IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Adamsky, F., Khayam, S. A., Jager, R. & Rajarajan, M. (2014). Who is going to be
the next BitTorrent Peer Idol?. Paper presented at the 12th IEEE International Conference
on Embedded and Ubiquitous Computing, 26-08-2014 - 28-08-2014, Milan, Italy.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4478/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Who 1s going to be the next BitTorrent Peer Idol?

Florian Adamsky*, Syed Ali Khayam®, Rudolf Jager!, Muttukrishnan Rajarajan*

*City University London, United Kingdom
Email: {Florian.Adamsky.1, R.Muttukrishnan} @city.ac.uk

TPLUMgrid, Inc., Sunnyvale, CA, USA
Email: akhayam @plumgrid.com

Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Email: Rudolf.Jaeger @iem.thm.de

Abstract—Active measurement studies show that the Peer-
to-Peer (P2P) file sharing protocol BitTorrent is highly under
attack. Moreover, malicious peers can easily exploit the original
seeding algorithm and therefore reduce the efficiency of this
protocol. In this paper, we propose a novel seeding algorithm that
requests peers to vote for their best sharing peers. Our results
show that this incentive mechanism makes BitTorrent harder
to exploit without losing performance. In some situations our
algorithm even outperform other seeding algorithms. The peer
exchange—that comes as a side effect—reduces the dependency
on a centralized tracker and increases the robustness and the
efficiency. We studied the effectiveness of our approach in a real
testbed comprising 32 peers.

I. INTRODUCTION

Internet broadband penetration catalyzed a fundamental
change in user’s traffic characteristics with P2P file sharing.
These protocols comprise a considerable fraction of today’s
Internet traffic [1], [2]. Simultaneous to widespread usage
of P2P software, a global debate continues to take place on
copyright violations perpetuated through this kind of software.
In addition to public litigation, active measurement studies [3],
[4] have revealed many attacks on P2P systems, launched by
companies hired by music and film industries. BitTorrent is the
most successful P2P protocol and it causes the largest share
of P2P traffic. Therefore, special attention must be given to its
security. Hence, now it is important to investigate the threat
landscape and to develop countermeasures.

Early P2P systems such as Gnutella made no use of an
incentive mechanism. As a consequence, most of the peers
were selfish and were only downloading but not uploading [5].
This problem is called free-riding and degrades the system
performance and makes the network weak. Malicious peers
can exploit this problem to attack the network. BitTorrent took
this problem from the beginning into account and designed
its peer selection algorithm in a tit-for-tat-ish way. This
mechanism is called choking algorithm. A peer that has not
the complete file (leecher) decides according to the download
rate to whom it uploads.

The choking algorithm is, however, different when the
peer has the complete file (seeder). According to BitTorrent
Enhancement Proposal (BEP) 03 [6], a seeder uses its upload

103

Number of blocks
[\&}
I
|

100 200 300
Time

100 200 300 400
Time

(a) Leech State (b) Seed State

—e— Malicious Peers —m— Leechers

Fig. 1: Comparison between the upload piece distribution of
the choking algorithms in leech state (a) and in seed state (b).
The data was produced with 1 seeder that has 5 Mbit/s upload
limit, 29 leechers with 1 Mbit/s and 3 fast peers with no limit.

rate rather than its download rate to decide which peer to
unchoke. In this state a seeder favors peers with the highest
download rate. This does not provide a sharing incentive and
can be easily exploited by malicious peers. Figure la depicts
the upload piece distribution of the choking algorithm in leech
state and Figure 1b in seed state. Every line represents another
peer. The longer the line is, the longer the upload was.

The leecher in Figure la uploads pieces to multiple peers.
This is the result of the incentive mechanism tit-for-tat. The
peers from whom we have downloaded the most are allowed
to upload from us. But the seeder in Figure 1b only uploads
to a couple of peers, because these are the fastest down-
loaders. The other peers can only download pieces via the
optimistic unchoke slot, where one peer is chosen randomly
to download. This example shows that the seeding algorithm
specified in BEP 03 is unfair and can be exploited by malicious
peers [7] [8]. To the best of our knowledge, the research
community has not addressed this problem yet.

