

City, University of London Institutional Repository

Citation: Pickens, J. and MacFarlane, A. (2006). Term Context Models for Information
Retrieval. Paper presented at the 15th ACM international conference on Information and
knowledge management, 05-11-2006 - 11-11-2006, Arlington, Virginia.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4494/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Term Context Models for Information Retrieval

ABSTRACT
At their heart, most if not all information retrieval models
utilize some form of term frequency. The notion is that the
more often a query term occurs in a document, the more
likely it is that document meets an information need. We
examine an alternative. We propose a model which assesses
the presence of a term in a document not by looking at
the actual occurrence of that term, but by a set of non-
independent supporting terms, i.e. context. This yields a
weighting for terms in documents which is different from
and complementary to tf-based methods, and is beneficial
for retrieval.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation

Keywords
Maximum entropy, conditional random fields, context-based
retrieval

1. INTRODUCTION
At the core of almost every modern ad hoc retrieval algo-

rithm is a reliance both on local properties (statistics from
within a document) as well as with global properties (statis-
tics from across a collection). For example, Okapi BM25 [13]
uses term frequency (tf) and document length (dl) as local
properties, and inverse document frequency (idf) and aver-
age document length as global properties. Ponte’s language
modeling [11] uses tf and dl for local maximum likelihood

estimation, and combines these with a global risk factor R̂,
a measure of how far the current document’s tf is from the
collection-wide normalized mean. In more recent language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM 2006
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

modeling work [17], the local maximum likelihood estimate
is combined with a global “fallback” model, or p(t|C), the
probability of the term appearing in the entire collection.

The motivation for idf, R̂, and p(t|C), all global prop-
erties, comes from the understanding that local properties
alone are insufficient. No matter the algorithmic framework,
some combination of local and global properties are required
for proper retrieval. It is with this understanding that we
have developed another useful global property: term con-
text. Unlike the aforementioned global properties, which
are all based on counts across documents in which a term
is present, we create a model that predicts whether or not
the term should be present in a document whether or not it
is, based on global contextual usage patterns. It is a mea-
sure of how good a fit a term is for a particular document,
influenced by how that term is used in other documents in
a collection.

For example, suppose a user issues the query “fuel”. Fur-
thermore, suppose there are two same length, same “fuel”
term frequency documents in the collection. However, one of
the documents talks about energy and gas and coal, whereas
the other document talks about how various interest rates
and tax cuts fuel the economy. Ceteris paribus, tf-based
methods have no reason to prefer one document over an-
other. However, our models may learn that the document on
energy contains a more contextually standard usage of fuel
in a particular collection than the document on the economy,
and thus will be ranked higher when utilizing term context
models.

Lest this previous example mislead the reader, this is more
than just word sense disambiguation. Take for example
the query term “emacs”. There is really only one lexical
sense of this word. And yet documents containing emacs
might encompass a whole range of subjects, everything from
keystroke shortcuts to programming environments to email
integration. If there is a particular aspect or set of aspects
that dominate in a collection, those will be learned by con-
text modeling and documents containing those aspects will
be given a boost in the rankings.

We note at the outset that while we are computing global
contextual statistics, what we are doing is neither query ex-
pansion (via global context analysis) nor pseudo-relevance
feedback (via local context analysis) [16]. We do not ac-
tually add the terms gas or coal to the fuel query. We do
not modify weights on fuel based on the top n documents
from an initial retrieval run. This distinction is subtle but
important, and will be explained further in later sections.

This paper is structured as follows. In section 2 we dis-

cuss related work. Section 3 contains a description of our
model, while section 4 shows how we apply the model to
ad hoc retrieval. The experimental set up and evaluation is
done in section 5. Future work is proposed in section 6 and
conclusions are drawn section 7.

2. RELATED WORK
The parametric form that we use for the term context

model is the familiar log-linear, also known as exponential
or maximum entropy model, and is related to conditional
random fields [6]. CRFs can be though of as a structured
form of maximum entropy. Conversely, conditionally trained
maximum entropy can be thought of as an unstructured, or
“0th order”, CRF [8]. We prefer this latter perspective, and
in section 3 will describe our model in these terms.

Maximum entropy and related models have long been used
in information retrieval applications, from early work by [5]
to more recent work by [4, 10] and even [9]. However, these
models only consider counts and dependencies amongst the
terms in the query, and do not make use of the larger sta-
tistical language properties of a term.

Other maximum entropy and related models do make use
of statistical language but have not been applied to the task
of ad hoc retrieval [1, 2, 3]. The model with the most sim-
ilar form to ours is [14], though again the application of
that model is quite different. Another closely related work
is [7]. While the application is music information retrieval,
notes instead of words, the idea of situating notes in their
proper context is analogous to situating terms in their con-
text. Finally, [8] uses maximum entropy to learn manually-
annotated text labels for documents (via “social tagging”),
using the document as the context for the label. Determin-
ing whether a particular term is a good label for a document
is similar to our approach. The difference is that the labels
we are learning are not external to the content of the docu-
ments. This will become clearer in the next section.

