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Abstract

A feature selection methodology based on a novel Bhattacharyya Space is presented
and illustrated with a texture segmentation problem. The Bhattacharyya Space is
constructed from the Bhattacharyya distances of different measurements extracted
with sub-band filters from training samples. The marginal distributions of the Bhat-
tacharyya Space present a sequence of the most discriminant sub-bands that can
be used as a path for a wrapper algorithm. When this feature selection is used with
a multiresolution classification algorithm on a standard set of texture mosaics, it
produces the lowest misclassification errors reported.

Key words: Feature Selection, Bhattacharyya distance/space, Texture
Segmentation

1 Introduction

The problems of feature selection and texture segmentation have been studied
by pattern recognition, image processing and computer vision researchers for a
number of years and they continue to be of interest due to the wealth of appli-
cations and also the desire to produce accurate results at a low computational
cost.
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Feature selection is a fundamental pre-processing step in any classical pat-
tern recognition problem, and the growth of computer storage and power has
enabled more complex measurements on larger input data which result in cor-
respondingly large numbers of high dimensional features [21,15]. Therefore,
methods that can select appropriate and compact subsets of features are vital
to the accuracy and efficiency of any subsequent classification step.

The feature selection and extraction problem considers the mathematical tools
for reducing the dimensionality of a Measurement Space [16], which is some-
times called Pattern Representation [23] or Feature Space. The problem faced
is that of selecting a feature subset which will reduce the complexity at the
classifier without affecting its performance. The reduced subset can be ob-
tained in two different ways: feature selection or feature extraction. In feature
selection, a set of the original measurements is discarded and the ones that
are selected, which will be the most useful ones, will constitute the Feature
Space. In contrast, the combination of a series of measurements in a linear or
non-linear mapping to a new reduced dimensionality is called feature extrac-
tion. Feature construction [29,26] relies on additional information, which will
not be assumed in the present work, to add new features in order to simplify
hypothesis search.

Ideally, the best way to obtain a reduced feature set is to test every combina-
tion of measurements through the classifier. For Ni measurements, there will
be O(2Ni) different solutions, which yield computations impractical even for
small number of measurements. Branching techniques [23] can obtain opti-
mal solutions but they are still computationally intensive. It is necessary then
to settle for sub-optimal solutions that will not analyse the whole space of
combinations exhaustively. The simplest of these solutions can be placed into
two groups called forward selection, and backward elimination (which are both
particular cases of the plus l - take away r algorithm). In forward selection,
a search begins with an empty set of features, and elements are sequentially
included at a classifier, the selection will depend of an individual best mea-
surement. In backward elimination the starting state is the full set of features,
and measurements are discarded one by one. The process of selection or elimi-
nation continues up to a certain state where an evaluation criterion is satisfied
and a final subset is reached. The selection implies that if each of the elements
of the subset is forwarded sequentially to a classifier, then we expect to im-
prove the classification, but if we were to continue with any other element not
in the subset, then there would be a degradation of the results.

Feature extraction will use all the dimensions of the measurement space and
map it to a lower dimensional space, where the new features will contain the
useful information through a projection that will ignore redundant and irrel-
evant information. Perhaps the most common feature extraction method is
Principal Components Analysis (PCA) where the new features are uncorre-
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lated and these are the projections onto axes that maximise the variances of
the data. As well as making each feature linearly independent, PCA allows the
ranking of features according to the size of the global covariance in each prin-
cipal axis from which a ‘subspace’ of features can be presented to a classifier.
However, while this eigenspace method is effective in many cases, it requires
the computation of all the features for given data. In some of the applications
presented in this work, the measurement space need only be generated for a set
of training samples. These will be used to determine a feature space and then
only the required features are obtained for the whole data set considerably
reducing the computational effort.

Image texture, as well as feature selection, has been well studied in the past
decades and because of its application in many areas such as of Crystallogra-
phy [46], Stratigraphy, [6,36], Medical Imaging, (Magnetic Resonance Imaging
(MRI) [27,41,25], Ultrasound [53] or Computed Tomography (CT) [19,43]), or
content-based image retrieval [28] continues to be of interest and many papers
on texture extraction, segmentation and classification are still published every
year. In some cases, texture has been analysed not only in 2D but also in
3D [2,38,39].

