become directly accessible following a trial on which recall is successful (parameter D3C) or a
trial on which recall is unsuccessful (parameter D3E).  The present theoretical distinctions yield predictions
about how difficult it is for a target to become directly accessible on trials when it is in state U versus state
P, as well as further predictions about how difficult it is for a target to become directly accessible following
successful versus unsuccessful recall in state P.  With respect to state U versus state P, obviously it should
be easier for targets to become directly accessible in state P than in state U because subjects receive
additional covert study opportunities in state P by virtue of the fact that targets are reconstructable.  To
clarify this point, when targets are in state U, they are not recovered on recall tests, and thus, the only
exposure that subjects receive to such targets is when they are physically presented on study cycles.  For
targets that enter state P when they leave U, the situation is different.  Because subjects are able to
reconstruct the targets on recall tests, they receive physical exposures on study cycles, plus additional
covert exposures (via reconstructive retrieval) on recall tests.  Therefore, across many data sets, such as
those in our corpus, the relation between estimates of the parameters in the (D1, D2) set versus the (D3C,
D3E) set should be (D3C, D3E) > (D1, D2).  There is a further prediction about D3C and D3E.  The difference
between these parameters, it will be remembered, is that D3C is the probability that a target becomes
directly accessible following reconstruction and successful recall, whereas D3E is the probability that a



target becomes directly accessible following reconstruction and unsuccessful recall.  A well-established
principle of rote memorization (e.g., Brainerd et al., 1993; Howe, 2004) is that active mnemonic processing
(e.g., rehearsal, imagery, and elaboration) is helpful to such learning and that errors inform subjects that
such effort is needed.  According to this principle, when a target occupies state P and can therefore be
reconstructed, unsuccessful recall (i.e., the judgment that a reconstructed item is not familiar enough to be
output) is more likely to initiate active mnemonic processing of the item on the next study cycle.  It follows
that across many data sets, the relation D3E > D3C should hold.

Results that bear on these predictions appear in Figure 7, where the mean values
of the four direct access parameters are plotted for younger and older subjects.  At each
age level, the trends conform to the two predictions that were just mentioned.  The mean
values of D3E and D3C at each age level are larger than the corresponding means for D1 and D2, and the
mean value of D3E at each age level is larger than the corresponding mean for D3C.  To test these results
for statistical reliability, we computed a 2 (age) x 4 (direct access parameters: D1, D2, D3E, D3C) ANOVA,
using the parameter estimates in each data set as dependent variables.  The key finding that confirmed the
two predictions was a main effect for direct access, F (3, 150) = 280.75, MSE =.01, p < .0001, that when
decomposed by post hoc tests, showed that the order of difficulty of learning to directly access targets was
D2 < D1 < D3C < D3E at both age levels.  Thus, the data were consistent with the notion that MD1/D2 <
MD3C/D3E because D3C and D3E involve additional covert study opportunities and with the notion that D3E >
D3C because unsuccessful recall initiates active mnemonic processing.  There was no Age x Direct Access
Parameter interaction, so that the beneficial effects on direct access of being able to reconstruct a target
and of unsuccessful recall of reconstructed targets were comparable in younger and older children.  
Familiarity Judgment Predictions

Up to this point, we have reported one important finding about familiarity judgment—namely, that
its mean level did not increase with age in our data corpus.  Beyond this null result, which is consistent with
prior developmental findings on familiarity using conventional adult methodologies, positive predictions
about familiarity judgment parameters can be made, which are concerned with inter-trial variations in this
process.  There are four parameters that measure familiarity judgment, J1, J2, J3E, and J3C, which is to say
that each parameter measures the perceived familiarity of reconstructed targets and the stringency of the
decision criterion, though at different stages of learning.  The fact that the parameters apply to different
stages of learning makes it possible to forecast an ordering, based on item selection.  It is well established
that item selection operates during the course of recall experiments:  Items that are first recalled on earlier
trials are in some sense easier than items that are first recalled on later trials, and the usual assumption is
that easier items are more familiar (e.g., Greeno, James, & DaPolito, 1971).  In that connection,
J1 measures familiarity judgment for items that become reconstructable on Trial 1, J2 measures familiarity
judgment for items that become reconstructable on Trial 2 or later, and J3E, and J3C measure familiarity
judgment for items that have been waiting to escape state U for at least two trials.  Assuming that the
stringency of the decision criterion is constant, the theory says that the ordering of these parameters will
reflect targets’ familiarity, which should reflect item selection.  Obviously, item selection has operated for
items that occupy state P, relative to items that occupy state U, because the former are a more difficult
subset of the latter.  Thus, MJ1/J2 should be larger than MJ3C/J3E.  For the same theoretical reasons,
J3C obviously should be larger than J3E.  The only difference between these two latter parameters is that
J3C measures familiarity judgment for reconstructed items that were deemed familiar enough to be output
on the immediately preceding recall test, whereas J3E measures familiarity judgment for reconstructed
items that were not deemed familiar enough to be output on the immediately preceding test.   As the latter
items are, by definition, less familiar than the former, J3E < J3C follows.

These predictions were evaluated by analyzing the estimated values of the familiarity judgment
parameters at each age level in our data sets.  The parameters’ mean values are plotted by age level in
Figure 8, where it can be seen that the pattern of inter-parameter variability was J3E < J3C < J2 < J1 at both
age levels, which is consistent with both predictions (MJ1/J2 > MJ3C/J3E and J3C > J3E).  To test the overall
pattern for statistical significance, we computed a 2 (age) x 4 (judgment parameter: J1, J2, J3E, J3C)
ANOVA, using the estimates of these parameters as dependent variables.  The finding of principal interest
was a main effect for judgment parameter, F (3, 150) = 169.92, MSE = .02, p < .0001, that when
decomposed by post hoc tests, showed that the magnitude ordering of the judgment parameters was J3E <
J3C < J2 < J1 at both age levels.  In addition, there was an Age x Judgment Parameter interaction, F (3,
450) = 4.55, MSE = .02, p < .005.  Post hoc tests revealed a simple pattern.  On the one hand, consistent



with the developmental results that we reported earlier for the mean values of these parameters (Figure 3)
three of the four parameters—specifically, J1, J2, and J3C—were age-invariant.  However, the fourth
judgment parameter, J3E, increased reliably with age (means = .39 and .47).  Hence, there is some limited
evidence of developmental improvement in familiarity judgment, though it is miniscule in comparison to the
improvements in direct access and reconstruction.  In this connection, it is important to remind ourselves
that it does not follow that age increases in the underlying familiarity of reconstructed items are miniscule
because, as we saw, increases in familiarity and increases in criterion stringency have opposite effects on
the values of the familiarity judgment parameters. To illustrate, we used the signal detection model (Figure
4) and the intrusion probabilities that were mentioned earlier to compute d’ and C values for the
J3E parameter.  The estimated values of d’ were 1.36 (children) and 2.07 (adolescents) and the estimated
values of C were .96 (children) and 1.11 (adolescents).  Thus, the results suggest that the developmental
improvement in J3E is due to a large increase in the strength of the familiarity signal that was not canceled
by the smaller increase in criterion stringency.

A final important result is secured by comparing the plotted values of D3E and D3C in
Figure 7 to the plotted values of J3E and J3C in Figure 8, which reveals a variable that has opposite effects
on these parameter pairs.  According to the present theory, the D parameters measure different processes
than the J processes—specifically, the D parameters measure subjects’ ability to store interference-
resistant verbatim traces while the J parameters measure their willingness to output targets that have been
semantically reconstructed.  Consistent with the notion that the D and J parameters measure different
processes, note that the two parameters react in opposite was to performance on the preceding recall test.
While items are waiting in state P, a recall error makes direct access learning easier on the next trial than a
success does, whereas a recall error makes familiarity judgment harder on the next trial.
Process Specificity of Model Parameters
         We have considered several predictions about the D, R, and J parameters that follow from their
process definitions.  Although each is theoretically well specified, it might be argued that other results that
bear narrowly on the parameters’ process definitions would be desirable.  More explicitly, it might be
argued that the predictions that have been evaluated are general ones (e.g., that MR1/R2 should be larger
than MD1/D2, that MD3C/D3E should be larger than MD1/D2, that MJ1/J2 should be larger than MJ3C/J3E) that could
be consistent with other (unspecified) process interpretations of the parameters.  Thus, the argument
continues, it would be desirable to determine how the parameters react to surgical manipulations that
precisely embody their process definitions.

    Some immediate evidence can be generated, owing to the presence of a highly
surgical manipulation in several of the data sets in our corpus.  This is a manipulation
that should enhance the direct access process that was described earlier while
simultaneously interfering with the reconstruction process--namely, category cuing.
Suppose that subjects learn to recall a categorized list; that is, words belong to a few
familiar taxonomic categories, such as animals, body parts, colors, and furniture.  In an
uncued condition, subjects study the list, and on test cycles, they recall it under standard
free recall instructions.  In a cued condition, the procedure is the same, except that on
test cycles, each category label is presented in turn, and subjects are asked to output as
many exemplars from that category as possible before moving on to the next category.
Obviously, presenting such cues should facilitate the specific process that we described
in connection with direct access, relative to the uncued condition.  This procedure
enriches the learning environment with further, salient contextual cues.  Subjects can
store these contextual cues as part of verbatim traces, which will make it easier to
access those traces because the cues are presented as retrieval prompts during each
recall cycle.  Just as obviously, category cuing ought to interfere with the specific process
that was described in connection with reconstruction.  Here, remember from the earlier
example of reconstructing dog and tiger using “animal” versus “household pet” and “jungle cat” that
generic features such as “animal” are poor reconstruction features because they over identify large search
sets.  Category labels are broad features of this sort.  Hence, they should interfere with the identification of
more specific features that deliver small search sets.  In sum, under the process definitions of what the



D and R parameters measure, category cuing should increase the former while decreasing the latter.

        Our corpus contains several data sets in which groups of children and adolescents
learned to recall the same categorized list with either cued or uncued recall.  Specifically,
14 of the child data sets and 14 of the adolescent data sets were paired sets in which
subjects learned either a two-category list under cued versus uncued recall conditions, or
they learned a four-category list under those conditions.  The results fell out as predicted:
 At both age levels, estimates of the D parameters were higher in cued conditions, whereas
estimates of the R parameters were lower in cued conditions.  Illustrative findings from an article by Howe
et al. (1989), which reports four matched data sets for children in the normal ability range and four matched
data sets for adolescents in the normal ability range, are shown in Figure 9.  Concerning direct access, it
can be seen in panel A that (a) category cuing nearly quadrupled the value of the D1/D2 pair in children and
tripled it in adolescents and (b) category cuing increased the value of the D3C/D3E pair by roughly 50% in
children and roughly 60% in adolescents.  In contrast, it can be seen in panel B that category cuing
decreased the value of the R1/R2 pair by roughly two-thirds in children and roughly one-quarter in
adolescents.
         Further evidence about process specificity comes from a new experiment that is not in our corpus.
Brainerd et al. (2002) proposed that list length variations in free recall should affect direct access but not
reconstruction.  Their argument was simple.  On the one hand, differences in list length ought to affect a
specific variable to which direct access is sensitive, accumulating interference:  The more words that
subjects have to study and recall, the more interference will be generated from trial to trial.  On the other
hand, as long as lists of different lengths are matched on all other variables, there is no reason to expect
that length will affect subjects’ ability to construct search sets for individual items.  Thus, D parameters
should be larger for shorter than for longer lists, but R parameters should not be affected.  We tested this
prediction in an experiment in which subjects of two age levels (younger = 6- and 7-year-olds; older = 11-
and 12-year-olds) learned to recall lists of familiar concrete nouns to an errorless criterion under standard
free-recall conditions like those of the data sets in our corpus.  At each age level, 25 subjects learned to
recall a list of 12 words, and 25 subjects learned to recall a list of 16 words.

        As with category cuing, the results for list length, which are plotted in Figure 10, fell
out as predicted.  At both age levels, estimates of the D parameters were higher for 12-item lists
than for 16-item lists.  Those data appear in panel A, where it can be seen that (a) decreasing list length
more than doubled the value of the D1/D2 pair for children and increased it by roughly 50% for adolescents
and (b) decreasing list length increased the value of the D3C/D3E pair by roughly 50% in children and by
more than one-quarter in adolescents.  In contrast, it can be seen in panel B that list length had no
appreciable effect on the value of R1/R2 pair.  Although the value of R1/R2 was larger for adolescents than
for children, which is consistent with findings that we have already reported (Figure 3), it can be seen that
this parameter pair was not affected by list length at either age level.

        Additional evidence that bears on process specificity can be found in some adult
experiments by Brainerd et al. (2002, 2003), which used a simplified version of the
present model that is described in the fourth section of this paper (Cognitive Impairment).
 Brainerd et al. (2002) predicted (a) that presenting lists in distracting fonts should
decrease D parameters (because it is harder to encode targets’ surface forms) but should not affect R or
J parameters (because neither targets’ semantic features nor the familiarity of reconstructions is altered),
(b) that recalling abstract nouns (e.g., concept, mind) rather than concrete nouns (e.g., book, piano)
should simultaneously decrease R parameters (because concrete nouns divert processing away from
semantic features by generating vivid visual images) and increase J parameters (because a reconstruction
that is accompanied by vivid phenomenology will seem more familiar), and (c) that recalling longer lists
rather than shorter ones should increase D parameters without affecting R or J parameters.  All three
patterns were obtained.  Brainerd et al. (2003) predicted (d) that presenting three study cycles per recall
test rather than the usual single study cycle should increase D parameters (because verbatim traces are
labile) but should not affect R parameters (because semantic features are stable) and (e) that
administering recall tests a few days after lists are studied rather than immediately after should decrease
D parameters (again, because verbatim traces are labile) but should not affect R parameters (again,
because semantic features are stable).  Both patterns were obtained.



        Taken together, these findings provide support for the process specificity of the
parameters of our model.  In the developmental data that were just reported (Figures 9
and 10), the parameters of the recall model reacted appropriately to surgical
manipulations that precisely embody the process definitions of direct access and
reconstruction.  In prior adult experiments that Brainerd et al. (2002, 2003) reported, the
parameters of a simplified model reacted appropriately to surgical manipulations that
precisely embody the process definitions of direct access, reconstruction, and direct
access.
Summary

We estimated the parameters of the trichotomous model of recall, using a corpus of 152 sets of
recall data in which the subjects were children and young adolescents.  This generated a picture of
developmental changes in direct access, reconstruction, and familiarity judgment during childhood, and
more important, it supplied tests of many theoretical predictions about these processes.  The
developmental picture ran as follows.  The ease with which targets become directly accessible and
reconstructable both increased between childhood and adolescence by comparable amounts.  Although
there was only a slight increase in familiarity judgment that was confined to one of the four J parameters,
supplementary signal detection analyses revealed that the familiarity of reconstructed targets increased
with age and that criterion stringency also increased.  With these findings, we have progressed from the
situation that was described at the start of this paper, in which our knowledge of the early development of
dual memory processes was thin and inconsistent, to a situation in which child-to-adolescent trends in
direct access, reconstruction, and familiarity judgment have been established for a large and varied data
base.

Turning to theoretical predictions, the most fundamental one is the notion that the
D and R parameters measure distinct processes—namely, the direct access and reconstruction operations
of the present theory.  Here, the data corpus produced two lines of evidence that were consistent with this
hypothesis.  First, repetition of study-test trials tests had opposite effects of the D and R parameters,
decreasing the former (in line with idea that verbatim traces are sensitive to accumulating output
interference) while increasing the latter (in line with the idea that recall tests provide reconstruction
practice).  Second, across list conditions, at both age levels, values of the direct access parameters
correlated negatively with values of the reconstruction parameters.  Such results cannot be interpreted as
showing that direct access and reconstruction parameters simply measure opposite sides of a single
process because both types of parameters are positively related to other variables, such as age.

Other results were consistent with (a) the hypothesis that the D and J parameters
measure different processes and (b) the hypothesis that the R and J parameters measure different
processes.  Concerning a, successful recall had opposite effects on the D and J parameters for state P,
decreasing the former while increasing the latter.  Concerning b, repetition of study-test trials had opposite
effects on the R and J parameters for items that are in state U:  Repetition increased the reconstruction
probability (R1 < R2 ) but decreased the probability that reconstructions would be output (J1 > J2).

