

City, University of London Institutional Repository

Citation: Slabaugh, G. G., Mihalef, V. & Unal, G. B. (2005). A Contour-Based Approach to

3D Text Labeling on Triangulated Surfaces. In: Fifth International Conference on 3-D Digital
Imaging and Modeling, 2005 (3DIM 2005). (pp. 416-423). IEEE Computer Society. ISBN 0-
7695-2327-7 doi: 10.1109/3DIM.2005.7

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4405/

Link to published version: https://doi.org/10.1109/3DIM.2005.7

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Contour-Based Approach to 3D Text Labeling on Triangulated Surfaces

Greg Slabaugh
Intelligent Vision and Reasoning Department

Siemens Corporate Research
Princeton, NJ USA

greg.slabaugh@siemens.com

Viorel Mihalef
Center for Computational Biomedicine Imaging and Modeling

Division of Computer and Information Sciences
Rutgers University

New Brunswick, NJ USA
mihalef@paul.rutgers.edu

Gozde Unal
Intelligent Vision and Reasoning Department

Siemens Corporate Research
Princeton, NJ USA

gozde.unal@siemens.com

Abstract

This paper presents a simple and efficient method of
forming a 3D text label on a 3D triangulated surface. The
label is formed by projecting the 2D contours that define
the text silhouette onto the triangulated surface, forming
3D contour paths. Surface polygons upon which the 3D
contour paths lie are retriangulated using a novel approach
that forms a polyline defining the region outside the contour.
This algorithm produces labeled 3D surfaces that conform
to the specifications of the STL format, making them suit-
able for fabrication by a rapid prototyping machine. We
demonstrate the effectiveness of the algorithm in forming
flat and extruded labels on non-trivial surfaces.

1 Introduction

Object labeling is essential for many tasks, such as in-
ventory control, object identification, and tracking. For ex-
ample, in manufacturing, assembly of a product composed
of many parts is considerably simpler when each individual
component is labeled so that it can be identified. Likewise,
given an object, one might like to know about its history or
attributes. If the object is labeled, one can input the label

into a database to retrieve such information.
In this paper, we present a digital, geometric approach

to form a 3D label on a 3D triangulated surface. An appli-
cation or user supplies the computer with a set of charac-
ters and a position on the surface for placement of the label.
The technique then back-projects the 2D contours of the text
onto the surface, merges the text to the surface, and extrudes
the text into a 3D label, in a way that produces a 3D model
that can be fabricated by a rapid prototyping machine.

Several steps of this process, such as back-projection and
3D extrusion are quite straightforward. However, the most
challenging aspect of this 3D labeling task is integrating the
text geometry with that of the surface. In our application,
this geometric integration must achieve the following goals:

1. It should not distort the geometry of the surface for
points located outside of the projection of the label.

2. It should be fast; i.e., labeling an object should take at
most a few seconds.

3. The 3D labeled surface should conform to the spec-
ifications of the STL format. In particular, the sur-
face should be triangle-based and satisfy the vertex-to-
vertex rule, which states that each triangle must share
two vertices with each of its adjacent triangles.

We achieve the above goals by introducing an algorithm
that quickly integrates each text character of the label with
the surface, by retriangulating the triangles upon which the
character projects so that the region outside the character
consists of triangles, and the region inside the character is
empty space, as depicted in (a) and (b) of Figure 1. This
algorithm is the primary contribution of this paper. Once
integrated, the character geometry can be extruded into 3D
so that the text label is indented, flat, or protruding rela-
tive to the surface. This process can be repeated for more
characters, forming a longer text string. The labeled surface
can then be output as an STL file for fabrication on a rapid
prototyping machine.

2 Relation to previous work

We are unaware of any papers specifically focused on the
problem of 3D text labeling as described above. However,
there is much literature devoted to merging and cutting 3D
surfaces in the computer graphics and computer aided de-
sign (CAD) literature. We discuss the most related work
below.