3. THE TERM CONTEXT MODEL
Our goal is to assess the presence of a term in a document

based not on the actual observed occurrence of that term,
but on the evidence of a set of supporting terms, or context,
from that document.

One possible solution is to use term co-occurrence. If
a “support” term co-occurs frequently with the “target”
(query) term, one may be able to use that support term as
a substitute for the target. However, in most cases no one
term is a perfect substitute for another, so multiple terms
are needed. This presents a problem: When multiple terms
are added to a query, precision at low recall can be adversely
affected [16]. Furthermore, support terms are not indepen-
dent. Using straightforward co-occurrence makes the pair-
wise independence assumption. This is only sometimes, and
clearly not necessarily, true. We believe that by modeling
the statistical dependencies between support terms we can
increase precision at low recall for some queries without ad-
versely affecting precision for other queries. Therefore, we
turn to a framework that allows us to selectively model the
interactions between the individual support terms.

3.1 Nature of the Field
Suppose we have a lexicon of k terms extracted from some

corpus of interest. We create for each term i in the lexi-

con two binary random variables, txi for the observed value
of that term, and tyi for the unobserved (hidden, inferred)
value. When given a document d from our corpus, the ob-
served variables {tx1 . . . txk} are instantiated by assigning a
value of “0” when the observed frequency of the term is zero
in that document, and a value of “1” when the observed fre-
quency is greater than zero. Now, for each term’s hidden
binary variable tyi we define the context Hyi as the set of
observable variables for all terms in the vocabulary other
than the ith term itself:

Hyi = {txj : i 6= j} (1)

Terms in Hyi are the only ones that can be examined
when we are making the prediction regarding tyi . In other
words, we assume that the probability of term tyi occurring
in d is completely determined by Hyi in our model.

This also means that each term tyi is conditionally inde-
pendent of all other terms tyj 6=i , given {tx1 . . . txk}; i.e. we
propose a “bag of term-context-models” approach. How-
ever, it is important to stress that we do not want to assume
independence among the conditioning variables; we still al-
low arbitrary dependencies within the Hyi context.

3.2 Conjunctive Features
A well-known advantage of the random field framework is

that it allows arbitrary dependencies between the target tyi

and its context Hyi . Features may be simple or complex,
based on everything from term frequencies to the locations
of commas. However, for the sake of simplicity we will de-
liberately restrict allowed dependencies to binary questions
of the form: “does term txj occur in this document?”.

We will also allow generalizations where a question is
asked about some subset S of the terms in Hyi . The an-
swer to a question of this form will be called the feature
function fS , and S will be referred to as the support of f .
For a given support S ∈ Hyi , the feature function fS is
defined as the conjunction of answers about the individual
terms in txj∈S:

fS(tyi , Hyi) = tyi

Y
txj

∈S

txj (2)

Defined in this manner, our feature functions are always
boolean, and equal to 1 if all the terms defined by S occur in
the document. A feature function always includes the target
term tyi . This is not a fallacy, since tyi will never actually
be considered a part of its own context. Presence of tyi in
the feature serves only to tie the occurrences of terms in S
to the term tyi . Figure 1 is an example of a term context
model for a single term, tyi .

3.3 Exponential Form
There are a number of different forms we could choose for

computing the probabilities P (tyi |Hyi), but it turns out that
for random fields there is a natural formulation of the dis-
tribution that is given by the maximum-entropy framework.
Suppose we are given a set F of feature functions that define
the structure of the field. The maximum-entropy principle
states that we should select the parametric form that is: (i)
consistent with the structure imposed by F and (ii) makes
the least amount of unwarranted assumptions — that is the
most uniform of all distributions consistent with F . The
family of functions that satisfies these two criteria is the
exponential (or log-linear) family, expressed as:

Figure 1: Graphical representation of a Term Context

Model. Dark nodes are the observable variables. The

light node is the hidden variable for the term tyi whose

context we are modeling. The variables inside the dotted

area are the context Hyi . An example set of arcs are

shown, where an arc represents a single feature function

fS whose connected nodes are the support S.

P̂ (tyi |Hyi) =
1

Zi
exp

8<:X
f∈F

λff(tyi , Hyi)

9=; (3)

In equation (3), the set of scalars Λ = {λf : f ∈ F}
are the Lagrange multipliers for the set of structural con-
straints F . Zi is the normalization constant that ensures
that our distribution sums to unity over all possible values
of tyi :

Zi =
X
tyi

exp

8<:X
f∈F

λff(tyi , Hyi)

9=; (4)

For a general random field, the partition function Zi is
exceptionally hard to compute since it involves summation
over all possible configurations of the system, which is ex-
ponential. In our case, our assumption of no dependencies
between hidden variables {ty1 . . . tyk} makes computation of
the partition function extremely simple: Zi only needs to be
computed for tyi = 0 and tyi = 1.

