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Learning to Detect 3D Rectal Tubes in CT
Colonography using a Global Shape Model

Xiaoyun Yang, Gareth Beddoe, and Greg Slabaugh

Medicsight PLC, Kensington Centre, 66 Hammersmith Road, London, UK
{xiaoyun.yang}@medicsight.com

Abstract. The rectal tube (RT) is a common source of false positives
(FPs) in computer-aided detection (CAD) systems for CT colonogra-
phy. In this paper, we present a novel and robust bottom-up approach
to detect the RT. Generative models, trained using kernel density esti-
mation (KDE) on simple low-level features, are employed to rank and
select the most likely RT tube candidate on each axial slice. Then, a
shape model, robustly estimated using RANSAC, infers the global RT
path from the selected local detections. Our method is validated using
a diverse database, including data from five hospitals. The experiments
demonstrate a high detection rate of the RT path, and when tested in a
CAD system, reduce 20.3% of the FPs with no loss of CAD sensitivity.
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1 Introduction

The RT has a (potentially bent) cylindrical shape and includes a bulbous tip that
often has a polyp-mimicking appearance. As such, the rectal tube is a common
source of false positives generated by the CAD for CT Colonography (CTC) [1–
4]. To improve the overall CAD performance, it is therefore desirable to have a
robust and efficient way to identify the RT and remove its resulting FPs from
the CAD marks presented to the reader. Some research has been proposed [2–4]
to address this problem. Iordanescu et al. [2] developed an image segmentation
based method that detects, via template matching, the air inside the RT in the
first nine CT slices, tracks the tube, and performs segmentation using morpho-
logical operations. Suzuki et al. [3] employed a Massive Training Artificial Neural
Network (MTANN) to distinguish between polyps and FPs due to the RT. Barbu
et al. [4] detected part of the RT using Probabilistic Boosting Tree (PBT) and
then applied dynamic programming to find the best RT segmentation from the
detected parts. Both MTANN and PBT are supervised training discriminative
techniques, however, their training heavily relies on the features of individual
samples at each slice. None of the previous methods make use of a global shape
model of the RT.

In this paper, we propose a novel and robust approach for the detection of
the RT. We have two major contributions: (i) a generative model trained on
simple low-level features to detect 2D potential locations of the RT; (ii) a global



2 Xiaoyun Yang, Gareth Beddoe, and Greg Slabaugh

Fig. 1. Rectal Tube Detection Scheme.

3D shape model estimated using RANSAC [5] that robustly infers the path
of RT from local (and potentially outlier) detections. To our best knowledge,
this is the first approach to combine simple low level detections with a global
shape model for the robust detection of the RT. The method is computationally
inexpensive and reliable. The results demonstrate a high detection rate using
a diverse dataset, and in a CAD system, achieve a 20.3% reduction of false
positives without any loss of sensitivity.

2 Method

2.1 Overview

We present a learning framework to combine generative models for low level
detection of air in the rectal tube with a global shape model of the RT path.
The overview of the system is presented in Figure 1. We start with simple image
processing, applied to each 2D axial slice, to detect air regions (RT candidates)
within the body in the most caudad slices, starting at the anal verge and moving
up the abdomen towards the lungs. For each RT candidate, three simple low level
features are computed: the normalized spatial position x and y of the centroid
and the size h of the region. A generative model using kernel density estimation
is trained for prone and supine data respectively and then used to rank the RT
candidates. In each slice, the most probable tube candidate is selected and the
others are discarded. From these 2D detections, RANSAC fits a global 3D global
shape model representing the RT path. RANSAC is a robust statistical technique
that can infer the real RT path even in the presence of strong outliers resulting
from incorrect KDE predictions. The following subsections describe each of these
steps in detail.

2.2 Generative models for 2D candidate detection of RT regions

In this section we demonstrate how we generate local 2D RT candidates, and
train a generative model from simple low-level features. The generated model is
then employed for selection of the most probable candidate on a given slice.

The air region in the RT can be identified on an axial image slice using
standard image processing techniques. First, we apply simple thresholding using
a threshold value of −750 HU. All the air pixels then belong to the background
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and all the remaining pixels are assigned to the foreground pixels; the largest
foreground region will be the body. The air regions within the body region are
then extracted using morphological operations. Furthermore, a 3D bounding box
around the body is determined.

