

City, University of London Institutional Repository

Citation: MacFarlane, A., McCann, J. A. and Liddell, H. (1996). A Common Data Model
for Meta-Data in Interoperable Environments. Paper presented at the 2nd international Baltic
conference on IS and DB, 12-06-1996 - 14-06-1996, Tallinn, Estonia.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4447/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Common Data Model For Meta-Data
in Interoperable Environments

A.MacFarlane*, J.A.McCann +, H.Liddell*

* London Parallel Application Centre, Queen Mary & Westfield College,

University of London , Mile End Road, LONDON E1 4NS

+ SARC, City University, Northampton Square, London EC1V 0BH

Abstract

 A Common Data Model is a unifying structure used to allow heterogeneous environments

to interoperate. An Object Oriented common model is presented in this paper, which

provides this unifying structure for a Meta-Data Repository Visualisation Tool. The creation

of this common model from the Meta-Data held in component databases is described. The

role this common model has in interoperable environments is discussed, and the physical

architecture created from the examination of the Meta-Data in the Repository common

model is described.

1 Introduction

Many Interoperable Database Management systems utilise a Common Data Model as a

single structure which all of the components use, allowing application programs to

access data transparently i.e. the Data Model in the component databases are

transparent. The common model is not only a conflict resolution structure but also a

way to describe the complete data resource held in many heterogeneous data sources.

This paper focuses on the common model of a Meta-Data Repository Visualisation

Tool being designed and built for the HPC/SEA/Iriss project [1].

HPPC/SEA/IRISS is a Eureka project which is concerned with applications that

manipulate large volumes of data. Issues in IRISS centre around areas such as decision

support, on-line transaction processing and system interoperability, with a special focus

on obtaining optimum performance. In this project the partners are aiming to provide

an architecture which is capable of supporting the necessary data volumes and levels of

processing required to support both mission critical applications and decision support

applications. IRISS is based on a former UK Advanced technology project, IDIOMS

[2], which was a two year project to develop a database engine with supporting

decision support prototype software, scaled to the requirements of TSB PLC (a leading

UK Bank). The underlying machine used in the IRISS project is the IDIOMS database

Machine.

New technologies are required to support the demands of inter-application data

sharing. The requirement is a new lightweight mechanism that allows dynamically

constructed data to be transferred between any set of applications and a set of databases

anywhere on the network running in any environment. This is currently achieved

through the use of middleware which provides the overall support for standard

interfaces. There is a requirement for database tools to manage this middleware.

Consequently one of the major project tasks concerns the provision of a set of portable

reusable tools to be used in heterogeneous environments to aid database administration,

to help optimise the database through monitoring and visualisation facilities and to

interface different databases. This is the task in which the LPAC (London Parallel

Application Centre) group is involved; the tools we are developing include a database

monitoring tool and the Repository. The Repository together with Strand Software

Technologies Clearinghouse system [3] will be the 'glue' which ties all the disparate

databases together. A key element of the Repository is the common model.

The organisation of the paper is as follows. Section 2 describes the Repository.

Section 3 describes the Clearinghouse system. Section 4 describes the common model

and its component parts. The role of the common model in interoperable environments

is described in section 5. Section 6 describes the physical architecture of an

interoperable environment created by the examination of Meta-Data in the Repository

common model. A summary is given and further work needed is described in section 7.

2 The Meta-Data Repository Visualisation Tool

We have defined three main components of the Repository; an extraction

component, a semantic match tool and a graphical data visualisation tool. Figure 1

shows the relationship between the various components.

Extraction tools examine the Meta-Data and redefine its information in terms of

our common model. The semantic match tool takes this Meta-Data and resolves

semantic heterogeneity between the various Meta-Data. The visualisation component

will provide interaction facilities for the extraction and semantic match components, as

well as visualising the Meta-Data. The Repository will connect with the Clearinghouse

middleware system, using an Application Programming Interface, but has been

designed using an object model so that it will easily connect to an Object Request

Broker based middleware product. Once heterogeneity has been resolved, the

operational architecture for the interoperable environment can be generated (see section

6) using the Meta-Data created during the Schema Integration process and held in the

Repository common model.

