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Abstract

Based on recent results obtained by the authors on the inverse scattering

method of the vector nonlinear Schrödinger equation with integrable boundary con-

ditions, we discuss the factorization of the interactions of N -soliton solutions on the

half-line. Using dressing transformations combined with a mirror image technique,

factorization of soliton-soliton and soliton-boundary interactions is proved. We

discover a new object, which we call re�ection map, that satis�es a set-theoretical

re�ection equation which we also introduce. Two classes of solutions for the re�ec-

tion map are constructed. Finally, basic aspects of the theory of the set-theoretical

re�ection equation are introduced.
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1 Introduction

In this article, we consider the Manakov model [1] or more generally the vector nonlinear
Schrödinger equation (VNLS) for the n-component complex-valued vector �eld R(x, t),
in the focusing case,

i
∂R

∂t
+
∂2R

∂x2
+ 2RR†R = 0 , (1.1)

(1.2)

where R†(x, t) is the transpose conjugate of R(x, t), and we restrict it to the half-line
x ≥ 0 by imposing integrable boundary conditions derived in [2]: Robin boundary
conditions

Rx(0, t)− 2αR(0, t) = 0 , α ∈ R , (1.3)

or a mixture or Neumann and Dirichlet boundary conditions

Rj(0, t) = 0 , j ∈ S , (1.4)

Rkx(0, t) = 0 , k ∈ {1, . . . , n} \ S , (1.5)

where S is a subset of {1, . . . , n}. Supplemented with the initial condition R(x, 0) =
R0(x), we therefore consider an integrable initial-boundary value problem1. In [2], the
inverse scattering method valid for the problem on the full line has been suitably adapted
to yield reconstruction formulae for the function R(x, t). In particular, explicit N -soliton
solutions have been obtained. An interesting e�ect has been identi�ed when a soliton
bounces o� the boundary: its polarization can be altered and a redistribution of the
amplitudes of the various components occurs through a process of transmission between
modes. However, a full understanding of the dynamics of the solitons on the half-line is
still lacking and it is the object of this paper to discuss this point.

For the problem on the line, this question has only been studied rather recently in
[4, 5]. The fundamental result is that soliton interactions (or collisions) factorize in the
vector case like in the scalar case. In the scalar case, factorization of soliton interactions
is a well-known and important fact. Roughly speaking, it means that as time evolves
from −∞ to∞, two solitons with given (di�erent) velocities and amplitudes as t→ −∞
will collide and recover their initial properties (velocities, amplitudes, shapes), the e�ect
of the interaction being only position and phase shifts. This fact generalizes to N -soliton
collisions. In this case, the resulting velocities and amplitudes of the solitons as t→∞
is independent of the way the collisions took places. This gives rise to the notion of
factorization of soliton interactions. In the vector case, solitons are speci�ed by their
so-called polarization vectors on top of their velocities and amplitudes, and the property
of factorization now involves these polarizations. It is therefore a highly nontrivial fact
that factorization still holds. In terms of the polarizations, this means that the set

1Of course, initial and boundary values are supposed to be compatible and, to �x ideas, we work in
the space of Schwarz functions which is known to be appropriate for the inverse scattering method, see
e.g. [3]
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of polarization vectors of the solitons obtained as t → ∞ is independent of the way
the collisions between solitons took place but depends only on the initial polarization
vectors.

This property in the vector case is intimately related to the existence of a so-called
Yang-Baxter map which satis�es the set-theoretical Yang-Baxter equation (YBE) as
originally proposed in [6] and studied in more details in [7, 8, 9]. This map describes the
relation between two polarization vectors before and after the collision. The proof of the
factorization property was established using two related but rather di�erent routes in [4]
and [5]. In [4], the �nal result of the inverse scattering method, i.e. the explicit N -soliton
solution, is carefully studied in the limits t→ ±∞ to extract the factorization property
by looking directly at the evolution of the polarization vectors. In [5], the results obtained
originally by Manakov by asymptotic analysis of the inverse scattering method are used
to construct an inductive argument on the number of solitons. Then, this is cast in the
formalism of Yang-Baxter maps and the associated Lax pairs to con�rm factorization
using matrix polynomials refactorization properties. The Yang-Baxter map is realised
in this context by a map acting on pairs of polarization vectors. It is the mathematical
representation of a soliton-soliton interaction.

In essence, the set-theoretical YBE ensures the factorization property. The situation
is analogous to the quantum case where factorization is ensured by the quantum YBE
but we emphasize that the nature of the objects that are involved is fundamentally
di�erent. In fact, the set-theoretical YBE involves maps on cartesian products of sets
and provides a very general framework. The quantum YBE can be seen as a special case
of general theory.

By studying the question of factorization in the presence of a boundary, we discover
a new framework which, jointly with the set-theoretical YBE, ensures the factorization
property on the half-line: the set-theoretical re�ection equation. We also �nd two classes
of solutions for this equation which we call re�ection maps.

The paper is organised as follows. In section 2, we use the formalism of the Riemann-
Hilbert problem and the dressing method [10, 11] to establish Theorem 2.7 which is
the central technical tool in our approach. First, it allows us to rederive the above
factorization property on the line directly at the level of the dressing method. On top
of providing a fresh look and a new proof of the result, this allows us to introduce all
the relevant de�nitions, notations and results needed for our purposes. Then, in section
3, we combine these results with the mirror image technique developed in [2] to prove
the factorization of the soliton-soliton and soliton-boundary interactions. This gives
rise to the introduction of a new object, the re�ection map, which is a map acting on
one polarization vector at a time and is the mathematical representation of the soliton-
boundary interaction. Just like the factorization of soliton-soliton interactions is related
to the set-theoretical YBE, we �nd that the factorization property with a boundary is
related to an equation which we call the set-theoretical re�ection equation. This and the
construction of explicit re�ection maps form the main result of this paper presented in
Theorem 3.3. Section 4 is then devoted to the presentation of a few basic elements of
the theory of set-theoretical RE in an abstract setting. A few technical arguments are
collected in appendices.

It is remarkable that our results complete the formal analogy that exists between
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quantum integrable systems and classical soliton partial di�erential equations. We al-
ready mentioned this analogy at the level of the YBE. Here, our �ndings provide a
further link with the re�ection equation that appears in the theory of quantum inte-
grable systems with boundaries [12, 13]. In the particular case of VNLS, the complete
classi�cation of the solutions of the quantum re�ection equation was obtained in [14].

2 Dressing method, factorization and Yang-Baxter maps

In this section, we �rst review some basic concepts of the inverse scattering method
(ISM) and its relation to the dressing method. The main contribution relies on the
permutability property of dressing transformations which is stated in Theorem 2.7. It
then allows us to provide a new proof of the factorization property for VNLS on the line
and to show the underlying Yang-Baxter structure.

We refer readers to e.g. [3, 15, 16] for more detailed presentations of the ISM, and
to e.g. [17] for a presentation of the dressing method.

2.1 Lax pair formulation

De�ne Q(x, t) as the following (n+ 1)× (n+ 1) matrix-valued �eld

Q(x, t) =

(
0 R(x, t)

−R†(x, t) 0

)
. (2.1)

The VNLS equation (1.1) is the compatibility condition (Φxt = Φtx) of the following
linear problems for the matrix-valued function Φ(x, t, k)2

Φx + ik[Σ3,Φ] = QΦ , (2.2)

Φt + 2ik2[Σ3,Φ] = QT Φ , (2.3)

where

Σ3 =

(
In 0
0 −1

)
, QT = 2kQ− iQx Σ3 − iQ2 Σ3 , (2.4)

In being the n× n identity matrix. Equations (2.2, 2.3) form the Lax pair formulation
for VNLS. One observes that Q satis�es

Q = −Q† , (2.5)

where † denote the transpose conjugate operation. This implies that, Φ(x, t, k) being so-
lution of the Lax pair, Φ†(x, t, k∗) satis�es the same equations as Ψ(x, t, k) ≡ Φ−1(x, t, k)
i.e.

Ψx + ik[Σ3,Ψ] = −ΨQ , (2.6)

Ψt + 2ik2[Σ3,Ψ] = −ΨQT . (2.7)

2From now on, we drop the x, t and k dependence for conciseness unless there is ambiguity.
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We de�ne two Jost solutions X and Y of the Lax pair (2.2, 2.3) satisfying

lim
x→−∞

eiφ(x,t,k) Σ3X(x, t, k)e−iφ(x,t,k) Σ3 =In+1 , k ∈ R , (2.8)

lim
x→∞

eiφ(x,t,k) Σ3Y (x, t, k)e−iφ(x,t,k) Σ3 =In+1 , k ∈ R , (2.9)

where φ(x, t, k) = kx+ 2k2t. They enjoy the following properties

•
detX(x, t, k) = detY (x, t, k) = 1 . (2.10)

• X and Y can be splitted into the following "column" vectors3 form

X = (X+, X−) , Y = (Y −, Y +) , (2.11)

where X+, Y + (resp. X−, Y −) are analytic and bounded in the upper (resp.
lower) half k-complex plane, which are denoted by C+ ( resp. C−).