Each candidate is represented by its centroid (Cix, C
i
y, C

i
z). Three low level

features, (V ix , V
i
y , V

i
s ), for each candidate are computed: the normalized spatial

position (V ix) and (V iy ) in the x and y direction, and the region size (V is ). The nor-
malized spatial positions are determined as V ix = (Cix− rectleft)/rectwidth, V iy =
(Ciy − rectbottom)/rectheight, where rectwidth and rectheight define the width
and height of the bounding box, rectleft and rectbottom represent the minimum
bounding box coordinate in x and y, respectively.

In the training stage, each candidate is sorted by the distance from its cen-
troid (Cix, C

i
y, C

i
z) to the annotated RT center point in the same slice. The candi-

date with the smallest distance is selected as training data to build a generative
model if the distance value is less than 6mm and the size is between 0.5 and
130mm2. If the size is too large, the candidate may correspond to or be combined
with non-tube air regions. The selected feature data (V ix , V

i
y , V

i
s ) is then used to

build a generative model with KDE. From the constructed KDE, the probability
of a given feature vector can be estimated as

P (T |(Vx, Vy, Vs)) =

 1
C

∑n
i=1 e

− (Vx−V i
x)2

2h2
x

∑n
i=1 e

−
(Vy−V i

y )2

2h2
y if Vs ∈ [0.5, 130]mm2

0 otherwise
(1)

where (Vx, Vy, Vs) is a given feature vector, (V ix , V
i
y , V

i
s ) (i = 1, .., N) is the ith

example used for training. If Vs is too big or too small, a penalty is given and the
probability is zero. C is a normalization factor that can be set to 1 as we are only
interested in a ranking of the candidates’ probability values. The KDE model
is generated from prone and supine data separately using Gaussian kernels with
bandwidth 0.25 both in x and y direction.

In the testing stage, we apply the appropriate (prone or supine) generative
model to the candidate’s feature vector. A probability can then be estimated for
each RT candidate. The candidates are ranked by the estimated probability and
only the one with the maximum value in each slice will be selected. Figure 2
(a) shows an example CT image, (b) the candidate regions and (c) most likely
candidate selected by the KDE model.

The length of the RT within the body may vary depending upon how deeply
the RT is inserted. We use the most 120mm caudad of CT slices as our pro-
cessing range which are enough to cover the RT in our experiment data. The
majority of RT is located in the most 90mm caudad of CT slices. Examples of RT
detections are shown for two CT scans in Figure 3 for 120 consecutive slices in
which the depth resolution is 1mm. In the figure, the red circles (inliers, usually
corresponding to the RT) and blue dots (outliers, typically not corresponding
to the RT) illustrate the selected candidate centroids, plotted separately, i.e., in
the xz and yz planes. The tube is present in the patient for the most caudad
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(a) (b) (c)

Fig. 2. Examples of the candidate selected by KDE. (a) the CT image, (b) the candi-
date regions, and (c) the region selected by KDE. This region corresponds to the air
in the RT.

(a) (b)

Fig. 3. Examples of RANSAC fitting of two scans in the xz and yz planes.

slices with lower z value. Ideally, the KDE would predict all the air regions of the
RT; however, KDE can wrongly pick up the candidates from other structures.
Numerous outliers are shown in the figure, particularly near or past the end of
the tube (approximately on slice z = 60 for the examples in the figure). In other
cases the RT air regions may connect with colon air and the centroid can deviate
away from true locations.

2.3 RT path estimation using a global shape model

In this section we describe how the underlying RT path is inferred from the RT
candidate centroids selected in the previous step.