Many different approaches for 2D texture measurement generation, classifica-
tion and segmentation have been reported, for example: [33,37,47,50]. One of
the most common approaches of 2D image texture description is the use of
Haralick’s co-occurrence analysis, first published in the 1970s [18,17] and still
widely used today. Cross and Jain [9] and Chellapa and Jain [7] reported with
some success on statistical approaches using Markov Random Fields for the
modelling of texture. Jain and Farrokhnia [20] observed the spectral energy
of textures with Gabor filters. Since texture can be scale dependent, wavelets
and other multiresolution techniques have been widely used by Unser [48] and
others [3,51,49,42]. In a recent and thorough study, Randen and Husøy [35]
have compared different filter-based approaches against a set of natural tex-
tures from the classical Brodatz Album [4] and other databases [44,32]. The
composite images contain different natural textures that were captured un-
der different illumination conditions and with different equipment, but were
selected to be visually stationary. Each texture has been globally histogram
equalised and they have the same mean value so that they spread the same
range of grey levels. Some of the masks that were used to form these im-
ages contain triangular and circular shapes which are harder to segment than
squares or rectangles. Randen’s images, which are fairly hard to classify even
by eye, are becoming a benchmark for assessing different segmentation algo-
rithms, [30,31,33].

The nine texture images segmented in this work correspond to figure 11 in [35]
and are presented in figure 1. Figures (a) to (e) consist of 5 different textures in
images with size 256×256 pixels, (f) and (g) have 16 textures and are 512×512
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pixels, (h) and (i) have 10 textures and 640× 256 pixels. In their study, Ran-
den and Husøy show that filtering methods outperform co-occurrence texture
measures but vary in their computational cost, number, type and decompo-
sition of features used and ease of implementation with best overall results
being obtained by multiresolution wavelet and quadrature-mirror filters.

The rest of the paper is organised as follows. In section 2 the measurement
space is generated by sub-band filtering with and an Orientation Pyramid
(OP). Two classification strategies are then presented. First, a single resolu-
tion to compare the quality of the measurement space with those presented by
Randen, and then a multiresolution algorithm that can easily outperform the
single resolution. Section 3 introduces the Bhattacharyya distances and the
presents the novel Bhattacharyya space as the basis of a feature selection al-
gorithm and further improvements are demonstrated. Section 4 presents com-
parative results on 9 multitextured images. Finally conclusions are presented.

2 Methodology

2.1 Feature Extraction: Sub-band filtering using an Orientation Pyramid (OP)

Certain characteristics of signals in the spatial domain such as periodicity
are quite distinctive in the frequency or Fourier domain. If the data contain
textures that vary in orientation and frequency, then certain filter sub-bands
will contain more energy than others.

Wilson and Spann [52] proposed a set of operations that subdivide the fre-
quency domain of an image into smaller regions by the use of two operators
quadrant and centre-surround. By combining these operators, it is possible to
construct different tessellations of the space, one of which is the Orientation
Pyramid (OP) (Figure 2). A band-limited filter based on truncated Gaussians
is used to approximate the finite prolate spheroidal sequences used in [52]. The
filters are real functions which cover the Fourier half-plane. Since the Fourier
transform of a real signal is symmetric, it is only necessary to use a half-plane
or a half-volume to measure sub-band energies. A description of the sub-band
filtering with the OP method follows.

Throughout this work, we will consider an image, I, represented as a function
that assigns a grey tone to each pair of co-ordinates [18]:

Lr × Lc; I : Lr × Lc → G, (1)

where Nr×Nc are the dimensions of rows and columns, Lr = {1, 2, . . . , r, . . . , Nr},
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 1. Composite texture images arranged by Randen and Husøy [35].