3.4 Objective Function
The ultimate goal of this project is to develop a probabil-

ity distribution P̂ (tyi |Hyi) that will accurately predict the
presence of term tyi in a document. There exist a num-
ber of different measures that could indicate the quality of
prediction. We choose one of the simplest — log-likelihood
of the training data. Given a training set T of documents
d, the log-likelihood is simply the average logarithm of the
probability of producing term i in T :

LP̂ =
1

|T | log
TY

d=1

P̂ (tyi,d|Hyi,d) (5)

3.5 Feature Induction
If we examine the parametric form in equation (3), we

note that there are two things on which the model depends.
The first and (in our opinion) foremost is the structure of
the field F , represented as a set of constraints or feature
functions f∈F . These constraints represent most signifi-
cant dependencies between the variables of the field. The
second thing we learn is the set of weights Λ = {λf}, one
for each feature f∈F . We know that Λ and F are intimately

intertwined and we need to learn them simultaneously, but
for the sake of clarity we split the discussion in two sec-
tions. This section will describe how we can incrementally
induce the structure F of the field, starting with a very flat,
meaningless structure and generalize to more interesting re-
lationships.

The field induction procedure closely follows the algorithm
described in [3], the primary difference being that we are
dealing with a conditional field, whereas Della Pietra et al
use a joint model. We start with a field that contains only
that term without any dependencies: F0 = {tyi}. We
will incrementally update the structure F by adding the
features g that result in the greatest improvement in the
objective function. Suppose Fk = {fS} is the current field
structure. Also assume that the corresponding weights Λk

are optimized with respect to Fk. We would like to add to
Fk a new feature g that will allow us to further increase
the likelihood of the training data. In order to do that we
first need to form a set of candidate features G that could be
added. We define G to be the set of all single term extensions
of the current structure F :

G =
˘

fS · txj : fS ∈ F , j 6= i
¯

(6)

In other words, we form new candidate features g tak-
ing an existing feature f and attaching a single observable
term txj . Naturally, we do not include as candidates any
features that are already members of F . Now, following the
reasoning of Della Pietra, we would like to pick a candidate
g∈G that will result in the maximum improvement in the
objective function.

First, let Ẽ[g] denote the empirical or target expected
value of g, which is simply how often the feature actually
occurs in the training data T :

Ẽ[g] =
1

|T |

TX
d=1

g(tyi , Hyi)

Similarly, our estimate P̂ (tyi |Hyi) gives rise to the pre-

dicted expectation Ê[g] for the function g. Predicted ex-
pected value is simply how often our model “thinks” that g
should occur in the training set:

Ê[g] =
1

|T |

TX
d=1

X
tyi

P̂ (tyi |Hyi)g(tyi , Hyi)

Now, suppose that previous log-likelihood based only on
Fk was LP̂ . If we add a feature g weighted by the multiplier
α, the new likelihood of the training data would be:

LP̂+{αg} = LP̂ + αẼ[g]− log Ê[eαg] (7)

As our feature functions are binary, the weight α can be
determined in closed form by differentiating the new log-
likelihood LP̂+{αg} with respect to α and finding the root
of the derivative:

0 =
∂LP̂+{αg}

∂α
⇐⇒ α = log

"
Ẽ[g](1− Ê[g])

Ê[g](1− Ẽ[g])

#
(8)

Knowing α also allows us to compute the resulting im-
provement, or gain, in log-likelihood in closed form:

Gain = Ẽ[g] log
Ẽ[g]

Ê[g]
+ (1− Ẽ[g]) log

1− Ẽ[g]

1− Ê[g]
(9)

tyi = hydroelectric

λf fS Co-oc
3.36 dammed 0.031
1.95 cheap 0.006
1.68 governor 0.004
1.57 resources 0.005
1.53 predictions 0.003
1.52 analyst 0.004
1.51 capacity 0.005
1.29 electric 0.008
1.25 populated 0.003
1.25 mountains 0.004
1.22 plants 0.007
1.18 depend 0.003
1.06 ago 0.001
1.05 conserve 0.004
1.01 rivers 0.008
0.81 power 0.004

-0.50 ups 0.001
-0.62 president 0.001
-0.66 people 0.001
-1.14 county 0.001
-1.19 thursdays 0.001
-1.37 companies 0.001
-1.40 city 0.001
-1.83 friday 0.001
-2.07 today 0.001
-2.11 state 0.001
-2.25 los 0.001
-2.33 play 0.000
-2.96 time 0.001
-4.11 <null> 0.001
-4.39 years 0.001

tyi = projects

λf fS Co-oc
1.06 constructed 0.160
0.73 developed 0.177
0.58 environment 0.097
0.53 acres 0.113
0.51 building 0.167
0.48 fund 0.129
0.45 boulevards 0.076
0.44 work 0.130
0.43 plans 0.157
0.41 director 0.130
0.41 million 0.138
0.36 council 0.127
0.34 complete 0.112
0.34 art 0.088
0.31 proposal 0.141
0.30 program 0.119
0.29 commercial 0.099
0.28 producers 0.092
0.28 design 0.119
0.25 city 0.138
0.24 improvement 0.094
0.23 star 0.056
0.23 research 0.084
0.23 space 0.107
0.21 approved 0.130
0.19 featuring 0.066

