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Volumetric Texture Segmentation by Discriminant
Feature Selection and Multiresolution Classi�cation

Constantino Carlos Reyes-Aldasoro�

and Abhir Bhalerao, Member, IEEE

Abstract

In this paper aMultiresolution Volumetric Texture Segmentation(M-VTS) algorithm is presented. The method
extracts textural measurements from the Fourier domain of the data via sub-band �ltering using an Orientation
Pyramid [1]. A novelBhattacharyya space, based on the Bhattacharyya distance, is proposed for selecting the most
discriminant measurements and producing a compact featurespace. An oct tree is built of the multivariate features
space and a chosen level at a lower spatial resolution is �rstclassi�ed. The classi�ed voxel labels are then projected
to lower levels of the tree where a boundary re�nement procedure is performed with a 3D equivalent of butter�y
�lters. The algorithm was tested with 3D arti�cial data and three Magnetic Resonance Imaging sets of human knees
with encouraging results. The regions segmented from the knees correspond to anatomical structures that can be
used as a starting point for other measurements such as cartilage extraction.
Keywords: Volumetric texture, Filtering, Multiresolution, Texture Segmentation

I. INTRODUCTION

Volumetric texture segmentation has received considerably less attention than its spatial 2D counterpart. Many
different approaches for 2D texture feature extraction, classi�cation and segmentation have been reported, for
example: [2], [3], [4], [5]. In volumetric texture analysis, the extra computational complexity that is introduced
with the third dimension may explain the lack of reported work in this area. Yet, in many cases, a volumetric
texture analysis is highly desirable, like for medical imaging applications such as Magnetic Resonance Imaging
(MRI) segmentation [6], [7], [8], Ultrasound [9], [10] or Computed Tomography (CT) [11] where the data provided
by the scanners is either intrinsically 3D or a time series of2D images that can be treated as a data volume. Seismic
facies analysis [12], [13] or Crystallography [14] are other relevant applications where volumetric texture analysis
is of interest.

The labeling of different classes such as anatomical structures or tissues in medical imagery is an important and
challenging problem, but much of this work has concentratedon the classi�cation of tissues by grey level contrast
alone. For example, the problem of grey-matter white-matter labeling in central nervous system (CNS) images like
MRI head-neck studies has been addressed by supervised statistical classi�cation methods, notably EM-MRF [15].
The success of these methods is partly as a result of incorporating MR bias-�eld correction into the classi�cation
process [16], which can be regarded as extending the image model from a piece-wise constant plus noise model
to include a slowly varying additive or multiplicative intensity bias. Another reason why �rst-order statistics have
been adequate in many instances is that the MR imaging sequence can be adapted or tuned to increase contrast in
the tissues of interest. For example, a T2 weighted sequenceis ideal for highlighting cartilage in MR orthopedic
images, or the use of iodinated contrast agents for tumors and vasculature. Also, multimodal image registration
enables a number of separately acquired images to be effectively fused to create a multichannel or multispectral
image as input to a classi�er. Other than bias �eld artifact,the `noise' in the image model incorporates variation
of the voxel grey-levels due to thetextural qualities of the imaged tissues and, with the ever increasing resolution
of MR scanners, it seems expedient to model and use this variation, rather than subsuming it into the image noise.

We propose a sub-band �ltering scheme for volumetric textures that provides a series of measurements which
capture the different textural characteristics of the data. The �ltering is performed in the frequency domain with �lters

The work of C. C. Reyes-Aldasoro was supported in part by PhD Grants from Consejo Nacional de Ciencia y Tecnolog�́a (CONACYT)
and Instituto Tecnológico Autónomo de México (ITAM).Asterisk indicates corresponding author.
C. C. Reyes-Aldasoro was with the Department of Computer Science, University of Warwick, Coventry, UK. He is now with theTumour
Microcirculation Group, Academic Unit of Surgical Oncology, Royal Hallamshire Hospital, The University of Shef�eld,S10 2JF Shef�eld,
UK (email: c.reyes@shef�eld.ac.uk).
A. Bhalerao is with the Department of Computer Science, University of Warwick, CV4 7AL Coventry, UK (email abhir@dcs.warwick.ac.uk).



2

that are easy to generate and give powerful results. We then propose a supervised feature selection methodology
based on the discrimination power orrelevanceof the individual features taken independently; the ultimate goal is
to select a subset ofdiscriminantfeatures. In order to obtain a quantitative measure ofhow separableare two classes
given a feature, a distance measure is required. We have studied a number measures (Bhattacharyya, Euclidean,
Kullback-Leibler, Fisher) and have empirically shown thatthe Bhattacharyya distanceworks best on a range of
textures [17], [18]. This is developed into the concept of a feature selection space in which discrimination decisions
can be made. A multiresolution classi�cation scheme is thendeveloped which operates on the joint data-feature
space within an oct-tree structure. This bene�ts both the ef�ciency of the computation and ensures only the certain
labelings at a given resolution are propagated to the next. Interfaces between regions (planes), where the label
decisions are uncertain, are smoothed by the use of 3D `butter�y' �lters which focus the inter-class labels to likely
candidate labels [19].

The paper is organized as follows. We begin with a brief review of 2D and volumetric texture analysis and
segmentation methods focussing on those applied to medicalimage analysis and interpretation in Section II. In
Section III, we provide a de�nition of volumetric texture. In Section IV, a measurement extraction technique based
on a multiresolution sub-band �ltering is presented. Section V introduces a Bhattacharyya space for feature selection
and a multiresolution classi�cation algorithm is described in Section VI. An extension of the so-called butter�y
�lters to 3D is used for boundary re�nement. Experimental results on 2D and 3D data are presented and discussed
in Section VII, and Section VIII draws some �nal conclusions.