Lc = {1, 2, . . . , c, . . . , Nc} are the spatial domains of each dimension, Lr×Lc is
the domain of image, and G = {1, 2, . . . , g, . . .Ng} is the set of Ng grey levels;
the co-domain of the image.
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The centred Fourier transform of I, Iω = F [I], can be subdivided into a set
of i non-overlapping regions Li

r × Li
c of dimensions N i

r, N
i
c. The OP tessella-

tion involves a set of 7 filters, one for the low pass region and six for the high
pass (Figure 2 (a)). The i-th filter F i

ω in the Fourier domain (F i
ω = F [F i]) is

related to the i-th subdivision of the frequency domain as:

Lr × Lc; F
i
ω :











Li
r × Li

c → Ga(µ
i, Σi),

(Li
r × Li

c)
c → 0

∀i ∈ OP,

where Ga describes a Gaussian function, with parameters µi, the centre of the
region i, and Σi is the co-variance matrix that will provide a cut-off of 0.5 at
the limit of the band. The measurement space S in its frequency and spatial
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(a) (b) (c) (d)

Fig. 2. Orientation Pyramid (OP) tessellation: (a) order 1, (b) order 2. Band-limited
2D Gaussian filter: (c) Frequency domain |F i

ω|, (d) Magnitude of spatial domain |F i|.

domains is then defined as:

Si
w(ρ, κ)= F i

ω(ρ, κ) Iω(ρ, κ)

Si = |F−1[Si
ω]|, (2)

where (ρ, κ) are the co-ordinates in the Fourier domain. The OP can be further
subdivided, at the next level the coordinates (L1

r(1) × L1
c(1)) will become

(Lr(2) × Lc(2)) with dimensions Nr(2) = Nr(1)
2

, Nc(2) = Nc(1)
2

. (Figure 2
(b)). More levels can be obtained provided that the image has the required
dimensions. It is assumed that Nr(1) = 2a, Nc(1) = 2b so that the results of
the divisions are always integer values. To illustrate the OP on a textured
image, one of Randen’s images is filtered and presented in Figure 3.

2.2 Classification of the Measurement Space

Partitioning of the measurement space can be considered as a mapping oper-
ator λ : S → {1, 2, . . . , Nk}, where the clusters or classes are λ−1(1), λ−1(2),
etc., and these are unknown. Then, for every element x ∈ S, λa will be an esti-
mator for λ where, for every class, there is a point {a1, a2, . . .} ∈ S such that
these points define hyperplanes perpendicular to the chords connecting them,

6



F F F

Fig. 3. A graphical example of sub-band filtering. The top row corresponds to the
spatial domain and the bottom row the Fourier domain. A 16-texture (figure 1
(f)) is filtered with a sub-band filter with a particular frequency and orientation
by a product in the Fourier domain, which is equivalent to a convolution in the
spatial domain. The filtered image becomes one measurement of the space, S 2 in
this example.

and split the space into regions {R1, R2, . . .}. These regions define the mapping
function λa : S → {1, 2 . . . , Nk} by λa(x) = K if x ∈ RK, K = 1, 2, ..., NK.
This partitioning should minimise the Euclidean distance from the elements
of the space to the points a, expressed by [11]:

ρ(a1, a2, . . .) =
∑

x∈(Lr×Lc)

min
1≤j≤Nk

||S(x)− aj||. (3)

The measure of closeness of the estimator λa to λ defines a misclassification
error by ε[λa] = P (λa(x) 6= λ(x)), for an arbitrary point x ∈ S in the space.

If the values of the points ak are known, or there is a way of estimating these
from training data, the classification procedure is supervised, otherwise it is
unsupervised. For this work, the points in the measurement space ak were ob-
tained by filtering separate training data with the OP. Once the measurement
space S is calculated for every training image, the average can be used as an
estimate of the mean of the class: âk.

Table 1 compares the results of the sub-band filtering with 35 measurements
(order 5 of the OP) and a 13× 13 Gaussian local energy function (LEF) (for
more details of the effect of the LEF, see [38]) with different measurement
extraction techniques. These results confirm that sub-band filtering with an
OP can extract textural measurements that are as good as those presented by
Randen.
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Table 1
Comparative misclassification results (%) of the natural textures (Table 3 in [35])
and OP sub-band filtering. Best results are in bold.

