
              

City, University of London Institutional Repository

Citation: Curci, G. & Corsi, F. (2012). Discrete sine transform for multi-scale realized 

volatility measures. Quantitative Finance, 12(2), pp. 263-279. doi: 
10.1080/14697688.2010.490561 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/4433/

Link to published version: https://doi.org/10.1080/14697688.2010.490561

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Discrete Sine Transform for Multi-Scales Realized

Volatility Measures ∗

Giuseppe Curci †, Fulvio Corsi ‡

This version: April 2010

Abstract

In this study we present a new realized volatility estimator based on the combination of the

Multi-Scale regression and Discrete Sine Transform (DST) approaches. Multi-Scales estimators

similar to that recently proposed by Zhang (2006) can, in fact, be constructed within a simple

regression based approach by exploiting the linear relation existing between the market microstruc-

ture bias and the realized volatilities computed at different frequencies. We show how such powerful

Multi-Scale regression approach can also be applied in the context of the Zhou (1998) or DST or-

thogonalization of the observed tick-by-tick returns. Providing a natural orthonormal basis decom-

position of observed returns, the DST permits to optimally disentangle the volatility signal of the

underlying price process from the market microstructure noise. Robustness of the DST approach

with respect to more general dependent structure of the microstructure noise is also analytically

shown. The combination of Multi-Scale regression approach with DST gives a Multi-Scales DST re-

alized volatility estimator close in efficiency to the optimal Cramer-Rao bounds and robust against

a wide class of noise contaminations and model misspecifications. Monte Carlo simulations based

on realistic models for price dynamics and market microstructure effects, show the superiority of

DST estimators, compared to alternative volatility proxies for a wide range of noise to signal ratios

and different types of noise contaminations. Empirical analysis based on six years of tick-by-tick

data for S&P 500 index-future, FIB 30, and 30 years U.S. Treasury Bond future, confirms the

accuracy and robustness of DST estimators on different types of real data.
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1 Introduction

Asset returns volatility is a central feature of many prominent financial problems such as asset allo-

cation, risk management and option pricing. Recently a nonparametric approach to develop ex-post

observable proxies for the daily volatility has been proposed, the so called Realized Volatility measures.

In its standard form realized volatility is simply the sum of squared high-frequency returns over a

discrete time interval of typically one day, i.e. the second uncentered sample moment of high-frequency

returns. This idea traces back to the seminal work of Merton (1980) who showed that the integrated

variance of a Brownian motion can be approximated to an arbitrary precision using the sum of intraday

squared returns. More recently a series of papers (Andersen, Bollerslev, Diebold and Labys 2001,

2003 and Barndorff-Nielsen and Shephard 2001, 2002a 2002b, 2005 and Comte and Renault 1998) has

formalized and generalized this intuition by applying the quadratic variation theory to the broad class

of special (finite mean) semimartingales. In fact, under very general conditions the sum of intraday

squared returns converges, as the sampling frequency increases, to the notional volatility over the day.

Thus, realized volatility provides us, in principle, with a consistent nonparametric measure of the

notional volatility.

In practice, however, empirical data differs in many ways from the frictionless continuous-time

price process assumed in those theoretical studies. Beside the obvious consideration that a continuous

record of prices is not available, the presence of market microstructure effects prevent the application of

the limit theory necessary to achieve consistency of the realized volatility estimator. The main sources

of microstructure effects are the bid-ask bounce1 and price discreteness. As already noted by Roll

(1984) and Blume and Stambaugh (1983), bid-ask spreads produce negative first-order autocovariances

in observed price changes. Similarly, if one makes the assumption that observed prices are obtained

by rounding underlying true values, Glottlieb and Kalay (1985) and Harris (1990) showed that price

discreteness induces negative serial covariance in the observed returns.

Therefore, microstructure noise induces a non-zero autocorrelation in the returns process which

makes no longer true that the variance of the sum is the sum of the variances. Hence, market

microstructure introduces a bias that grows as the sampling frequency increases. Formal studies of

the impact of microstructure noise on realized volatility measure have been made by Bandi and Russell

(2005), Aı̈t-Sahalia, Mykland and Zhang (2005) and Hansen and Lunde (2006).

Earlier attempts to directly correct for the microstructure effects at the tick-by-tick level were the

first order serial covariance correction proposed by French and Roll (1986), Harris (1990) and Zhou

(1996)2 and the exponential moving average (EMA) filtering of Corsi, Zumbach, Müller and Dacorogna

(2001) and Zumbach, Corsi and Trapletti (2002). However, the first type of estimator suffers from

the possibility to become negative while the second one is a non-local estimator which adapts only

slowly to changes in the properties of the pricing error component. Moreover, both estimators correct

1 Studies on the bid-ask spread are largely developed within the framework of quote-driven markets. However, the

bid-ask spread is not unique to the dealer markets: Cohen et al. (1981) and Glosten (1994) establish the existence of

the bid-ask spread also in a limit-order market because of transaction costs and asymmetric information.
2More recently, this approach has been revived by Oomen (2005) and Hansen and Lunde (2006).
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only for the bias deriving from the first lag of the return autocorrelation function, while they are very

sensitive to non zero higher lag coefficients.

In fact, the presence of significant autocorrelation at lag lengths greater than one and the possibility

that each trading day may be characterized by different autocorrelation structures make the filtering

problem rather complex. In theory, this problem could be tackled by a fully parametric approach.

Parametric higher order covariance correction has been proposed, for instance, by Bollen and Inder

(2002) which makes use of a series of AR models selected on the basis of the Schwarz BIC criteria and

by Hansen and Lunde (2004) which employ MA(q) filters where q changes with the returns frequency

so to keep the time spanned by the autocorrelation window constant. More recently, Barndorff-

Nielsen, Hansen, Lunde and Shephard (2008) proposed a modified kernel-based estimator which is

asymptotically optimal. Concurrently, Zhang, Mykland and Aı̈t-Sahalia (2005) proposed an estimator

based on overlapping subsampling schemes and an appropriate combinantion of two realized volatilities

computed at two different time scales. Recently, Zhang (2006) has generalized the Two Scales estimator

to a multiple time scales estimator that combines realized volatilities computed at more than two return

frequencies and reaches the same asymptotic efficiency of the kernel-based estimator. Our approach

will follow the direction of this Multi-Scales methodology3.

In this paper a new realized volatility measures based on the combination of the Multi-Scales linear

regression approach and Discrete Sine Transform (DST) orthogonalization are presented. Multi-Scales

estimators similar to that recently proposed by Zhang (2006) can, in fact, be constructed within a

simple regression based approach (similar in spirit to the recent one suggested by Phillips and Yu

2006) by exploiting the linear relation existing between the market microstructure bias and realized

volatilities computed at different frequencies. We show that the same Multi-Scales regression idea can

be applied in the context of the Zhou (1998) or DST orthogonalization of the observed high frequency

returns. The motivation for the employment of the DST approach rests on its ability to decorrelate

signal for data exhibiting MA type of behaviour which arises naturally in discrete time models of tick-

by-tick returns. In fact, DST diagonalizes MA(1) processes exactly and MA(q) approximately. Hence,

this nonparametric DST approach, turns out to be very convenient as it provides an orthonormal basis

which permits to optimally (in a linear sense) extract the volatility signal hidden in the noisy tick-by-

tick return series. Moreover, thanks to the DST results, it is possible to derive a closed form expression

for the Cramer-Rao bounds of an MA(1) process and hence to evaluate the absolute efficiency of the

estimators. We show that this approach produces robust and accurate results even in the presence

of not i.i.d. microstructure noise which leads to more general MA(q) processes for the tick-by-tick

returns. It is then robust against a wide class of noise contaminations and model misspecifications.

