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Abstract

In this paper aviultiresolution Volumetric Texture Segmentativ-VTS) algorithm is presented. The method
extracts textural measurements from the Fourier domairhefdata via sub-band ltering using an Orientation
Pyramid [1]. A novelBhattacharyya spacdased on the Bhattacharyya distance, is proposed fortisgjehe most
discriminant measurements and producing a compact feaparee. An oct tree is built of the multivariate features
space and a chosen level at a lower spatial resolution isclestsi ed. The classi ed voxel labels are then projected
to lower levels of the tree where a boundary re nement praceds performed with a 3D equivalent of buttery
Iters. The algorithm was tested with 3D arti cial data anldrée Magnetic Resonance Imaging sets of human knees
with encouraging results. The regions segmented from tleekrcorrespond to anatomical structures that can be
used as a starting point for other measurements such akgaréxtraction.

Keywords: Volumetric texture, Filtering, Multiresolution, TextiiSegmentation

. INTRODUCTION

Volumetric texture segmentation has received considgrgisks attention than its spatial 2D counterpart. Many
different approaches for 2D texture feature extractioassilcation and segmentation have been reported, for
example: [2], [3], [4], [5]. In volumetric texture analysithe extra computational complexity that is introduced
with the third dimension may explain the lack of reported kvar this area. Yet, in many cases, a volumetric
texture analysis is highly desirable, like for medical inmggapplications such as Magnetic Resonance Imaging
(MRI) segmentation [6], [7], [8], Ultrasound [9], [10] or @gouted Tomography (CT) [11] where the data provided
by the scanners is either intrinsically 3D or a time serie2@fimages that can be treated as a data volume. Seismic
facies analysis [12], [13] or Crystallography [14] are athelevant applications where volumetric texture analysis
is of interest.

The labeling of different classes such as anatomical strestor tissues in medical imagery is an important and
challenging problem, but much of this work has concentraiedhe classi cation of tissues by grey level contrast
alone. For example, the problem of grey-matter white-mddtieeling in central nervous system (CNS) images like
MRI head-neck studies has been addressed by supervisistiGthtlassi cation methods, notably EM-MRF [15].
The success of these methods is partly as a result of inatiporMR bias- eld correction into the classi cation
process [16], which can be regarded as extending the imagelnftem a piece-wise constant plus noise model
to include a slowly varying additive or multiplicative imtgity bias. Another reason why rst-order statistics have
been adequate in many instances is that the MR imaging segwam be adapted or tuned to increase contrast in
the tissues of interest. For example, a T2 weighted sequenideal for highlighting cartilage in MR orthopedic
images, or the use of iodinated contrast agents for tumadsvaaculature. Also, multimodal image registration
enables a number of separately acquired images to be eéfigcfused to create a multichannel or multispectral
image as input to a classi er. Other than bias eld artifaitte "noise' in the image model incorporates variation
of the voxel grey-levels due to thextural qualities of the imaged tissues and, with the ever incregasasolution
of MR scanners, it seems expedient to model and use thistieariaather than subsuming it into the image noise.

We propose a sub-band ltering scheme for volumetric teeguthat provides a series of measurements which
capture the different textural characteristics of the dBitee Itering is performed in the frequency domain with he
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that are easy to generate and give powerful results. We thapope a supervised feature selection methodology
based on the discrimination power @levanceof the individual features taken independently; the ultengoal is

to select a subset dfiscriminantfeatures. In order to obtain a quantitative measureosy separablare two classes
given a feature, a distance measure is required. We haveedtadnumber measures (Bhattacharyya, Euclidean,
Kullback-Leibler, Fisher) and have empirically shown tlia¢ Bhattacharyya distancevorks best on a range of
textures [17], [18]. This is developed into the concept o¢atdire selection space in which discrimination decisions
can be made. A multiresolution classi cation scheme is themeloped which operates on the joint data-feature
space within an oct-tree structure. This bene ts both theiezicy of the computation and ensures only the certain
labelings at a given resolution are propagated to the nextrfaces between regions (planes), where the label
decisions are uncertain, are smoothed by the use of 3D riyutteers which focus the inter-class labels to likely
candidate labels [19].

The paper is organized as follows. We begin with a brief nevad 2D and volumetric texture analysis and
segmentation methods focussing on those applied to meidizgle analysis and interpretation in Section Il. In
Section Ill, we provide a de nition of volumetric texturen ISection IV, a measurement extraction technique based
on a multiresolution sub-band Itering is presented. Sat introduces a Bhattacharyya space for feature selection
and a multiresolution classi cation algorithm is descdb@ Section VI. An extension of the so-called buttery
Iters to 3D is used for boundary re nement. Experimentasuéts on 2D and 3D data are presented and discussed
in Section VII, and Section VIII draws some nal conclusions