Relational

DBMS
OO

DBMS

Legacy

DBMS

Relational

Extractor

OO

Extractor Legacy

Extractor

Meta-Data Meta-Data Meta-Data

Meta-Data
Meta-Data

Meta-Data

Semantic

Match Tool

GUI / Visual. -

package

Meta-Data
Hetrogenity

Resolution Data

(Native Data

 Model)

(Native Data

 Model)
(Native Data

 Model)

(common

 model)

(common

 model)
(common

 model)

(common

 model)

FIGURE 1 - Repository Structure

3 The Clearinghouse System

The Clearinghouse system [3] is essentially a distributed event manager, where

data is pro-actively sent to clients. There are four main components to the

Clearinghouse system; the register, exchanges, probes and database agents. The register

records the location of Clearinghouse elements for client programs as well as storing

other details. An exchange holds information on a single, simple data model and with

which client programs connect to when given the location by the register. Probes are

reactive process which map data from one data model to another and connect

exchanges together. Database agents enable the clearinghouse system to connect with

component databases. We have conceptually designed the common model using the

Object-Oriented model, but physical storage of translation, functions etc. use

Clearinghouse.

4 Description of the Common Data Model

The Common Data Model is a recommended structure by which interoperable

environments can unify their disparate component databases, with varying native data

models. The actual model is given in Appendix II and the Object Notation [4] used is

given in Appendix I. This common model is the logical representation of Meta-Data.

The basis of this model is formed from inspection of Meta-Data in relational and

legacy databases. Example coverage included the IBM IMS system [5] and the

relational databases INGRES [6] and ORACLE [7]. The model to be used in the

common model is Object Oriented which has the advantages; it provides a number of

useful abstraction mechanisms such as inheritance and aggregation, permits behaviour

of objects to be captured through methods, non-traditional databases can be integrated

using behavioural mappings and given that storage and retrieval is supported by the

underlying model efficiency is not greatly degraded [8]. The Object Oriented model is

becoming the dominant model in interoperable systems; previously many systems used

the relational model [9]. We have identified four main Meta-Data classes; Objects,

Constraints, Security and System. Each of these Meta-Data are described below.

4.1 Objects

The Object class refers to Meta-Data that users of all types use directly in

support of their functions e.g. end users need to know about the Meta-Data for the data

that their application program use to complete their task. The objects can be Tables,

Views, Reports, Forms, records, segments etc. The definition of Object has been

defined to take account of the various types of structures which are encountered in the

many native data models we examined. For example relational databases are made up

of relations (tables), which are in turn made up of attributes; hierarchical databases

have trees which are made up of segments, which are made up of attributes and links to

other segments. It is apparent that we can model these native data models using Object

Orientation. We use the process of Aggregation [4] to build up Object Oriented

representations of these native models. The process of Generalisation [4] is used to

build objects in the common model using the different representations built by the

Aggregation process. The advantage of this definition of Object is that the native data

model can be modeled naturally, while isomorphism's for the common model can be

formed from those disparate models. An isomorphism is defined by Hofstader [10] is

an information preserving-transformation where "two complex structures can be

mapped onto each other, in such a way that to each part of one structure there is a

corresponding part in the other structure, where 'corresponding' means that the two

parts play similar roles in their respective structures". Isomorphism creation can be

done by defining the extent which is the ability to define the set of objects which

belongs-to a class [8]. The relation belongs-to means that an operation can be done on

a class "if it is an instance of that class or any of its subclasses" [8]. We use the term

isomorphism to mean the mapping of disparate data models to a single Object Oriented

data model in order to allow interoperation between them. Thus there are a number of

mappings needed to build isomorphism's. These Isomorphism's are built by resolving

heterogeneity using the match tool component of the Repository.