Misclassification (%) Figures

Measurement a b c d e f g h i Average

Laws 9.7 25.7 32.4 27.3 25.7 48.3 54.3 41.9 37.8 33.68
Ring/Wedge 14.6 35.5 28.9 35.5 22.4 43.8 67.8 44.5 48.3 37.92
Dyadic Gabor 10.7 34.8 22.6 25.2 24.6 60.1 58.2 32.3 47.9 35.16
Gabor Banks 8.2 34.0 25.8 36.9 28.4 54.8 71.5 39.7 54.8 39.34
DCT 13.2 27.0 25.5 37.8 22.6 40.9 49.0 38.2 33.0 31.91
Daubechies 4 8.7 22.8 25.0 23.4 21.8 38.2 45.2 40.9 30.1 28.46
f16b 8.7 18.9 23.3 18.4 17.2 36.4 41.7 39.8 28.5 25.88

Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.69
AR 19.6 19.4 23.0 23.9 34.0 58.0 46.4 56.7 28.7 34.41
Average 11.5 27.2 25.9 31.1 24.7 47.8 54.4 41.0 39.8 33.71

OP 9.0 31.7 20.6 20.7 17.2 32.7 49.5 27.9 39.5 27.6

2.3 Multiresolution Classification

A multiresolution classification strategy can exploit the inherent multiscale
nature of texture and better results can be achieved. The multiresolution pro-
cedure consists of three main stages: climb, decide and descend.

The climbing stage represents the decrease in resolution of the data by means
of averaging a set of neighbours on one level (children elements or nodes) up to
a parent element on the upper level. Two common climbing methods are the
Gaussian Pyramid [5] and the Quad tree QT ([14,40,45]). In our implemen-
tation we used the QT structure. The decrease in resolution correspondingly
reduces the uncertainty in the elements’ values since they tend toward their
mean. In contrast, the positional uncertainty increases at each level [52].

At the highest level, the new reduced space can be classified either in a super-
vised or unsupervised scheme as it was described before.

To regain full spatial resolution at the lowest level of the tree, the classifica-
tion at the highest level has to be propagated downward. The propagation
implies that every parent bequeaths: (a) its class value to 4 children and; (b)
the attribute of being or not being in a boundary. As the classification is prop-
agated, a spatial restoration process can be performed at every level to reduce
the uncertainty in the spatial position. This typically implies an interaction
of an element with its neighbours to eliminate isolated pixels and a selective
smoothing can be performed with butterfly filters. Butterfly filters (BF ) [42]
are orientation-adaptive filters, that consist of two separate sets or wings with
a pivot element between them. It is the pivot element x = (r, c) which is
modified as a result of the filtering. Each of the wings will have a roughly
triangular shape, which resembles a butterfly and they can be regarded as two
separate sets of anisotropic cliques, arranged in a steerable orientation. The
elements covered by each of the wings are included in the filtering process
while the values of the elements along the boundary (which are presumed to
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have greater uncertainty) and the pivot, x, are not included in the smoothing
process. The use of BF outperforms other multiresolution schemes such as
Markov Random Fields and they can be extended to 3D [38].

3 Feature Selection using the Bhattacharyya space

In the previous section, a measurement space was generated by sub-band fil-
tering the textured images. This space will consist of a number of dimen-
sions, which could equally be generated by Gabor filters, features of the co-
occurrence matrix or wavelets, and not all the dimensions will contribute to
the discrimination of the different textures that compose the original data.
Besides the discrimination power that some features have, there is also a com-
plexity issue related to the number of features selected. Another advantage of
selecting a subset of features is that they can provide a better understanding
of the underlying process that generated the data [15].

One of the most common methods [10] of forward selection is the wrapper
approach [24]. This approach uses the error rate of a classifier itself as the
criterion to evaluate the features selected, it proposes greedy selection, either
as hill climbing, or best first as search algorithms and treats the measurements
as a search space organisation, a representation where each state represents
a measurement subset. For Ni measurements, there are Ni bits in each state
indicating the presence (1) or absence (0) of the measurement. The state
{0, 0, . . . , 0}, the empty set will be the initial state for forward selection, and
{1, 1, . . . , 1} will describe the whole measurement space (initial state for back-
ward elimination). Figure 4 shows a 4-measurement state space where forward
and backward selection processes have been identified. Each of the links will
represent a single measurement added (continuous line) or deleted (dashed
line).