Constructive solid geometry (CSG) [3, 6, 8] is a pow-
erful way to model 3D surfaces by the application of reg-
ularized Boolean set operations. For example, using such
techniques, a complex polyhedral object can be formed as
the union, intersection, and/or difference of simpler polyhe-
dral objects. The method presented in [6] applies CSG to
two polyhedral surfaces. First, all polygons in each of the
two surfaces are subdivided so that no two polygons inter-
sect. Then, the polygons of each object are classified with
respect to the surface of the other object. This classifica-
tion is achieved by casting rays from the polygon through
the other object and checking the surface normal. Based
on this classification and the set operation, the technique
will retain or delete the polygon. Alternatively, the method
presented in [8] implements polyhedral set operations using
BSP trees.

These general-purpose CSG techniques require numer-
ous tests to determine which polygons intersect and to clas-
sify polygons of surface A as being in, out, or on the bound-
ary of surface B. In contrast, the method presented in this
paper reduces the complexity of the problem by first pro-
jecting the points defining the text characters onto the 3D
surface. Doing so obviates the need for complicated in-
tersection tests, and reduces the 3D/3D surface intersection
problem to a simpler contour-based problem on the 3D sur-
face. Furthermore, such CSG methods will not, in general,
produce a triangle-based surface that satisfies the vertex-
to-vertex rule. Therefore, if such methods are used, post-
processing of the surface is necessary to generate a valid
STL file for rapid prototyping applications.

Since our text labeling approach extrudes letter contours

from a 3D surface, it bears some relation to offset curve
methods [7, 9] that appear in the CAD literature. The
specific nature of text labeling ensures that the extrusion
distance is kept small enough so that local or global self-
intersection does not become an issue. In addition to pro-
ducing offset curves during extrusion, we integrate the ex-
truded text with the surface to produce the label.

One could regard the core of our 3D labeling method
as a mesh-cutting technique; following [1], our method
is characterized by placing a template through the mesh
and remeshing the intersected primitives (triangles, in our
case). The methods falling in the same category with
ours cited in [1] do not report on the implementation of
their local remeshing techniques so it is unclear to what
extent their remeshing is STL compliant and geometry-
preserving. With minimal modifications, our remeshing al-
gorithm could be successfully applied to interactive surface
surgery that preserves the STL attribute of the initial mesh.

Given a set of 3D text character points, along with the
surface triangle vertices, it would be possible to delete all
surface triangles upon which the 3D text points project, and
then retriangulate the region of space between the remain-
ing surface triangles and the 3D text points using a meshing
algorithm like constrained Delaunay triangulation [10] or
advancing front triangulation [4]. However, unless special
care is taken, direct application of these methods will al-
ter the surface geometry for regions outside the text, since
these methods might form new triangles using vertices that
lie on different triangles of the original surface. Where the
surface is non-planar, the new surface geometry will dif-
fer from the original surface geometry. When retriangulat-
ing, in our method we only break apart existing triangles on
the surface and therefore do not alter its geometry outside
the text label. We implement our retriangulation by pass-
ing contours to OpenGL and therefore do not require any
complicated data structures.

Finally, we note that labeling of tracked objects in
video [5] has appeared in the literature. However, unlike
these methods that superimpose a label on top of the video,
our technique modifies the scene geometry to include the
label.

3 Description of the approach

In this section we describe the details of our 3D text la-
beling algorithm.

3.1 Extracting 2D contours and placement on sur-
face

Our labeling approach first begins with a text string for
integration on the surface. This string can be specified auto-
matically (e.g., read from a database) or entered by a user of

(a) (b) (c)

Figure 1. Letter integration and extrusion. In (a), the two gray triangles indicate a portion of a larger
3D surface. The darker gray polyline is the back-projection of a capital L letter onto the surface.
The labeling problem seeks to retriangulate the triangles upon which the character projects so that
the region outside the character consists of triangles, and the region inside the character is empty
space, as shown in (b). Next, the character can be extruded from the surface and closed, as shown
in (c).

the software. We then extract the 2D contours of the letters
in the text string. Most operating systems provide functions
that allow one to obtain these contours. In particular, we use
the GDI path functions [2] that are part of Microsoft Win-
dows. These functions convert the text shape composed of
Bézier curves and straight lines to collection of closed poly-
line contours as shown in Figure 2. Each contour is stored in
a linked list. The points in the polylines are oriented so that
the region outside the letter is always located to the right of
the contour, as depicted in Figure 3.