Il. LITERATURE SURVEY

The machine vision community has extensively researchedd#scription and classi cation of 2D textures,
but even if the concept of image texture is intuitively olmsao us, it can been dif cult to provide a satisfactory
de nition. Texture relates to the surface or structure ob@ect and depends on the relation of contiguous elements
and may be characterized by granularity or roughness, ipehorientation and periodicity (normally associated
with man-made textures such as woven cloth). Early work afilitek [20] is a standard reference for statistical and
structural approaches for texture description. Other @gugres include contextual methods like Markov Random
Fields as used by Cross and Jain [21], and fractal geometiiyaae by Keller [22]. Texture features derived from
the grey level co-occurrence matrix (GLCM) calculate thetjstatistics of grey-levels of pairs of pixels at varying
distances. Unfortunately, & dimensional image of siz8 makes the descriptor have a complexity@fN M 2),
whereM is the number of grey levels. This will be prohibitively higor d = 3 and an image sizes & = 512
guantized to, sayM = 64 grey levels. For these reasons and to capture the spaiidncy variation of textures,
Itering methods akin to Gabor decomposition [23] and jogpatial/spatial-frequency representations like wavelet
transforms [24], [25] have been reported. In some cases wmadfic data isslicedinto 2D cross-sections and
then use 2D texture analysis such as Gabor Iters on eaclvithdil slice [26] or on 2D orthogonal plates [9],
[10]. Yet high frequency oriented textures that are notradd) to the axes can be missed by these Iters and
can unnecessarily increase the dimensionality of the Ideatriptors. Randen and Husgy [27] have shown that
co-occurrence measures are outperformed by such Iteeabrtiques.

Here, we use the Wilson-Spann sub-band Itering approaéh, [@hich is similar to the Gabor ltering and has
been proposed as a ‘complex' wavelet transform [29].

Previous work on volumetric texture includes work by Kovad@d Petrou [6], who have studied texture anisotropy
in 3D images. They present two algorithms for texture anglyene with gradient vectors, and a generalized co-
occurrence matrix in 3D. They also present a technique fdufe visualization through an extended Gaussian image.
Texture analysis of MRI scans of brains of subjects with &inter's has shown that there is some correlation with
increased anisotropy over normal subjects [8].

Randen [13] has developed a series of three-dimensionairésattributes such as dip, azimuth, chaotic texture
and continuity, that have been applied in seismic stratigimmapping [12]. Others have presented extensions of
common 2D texture techniques into 3D, such as Laws masks @odaurrence matrices: for example, Lang [30]
and Ip and Lam [31] (see [26] for a review).

The importance of texture in MRI has been the focus of somearebers, notably Lerksi [32] and Schad [33], and
a COST European group was established for this purpose T84iure analysis has been used with mixed success
in MRI, such as for detection of microcalci cation in bredstaging [35] and for knee segmentation [36], and in



Fig. 1. Volumetric texture examples: (a) A cube divided ihi® regions with Gaussian noise of different variances,Aljube divided
into two regions with oriented patterns of different freqoies and orientations, (¢) A sample of muscle from MRI.

CNS imaging to detect macroscopic lesions and microscdpiom@nalities such as for quantifying contralateral
differences in epilepsy subjects [37], to aid the automagiineation of cerebellar volumes [38], to estimate effect
of age and gender in brain asymmetry [39], and to charaeteinal cord pathology in Multiple Sclerosis [40].

I1l. VOLUMETRIC TEXTURE

Volumetric Texturés considered here as the texture that can be found in volimtitta (this is sometimes called
solid texture[26]). Figure 1 shows three examples of volumetric data watttured regions.
Our volumetric study can be regarded as volume-based; shatve consider no change in the observation
conditions.
Throughout this work, we consider volumetric da¥q,represented as a function that assigns a gray tone to each
triplet of co-ordinates:
V:L, Lc Lg! G (1)

wherelL, = f1;2;:::;r::0;Nyg, Le = f1;2;::05¢;::0;Neg and Lg = f1;2;:::;d;:::;Nsg are the spatial
domains of the data of dimensidd, N. Ng (using subscriptgr;c;s) for row, columns and slices) and
G=112:::;0;:::Ngg is the set ofNg4 gray levels.

IV. FEATURE EXTRACTION: SUB-BAND FILTERING USING AN ORIENTATION PYRAMID (OP)

Certain characteristics of signals in the spatial domaahsas periodicity are quite distinctive in the frequency or
Fourier domain. If the data contain textures that vary irmi@tion and frequency, then certain Iter sub-bands will
contain more energy than others. The principle of sub-bdteding can equally be applied to images or volumetric
data.

Wilson and Spann [1] proposed a set of operations that sideditie frequency domain of an image into smaller
regions by the use of two operataggadrantand center-surroundBy combining these operators, it is possible to
construct different tessellations of the space, one of wiscthe Orientation Pyramid (OP) (Figure 2). A band-
limited lter based on truncated Gaussians is used to apprate the nite prolate spheroidal sequences used
in [1]. The lters are real functions which cover the Fourlalf-plane. Since the Fourier transform of a real signal
is symmetric, it is only necessary to use a half-plane or &Jwdlime to measure sub-band energies. A description
of the sub-band Itering with the OP method follows.

Any given volumeV whose centered Fourier transform\is = F [V] can be subdivided into a set ofnon-
overlapping regions! LL L. of dimensionsN/;N!;N..