The main idea of this paper is a novel seeding algorithm that
makes use of the voting method Borda Count (BC) to decide
which peer is allowed to download. It requires peers to send
votes for their best sharing peers periodically to all seeders.
The seeders award each sharing peer with points according to
the position in the vote. Afterwards, the algorithm sorts the
list of requesting peers by their score and allows the most
sharing peers to download. This provides sharing incentive
and is more resilient against malicious peers than previous
algorithms. As a side effect, the algorithm exchanges peer
information with the seeder and can therefore increase the
stability and the robustness of BitTorrent. The contributions
of this paper are as follows:

o We explain the details of our novel seeding algorithm and
show its implementation details in Section III.

« We analyze the performance of this algorithm in different
environments in a real testbed system with 32 peers run-
ning a commonly-used BitTorrent library in Section I'V-B.

o We investigate the peer exchange mechanism in Sec-
tion IV-C and show that a seeder with our algorithm has
connections to more peers.

o In Section IV-D we attacked each seeding algorithm in
its own way and outline their vulnerability.

II. BACKGROUND AND PROBLEM

In this section we first introduce the BitTorrent terminology
used in this paper. We then briefly discuss the used BitTorrent’s
choking algorithms and show their weaknesses.

Peer: A node that runs a BitTorrent client.

Swarm: All the peers sharing a torrent are called a swarm.

Free Rider: A peer, which only downloads data and denies
uploading to other peers.

Peer Set: Each peer maintains a list of other peers that it
knows about within a swarm. We call this list peer set.

Active Peer Set: Active peer set for a peer is the subset of
its peer set that it can send data to.

Choked: Peer P is choked by peer (), when () does not send
data to P.

Interested: P has data that () wants to acquire.

Piece: The downloaded file is divided into equally sized parts
called Pieces.

BitTorrent’s success can be reduced to its piece and peer
selection algorithm, which are: rarest piece first and choking
algorithm. Since every peer has a limited number of unchoke
slots !, the choking algorithm decides which peer from the peer
set is getting a slot. The decision criterion becomes different
whether the peer is a leecher or a seeder. In leech state, the
choking algorithm works in a tit-for-tat-ish way and favors
peers who uploads. For instance, a leecher L has an upload
capacity of 30 and two upload slots. In the previous upload
round L downloaded from the peers A, B, C with a rate of
10, 5 and 15. In the next round, the choking mechanism would
choke peer B and unchoke peer A and C, since they shared
most.

'We use the term unchoke slot and upload slot interchangeably.

If this mechanism would not have an exception, new peers
would not get a chance to join the swarm, since they have
nothing to share. This exception exists in leech and seed state
and is called optimistic unchoke slot. A peer assigns this slot to
arandom peer. Thus, a peer can try out new peers. Leecher and
seeder manage u unchoke slots and o optimistic unchoke slots.
The BitTorrent specification sets v = 3 and o = 1 and lists
the following reasons for choking: a) it prevents free riders,
b) it ensures a consistent download rate, c¢) the TCP congestion
control behaves poorly, when sending over many connections
at once.

The choking algorithm in seed state does not work in a tit-
for-tat-ish way, since the seeder does not need anything from
the other peers. The following seeding algorithms have been
included to different BitTorrent clients:

Fastest Upload (FU) is the original seeding algorithm de-
scribed in BEP 03 [6]. It favors the peers who upload
the fastest. This algorithm is still used by around 29.5 %
of the clients, according to Table 1.

Round Robin (RR) is a well-known algorithm, especially as
a scheduling algorithm for processes in operating systems
(OSs). In context of BitTorrent, it gives each peer a
constant number of pieces and rotates every n pieces.

Longest Waiter (LW) was introduced with the BitTorrent
mainline client version 4.0.0 without an announcement. It
was first mentioned by Legout et. al. [7]. This algorithm
sorts all unchoked and interested peers according to their
time they were last unchoked. LW unchokes the u peers
who have wainted the longest. Each unchoked peer gets
at least two rounds until LW unchokes them.

Anti Leech (AL) is a seeding algorithm, introduced by
Chow et. al. [9]. They found out that a leechers progress
is slower at the beginning, when a leecher has only a few
pieces and at the end, when the leecher has difficulties
to find peers with interesting pieces. To counteract this
situation, their seeding algoritm prefers peers when they
only have a few pieces or when they have nearly all
pieces. The following equation is used to calculate a
score for each peer:

AL(p) = {F —F(p) i (F(p) < 5)
otherwise,

1

F(p)- 43 @
where the number of pieces from the complete file is
denoted as F' and the number of downloaded pieces from
a peer p is denoted as F'(p).