The rest of the paper is organized as follows. Section 2 reviews a model for the tick-by-tick

observed price process and its DST orthogonalization and presents both the Multi-Scales and Multi-

Scales DST approaches. It also discusses absolute efficiency of volatility estimation for MA(1) process

deriving the analytical expression of the Cramer-Rao bounds and analyzes the robustness of the DST

3Barndorff-Nielsen, Hansen, Lunde and Shephard (2004) show that a direct link between the Multi-Scales and the

kernel-based estimators exists.
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estimators with respect to more general noise contaminations. Section 3 outlines the setup for the

Monte Carlo simulations and compares the performance of Multi-Scales DST estimators togheter with

other alternative realized volatility estimators. Section 4 reports the results of the application of DST

estimators on empirical data. Section 5 concludes.

2 Definitions and properties of DST volatility estimators

2.1 Price process with microstructure noise

As described in Hasbrouk (1993, 1996), a general way to model the impact of various sources of

microstructure effects is to decompose the observed price into the sum of two unobservable components:

a martingale component representing the informationally efficient price process and a stationary pricing

error component expressing the discrepancy between the efficient price and the observed one. The

dynamics of the true latent price can be modelled as a general continuous time Stochastic Volatility

(SV) process4

dp∗(t) = µ(t)dt + σ(t)dW (t) (1)

where p∗(t) is the logarithm of the true instantaneous price, µ(t) is the finite variation process of the

drift, dW (t) is a standard Brownian motion, and σ(t) is the instantaneous volatility. For this diffusion,

the notional or actual variance is equivalent to the integrated variance for the day t (IVt)
5 which is

the integral of the instantaneous variance of the underling true process σ2(t) over the one day interval

[t − 1; t], i.e. IVt =
∫ t
t−1 σ2(ω)dω.

The observed (logarithmic) price, being recorded only at certain intraday sampling times and

contaminated by market microstructure effects, is instead a discrete time process described in the

“intrinsic transaction time” or ”tick time”6 denoted with the integer index n:

pt,n = p∗t,n + ηtωt,n (2)

where p∗t,n is the unobserved true price at intraday sampling time n in day t and ηtωt,n represents the

pricing error component with ηt the size of the perturbation and ωt,n a standardized noise. Depending

on the structure imposed on the pricing error component, many structural models for microstructure

effects could be recovered. Here we take a more statistical perspective assuming ω to simply be a

zero mean nuisance component independent of the price process. Initially the assumption of an i.i.d.

noise process for ω is made while it will be subsequently relaxed to allow for more general dependence

structure.

According to the Mixture of Distribution Hypothesis originally proposed by Clark (1973) and

extended and refined in numerous subsequent works, the price process observed under the appropriate

4Alternatively, a pure jump process as the compound Poisson process proposed by Oomen (2006) could be employed

to model the dynamics of the true price process.
5We use the notation (t) to indicate instantaneous variable while subscript t denote daily quantities.
6That is, a time scale having the number of trades as its directing process (here we don’t make the distinction between

tick time and transaction time).
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transaction (or tick) time can be interpreted as a subordinate stochastic process which has been shown

to properly accommodate for many empirical regularities.7 In the following, we assume that observing

the process in tick time, instead of the common physical time, determines a stochastic time change

(see Ané and Geman 2000) that transforms a stochastic volatility in physical time into a process in

tick time where volatility is locally approximately constant. In other words, we consider (as in Ané

and Geman 2000) the number of trades as a good approximation to the true stochastic clock which

allows one to recover the normality and homoskedasticity of asset returns. For our purposes, we

need to assume that this approximation holds only locally over a small window of few ticks. In fact,

although for the ease of exposition we will describe the model having the efficient price following a

Brownian motion in tick time with volatility changing from day to day, the actual implementation

of DST approach would only formally require the volatility in tick time to be constant over a small

window of very few ticks (20 or 30). Moreover, the robustness of the DST approach against violation

of the assumption of homoskedasticity in tick time is checked in the simulation study by explicitly

employing an heteroskedastic DGP for the true tick-by-tick price process.

Computing daily volatility in tick or transaction time also presents several practical advantages

(see Oomen 2006 for a detailed comparison of different sampling schemes). Intuitively, in tick time

all observations are used so that no information is wasted. The interpolation error and noise arising

from the construction of the artificial regular grid is avoided. Moreover, using a tick time grid the

underlying price process tends to be sampled more frequently when the market is more active, that

is, when it is needed more because the price moves more.

The observed tick-by-tick return rt,n of day t at time n can then be decomposed as

rt,n = σtǫ
∗
t,n + ηt (ωt,n − ωt,n−1) (3)

where the unobserved innovation of the efficient price ǫ∗t,n and the pricing error ωt,n, are independent

IID (0, 1) processes. Hence, for each day the tick-by-tick return process is a MA(1) with E (rt,n) = 0

and autocovariance function given by

E [rt,nrt,n−h] =





σ2
t + 2η2

t for h = 0

− η2
t for h = 1

0 for h ≥ 2

(4)

where σ2
t represents the tick-by-tick variance of the unobserved true price for day t and η2

t the extra

variance in the observed returns coming from the market microstructure noise observed during that

day.

Under this assumption, the integrated variance of day t simply becomes IVt = Ntσ
2
t , with Nt

the number of ticks occurred in day t. Since we will compute the Realized Volatility for each day

separately, in the following, the daily subscript t will be suppressed to simplify the notation.

7In tick time even a simple constant volatility process can reproduce stylized facts observed in physical time such

as heteroskedasticity, volatility clustering, fat tails and others. Hence, the hypothesis of homoskedastic processes in

tick time is far less restrictive compared to the same hypothesis made for processes defined in physical time where this

assumption would be clearly violated by the empirical data.
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2.2 The Discrete Sine Transform

Considering the vector of M tick-by-tick observed returns R (M, n) = [ rn rn−1 · · · rn−M+1 ]⊤,

we develop a Principal Component Analysis8 (PCA) of the associated variance-covariance

matrix Ω(M) = E

(
R (M, n) R (M, n)⊤

)
, which is a tridiagonal matrix of the form:

Ω(M) =




σ2 + 2η2 −η2

−η2 σ2 + 2η2 . . .