In 2D, the OP tessellation involves a set of 7 lIters, one fbe low pass region and six for the high pass
(Figure 2 (a)). In 3D, the tessellation will consist of 28eftt for the high pass region and one for the low pass
(Figure 2 (c)). Thei-th lter F| in the Fourier domainK = F [F']) is related to the-th subdivision of the
frequency domain as:

Fioo Lo Ly b G(H )
ok LhoLher o
8i 2 OP; 2
whereG, describes a Gaussian function, with parametérshe center of the region and I is the co-variance
matrix that will provide a cut-off of 0.5 at the limit of the bd (see Figure 2 (d,e) for 2D Iters). The measurement
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Fig. 2. (a-c) 2D and 3D Orientation Pyramid (OP) tesselfati@) 2D order 1, (b) 2D order 2, (c) 3D order 1. (d,e) Bancitia 2D
Gaussian lter: (d) Frequency domajf. j, (e) Magnitude of spatial domair'j.

Fig. 3. A graphical example of sub-band Itering. The top roarresponds to the spatial domain and the bottom row theid¢rodomain.
Once slice from a knee MRI data set is ltered with a sub-baitdr with a particular frequency and orientation by a prdadacthe Fourier
domain, which is equivalent to a convolution in the spatiaindin. The ltered image becomes one measurement of theespacin this
example.

spaces in its frequency and spatial domains is then de ned as:
Sw(i &) FIG&) V(&)
s' = jF YS!l (3)
where( ; ;&) are the co-ordinates in the Fourier domain. At the next |etel coordinateg 1(1) L1(1) LZ1(2))
will become(L,(2) Lc(2) Ls(2)) with dimensionsN,(2) = Mo :N(2) = Nellong(2) = N it is assumed

thatN, (1) = 22;N¢(1) = 22, Ng(1) = 2¢ so that the results of the divisions are always integer wallie illustrate
the OP on a textured image, a 2D example is presented in F&jure

V. FEATURE SELECTION USING THE BHATTACHARYYA SPACE

The sub-band ltering of the textured data produces a sesfesieasurements that belong tonseasurement
spaceS. Whether this space corresponds to the results of lterstuies of the co-occurrence matrix or wavelets,
not all the dimensions will contribute to the discriminattiof the different textures that compose the original data.
Besides the discrimination power that some measurements, fizere is an issue of complexity related to the
number of measurements used. Each extra texture featureeme the measurement space but will also further
burden any subsequent classi er. Another advantage otisefea subset of the space is that it can provide a better
understanding of the underlying process that generateddte[41].

A common method of forward feature selection is tin@pper approach4?2], [43]. This approach uses the error
rate of the classi er itself as the criterion to evaluate features selected, using a greedy selection, eitfiler
climbing or best- rst and treats the measurements as a search space organiaatpnesentation where each state
is a measurement. It is important to bear in mind two issues:ig that hill climbing can lead to local optima, and
the other is that the strength of the algorithm — the use ofcthssi er in the selection process instead of other
evaluation functions — is at the same time its weaknesse e classi cation process can be slow.

The Bhattacharyya space [44] is presented as a method thatles a ranking for the measurements based on the
discrimination of a set of training data. This ranking pres@rovides a single evaluation route and, therefore, the



number of classi cations which remain for every new featisreigni cantly reduced. In order to obtain a quantitative
measure of classeparability a distance measure is required. With the assumption albeutriderlying distributions,
a probabilistic distancecan be easily extracted from some parameters of the datéatiKdd5] compared the
Bhattacharyya distance and the Divergence (Kullbacklegiband observed that Bhattacharyya distance yields
better results in some cases while in other cases they aieatu. A recent study [18] considered a number
of measures: Bhattacharyya, Euclidean, Kullback-Lejldtesher, for texture discrimination and concluded that the
Bhattacharyya distance is the most effective texture uisgant for sub-band Itering schemes.

In its simplest formulation, the Bhattacharyya distancé] [Aetween two classes can be calculated from the
variance and mean of each class in the following way:

I I

1 1 El &2 1 ( k1 k2)2
efwim A Y e e @

whereDg (k1; k2) is the Bhattacharyya distance between two different tngirglassek; andk,, and ,; k,
and ,; k, correspond to the mean and variance of each one.

The Mahalanobis distance is a particular case of the BHadtsiga distance, when the variances of the two classes
are equal; this eliminates the rst term of the distance tihgppends solely on the variances of the distribution. If
the variances are equal this term will be zero, and grows @ssdéihiances differ. The second term, on the other
hand, will be zero if the means are equal and is inversely grtmmal to the variances.

The Bhattacharyya spacBi; p), is de ned on the measurement sp&eas:

Lp Li;B(i;p):Lp Li! Dg(Si;Sk): (5)

where each class pajp, between classds ; ko at measurementwill have a Bhattacharyya distan®es (S| i Lz),
and will produce a Bhattacharyya space of dimensigps- (Nzk) andN;j =70: Np N; (2D). The domains of
the Bhattacharyya space drg = f1;2;:::70g andLp = f(1;2);(1;3);::: (ki;k2);::: (N 1;Ng)g whereo is
the order of the OP. In the volumetric casg, remains the same (since it depends on the classes dhly),290
andL; = f1;2;:::294qg.

The marginal distributions dB (i; p) are

X Rl o

Bi(i) = B(i;p) = Dg(Sk,:Sk,); i=1;:11;Nj; (6)
p=1 p=1
.