Table I lists prominent BitTorrent clients and their default
choking algorithm in seed state, arranged by their market share
based on the statistics from [10].

All seeding algorithms that we introduced, have at least one
of the following problems:

A. Missing Incentive Mechanism

According to BitTorrent’s choking mechanism, a selfish peer
who does not upload to others would get punished. The same
peer would get rewarded by a seeder with an unchoke slot, if

TABLE I: BitTorrent clients in combination with the used
Seeding Algorithm order by market share according to [10].

Client Version ~ Market Share Seeding Algorithm
1 uTorrent 322 4797 % Longest Wait

2 Vuze 4812 2249 % Fastest Upload

3 Mainline 772 13.01 % Longest Wait

4 Transmission 261 7.00 % Fastest Upload

5 Unknown 522 % n/a

6 Libtorrent 0.16.10 1.02 % Round Robin

the peer downloads fast enough. Let us take the example from
Section II to illustrate the problem: if peer A and peer B have
the same bandwidth capacity and A is selfish and B is not.
Peer A downloads from S with its full rate. But B uploads
and downloads pieces with other peers and thus is not able to
download with the full rate. Therefore, S would unchoke A
instead of B.

Liogkas et. al. [11] implemented such a selfish BitTorrent
client that ignores leechers and only tries to download from
seeders. Seeders can be easily identified, since they advertise
themselves by sending a HAVE_ALL message or a complete
bitfield. Consequently, this means that the seeding algorithm
tolerates free riding which can be explained by the missing
incentive mechanism.

B. Security Problems

The choking algorithm in seed state is vulnerable to band-
width attacks. The idea behind a bandwidth attack is to disturb
the distribution of files via BitTorrent. A seeder manages u
unchoke slots and o optimistic slots. A malicious peer that
runs a bandwidth attack tries to occupy most of the seed’s
unchoke slots. If an attack is successful and the seeder’s
unchoke slots are all occupied by attackers, then the seeder
distributes o - u%ro of its upload bandwidth b to good peers.
Our previous work [12] has shown that 3 malicious peers can
degrade the download rate up to 415 % for all peers. Combined
with a Sybil attack [13] that consists of as many attackers as
leechers, it is possible to degrade the download rate by ten
times.

III. SEEDING ALGORITHM: PEER IDOL

We propose a new seeding algorithm that is fast, hard to
exploit and ensures that only peers that have shared are getting
unchoked. We call this seeding algorithm Peer Idol (PI). If
a leecher wants to acquire pieces from a seeder, it has to
send every unchoke round a new BitTorrent message to the
seeder, that we call a vote. This vote contains a list of n peers.
The peer who sends the vote chooses leechers according to
their download rate. The notation A > B indicates that the
requesting peer has downloaded more from peer A than from
peer B. Therefore a vote with n = 3 looks like (A >~ B > C).

The seeder who gets the vote awards each peer that is in the
vote with points: Peer A gets 3 points, peer B gets 2 points
and peer C' gets 1 point. Every unchoke round the seeder sorts
all candidates by their score of each peer and unchokes the
peers with the highest score. These peers can download for
two consecutive rounds until the seeder calculates the scores

again. This avoids quick choking and unchoking, known as
fibrillation. In mathematical terms: if N = {1,2,...,n} is
the peer set of the seeder, then / C N contains the peers
which are interested. Then for every peer p € I we calculate
the PI score as follows:

1

PI(p) = Z Vi(p).)

The function V;(p) returns 1 if peer i voted for peer p and
0 if not. If two peers have the same score, the peer that has
waited the longest gets a higher priority. After each unchoke
round, which BEP 03 defines as 10 seconds, the score of all
peer is reset to 0. If a vote contains peers to whom the seeder is
not connected to, it will add this peer in a list of potential peer
candidates. This list contains peers from Local Peer Discovery
(LPD), Peer Exchange (PEX) and Distributed Hash Table
(DHT). If the seeder has less peers than max_connection,
it randomly chooses peers from this list and tries to connect
to it.