The process of wrapper selection with a hill climbing search follows the se-
quence:

(1) Start with an empty set of features v ← {0, 0, . . . , 0}.
(2) Expand v: generate new states by adding a single feature from v. In

the example of Figure 4 (a) the children of v are {1, 0, 0, 0}, {0, 1, 0, 0},
{0, 0, 1, 0}, {0, 0, 0, 1}.

(3) Apply the evaluation function λ (that is, the classifier) to each child w

of v.
(4) Let v′ = the child with the highest evaluation λ(w).
(5) If λ(v′) > λ(v) then v ← v′ and go to 2, else finish with v as a final

subset.

9



The previous algorithm is the basic presentation and it can easily be varied;
for example, different ways of expanding v rather than just considering every
child can be used. It is important to bear in mind two issues: one is that hill
climbing can lead to local optima, and the other is that the strength of the
algorithm, the use of the classifier in the selection process instead of other
evaluation functions, is at the same time its weakness, since the classification
process can be slow.

0,0,0,0

1,1,1,1

0,0,1,0 0,0,0,11,0,0,0 0,1,0,0

1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,0,1,10,1,0,1

1,1,1,0 1,1,0,1 0,1,1,11,0,1,1

0,0,0,0

1,1,1,1

0,0,1,0 0,0,0,11,0,0,0 0,1,0,0

1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,0,1,10,1,0,1

1,1,1,0 1,1,0,1 0,1,1,11,0,1,1

(a) (b)

Fig. 4. State Space for sequential selection. Each node is connected to nodes that
have one measurement added or deleted (a) Forward selection (b) Backward selec-
tion.

One way to avoid the evaluation of each child of the current state will be pro-
posed below. The Bhattacharyya Space is presented as a method that provides
a ranking for the measurements based on the discrimination of a training set.
This ranking process provides a single route to evaluate and therefore, the
number of classifications, which will still be done for every feature added to
the classifier, is significantly reduced. Since this method a pre-processing step,
and is calculated over training data (of small size compared to the whole
data set), a heuristic solution to avoid being trapped by local optima is also
proposed.

3.1 The Bhattacharyya distance

In order to obtain a quantitative measure of how separable are two classes, a
distance measure is required. With the assumption of underlying distributions
a probabilistic distance a distance can be easily extracted from some parame-
ters of the data. Kailath [22] compared the Bhattacharyya Distance and the
Divergence (Kullback-Leibler), and observed that Bhattacharyya yields bet-
ter results in some cases while in other cases they are equivalent. In a recent
study [1], a number of measures; Bhattacharyya, Euclidean, Kullback-Leibler,
Fisher, have been studied for image discrimination and it was concluded that
the Bhattacharyya distance [13] is the most effective texture discrimination
for sub-band filtering schemes.
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In its simplest formulation, the Bhattacharyya distance between two classes
can be calculated from the variance and mean of each class in the following
way [8]:

DB(k1, k2) =
1

4
ln

{

1

4
(
σ2

k1

σ2
k2

+
σ2

k2

σ2
k1

+ 2)

}

+
1

4

{

(µk1
− µk2

)2

σ2
k1

+ σ2
k2

}

(4)

where: DB(k1, k2) is the Bhattacharyya distance between k1 − th and k2 − th

classes, σk1
is the variance of the k1 − th class, µk1

is the mean of the k1 − th

class, and k1, k2 are two different training classes.

For the multidimensional distance, the variances are replaced by co-variance
matrices and the means become vectors [13]:

DB(k1, k2) =
1

2
ln





|1
2
(Σk1

+ Σk2
)|

√

|Σk2
||Σk1

|



+
1

4
(µk1
−µk2

)T [Σk1
+Σk2

]−1(µk1
−µk2

) (5)

The Mahalanobis distance used in Fisher LDA is a particular case of the Bhat-
tacharyya, when the variances of the two classes are equal, this would eliminate
the first term of the distance. This term depends solely of the variances of the
distribution. If the variances are equal this term will be zero, and it will grow
as the variances are different. The second term, on the other hand will be zero
if the means are equal and is inversely proportional to the variances. Figure 5
represents these two cases. The assumption of normality can be a critical issue
if there is no knowledge of the distributions. Nevertheless, the discrimination
power can still be exploited.