Further predictions about the four D parameters and the four J parameters were evaluated
that follow from our process conceptions of direct access and familiarity judgment.  With respect to the
D parameters, it was found, as predicted, that it is harder for items to become directly accessible when
they are in state U than when they are in state P (because reconstruction produces covert target
presentations in state P) and it was found, also as predicted, that items in state P are more likely to
become directly accessible following unsuccessful recall than following successful recall (because errors
are more informative than successes).  With respect to familiarity judgment, it was found, as predicted, that
J1 and J2 identified more items as being familiar enough to be recalled than either J3E or J3C, (because item
selection has operated for items that occupy state P) and it was found, also as predicted, that J3C identified
more items as being familiar enough to output than J3E.  The specificity of the process definitions of the
direct access and reconstruction parameters were investigated by studying the effects of a manipulation
(category cuing) that ought to make direct access easier while making reconstruction harder.  As predicted,
D parameters had larger values but R parameters had smaller values in cued than in uncued conditions.

Early Adolescence to Young Adulthood
Next, we consider developmental changes in the same processes between early adolescence and



young adulthood.  It is possible to do so because our corpus also includes 39 data sets in which young
adults (college students) learned similar types of lists to criterion under paired-associate, free, or cued
recall conditions (see Appendix B).  In a subgroup of 22 of these 39 data sets, the experimental conditions
for adults were identical to those in a subgroup of 22 of the 76 data sets for young adolescents.  For these
matched pairs of data sets, it is possible to chart the changes that occur between early adolescence and
young adulthood by comparing estimates of the direct access, reconstruction, and familiarity judgment
parameters that were obtained under identical experimental conditions.

The evidence that is presented in this section unfolds in two steps.  First, young
adults are a population of special interest because they provide the subject samples for
most dual-process experiments in the mainstream memory literature.  Thus, apart from
developmental questions, it is important to know how the direct access, reconstruction,
and familiarity judgment parameters behave in young adult samples, and, in particular,
whether that behavior accords with theoretical prediction.  Evidence of this sort is
considered first, using the full complement of 39 young adult data sets.  Second, we
return to developmental questions by examining adolescent-to-young-adult trends in
direct access, reconstruction, and familiarity judgment.  Here, we rely on the 22 sets of
young adult and 22 sets of adolescent data in which subjects learned to recall the same
lists under identical conditions.
Behavior of Dual-Process Parameters in Young Adults

Estimates of the model’s direct access, reconstruction, and familiarity judgment parameters for the
39 young adult data sets were used to examine the earlier predictions about relations among direct access,
reconstruction, and familiarity parameters, about the ordering of direct access parameters, and about the
ordering of familiarity judgment parameters.

Separability of direct access and reconstruction.  The notion that direct access and reconstruction
are distinct processes was evaluated as before.  First, we consider the effects of repetition of study-test
trials on the D and R parameters.  As mentioned, repetition has the interesting property of simultaneously
providing additional opportunities to process the meaning content of targets (which should enhance
reconstruction) and generating additional output interference (which should impair direct access).  As in the
earlier results for children and adolescents, it was found that the mean value of R increased as a function
of repetition (mean R1 = .30, mean R2 = .41), and the mean value of D decreased (mean D1 = .22, mean
D2 = .19), though the latter difference was not reliable.  Second, we computed bivariate correlations within
and between the members of the (D1, D2) set and the members of the (R1, R2) set.  The results appear at
the bottom of Table 3, where it can be seen that the picture was similar to that for younger and older
children.  On the one hand, it appeared that in young adults, D1 and D2 measure the same process in
adults and so do R1 and R2 because in each case, there was a strong positive correlation between the two
parameters. On the other hand, it appeared that the D and R parameters do not measure the same
process because there was a significant negative correlation between D2 and R2, while D1 and R1 were
uncorrelated.  In short, the same types of findings were present in the adult data sets as in the child data
sets, with the only notable difference being that the evidence of interference between direct access and
reconstruction was somewhat weaker in the adult data sets because D1 and R1 were not negatively
correlated and the repetition-induced decline from D1 and D2 was slight in comparison to the declines that
were previously reported for children and adolescents.

Ordering of direct access parameters.  The theoretically expected ordering of the direct access
parameters is still D2 < D1 < D3C < D3E.  For the 39 adult data sets, the mean values of these parameters
were D2 = .19, D1 = .22, D3C = .41, D3E = .56, which follows the expected ordering.  A one-way ANOVA
produced a significant main effect for these parameters, F (3, 114) = 63.15, MSE = .02, p < .0001, which
shows that they differed reliably.  Post hoc tests revealed that whereas the increases from D1 to D3C and
from D3C to D3E were both reliable, the increase from D2 to D1 was not.  Because the drop from D1 to D2 is
a measure of the susceptibility of direct access to accumulating output interference, the indicated
conclusion is that young adults are better able to resist the debilitating effects of such interference than
children or adolescents.

Ordering of familiarity judgment parameters.  The theoretically expected ordering of the familiarity
judgment parameters is MJ1/J2 > MJ3C/J3E and J3C > J3E.  A one-way ANOVA produced a significant main
effect for these parameters, F (3, 114) = 12.27, MSE = .02, p < .0001, which shows that they differed



reliably.  The relevant mean values were MJ1/J2 = .82, MJ3C/J3E = .77, J3C = .85, and J3E = .68, which conform
to prediction.  Post hoc tests of the main effect revealed that J3E was reliably smaller than each of the other
three familiarity judgment parameters (.79, .85, and .85) but none of the other three parameters differed
reliably.  Importantly, note that the mean value of these parameters (.79) is much higher than the mean
value that was reported earlier for adolescents (.64) and is very high in absolute terms.  The indicated
conclusion is that reconstructed items seem very familiar to young adults, so much so that the item-
selection process produces much smaller differences between the judgment parameters.  Finally, note that
when the present results for familiarity judgment are combined with the above results for direct access,
prior recall performance again had opposite effects on the two types of parameters:  A prior recall error,
relative to a prior success, increased the probability of direct access (from .41 to .56) but it decreased the
probability of familiarity judgment (from .85 to .68).

Summary.  The adult patterns for the direct access and reconstruction parameters were similar to
those for children and adolescents.  Once again, the two types of parameters reacted differently to
repetition of study-test trials (although in this instance, reconstruction reacted but direct access did not), the
two types of parameters were negatively correlated, and the values of the four direct access parameters
followed the theoretically predicted ordering.  Also as before, performance on prior recall tests (success
versus error) had opposite effects on familiarity judgment and direct access parameters.  Concerning
familiarity judgment per se, the data were again consistent with the MJ1/J2 > MJ3C/J3E  and J3C >
J3E predictions.  Another important similarity between the adult, child, and adolescent patterns is that once
an item had been reconstructed, adults were also very willing to judge it as being familiar enough to output,
the overall mean of the four J parameters being .79.
Adolescent-to-Adult Changes

Next, we examine developmental trends in direct access, reconstruction, and familiarity judgment,
between early adolescence and young adulthood.  To do that, we focus on the 44 data sets—22 for young
adults and 22 for young adolescents—in which the subjects at both age levels learned to recall the same
items under identical conditions.  As before, we begin with global developmental trends and then move to
trends for specific parameters, emphasizing points of similarity and difference between the adolescent
versus young adult changes and the changes that were reported earlier for childhood versus adolescence.
A key prediction, based on extant research, concerns age changes in direct access versus reconstruction.

Global trends.  We tested the same three predictions about global age trends as before:  (a) that
regardless of age level, D parameters should be smaller than R parameters, on average; (b) that
D parameters should increase more with age than J parameters; and (c) that J parameters might not
increase at all.  The first prediction is based on theoretical differences between direct access and
reconstruction that make the former inherently more difficult, and hence, this prediction should be
confirmed at all age levels.  The other two predictions, as we saw earlier, are grounded in prior
developmental findings about the childhood years, using other paradigms (e.g., Ghetti & Angelini, 2008),
and hence, different patterns could be obtained for other age ranges.

Mean values of the four direct access parameters, the two reconstruction
parameters, and the four familiarity judgment parameters are plotted for young adults
and adolescents in Figure 3B.  Because the mean values for adolescents are based on a
subset of 22 of the 76 data sets that were used to estimate the mean values of these
parameters in Figure 3A, the estimates are not identical.  They are quite similar,
however:  The average difference between the mean values in the two figures is only .05
for the four direct access parameters, .05 for the two reconstruction parameters, and .03
for the four familiarity judgment parameters.  None of these small differences was
reliable.  We saw that during childhood (Figure 3A), mean direct access and mean
reconstruction both increased with age, but mean familiarity judgment did not.  In
contrast, inspection of Figure 3B shows that between early adolescence and young
adulthood, familiarity judgment increases more than either direct access or
reconstruction and that reconstruction is age-invariant.  To test the first prediction (that
reconstruction parameters are larger than direct access parameters), we computed a 2
(age) x 2 (parameters: the mean of R1 and R2 versus the mean of D1 and D2) ANOVA, using
parameter estimates as dependent variables.  There was a main effect in the predicted direction for



parameters, F (1, 42) = 36.18, MSE = .03, p < .0001 (mean of R1 and R2 = .40 and mean of D1 and D2 =
.17).  There was also an age main effect, F (1, 42) = 4.10, MSE = .01, p < .05, and the Age x Parameter
interaction was not reliable.

To test the other two predictions (direct access develops more than familiarity
judgment and familiarity judgment is age-invariant), we computed a 2 (age) x 2
(parameters: the mean of the four D parameters versus the mean of the four J parameters), with the
result of principal interest being an interaction that was expected between the two factors.  Although there
were large main effects for age, F (1, 42) = 26.94, MSE = .01, p < .0001, and parameter, F (1, 42) =
140.09, MSE = .02, p < .0001, the interaction failed to materialize.  As can be see in Figure 3B, although
the age increases in mean values of the D and J parameters did not differ reliably, the increase in mean
J (from .61 to .79) was twice the size of the corresponding increase in mean D (from .29 to .37).

Thus, at the process level, the global picture of what controls improvements in
recall between early adolescence and young adulthood was different than the picture
during childhood.  Direct access and reconstruction were responsible for improvements
in recall during childhood:  Both increased with age and by comparable amounts, while
familiarity judgment was age-invariant.  In contrast, familiarity judgment was responsible
for age improvements in recall between adolescence and young adulthood.  This
difference in age trends for familiarity judgment between childhood and adolescence
versus between adolescence and young adulthood is particularly instructive because it
demonstrates that the perceived familiarity of reconstructed items increases substantially
between early adolescence and young adulthood.  Unlike the findings for child-to-
adolescent development, there is no ambiguity in this interpretation arising from the fact
that the J parameters are combined measures of familiarity signal strength and criterion stringency, and
hence, supplementary analyses of the sort that were conducted earlier are not required to buttress this
interpretation.  That is, as noted earlier, there are many studies of the adolescent-to-young-adult age range
in which the criterion parameter of signal detection theory has been estimated, a general finding of which
has been modest increases in stringency during this age range.  Because increases in criterion stringency
would decrease estimates of the J parameters, the fact that those parameters increase between early
adolescence and young adulthood means that the strength of the familiarity signal is increasing.

Direct access and reconstruction.  The relations between age, repetition, direct access, and
reconstruction are shown in Figure 5B.  For items that are still in state U, we saw that during childhood and
early adolescence (Figure 5A):  (a) Repetition of study-test trials makes it easier to reconstruct targets (R1<
R2); (b) repetition makes it harder to directly access targets (D1 > D2); and (c) both effects interact with
development, so that age increases in direct access and reconstruction are larger for D1 and R2 than they
are for D2 and R1.  In Figure 5B, it can be seen that all three effects were present at both age levels, but
the nature of the interaction was different.  With respect to the interaction, both the tendency of repetition to
enhance reconstruction and to impede direct access declined with age, so that developmental increases in
direct access are greater for D2 than for D1, and there was an Age x Trial cross-over such that
R1 increased with age but R2 did not.  These impressions were confirmed by a 2 (age) x 2 (trial: first vs.
later) x 2 (memory process: direct access vs. reconstruction) ANOVA, using estimates of the D and
R parameters as dependent variables.  The main effects for age, F (1, 42) = 4.10, MSE = .003 p < .05, trial,
F (1, 42) = 65.12, MSE = .003, p < .0001, and memory process, F (1, 42) = 36.18, MSE = .06, p < .0001,
were all reliable.  However, the key result was an Age x Trial x Memory Process interaction, F (1, 42) =
13.70, MSE = .02, p < .001.  Post hoc analysis (Tukey HSD, .05 level of confidence) revealed that the
mean values of D2, and R1 both increased with age, but age changes in the other two parameters were not
reliable.  The reasons for this pattern are evident in Figure 5B.  Both of the previously noted effects of
repetition (i.e., its tendency to make direct access harder and to make reconstruction easier) were more
marked in adolescents than in young adults.  These are quite sensible outcomes, considering that adults
should be simultaneously less susceptible to the debilitating effects of output interference and more adept
at identifying features that specify small, correct search sets.

As noted earlier, the opposite effects of study-test trial repetition on the (D1, D2) and
(R1, R2) pairs that is produced by repetition cannot be interpreted as showing that the direct access and
reconstruction parameters measure a single process, to which the two parameter pairs just happen to



respond in opposite ways.  Once again, such an interpretation can be ruled out if there are other variables
whose directional effects on the (D1, D2) and (R1, R2) are the same (Dunn & Kirsner, 1988).  It can be seen
in Figure 6B that age is such a variable.

Direct access, with and without reconstruction.  The mean values of the four direct access
parameters are plotted separately for the two age levels in Figure 7B.  We already know that the mean
values of these parameters follow the theoretically predicted ordering, D2 < D1 < D3C < D3E, for both
adolescents and young adults.  This ordering is apparent in Figure 7B, but so is another datum—namely,
that none of the direct access parameters other than D2 seem to develop during this age range.  The
ANOVA that was just reported established that D2 increased with age, whereas D1 did not.  For the other
two direct access parameters, we simply computed t tests to compare the parameters’ mean values in
adolescents versus young adults.  We found that neither D3C, t (42) = .79, nor D3E, t (42) = .79, varied with
age.  Thus, in contrast to childhood, increases in the ability to directly access targets were quite limited
between early adolescence and young adulthood.  Another difference was concerned with the locus of age
improvements in direct access.  Those improvements were concentrated within later phases of learning
during childhood (converting reconstructable items into directly accessible ones) but were concentrated
within earlier phases of learning thereafter (converting items that are not reconstructable into directly
accessible ones) during adolescence. Further, when the fact that only D2 increased between early
adolescence and young adulthood is combined with the fact (cf. Figure 7B) that the D1-to- D2 decline that is
so marked in children and adolescents was very slight in adults, the improvements in direct access
between early adolescence and young adulthood seem to be of a very specific sort:  Subjects are
becoming less sensitive to the effects of output interference.

Familiarity judgment.  The mean values of the four familiarity judgment parameters are plotted
separately for the two age levels in Figure 8B.  We already know that these mean values follow the
theoretical ordering MJ1/J2 > MJ3C/J3E and J3C > J3E in children, adolescents, and young adults.  A further
point that becomes apparent by comparing Figures 8A and 8B is that developmental increases in familiarity
judgment were far more pronounced between early adolescence and young adulthood than between
childhood and early adolescence.  We previously saw (Figure 3) that the mean value of the four familiarity
judgment parameters did not increase reliably during childhood, but it increased considerably between
early adolescence and young adulthood, t (42) = 5.53, p < .0001.  For the early adolescent versus young
adult data sets, we computed a 2 (age) x 4 (judgment parameters: J1, J2, J3C, J3E) ANOVA, using values of
the judgment parameters as dependent variables.  The main effect for age, F (1, 42) = 30.52, MSE = .05,
p < .0001, and the main effect for parameter, F (3, 126) = 17.10, MSE = .02, p < .0001, were reliable, but
the Age x Parameter interaction was not.  Thus, J1, J2, J3C, and J3E all increased reliably between early
adolescence and young adulthood, and they increased by equivalent amounts.

Summary.  Developmental trends in memory processes that control age improvements in recall
were different between adolescence and young adulthood than they were between childhood and
adolescence.  Between childhood and early adolescence, age improvements in recall consisted of
improvements in direct access and reconstruction but not familiarity judgment.  Between early adolescence
and young adulthood, however, there are broad-based improvements in familiarity judgment without
reliable overall increases in reconstruction and direct access.  Considering that decision criteria are known
to become somewhat more conservative during this age range, it appears that the superior recall of young
adults, relative to adolescents, is chiefly the result of increased subjective familiarity of reconstructed
targets.