The scoring is a well-known election method in political
voting and is called Borda Count (BC), named after Jean-
Charles de Borda [14], although it was developed multi-
ple times independently. We also have tested the Condorcet
Method (CM), but noticed two major problems: Firstly, the
computation complexity of CM is O(IN?), since all peers have
to compete with each other. In comparison, the complexity
of BC is O(1), since the seeder adds the increases the vote
counter of that specific peer. Secondly, the score of the last
peer would be C'M (p) = 0, since it would loose all pairwise
comparisons.

We defined additional security rules to protect against fraud.
A peer has to send a vote in order to get voted. This ensures,
that peers send votes to the seeder. But an exception can be
made, if the seeder has not enough peers to upload. A peer
gets disconnected and blacklisted if the vote contains:

o more than n peers
o the IP address of the requesting peer
« repeated peers

A. Implementation details

We implemented PI as an extension of the BitTorrent
protocol based on BEP 10 [15]. The advantage of this approach
is that we are not interfering with the standard protocol.
Moreover, the BitTorrent handshake contains reserved bits that
can be used to communicate which extension a peer supports.
This makes it easy for a peer to send votes only to seeders that
supports it. We set the number of votes to three through out
all experiments—it is the same number that BEP 03 sets as
unchoke slots. Yet PI has an extra message overhead through
the votes.

A PI vote contains a four bytes length field, followed by
a one byte Message Type (MT). The message type of an
extension message is 20, according to BEP 10 [15]. The
next field is a one byte Extended Message Type (EMT) that
distinguishes the extension. The payload of this packet is a

Py
£
F
T 100} |
S
=
z
)
A
5]
&
5 50| .
< | | | | | | | | |
04 06 08 1 12 14 16 18 2
Upload Speed from the Seeder (kbit/s) -10*

(a) Leechers have no upload or download limit

P 140 [I T —
9
£ 120f
H
B
S 100+ L
=
2
g 80| .
]
&
§ 60 |- s
< | | | | | | | | |

04 06 08 1 12 14 16 18 2

Upload Speed from the Seeder (kbit/s) -10*

(b) Leechers have different download limits and no upload limit

Fig. 2: Effects of the different seeding algorithms on the average download speed in different environments. The upload speed
of the seeder was gradually increased. The error bars show 99 % confidence intervals.

bencoded dictionary with an item vote, that contains the
voted peers in compact > format. We have not considered
IPv6 in our implementation. But instead of the item vote,
it would be possible to use vote6 and then include the 18-
octet IPv6 addresses. Considering the 6 bytes of static fields
of the extension message and 12 bytes bencoded dictionary
overhead, a PI message with 3 votes would have 28.8 kbit/s
for IPv4 and 57.6 kbit/s for IPv6.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

We perform experiments using private torrents in our testbed
consisting of 32 nodes with an additional node that controls
and monitors the experiments. These nodes are desktop ma-
chines, which are running libtorrent 0.16.10 over Ubuntu GNU
Linux 12.04.1 LTS. In all experiments, the seeder distributes a
file with a size of 500 MiB and a piece size of 256 KiB. The
controller node executes the experiments and monitors each
of these nodes.

All experiments simulated a flash crowd scenario to get
reproducible results with 1 seeder and 31 leechers. Every
leecher disconnected after receiving a complete copy of the file
and only the initial seeder stayed connected for the complete
duration of the experiment—this is because BitTorrent does
not reward a seeder to stay active. Finally, every experiment
was repeated 10 times and the average values for these
experiments are reported in subsequent sections.

B. Performance

Performance is the unique selling point of BitTorrent. A
new seeding algorithm should not make BitTorrent in any case
slower. Therefore, we designed four performance experiments
to find out how fast PI is in different environments. Our
hypothesis is that PI will not be slower than the other seeding

2The compact format represents an IPv4 address with 6 bytes: 4 bytes IPv4
address and 2 bytes port number.

algorithms, even with the message overhead described in
Section. This is based on the observation that PI favors sharing
peers. In the first experiment, we compared the performance
of the seeding algorithms in an optimal environment, where
the leechers had no download or upload limits. The seeder had
an upload speed limit that was gradually increased. Figure 2a
shows the average download speed of all peers depending on
the upload speed from the seeder.