• X and Y are related by the so-called scattering matrix S(k)

X(x, t, k) = Y (x, t, k)e−iφ(x,t,k)Σ3 S(k) eiφ(x,t,k)Σ3 , k ∈ R , (2.12)

where S(k) can be splitted into block matrices of natural sizes4

S(k) =

(
a+(k) b−(k)
b+(k) a−(k)

)
, (2.13)

where a±(k) allows for analytic continuation into C± respectively.

•
X−1(x, t, k) = X†(x, t, k∗) , Y −1(x, t, k) = Y †(x, t, k∗) , (2.14)

and hence
S(k)−1 = S†(k∗) . (2.15)

In components, we denote

S(k)−1 =

(
c−(k) d−(k)
d+(k) c+(k)

)
. (2.16)

Accordingly, c∓(k) has an analytic continuation into C∓. In particular, one has
the following relations

(a±)†(k∗) = c∓(k) , k ∈ C∓ , (2.17)

det a+(k) = c+(k) , k ∈ C+ . (2.18)

3Here, the left "column" vector is made of the �rst left n columns and the right one is made of the
remaining column. This column vector representation will always be used in the rest of this paper.

4For instance, a+ is an n× n matrix while a− is a scalar.
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For VNLS, there are two equivalent sets of scattering functions {a±(k), b±(k)} and
{c±(k), d±(k)} available to reconstruct R(x, t) in the inverse part of the ISM [16]. In
the rest of this paper, we choose to work with a±(k) and b±(k). The information on the
soliton solutions depends on the analytic structure of a±(k).

A key observation in the development of soliton theory is that the ISM can be cast
into a Riemann-Hilbert problem. The latter o�ers a natural and powerful framework
for the so-called dressing method [10, 11]. In the next subsection, we present general
results about the dressing method before returning to the case of VNLS.

2.2 Riemann-Hilbert problem and dressing method

We mainly follow the presentation of chapter 3 of [17] and begin by stating the main
propositions about the connection between Riemann-Hilbert (RH) problems with zeroes
and the dressing method. We refer readers to [17] for details and in particular for the
proofs of Propositions 2.3 and 2.4 below.

Consider the following matrix RH problem with canonical normalization

J +(k)J −(k) = J (k) , k ∈ R , lim
|k|→∞

J ±(k)→ I , (2.19)

where J (k) is the jump matrix satisfying detJ (k) 6= 0 for k ∈ R. This RH problem
is discussed in some details for instance in section 7.5 of [18]. The matrix J ±(k) is
analytic in C±. This problem has a unique regular solution J ±0 (k) that is a solution
with detJ ±0 (k) 6= 0. In the construction of soliton solutions, the notion of RH problems
with zeroes plays an important role. Although not the most general one (see e.g. [19]),
the following de�nition is su�cient for our purposes.

De�nition 2.1 A matrix M(k) is said singular at k = k0 if detM(k0) = 0 and if in
the neighbourhood of k0

M(k) = M0 + (k − k0)M1 +O(k − k0)2 , M−1(k) =
N0

k − k0

+N1 +O(k − k0) .(2.20)

De�nition 2.2 A RH problem with zeroes at k±j ∈ C±, j = 1, . . . , N is a RH problem
as in (2.19) where J ±(k) is singular at k±j , j = 1, . . . , N .

Then one proves

Proposition 2.3 Fixing the subspaces Vj ≡ Im J +(k)|k=k+j
and Uj ≡ Ker J −(k)|k=k−j

,

j = 1, . . . , N determines uniquely the solution of the RH problem with zeroes at k±j ∈ C±.

In general, there is no known closed-form formula to solve a matrix RH problem.
However, once a regular solution is known, it is possible to construct singular solutions
from it.

Proposition 2.4 Let J ±(k) be the singular solution at k±0 ∈ C± with

ImJ +(k)
∣∣
k=k+0

= V0 , KerJ −(k)
∣∣
k=k−0

= U0 , (2.21)
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and let J ±0 (k) be the solution of the same RH problem regular at k±0 . Then J ±(k) can
be written as

J +(k) = J +
0 (k)(In+1 +

k−0 − k+
0

k − k−0
Π0) , J −(k) = (In+1 +

k+
0 − k−0
k − k+

0

Π0)J −0 (k) . (2.22)

Here Π0 is the projector de�ned by

Ker Π0 =
(
J +

0 (k+
0 )
)−1 V0 , Im Π0 = J −0 (k−0 )U0 . (2.23)

Proposition 2.4 introduces what is called a dressing factor (of degree 1) which transforms
J ±0 (k) regular at k±0 into J ±(k) singular at k±0 . This gives an algorithm to construct
a singular solution J ±(k) at distinct k±j ∈ C±, j = 1, . . . , N from a regular solution

J ±0 (k). Precisely, let k±j ∈ C±, j = 1, . . . , N and the corresponding subspaces Vj, Uj
be given. Use Proposition 2.4 repeatedly to construct J ±(k) singular at k±j recursively
from J ±0 (k) starting from k±1 , k

±
2 up to k±N . Consequently, J ±(k) can be written as

J +(k) =J +
0 (k)

(
In+1 +

k−1 − k+
1

k − k−1
Π1

)
. . .

(
In+1 +

k−N − k
+
N

k − k−N
ΠN

)
, (2.24)

J −(k) =

(
In+1 +

k+
N − k

−
N

k − k+
N

ΠN

)
. . .

(
In+1 +

k+
1 − k−1
k − k+

1

Π1

)
J −0 (k) , (2.25)

where, for j = 1, . . . , N

Ker Πj =

(
J +

0 (k+
j )

(
In+1 +

k−1 − k+
1

k+
j − k−1

Πj−1

)
. . .

(
In+1 +

k−j−1 − k+
j−1

k+
j − k−j−1

Π1

))−1

Vj ,

(2.26)

Im Πj =

(
In+1 +

k+
j−1 − k−j−1

k−j − k+
j−1

Πj−1

)
. . .

(
In+1 +

k+
1 − k−1
k−j − k+

1

Π1

)
J −0 (k−j )Uj . (2.27)

Now comes a simple but fundamental observation which is absent in chapter 3 of [17].
In the above construction, one can iterate Proposition 2.4 by using a di�erent order on
the k±j . Let SN be the permutation group on the set {1, . . . , N} and let σ ∈ SN . Denote
the image of (1, . . . , N) under σ by (σ(1), . . . , σ(N)) and introduce κ±j = k±σ(j). Then,

the subspaces corresponding to κ±j are Vσ(j), Uσ(j). Repeating the previous procedure,
starting from κ±1 up to κ±N , we obtain

J̃ +(k) =J +
0 (k)

(
In+1 +

k−σ(1) − k
+
σ(1)

k − k−σ(1)

Πσ
1

)
. . .

(
In+1 +

k−σ(N) − k
+
σ(N)

k − k−σ(N)

Πσ
N

)
, (2.28)

J̃ −(k) =

(
In+1 +

k+
σ(N) − k

−
σ(N)

k − k+
σ(N)

Πσ
N

)
. . .

(
In+1 +

k+
σ(1) − k

−
σ(1)

k − k+
σ(1)

Πσ
1

)
J −0 (k) , (2.29)
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where, for j = 1, . . . , N

Ker Πσ
j =

(
J +

0 (k+
σ(j))

(
In+1 +

k−σ(1) − k
+
σ(1)

k+
σ(j) − k

−
σ(1)

Πσ
j−1

)
. . .

(
In+1 +

k−σ(j−1) − k
+
σ(j−1)

k+
σ(j) − k

−
σ(j−1)

Πσ
1

))−1

Vσ(j) ,

(2.30)

Im Πσ
j =

(
In+1 +

k+
σ(j−1) − k

−
σ(j−1)

k−σ(j) − k
+
σ(j−1)

Πσ
j−1

)
. . .

(
In+1 +

k+
σ(1) − k

−
σ(1)

k−σ(j) − k
+
σ(1)

Πσ
1

)
J −0 (k−σ(j))Uσ(j) .