II. L ITERATURE SURVEY

The machine vision community has extensively researched the description and classi�cation of 2D textures,
but even if the concept of image texture is intuitively obvious to us, it can been dif�cult to provide a satisfactory
de�nition. Texture relates to the surface or structure of anobject and depends on the relation of contiguous elements
and may be characterized by granularity or roughness, principal orientation and periodicity (normally associated
with man-made textures such as woven cloth). Early work of Haralick [20] is a standard reference for statistical and
structural approaches for texture description. Other approaches include contextual methods like Markov Random
Fields as used by Cross and Jain [21], and fractal geometry methods by Keller [22]. Texture features derived from
the grey level co-occurrence matrix (GLCM) calculate the joint statistics of grey-levels of pairs of pixels at varying
distances. Unfortunately, ad dimensional image of sizeN makes the descriptor have a complexity ofO(N dM 2),
whereM is the number of grey levels. This will be prohibitively highfor d = 3 and an image sizes ofN = 512
quantized to, say,M = 64 grey levels. For these reasons and to capture the spatial-frequency variation of textures,
�ltering methods akin to Gabor decomposition [23] and jointspatial/spatial-frequency representations like wavelet
transforms [24], [25] have been reported. In some cases a volumetric data issliced into 2D cross-sections and
then use 2D texture analysis such as Gabor �lters on each individual slice [26] or on 2D orthogonal plates [9],
[10]. Yet high frequency oriented textures that are not aligned to the axes can be missed by these �lters and
can unnecessarily increase the dimensionality of the localdescriptors. Randen and Husøy [27] have shown that
co-occurrence measures are outperformed by such �ltering techniques.

Here, we use the Wilson-Spann sub-band �ltering approach [28], which is similar to the Gabor �ltering and has
been proposed as a `complex' wavelet transform [29].

Previous work on volumetric texture includes work by Kovalev and Petrou [6], who have studied texture anisotropy
in 3D images. They present two algorithms for texture analysis: one with gradient vectors, and a generalized co-
occurrence matrix in 3D. They also present a technique for feature visualization through an extended Gaussian image.
Texture analysis of MRI scans of brains of subjects with Alzheimer's has shown that there is some correlation with
increased anisotropy over normal subjects [8].

Randen [13] has developed a series of three-dimensional texture attributes such as dip, azimuth, chaotic texture
and continuity, that have been applied in seismic stratigraphic mapping [12]. Others have presented extensions of
common 2D texture techniques into 3D, such as Laws masks and co-occurrence matrices: for example, Lang [30]
and Ip and Lam [31] (see [26] for a review).

The importance of texture in MRI has been the focus of some researchers, notably Lerksi [32] and Schad [33], and
a COST European group was established for this purpose [34].Texture analysis has been used with mixed success
in MRI, such as for detection of microcalci�cation in breastimaging [35] and for knee segmentation [36], and in
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(a) (b) (c)

Fig. 1. Volumetric texture examples: (a) A cube divided intotwo regions with Gaussian noise of different variances, (b)A cube divided
into two regions with oriented patterns of different frequencies and orientations, (c) A sample of muscle from MRI.

CNS imaging to detect macroscopic lesions and microscopic abnormalities such as for quantifying contralateral
differences in epilepsy subjects [37], to aid the automaticdelineation of cerebellar volumes [38], to estimate effects
of age and gender in brain asymmetry [39], and to characterize spinal cord pathology in Multiple Sclerosis [40].

III. V OLUMETRIC TEXTURE

Volumetric Textureis considered here as the texture that can be found in volumetric data (this is sometimes called
solid texture[26]). Figure 1 shows three examples of volumetric data withtextured regions.

Our volumetric study can be regarded as volume-based; that is, we consider no change in the observation
conditions.

Throughout this work, we consider volumetric data,V, represented as a function that assigns a gray tone to each
triplet of co-ordinates:

V : L r � L c � L s ! G; (1)

where L r = f 1; 2; : : : ; r; : : : ; N r g, L c = f 1; 2; : : : ; c; : : : ; Ncg and L s = f 1; 2; : : : ; d; : : : ; Nsg are the spatial
domains of the data of dimensionN r � Nc � Ns (using subscripts(r; c; s) for row, columns and slices) and
G = f 1; 2; : : : ; g; : : : Ngg is the set ofNg gray levels.

IV. FEATURE EXTRACTION: SUB-BAND FILTERING USING AN ORIENTATION PYRAMID (OP)

Certain characteristics of signals in the spatial domain such as periodicity are quite distinctive in the frequency or
Fourier domain. If the data contain textures that vary in orientation and frequency, then certain �lter sub-bands will
contain more energy than others. The principle of sub-band �ltering can equally be applied to images or volumetric
data.

Wilson and Spann [1] proposed a set of operations that subdivide the frequency domain of an image into smaller
regions by the use of two operatorsquadrantandcenter-surround. By combining these operators, it is possible to
construct different tessellations of the space, one of which is the Orientation Pyramid (OP) (Figure 2). A band-
limited �lter based on truncated Gaussians is used to approximate the �nite prolate spheroidal sequences used
in [1]. The �lters are real functions which cover the Fourierhalf-plane. Since the Fourier transform of a real signal
is symmetric, it is only necessary to use a half-plane or a half-volume to measure sub-band energies. A description
of the sub-band �ltering with the OP method follows.

Any given volumeV whose centered Fourier transform isV! = F [V] can be subdivided into a set ofi non-
overlapping regionsL i

r � L i
c � L i

s of dimensionsN i
r ; N i

c; N i
s.