Figure 2a shows the results of the first experiment. We
limited the domain of all results to 5-20 Mbit/s, since there
is no significant difference between the algorithms in the
domain from 1-4 Mbit/s. Beginning from 5 Mbit/s RR and
AL move apart from FU, LW and PI. To reduce redundancy,
RR represents the slower group and PI the faster group. The
seeding algorithm RR ranges from 55.7-567 s and has a
mean value of 120.5 s. Compared with faster group, the range
is 45.9-566 s and the mean value is 111.5 s. The median
difference between both groups is 10 s.

C. Stability

We understand stability in terms of BitTorrent that the
service still works as expected, even if some peers go offline.
Let us suppose, several peers would go offline in a swarm with
a low peer set cardinality. The consequence would be either
that peers starve, since they do not have enough peers to finish
the download, or the peers have to request the tracker for more
peers, which results in an increase in download time. Both
consequences disrupt the stability of the service. Thus, we run
an experiment and counted the number of peers the seeder has
a connection to. Table II shows the number of connected peers
to the seeder.

TABLE II: The number of connected peers of the seeder.

FU RR LW AL
5.1 5.1 48 49

PI
29.0

Seeding Algorithms:
Number of Connected Peers:

All seeding algorithms except PI only use the tracker to

get new peers. The results show that these algorithms request
the tracker once or twice to get new peers. The seeder that
makes use of PI had a connection to nearly all peers. This
is because with every vote that contains unknown peers, the
seeder save these peers to a list for a possible connection
candidates. If the seeder has to less peers, it chooses randomly
a peer from that list and tries to connect it. Wu et. al. [16]
studied peer exchange in BitTorrent and concluded that peer
exchange significantly reduces the download time. This lowers
the dependency of a central tracker and increases the stability
and robustness of BitTorrent.

D. Security

In the next experiment, we investigate how vulnerable the
PI algorithm is to bandwidth attacks and compare the results
with the other algorithms. For that purpose, we included
3 malicious peers in the experiment that attack each algorithm
in its own way. The attackers connect to the seeder 5 seconds
before the leechers. This ensures that the attackers are getting
the unchoke slots first. We measured how many attackers
and leechers were unchoked. The comparision can be seen
in Figure 3.

E | |

8 100

51000 0T s 899 |
- = 80.7)

£ —

5]

4

o

< 50 .
[=]

=)

= 19.3

° g 11.5 D 10.1
[} . 0

—g oL =L _D L | L _D N
=

Z 1 1 T

T T
RR LW AL PI
’ 00 Leechers 0 Attackers ‘

Fig. 3: The unchoke ratio of attackers and leechers of the
different seeding algorithms witout the optimistic unchoke
slot. The data was produced with 1 seeder that has 5 Mbit/s
upload limit, 29 leechers with 900 kbit/s download limit
and 3 malicious peers. All values are average values of ten
iterations. The 99 % confidence intervals of all values is
< 0.05.

The malicious peers just have to download faster than its
competitors to exploit the FU. Thus, we equipped the attackers
with more bandwidth than its competitors. The attack script
requests random blocks and tries to download as much as
possible. The results in Figure 3 show, that FU is quite
vulnerable against those kind of attacks. Only 3.3 % leechers
were unchoked and 96.7 % attackers. This confirms that
FU unchokes the fastest downloaders and since the attackers
are faster and earlier, FU unchokes almost exclusively the
attackers.

To attack RR we used the same attack script against FU,
since there is no vulnerability that can be exploited, except to
introduce more attackers. In comparison to FU, RR unchokes
88.5 % leechers and only 11.5 % attackers. The probability
that RR chooses an attacker is P(A) = Z—:, where n, is the
number of attacker and n, is the number of peers that the
seeder has in its peer set. Therefore, the probability that a
leecher is chosen by RR is P(L) = P(A) = "Z’n;P"“ RR is
quite robust against bandwidth attacks and gives each peer the
same amount of pieces.

AL favors the peers that have nearly all or nearly none
pieces. To exploit this algorithm, the attacker are not sending
any HAVE messages to the seeder. As a result, F(p) from
Equation 1 is always 0 and therefore AL(p) = F, which is the
highest score for a peer. The benign leechers have to be content
with the optimistic unchoke slot. Their AL score is getting
lower than the malicious peers, as soon as they have one piece.
This security weakness is described in the discussion section
of their paper [9]. The authors also presented an idea to prevent
that attack, which is not implemented in the current libtorrent
version.