(2.31)

It can be checked by direct calculation that Vj = Im J̃ +(k)
∣∣∣
k=k+j

and Uj = Ker J̃ −(k)
∣∣∣
k=k−j

,

j = 1, . . . , N so that Proposition 2.3 implies that J̃ ±(k) = J ±(k). In turn, this implies
that the product of dressing factors in (2.28), (2.29) is equal to the product of dressing
factors in (2.24), (2.25). This construction introduces the notion of dressing factor of
degree N which transforms J ±0 (k) into J ±(k) singular at k±j , j = 1, . . . , N . Proposition
2.3 also ensures that a dressing factor of order N factorises into N dressing factors of
degree 1 and that the order of the factorization is irrelevant. At this stage, we note that
this fact is known in various disguises (e.g. as the Bianchi permutativity property) and
in various context (e.g. in the theory of matrix polynomials) but, to the best of our
knowledge, it has not been presented anywhere in the above fashion. This is why we
formulate it as a theorem below in a form suitable for our purposes.

Remark 2.5 It is important to realize that this does not mean at all that the individual
factors in a dressing factor of degree N commute. Indeed, in general Πσ

j 6= Πσ(j). This
can happen in special circumstances and in that case, the interaction of the solitons is
trivial from the polarization point of view. The important message here is that, in the
factorization of a dressing factor of degree N , the equations governing the projectors are
crucial, in particular the order in which they appear is important. With this in mind,
we introduce a notation that will help us formulate the main theorem of this section and
prove the factorization of soliton interactions in the following sections.

De�nition 2.6 Given J ±0 (k) a regular solution of the RH problem (2.19). Let σ ∈ SN
be given and write (σ(1), . . . , σ(N)) = (i1, . . . , iN). Given k±j and Vj, Uj, j = 1, . . . , N ,
a general dressing factor of degree 1 is de�ned as, for 1 ≤ ` ≤ N ,

Di`,{i1...i`−1}(k) = In+1 +
k−i` − k

+
i`

k − k−i`
Πi`,{i1...i`−1} (2.32)

where

Ker Πi`,{i1...i`−1} =
[
Di1(k

+
i`

) . . . Di`−1,{i1...i`−2})(k
+
i`

)
]−1 (J +

0 (k+
i`

)
)−1 Vi` , (2.33)

Im Πi`,{i1...i`−1} =
[
Di1(k

−
i`

) . . . Di`−1,{i1...i`−2}(k
−
i`

)
]−1 J −0 (k−i` )Ui` . (2.34)

Finally, the dressing factor of degree N is denoted as D1...N(k).
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Note that in the case ` = 1, we denote Di1,{}(k) ≡ Di1(k). This convention will be
adopted in the rest of the paper for any quantity involving sets of indices as subscripts.
With this de�nition and the understanding from the above discussion, we have proved
the following

Theorem 2.7 A dressing factor of degree N can be decomposed into N ! equivalent prod-
ucts of N dressing factors of degree 1

D1...N(k) = Di1(k) . . . DiN ,{i1...iN−1}(k) , (2.35)

where (i1, . . . , iN) is an arbitrary permutation of (1, . . . , N).

In the next subsection we want to use the results of this subsection for a RH problem
arising from a Lax pair formulation. The latter involves the variables x and t so that in
fact, we are dealing with a parameter dependent RH problem of the form

J +(x, t, k)J −(x, t, k) = J (x, t, k) , k ∈ R , lim
|k|→∞

J (x, t, k)→ I . (2.36)

The success of the dressing method is related to the fact that all the results seen in this
subsection go through for this parameter-dependent RH problem provided one works
with (x, t)-dependent subspaces Vj(x, t), Uj(x, t), j = 1, . . . , N (and the associated pro-
jectors) which are simply related to Vj, Uj, j = 1, . . . , N , by

Vj(x, t) = ϕ(x, t, k+
j )Vj , Uj(x, t) = ϕ(x, t, k−j )Uj , (2.37)

where ϕ is a solution of the so-called undressed Lax pair equations5.

2.3 Application to VNLS: reduction

We begin by collecting some known facts that can be gathered for instance from [3, 16,
20]. The scattering system de�ned in (2.12) can be rewritten as the following (x, t)-
dependent RH problem

J+(x, t, k)J−(x, t, k) = J(x, t, k) , k ∈ R , lim
|k|→∞

J±(x, t, k)→ In+1 . (2.38)

This is achieved by de�ning

J+(x, t, k) =

(
a+(k) 0

0 c+(k)

)(
(X+, Y +

)−1
(x, t, k) , J−(x, t, k) =

(
Y −, X−

)
(x, t, k) ,

(2.39)
and

J(x, t, k) = e−iφ(x,t,k)Σ3

(
I b−(k)

d+(k) 1

)
eiφ(x,t,k)Σ3 , k ∈ R . (2.40)

In particular,

det J+(x, t, k) = det a+(k) , det J−(x, t, k) = a−(k) . (2.41)

One then has
5Indeed, ϕ satis�es Uϕ = ϕx, V ϕ = ϕt, with Ut − Vx + [U, V ] = 0 (zero curvature condition). The

Lax pair (2.2, 2.3) is another way to express the zero curvature condition. For VNLS, ϕ is simply
related to Φ which satis�es (2.2, 2.3) by ϕ = Φe−iφ(x,t,k)Σ3 .
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Proposition 2.8 Consider the RH problem de�ned in (2.38). Let J±(x, t, k) be a so-
lution of the Riemann-Hilbert problem, then J+(x, t, k) (resp. J−(x, t, k) ) satis�es the
Lax pair (2.6, 2.7) (resp. (2.2, 2.3)). In particular, J+(x, t, k) gives a uniquely de�ned
Q(x, t) by

Q(x, t) = lim
|k|→∞

−ik[Σ3, J
+(x, t, k)] . (2.42)

(2.42) is called the reconstruction formula for Q(x, t).

Although in general one cannot solve the RH problem explicitely, pure N -soliton
solutions can be derived by using the dressing method. We follow the usual approach
that corresponds to assuming that det a+(k) (resp. a−(k)) has a �nite number N of
simple zeros k+

j ∈ C+ (resp. k−j ∈ C−), j = 1, . . . , N . This means that we can use
the framework of the RH problem with zeroes as described in the previous subsection.
Considering a trivial regular solution of the RH problem (2.38) J±0 (x, t, k) = In+1 which
corresponds to Q(x, t) = 0, one then constructs the corresponding RH problem with
zeroes at k±j , j = 1, . . . , N . The latter enjoys additional properties here due to the
reduction symmetry (2.5). Precisely, (2.17) implies

k+
j = (k−j )∗ ≡ kj ∈ C+ , (2.43)

One also gets

Uj(x, t) = span

{
e−iφ(x,t,k∗j )Σ3

(
βj
−1

)}
, V⊥j (x, t) = Uj(x, t) , (2.44)

where βj is a non-zero vector in Cn and V⊥j represents the orthogonal complement of
Vj. Here βj is the so-called norming constant associated to kj. Note that (2.44) implies
that the projectors involved in the dressing factors are rank-one orthogonal projectors.
So the degree 1 dressing factor reads

Dij ,{i1...ij−1}(x, t, k) = In+1 +
(
fij(k)− 1

)
Πij ,{i1...ij−1}(x, t) , fij(k) =

k − kij
k − k∗ij

, (2.45)

and enjoys the property

D−1
ij ,{i1...ij−1}(x, t, k) = D†ij ,{i1...ij−1}(x, t, k

∗) . (2.46)

De�ning

ζij ,{i1...ij−1}(x, t) = D†i1...ij−1
(x, t, kj)e

−iφ(x,t,k∗j )Σ3

(
βij
−1

)
, (2.47)

one gets

Πij ,{i1...ij−1}(x, t) =
ζij ,{i1...ij−1}ζ

†
ij ,{i1...ij−1}(x, t)

ζ†ij ,{i1...ij−1}ζij ,{i1...ij−1}(x, t)
. (2.48)

In particular, the reconstruction formula (2.42) becomes

Q(x, t) =
N∑
j=1

i(kj − k∗j )[Σ3,Πj,{1,...,j−1}(x, t)] . (2.49)

For later convenience, we introduce the following de�nition.
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De�nition 2.9 Let σ ∈ SN be given and write (σ(1), . . . , σ(N)) = (i1, . . . , iN). De�ne
di1...i`(k), 1 ≤ ` ≤ N , recursively by

di1...i`(k) = di1(k) di2,{i1}(k) . . . di`,{i1...i`−1}(k) , (2.50)

where, for 1 ≤ j ≤ `,

dij ,{i1...ij−1}(k) = In +
(
fij(k)− 1

)
πij ,{i1...ij−1} , (2.51)

πij ,{i1...ij−1} =
ξij ,{i1...ij−1}ξ

†
ij ,{i1...ij−1}

ξ†ij ,{i1...ij−1}ξij ,{i1...ij−1}
, ξij ,{i1...ij−1} = d†{i1...ij−1}(kij)βij , fl(k) =

k − kl
k − k∗l

.