. . .
. . . −η2

−η2 σ2 + 2η2




By solving the eigenvalue equation Ω(M)ϕ
(M)
m = λ

(M)
m ϕ

(M)
m with m = 1, 2, . . . , M , it can be shown

(Elliot 1953 and Gregory and Karney 1969) that the eigenvalues of Ω(M) are given by

λ(M)
m = σ2 + 4η2 sin2 πm

2 (M + 1)
(5)

with 0 < λ
(M)
1 < λ

(M)
2 < · · · < λ

(M)
M . Therefore, the eigenvalues of the DST components are ordered,

separated and all non degenerate. The corresponding eigenvectors are

ϕ(M)
m (k) =

√
2

M + 1
sin

πmk

M + 1
k = 1, 2, . . . , M (6)

The remarkable fact is that, unlike common situations, the eigenvectors (ϕ
(M)
m ) of a MA (1) process are

universal and they coincide with the orthonormal basis used in the Discrete Sine Transform (DST).

Hence, such nonparametric orthogonalization is very useful for the analysis of high frequency return

data as it provides an universal basis to optimally (in a linear sense) decorrelate the price signal from

market microstructure noise. This orthogonalization has been applied on high frequency data also by

Zhou (1998).

According to the PCA interpretation, the simple and computationally fast DST of the returns

c(M)
m (n) =

M∑

k=1

ϕ(M)
m (k) rn−k+1

acts as a projector of the signal into its principal components and the variance of the DST components

are directly the eigenvalues of the variance-covariance matrix:

E

(
c(M)
m (n) c(M)

m (n)
)

=
(
ϕ(M)

m

)⊤
Ω(M)ϕ(M)

m = λ(M)
m = σ2 + 4η2 sin2 πm

2 (M + 1)

Since we are interested in the permanent component of volatility the idea is to consider the projection

of the returns on the minimal principal component which is the one less contaminated by the transient

volatility coming from the microstructure noise. Therefore, in place of measuring volatility on the raw

8Also known as Karhunen-Loéve expansion or Hotelling transformation.
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return series, we compute it on the minimal component series obtained by the DST filter, i.e. taking

the mean value of the square of the DST component associated with the minimal eigenvalue of the

covariance matrix:

σ̂2
min−DST =

(
M∑

k=1

ϕ
(M)
min (k) rn−k+1

)2

Having an estimate of the average volatility of the tick-by-tick returns for a given day, the correspond-

ing daily volatility is readily obtained by rescaling σ2 with the number of ticks occurred in that day.

We term this volatility estimator the Minimal DST estimator and we will use it as the building block

for our pre-filtered multi-scales estimator defined later.

Being

E
[
σ̂2

min−DST

]
= σ2 + 4η2 sin2 π

2 (M + 1)
(7)

σ̂2
min−DST is asymptotically unbiased for σ2 since for large M the bias coming from the microstructure

noise vanishes as σ2
M ≃ σ2+η2 π2

M2
. This clearly shows how the aggregation on the minimal component

decreases the impact of the microstructure noise at a much higher speed compared with the standard

aggregation of returns. In fact, in this second case, the bias is reduced at the rate M while on the

minimal DST component the bias is cut down at rate M2, allowing to substantially increase the

“unbiased return frequency” and then improving the precision of the volatility estimation.

To judge the stability and robustness of the DST filter with respect to time-dependent noise, we

now relax the i.i.d. assumption and analyze the behavior of the DST filter under a more general

MA(q − 1) structure for the noise. In the presence of an MA(q − 1) dependent noise, the observed

return in tick time becomes an MA(q) process which can be written (by generalizing equation 3) as

rn = σǫ∗n +

q∑

i=1

ηi

(
ω(i)

n − ω
(i)
n−i

)

with ǫ∗n ∼ IID (0, 1) and ω
(i)
n ∼ IID (0, 1). It can be shown (see Appendix A) that in this more general

case the variance of the Minimal DST component can be approximated as σ2
M ≃ σ2 + π2

M2

q∑
i=1

(i ηi)
2

which, as before, clearly shows that the bias coming from higher order autocorrelations is also cut

down at the same rate M2, guaranteeing the robustness of the DST estimators respect to a wide class

of noise contaminations and model misspecifications.

It should be noted however, that the presence of a dependent noise process could, in some cases,

be an artificial result of the construction of the equidistant series in physical time. In fact, the time

deformation induced by the transformation from a tick time scale to a physical one, can transform an

MA(1) process into an MA(q) or ARMA(p, q). In other words, the time deformation induced by the

equidistant grid construction could have the effect of spreading the mass of the first autocorrelation

lag onto higher order lags9. This possible artificial increase of the autocorrelation order induced by

9 See Corsi et al. (2001) for an empirical example and Oomen (2006) for a detailed theoretical analysis.
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the regular grid construction is, in fact, an additional important reason to favor, in the computation

of the realized volatility, the use of a tick time scale instead of the commonly used regular grid in

physical time.

2.3 The Multi-Scales Least Square estimator

Recently Zhang, Mykland and Aı̈t-Sahalia (2004) have introduced the “Two-Scales” estimator while

Zhang (2006) has generalized this approach to a “Multi-Scales” estimator that combine realized volatil-

ities computed at more than two return frequencies. Here, we present a different approach to the

construction of realized volatility estimators computed with multiple time scales. This approach is

more similar in spirit to the one recently proposed by Phillips and Yu (2006). It is important to

note that throughout the paper, in order to reduce estimation errors and assure consistency of the

estimators, the computation of any variance estimator at any level of aggregation, is always performed

by adopting a full overlapping scheme i.e. (using the terminology introduced by Zhang et al. 2004) by

subsampling and averaging.

Under the assumption of i.i.d. noise the conditional expectation of the daily realized variance

RV (kj) computed with observed returns of different tick-lengths kj is

E

[
RV (kj)

]
= IV + 2N (kj) η2 (8)

where N (kj) is the number of kj-returns in the day. Hence, a consistent and unbiased estimator can be

obtained by computing the realized variance at different frequencies10 kj and then estimating IV and

η2 by means of a simple linear regression of RV (kj) on N (kj)11. We will denote this class of estimators

as Multi-Scales Least Square estimators.

It is interesting to note that applying this Multi-Scales Least Square approach to only two different

frequencies k1 and k2, one gets a very simple linear system of two equations in two unknowns (IV and

η2) which can be directly solved, giving as estimator of IV

TS =
αRV (k2) − RV (k1)

α − 1
(9)

where α = N (k1)/N (k2) is the ratio between the number of returns sampled at the “base” frequency

k1 and that at the lower “auxiliary” frequency k2, while TS is exactly the expression of the Two-

Scales estimator for serially dependent noise (with the small sample bias correction) recently proposed

by Aı̈t-Sahalia, Mykland and Zhang (2006) as an extention of the Zhang et al. (2005) estimators.

Therefore, this alternative “Jack Knife style” derivation of the Aı̈t-Sahalia et al. (2006) estimator

shows that the Multi-Scales Least Square approach can be seen as another natural generalization of

the Two-Scales estimator to more than just two sampling frequencies.

Irrespective of its simplicity, this regression approach represents a powerful and flexible way of

exploiting the information contained at many different data frequency. It also provides an alternative

10As aforementioned, for returns with a length in ticks kj > 1, subsampling and averaging (i.e. a full overlapping

scheme) is adopted.
11This regression approach has been recently applied also by Nole and Voev (2008).
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way of estimating the variance of the microstructure noise η2 to the commonly used first lag tick

return covariance (i.e. η̂2 = −E [rt,nrt,n−h]) or the η̃2 = RV/2M .