µ1 µ2 µ2µ1

Fig. 5. Bhattacharyya distance cases (a) different means with similar variances (b)
Similar means, different variances.

3.2 Bhattacharyya Space

The Bhattacharyya space, BIP (i, p), is defined as:
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Lp × Li; BIP (i, p) : Lp × Li → DB(Si
k1

, Si
k2

). (6)

where each class pair, p, between classes k1, k2 at measurement i will have a
Bhattacharyya distance DB(Si

k1
, Si

k2
), and will produce a Bhattacharyya space

of dimensions Np = (Nk

2 ) and Ni = 7o : Np × Ni where o is the order of the
OP and Nk the number of classes. The domains of the Bhattacharyya space
are Li = {1, 2, . . . 7o} and Lp = {(1, 2), (1, 3), . . . (k1, k2), . . . (Nk − 1, Nk)}.

The Bhattacharyya Space is a bivariate state from which two marginal distri-
butions can be extracted:

BI(i) =
Np
∑

p=1

BIP (i, p) =
Np
∑

p=1

DB(Si
k1

, Si
k2

), i = 1, . . . , Ni (7)

BP (p) =
Ni
∑

i=1

BIP (i, p) =
Ni
∑

i=1

DB(Si
k1

, Si
k2

), p = 1, . . . , Np. (8)

The marginal over the class pairs, BI(i) sums the Bhattacharyya distance
of every pair of a certain feature and thus will indicate how discriminant
a certain sub-band OP filter is over the whole combination of class pairs.
The marginal BP (p) sums the Bhattacharyya distance for a particular pair
of classes over the whole measurement space and reveals the discrimination
potential of particular pairs of classes when multiple classes are present.

To visualise the previous distribution, the Bhattacharyya Space and its two
marginal distributions were obtained for figure 1 (f). Figure 6 shows: (a)
BIP (i, p), (b) BI(i) and (c) BP (p). These graphs yield useful information to-
ward the selection of the features for classification. The most discriminant
features for the training data presented are S19,18,11,.... A certain periodicity is
revealed in the following dimensions of the measurement space; 1, 7, 14, 21, 28,
which have the lowest values (this is clearer in the marginal BI(i)). These
measurements correspond to low pass filters of the OP. Since the textures
that make up this mosaic have been deliberately histogram equalised, the low
pass features provide the lowest discrimination power.

The marginal BP (p), where the index of p correspond to the pairs Lp =
{(1, 2), (1, 3), . . . (k1, k2), . . . (Nk − 1, Nk)}, can be useful to identify certain
pairs of textures which are difficult to segment.
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Fig. 6. (a) The Bhattacharyya Space BIP (i, p) for the Natural Textures image and its
corresponding marginals (b) BI(i), (c) BP (p). The index of Class Pairs correspond
to the pairs Lp = {(1, 2), (1, 3), . . . (k1, k2), . . . (Nk − 1, Nk)}.

3.3 Order Statistics for Feature Ranking

If the marginal BI(i) = {BI(1), BI(2), . . . BI(7o)}, is sorted in increasing or-
der, its order statistic will be:

B(I)(i) = {B(I)(1), B(I)(2), . . . B(I)(7o)}, (9)

B(I)(1) ≤ B(I)(2) ≤ . . . ≤ B(I)(7o).

where max
i (BI(i)) = B(I)(7o),

min
i (BI(i)) = B(I)(1) and BI(i) = B(I)(j). The

domain Lj = {. . . , j, . . .} provides a particular route for the state space search.
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In other words, a re-ordering of the elements of Measurement space S i before
being sequentially provided to the classifier. The dimensions of the set remain
the same as of the measurement space: Nj = Ni.