(2.52)

In the pure N -soliton system, one has

a+(k) = di1...iN (k) and det a+(k) =
N∏
j=1

fj(k) , (2.53)

where a+(k) is de�ned in (2.13). The analytic structure of a+(k) is therefore completely
determined by the dressing factor di1...iN (k). Finally, we introduce the matrix Aj by

Aj
det a+(kj)

′ = lim
k→kj

(k − kj)(a+(k))−1 , det a+(kj)
′
=
d det a+(k)

dk

∣∣∣∣
k=kj

. (2.54)

Aj contains the information on the residue of (a+(k))−1 at kj and plays an important
role for the N -soliton solution of VNLS on the half-line [2]. It will be used in section 3.

2.4 Factorization of N-soliton collision and Yang-Baxter maps

We are now ready to discuss the factorization property of N -soliton collisions in the
VNLS equation. This has already been treated in [4, 5] from two di�erent angles. In
[4], the factorization is shown by means of an involved direct computation from the
N -soliton solution. In [5], two-soliton collisions are characterized by means of a Yang-
Baxter map [21]. Although the technical tool is based on asymptotic analyses of the
N -soliton solution in both papers and also in ours, we stress that the di�erence here
is that our approach is based on the dressing method and its important consequence
Theorem 2.7. This ensures that the whole construction of the N -soliton solution is in
fact consistent from the beginning. In a sense, the factorization of soliton collision is
a consequence of this consistency. From this point of view, we have an a priori proof
of factorization whereas the discussions in [4, 5] can be seen as a posteriori checks that
the N -soliton solution obtained with the ISM is consistent. The formulation in terms
of Yang-Baxter maps turns out to be powerful to discuss factorization and provides a
natural interpretation of dressing factors and their properties as we will see below. One
important remark is that strictly speaking, in [5], the map between two polarization
vectors is established from a two-soliton solution and then factorization is discussed
based on this. However, to complete the argument, one has to derive such a map
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between two arbitrary polarization vectors within a full N -soliton solutions. This was in
fact the main motivation for the alternative approach of [4]. Here, we perform this task
directly at the level of the dressing factors using Theorem 2.7. This results in particular
in Lemma 2.14 below.

We now make the discussion more precise. First we need to introduce the general
form of a one-soliton solution characterized by k0 = 1

2
(u0 + iv0), v0 > 0 and β0,

R(x, t) = p0 v0
e−i(u0x+(u20−v20)t)

cosh(v0(x+ 2u0t−∆x0))
≡ p0q0(x, t) , (2.55)

where ∆x0 = ln |β0|
v0

, p0 = β0
|β0| . The unit vector p0 is the polarization of the soliton,

w0 = −2u0 its velocity, v0 its amplitude and ∆x0 is the position of the maximum of the
envelope of the soliton at t = 0. The main feature is that a vector one-soliton is simply
a polarization vector p times a scalar one-soliton solution q(x, t).

Now, consider the N -soliton solution corresponding to

kj =
1

2
(uj + ivj) , vj > 0 , j = 1, . . . , N , (2.56)

with the associated norming constants βj. Let wj = −2uj. Then, the following propo-
sition shows that as t→ ±∞, an N -soliton solution looks like the sum of N one-soliton
solutions up to exponentially vanishing terms.

Proposition 2.10 Suppose without loss of generality that u1 < u2 < . . . < uN . De-
note Rin(x, t) (resp. Rout(x, t)) the asymptotic solution R(x, t) corresponding to t→ −∞
(resp. t→∞). Then,

Rin/out(x, t) =
N∑
j=1

p
in/out
j vj

e−i(ujx+(u2j−v2j )t)

cosh(vj(x− wjt−∆x
in/out
j ))

+O(e−vw̃|t|) . (2.57)

Here v = min
j
vj, w̃ = min

l 6=j
|wl − wj|, ∆x

in/out
j =

ln |βin/outj |
vj

and p
in/out
j =

β
in/out
j

|βin/outj |
with

βinj =

j−1∏
`=1

f`(k
∗
j ) d

†
j+1...N(kj) βj , βoutj =

N∏
`=j+1

f`(k
∗
j ) d

†
1...j−1(kj) βj , (2.58)

where f`(k) and di1...i`(k) are de�ned in Sec. 2.3.

Proof: We follow the idea of the scalar case [3] which is based on the evaluation of the
projectors Πj,{1...j−1}(x, t) as t→ ±∞. To get the result, it is enough to show that R(x, t)
approaches the one-soliton solution following the trajectory of a particular soliton l i.e.
x − w`t = constant, and that it vanishes exponentially for all other directions in the
(x, t)-plane. But here in the vector case, Theorem 2.7 is crucial and allows us to write
the dressing factor in the following form

D1...N = D1 . . . D`−1,{1...`−2}D`+1,{1...`−1} . . . DN,{1...ˆ̀...N−1}D`,{1...ˆ̀...N} , (2.59)
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where the notation {1 . . . ˆ̀. . . j} means that ` is not listed in {1 . . . j}. This means that
D`,{1...ˆ̀...N} is the last dressing factor added. Then, recalling (2.47, 2.48), one obtains for
x− w`t = constant as t→ −∞

D1 . . . DN,{1...ˆ̀...N−1}(x, t, k) =

(
d`+1...N(k) 0

0
∏`−1

j=1 fj(k)

)
+O(e−vw̃|t|) , (2.60)

whereas for all other directions, the same calculation yields O(e−vw̃|t|). Consequently,

ζ`,{1...ˆ̀...N}(x, t) =

(
d†`+1...N(k`) 0

0
∏`−1

j=1 f
∗
j (k`)

)
e−iφ(x,t,k∗` )Σ3

(
β`
−1

)
+O(e−vw̃|t|) , (2.61)

and the reconstruction formula (2.49) implies

Q(x, t) = i(k` − k∗` )

Σ3,
ζ`,{1...ˆ̀...N}ζ

†
`,{1...ˆ̀...N}(x, t)

ζ†
`,{1...ˆ̀...N}ζ`,{1...ˆ̀...N}(x, t)

 . (2.62)

Direct calculation then gives for x− w`t = constant as t→ −∞

R(x, t) = pin` v`
e−i(u`x+(u2`−v

2
` )t)

cosh(v`(x− w`t−∆xin` ))
+O(e−vw̃|t|) , (2.63)

with the various parameters being de�ned in the proposition. The same technique can
be applied as t→∞ to obtain Rout(x, t).

Remark 2.11 The order u1 < · · · < uN means that the relative velocity wj − wj+1 of
two consecutive solitons is always positive. Consequently, as t → −∞, the solitons are
distributed along the x-axis in the order 1, 2, . . . , N . The picture is reversed as t → ∞.
The relative positions of the solitons are therefore completely determined as t→ ±∞.

Remark 2.12 Using Theorem 2.7, we could have performed the proof analogously but
choosing any permutation placing i` at position N hence giving

Di1 . . . Di`−1,{i1...i`−2}Di`,{i1...i`−1} . . . DiN−1,{i1...iN−2}Di`,{i1...iN−1}

instead of (2.59). This corresponds to the possibility that the soliton collisions can occur
in a di�erent order since we do not know their relative positions at an arbitrary time
t. However, the �nal result for β

in/out
j would be the same. This is the essence of the

factorization property. It turns out that this can be made precise by assigning an "in-
termediate time" polarization vector to each soliton and by considering the e�ect of a
two-soliton collision within an N-soliton solution on the assigned polarization vec-
tors. The map between the polarization vectors before and after the two-soliton collision
is a Yang-Baxter map satisfying the set-theoretical Yang-Baxter equation. The mathe-
matical translation of the factorization property of collisions is therefore an associativity
property of the operation on polarization vectors given by the Yang-Baxter map.
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Remark 2.13 The quantity ∆xoutj −∆xinj represents the total position shift incurred by

soliton j through its collisions with the other solitons. The unit vector p
in/out
j represents

the asymptotic polarization vector of soliton j before and after all its collisions with the
other solitons. From the previous remark, these quantities are independent of the order
of soliton collisions. We see that by eliminating βj in (2.58) that βoutj is completely
determined by βinj through the dressing factors. We note that the obtained relations are
di�erent from those obtained in the original paper by Manakov in that they do not call
upon βoutj recursively for j < ` to obtain βout` . The original Manakov's formula made it
extremely di�cult to see the factorization property and in fact led him to conclude that
it did not hold.