Moreover, it is robust to the presence of endogenous noise. In fact, it can be shown (Appendix

B) that in the presence of correlation between microstructure noise and true price process modeled in

the form pn = p∗n + ηnωn + ρ p∗n the regression equation (8) becomes

E

[
RV (kj)

]
= IV + N (kj)(ρ(2 + ρ)σ2 + 2η2) (10)

hence, the Multi-scale regression based approach still provide consistent and unbiased estimator of IV

(although the estimator of η2 is now biased).

It would be possible to also deal with not i.i.d. noise by cutting from the regression those higher

frequencies kj not belonging to the linear part in the plot (analogous to the volatility signature plot)

of E
[
RV (kj)

]
against the number of observations N (kj).

About the choice of scales in the Multi-Scale RV, in theory using all scales should lead to the maxi-

mum gathering of information and hence to optimality. In practice however, neighborhood frequencies

contain very similar information, and collecting all of them can lead to multicollinearity problem and

other computational burdens. Therefore, for practical purposes, an heuristic choice of sparse frequen-

cies considerably simplify the implementations of the estimator and does not lead to a significant loss

of information already with a moderate number of scales.12

2.4 The Multi-Scales DST estimator

The powerful idea of exploiting linear relations among realized volatility measures computed at dif-

ferent aggregation frequencies by means of simple linear regressions, could also be applied in the DST

approach. The resulting Multi-Scales DST estimators will have the further advantage, compared to

simple Multi-Scales estimators, to be “robustified” by the use of the DST decomposition which will

optimally prefilter market microstructure noise. This is made possible by the linear relation exist-

ing between the realized variance of the minimal principal component c
(M)
min (i.e. the Minimal DST

estimator) and the window length of the PCA M .

In fact, denoting RV
(M)
min =

̂
V [c

(M)
min] we have:

E

[
RV

(Mj)
min

]
= σ2 + η2N (Mj) (11)

where N (Mj) = 4 sin2 π
2(Mj+1) .

Therefore, analogously to the Multi-Scales regression, a similar approach can be employed for the

DST decomposition by evaluating the Minimal DST estimator RV
(Mj)
min for different values of Mj and

then performing a simple linear regression. Then, the intercept is an unbiased (not only asymptotically

12 Both in simulation and empirical applications, we found that the performance of multi-scales estimator are

very robust (giving very similar numerical results) to the precise choice of the frequencies provided that they are

reasonably distributed along the frequency spectrum. In our applications we chose the following set of frequency:

{1, 4, 8, 12, 16, 20, 25, 30, 60, 90, 120}
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σ2 η2 std(σ2) std(η2)

True values &

Cramer-Rao bounds
1 4 0.095 0.169

MS-DST 0.996 4.004 0.095 0.203

MS-DST + NR 0.998 4.000 0.093 0.168

Table 1: Evaluation of the absolute efficiency of the Multi-Scales DST estimator and the Multi-Scales DST estimator

+ Newton-Raphson algorithm (MS-DST + NR) with true volatility of 1, noise to signal ratio η

σ
= 2, 2048 observations

per day and 5,000 simulations.

but also in finite sample) and consistent estimator of the tick-by-tick volatility σ2, while the slope is an

estimate of η2. Once appropriately rescaled by the number of ticks per day, the resulting IV estimator

will be called the Multi-Scales DST estimator.

The contemporaneous presence of DST filtering, subsampling and mulstiscale regression makes

the analytical computation of asymptotic results very difficult. However, from simulations (Table 1)

it turns out that the Multi-Scales DST estimator for σ2 possesses a finite sample variance very close

to the Cramer-Rao bounds which now, thanks to the DST results, can be analytically computed (see

Appendix C). Moreover, if desired, this small loss of efficiency could be eliminated by using the Multi-

Scales DST estimator as initial value in a ML numerical optimization performed, for example, with

Newton-Raphson method (as shown in Table 1). A more realistic simulation set up will be employed

in the next section to compare different realized volatility estimators.

3 Monte Carlo Simulations

The DGP used in the simulations is a combination of the Heston (1993) SV model for the dynamics

of the true price process and the model proposed by Hasbrouck (1999) for the microstructure effects.

In the Heston model the true log price assumes the following continuous time dynamics

dp∗(t) = (µ − v(t)/2)dt + σ(t)dB(t) (12)

dv(t) = k(α − v(t))dt + γv(t)1/2dW (t) (13)

where v = σ2 and the initial value v(0) is drawn from the unconditional Gamma distribution of v.

The value of the parameters are the same as in Zhang et al. (2005), which in annualized terms are:

µ = 5%, k = 5, α = 0.04 corresponding to an expected annualized volatility of 20%, γ = 0.5 and

the correlation coefficient between the two Brownian motions ρ = −0.5. Those parameters, who are

9



reasonable for stocks, will be held constant throughout the simulations. The continuous time model

of the true price is simulated at the usual Euler clock of one second.

To this SV model for the dynamics of the true price, we add the Hasbrouck bid-ask model for

the observed price. The Hasbrouck model views the discrete bid and ask quotes as arising from the

efficient price plus the quote-exposure costs (information and processing costs). Then the bid price is

the efficient price less the bid cost rounded down to the next tick and the ask quote is the efficient

price plus the ask cost rounded up to the next tick. As in Alizadeh et al. (2002) the model is simplified

by assuming that the bid cost and the ask cost are both equal to the minimum tick size.

Then, according to the Hasbrouck model the bid and ask prices are respectively

Bn = ∆ ⌊P ∗

n/∆ − 1⌋ and An = ∆ ⌈P ∗

n/∆ + 1⌉ (14)

where ∆ represents the tick size, ⌊x⌋ is the floor function, ⌈x⌉ the ceiling one and the unobserved

efficient price is P ∗
n = ep∗n .

Hence, the observed price is given by the following bid-ask model

Pn = Bnqn + An (1 − qn) (15)

with qn ∼ Bernoulli (1/2). Therefore, the observed logarithmic return can be written as

rn = ln
Pn

Pn−1
= ln

⌈Pn/∆ + 1⌉

⌈Pn−1/∆ + 1⌉
+ qn ln

⌊Pn/∆ − 1⌋

⌈Pn/∆ + 1⌉
− qn−1 ln

⌊Pn−1/∆ − 1⌋

⌈Pn−1/∆ + 1⌉
(16)

which would be an MA(1) process in case the true price followed a Brownian motion. Notice that, by

adopting the Heston model for the dynamics of the true price, the observed prices do not follow an

MA(1) process anymore, making the DST approach formally misspecified. We choose this misspec-

ified simulation setting expressly to show the robustness of the DST approach against more general

heteroskedastic process in tick time as discussed in section 2.

We first follow Hasbrouck and Alizadeh et al. and choose parameter values which imply a high

level of the noise to signal ratio: ∆ = 1/16 and P0 = 45. These values, together with the average

annualized volatility of 20% given by the Heston model for the true price, induce an average noise

to signal ratio of about 3.513. Such high level of noise manifests itself as a strong price fluctuation

between bid and ask quotes, which generates a highly negative first order-autocorrelation ρ(1) ≈ −48%

for the tick-by-tick returns rn.