4.2 Constraint

Constraint Meta-Data refers to constraints on Object Meta-Data such as unique

data within fields or a threshold for object occurrences e.g. an attribute

NUM_COMPONENTS would have the constraint > 0. This Meta-Data can be built

into the system, as found with IMS [5] or user defined. There appears to be occasions

when Constraint Meta-Data is defined on a on Object at the same time as Security e.g.

in ORACLE 6 the Meta-Data attribute CONTRAINT_COLUMNS refers to constraint

definitions on accessible tables. The extraction component of the Repository has to be

built with such information in mind.

4.3 Security

Security Meta-Data refers to the users ability to access to a particular object or

objects, more specifically identifies permissions to read, write, or update objects or

groups of users ability to access an object. As noted above the distinction between

Security and Constraint Meta-Data can sometimes be blurred. The security mechanism

is visible for an Object in the example given above, therefore the extraction process can

easily be implemented to accommodate such information. Where Security mechanisms

are built in to a Database Management System e.g. IMS [5] the distinction between

Security and Constraint Meta-Data could be harder to determine. This has implications

for the extraction tool where specific extractions will need to be built for a given

database, particularly for legacy systems such as IMS [5].

4.4 System

System Meta-Data refers to system administration data for databases. Examples

of this type of data are the physical storage for an object, object location, information

needed for recovery, network information (topology, site, address), logical to physical

mapping and performance.

4.5 Aggregate Classes

It should be noted that System, Security and Constraint Meta-Data applies to the

aggregate classes i.e. the attributes of a tables as well as the table itself. This means that

each sub-class may have its own Constraints, Security and System related Meta-Data.

A further important point is that there may be missing information in our representation

i.e. NULL data.

5 The Role of the Common Model in Interoperable
 Environments

In [11] Seth and Larson describe a five level schema architecture for use in

Federated Database systems. Pitoura et al [8] take this architecture and adapt it to

include the data models for each schema. In this section we describe the role of the

common model in an interoperable environment in all levels of this five level

architecture.

The Local Schema of the pre-existing component database system uses the

native data model. The extraction process (or the Schema Translation process [11])

takes Meta-Data from this Local Schema and converts it into the common model of the

Component Schema. The relevant sub-class of that native data model is used to

populate the Component Schema. It should be noted that this is not the only strategy.

The Jupiter system [12] defines a Participation Schema in the place of the Component

Schema. Murphy and Grimson argue that to make available only those parts of a Local

Schema through the Export Schema (in our terms partial extraction) is more pragmatic.

Our approach is to populate the Component Schema with all the relevant Meta-Data, so

that the Meta-Data is available when a new federation is needed and no extra request by

a Database Administrator is needed to put the extra data in the system. While this is a

much more user friendly option, it is at the cost of extra redundancy of Meta-Data in

the Repository. However, Meta-Data will not be large relative to the data which it

describes. The local Database Administrator manages the Component Schema.

Once the Component Schema is set up, any Export Schema can defined for use

in Federated Schemas as and when they are required. The Export Schema common

model is a view over a subset of the Component Schemas common model; only that

which is required by the federation. It is the task of the local Database Administrator to

define this Export Schema, using negotiation with the Federated Database

Administrator (the negotiation process [11]).

When the Export schema common model's have been defined, the Federated

Database Administrator can create the Federated Schema common model by using the

process of Schema Integration [11] to unify the Export Schema common model's. An

important issue is the decideability of conflictfreeness when integrating schemas.

Conflictfreeness between any two schemas is defined the ability to determine that the

structure of the schemas do not conflict in any way. When conflictfreeness cannot be

decided between schemas the resultant effect is to render the integration of those

schemas problematic and any interoperation between them cannot be relied upon.