Healthy Aging
In the next two sections, we take up the third objective of this paper, which is to

extend the earlier theoretical distinctions and modeling techniques to the study of aging
and cognitive impairment, thereby achieving a theoretical framework that is unified over
the study of early development, mainstream adult research, and the study of aging and
cognitive impairment.  We consider changes that occur in direct access, reconstruction,
and familiarity judgment during healthy aging in the present section and turn to cognitive
impairment in the next section.  With respect to aging, our corpus of recall data includes
16 data sets in which healthy older adults (who were screened for health problems and
cognitive impairments; mean age = 70 - 80 years) learned word and picture lists to
criterion under paired-associate, free, or cued recall conditions, and 16 parallel data sets



in which young adults learned to recall the same lists under identical conditions (see
Appendix B).  For these matched pairs of data sets, developmental changes between
early and late adulthood can be explored by comparing estimates of the direct access,
reconstruction, and familiarity judgment parameters for younger and older subjects.

In sharp contrast to the literature on early memory development, there is a
substantial literature on developmental trends in dual memory processes between early and late
adulthood, using remember/know judgments, process dissociation, and other conventional methodologies
(Anderson et al., 2008; Parks, 2007; Skinner & Fernandes, 2008; Toth & Parks, 2006).  A consistent
finding has been that performance on recollection measures declines considerably during late adulthood,
whereas performance on familiarity measures is either age-invariant or declines by small amounts.  This
well-established pattern provides yet another benchmark for the present model of recall because it predicts
that the direct access parameters will decline far more than familiarity judgment parameters, if the process
interpretations of those parameters are correct.  Of course, nothing specific is known about aging trends in
reconstructive retrieval because this operation is not measured in conventional dual-process
methodologies.  However, when the idea that reconstruction is semantically based is combined with the
well-established finding (Budson et al., 2006b; Kensinger & Schacter, 1999; Koutstaal, 2003; Koutstaal &
Schacter, 1997) that semantic aspects of memory are more likely than verbatim aspects to be spared
during healthy aging, an obvious expectation is that aging declines in direct access ought to be more
pronounced than aging declines in reconstruction.

Findings are presented in two steps.  First, detailed information about how the
direct access, reconstruction, and familiarity judgment parameters behave in older adults
is presented, using the 16 older adult data sets.  As before, the focus is on whether that
behavior accords with theoretical prediction.  Second, we consider questions about
developmental change by examining early-to-late-adulthood trends in direct access,
reconstruction, and familiarity judgment, using the 32 paired data sets.

Behavior of Parameters in Older Adults
Separability of Direct Access and Reconstruction

Evaluation of the hypothesis that direct access and reconstruction are distinct
processes was confined to the earlier analyses of the effects of study-test trial repetition
on (D1, D2) versus (R1, R2).  (Unlike prior analyses, correlations within and between the two sets were not
computed because the number of older adult data sets was too small for adequate power.)  In the earlier
results for children, adolescents, and young adults, repetition had opposite effects on the two types of
parameters:  The mean value of R increased with repetition, but the mean value of D decreased.  In older
adults, direct access was affected but reconstruction was not.  A plot of the means for the two pairs of
parameters appears in Figure 11B, where it can be seen that D2 was markedly smaller than D1, but R1, and
R2 had comparable values.  To evaluate these trends for statistical significance, we computed paired-
samples t tests.  It was found that like prior results, the decline in direct access as function of repetition was
reliable, t (15) = 4.31, p < .001, but that unlike prior results, mean values of R1 and R2 did not differ reliably,
t (15) = 1.24.  The indicated theoretical conclusions are that when items escape state U, the chances that
older subjects will learn to directly access them is sensitive to accumulating interference, which is also true
of children and adolescents, but unlike other age levels, older adults do not exhibit intertrial improvements
in learning how to reconstruct items.

With respect to the fundamental issue of whether the (D1, D2) and (R1, R2) pairs
measure distinct, separable retrieval process, further evidence is provided by plotting reversed
associations between these parameters.  Dunn and Kirsner (1988) showed that a one-process
interpretation of the fact that these parameter pairs react differently to selected experimental manipulations
can be ruled out by reversed associations.  A reversed association is a nonmonotonic relation between the
two parameter pairs, which in the present case means that values of the (R1, R2) pair would sometimes
increase when the (D1, D2) pair increases but, at other times, would decrease when the (D1, D2) pair
increases.  Consistent with the hypothesis that these parameter pairs measure distinct processes, a
reversed association is detected when their mean values are plotted against each other, for the four age
levels in our corpus.  That relation is shown in Figure 12.
Ordering of Direct Access Parameters



The theoretically expected ordering of the direct access parameters is D2 < D1 < D3C < D3E, as it
was for other age levels.  For the 16 older adult data sets, the mean values of these parameters were D2 =
.15, D1 = .25, D3C = .42, D3E = .27, which does not completely follow the expected ordering:  Although the
mean of D1 and D2 (.20) is smaller than the mean of D3C and D3E (.35), which conforms to prediction
(because reconstruction provides additional covert presentations when items occupy state P), the mean
values of D3C and D3E are the opposite of their predicted ordering (based on the principle that recall errors
initiate active mnemonic processing).  A one-way ANOVA produced a significant main effect for these
parameters, F (3, 45) = 29.42, MSE = .02, p < .0001.  Post hoc tests revealed that (a) the mean value of
D1 was smaller than the corresponding means for all of the other three parameters, (b) the mean value of
D2 was smaller than the mean value of D3C and (c) the mean value of D3E was smaller than the mean value
of D3C.  Thus, on the one hand, the notion that it is more difficult to learn how to directly access items that
are in state U than items that are in state P has again been confirmed (because the mean of D1 and D2 is
smaller than the mean of D3C and D3E).  On the other hand, the notion that once subjects have learned how
to reconstruct items, it is easier to learn how to directly access them following an error than following a
success is disconfirmed in older adult data sets (though it was confirmed at all other age levels).  Evidently,
errors no longer serve to initiate active mnemonic processing in late adulthood, and on the contrary, it is
successful recall that may trigger such processing.

The shift in late adulthood from error-driven learning to success-driven learning is
consistent with another recent finding about healthy aging, the positivity effect (e.g.,
Carstensen & Mikels, 2005; Mikels, Larkin, Reuter-Lorenz, & Carstensen, 2005).  It has
long been known (e.g., Storbeck & Clore, 2005) that the memories of young adults,
adolescents, and children exhibit a negativity effect; that is, information with a negative
emotional valence, such as errors and other forms of negative feedback, is preferentially
processed and affects performance more than information with a positive or neutral
valence.  The positivity effect refers to the fact that, in contrast, across a broad range of
tasks, older adults preferentially process information with a positive emotional valence,
with successes and other positive feedback being examples of positively-valenced
information.
Ordering of Familiarity Judgment Parameters

During late adulthood, the theoretically expected ordering of the familiarity judgment parameters is
the same as during earlier segments of the life span—namely, MJ1/J2 > MJ3C/J3E and J3C > J3E.  The mean
parameter estimates for the present data sets are displayed in Figure 9D.  The values conform to
prediction because MJ1/J2 = .81, MJ3C/J3E = .69, J3C = .77, and J3E = .60.  A one-way ANOVA produced a
significant main effect for these parameters, F (3, 45) = 11.55, MSE = .02, p < .005.  Post hoc tests
showed that J3E was significantly smaller than any of the other parameters, J2 was larger than J3C or J1,
and that the latter two parameters did not differ.  The finding that J2 > J1 was not predicted, and considering
that this relation has not been observed in any of the prior analyses of the judgment parameters, it may be
a statistical aberration.  That interpretation is bolstered by the fact that this relation did not replicate in the
longitudinal study of older adults that is reported below (see Table 6).
Summary

Parameter behavior in the older adult data sets conformed to theoretical expectations in most key
respects.  However, whereas reconstructive retrieval benefited from study-test trial repetition in young
adults (and children and adolescents), this advantage was not present in older adults.  Also, whereas it
was easier for young adults (and children and adolescents) to learn to directly access reconstructable
items that were not successfully recalled, it was easier for older adults to learn to directly access
reconstructable items that were successfully recalled, a developmental change that is reminiscent of the
shift from preferential processing of negative information to preferential processing of positive information
in older adults.

Early-to-Late-Adulthood Changes
Next, we describe developmental differences in direct access, reconstruction, and familiarity

judgment, between early and late adulthood, comparing parameter values for the matched pairs of data
sets in which younger and older adults learned to recall identical lists under identical conditions.  Once
again, we begin with global developmental trends and then move to trends for specific processes.  A key
prediction, based on aging research with other dual-process methodologies, is that there will be marked



declines in direct access parameters, relative to reconstruction parameters, and that familiarity judgment
parameters will be age-invariant.
Global Trends

Mean values of the four direct access parameters, the two reconstruction parameters, and the four
familiarity judgment parameters are plotted for younger and older adults in Figure 11A.  We have seen that
(a) between childhood and adolescence (Figure 3A), direct access and reconstruction developed but
familiarity judgment was age-invariant and that (b) between adolescence and young adulthood (Figure 3B),
familiarity judgment displayed marked developmental change while reconstruction was age-invariant and
direct access developed slightly.  Inspection of Figure 11A suggests that a third pattern dominates the
years between young and late adulthood:  The age change in direct access (.19) is more marked than the
corresponding change in either reconstruction (.11) or familiarity judgment (.04).  To test this pattern for
statistical significance, we computed a 2 (age) x 2 (parameter: D versus R versus J) ANOVA, using mean
values of each of the three types of parameters as dependent variables.  There were large main effects for
age, F (1, 30) = 25.73, MSE = .01, p < .0001, and parameter, F (2, 60) = 184.77, MSE = .01, p < .0001, of
course.  However, the result of principal interest was an Age x Parameter interaction, F (2, 60) = 4.20,
MSE = .01, p < .02.  When this interaction was decomposed with post hoc tests (Tukey HSD, .05 level of
confidence), it was found that the direct access and reconstruction parameters declined reliably with age,
that the direct access parameters declined more than the reconstruction parameters, and that the
familiarity judgment parameters were age-invariant.
Direct Access and Reconstruction

The relations between age, repetition, direct access, and reconstruction are shown in Figure 11B.
We tested the earlier prediction that reconstruction parameters are larger than their corresponding direct
access parameters.  As before, we computed a 2 (age) x 2 (parameters: the mean of R1 and R2 vs. the
mean of D1 and D2) ANOVA, using parameter estimates as dependent variables.  There was a main effect
in the predicted direction for these parameters, F (1, 30) = 17.05, MSE = .01, p < .0001 (mean of R1 and
R2 = .42 and mean of D1 and D2 = .24).  There was also an age main effect, F (1, 30) = 6.86, MSE = .03,
p < .01, but the Age x Parameter interaction was not reliable.  We just saw that the mean of the direct
access parameters declines more with age than the mean of the reconstruction parameters, which is
consistent with the standard finding that semantic aspects of memory are more likely than verbatim
aspects to be spared during healthy aging.  The absence of an Age x Parameter interaction shows that this
pattern does not extend to the mean of D1 and D2.  However, support for this pattern was present when
age trends were analyzed at the level of individual parameters.  Specifically, we computed a 2 (age) x 2
(parameter type: direct access versus reconstruction) x 2 (trial: 1 versus 2) ANOVA, using the estimates for
D1, D2, R1, and R2 as dependent variables. There were main effects for age, F (1, 30) = 6.86, MSE = .05,
p < .02, a main effect for parameter type, F (1, 30) = 17.05, MSE = .02, p < .0001, and an Age x Trial
interaction, F (1, 30) = 8.42, MSE = .02, p < .0001.

The nature of the Age x Trial interaction can be seen in Figure 11B, where two features
of importance can be noted.  First, the repetition-induced decline from D1 to D2 was more pronounced in
older adults, so much so that age declines in direct access were reliable for D2 but not D1.  The other
important feature is the relation between R1 and R2 at the two age levels.  In all previous comparisons of
these parameters, repetition increased the chances that items would escape state U by becoming
reconstructable (i.e., R1 < R2).  Although this effect was again present in young adults (R1 = .37, R2 = .45), it
was absent in older adults.  When these two features were combined, the result was that, overall, there
were no reliable differences in the rates of age decline for either D1 versus R1 or D2 versus R2.
Direct Access, With and Without Reconstruction

The mean values of the four direct access parameters are plotted separately for the two age levels
in Figure 11C.  It can be seen that young adult data follow the theoretically predicted ordering, D2 < D1 <
D3C < D3E, whereas we know that the older adult data follow the somewhat different ordering, D2 < D1 <
D3E < D3C.  To extract age trends from these data, we computed a 2 (age) x 4 (parameter: D1, D2, D3C, D3E)
ANOVA, using parameter estimates as dependent variables.  There were main effects for age, F (1, 30) =
14.93, MSE = .08, p < .001, and for parameter, F (3, 90) = 30.14, MSE = .02, p < .0001, and an Age x Trial
interaction, F (3, 90) = 8.42, MSE = .02, p < .0001.  Post hoc analysis (Tukey HSD, .05 level of confidence)
of the interaction revealed that D2, D3E, and D3C all declined reliably with age and by large amounts
(roughly 50%, on average), but D1 was age-invariant.
Familiarity Judgment

The mean values of the four familiarity judgment parameters are plotted separately for the two age



levels in Figure 11D.  We already know that the mean values of these parameters conform to the
theoretical ordering MJ1/J2 > MJ3C/J3E and J3C > J3E in both younger and older adults.  To measure age
trends at the level of individual parameters, we computed a 2 (age) x 4 (parameter: J1, J2, J3C, J3E) ANOVA,
using values of the familiarity judgment parameters as dependent variables.  This ANOVA produced a
parameter main effect, F (3, 90) = 21.94, MSE = .02, p < .0001, but no age main effect and no Age x
Parameter interaction.  Thus, during the course of healthy aging, familiarity judgment appears to be entirely
spared.  There was no evidence of decline at the level of the average value of the four parameters or at the
level of the individual parameters.  To interpret this finding, it is important to bear in mind, as already
mentioned, that like early memory development, there is an aging literature in which signal detection
estimates of criterion stringency have been computed for (e.g., Budson, Sullivan, Daffner, & Schacter,
2003; Budson et al., 2002, 2006a; Schacter et al., 1999).  A common finding is that criterion stringency
does not vary greatly between early and late adulthood.  For example, in an experiment with DRM lists,
Budson et al. (2006a) found that the C parameter did not differ reliably between the ages of 20 and 70.
Thus, supplementary analyses of the sort that we reported earlier, in which the familiarity and criterion
components of the judgment parameters are separated, are not required to establish the key conclusion:
Age-invariance in these parameters cannot be explained on the ground that declines in the familiarity of
reconstructed items are being canceled, at the level of the J parameters, by decreases in the stringency of
decision criteria.  Instead, with the common words and pictures that were used in the experiments in our
data sets, the indicated conclusion is that the strengths of reconstructed items’ familiarity signals are
spared during health aging.
Summary

The age trends in parameter values suggest that memory declines during healthy aging are
dominated by declines in direct access.  Three of the four direct access parameters displayed declines that
were large in absolute terms (around 50%).  Although one of the reconstruction parameters declined with
age, that result was due to the fact that in older adults, repetition of study-test cycles did not enhance the
chances that subjects will learn how to reconstruct an item.  Finally, familiarity judgment was completely
spared from aging declines, the mean value of the four parameters being virtually identical in younger and
older adults.  Here, it is important to add that in addition to being spared from aging declines, familiarity
judgment remains at a much higher level in older adults than in children or adolescents.  The mean values
of the four familiarity judgment parameters for these age levels were .76 (older adults), .79 (young adults),
.64 (adolescents), and .61 (children).

Cognitive Impairment
So far, the earlier theoretical distinctions and modeling techniques have been

applied to the recall of subjects in the normal ability range, which was possible because
the model in which those distinctions are embedded delivered good fits to the data of all
age levels.  In the present section, our aim is more exploratory—specifically, to examine
how these same theoretical distinctions and modeling techniques might be extended to
the memory sequelae of cognitive impairment.  At first blush, this might seem to be a
rather speculative endeavor, in comparison to the work that figures in the preceding two
sections.  Actually, however, there is precedent for it.  In prior research by Batchelder et
al. (1997) and by Faglioni and associates (e.g., Faglioni et al. 2000a, 2000b), HMM’s were
successfully applied to the study of cognitive impairments that are associated with conditions such as
Alzheimer’s dementia (AD), Parkinson’s disease, and multiple sclerosis.