Br(p) = B(i;p) = De(Sk,;Sk,); P=1;:::;Ny: @)
i=1 i=1

The marginal over the class paiB, (i) sums the Bhattacharyya distances of every pair of a cegaiufe and thus
will indicate how discriminant a certain sub-band OP Itaraver the whole combination of class pairs. Whereas
the marginaBp (p) sums the Bhattacharyya distances for a particular pairasfsels over the whole measurement
space and reveals the discrimination potential of padicphirs of classes when multiple classes are present.

To visualize the previous distribution, the Bhattachargpace and its two marginal distributions were obtained
for a natural texture image with 16 classes ( gure 4 (a)) urg4 (c) shows the Bhattacharyya spaceSaf order5,
and (d) marginaB, (i). These graphs yield useful information toward the selaatithe features for classi cation.
A certain periodicity is revealed in the measurement spaé€it42%128 have the lowest values (this is clearer in the
marginalB, (i)). The feature measurements 1, 7, 14, 21, and 28 correspdad foass Iters of the 2D OP. Since
the textures that make up this mosaic have been delibefsiglygram equalized, the low pass features provide the
lowest discrimination power. The most discriminant featufor the training data presented &¥-1811= which
correspond to the order statisg, (i) = B (1);B,(2);:::B,(70)g whereB, (1) B,;(2) :::. In other words,
a re-ordering of the elements of Measurement spade performed before being introduced sequentially to the
classi er. This provides a particular route for the statapsearch. The classi cation result using these featgres i
shown in gure 4 (b) and has an average label error 16.5% wtachpares favorably with other methods e.g. Randen
reports an error of 34.7% on this image using a quadraturesnsub-band ltering and a vector quantization for
the classier [27]. It is important to mention two aspects tofs selection process: the Bhattacharyya space is
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Fig. 4. (a) 16-class natural texture mosaic (image f from dean[27]). (b) Classi cation result using BS selected featu Average
classi cation error is 16.5%. (c) The Bhattacharyya spBcér a measurement spaeof order 5 from the 16-texture image. (d) Marginal
B, (i), the indexMeasurement Spacmrresponds to spac®.

constructed on training data and the individual Bhattagyerdistances are calculated between pairs of classes.
Therefore, there is no guarantee that the feature seledtedlways improve the classi cation of the whole data
space, the features selected could be mutually redundamapronly improve the classi cation for a pair of classes
but not the overall classi cation [47]. Thus the conjectuoebe tested then is whether the classi cation can be
improved in abest- rst, sequential selection de ned by the Bhattacharyya spaderatatistics. The natural textures
image was classi ed with several sequential selectiorteyias:

Following the unsorted order of the measurement spateS?, S2 etc.

Following the marginaB, (i) in decreasing ordeiS'°, S8 S etc.

Following the marginalB, (i) in increasing orderS?®, S21, S5 etc. (The converse conjecture is that the

reverse order should provide the worst path for the classion.)

Three random permutations.

The sequential misclassi cation results of the previouatsgies are presented in Figure 5 where the advantage of
the route provided by thB ;) can be seen. If extra time can be afforded, then the traingtg cdan be used with a
more elaborate feature selection strategy; various fahead backward optimizations are possible (see [47]). Our
experiments on 2D texture mosaics, however, have not shosigricant bene t by these methods in the nal
classi cation error over the sub-optimal best- rst appcbaused here [44], [48], and we have demonstrated superior
performance over other techniques: Local Binary PatteBP)Land thepg methods presented by Ojala [49]; and
wavelet features with the Watershed transformation pteseloy Malpica [50].

Fig. 5. Misclassi cation error for the sequential inclusiof features to the classi er for the 16-class natural teeguimage ( gure 4 (a)).
The route provided by the ordered marginBlg) (i) yields the best classi cation strategy.

Another solution that is provided by the order statisticthef Bhattacharyya space marginal is the option to select



a predetermined number of features asrdahuced sebr sub-space used for classi cation. This can be partitylar
useful in cases where it can be computationally expensielmulate the entire measurement space. Then, based
on the training data, only a few measurements need to be @feddbased on the rst features of theB.

VI. MULTIRESOLUTION CLASSIFICATION

This section presents a new multiresolution algoritivtyltiresolution-Volumetric Texture Segmentati@vi-
VTS). The multiresolution procedure consists of three matages: the process afimbing the levels or stages
of a pyramid or tree, a decision gtassi cation at the highest level is performed, and the procesdesicending
from the highest level down to the original resolution. Bhs® the decision-directed approach of Wilson and
Spann [1], we replace the contextual boundary-re nemeay st each scale with a steerable- lter based on butter y
neighborhoods [19]. This is a satisfactory compromise dheruse of a multiresolution MRF to gain a notion of
contextual label smoothing but avoids the need to model atichate a complicated set of boundary priors over
3D neighborhoods [51].

Smoothing the measurement space can improve the classincedsults; many isolated elements disappear and
regions are more uniform. But a new problem arises with shingt especially at the boundaries between textures.
When the measurement values of elements that belong to the skss are averaged, it is expected that they
will tend to the class prototype, but if the elements belomglifferent classes, the smoothing can place them in
a different class altogether. It would be ideal to smootledalely depending on the distance to the boundaries.
Of course, the class boundaries need then to be known. A conipe has to be reached between the intra-class
smoothing and the class boundary estimation. A solutiorhi® problem is to apply a multiresolution procedure
of smoothing several levels with a pyramid before estingatime boundaries at the highest level and applying a
boundary re nement algorithm in the descent to the highesblution.