-0.19 wins 0.046
-0.20 security 0.055
-0.22 today 0.065
-0.22 team 0.044
-3.82 <null> 0.086

tyi = railway

λf fS Co-oc
2.61 railroad 0.074
1.91 fe 0.053
1.63 rail 0.053
1.62 visitors 0.014
1.36 locomotive 0.071
0.97 ago 0.004
0.89 labor 0.010
0.86 town 0.010
0.84 training 0.015
0.77 collective 0.008
0.71 bus 0.016
0.64 travel 0.012
0.64 economic 0.008
0.63 passenger 0.024
0.55 centralize 0.008
0.54 historical 0.011
0.53 large 0.006
0.52 stands 0.005
0.45 worker 0.009

-0.40 county 0.003
-0.40 americans 0.003
-0.45 today 0.004
-0.74 tuesday 0.003
-0.75 thursdays 0.002
-0.83 los 0.003
-0.95 ups 0.003
-1.01 wednesday 0.002
-1.46 time 0.003
-1.53 friday 0.002
-2.81 years 0.003
-4.41 <null> 0.002

tyi = accidents

λf fS Co-oc
1.38 drivers 0.117
1.14 injuries 0.098
0.95 traffic 0.090
0.87 safety 0.076
0.81 occur 0.084
0.79 kill 0.084
0.78 crash 0.098
0.70 fatally 0.070
0.62 alcohol 0.055
0.58 hospitals 0.081
0.56 injured 0.102
0.54 cars 0.094
0.46 crews 0.051
0.45 dies 0.071
0.38 happened 0.052
0.35 involving 0.051
0.33 coasts 0.039
0.30 suffering 0.068
0.30 mile 0.064
0.28 dangerous 0.052
0.25 death 0.062
0.23 industry 0.033
0.19 california 0.049

-0.22 group 0.027
-0.23 years 0.036
-0.24 house 0.028
-0.29 government 0.023
-0.33 arrests 0.035
-0.34 game 0.020
-0.50 shot 0.026
-4.35 <null> 0.030

Figure 2: Context models for the terms “hydroelectric” and “projects” (from TREC query 307) and “railway” and

“accidents” (from TREC query 436). We sort the features fS by their λf weights, and draw a line between features

with positive and negative weights, for readability. Also shown, for comparison, is the co-occurrence score between

each of the support terms and the model target term, i.e. the co-occurrence of “accidents” and “safety” is 0.076.

3.6 Parameter Estimation
In the previous section we described how we can automati-

cally induce the structure of a random field by incrementally
adding the most promising candidate feature g ∈ G. How-
ever, since the features f ∈ F are not independent of each
other, adding a new feature will affect the balance of exist-
ing features, and therefore the objective function. We may
further improve the objective by re-optimizing the weights.

Assume now that the structure F contains all the desired
features. We adjust the set of weights Λ so that the ob-
jective function LP̂ is maximized by computing the partial
derivatives of LP̂ with respect to each weight λf ′ , with the
intention of driving these derivatives to zero:

∂LP̂

∂λf ′
= Ẽ[f ′]− Ê[f ′] (10)

There is no closed-form solution for setting the weights to
their optimal values, so we utilize an iterative procedure, a
variation of gradient descent:

λk+1
f ←− λk

f + β
∂LP̂

∂λf
= λk

f + β
“
Ẽ[f ′]− Ê[f ′]

”
(11)

Note that while Ẽ[f] is computed only once for each fea-

ture f , we have to re-compute the value Ê[f] after every
update. This makes the learning procedure expensive. How-
ever, learning is guaranteed to converge to the global opti-
mum; LP̂ is ∩-convex with respect to the weights λf .

3.7 Field Induction Algorithm
We are finally ready to bring together the components of

the previous subsections into one algorithm for automatic
induction of a context model for term tyi :

1. Initialization

(a) Let the feature set F0 be the feature set for the
term itself, with no context: F0 = {tyi}
(b) Set initial weight λ0

f = 1 for this feature

2. Weight Update

(a) Set λk+1
f ← λk

f + β
“
Ẽ[f]− Ê[f]

”
for each f ∈ F

(b) If there is noticeable change in likelihood, repeat
step (2a)

3. Feature Induction

(a) Enumerate the set of candidate features

(b) For every candidate feature g ∈ G compute the

optimal weight αg = log
h

Ẽ[g](1−Ê[g])

Ê[g](1−Ẽ[g])

i
(c) For every g ∈ G compute expected improvement
(gain) from adding g to the structure F
(d) Pick the candidate g that promises the highest im-
provement, add it to the structure F , and set λg = αg

(e) If there is noticeable change in likelihood, go to step
(2), otherwise return F and Λ as the induced field

3.8 Final Details and Examples
While the general model creation algorithm is described

above, in practice we had to impose a few limitations due to
the intense computational resources required. The first lim-
itation is on the candidate feature vocabulary {tx1 . . . txk}.
Rather than using the entire vocabulary, we use the 500
terms with the highest document frequency, that also occur
at least once with the target term tyi . This subset is of
course different for every tyi .