A key methodological constraint in such research is that subjects may be unable
to complete tasks that demand that they achieve errorless recall.  Consequently,
extending the present techniques to cognitive impairment requires that they be
implemented in tasks that, unlike the experiments that figured in the preceding two
sections, do not impose stringent acquisition criteria.  We present two such
implementations in this section and show how each can be used to isolate processes
that are responsible for the memory sequelae of cognitive impairment.  One of the tasks,
which is considered in the first subsection below, involves a design of the form
S1T1T2S2T3S3T4.  In other words, the design is the same as the one over which Equation 3 is defined,



except that the procedure stops after the third study-test trial.  In the first subsection below, we show how
direct access, reconstruction, and familiarity judgment can be measured with the data of two illustrative
experiments in which this fixed-trials procedure was used.  One experiment involved comparing the recall
of healthy older adults to that of older adults who had been diagnosed with either mild AD or clinical
depression.  The other experiment involved comparing the recall of a single group of older adults over an 8-
 to 12-month interval, in order to detect the emergence of impairment.  Such detection is an important
objective because the rate of conversion to some form of cognitive impairment is substantial after age 70.
In the second subsection below, we present an even simpler implementation of the dual-process model,
which involves a single study cycle followed by three independent recall tests for the studied material (i.e.,
the design is S1T1T2T3).  We show how this design can be used to measure direct access, reconstruction,
and familiarity judgment with the data of an illustrative experiment in which the subjects were schizophrenic
patients and age-matched control subjects.

Fixed-Trials Implementation
Comparisons of Healthy and Impaired Individuals

A familiar type of study in the neuropsychological literature involves administering conventional
dual-process tasks (e.g., remember/know) to healthy older adults and older adults with some form of
cognitive impairment.  Common findings are that between-group differences are more pronounced for
recollection measures than for familiarity measures and that between-group differences are often confined
entirely to recollection measures (for a review, see Yonelinas, 2002).  Equation 3 can be used in the same
manner in such research, which can be illustrated by applying it to a fixed-trials recall experiment by Howe
(1990).  In Appendix B, as part of the identifiability proof for Equation 3’s parameters, we show that it is
possible to estimate all of its parameters and to test goodness of fit with the data of experiments that use
the simplified design S1T1T2, S2T3, S3T4.  Howe’s experiment employed this design.

Howe (1990) tested three groups of subjects: (a) six home-dwelling older adults
who had been diagnosed with mild AD and were being treated through an outpatient
clinic (mean age = 69), (b) six home-dwelling older adults who had been diagnosed with
clinical depression and were being treated through the same outpatient clinic (mean age
= 71), and (c) six healthy older adults who resided in the same community (mean age =
70).  Each subject participated in two separate fixed-trials recall tasks, in which they
studied and recalled a 16-item list.  The data for the two lists were then pooled to
measure overall performance.  The accuracy of recall differed dramatically among the
three groups.  Healthy older adults performed best, with an accuracy level of slightly
above 50% on T1 and T2, which rose to above 90% on T4.  AD patients’ performance was worst, with an
accuracy level of 5% on T1 and T2, which rose to roughly 10% on T4.  Depressed patients’ performance
was intermediate, with an accuracy level of slightly above 20% on T1 and T2, which rose to slightly below
50% on T4.

The question of primary interest here is whether our model fits these data and,
hence, whether estimates of its parameters can be used to isolate processes that are
and are not responsible for the between-group differences in recall.  The fit results are
displayed in Table 4.  These tests ask whether a model that assumes that learning to
recall involves the two stages that are posited in Equation 3 gives statistically acceptable
accounts of the data.  These are likelihood-ratio tests of the form specified in Equation
A17 that generate G2 statistics with 4 degrees of freedom.  According to the results in Table 4,
Equation 3 fits these data well.  This, in turn, provides grounds for optimism that when the simplified
S1T1T2, S2T3, S3T4 design is used to compare the recall of healthy older adults to that of cognitively
impaired adults, the present model will fit the data and, therefore, its parameters can be used to pinpoint
between-group differences in memory processes.  Although that is the major conclusion, we also report
estimates of the models’ parameters in Table 5 in order to illustrate potential process-level differences
between the healthy and impaired groups, differences that can be regarded as model-validity tests.

Consider, first, a validity result about familiarity judgment.  It was just noted that a
common finding about the memory sequelae of cognitive impairment is that familiarity is
spared.  Consistent with that datum, note that the mean value of the four J parameter



estimates in Table 5 was not appreciably higher for the healthy group (.69) than it was for the AD group
(.67) or the depressed group (.79).   Another validity result is concerned with direct access.  Consistent
with the common finding that recollection is not spared—that healthy older and impaired groups differ
substantially on traditional measures of recollection—note that the mean of the four D parameters for the
healthy group (.45) is much higher than the corresponding means for the AD group (.03) and the
depressed group (.18).5   A third validity result is concerned with group differences in reconstruction.
Because this process has no counterpart in conventional methods of measuring dual memory processes,
predictions about it cannot be derived from prior research.  However, predictions follow from studies in
which healthy and impaired subjects were compared on memory tasks that differed in semantic
processing.  Specifically, it is well established that recall tasks are reliable predictors of transitions to AD
among older adults (for reviews, see Petersen et al., 1999; Spaan et al., 2004), and more recently, it has
been found that the predictive power of recall tasks increases when they stress semantic processing (e.g.,
Benedict, Schretlen, Groninger, & Brandt, 1998).  This has prompted the hypothesis that a hallmark of
transition to AD is increasing difficulties with semantic processing (e.g., Budson et al., 2002, 2003; Pierce,
Sullivan, Schacter, & Budson, 2005; Reyna & Mills, 2007).  Under that hypothesis, reconstruction
parameters ought to have lower values in AD patients than in healthy older adults because those
parameters measure the processing of items’ semantic content (Reyna & Mills, 2007).  The data in Table 5
concur with this prediction:  The mean of the two reconstruction parameters for the healthy group (.31) was
much larger than the corresponding mean for the AD group (.05).

These parametric results must be cautiously interpreted, of course, because they
are based on the data of only a single study of healthy older adults, AD patients, and
depressed patients.  With that proviso, it is significant that between-group parameter
comparisons are consistent with what one would predict on the basis of the larger
literature on cognitive impairment and our earlier assumptions about what the models’
parameters measure.
Emergence of Cognitive Impairment

By recent estimates (e.g., Hebert, Scherr, Bienias, Bennett, & Evans, 2003), over 4.5 million
people in the United States have AD, and more than twice that number have mild cognitive impairment
(MCI).  The combined risk of developing one or the other condition during the course of normal aging is
above 20%.  For instance, a study of 4000 adults between the ages of 70 and 90 by Petersen et al. (2001),
using established clinical criteria, found that 12% to 15% of subjects were classified as MCI and another
8% were classified as AD.   Although large-scale normative studies of the incidence of AD and MCI are
currently in progress, extant data (e.g., Bennett et al., 2002; de Jager, Hogervorst, Combrinck, & Budge,
2003; Peterson et al., 2001) suggest that healthy adults who are 70 to 90 years old convert to MCI at a rate
of 10% per year.  The typical progression is for MCI to emerge first, followed at some later point by AD.
For example, Petersen et al. compared a sample of older adults who had been diagnosed with MCI to a
sample of healthy age-matched controls.  Subjects in the MCI group converted to probable AD at a rate of
10%-15% per year, whereas the corresponding rate for controls was 1% to 2%.

The high baseline risk of MCI after age 70, coupled with its rate of conversion to
AD, places a premium on early detection, which can lead to interventions that delay the
progress of impairment to clinical MCI or AD.  Because recall is the best single predictor
of emerging cognitive impairment, it is desirable in clinical settings to use recall tests for
that purpose (e.g., Benedict et al., 1998; Delis, Kramer, Kaplan, & Ober, 1987).  Further,
there are clinical incentives for restricting initial screening to recall tests because costs
increase as the amount of testing increases, and other tests are less sensitive to
impairment.  Given these constraints, a practical clinical goal is to improve the detection
power of recall tests (Benedict et al., 1998).  That there is considerable room for such
improvement follows from the idea that impairment is due to only a subset of the
processes that control recall.  Therefore, estimates of the present model’s parameters
should do a better job of predicting the emergence of impairment than raw recall
performance because some of the processes that control raw performance are
uncorrelated with impairment and therefore only contribute error variance to the detection



of impairment (Reyna & Mills, 2007).  In particular, detection should be improved by
relying on estimates of the reconstruction and direct access parameters because the
familiarity judgment parameters do not seem to contribute to either the declines in recall
that occur during healthy aging or to the declines that occur during transitions to
impairment.  Further, Reyna and Mills predicted that detection should be especially
improved by estimates of reconstruction because declines in reconstruction are central to
the emergence of impairment.  According to Reyna and Mills, that is because diffuse
cognitive impairment overcomes the neural redundancy that spares semantic processing
(and therefore reconstruction) during healthy aging.

Although we are unaware of any data sets in which changes in parameter
estimates over time can be estimated for individual older adults, the two-step detection
procedure can be illustrated with group data via an experiment by Howe (1990).  In this experiment,
a sample of 25 healthy adults in the age range for emergence of MCI (mean age = 71) learned one of two
word lists, using the S1T1T2, S2T3, S3T4 design.  Then, 8 to 12 months later, each subject learned another
word list of the same general type, again using the S1T1T2, S2T3, S3T4 design.  Because this design was
used on each occasion, direct access, reconstruction, and familiarity judgment parameters can be
estimated for each test, with a view to determining whether any of these processes declined over the
intervening months.  On the hypothesis that these subjects were progressing towards impairment and that
some had converted to MCI after 8-12 months, the expectation would be that the reconstruction
parameters, in particular, ought to decline between Test 1 and Test 2 (Reyna & Mills, 2007).  First,
however, the question of whether the model provides statistically acceptable fits must be examined.

The fit results appear at the bottom of Table 4.  As in the fixed-trial experiment that
we considered above, the model fit the data of both list conditions and both testing
sessions.  For the G2(4) statistics in Table 4, a critical value of 9.49 is required to reject the null
hypothesis that the model fits the data, and the mean value of that statistic (6.91) is well below the critical
value.  Obviously, these results provide further grounds for optimism that if the simplified S1T1T2, S2T3,
S3T4 design is used in research on aging and cognitive impairment, the present model will fit the data, so
that its parameters can be used to identify between-group differences.

Turning to the parametric results, the relevant data appear in Table 6, where
estimates of the direct access, reconstruction, and familiarity judgment parameters are
reported for both initial and delayed sessions.  The question of interest is whether any of
these parameters declined between the two sessions.  Examination of the mean values
of the parameters for the two testing occasions yields findings that are consistent with the
notion that emerging impairment is associated with declines in reconstructive retrieval.
During the initial session, the mean estimates of the four direct access parameters, the
two reconstruction parameters, and the four familiarity judgment parameters were .36,
.45, and .78, respectively.  After 8-12 months, the mean estimates of the three groups of
parameters were .35, .26, and .79, respectively.  Thus, just as current theoretical
conceptions of cognitive impairment would expect, although the mean values of the
direct access and familiarity judgment parameters did not decline over this interval, there
was a substantial decline in the mean value of the reconstruction parameters, which
suggests that changes in the estimates of these latter parameters may prove to be
especially sensitive predictors of the emergence of impairment.  These results are only
suggestive because although subjects’ levels of cognitive functioning were assessed at
the start of the experiment (to establish that they were not impaired), subjects were not
retested at the end (to establish conversion to impairment).

Repeated-Recall Implementation
Next, we consider an even simpler procedure that can be used with populations whose

performance is seriously compromised.  This procedure allows a reduced version of the trichotomous recall



model, which consists of a subset of 6 of the 11 parameters (D1, R1, Rf, J1, J3C, and J3E).  In this
methodology (cf. Brainerd et al., 2002, 2003; Payne et al., 1996), a study list is presented only once,
followed by three independent recall tests (three paired-associate tests or three cued recall tests or three
free recall tests or three serial recall tests) for that list.  If C denotes successful recall of an item and E
denotes unsuccessful recall, each item on the study list must produce one of eight response sequences
over the three recall tests—namely, C1C2C3, C1C2E3, C1E2C3, C1E2E3, E1C2C3, E1C2E3, E1E2C3, and
E1E2E3.  In Appendix B, we show how empirical probabilities of these response outcomes can be used to
find estimates of the D1, R1, Rf, J1, J3C, and J3E and to evaluate fit.

We now illustrate the application of the reduced model to the recall performance of
schizophrenic patients.  There is an extant literature in which conventional dual-process
tasks have been applied to memory impairments in schizophrenic patients (e.g., Barch et
al., 1996; Huron et al., 1995) and in subjects who exhibit high levels of certain
schizophrenic symptoms but have not been diagnosed as schizophrenic (e.g., Brebion,
Smith, Amador, Malaspina, & Gorman, 1997; Linscott, 1999).  Examples of such
symptoms are anhedonia (inability to experience enjoyment from pleasurable
experiences, such as eating or sexual activity) and schizotypy (a collection of symptoms,
including magical thinking, cognitive disorganization, and unstable moods).  Two findings
of general interest are that (a) such subjects consistently display reduced performance
on conventional measures of recollection (Linscott & Knight, 2001), and (b) such subjects
sometimes display elevated performance on traditional measures of familiarity (Linscott &
Knight, 2004).  We demonstrate that the repeated-recall procedure can be used to
measure such differences by fitting the reduced model to the various conditions of an
experiment by Korobanova (2008) and then estimating the parameters D1, R1, Rf, J1, J3C,
and J3E for schizophrenic and nonschizophrenic subjects.

Brainerd et al. (2002) reported some experiments in which young adult subjects
studied either longer or shorter word lists and then responded to three independent recall
tests under conditions of either paired-associate or free recall.  Korobanova (2008) used
a similar procedure, except that (a) her subjects were 20 schizophrenic patients and 87
age-matched controls and (b) each subject participated in all four cells of the List Length
x Type of Recall design (during different sessions).  The schizophrenic group consisted
of patients who had been referred from mental health service providers, who had working
diagnoses of schizophrenia, and who had no known neurological disorders.  The working
diagnosis was confirmed in separate clinical interviews in which participants met the
DSM-IV (American Psychiatric Association, 1994) criteria for schizophrenia.  All but two
of the participants were taking antipsychotic medications.  The control subjects were
residents of the same community who were recruited through public advertisements.
These subjects were screened for neurological disorders, traumatic brain injury, and
personal and familial histories of psychosis.  The mean ages of the schizophrenic and
control groups did not differ reliably.

The results for the model fits and the estimates of the parameters of the reduced
dual-process model are shown in Table 7.  As with the fixed-trials implementation of the
model, the fit results are the most important findings because they bear on whether the
reduced model is apt to be a useful tool in future research with psychotic patients.  The fit
test (see Appendix B) is a G2(1) statistic, which evaluates the null hypothesis that the data conform to
the reduced trichotomous model.  The values of this statistic for the four schizophrenic conditions and four
control conditions appear in the last column of Table 7.  It can be seen that the reduced model’s level of fit
was excellent:  None of the eight tests produced a null hypothesis rejection, and further, the mean of the
eight tests (.88) was less that one-quarter of the critical value for null hypothesis rejection (3.84).

Turning to differences between schizophrenics and controls in underlying memory



processes, estimates of D1, R1, Rf, J1, J3C, and J3E appear in the first 6 columns of Table 7, and the
mean of the 3 familiarity judgment parameters appears in column 7.  As with the earlier analyses of the
fixed-trials implementation of the full model with AD patients, model validity is a key question:  Do the
results square with extant findings about schizophrenics, using conventional dual-process methodologies?
They do.  As mentioned, major findings from procedures such as remember/know and process dissociation
are that schizophrenic subjects display impaired recollection but not impaired familiarity.  Consistent with
that pattern, the mean value of D1 for schizophrenic patients across the four list conditions (.06) was less
than one-third of the mean value for controls (.20).  In addition, the overall mean value of the three
familiarity judgment parameters for the schizophrenic patients (.70) was not smaller than the corresponding
mean for the control subjects (.65), and the mean values of the reconstruction parameter for the two
groups (.16 and .18) were nearly the same.

Thus, the reduced model produced findings that concur with prior results for
schizophrenics using conventional dual-process methodologies.  However, additional
between-group findings are apparent when the effects of list length and type of recall test
are considered.  With these variables, it has been found with conventional dual-process
methodologies that increasing list length decreases recollection without affecting
familiarity, (e.g., Yonelinas, 1994).  Also, because paired-associate recall provides
subjects with less latitude to select features to be used in reconstruction than free recall
provides, reconstruction has been found to be more difficult with paired-associate than
with free recall in studies of normal adults with variants of the present model of recall
(Brainerd et al., 2002).  In line with those findings, for the control data in Table 7 note that
(a) the mean value of D1 for longer lists (.09) was less that one-third of the mean for shorter lists (.32),
while the mean value of R1  and of the three judgment parameters were not affected by length, and that (b)
the mean value of R1 for paired-associate recall (.07) was one-quarter of the mean for free recall (.28),
while the mean value of D1 and of the three familiarity judgment parameters were not affected by the type
of recall test. The patterns for schizophrenic patients were different.  Although reconstruction was
influenced in the same manner by the type of recall test (mean R1 = .08 for paired-associate versus .25 for
free), direct access was not affected by list length (mean D1 = .05 for longer lists versus .07 for shorter
lists).  Also, paired-associate recall produced noticeably higher levels of familiarity judgment (mean J = .71)
than free recall (mean J = .58) in schizophrenic patients.