A. Smoothing the Measurement Space

The climbing stage represents the decrease in resolutitineoflata by means of averaging a set of neighbors
on one level ¢hildren elements or nodes) up to [@arent element on the upper level. Two common climbing
methods are the Gaussian Pyramid [52] and the Quad tree (8] [55]). In our implementation we used the
quad tree structure which, in 3D, becomes an oct t@€)( The decrease in resolution correspondingly reduces
the uncertainty in the elements' values since they tend wiaeir mean. In contrast, the positional uncertainty
increases at each level [1].

The measurement spageconstitutes the lowest level of the tree. For each measureSieof the space, ®T
is constructed. To climb a level in theT, aREDUCE operation is performed [52]:

(S): = REDUCE (S)* 1% (8)

wherelL is the level of the tree.
EveryREDUCE step averages eight contiguous elements to produce a silegieent in the upper level. Once
a desired level is reached, the classi cation is performed.

B. Classi cation

At the highest level, the new reduced space can be classPadtitioning of the measurement space can be
considered as a mapping operator
S 12000 Ngo; 9)

where the clusters or classes are*(1), (2);::, and these are unknown. Then, for every eleme@tS, 5
will be an estimator for where, for every class, there is a pofra;; ay;:::g 2 S such that these points de ne
hyperplanes perpendicular to the chords connecting theih,salit the space into regiofRR1; R»;:::g. These
regions de ne the mapping function, : S!'f 1;2:::;Nxgby a(X) = K if x 2 Rx;K =1;2;::;;Nk . This
partitioning should minimize the Euclidean distance frdme tlements of the space to the poiatsexpressed
by [56]: X

(ar;ap;::0) = . njninNk IS(x) &l (10)

x2(L, Lc Ls)



The measure of closeness of the estimatpto de nes a misclassi cation error by[ 3]= P( a(x) 8 (X)),
andP( 4(S) 8 (S)) for an arbitrary pointx 2 S in the space. If the values of the poirdg are known, or
there is a way of estimating these from training data, thestleation procedure issupervised otherwise it is
unsupervisedFor this work, the points in the measurement spacavere obtained by lItering separate training
data with the OP. Once the measurement sg&ce calculated for every training image, the average can led us
as an estimate of the mean of the clasand equation 10 can be minimized by an iterative method seahest
neighbor (NN) clustering. In the experiments presentedvelvhere supervised classi cation was required we
used a NN approach.

C. Boundary Re nement

To regain full spatial resolution at the lowest level of theet the classi cation at the higher level has to be
propagated downward. The propagation implies that evergrpdequeaths: (a) its class value to 8 children and;
(b) the attribute of being or not being in a boundary (gure Bjteraction between neighbors can reduce the
uncertainty in spatial position that is inherited from thergnt node. This process is known as spatial restoration
and boundary re nement, which is repeated at every stagé thetbottom of the tree or pyramid is reached.

(@) (b)

Fig. 6. Inheritance of labels to child elements: (a) Clageeiitance; (b) Boundary inheritance.

Buttery Iters ( BF ) [19] are orientation-adaptive lters, that consist of tgeparate sets avingswith a pivot
element between them. It is the pivot element (r;c;s) which is modi ed as a result of the ltering. Each
of the wings will have a roughly triangular shape , which mbkes a buttery (gure 7 (a)) and they can be
regarded as two separate setsanfsotropic cliquesarranged in a steerable orientation. We propose the aatens
of theseBF lters into 3D, and two possible shapes can be used: pyranddaonic ( gure 7 (b,c)), for ease of
implementation we used pyramidal. The boundary determinyetthe classi cation process de nes the orientation of
the Iter which places each of the wings of the butter y toteitr side of the boundary. When dealing with volumes
and not images, the boundaries between classes are nat Biveg but planes, and therefore the orientation of the
butter ies requires two parameters,and . We quantized each orientation in four steps: = f0; z; 5; 379. The
elements covered by each of the wings are included in theingeprocess while the values of the elements along
the boundary (which are presumed to have greater uncetant the pivotx, are not included in the smoothing
process. Th&F consists of two sides, with left and right windsi=rw, each of which comprise,, elements:

= flwgglwrisiwe, g (11)
wo = frwerwaiiiwy, ’ '
(a) (b) (C)

Fig. 7. (a) 2D Buttery lter, (b) Pyramidal volumetric buérry lters, (c) Conic volumetric buttery lters. Orientaion of and
indicated in (c).
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Fig. 8. A feature space view of boundary re nement procesth Wutter y Iters. (a) A boundary elemenk with other elements. (b}

and the two sets of neighboring elements that are comprigetiebbutter y wings, all other elements are not relevanttas tmoment. (c)
The weighted average of each wing. (d) Parametdralances between the elementind the average of the wings. (e) New positions are
compared with the prototypes (1,2,..., k) of the classescthss that corresponds to the minimum distance is thegresbitox.

For each wing, an average of the values of the elements in diaemsion is calculated:

_ 1 K _ 1 K
Sw(x)= 5— S'(lwg);  Su(x)= 5  S'(rwg): (12)
NW _ NW _
g=1 g=1
The actual pivot element = (r;c;s) value is then combined with the mean values as follows:
Sx Iw (1 )S(X) + SIW; (13)
Ssw = (1 )S(X) + S (14)

where is a scalar gain measure that depends on the dissimilaritieolistribution of the elements that make
up the wings:

1 _ Sw S,

=1+e(5 D)’ D= 2 2 (19)

|W+ rw

where 2, and 2, are the variances of the elements in each butter y wing.