Convent [13] formally argues that conflictfreeness in the integration of two relational

schemas is undecidable. If he is correct, it could have serious consequences for the

ability to prove the conflictfreeness of any two schemas with any given data model.

However, Convent has only proved that conflictfreeness is undecidable at the level of

expressiveness for schema integration which he believes is the minimum needed . No

proof is given for the level of expressiveness he uses in the paper. It is therefore hard to

accept the validity of his proof one way or another, with knowing more about the level

of expressiveness needed for schema integration. For the sake of brevity the reader is

referred to Convents paper [13] for examples. In any case the formal model which

Convent uses [14] requires the use of a data model with clear formal semantics; the

latter will not probably not exist for legacy systems. We therefore believe that a formal

model must be derived in order reason about conflictfreeness of heterogeneous

integrated schemas. Unfortunately the lifetime of this project precludes the authors

from attempting this.

After the Federated Schemas have been defined with some level of

expressiveness which is conflict free, External Schemas with any data model can be

defined as views over those federations.

6 Physical Architecture for Interoperable Environments

The physical architecture of a interoperable environment (or Federated

Database system) is very dependant on the middleware to be used to implement it.

Examples are Clearinghouse [3] and CORBA [15]. We need to hide the details of the

architecture such that either of these systems could be used to implement the

Repository. Our aim is to provide some middleware portability. We present a

architecture for Clearinghouse in Figure 3, which we believe could be useful. The

Clearinghouse notation used is Strand Software Technologies' [3] which can be found

in Appendix III.

Two levels of the 5-level architecture are represented by Clearinghouse

exchanges, which contain the common model at that level. The probes between these

exchanges represent a mapping between each of exchanges of the various levels of the

architecture. The Repository will set up the exchanges with the relevant common model

and the probes with the model to model mappings, so that data can pass through them

in an operational environment. A view over the Component Schema is provided for

Export Schema implementation. An alternative would be to have an exchange to handle

the Export Schema, but this would mean that transactions would need to pass through

an extra exchange, with resultant loss of performance. The Federated exchange

provides a External Schema view using the Clearinghouse Application Programming

Interface for client programs. The advantage of the architecture in Figure 3 is that there

are no circular relationships between the exchanges, and therefore the risk of race

conditions is greatly reduced.

Federated

 Schema

Component

 Schema

Component
 Schema

Extnenal Schema Extnenal Schema

Component

Database

Export

Schema
View Export

Schema
View

Clearinghouse
Element

Component

Database

FIGURE 3 - Physical Architecture for Interoperable Environments

An alternative to Clearinghouse is CORBA [15]. We can replace the

Clearinghouse element shown in figure 3 by Object Request Brokers and provide a

standard interface with which to access the data. Given that our design will be based on

the Object-Oriented model, this would be a minor task. It should be noted however, that

some addition to CORBA would be needed to provide the same functionality as

Clearinghouse. This is because of the pro-activity of Clearinghouse which propagates

events around connected exchanges. The ISIS system [16] could provide the pro-

activity needed in conjunction with an Object Request Broker by using the concept of

process groups, in which processes notify each other of events as and when they occur.

7 Summary & Further Work

We have described the Common Data Model which will be used as the common

structure in the Meta-Data Repository Visualisation Tool being designed and

implemented for the purposes of the HPPC/SEA/Iriss project. Four main classes for

Meta-Data for a Object-Oriented common model have been identified; Object,

Constraints, Security and System. We believe the definition of Object is flexible

enough to model the structures of all types of databases. The role of the common model

in Federated Databases is discussed for each of the levels of Seth and Larsons 5-Level

schema architecture [11]. We present an architecture created from Meta-Data in the

Repository common model which we believe is race condition free (Clearinghouse

only). We have designed the Repository using the Object Oriented model such that an

Object Request Broker product could be used in place of the Clearinghouse. The

importance of isomorphism creation is stressed in the paper. Information preserving

transformations are regarded as central to the success of integrating heterogeneous

databases. We have identified the need to derive a formal model in order to reason

about the decideability of conlictfreeness when integrating schemas in heterogeneous

environments. We hope that we will be able to undertake this task in the near future.