Summing up, application of the reduced model to Korobanova’s (2008) repeated-
recall study of schizophrenic patients yielded excellent fits, and it produced both validity
results and novel findings.  Concerning validity, prior reports of recollection deficits
without familiarity deficits in schizophrenics leads one to expect that D1 will be lower in the
patient group, relative to the control group, but that the J parameters will not be suppressed in the patient
group.  That is how the results fell out.  Concerning novel findings, in the patient group, unlike the control
group, direct access was not affected by list length, and free recall suppressed familiarity judgment, relative
to paired-associate recall.

Discussion and Conclusions
This paper began with three objectives.  The first, which occupied us at the outset,

was to resolve a fundamental problem in memory development research—namely, that
dual-process distinctions have had virtually no impact on the study of early memory
development.  Key reasons for this situation are that conventional dual-process
paradigms focus chiefly on recognition (which displays minimal improvement during this
age span and may not involve dual processes), and those paradigms place high
performance burdens on children (introspecting on mental states and making
metacognitive judgments).  Our solution was to devise a framework for studying dual memory
processes with low-burden recall tasks.  The framework consists of a theory that subsumes traditional
distinctions, that incorporates a reconstruction operation that is specific to recall, and that implements
these processes in a hidden Markov model that separates and quantifies them with the error/success data
of standard recall tasks.



The second objective, which occupied us in the middle of this paper, was to close
the knowledge gap on early memory development by putting the theoretical machinery to
work with developmental data sets.  We exploited a corpus of recall experiments in which
the subjects were children, adolescents, and young adults.  We secured reliable findings
about the early development of direct access, reconstruction, and familiarity judgment,
and equally important, we were able to test several theoretical predictions about these
processes.  The third objective, which occupied us in the last two sections, was to extend
the framework to the study of healthy aging and cognitive impairment, thereby unifying it
over: (a) the child-to-adolescent age range that is of primary interest in developmental
research; (b) the young adult age level that dominates mainstream memory research; (c)
the young-adult-to-older-adult age range that is of primary interest in aging research, and
(d) some of the most commonly studied forms of cognitive impairment.  With respect to
healthy aging, we obtained reliable findings about lifespan trends in direct access,
reconstruction, and familiarity judgment by analyzing a corpus of recall experiments in
which the subjects were young and older adults.  With respect to impairment, we
demonstrated that the mathematical model that measures these processes can be
implemented in two simplified tasks (fixed-trials recall and repeated recall) that are
appropriate for subjects with clinically significant cognitive limitations.  We also showed
how estimates of the model’s parameters can be used to pinpoint processes that are
responsible for recall deficits that are sequelae of existing clinical conditions (e.g., AD,
depression, and schizophrenia).

Thus, machinery is now in hand that can be used to track developmental and other between-
group differences in direct access, reconstruction, and familiarity judgment and can also be used to test
quantitative predictions about these processes.  The former capability will be of greater interest to students
of development, while the latter will be of greater interest to students of memory theory.  Below, we briefly
comment on what has been learned in connection with each of these capabilities.  Then, the paper
concludes by returning to the traditional dual-process conception of recognition to consider a surprising
dividend of the trichotomous theory’s modeling machinery.  We show that the dual-process conception of
recognition can be implemented in the same machinery, yielding a unified framework for the study of recall
and recognition.

Development: The Big Picture
Research with conventional dual-process distinctions and methodologies has produced a portrait

of developmental change that consists of scant evidence about child-to-young-adult development, coupled
with more extensive evidence about young-adult-to-older-adult development.  Within the former age span,
where data are thin, the main question is, What do our techniques reveal about age trends in direct access,
reconstruction, and familiarity judgment?  Within the latter age span, where data are more extensive, the
main question is, Do the age trends that are revealed by our techniques agree with the findings of
conventional dual-process methodologies?

With respect to the first question, the principal outcomes were substantial
improvements in all three of the processes during child-to-young-adult development, with
improvements in specific processes being localized within different segments of this age
range.  During the child-to-adolescent segment, improvements in recall were dominated
by improvements in direct access and reconstruction.  Mean levels of both processes
increased (and by roughly the same amount), whereas mean levels of familiarity
judgment were age-invariant.  If it is true, as our theory posits, that the chief difficulty
factor for direct access is the interference sensitivity of verbatim traces and the chief
difficulty factor for reconstruction is the ability to identify semantic features of targets that
generate manageable search sets, the indicated conclusions are that (a) direct access is
becoming less susceptible to the debilitating effects of interference and (b) the semantic



features that generate small search sets are becoming more readily accessible.  Upon
first impression, age-invariance in mean levels of familiarity judgment is consistent with
two interpretations.  On the one hand, the two processes that are assumed to control
observed values of the familiarity judgment parameters (perceived familiarity of
reconstructions and stringency of decision criteria) may both be invariant during child-to-
adolescent development.  On the other hand, because these processes have opposite
effects on the familiarity judgment parameters, they may both be increasing, but the
increases are canceling each other out at the level of parameter values.  That is the more
likely scenario, based on follow-up data that we reported (in which separate estimates of
these processes were obtained) and on two further considerations.  The first is that in
recognition studies with subjects in this age range (e.g., Reyna & Kiernan, 1994, 1995),
substantial increases in criterion stringency are ubiquitous findings.  The other is that
owing to general life experience, the subjective familiarity of list words ought to be
increasing during this age range.

Turning to the adolescent-to-young-adult segment, age improvements in recall
were dominated by improvements in familiarity judgment.  All four familiarity judgment
parameters increased reliably, and the mean increase in these parameters was
approximately 30%.  In contrast, overall mean values of the reconstruction and direct
access parameters did not increase reliably (although there was some subsequent
evidence that one of the four direct access parameters, the one that is most sensitive to accumulating
output interference, may increase).  To interpret the large increases in the familiarity judgment parameters,
it is important to note that in developmental recognition studies, the marked increases in criterion
stringency during child-to-adolescent development have been followed by small increases during
adolescent-to-young-adult development (e.g., Brainerd & Mojardin, 1998).  Thus, the perceived familiarity
of reconstructed targets increases by substantial amounts during adolescent-to-young-adult development,
and those improvements are not masked by parallel increases in criterion stringency.  For early memory
development as a whole, then, the overall conclusion is that the perceived familiarity of reconstructed
targets increases throughout this age range, while increases in criterion stringency are centered within the
child-to-adolescent part of the range.  The former is a decidedly novel conclusion, as the thin literature on
the early development of dual memory processes points to little improvement in familiarity.

           Insofar as direct access and reconstruction are concerned, (a) the sensitivity of
direct access to accumulating interference continued to decline, but by much smaller
amounts, during adolescent-to-young adult development, and (b) the ability to use
semantic and other relational features to construct small search sets was found to have
completed its development by early adolescence.  However, conclusion b is subject to
the qualification that the lists in our corpus of recall studies were composed of words (or
pictures) that are common in everyday discourse.  Adolescent-to-young-adult
improvements in reconstruction might be observed if lists were composed of less
common items.

With respect to the second question, whether our techniques produce findings for
the young-adult-to-older-adult development that concur with the findings of conventional
dual-process methodologies, the answer is yes.  The modal finding of conventional
methodologies is that recollection declines during healthy aging but familiarity is spared.
Analogously, parameter estimates for the aging studies in our corpus showed that the
mean value of the direct access parameters declined dramatically (by more than 40%),
whereas the mean value of the familiarity judgment parameters was virtually the same for
70-year-olds as for 20-year-olds.  Because the mean value for older adults was high in
absolute terms (.76), the implication is that older adults overwhelming regard their



reconstructions as being familiar enough to output.  Concerning direct access, three of
the four D parameters declined with age (by roughly 50%), with only the least interference-sensitive one
(D1) failing to decline reliably.  Thus, it appears that increasing sensitivity of verbatim traces to
accumulating interference is a major feature of healthy aging.  Finally, what about reconstructive retrieval,
which has no parallel in traditional dual-process research?  Here, it was found that reconstruction declined
with age but by much smaller amounts than direct access.  Moreover, declines were limited to the
tendency of reconstruction to benefit from repetition.  In the present framework, reconstruction is treated as
a comprehension processes, and as such, it ought to benefit from repeated opportunities to extract the
meaning properties of targets.  Consistent with this view, the studies in our corpus revealed that repetition
of study-test trials increased the R measure (i.e., R2 > R1) among children, adolescent, and young adults.
With older adults, however, repetition no longer had this effect, and hence, an important new finding about
aging is that the ability of reconstruction to benefit from repeated opportunities to comprehend meaning
declines during healthy aging.

Parametric Predictions
From the perspective of memory theory, the most important question about the present framework

is, Do the numerical values of the recall model’s parameters behave in ways that accord with prediction?
This is a key question, of course, because parametric predictions are derived from theoretical conceptions
of direct access, reconstruction, and familiarity judgment.  Here, we used our corpus of developmental
recall studies to test several predictions about the parameters that ostensibly measure these processes
and to test those predictions at multiple age levels.  The predictions of greatest theoretical significance are
summarized in Table 8.  Although various predictions are exhibited, there are three underlying themes:
Predictions about the D parameters turn on the notion that direct access is sensitive to accumulating
interference, predictions about the R parameters turn on the notion that reconstruction is sensitive to
meaning comprehension, and predictions about the J parameters turn on the notion that familiarity
judgment is sensitive to item selection when the decision criterion is held constant.

When predictions such as those in Table 8 were evaluated with many data sets,
there was surprisingly little deviation between observed patterns of parameter behavior
and predicted patterns.  For instance, one dramatic point of agreement concerned the
prediction that, under comparable conditions, learning to reconstruct targets ought to be
easier than learning how to directly access them.  That prediction was confirmed
throughout the lifespan, with the grand average, from age 7 to age 70, of the R1/R2 pair
(.36) being more than twice the grand average of the D1/D2 pair (.17).  As another illustration, consider the
prediction that the interference sensitivity of direct access means that repetition will suppress D2 relative to
D1.  Suppression effects of this sort were observed at all age levels, except the level at which, based on
other research, subjects ought to be least susceptible to the effects of interference (young adults).  As
another example, consider the prediction that the comprehension sensitivity of reconstruction means that
repetition of study-test trials will increase the value of R2 relative to R1.  Enhancement effects of this sort
were observed at all age levels, except late adulthood.  Another instructive parametric result is that at all
age levels where there were sufficient numbers of data sets to compute inter-parameter correlations,
positive correlations were observed between matched pairs of D parameters and between matched pairs
of R parameters, but negative correlations were observed between matched D/R pairs.  Therefore, leaving
aside the matter of exactly what these parameters measure, different D parameters seem to be measuring
the same thing, different R parameters seem to be measuring the same thing, but D and R parameters
seem to be measuring different things.  Indeed, these data patterns suggest that the D and R parameters
contrasting methods of retrieval.  Last, the behavior of the J parameters likewise fell out in broad
accordance with theoretical prediction.  Two expected patterns that were confirmed throughout the lifespan
concern (a) the relation between familiarity judgment when items first become reconstructable (the
J1/J2 pair) versus while they are waiting in state P to become directly accessible (the J3C/J3E pair) and (b)
the relation between familiarity judgments about reconstructions following prior successful recall (the J3C

parameter) versus following prior unsuccessful recall (the J3E parameter).  Owing to item selection, the
mean of the J1/J2 pair should be larger than the mean of the J3C/J3E pair under prediction a, and J3C should
be larger than J3E under prediction b.  Between the ages of 7 and 70, the grand means of the J1/J2 pair and
the J3C/J3E pair were .77 and .65, respectively, while the grand means of J3C and J3E were .72 and .54,
respectively.



Findings such as these are crucially important validity results because the
predictions arise from theoretical conceptions of direct access, reconstruction, and
familiarity judgment.  There is another group of validity results, however, that is empirical
in origin and is concerned with the relation between the present framework and
traditional dual-process frameworks.  As we have noted, although dual-process research
on early memory development is scarce, it is more extensive for aging and cognitive
impairment.  The standard dual-process finding about healthy aging is that recollection
measures decline, but familiarity measures do not.  With respect to cognitive impairment,
AD has been the focus of multiple studies, with the modal pattern being further declines,
relative to healthy older subjects, in recollection, coupled with continued sparing of
familiarity.  Also with respect to cognitive impairment, dual-process research with
schizophrenic patients has produced a similar pattern of declines in recollection, relative
to control groups, coupled with sparing of familiarity.

The available evidence suggests that the D and J parameters produce some of the same
qualitative patterns as conventional measures do.  The best evidence of such agreement is for healthy
aging, where we analyzed 16 paired sets of recall data for younger versus older adults.  Consistent with
conventional methodologies, as mentioned above, there were marked declines in the D parameters, but
the J parameters were age-invariant.  With respect to cognitive impairment, the more limited amounts of
data that were available to us also provided evidence of agreement between the present procedures and
conventional methodologies:  D parameters had smaller values for AD patients and for schizophrenic
patients than for their respective control groups, but there were no between-group differences in
J parameters.

Final Word: A Unified Framework for Recognition and Recall
We end where we began, with the traditional dual-process view of recognition.  As we saw, a limiting

feature of this theory is that conventional methodologies for estimating its recollection and familiarity
components require that subjects make meta-cognitive judgments about introspections, which places
excessive burdens on the capabilities of children and cognitively-impaired adults.  That limitation can now
be removed by implementing the dual-process approach to recognition in the machinery that has been
developed for the trichotomous theory of recall.  This yields a unified framework for recall and recognition,
one that relies on a single modeling technology and uses low-burden tasks to study recognition as well as
recall.  A further desirable outcome is that the dual-process conception of recognition can now be
represented as an HMM, whose fit can be rigorously evaluated and whose parameters measure dual
memory processes on a common ratio scale.

To begin, remember that Equation 1 expresses the probability of correct recall as a
function of direct access, reconstruction, and familiarity judgment for the canonical
experiment S1T1,S2T2, S3T3, …, where Si is the ith study cycle and Ti is the ith recall test.  Consider the
corresponding canonical recognition experiment; that is, Si  is the ith study cycle but Ti is the ith recognition
test.  In the present framework, the theoretical expression for the hit probability, which is isomorphic to
Mandler’s (1980) original equation for recollection and familiarity, is
Pi(Rg) = Di + (1-Di)Ji.                                                                                                                           (4)
Pi(Rg) is the hit probability on the ith trial, Di is the probability of being able to directly access a target’s
verbatim trace on the ith trial, and Ji is the probability that a target that cannot be directly accessed is
familiar enough to pass a judgment check on the ith trial.  Equation 4 is the same as Equation 1, except
that Ri vanishes because items are physically presented on recognition tests, so that targets that cannot be
directly accessed do not have to be reconstructed (hence, Ri  = 1).

In order to identify the parameters of Equation 1, it was necessary to switch to the
slightly modified design S1T1T2, S2T3, S3T4, …, which yielded Equation 3, whose parameter space is
fully identifiable.  Suppose that the same design is used for Equation 4 (except, of course, that the outcome
space T1,T2, … consists of old/new recognition tests), and the constraint Ri  = 1 is introduced in Equation 3.
 This yields the following dual-process equation for recognition:
W3  =     [L(1)L(2), L(1)PE(2), L(1)PC(2), PE(1)L(2), PE(1)PE(2), PE(1)PC(2), PC(1)L(2), PC(1)PE(2),

PC(1)PC(2)] = [D’1, 0, 0, 0, (1- D’1)(1- J’1)2, (1- D’1)(1- J’1)J’1, 0, (1- D’1)(1- J’1)J’1, (1- D’1)(J’1)2];



                      L(n+1)       PE(n+1)                  PC(n+1)                                           P(correct)

         L(n)           1               0                        0                                                           1

M3 =  PE(n)             D’3E           (1- D’3E)(1-J’3E)   (1- D’3E)J’3E                         ;   C2 =       0          .    (5)

                                                                                           
PC(n)          D’3C           (1- D’3C)(1-J’3C)  (1- D’3C)J’3C                                          1

There is no longer a state U because hits are possible by guessing even before this list is studied for the
first time.  Equation 5 contains three parameters that measure direct access of verbatim traces (D’1, D’3C,
and  D’3E) and three parameters that measure familiarity judgment about items that cannot be directly
accessed (J’1, J’3C, and  J’3E).  (Primes are appended to the parameters merely to indicate that memory
processes are being measured for recognition rather than recall.)  We know that all six parameters are
identifiable because their identifiability has already been proved (see Appendix A, Equations A5-A8 and
Equations A10 and A11).