We stem and conflate terms using Porter [12], so that
there is a single variable txi (as well as a single variable tyi)
for all terms that share the same root, i.e. car/cars. We do
not want “cars” to be a support feature in our term context
model of “car”, as this defeats the purpose of learning a
good general context model. The second limitation is on
iterations. In step (2b), we iterate 12 times, rather than
until no noticeable change in likelihood. In step (3e), we
iterate 30 times, inducing exactly 30 features, for a total
of 31 features including the <null> context seed feature.
There is no reason for the these numbers beyond intuition.
Our feeling was that 30 felt like a good “handful” of support
features, not too many so as to overfit and not to few so as
to miss the proper context. We certainly did not optimize
these parameters, nor try other parameters. Future work
can address this.

The final limitation we impose is on the size of each fea-
ture. Recall from equation (2) that a feature may include
any number of observable terms tx. While we have done
some exploratory runs allowing two and three support terms,
the retrieval results presented in section 5 were done using
models limited to features with a single support term. Fig-
ure 2 shows models created for four different terms, trained
on the ≈131,000 LA Times documents in TREC volume 5.

3.9 Term Context versus Co-occurrence
For an insightful aside, in Figure 2 we show co-occurrence

scores across from λf feature weights. While we do no want
to give the impression that context models and cooccurrence
are directly comparable, because cooccurrences assume pair-
wise independence whereas context models use the entire
set of terms, there is one interesting thing to note: The
cooccurrence scores and λf weights do not yield the same
relative ordering. Our approach is taking into account the
dependencies between support features, and down-weights
features that are already “covered” by previous features.

For example, in the model for “hydroelectric”, the term
“river” has the 2nd highest co-occurrence score, after “dammed”.
And yet it is 15th in terms of its λf weight. This is because
the terms “dammed” and “river” are themselves not inde-
pendent. When it comes to predicting hydroelectric, occur-
rences of “dammed” already cover most of the occurrences
of “river”. Therefore “river”, while strongly associated with
“hydroelectric” by itself, is not as important within a con-
text that already includes “dammed”.

Another important distinction between term-context and
co-occurrence is the use of negative features. We do not go
into details here, but hint at the usefulness of this in sec-
tion 6. Further exploration on the relationship between term
context models and co-occurrence is desirable, but beyond
the scope of this paper.

4. AD HOC RETRIEVAL
Now that we have a framework for creating term context

models we wish to use them for ad hoc retrieval. This is
only one of many possible uses for these models, but have
chosen this task to demonstrate their effectiveness. We be-
gin at index time by creating context models for all terms in
the collection vocabulary, independent of any query. Once
each term’s context model is learned, we iterate once more
through the entire collection using the learned models to as-
sess the degree to which each document’s context supports
the belief in each term (explained in section 4.1). The result
of this calculation is a single value or context score for ev-
ery term-document pair in the collection. These values are
stored in inverted lists alongside tf values.

At retrieval time, this precomputed context score is com-
bined with a standard tf-based approach, in our case Okapi
BM25 (explained in section 4.2). The mixture between this
tf-based score and the context model score yields and over-
all score for a query term in a document (explained in sec-
tion 4.3). The following sections contain additional details.

4.1 Term Context Model Scoring
At index time, after models are trained, a per term-document

context score is is calculated using the entire set of 31 feature
functions F from the context model for term ti in document
d:

TCM(ti,d) = P̂ (ti|Hi,d) (12)

Note that we do these calculations on the same collection
on which we train the model. This is not a fallacy. This split
is not necessary as it poses no more problem than “testing”
an idf weight “trained” on the same corpus one is search-
ing. Our models are not directly intended for prediction of
unseen values. Like idf, they are meant to capture certain
discriminating characteristics of the very corpus they will
be used to search. Evaluation is done not on the model’s
classification accuracy, but on retrieval precision and recall.

Recall that equation (3) is estimated based on expected
values. By now going through each document individually,
we are determining how each of the documents in the collec-
tion deviate from this expected value. There will be occur-
rences of a term that are irregular, or “out of context”, as
trained on the collection as a whole. Such occurrences will
have a lower score than occurrences that are more contex-
tually standard. The model may assign a low context score
even if the tf of that term is high. There will also be other
documents in which the tf for a term is low, but the con-
text score in that document is high. In a manner somewhat
unchained from the actual tf of a query term, we are deter-
mining whether that term is a good fit for that document.

4.2 BM25 Baseline
We use the Okapi BM25 scoring function [13] as our base-

line. BM25 has consistently been one of the top scoring
functions in TREC style evaluations, and if we can improve
upon it then we will show value in our methods. The exact
form (for term ti in document d) is given by equation (13)
below, where k1=2.0 and b=0.75. tf is the frequency of ti

in d, dl is the length of d, avgdl is the average document
length across all documents in the collection, N is the total
number of documents in the collection, and n is the number
of documents in which the query term is found.

BM25(ti, d) = (13)

tf

k1((1− b) + b dl
avgdl

)
log

1

(n + 0.5)/(N − n + 0.5)

As mentioned in section 1, this score combines both local
features (tf and dl) with global features (avgdl, N and n) to
come up with an overall weighting for a query term.