Figure 2. 2D contours defining letter shape.

Next, the location on the surface where the text label
should be placed is specified. This can be done automat-
ically; however, in our application the user drags the text la-
bel so that it hovers over the region of the surface to where
the label should project. We demonstrate the positioning of
the label in Figure 4.

Next, the approach back-projects the 2D vertices that de-
fine the text onto the 3D surface. These points are shown in

Figure 3. Orientation of 2D contours.

gray in Figure 5, for the capital L example. Figure 5 also
shows the vertices of the surface triangles in black. In order
to perform the retriangulation, we will also need the points
at which the projected contour intersects the edges of the
surface triangles. These intersection points are shown in
white in Figure 5. We compute them by intersecting the
surface triangle edges with a plane formed from points Vi,
Vi+1, and C, where Vi and Vi+1 are two successive 3D
letter contour points, and C is the camera’s center of pro-
jection from which the back-projection occurs. In the ex-
ample shown in Figure 5 (b), our approach computes the
point A, in between Vi and Vi+1. We insert point A in
our list of contour points so that it appears between Vi and
Vi+1. We repeat this procedure to find the other intersec-
tion points in the figure. At the end of this step, we have
a new ordered list of 3D letter contour points that includes
both the back-projected contour points (shown in gray) and
the intersection points (shown in white). If the projections
of Vi and Vi+1 fall inside triangles situated far from each
other, we find the extra edge intersection points by marching
along the surface triangles that are intersected by the plane

(a) (b)

Figure 4. Positioning of the 2D text label. The user clicks the black square to drag the label into
position. We show both shaded (a) and wire-frame (b) renderings.

C Vi Vi+1. We use the local connectivity information to
find these triangles efficiently.

3.2 Merging the label and the surface

To avoid altering the surface geometry, we perform the
remeshing only within existing surface triangles. This has
the additional benefit of reducing the 3D remeshing prob-
lem into a 2D remeshing problem. Each 2D region is
remeshed using OpenGL’s (GLU, Version 1.2) tessellation
functions. These functions create a series of triangles that
satisfy the vertex-to-vertex rule given a closed polyline, and
support triangulation of complex polygons. Thus, our task
is to now identify, using only points on a triangle, a closed
polyline that covers the region of space to be triangulated.

Figure 6 illustrates this process. The method starts with
an entry point, which is an intersection point at which the
text character contour enters a triangle. For example, such
a point is vertex 1. The approach then follows the letter
contour while it is on triangle T1, adding vertices 2 and 3
to polyline. At vertex 3, the letter contour exits T1. Since
we want to only remesh using points that are on T1, we add
vertex 4 to the polyline. We find vertex 4 by identifying the
closest vertex that is on the triangle edge 64 that contains
vertex 3, and positioned on the right (i.e., clockwise) of the
letter contour. We always look in a clockwise direction,
since the region of space to the right of the letter contour is
the region to be filled in. Once at vertex 4, we look along
the triangle edge 45 to see if the edge intersects the letter
contour. If not, we add vertex 5 to the polyline and move
to edge 56. Again, we look to see if the edge intersects the
letter contour. Again, it does not, so we add vertex 6 to the
polyline and advance to edge 64. Edge 64 does intersect
the contour, and we find the closest point of intersection to
vertex 6. In this case, it is vertex 1, the starting vertex in
the polyline. We now have a closed polyline representing
a region of space to be triangulated. We give this polyline

to OpenGL, which triangulates the region, as shown in Fig-
ure 6 (b).

At this stage, we have processed one region of triangle
T1. We repeat the process for other regions of the triangle,
until all regions outside the text contour have been retrian-
gulated. Next, we repeat this process for all triangles to
which the text contour projects, until the entire text contour
geometry has been integrated.