In 2D, the OP tessellation involves a set of 7 �lters, one for the low pass region and six for the high pass
(Figure 2 (a)). In 3D, the tessellation will consist of 28 �lters for the high pass region and one for the low pass
(Figure 2 (c)). Thei -th �lter F i

! in the Fourier domain (F i
! = F [F i ]) is related to thei -th subdivision of the

frequency domain as:

F i
! :

�
L i

r � L i
c � L i

s ! Ga(� i ; � i );
(L i

r � L i
c � L i

s)
c ! 0

8i 2 OP; (2)

whereGa describes a Gaussian function, with parameters� i , the center of the regioni , and � i is the co-variance
matrix that will provide a cut-off of 0.5 at the limit of the band (see Figure 2 (d,e) for 2D �lters). The measurement
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(a) (b) (c) (d) (e)

Fig. 2. (a-c) 2D and 3D Orientation Pyramid (OP) tessellation: (a) 2D order 1, (b) 2D order 2, (c) 3D order 1. (d,e) Band-limited 2D
Gaussian �lter: (d) Frequency domainjF i

! j, (e) Magnitude of spatial domainjF i j.

Fig. 3. A graphical example of sub-band �ltering. The top rowcorresponds to the spatial domain and the bottom row the Fourier domain.
Once slice from a knee MRI data set is �ltered with a sub-band �lter with a particular frequency and orientation by a product in the Fourier
domain, which is equivalent to a convolution in the spatial domain. The �ltered image becomes one measurement of the space, S2 in this
example.

spaceS in its frequency and spatial domains is then de�ned as:

Si
w(�; �; & ) = F i

! (�; �; & ) V! (�; �; & )

Si = jF � 1[Si
! ]j; (3)

where(�; �; & ) are the co-ordinates in the Fourier domain. At the next level, the coordinates(L 1
r (1) � L 1

c(1) � L 1
s(1))

will become(L r (2) � L c(2) � L s(2)) with dimensionsN r (2) = N r (1)
2 ; Nc(2) = N c (1)

2 ; Ns(2) = N s (1)
2 : It is assumed

that N r (1) = 2 a; Nc(1) = 2 b; Ns(1) = 2 c so that the results of the divisions are always integer values. To illustrate
the OP on a textured image, a 2D example is presented in Figure3.

V. FEATURE SELECTION USING THE BHATTACHARYYA SPACE

The sub-band �ltering of the textured data produces a seriesof measurements that belong to ameasurement
spaceS. Whether this space corresponds to the results of �lters, features of the co-occurrence matrix or wavelets,
not all the dimensions will contribute to the discrimination of the different textures that compose the original data.
Besides the discrimination power that some measurements have, there is an issue of complexity related to the
number of measurements used. Each extra texture feature mayenrich the measurement space but will also further
burden any subsequent classi�er. Another advantage of selecting a subset of the space is that it can provide a better
understanding of the underlying process that generated thedata [41].

A common method of forward feature selection is thewrapper approach[42], [43]. This approach uses the error
rate of the classi�er itself as the criterion to evaluate thefeatures selected, using a greedy selection, eitherhill
climbing, or best-�rst and treats the measurements as a search space organization:a representation where each state
is a measurement. It is important to bear in mind two issues: one is that hill climbing can lead to local optima, and
the other is that the strength of the algorithm – the use of theclassi�er in the selection process instead of other
evaluation functions – is at the same time its weakness, since the classi�cation process can be slow.

The Bhattacharyya space [44] is presented as a method that provides a ranking for the measurements based on the
discrimination of a set of training data. This ranking process provides a single evaluation route and, therefore, the
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number of classi�cations which remain for every new featureis signi�cantly reduced. In order to obtain a quantitative
measure of classseparability, a distance measure is required. With the assumption about the underlying distributions,
a probabilistic distancecan be easily extracted from some parameters of the data. Kailath [45] compared the
Bhattacharyya distance and the Divergence (Kullback-Leibler), and observed that Bhattacharyya distance yields
better results in some cases while in other cases they are equivalent. A recent study [18] considered a number
of measures: Bhattacharyya, Euclidean, Kullback-Leibler, Fisher, for texture discrimination and concluded that the
Bhattacharyya distance is the most effective texture discriminant for sub-band �ltering schemes.

In its simplest formulation, the Bhattacharyya distance [46] between two classes can be calculated from the
variance and mean of each class in the following way:

DB (k1; k2) =
1
4

ln

 
1
4

(
� 2

k1

� 2
k2

+
� 2

k2

� 2
k1

+ 2)

!

+
1
4

 
(� k1 � � k2 )2

� 2
k1

+ � 2
k2

!

; (4)

whereDB (k1; k2) is the Bhattacharyya distance between two different training classesk1 and k2, and � k1 ; � k1

and � k2 ; � k2 correspond to the mean and variance of each one.
The Mahalanobis distance is a particular case of the Bhattacharyya distance, when the variances of the two classes

are equal; this eliminates the �rst term of the distance thatdepends solely on the variances of the distribution. If
the variances are equal this term will be zero, and grows as the variances differ. The second term, on the other
hand, will be zero if the means are equal and is inversely proportional to the variances.

The Bhattacharyya space,B (i; p), is de�ned on the measurement spaceS as:

L p � L i ; B (i; p) : L p � L i ! DB (Si
k1

; Si
k2

): (5)

where each class pair,p, between classesk1; k2 at measurementi will have a Bhattacharyya distanceDB (Si
k1

; Si
k2

),
and will produce a Bhattacharyya space of dimensionsNp = ( N k

2 ) andN i = 7o : Np � N i (2D). The domains of
the Bhattacharyya space areL i = f 1; 2; : : : 7og and L p = f (1; 2); (1; 3); : : : (k1; k2); : : : (Nk � 1; Nk )g whereo is
the order of the OP. In the volumetric case,L p remains the same (since it depends on the classes only),N i = 29o
andL i = f 1; 2; : : : 29og.