We are currently implementing the Repository using the common model structure

described in this paper. Extraction tools will take information from the native database

and put it in a suitable form for the common model. The semantic match tool will

provide the method for building federations. The GUI/visualisation tool will allow the

user to resolve heterogeneity interactively, as well as visualise the Meta-Data in the

Repository using a representation of the common model structure. The resultant

operational architecture for the Interoperable system can then be created from the Meta-

Data held in the repository; this will be an automatic process.

Acknowledgement

We are grateful to David Streader for helping us to clarify the concept of

isomorphism's.

References

[1] J. A. McCann, A. MacFarlane, H. Liddell, Management Tools for Distributed

Interoperable Environments, Proceedings of HPCN'96, Brussels, LNCS, Springer-

Verlag, 1996.

[2] J.M. Kerridge, The Design of the IDIOMS Parallel Database Machine, BNCOD9,

Wolverhampton, 1991.

[3] The Clearinghouse Data Management System, Strand Software Technologies Ltd,

UK.

[4] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented

Modeling and Design, Prentice-Hall, 1991.

[5] W. C. McGee, The information management system IMS/VS, IBM System Journal,

Vol. 16, No. 2, 1977.

[6] Appendix D, The INGRES System Catalogs, INGRES/SQL Reference Manual,

Ingres Corporation.

[7] ORACLE RDBMS Database Administrators Guide, Version 6.0, Oracle

Corporation 1990.

[8] E. Pitoura, O. Bukhres, A. Elmagarmid, Object Orientation in Multidatabase

systems, ACM Computing Surveys, Vol. 27, No. 2, June 1995.

[9] G. Thomas, G. R. Thompson, C. Chung, E. Barkmeyer, F. Carter, M. Templeton, S.

Fox, B. Hartman, Heterogeneous Distributed Database Systems for Production Use,

ACM Computing Surveys, Vol. 22, No. 3, September 1990.

[10] D. R. Hofstader, Godel, Escher, Bach: An Eternal Golden Braid, Penguin, 1979.

[11] A. P. Sheth, J. A. Larson, Federated Database Systems for Managing Distributed

Heterogeneous, and Autonomous Databases, ACM Computing Surveys, Vol. 22, No. 3,

September 1990.

[12] J. Murphy, J. Grimson, The Jupiter System: A Prototype for Multidatabase

Interoperability, Directions in Databases: BNCOD 12, July 1994, Springer-Verlag.

[13] B. Convent Unsolvable Problems Related To The View Integration Approach,

Proceedings of ICDT'86, Lecture Notes in Computer Science, No 243. Springer-

Verlag, 1986.

[14] J. Biskup, B. Convent, A Formal View Integration Method, ACM SIGMOD

International Conference on Management of Data, 1986.

[15] The Common Object Request Broker (CORBA): Architecture and Specification,

Object Management Group, Document Number 91.12.1, Revision 1.1 1992.

[16] K. P. Birman, The Process Group Approach To Reliable Distributed Computing,

Communications of the ACM, December 1993, Vol. 36, No. 12.

APPENDIX I - OBJECT MODEL NOTATION USED

+1

Class

Assocation of classes

Generalisation (Inheritance)

Aggregation

One or more assocations

APPENDIX II - THE COMMON DATA MODEL

constraintsconstraints

system

security

object

oo class relation heir. tree FF record

attributes attributes

attributes

segment attributes

+1
+1 +1+1

+1
link

APPENDIX III - CLEARINGHOUSE NOTATION

A Client Program Clearinghouse API Connection to an

Exchange

Clearinghouse Exhchange Clearinghouse Probe
Component Database

(with Native Data Model)