4.3 BM25 with Term Context Scoring (MIX)
In this section we will bring together the ideas introduced

in this paper into a comprehensive whole. From section 4.1
we have a scoring function that increases as the context in
a document moves toward the conceptually standard usage
across the collection. From section 4.2 we have a scoring
function that increases as term frequency increases. What
we need is a scoring function that increases both as term
frequency and contextual centrality increase.

This can be accomplished through data fusion techniques,
wherein we use a linear combination of BM25 and the term
context model as the score for a document. The idea is that
the BM25 approach, which is primarily tf-based, is going to
give a somewhat different ranking than the TCM approach,
which is context-based. The “mistakes” that BM25 makes
are hopefully different than TCM, and vice versa. When
you fuse the scores the relevant documents should percolate
to the top, while the spurious matches should drop out.

Returning to the example on the query term “fuel” from
section 1, a document with five occurrences of fuel, but that
talks about how interest rates fuel a housing bubble, is going
to be lowered in the rankings. At the same time another
document that only mentions fuel once, but does so in the
context of energy and gas, is going to be boosted in the
rankings. A document with five occurrences of fuel, that
also talks about it in the context of energy, should be ranked
fairly high.

While many fusion techniques are available, we use a sim-
ple linear combination of the scores (MIX):

MIX(ti,d) = γ · TCM(ti,d) + (1− γ) · BM25(ti,d)

We understand that, at the moment, this is not a for-
mally justified method for combining the two scores, as TCM
ranges from 0.0 to 1.0 while BM25 is non-negative (greater
than zero). How does a document with a BM25 score of 4.0
and a TCM score of 0.9 compare with another document’s
4.3 BM25 score and 0.6 TCM score? While it is not yet
clear, we are encouraged by the thought that, for any two
documents with a similar BM25 score (i.e. similar tf and
document length), differing TCM scores provide a differen-
tiating factor. And vice versa.

Future work will address this combination of TCM with
other features, but what we show in this paper is simply
that there is value in the TCM approach: It works. Just
as various combinations tf and idf took years to develop,
so will better methods for utilizing TCM be developed in
the future. Furthermore, as detailed in the next section, we
found that results are fairly robust with respect to a wide
range of γ settings. This indicates that term context as an
index-time globally-informed feature is a good measure of
the relevance of a document to a query term.

5. EXPERIMENTS
We use standard TREC datasets [15] for evaluation. Our

dataset consists of the ∼131k documents from the LA Times
in TREC volume 5 with 143 title-only queries from topics
301 to 450. Actually, there are 150 topics in this set, but
seven queries had no relevant documents in the LA Times
collection so are omitted from the evaluation. We present
two models: BM25 and MIX. For all the terms in the query,
we sum the weights over all terms ti in the query Q given by
each of these methods. Documents are sorted in decreasing
order by these scores.

5.1 Results
Results are shown in figure 3, with the γ mixing param-

eter set to 0.5. In general, MIX outperforms BM25. Recall
is slightly better, and average precision is about the same,
but the highest gains are in the most important area: preci-
sion at low recall. These gains are 5-6% and are statistically
significant. We feel these results justify the approach. How-
ever, in the next section we will provide a more in-depth
analysis and see that the results are even better than they
first appear.

These results are also quite robust with respect to the
mixing parameter γ. We tested mixture weights ranging in
stepwise 0.1 intervals from 0.0 to 1.0. Statistically signifi-
cant improvements in roughly the same amounts and areas
were obtained using γ ranging from 0.3 to 0.8, with the best
mixture around 0.6 or 0.7. So the results we show are cer-
tainly not the best ones possible, but rather than tune the
mixing parameter, we chose the “maximum entropy” value
of γ=0.5 to demonstrate the robustness of the approach.

5.2 Results: Alternate View
While the results in the previous section clearly demon-

strate the utility of our method, we decided to take a closer
look to better understand what was happening. Precision at
low recall improves 5-6%, but is this the whole story? Due
to the nature of information retrieval and the large variabil-
ity among queries, there is more than one way of getting
this statistically significant increase. One potential expla-
nation is that the majority of the queries could do slightly
better, but the minority do much worse, for an overall pos-
itive average. This is not so beneficial, as a user trades the
possibility of only slight improvement for harsh deteriora-
tion in retrieval quality. The benefits do not outweigh the
risks.

However, we noticed while examining the results by hand
that there are a large number of queries in which precision
at low recall exhibits no real change, either positive or neg-
ative. This intrigued us. Our models use global information
to capture the centrality of a term’s contextual usage. For
a good number of query terms, there is either not a lot of
variation in contextual usage or there is already a high cor-
relation between term frequency and contextual centrality.
In those cases, term context modeling is not going to pro-
vide any benefit over BM25. But on the flip side, it also will
likely do no worse, either. How might this affect the results
we are seeing?