 In Equation 5, all targets are in state P before the first study cycle.  A target can escape P on
the first study cycle by becoming directly accessible, with probability D’1.  If it becomes directly accessible,
it enters state L (errorless recognition) and recognition is successful on the first test and on all subsequent
tests (i.e., the item absorbs in L).  If a target does not become directly accessible on the first study trial,
recognition on T1 and T2 is governed by the familiarity judgment parameter J’1:  On each test, the item is
judged to be old (substate PC) with probability J’1 or new (substate PE) with probability 1 - J’1.  On
subsequent trials, escape from P to L is controlled by the direct access parameters D’3C, and  D’3E.
Specifically, on each study cycle, a target (a) becomes directly accessible (escapes from P to L) with
probability D’3C, if it was judged to be old on the immediately preceding test, or (b) it becomes directly
accessible with probability D’3E, if it was judged to be new on the immediately preceding test.  If a target
does not become directly accessible, recognition is governed by the familiarity judgment parameters
J’3C and J’3E:  The target is judged to be old with probability J’3C or J’3E, accordingly as it was judged to be
old or new on the immediately preceding test.

Equation 5’s fit to recognition data can be evaluated and its parameters can be
estimated with the same machinery that we have used for recall.  However, some further
comments about fit and parameter estimation are in order.  With respect to fit, note that
Equation 5 makes the strong prediction that recognition data will be one-stage Markovian.
This prediction is already known to be correct.  Early attempts to model recognition data (e.g., Kintsch &
Morris, 1965) showed that one-stage Markov chains gave excellent accounts of the sampling distributions
fine-grained performance statistics (for a review of early studies, see Greeno, 1974).  Interestingly, the fact
that recognition data are one-stage Markovian may explain why, in the contemporary literature, some lines
of evidence favor one-process models (e.g., Dunn, 2008) while others favor dual-process models (e.g.,
Yonelinas, 2002).  According to Equation 5, recognition has both one- and two-process aspects:  Learning
to recognize an item involves a single interstate transition, but the overall probability of correct recognition
is controlled by two memory processes (familiarity in state P and direct access of verbatim traces in state
L) that contribute differentially to that probability during earlier versus later phases of learning.

Turning to parameter estimation, we noted earlier that the J parameters measure two
processes, familiarity and response bias, and we showed how these processes can be separated with
intrusion data.  In recognition experiments, they can be separated with false-alarm data (e.g., see
Snodgrass & Corwin, 1988).  Specifically, each J parameter can be represented by the expression J’i    =
F’i  + (1- F’i)?’i, where F’i  is the probability that a traget is familiar enough to be judged to be old and ?’i is
the probability that a target that is not familiar enough is nevertheless judged to be old on the basis of
response bias.  Obviously, the value of F’i can be found for any of Equation 5’s J parameters by simply
substituting the relevant false-alarm rate for ?’i and solving this expression for F’i.  In that connection, it is
imporant to stress that the J parameters measure a weaker form of familiarity in recognition than in recall.
In recall, as we saw, subjects only make familiaritiy judgments about items that are reconstructed; that is,



about items for which small correct search sets have been constructed from some of their features.  In
recognition, however, it is not necessary to reconstruct targets that cannot be directly accessed, and
hence, subjects make familiarity judgments about items for which little or nothing has yet been learned.
Thus, judged levels of familiarity ought to be lower in recognition than in recall, presumably leading to lower
overall values of J parameters (if bias levels are comparable) and different relations between J parameters
for earlier versus later phases of learning.

Together, Equations 3 and 5 supply a unified framework for studying dual-process conceptions with
both recall and recognition data.  This framework can be exploited to examine many fundamental issues,
two of which we mention in closing.  First, in keeping with the developmental objectives of this article,
because low-burden tasks can now be used to estimate dual processes for recognition as well as recall,
the two types of performance can be studied in tandem to track how these processes change during early
memory development, healthy aging, and transitions to cognitive impairment.  Further, because these low-
burden recall and recognition tasks are so similar, the question of whether the same processes are being
measured in recall and recognition can be explored.  The D and J parameters of Equations 3 and 5 may or
may not be measuring the same memory processes.  If they are, patterns of change during early
development, healthy aging, and transitions to impairment ought to be similar for comparable pairs of recall
and recognition parameters, and within age levels or ability groupings, comparable pairs of parameters
should react similarly to experimental manipulations.  Such results would be expected for D1, versus D’1,
D3C versus D’3C, D3E versus D’3E, J1, versus J’1,  J3C, versus J’3C, and J3E versus J’3E.  These are strong
predictions, to which the only notable exception is that J’1,  J’3C, and J’3E will presumably be less sensitive
than J1, J3C, and J3E to manipulations (and subject characteristics) that affect familiarity because the former
parameters measure a weaker form of familiarity.

Second, from the perspective of mainstream memory theory, surely the most
attractive feature of the the unified framework is that traditional predictions of dissociation
between dual memory processes can be studied simultanouesly for recognition and
recall, using a single measurment technology and very similar experimental procedures.
As is well known, dual-process ideas predict that in recognition, (a) certain manipulations
(e.g., dividing attention at study or test) and certain subject characteristics (e.g., aging)
will affect recollection but not familiarity, whereas (b) other manipulations (e.g., fluency,
liberalty of response criteria) and subject characteristics (e.g., certain forms of brain
damage) will affect familiarity but not recollection (for a review, see Yonelinas, 2002).
Such predictions can now be tested with simple old/new recognition, by merely
estimating the D’ and J’ parameters of Equation 5, and they can simultaneously be tested with simple
recall data by merely estimating the D and J parameters of Equation 3.

When it comes to evaluating such predictions, a further attractive feature of the
unified framework is that these parameters can be estimated for both earlier and later
phases of learning.  A limitation of the current dual-process recognition literature is that it
is synonymous with early learning because multi-trial designs are rare.  This is a key
consideration because we saw with our corpus of recall data that D and J parameters react
differently to experimental manipulations and to subject characteristics during earlier versus later learnng.
A final attractive feature of the unified framework is that it can be used to determine why, at a process
level, some manipulations have opposite effects on recall and recognition.  Of course, the great bulk of
manipulations that increase (or decrease) recall do likewise for recognition, though the magnitudes of the
effects often differ.  There are a few manipulations, however, that drive recall and recognition in opposite
directions.  Chief among them is word frequency, with lower-frequency words producing poorer recall but
better recognition than higher-frequency words (e.g., Glanzer & Adams, 1985).  A potential explanation that
could be tested with the unified framework is that lower-frequency words increase recollection but seriously
impair reconstruction.  Thus, such words  produce a net increase in recognition because reconstruction is
not involved, but they produce a net decline in recall because they markedly deflate reconstruction.  Under
this hypotheis, it should be found that some of the D’ parameters and some of the D parameters are larger
for lower-frequency words, but that both of the R parameters are smaller for lower-frequency words.  These
are, of course, only illustrations of hypotheses that are motivated by dual-process distinctions that can be
rigously explored within the unified framework.
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Appendix A
Identifiability Proof for Equation 3

             Equation 3 implies an observable-states process that consists of the following data events:

        Q = the state on all recall tests after the last error for items with one or more precriterion errors and
the state on all recall tests for items with no precriterion errors;

           R = the state on all recall tests for an item, where the item is not recalled but the item has been
recalled on at least one earlier recall test;

           S = the state on all recall tests for an item, where the item is recalled but then it is not recalled on
at least one later recall test;

           Ei = the state on the ith recall test for an item, where the item is not recalled and it has not been
recalled on any earlier recall test.
j is the maximum value of the index variable i.  The starting vector, transition matrix, and response vector
for this observable-states process are
W3 = [Q(1)Q(2), Q(1)R(2), Q(1)S(2), Q(1)E1(2), Q(1)E2(2), …, Q(1)Ej(2), R(1)Q(2),

        R(1)R(2), R(1)S(2), R(1)E1(2), R(1)E2(2), …, R(1)Ej(2), S(1)Q(2), S(1)R(2),
S(1)S(2), S(1)E1(2), S(1)E2(2), …, S(1)Ej(2), E1(1)Q(2), E1(1)R(2), E1(1)S(2),
E1(1)E1(2), …, Ej(1)Ej(2)] = [?1, 0, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, …, 0, 0, ?2, ?3, 0, 0, …, 0, ?4, 0,
?5, 1 - ?1 - ?2 - ?3 - ?4 - ?5, …, 0];

                      Q(n+1)      R(n+1)      S(n+1)       E2(n+1)     …     Ej+1(n+1)                        P(correct)

             Q(n)           1               0               0               0           …     0                                     1

           R(n)           u               (1-u)v        (1-u)(1-v)  0           …     0                                     0

           S(n)           0               z               1 - z           0           …         0                                     1
M3 =                                                                                                         ;    C3 =                           .    (A1)

           E2(n)         ?1              0                 ?1             1-?1-?1  …     0                                     0

           .              .             .             .              .                 .                               .
           .              .             .             .              .                 .                               .
           .              .             .             .              .                 .                               .
           Ej(n)          ?j-1                 0           ?j-1 = 1-?j-1 0           …     0                                     0

             M3 governs transitions from T2 onward.  For any recall experiment, j is defined as the length of the
longest initial error run.  Thus, if the latest occurrence of the first successful recall of any item is T6, then j =
6, but if the latest occurrence of the first successful recall for any item is T8, then j = 8.  The starting vector
W3 gives the probabilities of the various pairings of the observable states on T1 and T2.  Most of these
pairings are impossible by the definitions of the observable states; only of six of the probabilities are
nonzero. To illustrate, notice that all of the entries that begin with R(1) must be zero because R is defined
as any error after an item has been recalled for the first time and T1 is the first recall test.  The transition
matrix M3 gives the probabilities of all inter- and intrastate transitions after T2.  M3 also contains many zero
entries that correspond to transitions that are impossible by the definitions of the states.

           Because A1 involves only observable states (i.e., actual data events), each
parameter in the starting vector and transition matrix is an observable quantity.  There
are 5 + 2j of these parameters, each of which is identifiable because, by Bernoulli’s theorem, a unique
maximum-likelihood estimator is available in the form of the proportion of events in any experiment that
exhibits that data state (e.g., Bartolucci & Nigro, 2007).  Such estimators are obtained from the likelihood
function
L5+2j = ?(?i)N(i) x ?(?ij)N(I,j),                                                                                                                 (A2)

where the ?i range over the nonzero cells of W3 and the ?ij range over the nonzero cells of M3.  Note that
as long as j ? 3, A1 has as many or more identifiable parameters than Equation 3.



           As we know, Equation 3 contains 11 free parameters.  If A1 is analyzed, using
algorithms for analyzing HMMs (e.g., Chopin, 2007), in order to locate the 11 identifiable
parameters of A1 that correspond to the parameters of Equation 3, that set of parameters
is {?1, ?2, ?3, ?4, ?5, u, v, z, w, ?, ?}.  It should be stressed that this is a unique set of identifiable
parameters—there is no other set containing all 11 identifiable parameters other than this one (for a proof,
see Brainerd, Howe, & Kingma, 1982).  As can be seen, the first eight parameters in this set appear in A1
because they are probabilities of simple data events.  The last three parameters are not probabilities of
simple data events, but they are involved, along with the parameters u and v in complex expressions for
?i and ?i, which are probabilities of simple data events.  Those expressions are:
?i, = (wi-1[u - (1-?)?]) / ((wi-1 [? - (1-u)v]) / (w - (1-u)v)) + ((1 - (? - (1-u)v)) / (w - (1-u)v))((1-u)v)i-1);         (A3)
?i, = (1-u)(1-v) - (wi-1 [? - (1-u)v][1 - (u - (1-?)?] / [? - (1-u)v]) / ((wi-1 [? - (1-u)v]) / (w - (1-u)v)) +

((1 - (? - (1-u)v)) / (w - (1-u)v))((1-u)v)i-1).                                                                                      (A4)

           Because Equations 3 contains 11 free parameters and the set {?1, ?2, ?3, ?4, ?5, u, v,
z, w, ?, ?} also contains 11 identifiable parameters, to prove that Equation 3’s parameters are identifiable it
is only necessary to find a unique equation for each of its parameters that expresses it as a function of
some of the members of {?1, ?2, ?3, ?4, ?5, u, v, z, w, ?, ?}.  Algebraic analysis of Equations 3 and A1, using
algorithms for analyzing HMMs, yields such a series of 11 equations (A5-A15), each of which proves that
the corresponding parameter of Equation 3 is identifiable.  The complexity of the individual expressions can
be greatly reduced by exhibiting the equations for D3C, D3E, J3C, and J3E first and then using these
parameters as shorthand in the remaining seven equations.  The identifiability equations for D3C, D3E, J3C,
and J3E are:
D3C = (z?4) / (?4+ ?5);                                                                                                                           (A5)
D3E = (u - [((1-v) ?4) / (?4(v-1) - ?5)]) / (1 - [((1-v) ?4) / (?4(v-1) - ?5)]);                                                  (A6)
J3C = (1-z) / [1 - (z?4) / (?4+ ?5)];                                                                                                          (A7)
J3E = (1-v) / ([(v?4) / (?4 + ?5)] - 1).                                                                                                       (A8)

           The forgetting parameter of Equation 3, Rf, can then be shown to be identifiable, as
follows:
Rf = ((?4/?3)(z - D3C)(J3E/z) + J3C - 1) / ((?2/?3)(z - D3C)(J3E/z) - J3C).                                                    (A9)

Next, the identifiability expression for J1 is:
J1 = 1 -  (J3E / (J3E + (1- J3E)(?4/?3)));                                                                                                   (A10)

The identifiability expressions for D1 and R1 are:
D1 = (?1[Rf  + (1- Rf )J3C] - ?2(1- Rf )J3C[D3C/(1-D3C)J3C]) / (Rf  - (1- Rf )J3C);                                        (A11)
R1 = ?2  / ((1-D1)J1 [Rf  + (1- Rf )J3C]).                                                                                                   (A12)
Last, the identifiability expressions for D2, R2, and J2 are:
D2 = (1-w)((? -1)[?X  - K - (1- D1)(1- R1) (1- D2)(1- R2)]) / (?Z - Y - R2(1- R1) + (? -1)[?X  - K -

(1- D1)(1- R1)(1- D2)(1- R2)]);                                                                                                     (A13)
R2 = 1 - (w / (1- D2));                                                                                                                           (A14)
J2 = (?X  - K - (1- R1)(1- R2)) / (D2R2(1- D1)(1- R1));                                                                            (A15)

In A13 and A15, the variables K, X, Y, and Z  are defined as K = R1(1- D1)(1- J1)(1 - D3E (1-J3E), X =
(1- D1)(1- R1) + R1(1- D1)(1- J1), Y = (((R1(1- D1)(1- J1))[D3CJ3C + D3C(1-J3C)]) / ( 1 - (1- D3C)J3C), and Z =
R2(1- D1)(1- R1) + R1(1- D1)(1- J1)[J3E + (1- D3C)J3C].  This completes the identifiability proof for Equation 3.