To exploit PI, the attack script sends every 10 second a vote
to the seeder, which contains the other attackers. The attackers
can only vote for n — 1 attackers, since the requesting peer
is not allowed to include itself to the vote. This means, the
vote from the attackers only contains two valid peers. As the
results depict, the PI algorithm is the most robust one against
bandwidth attacks. It can be seen that PI only unchokes 10.1 %
of the attackers and 89.9 % of the leechers.

What impact has the unchoke ratio on the average download
time of the leechers? In the next experiment we included
3 malicious peers with no upload and download limit and
29 leechers with an upload limit of 20 Mbit/s. Like in the
previous experiment, we attacked each seeding algorithm in
its own way and increased the upload limit of the seeder
gradually. The results can be seen in Figure 4.

0 —eo—FU

Q —a—RR

£ B i
= 2,000 —e— LW
o

Z 1,000 | N
=)

)

2

3

< O | | | | L

0 0.5 1 1.5 2

Upload Speed from the Seeder (kbit/s) -10*

Fig. 4: Average download speed of the different seeding
algorithm with 3 attackers with no up or download limit and
29 leechers with an upload limit of 20 Mbit/s. The error bars
show 99 % confidence intervals.

The leechers suffer most from the attack against a seeder
that uses AL as its seeding algorithm. Their average download
time range from 105.6-2398.8 s which results in a mean of
397.1 s. The next algorithm that is quite vulnerable is FU.
Average download time from the leechers with seeder with FU
range from 58.5-742.4 s with a mean of 216.6 s. We observed
a higher deviation when the seeder has a low upload capacity.
A low upload capacity entails that the attackers and leechers
are downloading nearly with the same speed. This means, it
depends on the efficiency of the attackers and leechers.

The download time from the leechers of RR range from
76.2-665.7 s with a mean of 148.5 s. After 12 Mbit/s, RR
becomes slower than LW. LW, however, ranges from 53.5—
671.8 s with an average value of 140.9 s. The seeding
algorithm PI is the fastest one. The average download time
of the leechers range from 52.5-602.2 s with a mean of value
of 122.2 s.

V. RELATED WORK

In this section, we discuss the related work that has influ-
enced and inspired this paper.

A number of research studies (e.g. [17], [11], [8], [18]) have
focused the choking algorithm in leech state and investigated
its fairness, robustness and performance. But only a few
studies have focused the seeding algorithm. One of these few
studies is the already introduced seeding algorithm AL from
Chow et. al. [9] in Section II. To the best of knowledge, this
is the only new seeding algorithm that has been proposed by
the research community, yet.

Dhungel et. al. [19] were the first who investigated band-
width and connection attacks in the area of BitTorrent. They
defined bandwidth attacks as peers who try to allocate an up-
load slot from the seeder as soon as possible to nip the seeder
in the bud. Their measurements showed that bandwidth attacks
are rather ineffective and it is only possible to increase the
download time up to 10 %. In another work, Dhungel et. al. [4]
came to the conclusion that it is not possible to nip the seeder
in the bud. On the contrary, our previous work [12] shows that
bandwidth attack can be an effective attack against seeders.

Piatek et. al. [20] found out by month-long measurement of
millions of BitTorrent users, that the performance and avail-
ability in BitTorrent is poor. These measurements motivated
the authors to design and implement a new, one hop reputation
protocol for P2P networks. The idea of this protocol is to
encourage persistent contribution incentives and rewarding
contributions. Every client maintains a history of interactions,
which serve as intermediaries attesting of the behavior of
others. This is restricted to at most one level of intermediaries.
This protocol limits free-riding. It is, however, hard to compare
their protocol with our seeding algorithm, since it is a complete
new protocol based on one hop reciprocation.

VI. CONCLUSION AND FUTURE WORK

We considered an important threat against seeding algo-
rithms in BitTorrent. Our paper proposed a countermeasure
against bandwidth attacks. This novel seeding algorithm for

BitTorrent that we call Peer Idol introduces a new message
type which contains votes for other peers. We evaluated this
algorithm experimentally in terms of performance, security
and stability. Our results support our hypothesis that PI is
more robust against bandwidth attacks and does not lose
performance compared to other algorithms. In our experiment,
PI was even faster than RR and AL. We have shown that if a
vote contains peers, which the seeder has not in its peer set,
this is not a disadvantage. These peers, however, are getting
saved to a candidate list and can be used for later contact.
This reduces the dependency of a central tracker and increases
the stability and robustness of BitTorrent. Summarized, our
novel choking algorithm in seed state implements the incentive
mechanism in BitTorrent consequently through all peers.