To complete the argument and �nish the proof of the claims in the previous remarks,
we de�ne the following "intermediate time" polarization vectors. Let

γij ,{ij+1...iN} =

(
ij−1∏
`=i1

f`(k
∗
ij

)

)
d†ij+1...iN

(kij) βij , , (2.64)

and
pij ,{ij+1...iN} =

γij ,{ij+1...iN}

|γij ,{ij+1...iN}|
. (2.65)

So in particular, pinj = pj,{j+1...N} and poutj = pj,{1...j−1} and they can be pictorially
represented as

t→ −∞

t→∞

p1,{2...N} pj,{j+1...N} pNpl,{l+1...N}.. . . .. . .

.. . . .. . .pN,{1...N−1} pl,{1...l−1} p1pj,{1...j−1}

N -soliton collision

x

We can now formulate the following important lemma.

Lemma 2.14 Choose kj and kl and assume uj < ul. Write for convenience iρ = i1 . . . iq
for some q ∈ {1, . . . , N} such that j and l are not in {i1, . . . , iq}. Then

pl,{j iρ} =
f ∗j (k∗l )

Ξlj

(
In + (f ∗j (k∗l )− 1)pj,{l iρ}(pj,{l iρ})

†)pl,{iρ} , (2.66)

pj,{iρ} =
fl(k

∗
j )

Ξlj

(
In + (fl(k

∗
j )− 1)pl,{iρ}(pl,{iρ})

†)pj,{l iρ} , (2.67)

where

Ξ2
lj = |fj(k∗l )|

2

(
1 +

(
(k∗j − kj)(kl − k∗l )
|kl − kj|2

)
|pjl,{iρ}|2

)
, pjl,{iρ} = p†l,{iρ}pj,{l iρ} . (2.68)
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Proof: From (2.64), we have

γj,{iρ} =
∏

fp(k
∗
j )

p∈{1...N}\{j,iρ}

d†iρ(kj)βj , γj,{l iρ} =
∏

fp(k
∗
j )

p∈{1...N}\{j,l,iρ}

d†l iρ(kj)βj , (2.69)

γl,{iρ} =
∏

fp(k
∗
l )

p∈{1...N}\{l,iρ}

d†iρ(kl)βl , γl,{j iρ} =
∏

fp(k
∗
l )

p∈{1...N}\{l,j,iρ}

d†j iρ(kl)βl . (2.70)

The relation between d†iρ and d
†
jiρ

implies that

γj,{l iρ} = f ∗l (kj)
(
In + (f ∗l (kj)− 1)pl,{iρ}p

†
l,{iρ}

)
γj,{iρ} , (2.71)

γl,{j iρ} = f ∗j (kl)
(
In + (f ∗j (kl)− 1)pj,{iρ}p

†
j,{iρ}

)
γl,{iρ} . (2.72)

Introduce

Ξlj =
|γj,{iρ}|
|γj,{l iρ}|

, (2.73)

we have

Ξ2
lj =

|fl(k∗j )|2

|γj,{l iρ}|2
(
γ†j,{liρ}

(
In + f ∗l (k∗j )pl,{iρ}p

†
l,{iρ}

)(
In + fl(k

∗
j )pl,{iρ}p

†
l,{iρ}

)
γj,{l iρ}

)
,

= |fl(k∗j )|2
(

1 +
(kl − k∗l )(k∗j − kj)
|kl − kj|2

|pjl,{iρ}|2
)
. (2.74)

It is easy to see that Ξlj = Ξjl. Inserting (2.73) into (2.71, 2.72) yields (2.66, 2.67) by
direct calculation.

Remark 2.15 The relations de�ned in Lemma 2.14 have a natural interpretation as an
"intermediate time" pairwise collision between soliton j and soliton l. Since wj > wl
(uj < ul), after a certain number of collisions with other solitons (related to the set
{iρ}), soliton j with polarization pj,{liρ} overtakes soliton l with polarization pl,{iρ} and
acquires polarization pj,{iρ} while soliton l has then polarization pl,{jiρ}. Pictorially, this
can be represented as

pj,{l iρ}

pl,{j iρ}

pl,{iρ}

pj,{iρ}

x

t
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We complete the discussion by rewriting the relations in Lemma 2.14 in terms of the
following map acting on CPn−1×CPn−1 onto itself (so that the normalizations in (2.66),
(2.67) are irrelevant)

R(k1, k2) : (p
(i)
1 ,p

(i)
2 ) 7→ (p

(ii)
1 ,p

(ii)
2 ) , (2.75)

p
(ii)
1 =

(
In +

(
k∗1 − k2

k∗1 − k∗2
− 1

)
p

(i)
2 (p

(i)
2 )†

(p
(i)
2 )†p

(i)
2

)
p

(i)
1 , (2.76)

p
(ii)
2 =

(
In +

(
k2 − k∗1
k2 − k1

− 1

)
p

(i)
1 (p

(i)
1 )†

(p
(i)
1 )†p

(i)
1

)
p

(i)
2 . (2.77)

Then, one �nds that the map R(k1, k2) is a reversible (parametric) Yang-Baxter map
[21] i.e. it satis�es 6

R12(k1, k2)R13(k1, k3)R23(k2, k3) = R23(k2, k3)R13(k1, k3)R12(k1, k2) , (2.78)

and
R21(k2, k1)R(k1, k2) = Id . (2.79)

The rewriting of relations between polarization vectors as a Yang-Baxter map is the basis
of the argument in [5]. We stress however that the crucial di�erence of our approach is
that we obtained the Yang-Baxter map in complete generality for arbitrary polarization
vectors within a full N -soliton solution and not just from the two-soliton solution. This
is similar in spirit to the approach by Tsuchida in [4] but again with the importance
di�erence that here, this was made possible by our a priori derivation of Theorem 2.7
about dressing factors, instead of an a posteriori derivation from the explicit N -soliton
solution. We then recover the following result originally formulated in [4]

Theorem 2.16 An N-soliton collision in the Manakov model can be factorized into a

nonlinear superposition of

(
N
2

)
pairwise collisions in arbitary order.

3 Factorization with an integrable boundary

In this section, we use the main results of [2] and combine them with the previous
construction to discuss factorization of N -soliton solutions of VNLS on the half-line.
The idea is that such a solution can be obtained as the restriction to x > 0 of a 2N -
soliton solution of VNLS on the full line provided that the norming constants and the
poles kj obey suitable mirror symmetry conditions depending on the boundary conditions
(1.3) or (1.4), (1.5).

To �x ideas, consider kj = 1
2
(uj + ivj), vj > 0, j = 1, . . . , 2N and assume that

uj > 0 , for j = 1, . . . , N and u1 < u2 < · · · < uN . (3.1)

6This is introduced properly in section 4.
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This corresponds to the situation where solitons 1 to N are the "real" solitons (on x > 0)
and the solitons N + 1 to 2N are the "mirror" solitons (on x < 0) as t → −∞. The
"real" solitons have negative velocities so they evolve towards the boundary where they
meet their "mirror" solitons which then become the real solitons. The net result when
restricted to x > 0 is that N solitons interact with the boundary and bounce back. This
looks like

2N , 2N − 1 , . . . , N + 1
∣∣∣ 1 , 2 , . . . N , t→ −∞ ,

N , N − 1 , . . . , 1
∣∣∣N + 1 , N + 2 , . . . 2N , t→∞ ,

where the vertical bar represents the boundary. We can now state the results from [2]
in a form convenient for our purposes here.

Proposition 3.1 The N-soliton solution of VNLS on the half-line with boundary con-
ditions (1.3) or (1.4), (1.5) is obtained by the dressing procedure described in Sec. 2.3
based on kj and βj, j = 1, . . . , 2N with kj given by (3.1) for j = 1, . . . , N and the
following constraints

kj+N = −k∗j , βjβ
†
j+N = M(k∗j )Aj+N , for j = 1, . . . , N , (3.2)

where

M(k) =
k − iα
k + iα

In , α ∈ R , (3.3)

or

M(k) =

σ1

. . .

σn

 ,
σj = 1 , j ∈ S ,
σl = −1 , l ∈ {1 . . . n}\S ,

(3.4)

and Aj+N is de�ned in (2.54).