While we described the algorithm in the paragraphs
above and illustrated it in Figure 6 for a specific example,
the principles apply to any letter and any surface triangle.
Pseudo-code for the general algorithm for processing a let-
ter contour is shown in Code Listing 1. For the general
algorithm, we must additionally consider the special cases
where all the points of a contour lie within a triangle, for
which no intersection points exist. However, these cases
are simple to detect and handle. One case is when all ver-
tices of the letter project to one triangle. In this case we
pass a polyline consisting of the 3 vertices of the triangle to
OpenGL, followed by all contours corresponding to the let-
ter. OpenGL will then tessellate the proper region of space
inside the triangle. Another case exists when the contours
of the letter project to different triangles, but each contour
lies within its own triangle. For example, such a case can
occur when the dot of a lower case “i” projects to one trian-
gle, but the base projects to another. In this case, for each
triangle we again send polyline consisting of the 3 vertices
of the triangle to OpenGL, followed by the text contour in
the triangle.

Integration of text brings us to (b) of Figure 1. The next
step is to extrude text into 3D to complete the label. First,
we duplicate each point on the each letter contour, and ap-
ply a small offset either towards or away from the center of
projection C. Using an offset towards C will result in 3D
text that protrudes from the surface, while using an offset
away from C will result in an indented label. Using these
points, we again call the OpenGL tessellation functions to

(a) (b)

Figure 5. 3D points used in the integration. The black vertices at the 4 corners of the image represent
the 3D vertices of the surface triangles. Each 2D point of the letter contour is projected onto the
surface, yielding the gray points. Our approach computes the intersection points (shown in white),
which are located at the intersection of the triangle edge with a plane connecting points C, Vi, and
Vi+1, as shown in (b). See text for details.

(a) (b)

Figure 6. Remeshing. We find a polyline on triangle T1 (a) and tessellate it (b) using OpenGL.

form the walls and the top of the extruded label. All of these
newly formed triangles are added to the surface. This then
completes the formation of the 3D text label for the letter.

It is worthwhile to consider under what circumstances
this method may fail to produce a valid labeling of a surface.
Clearly, if the 2D text contours do not all project onto the
surface then an erroneous result may occur. However, this
case is easily detected, and can be handled by moving the
camera. Additional problems could occur for a surface that
is extremely noisy. While the integration of the text works
properly, extrusion based on the surface normal may cause
the extruded geometry to self-intersect. As before, this case
could be easily detected, and handled by prevention of self-
intersecting extrusions. However, in practice such this issue
has not appeared in our experiments.

4 Examples

We now present examples to demonstrate the labeling
algorithm. In Figure 7 (a) we show a CAD part that we
would like to label with the part number “A43”. We type
the characters “A43” in our program and position the label.
We then project the characters on the surface, merge the
text geometry with the surface, and extrude the text towards
the camera to produce protruding label. Flat shaded and
wireframe renderings of the labeled part are shown in (b)
and (c) of the figure.

Figure 8 shows the process of producing an indented la-
bel on a CAD part. The text “top” is used to label the part
so that its orientation can be easily determined. The labeled
part is shown in the upper right part of the figure, and in the
bottow of the figure we show close-ups of the flat shaded

function ProcessLetter()
extract 2D letter contours c1 · · · cN

back-project c1 · · · cN to the 3D surface, forming surface contours C1 · · ·CN

flag = false
if (all points C1 · · ·CN lie in triangle T)

pass contour formed from T’s three vertices to OpenGL, set flag = true
for each surface contour Ci ∈ C1 · · ·CN {

if (Ci is the only contour in triangle T && flag == false && Ci is oriented counter-clockwise)
pass contour formed from T’s three vertices to OpenGL

processContour(Ci)
}
tessellate using OpenGL
delete all original surface triangles to which the letter projects

function ProcessContour(Ci)
find contour intersection points (white points in Figure 3a)
if (number of intersection points == 0) {

send Ci to OpenGL for tessellation
return

} else {
insert contour intersection points into Ci

select starting point S on a triangle T so that S is an entry point into T, set P = S
add P to L, the polyline that will be passed to OpenGL
P = P + 1, the next point on the text contour Ci

while (true) {
if (P is a point on a triangle edge) {

add P to L
P = closest point on edge of T where point P is located, in a clockwise direction
while (P is a triangle vertex) {

add P to L
P = closest point on edge of T where point P is located, in a clockwise direction

}
if (P == S) {

send L to OpenGL for tessellation, clear L
if (all points in Ci processed)

return
P = next unprocessed entry point, S = P
T = triangle being entered

}
}
add P to L
P = P + 1

}
}

Code Listing 1. Detailed pseudocode for processing a letter. An example is described in Section 3.2.