The marginal distributions ofB (i; p) are

B I (i ) =
N pX

p=1

B (i; p) =
N pX

p=1

DB (Si
k1

; Si
k2

); i = 1 ; : : : ; N i ; (6)

BP (p) =
N iX

i =1

B (i; p) =
N iX

i =1

DB (Si
k1

; Si
k2

); p = 1 ; : : : ; Np: (7)

The marginal over the class pairs,B I (i ) sums the Bhattacharyya distances of every pair of a certain feature and thus
will indicate how discriminant a certain sub-band OP �lter is over the whole combination of class pairs. Whereas
the marginalBP (p) sums the Bhattacharyya distances for a particular pair of classes over the whole measurement
space and reveals the discrimination potential of particular pairs of classes when multiple classes are present.

To visualize the previous distribution, the Bhattacharyyaspace and its two marginal distributions were obtained
for a natural texture image with 16 classes (�gure 4 (a)). Figure 4 (c) shows the Bhattacharyya space forS of order5,
and (d) marginalB I (i ). These graphs yield useful information toward the selection of the features for classi�cation.
A certain periodicity is revealed in the measurement space;B 1;7;14;21;28 have the lowest values (this is clearer in the
marginalB I (i )). The feature measurements 1, 7, 14, 21, and 28 correspond tolow pass �lters of the 2D OP. Since
the textures that make up this mosaic have been deliberatelyhistogram equalized, the low pass features provide the
lowest discrimination power. The most discriminant features for the training data presented areS19;18;11;::: which
correspond to the order statisticB (I ) (i ) = f B I (1); B I (2); : : : B I (7o)g whereB I (1) � B I (2) � : : :. In other words,
a re-ordering of the elements of Measurement spaceS is performed before being introduced sequentially to the
classi�er. This provides a particular route for the state space search. The classi�cation result using these features is
shown in �gure 4 (b) and has an average label error 16.5% whichcompares favorably with other methods e.g. Randen
reports an error of 34.7% on this image using a quadrature-mirror sub-band �ltering and a vector quantization for
the classi�er [27]. It is important to mention two aspects ofthis selection process: the Bhattacharyya space is



6

(a) (b)

(c)

(d)

Fig. 4. (a) 16-class natural texture mosaic (image f from Randen [27]). (b) Classi�cation result using BS selected features. Average
classi�cation error is 16.5%. (c) The Bhattacharyya spaceB for a measurement spaceS of order 5 from the 16-texture image. (d) Marginal
B I (i ), the indexMeasurement Spacecorresponds to spaceS.

constructed on training data and the individual Bhattacharyya distances are calculated between pairs of classes.
Therefore, there is no guarantee that the feature selected will always improve the classi�cation of the whole data
space, the features selected could be mutually redundant ormay only improve the classi�cation for a pair of classes
but not the overall classi�cation [47]. Thus the conjectureto be tested then is whether the classi�cation can be
improved in abest-�rst, sequential selection de�ned by the Bhattacharyya space order statistics. The natural textures
image was classi�ed with several sequential selection strategies:

� Following the unsorted order of the measurement space:S1, S2, S3 etc.
� Following the marginalB I (i ) in decreasing order:S19, S18, S11 etc.
� Following the marginalB I (i ) in increasing order:S28, S21, S15 etc. (The converse conjecture is that the

reverse order should provide the worst path for the classi�cation.)
� Three random permutations.

The sequential misclassi�cation results of the previous strategies are presented in Figure 5 where the advantage of
the route provided by theB (I ) can be seen. If extra time can be afforded, then the training data can be used with a
more elaborate feature selection strategy; various forward and backward optimizations are possible (see [47]). Our
experiments on 2D texture mosaics, however, have not shown asigni�cant bene�t by these methods in the �nal
classi�cation error over the sub-optimal best-�rst approach used here [44], [48], and we have demonstrated superior
performance over other techniques: Local Binary Pattern (LBP) and thep8 methods presented by Ojala [49]; and
wavelet features with the Watershed transformation presented by Malpica [50].

Fig. 5. Misclassi�cation error for the sequential inclusion of features to the classi�er for the 16-class natural textures image (�gure 4 (a)).
The route provided by the ordered marginalsB ( I ) (i ) yields the best classi�cation strategy.

Another solution that is provided by the order statistics ofthe Bhattacharyya space marginal is the option to select
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a predetermined number of features as thereduced setor sub-space used for classi�cation. This can be particularly
useful in cases where it can be computationally expensive tocalculate the entire measurement space. Then, based
on the training data, only a few measurements need to be generated based on the �rstn features of theB .

VI. M ULTIRESOLUTION CLASSIFICATION

This section presents a new multiresolution algorithm,Multiresolution-Volumetric Texture Segmentation(M-
VTS). The multiresolution procedure consists of three mainstages: the process ofclimbing the levels or stages
of a pyramid or tree, a decision orclassi�cation at the highest level is performed, and the process ofdescending
from the highest level down to the original resolution. Based on the decision-directed approach of Wilson and
Spann [1], we replace the contextual boundary-re�nement step at each scale with a steerable-�lter based on butter�y
neighborhoods [19]. This is a satisfactory compromise overthe use of a multiresolution MRF to gain a notion of
contextual label smoothing but avoids the need to model and estimate a complicated set of boundary priors over
3D neighborhoods [51].