This noise to signal ratio reflects a microstructure impact on the return process which is remarkably

large and rarely observed on real data. However, such an extreme setting provides a useful stress test

for realized volatility measures and hardens the competition versus daily range-based estimators which

are favored under these circumstances.

13Following (Oomen 2006) we define the noise to signal ratio as the standard deviation of the noise divided by the

average standard deviation per tick of the true price process. This standardization has been chosen first because it

seems reasonable to normalize both the noise and signal standard deviation respect to the same time interval and second

because doing that at the tick-by-tick level facilitates comparison across different assets and over time, makes such a

ratio not affected by the different market activity.

10
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Figure 1: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average 20%)

obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel) and a noise to

signal ratio η

σ
= 3.5.

We simulate one-day sample paths of 6.5 hours (the typical opening time for stock markets)

for 25,000 days. The simulation is repeated for two different values of the total number of price

observations per day: M = 390 which corresponds to an average intertrade duration of one minute,

and M = 4, 680 which corresponds to an average tick arrival time of 5 seconds.

The competing estimators are:

• the two DST estimators: the Minimal DST (Min-DST) is computed with a window length of

30 ticks, while, for the Multi-Scales DST (MS-DST), we construct a series of minimal DST

estimator using a sequence of Mj ranging from 2 to 20 ticks and then fit equation (11) through

simple OLS.

• three “simple” Multi-Scales estimators: two Two-Scales estimators with frequency ratio α of

5 and 10, denoted respectively TS(5) and TS(10), and the Multi-Scales Least Square (MS-LS)

estimator.14

• the local EMA filter (i.e. calibrated on a single day), which then simply corresponds to a daily

MA(1) filter;

14About the values chosen for the frequency ratio α, Bandi and Russel (2009) show that for realistic sample sizes

encountered in practical applications, the asymptotic criteria suggested in Zhang et al. (2005) do not give sufficient

guidance for practical implementation, as they provide unsatisfactory representations of the finite sample properties of

the estimators. We then preferred to determine the optimal scales in the Two-Scales estimator performing, by mean of

simulations, an extensive grid search over the return frequencies of the slower scale.
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VOLATILITIES ESTIMATES WITH η
σ

=3.5

1 min 5 sec

mean std RMSE mean std RMSE

MS-DST -0.052 3.103 3.103 0.090 0.891 0.895

Min-DST 1.183 3.206 3.418 1.295 1.113 1.708

MS-LS 0.080 4.818 4.819 0.066 0.909 0.911

TS(5) -0.561 5.929 5.955 0.148 1.777 1.783

TS(10) -0.371 3.711 3.730 0.090 1.041 1.044

EMA Filter 0.393 12.401 12.408 -0.018 5.222 5.222

daily Range 2.252 5.925 6.339 0.149 5.907 5.909

5 min avg 27.703 5.375 28.220 3.735 2.319 4.396

5 min sparse 27.752 4.620 28.134 3.724 1.855 4.160

Table 2: The table report the mean, standard deviation and RMSE of the estimation errors on the annualized

percentage volatility (on average 20%) obtained with an average observation frequency of 1 minute (left panel) and

5 seconds (right panel), and a noise to signal ratio η

σ
= 3.5.

• two standard realized volatility measures both computed with 5 minute returns but one sampled

with an overlapping scheme and then averaged;

• the daily range, as proposed by Parkinson (1980) and recently advocated by Alizadeh et al.

(2002) in the context of SV models estimation15 .

We first consider the case of having 390 observations per day (corresponding to an average one

minute frequency) and a noise to signal ratio of 3.5. Table 2 reports the mean, standard deviation and

Root Mean Square Error (RMSE) of the estimation errors on the annualized volatility (express as a

percentage). Figure 1 shows the probability density functions of those volatility estimation errors.

Given the high level of noise and the relatively small number of observations per day, the estimation

of the first order autocorrelation required to calibrate the EMA filter, is very noisy and does not always

satisfy the theoretical bound for MA(1) process | ρ(1) |< 1/2 (in the 30% of the cases), leading to

a complex MA(1) coefficient θ. In such cases, the EMA filter would fail and we are then forced to

impose an artificial floor to ρ(1). But, besides its arbitrariness, this procedure induces unreasonably

low volatility estimates (responsible for the left bump presents in the EMA estimator pdf on the left

panel of Figure 1). Moreover, under these conditions, the variance of the estimator is extremely large.

15Comparison with the recently proposed high frequency range, the so called ”Realized Range-based Variance” (Chris-

tensen and Podolskij 2006 and Martens and van Dijk 2006) will be deferred to future research.
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For the 5 minute realized volatility, the fact that the aggregation from 1 to 5 minute returns is not

able to eliminate all the negative autocorrelation, makes this estimator strongly upward biased. In the

case of the Minimal DST estimator instead, the aggregation works much better but, due to a relatively

low window length of 30 ticks, a small upward bias is still present. Even the daily range suffers from

a significant bias but it also has a much larger variance (both, the bias and the variance, are about

two times those of the Minimal DST one). Among the three simple Multi-Scales estimators the TS(5)

and TS(10) have small negative biases while the MS-LS is virtually unbiased. However, the variance

and the RMSE of the TS(10) are lower than the other two simple multi-frequency estimators. Under

this extreme setting, the only measure which is still able to remain unbiased and sufficiently precise

is the MS-DST estimator, which has, in fact, the lowest RMSE. Moreover, comparing the realized

volatility estimators with the one based on the daily range shows that, even in the most unfavorable

setting for the realized volatilities, they remain much more accurate than the daily range: the best

realized volatility estimator, the MS-DST, possesses, in fact, a RMSE 48% smaller than that of the

daily range.

Keeping the same level of noise, we repeat the simulation at 5 second frequency (which means

4,680 observations per day). With twelve times more data the realized volatility measures are much

more precise: the local EMA filter has less failings (5%) and lower variance, while the 5 minute

realized volatilities (thanks to the longer aggregation period) have smaller, but still significant, biases.

Although smaller than the biases of the 5 minute realized volatilities, the Minimal DST still shows a

bias with this high level of noise. The Zhang et al. estimators become both unbiased with the TS(10)

having a smaller variance than the TS(5). The MS-DST and the MS-LS estimators are both unbiased

and equally very accurate, remaining the best choices among the estimators considered.

In practice, however, financial time series present a noise to signal ratio at tick-by-tick level that

usually lies between 0.5 and 2. But, even with such a moderate level of noise, a naive high frequency

realized volatility measure would be from one to three times the actual one. We then repeat the

simulation with a more realistic noise to signal ratio of 1.5 for both observation frequencies. Table 3

and Figure 2 summarize the results.

At the 1 minute frequency the daily range and the local EMA filter are unbiased but quite inac-

curate while the realized volatilities based on 5–minute have again a large bias. The MS-DST and

the other Multi-Scales estimators are the most accurate with the MS-LS having a slightly smaller bias

and variance than the others.