The RT is a cylindrical tube placed in the patient’s colon, and once the colon
is insufflated with room air and there is no force to twist the RT. The path of the
RT can be approximated as a quadratic curve (which includes a straight line as
a special case). While there may occasionally be some other air-filled structure
or noise giving a quadratic path, the RT is easily identified as the longest path
along a smooth and continuous quadratic curve starting at the bottom of the
patient. To estimate the correct RT path, one must differentiate the outliers
from the inliers that represent the true locations of the RT. From the inliers, we
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can infer the other 2D RT locations missed by KDE. With the prior model of the
global shape information that the RT path is a quadratic curve and continuously
appears in the most caudad slices, we use that as a criteria to seek a maximum
set of inlier points that can fit the quadratic curve which can be resolved by
RANSAC [5], as show in Equation 2:

θ̂ = arg max
θ

N∑
i=1

f(e2i |θ) (2)

where

f(e2i |θ) =
{

1 e2i < δ2

0 otherwise (3)

where θ is the quadratic model to be estimated. ei is the error or the distance be-
tween the data Vi and the estimated curve. δ is a threshold under the hypothesis
that the error is generated by a true inlier contaminated with a Gaussian noise
P [ei ≤ δ], where we expect the value of P is 0.95. A 3D space curve quadratic in z
models the path as [Cx(z), Cy(z), z]T = [θ0x+θ1xz+θ2xz2, θ0y+θ1yz+θ2yz2, z]T ,
where the estimation of [θ0x, θ1x, θ2x] and [θ0y, θ1y, θ2y] is performed separately
in the xz and yz planes respectively using RANSAC. In Figure 3, the blue dots
represent the candidate locations classified as outliers (non-RT locations) and
red circles represent the candidate locations classified as inliers (RT locations).
The black line illustrates the inferred RT path from the inliers. Even in the
presence of large outliers (non-RT locations) generated by KDE, the estimated
RT path is quite reliable. After RANSAC fitting, given a slice number, we can
predict the RT path location. RANSAC can be viewed as a method to achieve
a robust regression to fit the global shape model to data containing significant
outliers.

3 Results

Our experiment evaluates the RT tube detection for suppression of FPs in CAD.
In this experiment, the CT colonography data consisted of 199 patients of prone
and supine series (398 CT scans) collected from 5 institutions. CT images were
generated using scanners from all the major manufacturers, including Siemens,
GE, Philips, and Toshiba, with 4, 8, 16, 32, and 64 multi-slice configurations,
KVp ranged from 120−140, and exposure ranged from 29 - 500 mAs. All subjects
were scanned within the last 10 years (1999 - 2008) and roughly 80% were
administered fluid and fecal tagging. Any detection by CAD is removed as a FP
if the in-plane distance between the center of the detected region and the center
of the detected RT is less than 6mm. The CAD produced 2186 false positive
detections, of which 444 were removed by RT detection, from 5.49 to 4.37 per
scan. Overall, this improved the CAD with a 20.3% FP reduction. None of the
true positives detected by the CAD were missed due to RT detection, therefore
CAD sensitivity was unaffected.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of detected RTs scanned from different hospitals.

4 Discussion and Conclusion

In this paper, we presented a novel and robust learning approach for RT detec-
tion and removal of its resulting FPs in CAD. The approach starts from simple
image processing operations and simple low-level 2D feature extraction for lo-
cally detected objects, which are then probabilistically ranked using KDE. Then,
RANSAC robustly estimates the RT path from the most likely 2D candidates
by fitting a 3D global shape model. Our RT detection method has shown a high
performance for detecting the RT path and removing FPs in CAD. In future
work, we plan to investigate robust approach to detect the RT tip along the
estimated path and its radius which can help remove FPs more reliably.

References

1. Slabaugh, G., Yang, X., Ye, X., Boyes, R., Beddoe, G.: A Robust and Fast System
for CTC Computer-Aided Detection of Colorectal Lesions. Algorithms 3(1) (2010)
21–43

2. Iordanescu, G., Summers, R.M.: Reduction of false positives on the rectal tube
in computer-aided detection for ct colonography. Medical Physics 31(10) (2004)
2855–2862

3. Suzuki, K., Yoshida, H., Nppi, J., Dachman, A.: Massive-training artificial neural
network (MTANN) for reduction of false positives in computer-aided detection of
polyps: Suppression of rectal tubes. Medical Physics 33(10) (October 2006) 3821–24

4. Barbu, A., Bogoni, L., Comaniciu, D.: Hierarchical part-based detection of 3D
flexible tubes: Application to CT Colonoscopy. In: MICCAI (2). (2006) 462–470

5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6) (1981) 381–395