Smoothing the measurement space can improve the classi�cation results; many isolated elements disappear and
regions are more uniform. But a new problem arises with smoothing, especially at the boundaries between textures.
When the measurement values of elements that belong to the same class are averaged, it is expected that they
will tend to the class prototype, but if the elements belong to different classes, the smoothing can place them in
a different class altogether. It would be ideal to smooth selectively depending on the distance to the boundaries.
Of course, the class boundaries need then to be known. A compromise has to be reached between the intra-class
smoothing and the class boundary estimation. A solution to this problem is to apply a multiresolution procedure
of smoothing several levels with a pyramid before estimating the boundaries at the highest level and applying a
boundary re�nement algorithm in the descent to the highest resolution.

A. Smoothing the Measurement Space

The climbing stage represents the decrease in resolution ofthe data by means of averaging a set of neighbors
on one level (children elements or nodes) up to aparent element on the upper level. Two common climbing
methods are the Gaussian Pyramid [52] and the Quad tree ([53], [54], [55]). In our implementation we used the
quad tree structure which, in 3D, becomes an oct tree (OT). The decrease in resolution correspondingly reduces
the uncertainty in the elements' values since they tend toward their mean. In contrast, the positional uncertainty
increases at each level [1].

The measurement spaceS constitutes the lowest level of the tree. For each measurement Si of the space, aOT
is constructed. To climb a level in theOT , a REDUCE operation is performed [52]:

(Si )L = REDUCE (Si )L� 1; (8)

whereL is the level of the tree.
Every REDUCE step averages eight contiguous elements to produce a singleelement in the upper level. Once

a desired level is reached, the classi�cation is performed.

B. Classi�cation

At the highest level, the new reduced space can be classi�ed.Partitioning of the measurement space can be
considered as a mapping operator

� : S ! f 1; 2; : : : ; Nkg; (9)

where the clusters or classes are� � 1(1), � � 1(2); :::, and these are unknown. Then, for every elementx 2 S, � a

will be an estimator for� where, for every class, there is a pointf a1; a2; : : :g 2 S such that these points de�ne
hyperplanes perpendicular to the chords connecting them, and split the space into regionsf R1; R2; : : :g. These
regions de�ne the mapping function� a : S ! f 1; 2: : : ; Nkg by � a(x) = K if x 2 RK ; K = 1 ; 2; :::; NK . This
partitioning should minimize the Euclidean distance from the elements of the space to the pointsa, expressed
by [56]:

� (a1; a2; : : :) =
X

x2 (L r � L c � L s )

min
1� j � N k

jjS(x) � aj jj : (10)
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The measure of closeness of the estimator� a to � de�nes a misclassi�cation error by� [� a] = P(� a(x) 6= � (x)) ,
and P(� a(S) 6= � (S)) for an arbitrary pointx 2 S in the space. If the values of the pointsak are known, or
there is a way of estimating these from training data, the classi�cation procedure issupervised, otherwise it is
unsupervised. For this work, the points in the measurement spaceak were obtained by �ltering separate training
data with the OP. Once the measurement spaceS is calculated for every training image, the average can be used
as an estimate of the mean of the class:âk and equation 10 can be minimized by an iterative method such nearest
neighbor (NN) clustering. In the experiments presented below, where supervised classi�cation was required we
used a NN approach.

C. Boundary Re�nement

To regain full spatial resolution at the lowest level of the tree, the classi�cation at the higher level has to be
propagated downward. The propagation implies that every parent bequeaths: (a) its class value to 8 children and;
(b) the attribute of being or not being in a boundary (�gure 6). Interaction between neighbors can reduce the
uncertainty in spatial position that is inherited from the parent node. This process is known as spatial restoration
and boundary re�nement, which is repeated at every stage until the bottom of the tree or pyramid is reached.

(a) (b)

Fig. 6. Inheritance of labels to child elements: (a) Class inheritance; (b) Boundary inheritance.

Butter�y �lters ( BF ) [19] are orientation-adaptive �lters, that consist of twoseparate sets orwingswith a pivot
element between them. It is the pivot elementx = ( r; c; s) which is modi�ed as a result of the �ltering. Each
of the wings will have a roughly triangular shape , which resembles a butter�y (�gure 7 (a)) and they can be
regarded as two separate sets ofanisotropic cliques, arranged in a steerable orientation. We propose the extension
of theseBF �lters into 3D, and two possible shapes can be used: pyramidal or conic (�gure 7 (b,c)), for ease of
implementation we used pyramidal. The boundary determinedby the classi�cation process de�nes the orientation of
the �lter which places each of the wings of the butter�y to either side of the boundary. When dealing with volumes
and not images, the boundaries between classes are not single lines but planes, and therefore the orientation of the
butter�ies requires two parameters,� and � . We quantized each orientation in four steps:�; � = f 0; �

4 ; �
2 ; 3�

4 g. The
elements covered by each of the wings are included in the �ltering process while the values of the elements along
the boundary (which are presumed to have greater uncertainty) and the pivot,x, are not included in the smoothing
process. TheBF consists of two sides, with left and right wings:lw=rw , each of which comprisesNw elements:

lw = f lw1; lw2; : : : ; lwN w g
rw = f rw1; rw2; : : : ; rwN w g

lw; rw 2 S: (11)

(a) (b) (c)

Fig. 7. (a) 2D Butter�y �lter, (b) Pyramidal volumetric butter�y �lters, (c) Conic volumetric butter�y �lters. Orientation of � and �
indicated in (c).
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(a) (b) (c) (d) (e)

Fig. 8. A feature space view of boundary re�nement process with butter�y �lters. (a) A boundary elementx with other elements. (b)x
and the two sets of neighboring elements that are comprised by the butter�y wings, all other elements are not relevant at this moment. (c)
The weighted average of each wing. (d) Parameter� balances between the elementx and the average of the wings. (e) New positions are
compared with the prototypes (1,2,. . . ,k) of the classes, the class that corresponds to the minimum distance is then assigned tox.