The crux of the matter is to solve for βj+N given βj using (3.2). Indeed, the de�nition
of Aj+N leads to the following expression

Aj+N =
2N∏

i=1,i 6=j+N

(
kj+N − ki
kj+N − k∗i

)(
d†2N,{1...2N−1} . . . d

†
j+N+1,{1...j+N}πj+N,{1...j+N−1}

d†j+N−1,{1...j+N−2} . . . d
†
1

)
(kj+N) , (3.5)

where dij ,{i1...ij−1}(k) was introduced in Def. 2.9. Hence, the equations in (3.2) are
coupled nonlinear equations for the βj's. In Appendix A, we provide an algorithm
to solve them. With the knowledge of all the norming constants, we have access to the
"intermediate-time" polarization vectors which are the basis for the proof of factorization
on the half-line. They enjoy the following property.
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Proposition 3.2 Consider 2N polarization vectors as de�ned in (2.64, 2.65). Let
{i1 . . . iN} be a permutation of {1 . . . N} and {kij , kij+N ; βij , βij+N}j∈{1...N} be the cor-
responding "real" and "mirror" poles and norming constants satisfying

kij+N = −k∗ij , βijβ
†
ij+N

= M(k∗ij)Aij+N . (3.6)

Then the following relations hold

pij+N,{i1...iN i1+N...ij−1+N} = m(kij)pij ,{ij+1...iN} , (3.7)

with the n× n matrix function m(k) de�ned by

m(k) =
h(k)

|h(k)|
In , h(k) =

(
k − iα
k + iα

)
, (3.8)

or

m(k) =

σ1

. . .

σn

 ,
σp = 1 , p ∈ S ,
σq = −1 , q ∈ {1 . . . n}\S .

(3.9)

In particular,

pj+N,{1...N} = m(kj)pj,{1...ĵ...N} . (3.10)

The proof is long and is given in Appendix B. Let us look at these relations from the
soliton collision viewpoint. As t→ −∞, the polarization vectors are ordered as follows
along the x-axis

p2N,{1...2N−1} , p2N−1,{1...2N−2} , . . . ,pN+1,{1...N}

∣∣∣p1,{2...N} , p2,{3...N} , . . . pN , t→ −∞ .

By applying (3.7), this becomes

m(kN)pN , . . . ,m(k2)p2,{3...N} ,m(k1)p1,{2...N}

∣∣∣p1,{2...N} , p2,{3...N} , . . . pN , t→ −∞ .

In fact, (3.7) shows that this picture extends to all "intermediate-time" polarization
vectors. Therefore, any pairwise collision between soliton il and ij, described by the
Yang-Baxter map Rilij(kil , kij), is accompanied by a "simultaneous" pairwise collision
between solitons ij +N and il+N described by Rij+N il+N(kij+N , kil+N), and vice versa.

Consider now the situation evolving from t → −∞. After a certain number of
pairwise collisions, soliton j is next to the boundary and the pairwise collision that takes
place is given by Rj+N j(kj+N , kj). The map Rj+N j(kj+N , kj) is naturally interpreted
as the re�ection map of soliton j on the boundary. After the re�ection, soliton j + N ,
now playing the role of the re�ected soliton j, undergoes general pairwise collisions of
the form Rj+N l(kj+N , kl) with the remaining "real" solitons and Rq+N j+N(kq+N , kj+N)
with the "mirror" solitons that travel faster than it.

We can now de�ne the following re�ection map from CPn−1 × (C \ iR) to itself that
describes the change of the polarization vector of one soliton when it interacts with the
boundary

B : (p, k) 7→ (p̆,−k∗) , (3.11)
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where

p̆ =

(
In +

k − k∗

k + k∗
pp†

p†p

)
m(k)p . (3.12)

Pictorially, this corresponds to

pj,{1...ĵ...N}

Rj+N j(kj+N , kj)

pj+N,{1...ĵ...N}

pj+N,{1...N}

pj,{j+N1...ĵ...N}

→

pj

Bj(kj)

p̆j

For convenience, we introduce a (generalized) parametric notation7 for the re�ection
map: B(k) acting only on vector p. We also de�ne its action on a multiplet of vectors

Bj(kj) : (p1, . . . ,pj, . . . ,pN) 7→ (p1, . . . , p̆j, . . . ,pN) . (3.13)

We can now state the main theorem of this paper which guarantees the factorization
property of the soliton collisions with a boundary.

Theorem 3.3 Consider the Yang-Baxter map Rlj(kl, kj) de�ned in (2.75 - 2.77) and
Bj(kj) in (3.11 - 3.13). Then the following set theoretical (parametric) re�ection equation
holds as an identity of maps on CPn−1 × CPn−1

B1(k1)R21(−k∗2, k1)B2(k2)R12(k1, k2) =

R21(−k∗2,−k∗1)B2(k2)R12(−k∗1, k2)B1(k1) . (3.14)

Moreover, the parametric re�ection map B(k) satis�es the following involutive property

B(−k∗)B(k) = Id . (3.15)

Proof: The involutive property can be found by direct calculation from the de�nition of
the re�ection map. For the set-theoretical re�ection equation, we use the set theoretical
Yang-Baxter equation together with our mirror image picture. Take kj and kj+2 = −k∗j ,
j = 1, 2. Since pairwise collision occurs simultaneously on each side of the boundary,
there are only 2 possible con�gurations of collisions and they are identical using the
Yang-Baxter equation

R31(k1, k3)R32(k3, k2)R41(k4, k1)R42(k4, k2)R43(k4, k3)R12(k1, k2) =

R43(k4, k3)R12(k1, k2)R42(k4, k2)R32(k4, k2)R41(k4, k1)R31(k3, k1) . (3.16)

7This is de�ned properly in section 4.
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Consider now the following sequence of pairwise collisions

R31(k3, k1)R32(k3, k2)R41(k4, k1)R42(k4, k2)R43(k4, k3)R12(k1, k2)(p
(i)
1 ,p

(i)
2 ,p

(i)
3 ,p

(i)
4 )

=R31(k3, k1)R32(k3, k2)R41(k4, k1)R42(k4, k2)(p
(ii)
1 ,p

(ii)
2 ,p

(ii)
3 ,p

(ii)
4 )

=R31(k3, k1)R32(k3, k2)R41(k4, k1)(p
(iii)
1 ,p

(iii)
2 ,p

(iii)
3 ,p

(iii)
4 )

=R31(k3, k1)(p
(iv)
1 ,p

(iv)
2 ,p

(iv)
3 ,p

(iv)
4 )

=(p
(v)
1 ,p

(v)
2 ,p

(v)
3 ,p

(v)
4 ) , (3.17)

with (p
(i)
1 ,p

(i)
2 ,p

(i)
3 ,p

(i)
4 ) being the initial polarization vectors and (p

(v)
1 ,p

(v)
2 ,p

(v)
3 ,p

(v)
4 )

the �nal polarization vectors. Similarly, consider the following sequence of soliton-soliton
and soliton-boundary collisions

B1(k1)R21(−k∗2, k1)B2(k2)R12(k1, k2)(q
(i)
1 ,q

(i)
2 )

=B1(k1)R21(−k∗2, k1)B2(k2)(q
(ii)
1 ,q

(ii)
2 )

=B1(k1)R21(−k∗2, k1)(q
(iii)
1 ,q

(iii)
2 )

=B1(k1)(q
(iv)
1 ,q

(iv)
2 )

=(q
(v)
1 ,q

(v)
2 ) . (3.18)

We claim now that if (q
(i)
1 ,q

(i)
2 ) = (p

(i)
1 ,p

(i)
2 ), then (q

(v)
1 ,q

(v)
2 ) = (p

(v)
3 ,p

(v)
4 ). From (3.17)

and (3.18), we have

p
(ii)
1 =

(
In +

(
k∗2 − k2

k∗1 − k∗2

)
p

(i)
2 (p

(i)
2 )†

(p
(i)
2 )†p

(i)
2

)
p

(i)
1 , (3.19)

q
(ii)
1 =

(
In +

(
k∗2 − k2

k∗1 − k∗2

)
q

(i)
2 (q

(i)
2 )†

(q
(i)
2 )†q

(i)
2

)
q

(i)
1 , (3.20)

p
(iv)
1 =

(
In +

(
k4 − k∗4
k1 − k4

)
p

(iii)
4 (p

(iii)
4 )†

(p
(iii)
4 )†p

(iii)
4

)
p

(iii)
1 , (3.21)

q
(iv)
1 =

(
In +

(
k2 − k∗2
k1 + k∗2

)
q

(iii)
2 (q

(iii)
2 )†

(q
(iii)
2 )†q

(iii)
2

)
q

(iii)
1 , (3.22)

p
(v)
3 =

(
In +

(
k∗1 − k1

k∗3 − k∗1

)
p

(iv)
1 (p

(iv)
1 )†

(p
(iv)
1 )†p

(iv)
1

)
p

(iv)
3 , (3.23)

q
(v)
1 =

(
In +

(
k1 − k∗1
k1 + k∗1

)
q

(iv)
1 (q

(iv)
1 )†

(q
(iv)
1 )†q

(iv)
1

)
m(k1)q

(iv)
1 . (3.24)