We decided to further examine this in the following man-
ner: Figure 4 contains the exact same 143 queries as figure 3.
However, they are split into two parts. On the left are all the
queries (87 total) in which there was exactly 0% difference
at interpolated 0.0 recall between BM25 and MIX. On the

All 143 Queries
BM25 MIX

Total documents over all queries
Retrieved: 143000 143000
Relevant: 3535 3535
Rel|ret: 2239 2285 +2.1?

Interpolated Recall - Precision
at 0.00 0.5696 0.6012 +5.6?

at 0.10 0.4372 0.4604 +5.3?

at 0.20 0.3617 0.3636 +0.5
at 0.30 0.2811 0.2755 -2.0
at 0.40 0.2256 0.2239 -0.7
at 0.50 0.1970 0.1898 -3.6
at 0.60 0.1493 0.1481 -0.8
at 0.70 0.1241 0.1258 +1.4
at 0.80 0.0853 0.0869 +1.8
at 0.90 0.0593 0.0596 +0.6
at 1.00 0.0482 0.0484 +0.5
Average precision (non-interpolated)

0.2133 0.2152 +0.9?

Figure 3: Overall results: All 143

queries from TREC topics 301-450

(7 topics have no relevant docs)

Subset of 87 Queries
BM25 MIX

Total documents over all queries
Retrieved: 87000 87000
Relevant: 2269 2269
Rel|ret: 1497 1527 +2.0?

Interpolated Recall - Precision

at 0.00 0.7973 0.7973 +0
at 0.10 0.5957 0.6125 +2.8?

at 0.20 0.4899 0.4905 +0.2
at 0.30 0.3687 0.3584 -2.8
at 0.40 0.3064 0.2970 -3.1
at 0.50 0.2660 0.2496 -6.2
at 0.60 0.1981 0.1972 -0.4
at 0.70 0.1741 0.1745 +0.2
at 0.80 0.1188 0.1212 +2.0
at 0.90 0.0853 0.0857 +0.4
at 1.00 0.0684 0.0689 +0.8
Average precision (non-interpolated)

0.2923 0.2909 -0.5

Subset of 56 Queries
BM25 MIX

Total documents over all queries
Retrieved: 56000 56000
Relevant: 1266 1266
Rel|ret: 742 758 +2.2?

Interpolated Recall - Precision

at 0.00 0.2159 0.2966 +37.4?

at 0.10 0.1911 0.2240 +17.2?

at 0.20 0.1626 0.1664 +2.3?

at 0.30 0.1451 0.1467 +1.1
at 0.40 0.1001 0.1104 +10.3
at 0.50 0.0898 0.0971 +8.1
at 0.60 0.0736 0.0719 -2.4
at 0.70 0.0463 0.0503 +8.6
at 0.80 0.0332 0.0336 +1.2
at 0.90 0.0189 0.0192 +1.5
at 1.00 0.0168 0.0166 -1.4
Average precision (non-interpolated)

0.0904 0.0978 +8.1?

Figure 4: [LEFT] Subset of the overall results: 87 queries with zero change at

0.0 interpolated precision, [RIGHT] Subset of the overall results: 56 queries

with non-zero change at 0.0 interpolated precision

Significance in all cases using a sign test at the 0.05 level is indicated by ?

right are all the queries (56 total) in which were was non-
zero difference at interpolated 0.0 recall. In other words,
these are all the queries in which context information either
did better or worse than BM25 alone.

First, we see from the 87 “no change” queries that our in-
tuition is fairly correct. There are a large number of queries
on which context modeling has little to no effect. Rel|ret is
slightly better, precision at 0.5 is slightly worse (though still
not statistically significant), and at all other levels and on
average there is practically no change. On the other hand,
for those queries in which there is difference at 0.0 recall,
better or worse, the term context approach shows a huge,
significant 37% improvement at 0.0 and 17% improvement
at 0.1 recall. Average precision improvement is also statis-
tically significant. We saw similar patterns of improvement
when we broke down the results from other (γ=0.3 to 0.8)
mixture parameters as well.

These are important results. They indicate that when
our technique works, it works extremely well. And, equally
importantly, when our technique does not work, it does little
to no hurt. Risk is minimized, which a desirable feature of
any retrieval system.

Finally, please note the difference in absolute values be-
tween the two query subsets. The “no change” subset has
much higher precision than the “improved” subset. We
think this is further evidence of the robustness of our ap-
proach: When the original query is already well-performing,
context models manage not to monkey with a good thing.
On the other hand, when the original query yields poor
results, context models manage to improve the query im-
mensely. Context models may even be useful for predicting
which queries will and will not perform well.

6. FUTURE WORK
There are a number of possible areas one could use term

context models. We have tried to make absolutely clear that
the term context modeling done in this paper is not the same

as query expansion or pseudo-relevance feedback. However,
we acknowledge that one could actually utilize context mod-
els in support of some of these techniques. For example,
support feature weights are currently trained per term at
index time, independent of an actual query. One could eas-
ily envision a pseudo-relevance re-training of these weights
post-query time, on the top n retrieved documents. That
would then alter the context score in the remainder of the
collection, and may improve retrieval.