For each wing, an average of the values of the elements in eachdimension is calculated:

~Si
lw (x) =

1
Nw

N wX

q=1

Si (lwq); ~Si
rw (x) =

1
Nw

N wX

q=1

Si (rwq): (12)

The actual pivot elementx = ( r; c; s) value is then combined with the mean values as follows:

~Sx� lw = (1 � � )S(x) + � ~Slw ; (13)
~Sx� rw = (1 � � )S(x) + � ~Srw : (14)

where � is a scalar gain measure that depends on the dissimilarity ofthe distribution of the elements that make
up the wings:

� =
1

1 + e(5� D )
; D =

j ~Slw � ~Srw j
q

� 2
lw + � 2

rw

; (15)

where� 2
lw and � 2

rw are the variances of the elements in each butter�y wing.
The parameter� acts as weighting factor of the distance between the distributions covered by the two sides of

the butter�y �lter, and provides a balance between the current value of the element and a new one calculated from
its neighbors. It is interesting to note that this balancingprocedure is similar to the update rule of the Kohonen
Self Organizing Maps [57].

The distance measure between the updated pivot element and the prototype values of each class determines to
which class it is reassigned. Figure 8 shows the process graphically. At the classi�cation stage, the new feature values
~Sx� lw ; ~Sx� rw replace the original feature values of elementx. Instead of looking for a class based on� a(S(x)) ,
the new values� a( ~Sx� lw ) / � a( ~Sx� rw ) will determine the class according to its closeness to classprototypes (using
the mapping operator� a from equation 9).

VII. E XPERIMENTAL RESULTS

A. 3D Arti�cial Textures

There are many examples test images available for comparing2D texture segmentation methods. However, up to
the best of the authors' knowledge, there is not such a database for volumetric texture. We have therefore created a
handful of 3D data sets to demonstrate and compare the performance of the presented algorithm and measurement
extraction techniques. First, a volumetric set that represents a simple two-class measurement space, each with
32� 16� 32 elements drawn from Gaussian distributions (Class A:S1 � 1 = 25; � 1 = 2 , S2 � 2 = 26; � 2 = 4 , Class
B: S1 � 1 = 27; � 1 = 7 , S2 � 2 = 28; � 2 = 7 ). The two classes together form a32 � 32 � 32 � 2 space. The data
was classi�ed unsupervised with the number of classes provided but not the estimates of the means. First it was
clustered with the Linde-Buzo-Gray vector quantization method (LBG) [58] in a single resolution and then using
M-VTS (OT level L = 3). The classi�cation results are presented in Figure 9 as clouds of points for each class
for M-VTS. Results are presented in Table I. With M-VTS thereare some incorrectly classi�ed voxels close to the
boundary, but the general shape of the original data is preserved and its overall error rate is much lower.

The second set is a64 � 64 � 64 volume containing two oriented patterns which have different frequency and
orientation (�gure 1 (b)). The measurement space was extracted and two measurements were manually selected:S1
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andS3, and classi�cation was again performed unsupervised for single and multiresolution. Results are presented
in Table I.

Again, some voxels near the boundary are misclassi�ed, lessthan 3%, but the shape (�gure 9 (c)) is well
preserved. The computational complexity was considerablyincreased in 3D, for the �rst set the respective times
for LBG and M-VTS were 0.1s and 14.9s and for the second set 0.4s and 54.0s.

(a) (b) (c)

Fig. 9. Classi�cation of 3D textures: (a,b) Class 1 and Class2 (�gure 1 (a)), (c) Both classes (�gure 1 (b)).

Algorithm
Data LBG M-VTS L = 3
Gaussian Data 14.1 6.2
Oriented Data 4.6 3.0
Knee Phantom 13.0 7.0

TABLE I

M ISCLASSIFICATION (%) FOR LBG AND M-VTS FOR THE SYNTHETIC3D TEST SETS.

Algorithm
Data NN M-VTS L = 3
Case 1 8.1 6.0
Case 2 32.8 10.5
Case 3 36.0 12.0

TABLE II

SUMMARY OF MISCLASSIFICATION (%) FOR NN (AT FULL RESOLUTION) AND M-VTS FOR THEMRI KNEE DATA .

B. 3D Synthetic Knee Phantom

To assess M-VTS with data containing objects with life-likegeometry, we constructed a synthetic knee phantom
containing orientated and random textures arranged roughly as bones, muscle, tissue and background in a volume
of size 128 � 128� 128 voxels, as shown in �gure 10. The classi�cation result usingM-VTS using 8 features
is shown as a 3D visualization in �gure 10 (c). Comparing �gures 10 (a) and (c), the location of the boundaries
between `bone' and `other tissue' is fairly poor. This can beattributed to the dif�culty differentiating the two chosen
textures. However, the `muscle' regions are fairly well de�ned. Despite these problems, the overall classi�cation
rate is 93%. The LBG classi�er and M-VTS were used on the same OP measurement space and the classi�cation
errors were plotted for selecting most discriminant features (Figure 11) from the marginal Bhattacharyya space
(shown in Figure 12 (a)). The results con�rm both that the sequential feature selection is effective and that M-VTS
consistently outperforms a single resolution classi�er. The choice of the level (i.e.L ) at which to begin the top-down
M-VTS will depend on the relative size of the structures in the data and the ratio of inter to intra class variance
present. In the synthetic knee phantom the plot in �gure 12 (b) shows a marginal improvement by initializing
M-VTS at level 4 rather than level 3 of the OP.
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(a) (b) (c)

Fig. 10. Synthetic knee phantom image size128� 128� 128 consisting of 4 texture types arranged approximately into background, bones,
muscle and other. (a) 3D visualization of the original data.(b) Arrangement of principal regions in volume. (c) 3D visualization of labeled
data.