Figure 8 exemplifies this for a 4-measurement state space. It is important to
mention two aspects of this selection process. First, the Bhattacharyya space is
constructed on training data. Second, the individual Bhattacharyya distances
are calculated between pairs of classes. As a result of these two aspects, there
is no guarantee that the feature selected will improve the classification of the
whole data space, they can be mutually redundant or may only improve the
classification for a pair of classes but not the overall classification [23].

Thus the conjecture to be tested then is whether the classification can be
improved in a best-first, sequential selection defined by the Bhattacharyya
space order statistics. The natural textures image was classified with several
sequential selection strategies:

• Following the unsorted order of the measurement space: S1, S2, S3 etc.
• Following the marginal B(I)(i) in decreasing order: S19, S18, S11 etc.
• Following the marginal B(I)(i) in increasing order: S28, S21, S15 etc. (The

converse conjecture is that the reverse order should provide the worst path
for the classification.)
• Three random permutations.
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Fig. 7. Misclassification error for the sequential inclusion of features to the classifier
for the figure 1 (f).

The sequential misclassification results of the previous strategies are presented
in Figure 7 where the advantage of the route provided by the B(I)(i) can be
seen.

Although the Bhattacharyya space appears to be the best result, there are
some features that when included increase the misclassification. A heuristic
method is proposed to overcome this problem. If the whole state space is
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1,1,1,0 1,1,0,1 0,1,1,1

Fig. 8. State Space for sequential selection following the route determined from the
Bhattacharyya Space .

traversed up to the state {1, 1, . . . , 1}, a misclassification graph will show which
the particular effect to the misclassification (positive/negative) of each feature
when included in the classifier. From the graph shown in figure 7 It can be
seen that most of the features contribute positively to the classification with
the exception of B(I)(14, 30), and the last five features B(I)(31− 35) leave the
classification unchanged. These features can be removed from the classification
procedure:

Sj ∈ v if λ(S1, S2, . . . , Sj) > λ(S1, S2, . . . , Sj−1) (10)

In the previous example, the set of features to be included in the classifier will
be: Lm = Lj \ {14, 30− 35}. Lm is the domain of the Feature Space a reduced
and ordered version of the Measurement Space: SF ⊂ S, Sm ∈ SF , Sm ∈ S,
Nm ≤ Ni. The dimensions of the Feature Space are Lr × Lc × Lm.

Another solution that is provided by the order statistic of the Bhattacharyya
Space marginal is the option to select a predetermined number of features as
the reduced set or sub-space used for classification. This can be use particu-
larly in cases where it can be computationally very expensive just to obtain
the whole measurement space. Then, based on the training data, just a few
measurements are generated based on the first n features provided by the
Bhattacharyya space.

4 Results

Table 2 presents characteristics and classification details for the 9 images.
The OP sub-band filtering was used to generate the measurement space of 35
dimensions. This was classified with a single resolution algorithm (âk). Then,
for each measurement, a QT of 5 levels was constructed and the classification
was performed at the highest level. Butterfly filters were used to refine the
boundaries on the descent of the QT . Finally, feature selection was performed
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Table 2
Characteristics of the images and their classification results for Single and multires-
olution without feature selection and multiresolution with feature selection.

Figure Size Classes Source Misclassification (%)

No selection, 35 Feats Feature selection

Single Multi Multi Features

a 256 × 256 5 Brodatz 9.0 5.2 2.8 23

b 256 × 256 5 MIT 31.7 14.7 14.7 35

c 256 × 256 5 MIT 20.6 22.0 8.4 29

d 256 × 256 5 MIT 20.7 16.1 7.3 14

e 256 × 256 5 MeasTex 17.2 8.5 4.3 20

f 512 × 512 16 Brodatz 32.7 20.4 17.9 23

g 512 × 512 16 MIT 49.5 44.5 32.0 21

h 256 × 640 10 Brodatz 27.9 25.9 14.7 21

i 256 × 640 10 MIT 39.5 32.4 20.2 14

Average 27.6 21.1 13.6

Table 3
Comparative misclassification (%) results of Malpica [31], Randen [35], Ojala [34]
and multiresolution with feature selection. Best results are in bold.