First, from (3.19, 3.20) we have p
(ii)
1 = q

(ii)
1 , since p

(i)
j = q

(i)
j , j = 1, 2. Then, we

have p
(iii)
1 = p

(ii)
1 and q

(iii)
1 = q

(ii)
1 . Next, recall that k4 = −k∗2 and p

(ii)
4 = m(k2)p

(ii)
2

so p
(iii)
4 = q

(iii)
2 . (3.21, 3.22) give p

(iv)
1 = q

(iv)
1 . Finally, since k3 = −k∗1 and p

(iv)
3 =
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m(k1)p
(iv)
1 , relations (3.23, 3.24) imply p

(v)
3 = q

(v)
1 . It is easy to check p

(v)
4 = q

(v)
2 as

well. The same argument holds for

R12(k1, k2)R43(k4, k3)R42(k4, k2)R32(k3, k2)R41(k4, k1)R13(k1, k3)(p
(i)
1 ,p

(i)
2 ,p

(i)
3 ,p

(i)
4 ) ,
(3.25)

and

R21(−k∗2,−k∗1)B2(k2)R12(−k∗1, k2)B1(k1)(q
(i)
1 ,q

(i)
2 ) . (3.26)

Since (3.17) is equal to (3.25) by (3.16), then (3.18) is equal to (3.26). (3.15) can be
showed by the same way by considering the unitary property of R12(k1, k2) de�ned in
(4.6) and the proof is complete.
The previous proof amounts to the following diagram

4

4

3

3

1

1

2

2

→← =

1

1

2

2

4

4

3

3

1

1

2

2

1

1

2

2

Note that the Yang-Baxter map (2.75) is invariant under the diagonal action of U(n),
the set of n× n unitary matrices, on CPn−1 × CPn−1 and could therefore be de�ned on
CPn−1×CPn−1/U(n). However, this is not the case in general for the re�ection map 3.11
except when m is proportional to In. In this case, the re�ection map is proportional
to Id when acting on the polarization vectors and thus reduces to the identity map
in CPn−1. Otherwise, in the case 3.9 with S being a proper subset of {1, . . . , N}, the
action of U(n) results in a di�erent re�ection map. This is the mathematical translation
of the physical e�ects seen in [2] on the polarizations when the so-called boundary basis
does not coincide with the polarization basis. Therefore, we have found two classes of
re�ection maps on CPn−1: the identity map and a family parametrized by U(n)

BU(k) : p 7→
(
In +

k − k∗

k + k∗
pp†

p†p

)
U †mU p , (3.27)

where

m = diag(1, . . . , 1,−1 . . . ,−1) . (3.28)
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4 Re�ection maps

Let us now present some basic elements of the theory of re�ection maps. First we recall
some de�nitions of Yang-Baxter maps. Let X be a set and R : X ×X → X ×X a map
from the Cartesian product of X onto itself. De�ne Rij : XN → XN , XN = X×· · ·×X,
as the map acting as R on the ith and jth factors of the N -fold cartesian product XN

and identically on the others. More precisely, if R(x, y) = (f(x, y), g(x, y)), x, y ∈ X,
then

i < j , Rij(x1, . . . , xn) = (x1, . . . , xi−1, f(xi, xj), . . . , g(xi, xj), xj+1, . . . , xn) , (4.1)

i > j , Rij(x1, . . . , xn) = (x1, . . . , xi−1, g(xi, xj), . . . , f(xi, xj), xj+1, . . . , xn) . (4.2)

If Rij satisfy the following Yang-Baxter relation

R12R13R23 = R23R13R12 , (4.3)

then Rij is called a Yang-Baxter map. In particular, for N = 2, R12 ≡ R. Let P be the
permutation map de�ned by P (x, y) = (y, x) and de�ned R21 = PR12P . If, R satis�es

R21R12 = Id , (4.4)

then R is called a reversible Yang-Baxter map.
It is useful to introduce the so-called parametric Yang-Baxter map R12(k1, k2) which

is an important special case obtained by considering X × Y instead of X above, where
Y is the set where k1 and k2 live. It satis�es the parametric YBE

R12(k1, k2)R13(k1, k3)R23(k2, k3) = R23(k2, k3)R13(k1, k3)R12(k1, k2) , (4.5)

and the corresponding reversibility condition reads

R21(k2, k1)R(k1, k2) = Id . (4.6)

We have seen that vector soliton collisions in VNLS provide a solution of such a map.
Before we introduce a general notion of re�ection map, we note that (3.11) requires an
extension of the usual de�nition of parametric maps. In the general acceptance just
given, the notation R12(k1, k2) is a short-hand for

R12 : (x1, k1;x2, k2) 7→ (f(x1, k1;x2, k2), k1; g(x1, k1;x2, k2), k2) , (4.7)

meaning that the action of R on the set Y is trivial. This is not the case for what we
de�ned as a parametric re�ection map in (3.11) where we had something of the form:

B : (x, k) 7→ (h(x, k), σ(k)) , (4.8)

where σ(k) = −k∗ was an involution. De�ning S(x, k) = (x, σ(k)) from X × Y to
X×Y , we can reconcile the usual notion of parametric map with our context by setting
B = SB where B is the parametric map B(x, k) = (h(x, k), k). With this de�nition, the
parametric re�ection equation (3.14) should read in fact

S1B1R21S2B2R12 = R21S2B2R12S1B1 , (4.9)
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as an identity on (X×Y )× (X×Y ). We also note that the Yang-Baxter map discussed
in this paper has the property

S1S2R12S1S2 = R21 . (4.10)

We now introduce the following general de�nition.

De�nition 4.1 Given four Yang-Baxter maps R(j), j = 1, 2, 3, 4, a re�ection map B is
a solution of the set-theoretical re�ection equation

B1R(2)
12 B2R(1)

12 = R(4)
12 B2R(3)

12 B1 , (4.11)

as an identity on X ×X. The re�ection map is called involutive if

BB = Id . (4.12)

Remark 4.2 If we restrict our attention to involutive re�ection maps and reversible
Yang-Baxter maps, the consistency of the previous de�nition is ensured by requiring that
the four Yang-Baxter maps R(j)

12 are related by R(4)
21 = R(2)

21 = R(3)
12 = R(1)

12 . This is
assumed in the rest of the paper.

Allowing for the above extension of the notion of parametric maps, we can de�ne as
a special case of the general de�nition the important class of parametric re�ection maps.

De�nition 4.3 Given the parametric Yang-Baxter map R12(k1, k2), k1, k2 ∈ Y and an
involution σ : Y → Y , a parametric re�ection map B(k) is a solution of the parametric
set-theoretical re�ection equation

B1(k1)R21(k1, σ(k2))B2(k2)R12(k1, k2) = R21(σ(k1), σ(k2))B2(k2)R12(σ(k1), k2)B1(k1)
(4.13)

as an identity on X ×X. The re�ection map is called involutive if

B(σ(k))B(k) = Id . (4.14)

Note that in this paper, we explicitely found classes of solution in the case X = CPn−1,
Y = C∗ and σ(k) = −k∗ with R12(k1, k2) being the Yang-Baxter map corresponding to
VNLS.

We conclude by de�ning the notion of transfer maps in analogy with those introduced
in [21]. Fix N ≥ 2 and de�ne for j = 1, . . . , N the following maps of XN into itself,

Tj = Rj+1j . . .RNjB−j RjN . . .Rjj+1Rjj−1 . . .Rj1B+
j R1j . . .Rj−1j , (4.15)

where B+ is a solution of

B1R21B2R12 = R21B2R12B1 , (4.16)

and B− a solution of

B1R12B2R21 = R12B2R21B1 . (4.17)

Then one proves by direct (but long) calculation the following result
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Proposition 4.4 For any reversible Yang-Baxter map R, the transfer maps (4.15) com-
mute with each other

TjT` = T`Tj , j, ` = 1, . . . , N . (4.18)

It is known that the set-theoretical YBE has important connection with the braid
group (or permutation group in the reversible case) acting on XN [8, 9]. Here the formal
connection of the set-theoretical re�ection equation with the �nite Artin group (or Weyl
group in the involutive case) of type BCN is quite apparent from (4.16). It is therefore
an interesting open question to tackle the construction of general re�ection maps in the
same spirit as the general construction of Yang-Baxter maps in [8, 9]. Another interesting
avenue for further investigation is that of the role of the transfer maps de�ned above
from the point of view of Poisson-Lie groups and integrable dynamics along the lines
described in [22].