(a) (b) (c) (d)

Fig. 11. (a) Knee phantom data, saggital slice 70 (top-row) and axial slice 110 (bottom-row). (b)-(d): First three most relevant features
from OP of knee phantom (S54 ; S18 ; S64 ) shown as cross-sectional views.

C. 3D MRI texture segmentation

A set of experiments was conducted with 3D MRI sets of human knees acquired under different protocols: one
set with Spin Echoand two sets withSPGR. In the three cases each slice had dimensions of512� 512 pixels
and 87, 64 and 60 slices respectively. One sample slice from each set is presented in Figure 14 (a). The bones,
background, muscle and tissue classes were hand labeled to provide ground-truth for evaluation.

For the �rst data set, Case 1, the following classi�cation approach was followed. Four training regions of size
32� 32� 32 elements were manually selected for the classes ofbackground, muscle, boneandtissue. These training
regions were small relative to the size of the data set, and they remained as part of the test data. Each training
sample was �ltered with the OP sub-band �ltering scheme, andthe results were used to construct the Bhattacharyya
space (�gure 13 (a)).

It can be immediately noticed that two bands:S22;54, which correspond to the low pass bands, dominate the
discrimination while the distance of the pairbone-tissueis practically zero compared with the rest of the space. If
the marginals are calculated directly the low pass would dominate and the discrimination of the bone and tissue
classes, which are dif�cult to segment, would not be possible. Figure 13 (b) zooms into the Bhattacharyya space
of the bone-tissue pair. Here we can see that some features:S12;5;8;38;:::; provide discrimination between bone and
tissue, and the low pass bands help discriminate the rest of the classes.

Feature selection was performed with the Bhattacharyya space and 7 measurements were selected:S22 and
S12;5;8;39;9;51. This selection of features reduced signi�cantly the computational burden. The �nal misclassi�cation
obtained was 8.1% with 7 features. The result for 2D classi�cation was 8.6% (�gure 14 (b)). For the M-VTS
misclassi�cation results were 6.0% (�gure 14 (c)). While the results from the 2D and 3D single resolution are
close, the use of multiresolution improves the results by more than 2%. The classi�cation with a multiresolution
algorithm improves the results and produces a much smootherregion classi�cation. Some of the errors are due in
part to magnetic inhomogeneity artifacts across the image that were not handled explicitly. It should be noted that
the classi�cation results, although not anatomically perfect, illustrate the utility of the use of texture features in
MRI classi�cation.
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(a)

(b)

Fig. 12. (a) MarginalB I (i ) of knee phantom features space from OP. (b) Classi�cation error comparing LBG against M-VTS atL = 3
and L = 4 for sequential selection of features based on the BS featureselection. M-VTS is has consistently lower misclassi�cation errors
(about half of LBG with 3 or more features).

(a)

(b)

Fig. 13. Knee MRI: (a) Bhattacharyya spaceB (3D, order 2), (b) Bhattacharyya space (B i (bone; tissue)).

(a) (b) (c)

Fig. 14. One slice of the three MRI sets and its correspondingclassi�cation. Top row Case1 (slice 36), middle row Case 2 (slice 45),
bottom row Case 3 (slice 40). (a) Original data; (b) 3D singleresolution classi�cation; (c) M-VTS Classi�cation. Data provided by Dr.
Simon War�eld from Brigham and Women's Hospital, Boston.
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TABLE III

CLASSIFICATION (%) OF BONE (~b) ACCORDING TO THE MASK FOR BONE(b) WITH K -MEANS, AND M-VTS. FOR CASE 3, SUPERVISED

AND UNSUPERVISED CLASSIFICATION WAS PERFORMED.

Knee Set Algorithm ~b 2 b ~b 2 (b)c (~b)c 2 b (~b)c 2 (b)c

Case 2 LBG (UnSup) 67.2 21.0 32.8 79.0
M-VTS (Sup) 89.5 21.6 10.5 78.4

Case 3 LBG (UnSup) 42.2 22.9 57.8 77.1
âk (Sup) 64.0 11.0 36.0 89.0
M-VTS (UnSup) 75.8 3.5 24.2 96.5
M-VTS (Sup) 88.0 7.1 12.0 92.9

The SPGR MRI data sets were classi�ed and the bone was segmented with the objective of using this as an
initial condition for extracting the cartilage of the knee.The cartilage adheres to the condyles of the bones and
appears as a bright, curvilinear structure in SPGR MRI data.

Besides the low pass,S22, three high frequency bands were selected, namelyS1;5;9.
The performance of the classi�cation schemes was measured on the ability to correctly classify the bone since

this class alone will be used to segment the cartilage later on in this section. The correct classi�cation was measured
by how much bone was classi�ed correctly inside the bone mask(~b 2 b), and how much bone was classi�ed outside
the bone mask (~b 2 (b)c) and their complements ((~b)c 2 b , (~b)c 2 (b)c). The knee was classi�ed with LBG and
M-VTS at level 3. One slice of the classi�ed results is presented in the middle row of �gure 14. As expected,
M-VTS presents smoother results and reduces the misclassi�cation of the bone from 32.8% to 10.5%. For Case
3 (bottom row of Figure 14) the reduction was from 57.8% to 24.2% with the unsupervised LBG method and if
training data was used, the misclassi�cation went down from36.0% down to 12.0% with NN (table III).