(a) (b) (c)

Figure 7. A protruding label on a 3D CAD part. Before labeling, the surface is composed of 8,260
triangles. After labeling, it is composed of 8,775 triangles.

and wireframe renderings.
Figures 10 and 11 demonstrate the labeling of surfaces

with higher curvature for protruding and indented labels,
respectively. In (a) and (b) of Figure 11 we show the front

Figure 8. An indented label on a 3D CAD part. The surface is composed of 27,800 and 28,799 triangles
before and after labeling, respectively.

side of the surface, for which label is indented, and in (c)
and (d) we show the back side of the surface, where the
label protrudes. Finally, in Figure 9 we generate a flat label
on the surface, but render the text triangles in a different
color.

Figure 9. Forming a flat text label on a surface.

For all of these examples, the label was integrated into
the surface in less than 5 seconds using a 2.66 GHz Pentium
4 processor and unoptimized C++ code. In addition, using
VisCAM RP 2.01 [11], we have verified that our labeling
satisfies the requirements of the STL format.

5 Conclusion

In this paper we presented a geometric approach to form
a 3D label on a 3D triangulated surface. The method in-
tegrates the geometry of the projected text with that of the
surface, in a way that does not change the surface geometry
outside the label. The algorithm is simple, efficient, robust
in regions of high-curvature, and produces a 3D model that
can be fabricated by a rapid prototyping machine.

For future work, we are interested in further automation
of the method so that it automatically positions the label on
the surface. In addition, we plan on adapting the remeshing
algorithm to perform interactive mesh surgery.

6 Acknowledgements

We thank Jason Tyan and Tong Fang of Siemens Cor-
porate Research for discussions and assistance with this
project.

References

[1] Bruyns, C., Senger, S., Menon, A., Montgomery, K., Wilder-
muth, S., Boyle, R., “A Survey of Interactive Mesh-Cutting
Techniques and a New Method for Implementing Generalized
Interactive Mesh Cutting Using Virtual Tools,” the Journal of
Visualization and Computer Animation, Vol 13, 2002, pp. 21
– 42.

(a) (b) (c)

Figure 10. A protruding label on a surface with curvature. The surface is composed of 10,503 and
11,967 triangles before and after labeling, respectively.

(a) (b)

(c) (d)

Figure 11. An indented label on a surface with curvature.

[2] Chandler, D., and Fotsch, M., Windows 2000 Graphics API
Black Book, Coriolis Technology Press, 2001.

[3] Foley, J., Van Dam, A., Feiner, S., Hughes, J., Computer
Graphics, Principles and Practice, 2nd Edition, Addison-
Wesely, 1996.

[4] George, P., Automatic Mesh Generation: Applications to Fi-
nite Element Method, John Wiley and Sons, 1991.

[5] Geys, I., Van Gool, L., “Virtual Post-its: Visual Label Extrac-
tion, Attachment, and Tracking for Teleconferencing,” Proc.
of 3rd International Conference on Computer Vision Systems
(ICVS), pp. 121–130, 2003.

[6] Laidlaw, D., Trumbore, W., Hughes, J., “Constructive Solid
Geometry for Polyhedral Objects,” Proc. Siggraph 1986, pp.

161 – 170.
[7] Maekawa, T., “An Overview of Offset Curves and Surfaces,”

Computer-Aided Design, Vol. 31, 1999, pp. 165 – 173.
[8] Naylor, B., Amanatides, J., Thibault, W., “Merging BSP Trees

Yields Polyhedral Set Operations,” Proc. Siggraph 1990, pp.
115 – 124.

[9] Pham, B., “Offset Curves and Surfaces: A Brief Survey,”
Computer Aided Design, 1992: 24(4), pp. 223–229.

[10] Shewchuk, J., “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” First Workshop on
Applied Computational Geometry, May 1996, pp. 124–133.

[11] VisCAM Software, http://www.marcam.de