The parameter acts as weighting factor of the distance between the digioibs covered by the two sides of
the butter y lter, and provides a balance between the cotrealue of the element and a new one calculated from
its neighbors. It is interesting to note that this balangimgcedure is similar to the update rule of the Kohonen
Self Organizing Maps [57].

The distance measure between the updated pivot elementamtdtotype values of each class determines to
which class it is reassigned. Figure 8 shows the proceséigadly. At the classi cation stage, the new feature values
Sy w;Sx rw replace the original feature values of elem&ninstead of looking for a class based og(S(x)),
the new values 5(Sx w)/ a(Sx ) Will determine the class according to its closeness to gast®types (using
the mapping operator, from equation 9).

VIlI. EXPERIMENTAL RESULTS
A. 3D Arti cial Textures

There are many examples test images available for compabrigxture segmentation methods. However, up to
the best of the authors' knowledge, there is not such a dsg¢atea volumetric texture. We have therefore created a
handful of 3D data sets to demonstrate and compare the pafme of the presented algorithm and measurement
extraction techniques. First, a volumetric set that regmmess a simple two-class measurement space, each with
32 16 32elements drawn from Gaussian distributions (CIas§JA: 1=25; 1=2,S2 ,=26; ,=4,Class
B:S! ,=27; 1=7,8% ,=28; ,=7). The two classes together form32 32 32 2 space. The data
was classi ed unsupervised with the number of classes geavibut not the estimates of the means. First it was
clustered with the Linde-Buzo-Gray vector quantizatiortid (LBG) [58] in a single resolution and then using
M-VTS (OT level L = 3). The classi cation results are presented in Figure 9laads of points for each class
for M-VTS. Results are presented in Table I. With M-VTS thare some incorrectly classi ed voxels close to the
boundary, but the general shape of the original data is predeand its overall error rate is much lower.

The second set is @ 64 64 volume containing two oriented patterns which have diffiéfeequency and
orientation ( gure 1 (b)). The measurement space was ebedaand two measurements were manually sele&éd:



and S2, and classi cation was again performed unsupervised floglsi and multiresolution. Results are presented
in Table 1.

Again, some voxels near the boundary are misclassi ed, teas 3%, but the shape (gure 9 (c)) is well
preserved. The computational complexity was consideraiaseased in 3D, for the rst set the respective times
for LBG and M-VTS were 0.1s and 14.9s and for the second sat&nd 54.0s.

(@) (b) (€)

Fig. 9. Classi cation of 3D textures: (a,b) Class 1 and Clagsgure 1 (a)), (c) Both classes (gure 1 (b)).

Algorithm
Data LBG | M-VTS L =3
Gaussian Datg 14.1 6.2
Oriented Data| 4.6 3.0
Knee Phantom 13.0 7.0

TABLE |
MISCLASSIFICATION (%) FORLBG AND M-VTS FOR THE SYNTHETIC3D TEST SETS

Algorithm
Data NN | M-VTS L =3
Case 1| 8.1 6.0
Case 2| 32.8 10.5
Case 3| 36.0 12.0

TABLE I
SUMMARY OF MISCLASSIFICATION (%) FORNN (AT FULL RESOLUTION) AND M-VTS FOR THEMRI KNEE DATA.

B. 3D Synthetic Knee Phantom

To assess M-VTS with data containing objects with life-lik@ometry, we constructed a synthetic knee phantom
containing orientated and random textures arranged rgughbones, muscle, tissue and background in a volume
of size128 128 128 voxels, as shown in gure 10. The classi cation result usifgVTS using 8 features
is shown as a 3D visualization in gure 10 (c). Comparing gs8r10 (a) and (c), the location of the boundaries
between “bone' and “other tissue' is fairly poor. This caratigbuted to the dif culty differentiating the two chosen
textures. However, the "'muscle’ regions are fairly well ded. Despite these problems, the overall classi cation
rate is 93%. The LBG classi er and M-VTS were used on the sarRen@@asurement space and the classi cation
errors were plotted for selecting most discriminant fesgufFigure 11) from the marginal Bhattacharyya space
(shown in Figure 12 (a)). The results con rm both that thews=yial feature selection is effective and that M-VTS
consistently outperforms a single resolution classi dreTthoice of the level (i.d.) at which to begin the top-down
M-VTS will depend on the relative size of the structures ie thata and the ratio of inter to intra class variance
present. In the synthetic knee phantom the plot in gure 1P ghows a marginal improvement by initializing
M-VTS at level 4 rather than level 3 of the OP.
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(@) (b) (©)

Fig. 10. Synthetic knee phantom image sIZ8 128 128 consisting of 4 texture types arranged approximately irtckground, bones,
muscle and other. (a) 3D visualization of the original dé&d.Arrangement of principal regions in volume. (c) 3D viszation of labeled
data.

(a) (b) (c) (d)

Fig. 11. (a) Knee phantom data, saggital slice 70 (top-rawg axial slice 110 (bottom-row). (b)-(d): First three mostevant features
from OP of knee phantonSf*; S'8: S%) shown as cross-sectional views.