At the 5 second frequency, with a moderate level of noise and a large number of data, the EMA

filter starts to have a much lower variance and the 5 minute measures much lower biases. Nevertheless,

they can still not compete with the MS-DST and the three other Multi-Scales estimators which become

extremely precise and accurate under this setting.

Empirical studies on the autocorrelation of tick-by-tick data often show significant values not only

for the first order but also for higher order lags (though, usually, of much smaller amplitude). A

possible explanation, and way to model it, is by relaxing the assumption of i.i.d. microstructure noise

13
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Figure 2: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average 20%)

obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel) and a noise to

signal ratio η

σ
= 1.5.
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Figure 3: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on average 20%)

obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right panel), a noise to signal

ratio η

σ
= 1.5 and a biased Bernoulli process with bias b = −0.1.
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VOLATILITIES ESTIMATES WITH η
σ

= 1.5

Unbiased Bernoulli

1 min 5 sec

mean std RMSE mean std RMSE

MS-DST -0.220 2.213 2.224 -0.012 0.627 0.627

Min-DST -0.226 3.068 3.076 0.210 0.899 0.923

MS-LS -0.096 2.030 2.032 -0.028 0.711 0.712

TS(5) -0.207 2.155 2.165 -0.004 0.612 0.612

TS(10) -0.238 2.212 2.225 -0.013 0.625 0.625

EMA Filter -0.296 4.046 4.056 -0.030 1.268 1.268

daily Range -0.009 5.998 5.998 -0.471 5.824 5.843

5 min avg 7.126 2.971 7.720 0.732 1.704 1.855

5 min sparse 7.121 2.528 7.557 0.700 1.345 1.517

Biased Bernoulli

1 min 5 sec

MS-DST 0.389 2.234 2.267 0.675 0.717 0.984

Min-DST -0.153 3.077 3.081 0.329 0.904 0.963

MS-LS 1.722 2.070 2.693 0.831 0.817 1.166

TS(5) 1.888 2.150 2.862 2.200 1.081 2.451

TS(10) 0.726 2.214 2.330 1.023 0.791 1.294

EMA Filter 5.467 3.136 6.303 5.840 1.979 6.167

daily Range -0.128 5.823 5.825 -0.457 5.926 5.944

5 min avg 7.103 2.978 7.702 0.754 1.741 1.898

5 min sparse 7.105 2.549 7.548 0.719 1.370 1.548

Table 3: The table reports the mean, standard deviation and RMSE of the estimation errors on the annualized

percentage volatility (on average 20%) obtained with an average observation frequency of 1 minute (left panel) and

5 seconds (right panel), a noise to signal ratio η

σ
= 1.5 and, for the bottom panel, a biased Bernoulli process with

bias b = −0.1.
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by introducing a correlation in the sequence at which bid and ask prices arrive16. Hence, instead

of having an “unbiased” Bernoulli(1/2) for the qn process, we construct a Bernoulli process which

produces autocorrelation in qn. This “biased” Bernoulli is obtained by taking qn = Bernoulli (1/2 + b)

if qn−1 = 1 and qn = Bernoulli (1/2 − b) if qn−1 = 0. We choose b = −0.10 which induces a second

order autocorrelation of about −6%.

Now, in the presence of not i.i.d. microstructure noise, the local EMA filter, which was unbiased,

becomes highly biased at both frequencies (see Figure 3). Also the TS and MS-LS estimators are now

showing a positive bias. Among all the realized volatility estimators the DST measures are the ones

with the smallest bias and smallest RMSE, showing a high degree of robustness against more general

microstructure noise contaminations (as analytically described in the previous section).

Summarizing the results of the simulation study, we can draw the following conclusions. The

daily range estimator is always inferior to the realized volatility ones. The realized volatilities with 5

minute returns are often significantly biased and inaccurate. The local EMA filter gives satisfactory

results only in the presence of a high number of observations and a low level of i.i.d. noise. Although

more precise in general, similar considerations can be made for the simple MS estimators (TS and

MS-LS). When the microstructure noise is moderate and i.i.d. the simple MS estimators are almost

as accurate as the MS-DST and hence close to the optimal Cramer-Rao efficiency bound (since, as

shown in section 2.4, the MS-DST is very close to the full efficiency of the Cramer-Rao bounds). In

particular, the MS-LS seems to be particularly efficient in exploiting the information contained in the

data when a relatively small number of observations is available (perhaps due to its ability to extract

information from many frequencies), while the TS(5) and TS(10) are at their best when the number

of observations increases. However, when the microstructure noise increases and deviations from the

i.i.d. structure arise, the discrepancy between the simple MS estimators and the MS-DST starts to

increase due to a higher level of robustness of the DST approach. Therefore, the overall winner that

seems to arise from this volatility estimation “horse race” is the MS-DST which shows the highest

level of precision and robustness across a wide range of microstructure noise contaminations.

4 Empirical application

To verify the behavior of volatility estimators when the microstructure noise is not an i.i.d. process,

we analyze six years of tick-by-tick data (from January 1998 to October 2003) for the following three

future contracts: the S&P 500 stock index future, the 30 years U.S. Treasury Bond future and the

Italian stock index future FIB 30. In a base asset mapping approach (as the one of RiskMetrics),

those three major future contracts can be seen as the reference liquid base assets for, respectively, the

US stock and bond market and the Italian stock market.

In order to analyze the dependence structure of the microstructure noise in those series, we in-

16 Hasbrouck and Ho (1987) suggest that positive autocorrelation at lag lengths greater than one may be the result

of traders working an order: “a trader may distribute purchases or sales over time”. However also significant negative

autocorrelation at lag two are often observed.
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vestigate the behaviour of the autocorrelation of tick-by-tick returns. This tick-time autocorrelation

analysis shows significant departure from the standard i.i.d. assumption for the microstructure noise.

In fact, more complex structures than that of a simple MA(1) expected under the standard i.i.d.

assumption, were found in all the three series. These patterns are independent of the inclusion or

censoring of all zero trade-by-trade returns which, in all the three assets, usually represent only a

small percentage of the total number of trade-by-trade returns.

Such autocorrelation patterns of the tick-by-tick returns are instead consistent with more complex

ARMA structure for the microstructure noise. In fact, simulating the Hasbrouck model with those

ARMA structures for the noise, leads to exactly the same autocorrelation functions observed in the

data. In particular, those patterns are consistent with a microstructure noise having an MA(1) struc-

ture for the FIB, an MA(2) (at least) for the S&P and a strong oscillatory AR(1) for the US bond17

(see Figure 4).

To overcome the problem of a complex ARMA structure in the autocorrelation of tick-by-tick

returns of the S&P and US bond, we first notice that, in both cases, a simple aggregation of two

ticks returns almost restore the MA(1) autocorrelation pattern typical of the i.i.d. assumption for

the microstructure noise (see Figure 5). Therefore, applying the MS-DST estimator to the two-ticks

returns of the S&P and US bond series, we can still obtain a highly precise evaluation of the realized

volatilities of the two assets and closely follow their time series dynamics (see Figure 6).

Obviously, in empirical analysis the true volatility is not observable, hence no direct evaluation

criteria of the quality of the volatility estimators exist. However, general indirect criteria can be

employed.