Parameter Estimation, Goodness of Fit, and Hypothesis Testing

           As Equation 3’s parameter space is identifiable, a likelihood function can be
written from which maximum likelihood estimates of its parameters are obtained from
sample data.  This function is also essential for evaluating goodness of fit and for testing
within- and between-condition statistical hypotheses about the observed values of the
model’s parameters.  Equation 3’s likelihood function is:
L11 = [D1R1 (R1(1- D1)J1(1- Rf )D3CJ3C]) / (1 - (1- D3C)J3C)]N[Q(1)Q(2)] x

        [(1- D1)(1- R1) + (R1(1- D1)(1-J1)( Rf  + (1- Rf )(1- J3E))]N[E
1

(1)E
1

(2)] x

        [(R1(1- D1)(1-J1)(1- Rf )D3CJ3E) / (1 - (1- D3C)J3C)]N[E
1

(1)Q(2)] x

        [(R1(1- D1)(1-J1)(1- Rf )(1-D3C)J3E(1- J3C)) / (1 - (1- D3C)J3C)]N[E
1

(1)S(2)] x



        [R1(1- D1)J1(Rf  + (1- Rf )(1-J3C))]N[S(1)R(2)] x

[(R1(1- D1)J1)(1- Rf )J3C(1- D3C)(1- J3C)) / (1 - (1- D3C)J3C)]N[S(1)S(2)] x

[D3E + ((1- D3E)D3CJ3E) / (1 - (1- D3C)J3C)]N(R,Q) x

[1 - D3E + ((1- D3E)D3CJ3E) / (1 - (1- D3C)J3C)]N(R,R) + N(R,S) x

[(1-J3E)(1 - (1- D3C)J3C) / ((1-J3E)(1 - (1- D3C)J3C) + (1- D3C)(1-J3C)J3E)]N(R,R) x

[1 - (1-J3E)(1 - (1- D3C)J3C) / ((1-J3E)(1 - (1- D3C)J3C) + (1- D3C)(1-J3C)J3E)]N(R,S) x

[1 - (1- D3C)J3C]N(S,R) x [(1- D3C)J3C]N(S,S) x

 j
         ? [(?i)N[E

i
(i)Q(i+1)] x (?i)N[E

i
(i)S(i+1)] x (1 - ?i - ?i) N[E

i
(i) E

i+1
 (i+1)].                                                               (A16)

        I=1

           The exponent of each term in A16 is a data count—specifically, the raw frequency
of one of the data events in A1.  The exponents of the first six terms are just the total
numbers of items that begin in the six possible starting combinations for T1 and T2, and the
exponents of the remaining terms are just the total numbers of items that exhibit the indicated inter- or intra-
state transitions on consecutive recall tests, from T2 onward.  As before, j is the maximum length of the
initial error run, and the ?i and ?i are defined as in A3 and A4.  Once counts from sample data are inserted
for the exponents, A16 produces maximum likelihood estimates of the 11 memory parameters.  This done
is via computer search, using any standard search algorithm, such as EM or SIMPLEX.

           A goodness-of-fit test for A3 is then obtained in the usual way by computing a
likelihood ratio statistic (e.g., cf. Hu, 1998), which compares the a posteriori probability of
sample data under Equation 3, which has 11 degrees of freedom, to the a posteriori probability of the same
data under A1, which has 5 + 2j degrees of freedom.  The exact statistic is twice the negative natural log of
the ratio of A16 to A2:
G2 = -2ln[L11 / L5+2j].                                                                                                                        (A17)
Because the difference in the degrees of freedom in the numerator and in the denominator is large
whenever j ? 5, as it is in the data sets in our corpus (because subjects learned to recall to an errorless
performance criterion), the model in Equation A16 is easy to reject if the data do not closely approximate a
two-stage absorbing Markov process (Brainerd et al., 1990).    

The test statistic G2 has an asymptotic ?2(2j-6) distribution, where 2j - 6 is the difference between
the number of degrees of freedom that are used to estimate L11 versus L5+2j.  Thus, as long as j > 3, the fit
of Equation 3 to sample data can be tested with at least 2 degrees of freedom.  This leads to an important
simplification of the standard criterion-learning design for which Equation 3 is defined, a simplification that
is exploited in the section of the present paper that deals with cognitive impairment:  It is possible to
estimate all of Equation 3’s parameters and test goodness of fit using a fixed-trials design of the form
S1T1T2,S2T3,S3T4 because j > 3.  Although most of the data sets that we analyze involve the criterion-
learning design, we also analyze some data sets that involve the fixed-trials design, in which the subjects
were patients with certain forms of cognitive impairment.

In research, principal interest does not attach to the technical issues of parameter
identifiability, estimation, and fit that have been the focus of this appendix.  Rather,
interest centers on using the direct access, reconstruction, and familiarity judgment
parameters to interpret recall performance.  That, in turn, depends on being able to test
within- and between-condition statistical hypotheses about the parameter values are
estimated for sample data.  As with any mathematical model, the aim of between-
condition tests is to localize treatment effects within particular parameters (thereby
pinpointing the memory processes that are responsible for the effects), whereas the
purpose of within-condition tests is to decide whether one parameter is larger than
another (say, whether D1 > D2 or R1 > D1). Between-condition tests are the more complicated of the
two because they involve three steps.  Consider an arbitrary experiment that contains k different
conditions.  The first step is to compute a conditionwise test that determines whether there is global
statistical evidence that the parameters of Equation 3 differ between those conditions.  The appropriate
statistic is:



G2 = -2ln[L’11 / (L(1)11 x L(2)11 x … x L(k)11)],                                                                                      (A18)
where the denominator contains the values of A17 that are computed for the data of each of the
k conditions, and the numerator contains a single value of A17 that is computed for the pooled data of the
k conditions.  The G2 statistic is asymptotically distributed as ?2[11(k-1)], and it tests the null hypothesis
that Equation 3’s parameters do not vary between the k conditions.   If this null hypothesis is rejected, the
second step is to compute a conditionwise test for any pair of conditions that are of interest—say,
conditions i and j.  This test evaluates the null hypothesis that Equation 3’s parameters do not differ
between conditions i and j.  That test statistic is:
G2 = -2ln[L’’11 / (L(i)11 x L(j)11],                                                                                                             (A19)

where the denominator contains the values of A17 that are computed for conditions i and
j and the numerator contains a value of A17 that is computed for the pooled data of the two conditions.
This statistic is asymptotically distributed as ?2(11).  Last, if this statistic produces a null hypothesis
rejection, parameterwise tests are computed to determine which specific pairs of parameters differ
between conditions i and j.  That test statistic is:
G2 = -2ln[L(?i)11 x L(?j)11]L(?’11 / (L(i)11 x L(j)j11],                                                                                  (A20)

where ? is any one of Equation 3’s parameters, the denominator is the same as the denominator of A19,
and the numerator contains values of A17 for conditions i and j that are computed under the constraint that
? has the same value for both conditions.  This statistic is asymptotically distributed as ?2(1).

Turning to within-condition tests, such tests compare the values of different
parameters within a single condition.  Two tests of this sort are often of interest:  exact
numerical hypotheses and relational hypotheses.  The former stipulate that some
parameters must have predetermined values, such as 0 or 1, whereas the latter stipulate
that some sort of numerical relationship (usually equality or inequality) must hold
between pairs of parameters.  (For instance, a relational hypothesis that figures
prominently in our application of Equation 3 to developmental recall data is that learning
to reconstruct items is easier than learning to directly access them, which generates the
relational hypotheses R1 > D1 and R2 > D2.)  For any condition i, all of these tests use the value of
L(i)11, which is computed in A18, when goodness of fit is evaluated.  The test statistic for within-condition
hypotheses is:
G2 = -2ln[L(i)10 / (L(i)11],                                                                                                                       (A21)

which is asymptotically distributed as ?2(1).  L(i)10 is the likelihood of the data of condition i that is
estimated with one less degree of free than (L(i)11 because an exact or relational hypothesis about
condition i imposes a single restriction on the freedom of Equation 3’s parameters to vary.

           The trichotomous theory assumes that recall involves two distinct retrieval
operations and, therefore, that learning to recall is a two-stage process like that in
Equation 3.  On analogy to the current debate over one- versus two-process
interpretations of recognition, it is possible to compare the fit of the two-stage model
(Equation A17) to the fit of a model that assumes that learning to recall involves only one
stage.  That test is obtained as follows.  First, we define three observable states of recall
data:  Q, R, and S.  The definitions of these states are the same as in Equation A1.  The comparative
model fit test is
G2 = -2ln[L6/L11],                                                                                                                                  (A22)
which is asymptotically distributed as ?2(5).  L11 is the likelihood of the data under the two-stage model, as
computed from Equation A16, and L6 is the likelihood of the same data under the assumption that learning
to recall involves only one stage.  Therefore, the test statistic evaluates the null hypothesis that the one-
and two-stage models fit the data equally well.  The value of L6 is computed from the expression
L6 =   [m + (1 - m)(l - n)pc/(l - (1 - c)p)]N[Q(1)Q(2)] x [ (1 - m)ns(c/(1 - (1 - c)p))]N[R(1)Q(2)] x

        [(1 - m)n(1 - s)]N[R(1)R(2)] x [(1 - m)ns(1 - c)(1 - p)/(1 - (1 - c)p)]N[R(1)S(2)] x [(l - m)(l - n)(l -p)]N[S(1)R(2)] x

        [(l - m)(l - n)p(l - c)(l - p)/(1 - (1 - c)p)]N[S(1)S(2)] x [d + (1 - d)sc/(1 - (1 - c)p)]N(R, Q] x

        [1 - d - (1 - d)sc/(1 - (1 - c)p)]N[R, R] + N[R, S] x

        [(1 - s)(1 - (1 - c)p)/((1 - s)(1 - (1 - c)p) + (1 - c)(1 - p)s)]N[R, R] x



        [1 - (1 - s)(1 - (1 - c)p)/((1 - s)(1 - (1 - c)p) + (1 - c)(l - p)s)]N[R, S] x

        [1 - (1 - c)p]N[S, R] x [(l - c)p]N[S, S],                                                                                                  (A23)

where {c, d, m, n, p, s} is the parameter set of the generic one-stage Markov chain for recall; that is, the
parameter space of the one-stage alternative to Equation 3.  Thus, if the comparative fit test in Equation
A22 produces a null hypothesis rejection, learning to recall involves more than one stage.  If the
comparative fit test in Equation A17 then fails to produce a null hypothesis rejection, learning to recall does
not involve more than two stages.



Appendix B
Description of Data Corpus

The third and fourth sections of this paper focus on lifespan developmental trends in direct access,
reconstruction, and familiarity judgment and on testing theoretical predictions about them.  The reported
findings are derived from a corpus of developmental recall studies.  Although some of the data sets from
these studies are unpublished, the great preponderance of them appeared in a series of articles that have
been published over the past quarter-century.  The published child and adolescent data sets appeared in
articles by Brainerd (1985), Brainerd and Howe (1982), Brainerd, Howe, and Desrocher (1982), Brainerd,
Howe, and Kingma (1982), Brainerd, Howe, Kingma, and Brainerd (1984b), Brainerd, Kingma, and Howe
(1986), Brainerd et al. (1990), Howe, Brainerd, and Kingma (1985a, 1985b), and Howe et al. (1989).  The
published young adult data sets appeared in articles by Brainerd, Howe, and Kingma (1982), Brainerd,
Howe, Kingma, and Brainerd (1984a), Brainerd, Kingma, and Howe (1985), Howe (1988), and Howe and
Hunter (1985, 1986).  The published data sets for older adults appeared in articles by Howe (1988) and
Howe and Hunter (1985, 1986).  As full methodological details may be found in those publications, we
restrict attention here to general features of the procedures, subject samples, and fit analyses of the data
sets in this corpus.

There are a total of 207 data sets in which the subjects learned to recall lists to a
stringent acquisition criterion of one or two errorless tests.  Of these, 183 are published
and 24 are unpublished.  In each data set, subjects from one of four age levels—children
(7-8 years), adolescents (11-12 years), young adults (20-21 years), and healthy older
adults (70-71 years)—learned to recall a list of items via the S1T1T2, S2T3, S3T4, … procedure
over which the identifiable model is defined.  The sizes of the subject samples for the individual data sets
range between 20 and 40.  The corpus is subdivided into 71 data sets in which the subjects were children,
81 data sets in which the subjects were adolescents, 39 data sets in which the subjects were young adults,
and 16 data sets in which the subjects were healthy older adults.  The specific list that subjects learned to
recall consisted of either unrelated pictures (43 data sets), unrelated words (96 data sets), or words that
were exemplars of 1 to 4 familiar categories (68 data sets).  List length varied from 10 to 24 targets.  The
specific learning procedure that was used was either paired-associate recall (68 data sets), cued recall (25
data sets), or free recall (122 data sets).  In all data sets, the learning procedure incorporated standard
short-term memory controls (e.g., buffering activities) between study cycles and recall tests and between
the two recall tests on Trial 1.  Thus, in all the data sets, the subjects first studied a list of targets (unrelated
words, unrelated pictures, categorized words), then performed a brief buffer activity (e.g., 30 sec of letter
shadowing) to empty short-term memory, then responded to the first recall test (free, cued, paired-
associate), then performed another buffer activity, then responded to a second recall test, then studied the
list for a second time, then performed another buffer activity, then responded to a third recall test, and so
until a criterion of errorless performance on the recall test and been reached.

All 207 data sets passed rigorous fit evaluations.  First, the comparative fit test in
Equation A22 was computed.  As we saw, this test evaluates a simpler one-process
model, which assumes that learning to recall involves one stage rather than two.  As we
also saw, this test generates a G2 statistic with an asymptotic ?2(5) distribution.  This test was
computed for all 207 data sets, and in each instance, the hypothesis that recall performance could be
accounted for by a one-process model was rejected at a high level of confidence.  (The modal value of the
G2(5) statistic was more than twice the critical value of 11.07, which is required to reject the one-process
model at the .05 level of confidence.)  Second, the comparative fit test in Equation A17 was computed,
which evaluates the hypothesis that the data were generated by a two-process model that is isomorphic to
Equation 3.  This hypothesis could not be rejected for any of these data sets, and the modal value of the
G2(2j-6) fit statistic was roughly half the value that would be required to reject this hypothesis at the .05
level of confidence.  Third, when the one-process model is rejected (Equation A22) and the two-process
model cannot be rejected (Equation A17), a further type of analysis provides instructive information about
just how closely the data conform to the two-process model in Equation 3.  This follow-up analysis involves
deriving the sampling distributions of learning statistics such as those in Figures 1 and 2 from Equation 3
and then comparing the empirical distributions of these statistics (as they that are observed in individual
data sets) to the corresponding distributions that are predicted by Equation 3.  This allows one to detect
whether, despite global fit results suggesting that learning to recall involves exactly two processes, there



are systematic discrepancies between predicted and observed features of more fined-grained aspects of
the data.  Predicted-observed comparisons of this sort have been conducted for more than half of the
present data sets, and such systematic discrepancies have not been detected.  Thus, the fit analyses of
this corpus converge on the conclusion that the model in Equation 3 provides a very close approximation to
the data of standard recall paradigms.

Repeated-Recall Version of Equation 3
Consider an experiment of the form S1T1T2T3; that is, the study list is presented once, followed by

three recall tests for that list.  For individual items, this design can produce eight distinct performance
outcomes:  C1C2C3, C1C2E3, C1E2C3, C1E2E3, E1C2C3, E1C2E3, E1E2C3, and E1E2E3, where C denotes that
the item is recalled and E denotes that it is not recalled.  It is possible to estimate six of the identifiable
parameters of Equation 3 in this outcome space—namely, D1, R1, Rf, J1, J3C, and J3E.  This is because the
probability of each of the data events can be expressed as a unique function of these parameters, as
follows:
P(C1C2C3) = D1 + (1- D1)R1J1(1- Rf)2(J3C)2;                                                                                         (B1)
P(C1C2E3) = (1- D1)R1J1(1-Rf)J3C[Rf +  (1- Rf)(1- J3C)];                                                                        (B2)  
P(C1E2C3) = (1- D1)R1J1(1-Rf)2(1-J3C)J3EC;                                                                                          (B3)
P(C1E2E3) = (1- D1)R1J1[Rf + (1-Rf)(1-J3C)Rf + (1-Rf)2(1-J3C)(1-J3EC)];                                                 (B4)
P(E1C2C3) = (1- D1)R1(1-J1)(1-Rf)2J3CJ3EC;                                                                                          (B5)
P(E1C2E3) = (1- D1)R1(1-J1)(1-Rf)J3C[Rf +  (1- Rf)(1- J3C)];                                                                  (B6)
P(E1E2C3) = (1- D1)R1(1-J1)(1-Rf)2(1- J3E)J3E;                                                                                      (B7)
P(E1E2E3) = (1- D1)(1-R1)  + (1- D1)R1(1-J1) [Rf + (1-Rf)(1-J3E)Rf + (1-Rf)2(1-J3EC)2].                           (B8)

Estimates of D1, R1, Rf, J1, J3C, and J3E are easily obtained for sample data by minimizing the
following likelihood function, using a computer search program, such as GPT (Hu, 1998):
L6 = [D1 + (1- D1)R1J1(1- Rf)2(J3C)2]N(C
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).                          (B9)

The exponents of the terms in B9 are data counts that correspond to the 8 possible data
events.  Specifically, the exponents are just the total numbers of times that each event is
observed in sample data.  Because six parameters are estimated, the likelihood value in
B9 is computed with six degrees of freedom.  A goodness-of-fit test for B9 is then
obtained in the usual way by computing a likelihood ratio statistic that compares this
value to the likelihood of the same data when all seven observable probabilities are free
to vary.  That test statistic, which is asymptotically distributed as ?2(1), is
G2 = -2ln[L6 / L7],                                                                                                                                 (B10)

where L7 is the likelihood of the data when all 7 observable parameters are free to vary.  Last, within- and
between-condition tests of hypotheses about the parameters can be tested using the procedures that were
described earlier (Appendix A) for the full 11 parameter version of Equation 1.
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Footnotes
                    1Although remember/know judgments are the most common method of separating recollection and
familiarity (see Yonelinas, 2002), there is continuing controversy about whether two memory processes, or
only one, underlie such judgments.  For instance, Donaldson (1996), in his early review of the literature,
proposed a one-process signal detection model in which a more stringent decision criterion is used for
remember judgments than for know judgments.  He found that extant remember/know data were more
consistent with this one-process interpretation than with a dual-process interpretation.  In a recent meta-
analysis, Dunn (2008) pointed out that the dual-process interpretation predicts that if criterion stringency is
held constant, between-condition variability in remember/know judgments will exhibit a bi-dimensional
structure.  Contrary to this interpretation, the meta-analysis provided little or no evidence of bi-
dimensionality.
                    2Recall data present a special case of a general research problem that is known as hidden Markov
models (HMM; see Rabiner, 1989).  In the biological and behavioral sciences, it often happens that the
statistical structure of a target data space (sequences of responses to recall tests in the present case)
exhibits Markovian properties.  In this situation, some HMM is generating the data, but the exact model and
whether its parameters are identifiable in the data space are unknown.  The problem is to find the HMM
and its identifiable parameters.  This can be done by formulating an observable-states process that is
implied by the HMM and then analyzing that process with algorithms that have been developed for this
purpose (e.g., Bordes & Vandekerkhove, 2005).  For instance, this procedure is used in Appendix A to
locate the identifiable parameters of Equation 3.