REFERENCES

[1] E. Van Der Sar. (2011) BitTorrent Traffic Surges After LimeWire
Shutdown. [Online]. Available: http://goo.gl/VIsya

. (2012) BitTorrent Traffic Increases 40 % in Half a Year. [Online].
Available: http://goo.gl/d4cGA

[3] P. Dhungel, D. Wu, B. Schonhorst, and K. W. Ross, “A measurement
study of attacks on bittorrent leechers,” in International Workshop on
Peer-to-Peer Systems (IPTPS), 2008, p. 7.

[4] P. Dhungel, X. Hei, and D. Wu, “A measurement study of attacks on
bittorrent seeds,” in (ICC), 2011 IEEE, 2011, pp. 1-5.

[5] E. Adar and B. A. Huberman, “Free Riding on Gnutella,” First Monday,
vol. 5, 2000.

[6] B. Cohen, “The Bittorrent Protocol Specification,” Bittorrent, Inc.,
Tech. Rep., Feb 2008. [Online]. Available: http://bittorrent.org/beps/
bep_0003.html

[71 A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke
algorithms are enough,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, New York, New York, USA, 2006,
pp- 203-216.

[8] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in BitTorrent?” in Networked
Systems Design and Implementation, 2006, pp. 1-14.

[91 A. L. H. Chow, L. Golubchik, and V. Misra, “Improving BitTorrent: a

simple approach,” in Proceedings of the 7th international conference on

Peer-to-peer systems, ser. IPTPS’08, 2008, p. 8.

E. Van Der Sar. (2011) uTorrent Keeps BitTorrent Lead, BitComet

Fades Away. [Online]. Available: http://goo.gl/EImuS

N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting BitTorrent

For Fun (But Not Profit),” in 5th International Workshop on Peer-to-Peer

Systems (IPTPS 2006), feb 2006, pp. 1-1.

F. Adamsky, S. A. Khayam, R. Jr, and M. Rajarajan, “Experimental

Evaluation of Bandwidth Attacks against Seeder,” 2014, unpublished.

[2]

(10]

(11]

[12]

[13] J. R. Douceur, “The Sybil Attack,” in IPTPS, 2002, pp.
251-260. [Online]. Available: http://www.springerlink.com/index/
3anOek5gfan3dtx9.pdf

[14] S. Stahl and P. E. Johnson, Understanding Modern Mathematics. Jones
Bartlett Pub (Ma), 2006.

A. Norberg, L. Strigeus, and G. Hazel, “BEP 0010: Extension
Protocol,” BitTorrent Inc., Tech. Rep., 2008. [Online]. Available:
http://bittorrent.org/beps/bep_0010.html

D. Wu, P. Dhungel, X. Hei, C. Zhang, and K. W. Ross, “Understanding
Peer Exchange in BitTorrent Systems,” in Peer-to-Peer Computing
(P2P), 2010 IEEE Tenth International Conference on, 2010, pp. 1-8.
T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in
BitTorrent is Cheap,” in Hot Nets 5, 2006, pp. 85-90.

S. Jun and M. Ahamad, “Incentives in BitTorrent Induce Free Riding,”
in Proceedings of the 2005 ACM SIGCOMM Workshop on Economics
of Peer-to-peer Systems, ser. P2PECON *05. ACM, 2005, pp. 116-121.
P. Dhungel, X. Hei, D. Wu, and K. Ross, “The seed attack: Can bittorrent
be nipped in the bud?”’ Department of Computer and Information
Science, Polytechnic Institute of NYU, Tech. Rep., 2008.

M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
Reputations for Peer to Peer File Sharing Workloads,” in Networked
Systems Design and Implementation (NSDI) 08, 2008, pp. 1-14.

[15]

[16]

[17]

(18]

[19]

[20]

	Introduction
	Background and Problem
	Missing Incentive Mechanism
	Security Problems

	Seeding Algorithm: Peer Idol
	Implementation details

	Experimental Evaluation
	Experimental Setup
	Performance
	Stability
	Security

	Related Work
	Conclusion and Future Work
	References