First of all, the unconditional mean of daily volatilities obtained with high frequency estimators

should not be significantly different from the unconditional mean volatility obtained with lower fre-

quency returns. We asses this property for the MS-DST estimator by computing its volatility signature

plot. Figure 7 shows the volatility signature plot of the standard and MS-DST realized volatility mea-

sures for the three assets, averaged over the whole six years period. Ideally, for estimators which are

robust against microstructure effects the scaling should appear as a flat line in the volatility signa-

ture plot. The top panel of Figure 7 refers to the scaling of S&P 500 future showing a moderate

but clear impact of the market microstructure on the standard realized volatility measure and the

presence of a mild lower frequency autocorrelation. The MS-DST estimator correctly discounts mar-

ket microstructure effects on volatility while it retains the residual lower frequency autocorrelation

which is responsible for its scaling behavior to be not completely flat. The middle and bottom panels

are respectively the FIB 30 and U.S. Bond future. In both cases market microstructure noise has a

strong impact on the standard measure of realized volatility inducing larger biases as the frequency

increases while the MS-DST estimator, remaining reasonably flat at any frequency, confirms its ability

to properly filter out market microstructure effects.

Under the hypothesis of an underlying continuous time diffusion process for the logarithm price,

17 The analysis of the market microstructure determinants and specific institutional constraints that would lead to

such empirical evidences is beyond the scope of the present study.
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Figure 4: Sample path of the tick-by-tick price process (dotted line) with its two ticks moving average (solid line)

for the S&P 500 (top panel) and US Bond (bottom panel) future.
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Figure 5: Sample autocorrelation of S&P (top) and US Bond (middle) for tick-by-tick returns (left) and 2-ticks

returns (right) together with the tick-by-tick autocorrelation of FIB30 (bottom). All autocorrelation functions are

computed over the six year sample, from 1998 to 2003.
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Figure 6: Time series of the annualized realized volatility computed with the MS-DST estimator on the two ticks

returns for the S&P 500 (top panel) and US Bond (bottom panel) futures from 1998 to 2003.

another indirect criterion can be considered to asses the quality of realized volatility measures in em-

pirical applications. In fact, if the log-price follows a SV diffusion the model for daily returns could

be written as rt = σtzt where zt ∼ i.i.d. N(0, 1). Hence, the 1-day return would be conditionally

Gaussian with variance equal to the integrated variance. The normality of zt is justified by appeal-

ing to the Central Limit Theorem for mixing process aggregated over a reasonable length of time

(such as daily for highly traded assets). Therefore, if a volatility measure adequately estimates the

integrated volatility, the corresponding standardized returns should be normally distributed. We test

this condition using the Jarque-Bera normality test on returns standardized by the 30 minute realized

volatility18, MS-DST realized volatility and the daily range19.

Table 4 reports the results. In all three cases, daily raw returns are highly leptocurktic as expected,

while returns standardized by daily ranges become highly thin tailed and remain far from normal.

Returns standardized by 30 minute realized volatilities become excessively thin tailed for the S&P

and US Bond while remaining too fat tailed for the FIB 30 and clearly failing the Jarque-Bera tests

18 This choice of a somewhat lower frequency of 30–minute instead of an higher one, is motivated by the need of having

an unbiased estimator of the daily volatility. Higher frequency realized volatility measures (such as with 1–minute or

5–minute returns) would in fact suffers, on this data set, of a large positive bias that by itself would heavily distort the

criterion here considered.
19The EMA filter estimator has not been included here because, as shown in the simulations, it is sensitive to the

presence of significant higher order autocorrelation in the tick-by-tick returns which results to be significantly different

from zero in all the three series considered here. While, on this kind of data, the simple MS estimators give results that

under these weak empirical tests are almost indistinguishable from the ones of the MS-DST, thus confirming the results

of the Monte Carlo simulations where the MS-DST and the simple MS estimators were all very close when the level of

noise were moderate and the number of observations relatively high.
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Figure 7: Signature Plot in semilog scale of the standard (dotted) and DST (solid) realized volatility for S&P 500,

FIB 30 and US Bond from January 1998 to October 2003.
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in all the three cases. Whereas for the MS-DST standardized returns, Jarque-Bera test cannot be

rejected for both the stock index future S&P and FIB. However, for the US Bond future, even though

among the three competing estimators the MS-DST standardized returns remain by far the closest to

the standard normal, the Jarque-Bera test is rejected. The rejection is due to a value of the kurtosis

excessively smaller than three, meaning that the MS-DST measure tends to overestimate the “true”

integrated volatility of the Bond future process. However, since the realized volatility consistently

estimates the quadratic variation (which includes the contributions of jumps) and not the integrated

volatility (which only considers the contribution of the continuous part), such overestimation could be

due to the presence of a large jump components in the Bond future series. Indeed, the fact that the

relative contribution of jumps is higher in bond series compared to stock indices, has been recently

found by Andersen Bollerslev and Diebold (2007) and is consistent with the empirical evidence of the

fixed income market being the most responsive to macroeconomic news announcements (Andersen,

Bollerslev, Diebold and Vega 2003).

In summary, the analysis conducted on the empirical data confirms the ability of the MS-DST

estimators to accurately and reliably estimate daily realized volatility, thus confirming the results

obtained in the Monte Carlo simulation analysis.

5 Conclusions

The presence of microstructure effects represent a challenging problem for realized volatility measures

making the naive realized volatility computed at short time intervals highly biased. In this study

new realized volatility measures based on Multi-Scale regression and Discrete Sine Transform (DST)

approaches are presented. We show that Multi-Scales estimators similar to that recently proposed

by Zhang (2006) can be constructed within a simple regression based approach by exploiting the

linear relation existing between the market microstructure bias and the realized volatilities computed

at different frequencies. These regression based estimators can be further improved and robustified

by using the DST approach to filter market microstructure noise. This approach is justified by

the theoretical result regarding the ability of the DST to diagonalize exactly an MA(1) process and

approximately an MA(q) one. Hence, we utilize the DST orthonormal basis decomposition to optimally

disentangle the underlying efficient price signal from the time-varying nuisance component contained in

tick-by-tick return series. The robustness of the DST approach with respect to more general dependent

structures of the microstructure noise is also analytically shown.

The combination of such a Multi-Scale regression approach with the DST gives us a Multi-Scales

DST realized volatility estimator which is then robust against a wide class of noise contaminations

and model misspecifications. Thanks to the DST orthogonalization, which also allows us to analyt-

ically derive closed form expressions for the Cramer-Rao bounds of MA(1) processes, an evaluation

of the absolute efficiency of volatility estimators under the i.i.d. noise assumption becomes available,

indicating that the Multi-Scales DST estimator possesses a finite sample variance very close to the

optimal Cramer-Rao bounds.
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Std. Dev Kurtosis Skewness Jarque-Bera Probability

S&P 500

Raw returns 19.395 6.540 -0.010 734.828 0.000

MS-DST-std. returns 1.024 2.764 0.019 3.344 0.187

30 min-std. returns 1.066 2.432 -0.026 19.044 0.000

Range-std. returns 0.922 1.754 -0.037 91.316 0.000

FIB 30

Raw returns 24.4786 6.853 -0.236 829.114 0.000

MS-DST-std. returns 1.106 2.890 0.146 5.370 0.068

30 min-std. returns 1.577 4.171 -0.036 75.720 0.000

Range-std. returns 0.912 1.752 0.049 86.137 0.000

US Bond

Raw returns 8.6578 4.101 -0.423 113.056 0.000

MS-DST-std. returns 0.966 2.517 -0.110 16.464 0.000

30 min-std. returns 1.000 2.283 -0.094 32.211 0.000

Range-std. returns 0.887 1.766 -0.094 91.326 0.000

Table 4: Comparison of sample distribution properties of daily raw and standardized returns of FIB 30, S&P 500

and thirty years Bond futures from 1998 to 2003. Standardized returns are computed using MS-DST, 30 minute

realized volatility and daily range.