Appendices

A Algorithm for the construction of the "mirror" norm-

ing constants

We need to solve the coupled nonlinear equations for the βj' de�ned in (3.2). The key
observation is relying on Theorem 2.7. Let

d1...2N(k) = d1d2,{1} . . . d2N,{1...2N−1}(k) . (A.1)

Recall the de�nition of Aj+N in (2.54). The form of the dressing factor (A.1) leads to
the following expression

Aj+N =
2N∏

i=1,i 6=j+N

(
kj+N − ki
kj+N − k∗i

)(
d−1

2N,{1...2N−1} . . . d
−1
j+N+1,{1...j+N}πj+N,{1...j+N−1}

d−1
j+N−1,{1...j+N−2} . . . d

−1
1

)
(kj+N) , (A.2)

where

dj,{1...j−1}(k) = In +

(
k − kj
k − k∗j

− 1

)
πj,{1...j−1} , (A.3)

πj,{1...j−1} =
ξj,{1...j−1}ξ

†
j,{1...j−1}

ξ†j,{1...j−1}ξj,{1...j−1}
, ξj,{1...j−1} = d†1...j−1(kj)βj . (A.4)

Take j = N . Inserting (A.2, A.3) into (3.2) implies

βN(ξ2N,{1...2N−1})
† = M(k∗N)

2N−1∏
i=1

(
k2N − ki
k2N − k∗i

)
π2N,{1...2N−1} . (A.5)
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De�ne a n-complex vector v2N by

v2N =
ξ2N,{1...2N−1}

|ξ2N,{1...2N−1}|2
=

(
M(k∗N)

2N−1∏
i=1

(
k2N − ki
k2N − k∗i

))−1

βN . (A.6)

Combining (A.5) and (A.6) gives

ξ2N,{1...2N−1} =
v2N

|v2N |2
. (A.7)

With the knowledge of ξ2N,{1...2N−1}, we can thus compute d2N,{1...2N−1}(k). Then take
j = N − 1. From (3.6) and (A.2), we derive

βN−1ξ
†
2N−1,{1...2N−2} =M(k∗N−1)

2N∏
i=1,i 6=2N−1

(
k2N−1 − ki
k2N−1 − k∗i

)
×

d−1
2N,{1...2N−1}(k2N−1) π2N−1,{1...2N−2} . (A.8)

Since d2N,{1...2N−1}(k) is known, de�ne v2N−1 by

v2N−1 =
ξ2N−1,{1...2N−2}

|ξ2N−1,{1...2N−2}|2

=

(
M(k∗N−1)d−1

2N,{1...2N−1}(k2N−1)
2N∏

i=1,i 6=2N−1

(
k2N−1 − ki
k2N−1 − k∗i

))−1

βN−1 . (A.9)

Combining (A.8) and (A.9) gives

ξ2N−1,{1...2N−2} =
v2N−1

|v2N−1|2
. (A.10)

We can indeed compute d2N−1,{1...2N−2}(k). Recursively, taking j = N − 2, N − 3 up
to 1, we are able to obtain ξj+N,{1...j+N−1} and dj+N,{1...j+N−1}, j = 1, . . . , N . Since
{kj, βj}j∈{1...N} are known, we have the full knowledge of dj,{1...j−1}(k), j = 1, . . . , N as
well. Therefore, βj+N can be derived thanks to (A.4).

B Proof of Proposition 3.2

To prove (3.7), we need the mirror symmetry (3.6) and the permutability property of
dressing transformations (Theorem 2.7). To avoid tedious notations (the notations are
already tiresome!), we choose to work with {1 . . . N} instead of {i1 . . . iN}. We need
to keep in mind that {1 . . . N} can be indeed replaced by any permutation of itself
but indexed by the ordered number from 1 to N , by taking j → ij. Regardless of
permutations, the relations (3.6) always hold with respect to the indices. Write d1...2N

in the following form

d1...2N = d1 . . . dN,{1...N−1}dN+1,{1...N} . . . d2N,{1...2N−1} (B.1)
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Taking j = N in (3.6), A2N can be written as

A2N =
2N−1∏
i=1

(
k2N − ki
k2N − k∗i

)
π2N,{1...2N−1} d

−1
1...2N−1(k2N) . (B.2)

Substituting this into (3.6) gives

βNξ
†
2N,{1...2N−1} = M(k∗N)

2N−1∏
i=1

(
k2N − ki
k2N − k∗i

)
π2N,{1...2N−1} . (B.3)

Taking the de�nitions (2.64, 2.65) and the mirror symmetry kj+N = −k∗j , we come to
the following identi�cation

γ2N,{1...2N−1} = ξ2N,{1...2N−1} . (B.4)

γN =
2N−1∏
i=1

(
k2N − ki
k2N − k∗i

)−1

βN . (B.5)

De�ne u2N by

u2N =
ξ2N,{1...2N−1}

|ξ2N,{1...2N−1}|2
= M−1(k∗N) γN . (B.6)

Inserting (B.4 - B.6) into B.3 gives

p2N,{1...2N−1} =
u2N

|u2N |
= m(kN)pN . (B.7)

Then taking j = N − 1, we have

A2N−1 =
2N∏

i=1,i 6=2N−1

(
k2N − ki
k2N − k∗i

)
d−1

2N,{1...2N−1}π2N−1,{1...2N−2} d
−1
1...2N−2(k2N−1) . (B.8)

Substituting this into (3.6) implies

d2N,{1...2N−1}(k2N−1)M−1(k∗N−1)βN−1ξ
†
2N−1,{1...2N−2} =

2N∏
i=1,i 6=2N−1

(
k2N−1 − ki
k2N−1 − k∗i

)
π2N−1,{1...2N−2} .

(B.9)
With (B.7) and kj+N = −k∗j , we derive

d2N,{1...2N−1}(k2N−1)M−1(k∗N−1) =

(
In +

(
k∗2N − k2N

k2N−1 − k∗2N

)
p2N,{1...2N−1}p

†
2N,{1...2N−1}

)
M−1(k∗N−1)

= M−1(k∗N−1)

(
In +

kN − k∗N
k∗N−1 − kN

pNp
†
N

)
= M−1(k∗N−1)d†N(kN−1) . (B.10)
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According to (2.64), it comes to the following identi�cation

γN−1,{N} =
2N∏

p=1,p 6=N
p 6=N−1

(
k∗N−1 − kp
k∗N−1 − k∗p

)
d†N(kN−1) βN−1 , (B.11)

γ2N−1,{1...2N−2} =

(
k∗2N−1 − k2N

k∗2N−1 − k∗2N

)
ξ2N−1,{1...2N−2} . (B.12)

De�ne
u2N−1 =

γ2N−1,{1...2N−2}

|γ2N−1,{1...2N−2}|
= M−1(k∗N−1)γN−1,{N} . (B.13)

Combining (B.9 - B.13) together gives

p2N−1,{1...2N−2} =
u2N−1

|u2N−1|
= m(kN−1)pN−1,{N} . (B.14)

Recursively, taking j = N − 2, N − 3 up to 1, the following relations hold

dq+N,{1...q−1+N}(kj+N)M−1(k∗j ) = M−1(k∗j ) d
†
q,{q+1...N}(kj) , j ≤ q . (B.15)

Then inserting kj+N = −k∗j , γj,{j+1...N} and γj+N,{1...j+N} into (3.6) yields

pj+N,{j...j−1+N} = m(kj)pj,{j+1...N} . (B.16)

By applying the correspondence between {1, . . . , N} and {i1, . . . , iN} with j → ij, we
come to (3.7). Equation (3.10 is obtained in the same way by assuming the following
form of the dressing factor

d1...2N = d1 . . . dj−1,{1...j−2}dj+1,{1...j−1} . . . dN,{1...ĵ...N−1}dj,{1...ĵ...N}dj+N,{1...N}

. . . dj+N−1,{1...j+N−2}dj+N+1,{1...j+N−1} . . . d2N,{1...ĵ+N...2N−1}dj+N,{1...ĵ+N...2N} . (B.17)

This means that dj,{1...ĵ...N} is the last dressing factor added in the product of the �rst
N dressing factors, and d

j+N,{1...ĵ+N...2N} is the last dressing factor added in the product

of the total 2N dressing factors. Then applying (3.7) yields directly (3.10).
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