Method Figures

a b c d e f g h i Average

Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.69

Best in Randen 7.2 18.9 20.6 16.8 17.2 34.7 41.7 32.3 27.8 24.13

p8 (Ojala) 7.4 12.8 15.9 18.4 16.6 27.7 33.3 17.6 18.2 18.66

LBP (Ojala) 6.0 18.0 12.1 9.7 11.4 17.0 20.7 22.7 19.4 15.22

Watershed (Malpica) 7.1 10.7 12.4 11.6 14.9 20.0 18.6 12.0 15.3 13.62

Proposed algorithm 2.8 14.8 8.4 7.3 4.3 17.9 32.0 14.7 20.2 13.61

with the Bhattacharyya space and the lowest misclassification was selected.
The number of features varied from 14 up to one case (b) in which the 35
features provided the best result.

Two important observations should be made, first, multiresolution classifica-
tion can improve results over single resolution and second, feature selection
can further reduce the misclassification.

To evaluate the performance of the multiresolution classification with feature
selection, a comparison was made against the best results of Randen, the
results of Ojala [34] who used Local Binary Patterns (LBP) and multidimen-
sional distributions of signed grey-level differences (p8), and those reported by
Malpica [31] who used a multichannel watershed-based algorithm with wavelet
features. The results of Randen’s co-occurrence are included in the comparison
since they are widely used.

The final classification results are presented in table 3 and the following ob-
servations can be made.

• It should be noted that co-occurrence can easily be outperformed, it is the
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worst classification individually and overall.
• The best results presented by Randen were outperformed by all the other

methods. Again this was to be expected, since the classification schemes
were far more complex than those used by Randen.
• The methods proposed by Ojala outperform those of Randen and have good

results, in some cases they are better than Malpica’s, but in general they
can be outperformed.
• The multichannel watershed-based algorithm (Malpica [31]) presents very

good results, in four cases it has the lowest misclassification.
• The multiresolution algorithm with feature selection presents very good

results, it is comparable with Malpica’s results and in some of the images
it provides the best classification.

As an indication of the computational complexity of the algorithm presented,
the computation time of the programs running with Matlab version 6.5 R13
running on a Linux platform based on a Pentium 4 CPU 2.80 GHz was mea-
sured. The time for the 16-class segmentation of figure 1 (f), was 2.7s for
k-means classification at a single resolution and 56.3s for multiresolution with
feature selection through the Bhattacharyya space. No systematic attempt to
make the code more efficient was made. The classification results are presented
below. Figure 9 shows the boundaries on top of the original images, figure 10
shows the results as classified regions, and figure 11 shows the pixels that are
correctly classified. These latter results are considered by the author to be the
most revealing since showing only the labelled classes or only the boundaries
on top of the original images can be misleading.

5 Conclusions

A feature selection methodology using a novel Bhattacharyya Space has been
presented. The Bhattacharyya Space is obtained by calculating the Bhat-
tacharyya distance of pairs of training classes. This method allows the selection
of the most discriminant features of a measurement space S by assessing the
class pair or feature marginal of the space. This marginal can be used as a
path to follow with a wrapper algorithm. While the solution provided by the
Bhattacharyya space is sub-optimal in various ways, when it is combined with
a multiresolution classification it can provide the lowest misclassification of
the textured images presented by Randen [35].

Another application of the Bhattacharyya space is for detecting which pairs
of classes would be particularly hard to discriminate over all the measurement
space, and in some cases, the individual use of one point of the space can be
also of interest.
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The use of the Bhattacharyya Space implies that the number of classes is pre-
viously known, thus it is not presented as a method to determine the presence
or absence of a number of clusters (one or more) in a certain space. If this is
required, other methods like the Two-point correlation function or the distance
histogram proposed by Fatemi-Ghomi [12] could be used.
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Fig. 9. Classification of the images in figure 1. Classes boundaries are super-imposed
in the images.
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Fig. 10. Classification of the images in figure 1. Classes are presented as different
levels of grey.
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Fig. 11. Classification of the images in figure 1. Pixels that are correctly classified
appear in white.
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