Monte Carlo simulations based on a realistic model for microstructure effects and volatility dynam-

ics, show the superiority of MS-DST estimators compared to alternative local volatility proxies such

as the TS and MS-LS estimators, the daily range, the EMA filter and 5 minute realized volatilities.

The MS-DST estimator results to be the most accurate and robust across a wide range of noise to

signal ratios and types of microstructure noise contaminations. The empirical analysis based on six

years of tick-by-tick data for S&P 500 index-future, FIB 30, and 30 years U.S. Tresaury Bond future,

seems to confirm Monte Carlo results.

Appendix A: Dependent Noise

In the presence of MA(q − 1) dependent noise, the observed returns in tick time become an MA(q) process which can be

written as

rn = σǫ̃n +

q∑

i=1

ηi

(
ω(i)

n − ω
(i)
n−i

)
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with ǫ̃n ∼ IID (0, 1) and ω
(i)
n ∼ IID (0, 1). In this more general case the variance of the Minimal DST component becomes

σ2
M = E

(
c
(M)
min (n) c

(M)
min (n)

)
= σ2 +

q∑

i=1

η2
i F (M, i)

where

F (M, i) =
2

M + 1

[
M + 1 − (M + 1 − i) cos

πi

M + 1
− cot

π

M + 1
sin

πi

M + 1

]

.

Because F (M, i) can be approximated as

F (M, i) = π2 i2

M2
− 2π2 i3

M3

(
1 +

3

i
−

1

i2

)
+ O

(
i4

M4

)

when M/q → ∞, we obtain that

σ2
M ≃ σ2 +

π2

M2

q∑

i=1

(i ηi)
2

Appendix B: Multi-Scales Regression with Endogenous Noise

Writing the observed tick-by-tick return as rn = r∗n +un with r∗n = p∗
n − p∗

n−1 the efficient return and un the endogenous

noise, we model the correlation between the microstructure noise and the dynamics of the efficient price by assuming the

following form for un (as in Hansen and Lunde 2006):

un = ρ(p∗
n − p∗

n−1) + η(ωn − ωn−1) = ρr∗n + η(ωn − ωn−1). (B-1)

We then have that E[un] = 0, E[u2
t ] = ρ2σ2

n + 2η2 and E[r∗nun] = ρσ2
n, while E[r∗n−sun] = 0 for s > 0.

Therefore, the conditional expectation of the daily realized variance RV (kj) computed with observed returns of

different tick-lengths kj is

E

[
RV (kj)

]
= IV + N (kj)(ρ2σ2 + 2η2) + 2N (kj)ρσ2 = IV + N (kj)(ρ(2 + ρ)σ2 + 2η2) (B-2)

where N (kj) is the number of kj-returns in the day and σ2 = IV/N the average variance per tick. The terms proportional

to N (kj) stem from the facts that the endogenous noise arise only when an observation is made (thus the term N (kj))

and the correlation between kj tick return (r∗(kj)) and microstructure noise remains the same irrespective of their tick

lengths since

E[r
∗(kj)
n un] = E[(r∗n−kj

+ r∗n−kj+1 + ... + r∗n−1 + r∗n) un] = E[r∗nun] = ρσ2
n. (B-3)

Appendix C: Exact MA(1) Likelihood, Cramer-Rao bounds and ab-

solute efficiency

Thanks to the universality of the eigenvectors, we can obtain a diagonalization of the variance-covariance matrix of

MA(1) processes which does not depend on the parameters to be estimated. Collecting the M eigenvectors of Ω in

the MxM characteristic matrix Ψ = [ϕ1ϕ2..., ϕM ], we can project the return vector onto the orthogonal space of the

principal component C=Ψ⊤R, which is a Mx1 vector distributed as C ∼ N(0, Λ), where Λ is the MxM diagonal matrix

containing the M eigenvalues of the tridiagonal matrix Ω20. Therefore, the likelihood function of R can be rewritten in

terms of the principal components vector C as

f (C) =
1√

(2π)M det Λ
exp

[
−

1

2
C⊺Λ−1C

]
=

1√
(2π)M ∏M

n=1 λn

exp

[
−

1

2

M∑

n=1

c2
n

λn

]

20In fact, E[CC⊤] = E[Ψ⊤RR⊤Ψ] = Ψ⊤
E[RR⊤]Ψ = Ψ⊤ΩΨ = Λ.
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and

ln fθ (C) = −
M

2
ln 2π −

1

2

M∑

n=1

ln λn −
1

2

M∑

n=1

c2
n

λn

Then, from the linear equation (5) we readily obtain

∂λn

∂θ
=

(
1

4 sin2 πn
2(M+1)

)
and

∂2λn

∂θi∂θk

= 0 for i, k = 1, 2

and hence, we are now able to analytically derive the equations for the Score and the Hessian

∂ ln fθ (C)

∂θi

=
1

2

M∑

n=1

(
c2

n

λ2
n

−
1

λn

)
∂λn

∂θi

;
∂2 ln fθ (C)

∂θi∂θk

= −
M∑

n=1

(
c2

n

λ3
n

−
1

2λ2
n

)
∂λn

∂θi

∂λn

∂θk

Therefore, thanks to equation (5) and (6) we are able to explicitly compute the Fisher Information matrix of an MA(1)

process, which reads

Iik = −E

(
∂2 ln fθ (C)

∂θi∂θk

)
=

1

2

M∑

n=1

1

λ2
n

∂λn

∂θi

∂λn

∂θk

With each element of the matrix given by

I11 =
1

2

M∑

n=1

1

λ2
n

, I22 = 8
M∑

n=1

1

λ2
n

sin4

(
πn

2 (M + 1)

)
, I12 = I21 = 2

M∑

n=1

1

λ2
n

sin2

(
πn

2 (M + 1)

)

Then the Cramer-Rao bounds of σ̂2 and η̂2 can now be given in closed form as

var
(
σ̂2)

>
I22

I11I22 − I2
12

and var
(
η̂2)

>
I11

I11I22 − I2
12

These results have two important implications. First they obviously permit to evaluate the absolute efficiency of volatility

estimators. Second numerical optimization of the exact likelihood is greatly simplified. In fact, given that the principal

components do not depend on the parameter, the orthogonalization of the returns process needs to be done only once

rather then at each iteration as it occurs using Cholesky factorization (see Hamilton 1994).
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