C. 3D MRI texture segmentation

A set of experiments was conducted with 3D MRI sets of humasekracquired under different protocols: one
set with Spin Echoand two sets withSPGR In the three cases each slice had dimensionS1& 512 pixels
and 87, 64 and 60 slices respectively. One sample slice frach eet is presented in Figure 14 (a). The bones,
background, muscle and tissue classes were hand labeledviolgp ground-truth for evaluation.

For the rst data set, Case 1, the following classi cationpapach was followed. Four training regions of size
32 32 32elements were manually selected for the classdmokground, muscle, boramdtissue These training
regions were small relative to the size of the data set, aagd ttmained as part of the test data. Each training
sample was Itered with the OP sub-band Itering scheme, Hmresults were used to construct the Bhattacharyya
space (gure 13 (a)).

It can be immediately noticed that two ban®?%>*, which correspond to the low pass bands, dominate the
discrimination while the distance of the p&ione-tissuds practically zero compared with the rest of the space. If
the marginals are calculated directly the low pass wouldidata and the discrimination of the bone and tissue
classes, which are dif cult to segment, would not be possilfligure 13 (b) zooms into the Bhattacharyya space
of the bone-tissue pair. Here we can see that some fea®t€3838 provide discrimination between bone and
tissue, and the low pass bands help discriminate the resteoflasses.

Feature selection was performed with the Bhattacharyyaespad 7 measurements were selec®: and
S125839951 Thjs selection of features reduced signi cantly the comagional burden. The nal misclassi cation
obtained was 8.1% with 7 features. The result for 2D clasgian was 8.6% ( gure 14 (b)). For the M-VTS
misclassi cation results were 6.0% (gure 14 (c)). Whileethresults from the 2D and 3D single resolution are
close, the use of multiresolution improves the results byentbhan 2%. The classi cation with a multiresolution
algorithm improves the results and produces a much smoodigérn classi cation. Some of the errors are due in
part to magnetic inhomogeneity artifacts across the imhgewere not handled explicitly. It should be noted that
the classi cation results, although not anatomically petf illustrate the utility of the use of texture features in
MRI classi cation.
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Fig. 12. (a) MarginaB, (i) of knee phantom features space from OP. (b) Classi catisarezomparing LBG against M-VTS dt = 3
andL =4 for sequential selection of features based on the BS featlextion. M-VTS is has consistently lower misclassi oatierrors
(about half of LBG with 3 or more features).

(@)

(b)

Fig. 13. Knee MRI: (a) Bhattacharyya spaBe(3D, order 2), (b) Bhattacharyya spadg' (bone; tissuge)).

@ (b) (©)

Fig. 14. One slice of the three MRI sets and its correspondiagsi cation. Top row Casel (slice 36), middle row Case lités45),
bottom row Case 3 (slice 40). (a) Original data; (b) 3D singdsolution classi cation; (c) M-VTS Classi cation. Datarqvided by Dr.
Simon War eld from Brigham and Women's Hospital, Boston.



TABLE 11l
CLASSIFICATION (%) OF BONE () ACCORDING TO THE MASK FOR BONE(b) WITH K-MEANS, AND M-VTS. FOR CASE 3, SUPERVISED
AND UNSUPERVISED CLASSIFICATION WAS PERFORMED

Knee Set| Algorithm [b2b|B2 (D | (B°2b]| (B°2 (H° |
Case 2 | LBG (UnSup) | 67.2] 21.0 | 328 79.0
M-VTS (Sup) | 89.5| 21.6 10.5 78.4
Case 3 | LBG (UnSup) | 42.2| 229 | 57.8 77.1
& (Sup) 64.0| 110 | 36.0 89.0
M-VTS (UnSup)| 75.8 3.5 24.2 96.5
M-VTS (Sup) | 88.0| 7.1 12.0 92.9

The SPGR MRI data sets were classi ed and the bone was segtharith the objective of using this as an
initial condition for extracting the cartilage of the knekhe cartilage adheres to the condyles of the bones and
appears as a bright, curvilinear structure in SPGR MRI data.

Besides the low pas§??, three high frequency bands were selected, nar8éRs°.

The performance of the classi cation schemes was measurdtieability to correctly classify the bone since
this class alone will be used to segment the cartilage laten ¢his section. The correct classi cation was measured
by how much bone was classi ed correctly inside the bone nfigkb), and how much bone was classi ed outside
the bone maski(2 (b)) and their complement{®)€ 2 b, (B¢ 2 (b)°). The knee was classi ed with LBG and
M-VTS at level 3. One slice of the classi ed results is prasenin the middle row of gure 14. As expected,
M-VTS presents smoother results and reduces the misctagsin of the bone from 32.8% to 10.5%. For Case
3 (bottom row of Figure 14) the reduction was from 57.8% to224 with the unsupervised LBG method and if
training data was used, the misclassi cation went down fi@#0% down to 12.0% with NN (table 1lI).

Figure 15 (a) presents a volume rendering of the segmenteel bbCase 1. The four boney structures present
in the MRI data set are clearly identi abl@atella, bula, femurandtibia, and (b) shows a cloud of points of the
bone class of Case 3. Here the misclassi cation is notieeablthe upper part of the patella (knee-cap), which
is classi ed as background, and the lower part extends mioae it should do into surrounding soft tissue (the
infrapatellar pad).