Figure 15 (a) presents a volume rendering of the segmented bone of Case 1. The four boney structures present
in the MRI data set are clearly identi�able:patella, �bula, femurandtibia, and (b) shows a cloud of points of the
bone class of Case 3. Here the misclassi�cation is noticeable in the upper part of the patella (knee-cap), which
is classi�ed as background, and the lower part extends more than it should do into surrounding soft tissue (the
infrapatellar pad).

(a) (b)

Fig. 15. (a) Rendering of the segmented bone of Case 1 (misclassi�cation 8.1%) and (b) the segmented bone~b (as clouds of points) from
Case 3 (misclassi�cation 12.0%).

D. Segmentation of the cartilage

Segmentation of articular knee cartilage is important to understand the progression of diseases such as ose-
toarthritis and it enables the monitoring of therapy and effectiveness of new drug treatments [59], [60], [61]. MRI
has played an important role since it is a 3D, non-invasive imaging method which is cheaper and less traumatic
than arthroscopy, and has been the gold standard for cartilage assessment [62].
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(a) (b) (c) (d)

Fig. 16. Cartilage of Case 2: (a) Slice 15 of the set with the cartilage in white, (b) Rendering of the cartilage and one slice of the MRI
Set. Cartilage of Case 3: (c) Rendering of the cartilage, (d)The cartilage and one slice of the MRI set.

In this section, we propose a simple technique to extract thecartilage without the use of deformable models.
The user has to determine a Region of Interest (ROI) and a graylevel threshold with the bone extracted from the
previous section being used as a starting point. In order to segment the cartilage out of the MRI sets, two heuristics
were used:cartilage appears bright in the SPGR MRIs, andcartilage resides in the region between bones. This
is translated into two corresponding rules: threshold voxels above a certain gray level, and discard those not close
to the region of contact between bones. The methodology to extract the cartilage followed these steps: extract the
boundary of the bone segmented by the M-VTS; dilate this boundary by a number of elements to each side (5
voxels in our case); eliminate the elements outside the ROI and the dilated boundary; threshold the region (gray
level g = 550 for Case 2, andg = 280 for Case 3); �nally, eliminate isolated elements. It shouldbe noted that the
ROI is a cuboid and not an elaborate anatomical template.

Figure 16 presents the cartilage extracted from Cases 2 and 3. Some false positives can be seen, but the general
shape is visually close to that of the cartilage. In these results, it is clear that the general shape of the cartilage;
tibial, femoral and patellar is correctly segmented and thefew incorrectly classi�ed voxels could be easily erased
from the result.

Figure 17 presents the segmented cartilage of Case 3 for three slices of the set in different view: sagittal slice 18,
axial slice 212 and coronal slice 130. Figure 17 (a) presentsthe segmented cartilage. Some false positives appear
as small dots in the image. The tibial cartilage also appearsa bit ragged but the general shape is correct, notice for
instance the separation of the patellar cartilage from the femoral cartilage. As a comparison, �gure 17 (b) presents
the thresholded data of the same slices. Figure 17 (c) presents the cartilage over the original image.

A last validation test was performed. The cartilage of �gure16 (a) was hand segmented and compared with the
M-VTS results. Figure 18 shows the comparison as the sum of the number of pixels per row classi�ed as cartilage
with both techniques. It can be seen from the shape of both lines that the manual segmentation and the M-VTS
are very similar.

VIII. C ONCLUSIONS

A multiresolution algorithm based on Fourier domain �ltering was presented for the classi�cation of texture
volumes. Textural measurements were extracted in 3D data bysub-band �ltering with an Orientation Pyramid
tessellation. Some of the measurements can be selected to form a new feature space and their selection is based on
their discrimination powers obtained from a novel Bhattacharyya space. A multiresolution algorithm was shown to
improve the classi�cation of these feature spaces: oct trees were formed with the features. Once the classi�cation
is performed at the a higher level of the tree, the class and boundary conditions of the elements are propagated
down. A boundary re�nement method with pyramidal, volumetric butter�y �lters is performed to regain spatial
resolution.

The algorithm presented was tested with arti�cial 3D images, a phantom type arti�cial textured volumes and MRI
sets of human knees (SPGR and Spin Echo). Satisfactory classi�cation results were obtained in 3D at a modest
computational cost.

In the case of the MRI data, M-VTS exploits well the textural characteristics of the data. The resulting seg-
mentations of bone provide a good starting point for other techniques, such as deformable models, which are
more sophisticated and require some initial conditions. IfM-VTS is to be used for medical applications, extensive
clinical validation is required but it is not within the scope of this paper; yet the potential of the volumetric texture
analysis has been demonstrated. In the case of MRI, the effects of inhomogeneities artifacts should be addressed.
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Cartilage Extracted Data thresholded Cartilage over knee
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(a) (b) (c)

Fig. 17. Sagittal, coronal and axial view of the cartilage extracted from knee Case 3. The �rst column (a) shows the cartilage in the three
planes, Second Column (b) shows the data thresholded at the same level used to extract the cartilageg = 280, the third column (c) shows
the cartilage over the corresponding slice.

Fig. 18. M-VTS and manual segmentation comparison performed on the cartilage of �gure 16 (a). The sum of number of pixels classi�ed
as cartilage in every row show good agreement of the M-VTS results with the manual segmentation.

Furthermore, there is manual intervention in determining the number of classes, the size of the butter�y �lters, the
depth of the OP decomposition and the height of theOT used by the coarse-to-�ne re�nement. Further research
might be focused in these areas.
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