        3When attempting to identify reliable patterns across many sets of published data in which the same
parameters of memory performance (e.g., signal detection parameters) have been reported, it is common
practice to compute inferential statistics such as t, F, and r (e.g., see Donaldson, 1996).  This practice is
followed throughout the present section of the paper.  In the ANOVAs of parameter values that we report,
data sets are treated as subjects, age is treated as a between-subjects factor, and parameters are treated
as repeated measures factors.  These particular analyses are mixed-model ANOVAs that control for inter-
experiment correlations between the values of different parameters.
                    4The intrusion rate was computed as follows.  First, most intrusions are strong forward associates
of individual words on study lists (e.g., Payne et al.., 1996).  Hence, the first step in determining the
intrusion rate for each list was to find the first forward associates of each list word, using the Nelson,
McEvoy, and Schreiber (1999) norms of word association.  We computed the intrusion probability for each
of these unpresented words using a portion of the data for the corresponding list words.  Specifically, for
each list word, we used the data between the trial of first correct recall and the trial of last error.  If the last
error has not yet occurred, the word cannot yet be directly accessed, and if first success has already
occurred, the word can be reconstructed.  The number of words that meet this criterion on each trial
somewhat underestimates the number words that are being reconstructed because, of course, some words
are still being reconstructed after the last error has occurred.  However, the value of the D3E can be used to
estimate the number words that are still being reconstructed on each trial following the trial of last error.
On each of those trials for each list word, we counted the total number of times that the first associate was
falsely recalled and divided by the number of trials.  We then averaged over all list words to find the overall
intrusion rate.  Only trials between the first correct recall and the last error were used because those are
the only trials on which, according to the theory, reconstruction must be occurring:  (a) Before the first
correct recall, reconstruction may not be occurring because the item may still be in state U, and (b)
reconstruction may not be occurring after the trial of last error because the item may have entered state L.

5Throughout this section, the significance tests that are used to decide whether parameters
differed reliably involved standard likelihood ratio comparisons of parameter estimates for individual
conditions (see Appendix A and Appendix B), rather than ANOVAs of mean parameter values for several
conditions (as in the prior two sections).  Thus, in the present section, whenever parameter values are
described as differing, this means that the relevant likelihood-ratio test produced a null hypothesis rejection
at the .05 level of confidence, and whenever parameter values are described as not differing, this means
that the relevant likelihood-ratio test failed to produce a null hypothesis rejection.



Table 1
Identifiable Parameters of the Trichotomous Model of Memory Development

Identifiable parameter                                                Definition

D1                  For an item that can neither be directly accessed nor reconstructed, D1 is the probability that
subjects learn how to directly access it on Trial 1.

D2                  For an item that can neither be directly accessed nor reconstructed, D2 is the probability that
subjects learn how to directly access it on any trial after Trial 1.

D3C                If an item is reconstructed and is output on any trial, D3C is the probability that it can be
directly accessed on the next trial.  

D3E                 If an item is reconstructed but not output on any trial, D3E is the probability that it can be
directly accessed on the next trial.

R1                  For an item that can be neither directly accessed nor reconstructed, R1 is the probability that
subjects learn how to reconstruct it on Trial 1.

R2                  For an item that can be neither directly accessed nor reconstructed, R2 is the probability that
subjects learn how to reconstruct it on any trial after Trial 1.

J1                   If subjects learn how to reconstruct an item on Trial 1 but not how to directly access it, J1 is
the probability that they are confident enough in the reconstruction to output it.

J2                   If subjects learn how to reconstruct an item but not how to directly access it on any trial after
Trial 1, J2 is the probability that they are confident enough in the reconstruction to output it.

J3C                 If subjects reconstruct an item on any pair of consecutive trials, J3C is the probability that they
will be confident enough to output it on the second trial if they output it on the first trial.

J3EC               If subjects reconstruct an item on any pair of consecutive trials, J3E is the probability that they
will be confident enough to output it on the second trial if they did not output it on the first trial.



Table 2
Parameters of Equation 2 as Functions of the Identifiable Parameters of the Generic Markov Chain for
Recall

Identifiable parameter                  Function of parameters in Equation 2

w                                     (1-D1) (1-R1)
z                                      1 - (1-D3C)J3C

?                                     D1R1 + [((1-D1)R1J1D3C) / (1 - (1-D3C)J3C)]
?                                     ((1-D1)(1-R1) + (1-D1)R1(1-J1)) / [(1 - D1R1 - (1-D1)R1J1D3C) / (1 - (1-D3C)J3C)]
u                                     [D3E + ((1- D3E)D3CJ3E)] / [1 - (1-D3C)J3C]
?                                     [(1-J3E)(1 - (1-D3C)J3C)] / [(1-J3E)(1 - (1-D3C)J3C) + J3E(1-D3C)(1-J3C)]
?                                     [(1-D1)(1-R1)((1-D2)(1-R2) + (1-D2)R2(1-J2) + (1-D1)R1(1-J1)(1-D3E)(1-d)(1- J3E))] /

                                    [(1-D1)(1-R1)  + (1-D1)R1(1-J1)]
?                                     [D2R2(1-D1)(1-R1)(D2 + (1-D2)J2D3Cc) / ((1 - (1-D3C)J3C) + (1-D1)R1(1-J1)(D3CJ3C +

                                    (1-J3C)D3E))] / [R2(1-D1)(1-R1)(1 – (1- D2)(1- J2)) + (1-D1)R1(1-J1)(J3E +
(1- J3E)D3E))]



 Table 3
Bivariate Correlations between Direct Access and Reconstruction in Children, Adolescents, and Young
Adults

                               D1                                                     D2                                               R1                                                      R2

Children

D1                                        1                                .75***                          -.59***                            -.55***
D2                                        .75***                         1                                 -.40**                             -.49***
R1                                        -.59***                        -.40**                         1                                     .79***
R2                                        -.55***                        -.49***                        .79***                              1

Adolescents

D1                                        1                                .44***                          -.37**                             -.26*
D2                                        .44***                         1                                 -.20                                -.56***
R1                                        -.37**                         -.20                             1                                    .47***
R2                                        -.26*                           -.58***                        .47***                             1

Young adults

D1                                        1                                .81***                          .03                                 -.19
D2                                        .81***                         1                                 -.02                                -.53***
R1                                        .03                             -.02                             1                                    .63***
R2                                        -.19                            -.53***                        .63***                              1

***p < .0001; **p < .001; *p < .02



Table 4
 Fit Evaluation of the Fixed-Trials Implementation of the Recall Model

Experiment/Group                                                          Fit statistic

Experiment 1:

        Healthy                                                        G2(4) = 3.55

        Alzheimer’s                                                 G2(4) =  .02

Depression                                               G2(4) = 3.73

Experiment 2:
Test 1: List 1                                             G2(4) = 6.21

Test 1: List 2                                             G2(4) = 5.78

Test 2: List 1                                             G2(4) = 7.22

Test 2:    List 2                                             G2(4) = 8.44

*The critical value of the G2 statistic for rejecting the null hypothesis that the model fits the data is 9.49.



Table 5
Parameter Estimates for Three Groups of Older Adults

                                                                              Group

Parameter                

                                   Healthy                               Alzheimer’s                             Depression

Direct access: state U
D1                                   .39                                       .02                                          .11
D2                                   .38                                       .00                                          .01
Mean                              .39                                       .01                                          .06

Direct access: state P
D3C                                  .56                                      .08                                          .05
D3E                                  .47                                      .01                                           .53
Mean                              .52                                       .05                                          .29

Reconstruction
R1                                   .22                                       .04                                          .31
R2                                   .39                                       .05                                          .17
Mean                              .31                                       .05                                          .24

Familiarity Judgment
J1                                    .62                                      .93                                           1
J2                                    .83                                      1.0                                           .87
J3C                                   .82                                      .71                                          .65
J3E                                   .50                                      .03                                          .63
Mean                              .69                                       .68                                          .79

Note. These results are based on a reanalysis of research that was reported by Howe (1990).



Table 6
Longitudinal Parameter Estimates for a Group of Older Adults

                                                                      Testing session

Parameter                

                                                Initial                                                             Delayed

                             List 1                 List 2                           List 1                    List 2

Direct access: state U
D1                                   .15                     .29                                  .16                         .45
D2                                   .26                     .29                                  .02                         .48

        Mean                                  .21                     .29                                 .09                          .47

Direct access: state P
D3C                                  .50                     .54                                  .56                         .30
D3E                                  .10                     .72                                  .10                         .73
Mean                              .30                     .63                                  .33                         .52

Reconstruction
R1                                   .40                     .41                                  .30                         .17
R2                                   .48                     .51                                  .44                         .13
Mean                              .44                     .46                                  .37                         .15

Familiarity Judgment
J1                                    .85                     .70                                  .94                         .77
J 2                                    .85                    .72                                  1.0                          1.0
J3C                                   .66                    .56                                  .63                          .45
J3E                                   .98                     .88                                 .75                          .81
Mean                              .84                     .72                                  .83                         .76

Note. These results are based on a reanalysis of research that was reported by Howe (1990).



Table 7
Dual-Process Parameter Estimates and Fit Tests for Schizophrenic and Control Subjects

                                                                                       Parameter

Group/Condition   

                      D1                    R1                 Rf              J1                     J3C                   J3C                   MJ              G2(1)

Schizophrenic

    Long
        Free                 .10          .12         .14          .35         .57         .34          .63         0.07

Associative    .00         .07          .07         .72         .79          .73         .75          1.25
Short

Free               .04         .38         .11          .81         .96          .44         .74         0.61
Associative    .10         .08          .12         .65         .82          .51         .66          0.01

MLong                            .05            .10             .11            .54            .68            .54             .59

    MShort                                 .07            .23             .12            .73            .89             .48            .70
MFree                            .07             .25            .13            .58            .77             .39            .58

     MAssoc                     .05            .08            .10            .69             .81            .62            .71

Control
Long

        Free                 .08          .25         .03          .70         .87         .25          .61         3.03
Associative    .09         .06          .37         .52         .48          .83         .61          0.64

Short
        Free                 .23          .31         .07          .77         .98         .52          .76         1.12

Associative    .40         .08          .12         .62         .85          .32         .60          0.28
    MLong                      .09            .16             .20            .61            .68            .55             .61

    MShort                      .32            .20            .10            .70             .92            .42            .68



Table 7—continued

MFree                       .16            .28            .05             .74            .93            .39             .69
MAssoc                     .25             .07            .25            .57            .67             .58            .61

Note.  These results are based on a reanalysis of research that was reported by Korobanova (2008).  The
critical value of the G2(1) statistic to reject the null hypothesis that dual-recall model fits the data is 3.84.



Table 8
Summary of Numerical Predictions about Model Parameters

Predictions                                                        Explanations

Dissociation                    Members of matched pairs of direct access and reconstruction parameters
(D1/R1 and D2/R2) should be singly and doubly dissociated by certain
manipulations and values of pair members should be negatively correlated over
list conditions.

Association                  Members of matched pairs of direct access parameters (D1/D2) and
matched pairs of reconstruction parameters (R1/R2) should be positively correlated
over list conditions.

Ease of learning               Under comparable conditions, learning to reconstruct items ought to be
easier than learning how to directly access them, so that the mean of the
D1/D2 pair ought to be smaller than the mean of the R1/R2 pair.

Repetition dissociation    Because repetition simultaneously increases output interference
and provides additional opportunities for meaning comprehension, it
should doubly dissociate matched pairs of direct access parameters
from matched pairs of reconstruction parameters (D1 > D2 but R1 < R2).

D variability                     Because reconstructive retrieval generates covert presentations of targets, it
should be easier to learn to directly access targets when those targets are
reconstructable (as measured by D3C and D3E) than when they are not (as
measured by D1 and D2).

J variability                      Owing to item selection, items that are neither directly accessible nor
reconstructable (waiting in state U) should be more familiar on average than items
that are reconstructable but not direct accessible (waiting in state P).  Hence, the
average value of J should be greater when items first become reconstructable (as
measured by J1 and J2) than for the subset of those items that are still waiting to
become directly accessible (as measured by J3C and J3E).



Table 8—continued

For items that are waiting in state P, those that subjects recall on earlier trials in
that state should be more familiar than those that they do not recall on earlier trials
in that state (J3C > J3E).



Figure Captions
Figure 1.  Predicted-observed comparisons of recall statistics for the conditions of an adult associative
recall experiment reported by Brainerd, Desrochers, and Howe (1981).  The fitted statistics are the
probability of error runs of different lengths for a target after its first successful recall (Panel A), the
probability of an error for a target on each trial of the experiment (Panel B), and the probability of error runs
of different lengths for a target before its first successful recall (Panel C).
Figure 2.  Predicted-observed comparisons of recall statistics for a free recall experiment reported by
Brainerd, Howe, and Kingma (1982), in which the subjects were elementary school children.  The fitted
statistics are the probability of error runs of different lengths for a target after its first successful recall
(Panel A), the probability of an error for a target on each trial of the experiment (Panel B), and the
probability of error runs of different lengths for a target before its first successful recall (Panel C).
Figure 3.  Global developmental trends in direct access, reconstruction, and familiarity judgment.  Panel A
= developmental trends for children versus adolescents.  Panel B = developmental trends for adolescents
versus young adults.
Figure 4. A signal detection model of familiarity and decision criteria for the judgment parameters of the
recall model.  For reconstructed items, there is a distribution of familiarity values for presented items and a
distribution of familiarity values for unpresented items.  The parameters C and d’ have the usual
interpretations: C is the decision criterion, which determines how high a reconstructed item’s familiarity
value must be before subjects are willing to recall it, and d’ is the difference between the mean familiarity
values of presented and unpresented reconstructions.
Figure 5.  Opposite effects of study-test trial repetition on direct access and reconstruction.  Panel A =
children versus adolescents.  Panel B = adolescents versus young adults.
Figure 6.  Positive association of direct access and reconstruction by age.  Panel A = children versus
adolescents.  Panel B = adolescents versus young adults.
Figure 7.  Trends in direct access over trials of recall experiments.  Panel A = children versus adolescents.
Panel B = adolescents versus young adults.
Figure 8.  Trends in familiarity judgment over trials of recall experiments.  Panel A = children versus
adolescents.  Panel B = adolescents versus young adults.
Figure 9.  Opposite effects of category cuing on direct access and reconstruction in children and
adolescents.  Panel A = effects of category cuing on the four direct access parameters.  Panel B = effects
of category cuing on the two reconstruction parameters.
Figure 10. Dissociative effects of list length on direct access and reconstruction.  Panel A = effects of list
length on the four direct access parameters.  Panel B = effects of list length on the two reconstruction
parameters.
Figure 11.  Parametric results for the recall performance of younger adults and older adults.  Panel A =
global developmental trends in direct access, reconstruction, and judgment.  Panel B = opposite effects of
study-test trial repetition on direct access and reconstruction.  Panel C = trends in direct access over trials
of recall experiments.  Panel D = trends in familiarity judgment over trials of recall experiments.
Figure 12.  Reversed association between the mean of the two reconstruction parameters (R1 and R2) and
the mean of the corresponding direct access parameters (D1 and D2), over the four age levels.


