@ (b)

Fig. 15. (a) Rendering of the segmented bone of Case 1 (m&dation 8.1%) and (b) the segmented bdhéas clouds of points) from
Case 3 (misclassi cation 12.0%).

D. Segmentation of the cartilage

Segmentation of articular knee cartilage is important tderstand the progression of diseases such as ose-
toarthritis and it enables the monitoring of therapy an@&f¥eness of new drug treatments [59], [60], [61]. MRI
has played an important role since it is a 3D, non-invasivagimg method which is cheaper and less traumatic
than arthroscopy, and has been the gold standard for ggrtdlasessment [62].



(a) (b) () (d)

Fig. 16. Cartilage of Case 2: (a) Slice 15 of the set with thetilage in white, (b) Rendering of the cartilage and oneeslxé the MRI
Set. Cartilage of Case 3: (c) Rendering of the cartilage;T(® cartilage and one slice of the MRI set.

In this section, we propose a simple technique to extractcHrélage without the use of deformable models.
The user has to determine a Region of Interest (ROI) and algvay threshold with the bone extracted from the
previous section being used as a starting point. In ordeegongnt the cartilage out of the MRI sets, two heuristics
were usedcartilage appears bright in the SPGR MRIsnd cartilage resides in the region between bon&his
is translated into two corresponding rules: threshold igabove a certain gray level, and discard those not close
to the region of contact between bones. The methodology traaxhe cartilage followed these steps: extract the
boundary of the bone segmented by the M-VTS; dilate this dannby a number of elements to each side (5
voxels in our case); eliminate the elements outside the R@Ithe dilated boundary; threshold the region (gray
level g = 550 for Case 2, and) = 280 for Case 3); nally, eliminate isolated elements. It shoblkl noted that the
ROI is a cuboid and not an elaborate anatomical template.

Figure 16 presents the cartilage extracted from Cases 2 .a8dm3e false positives can be seen, but the general
shape is visually close to that of the cartilage. In thesealtgsit is clear that the general shape of the cartilage;
tibial, femoral and patellar is correctly segmented andféwve incorrectly classi ed voxels could be easily erased
from the result.

Figure 17 presents the segmented cartilage of Case 3 f& sfices of the set in different view: sagittal slice 18,
axial slice 212 and coronal slice 130. Figure 17 (a) prestr@segmented cartilage. Some false positives appear
as small dots in the image. The tibial cartilage also appaduis ragged but the general shape is correct, notice for
instance the separation of the patellar cartilage from ¢inecfal cartilage. As a comparison, gure 17 (b) presents
the thresholded data of the same slices. Figure 17 (c) psesien cartilage over the original image.

A last validation test was performed. The cartilage of gl (a) was hand segmented and compared with the
M-VTS results. Figure 18 shows the comparison as the sumeohtimber of pixels per row classi ed as cartilage
with both techniques. It can be seen from the shape of bo#s lihat the manual segmentation and the M-VTS
are very similar.

VIIl. CONCLUSIONS

A multiresolution algorithm based on Fourier domain legi was presented for the classi cation of texture
volumes. Textural measurements were extracted in 3D dataubyband Itering with an Orientation Pyramid
tessellation. Some of the measurements can be selectedriafoew feature space and their selection is based on
their discrimination powers obtained from a novel Bhattgha space. A multiresolution algorithm was shown to
improve the classi cation of these feature spaces: octstigere formed with the features. Once the classi cation
is performed at the a higher level of the tree, the class anohdary conditions of the elements are propagated
down. A boundary re nement method with pyramidal, volunetbuttery Iters is performed to regain spatial
resolution.

The algorithm presented was tested with arti cial 3D imagephantom type arti cial textured volumes and MRI
sets of human knees (SPGR and Spin Echo). Satisfactoryi cltgs results were obtained in 3D at a modest
computational cost.

In the case of the MRI data, M-VTS exploits well the texturblhracteristics of the data. The resulting seg-
mentations of bone provide a good starting point for othehméjues, such as deformable models, which are
more sophisticated and require some initial conditiond/4¥TS is to be used for medical applications, extensive
clinical validation is required but it is not within the sapf this paper; yet the potential of the volumetric texture
analysis has been demonstrated. In the case of MRI, thetefiéinhomogeneities artifacts should be addressed.



Cartilage Extracted Data thresholded Cartilage over knee

Coronal Slice 13xial Slice 212 Sagittal Slice 18

(@) (b) (c)

Fig. 17. Sagittal, coronal and axial view of the cartilag¢rasted from knee Case 3. The rst column (a) shows the eayilin the three
planes, Second Column (b) shows the data thresholded aathe evel used to extract the cartilage 280, the third column (c) shows
the cartilage over the corresponding slice.

Fig. 18. M-VTS and manual segmentation comparison perfdrorethe cartilage of gure 16 (a). The sum of number of pixdissi ed
as cartilage in every row show good agreement of the M-VT8lt®svith the manual segmentation.

Furthermore, there is manual intervention in determinlmg number of classes, the size of the buttery lters, the
depth of the OP decomposition and the height of @k used by the coarse-to- ne re nement. Further research
might be focused in these areas.
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