A second possibility involves query expansion. Returning
to the example from section 1, suppose we have a model
for fuel in which gas and coal are the two highest-weighted
support features. We are already using fuel’s context score
alongside the BM25 score. However, that does not stop us
from adding the BM25 scores for the terms gas and coal to
the query, i.e. doing expansion. The key point is that we
can also mix the context scores for gas and coal into the
final score. So we would not just be adding more docu-
ments with high tf for gas and coal; we would be boosting
documents which contained contexts that best supported all
three terms: fuel, gas and coal. [16] reports that one of the
disadvantages of query expansion is that “individual queries
can be significantly degraded by expansion.” If we do ex-
pansion not just by adding more terms, but by taking into
account the centrality of those terms’ context, we may be
able to improve without risking significant degradation.

Perhaps the most interesting possibility for term context
involves richer modeling. Recall from equation (2) that fea-
tures may be conjuncts of one or more support terms txj .
We did an experiment in which we induced a model for the
term “food” using the LA Times collection. In this model,
the feature “drug” has a small, positive λf weight. There is
clearly a relationship between these two terms, as evidenced
by phrases such as “Food and Drug Administration”. But
both terms are used in enough other contexts that the affin-
ity is small.

At this point, co-occurrence alone has nothing more to say

about these terms other than their slight affinity. However,
in our experiment the context model automatically learned
a very interesting multiple support term feature: {“drug”
AND “police”}. It added this feature to the model with a
strong negative weight.

This means that if “drug” is a document by itself there
is a slightly higher likelihood of “food” belonging there.
However, if both “drug” and “police” are in the document,
there is strong supporting evidence against “food”. (The
term “police” by itself, without “drug”, carries little evi-
dence one way or the other.) By taking into account the
non-independence of support features, the context model
implicitly disambiguates between “drug” as a medication
and “drug” as an illegal narcotic, and the effect that has on
“food”. This is something that straight co-occurrence can-
not do. It is also something that the context model learned
by itself, automatically, with no domain knowledge. We
should be able to take advantage of this for retrieval.

We are encouraged by this example to pursue richer mod-
els of context. Maximum entropy and random field models
are, as has been oft noted, ideal frameworks for the integra-
tion of all types of evidence. In the future, we hope to add
more useful contextual features to our model. As we have
shown, having a good statistical model of a term’s context
is useful for retrieval.

7. CONCLUSION
Term context models offer a new tool for assessing term

presence in a document. By determining whether a doc-
ument provides support (context) for a term, rather than
using the observed frequency of that term, we have created
a fundamentally different method for assessing similarity be-
tween a query term and a document. Furthermore we have
shown that this approach is useful for retrieval, with huge
improvements in precision at low recall. Though we are not
the first to use maximum entropy or random field models
for information retrieval, we are the first to use them in this
manner. By explicitly modeling the context of a term we
open the doors to many new applications.

8. REFERENCES
[1] D. Beeferman, A. Berger, and J. Lafferty. Text

segmentation using exponential models. In Proceedings
of the Second Conference on Empirical Methods in
Natural Language Processing, pages 35–46. 1997.

[2] A. L. Berger, S. A. Della Pietra, and V. J.
Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics,
22(1):39–71, 1996.

[3] S. Della Pietra, V. Della Pietra, and J. Lafferty.
Inducing features of random fields. In IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 19, pages 380–393, 1997.

[4] W. Greiff and J. Ponte. The maximum entropy
approach and probabilistic ir models. ACM
Transactions on Information Systems, 18(3):246–287,
2000.

[5] P. Kantor and J. Lee. The maximum entropy principle
in information retrieval. In Proceedings of the ACM
SIGIR Conference, 1986.

[6] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting

and labeling sequence data. In Proc. 18th
International Conf. on Machine Learning, pages
282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[7] V. Lavrenko and J. Pickens. Polyphonic music
modeling with random fields. In Proceedings of the
11th Annual International ACM Conference on
Multimedia, pages 120–129, November 2003.

[8] A. McCallum and N. Ghamrawi. Collective multi-label
text classification. In Proceedings of CIKM, pages
195–200, Bremen, Germany, 2005.

[9] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In 28th Annual ACM
SIGIR Conference, pages 472–479, Salvador, Brazil,
2005.

[10] R. Nallapati. Discriminative models for information
retrieval. In Proceedings of the ACM SIGIR
Conference, Sheffield, UK, 2004.

[11] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the ACM SIGIR Conference, pages 275–281, 1998.

[12] M. Porter. An algorithm for suffix stripping. Program,
14:130–137, 1980.

[13] S. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
trec-3. In 3rd annual Text REtrieval Conference, NIST
- Gaithersburg, MD, 1994.

[14] R. Rosenfeld. A maximum entropy approach to
adaptive statistical language modeling. Computer,
Speech and Language, 10:187–228, 1996.

[15] E. Voorhees and D. Harman. Overview of the sixth
text retrieval conference (trec-6). Information
Processing and Management, 36(1):3–35, 2000.

[16] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In Proceedings of the
Nineteenth Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 4–11, 1996.

[17] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems,
22(2):179–214, 2004.

