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Privacy-Preserving Multi-Class Support
Vector Machine for Outsourcing the Data

Classification in Cloud
Yogachandran Rahulamathavan, Member, IEEE, Raphael C.-W. Phan, Suresh Veluru,

Kanapathippillai Cumanan, Member, IEEE, and Muttukrishnan Rajarajan, Senior Member, IEEE

Abstract—Emerging cloud computing infrastructure replaces traditional outsourcing techniques and provides flexible services
to clients at different locations via Internet. This leads to the requirement for data classification to be performed by potentially
untrusted servers in the cloud. Within this context, classifier built by the server can be utilized by clients in order to classify their
own data samples over the cloud. In this paper, we study a privacy-preserving (PP) data classification technique where the server
is unable to learn any knowledge about clients’ input data samples while the server side classifier is also kept secret from the
clients during the classification process. More specifically, to the best of our knowledge, we propose the first known client-server
data classification protocol using support vector machine. The proposed protocol performs PP classification for both two-class
and multi-class problems. The protocol exploits properties of Pailler homomorphic encryption and secure two-party computation.
At the core of our protocol lies an efficient, novel protocol for securely obtaining the sign of Pailler encrypted numbers.

Index Terms—Privacy, data classification, cloud computing, support vector machine.
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1 INTRODUCTION

In machine learning and artificial intelligence, data
classification is a problem of identifying the category
of unknown data sample by a classifier which is built
using a training set of known data samples. Building a
good classifier requires a large number of valid train-
ing samples; hence, it is not possible for individuals
or small organizations to build their own classifier.
Only viable solution to this problem is to outsource
the data classification to third-party. Outsourcing the
data classification mitigates the requirement of not
only a large number of valid training data samples
but also high computational and storage resources to
clients (i.e. individuals or small organizations).

Recent advances in cloud computing replaces the
traditional outsourcing techniques and provides var-
ious services to the clients over the Internet in a
flexible manner (i.e. on-demand, pay-per use) [1]. This
leads to a new paradigm of service where a server in
a cloud could offer data classification to clients. In
particular, the server can automatically process and
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classify the clients’ data samples remotely based on
privately owned training data samples.

However, releasing the data samples owned by the
clients to the cloud raises privacy concerns since the
data processed in the cloud are often outsourced to
untrusted-third-party-servers (servers) [2], [3]. Fur-
thermore, the server may not wish to disclose any
details or parameters of its training data set even
if it offers classification service to the client. Hence,
in this paper we propose a method which preserves
the privacy of both the client data samples and the
server’s training data while maximizing the benefits
of the emerging cloud computing technology. The im-
portance of cloud computing in the data classification
can be categorized as follows:

1 the cloud is responsible for maintaining and up-
dating training data set for classification

2 the cloud provides data classification as a service
to any clients via Internet while preserving the
privacy of client’s data

3 the cloud helps to offload substantial amount of
computation of clients

A widely used classification tool in many classi-
fication scenarios is support vector machine (SVM)
due to its strong mathematical foundations and high
reliability in many practical applications. The SVM
classification involves two phases: training phase and
testing phase. In the training phase, the server trains
a SVM using labeled data (i.e. training data samples
belong to different classes) in order to obtain the
classification parameters. In the testing phase, any
unlabeled data sample provided by a client can be
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classified and labeled to the matched class by a server
using the classification parameters. Depending on the
number of classes that the data samples are to be from,
the SVM can be divided into two problems: two-class
problem and multi-class problem.

In addition to the availability of a highly reliable
SVM classification tool and easy access to cloud com-
puting services, it is necessary to include security
and privacy measures to ensure the privacy of the
data provided by the client and the classification pa-
rameters made available by the server are preserved.
Hence, it is crucial to develop a privacy-preserving
(PP) protocol for SVM whereby a client could seek a
server to run the SVM classifier to classify an unla-
beled data sample; while maintaining the following
privacy guarantees for both the client and server:

• hide the client’s input data sample and the clas-
sification result from server

• hide the server side classification parameters
from the client

In practical scenarios, the client might be a general
practitioner (GP) who runs a private medical clinic,
whereas classification service could be provided by
a national hospital in order to detect a disease from
patients’ symptoms. This service could be provided
by a hospital via Internet to any client.

In this paper, we present to the best of our knowl-
edge, the first known client-server PP SVM protocol
for both two-class and multi-class problems. More
specifically, a client sends the input data sample in
an encrypted format to the server. Then the server
exploits the homomorphic encryption properties to
perform the operations directly on the encrypted data
sample. If there are any operations that cannot be
handled by the homomorphic properties, then there
will be a limited amount of interaction between the
client and server based on two-party secure computa-
tion protocol. We assume that both the client and the
server will execute the protocol correctly in order to
maintain their reputation, hence they will behave in a
semi-honest manner, i.e. they are honest but curious,
so privacy is a real issue.

The remainder of this paper is organized as follows:
In Section 2, we describe conventional SVM, i.e. the
steps involved in training the SVM and classification
in the plain-domain (PD). In Section 3, we first briefly
describe one of the building blocks i.e. homomorphic
encryption, and show how SVM classification can
be extended to work in the encrypted-domain (ED)
for the two-class problem setting. In particular, the
core idea of finding the sign of an encrypted number
is described in Section 3. In Section 4, we extend
the protocol for two-class problem to the multi-class
problem. We analyze the performance of these ED
techniques in Section 5. We review related works in
Section 6. Conclusions are discussed in Section 7.

Notation. We use boldface lower case letters to
denote vectors; (.)′ denotes the transpose operator;

∥.∥2 the Euclidean norm; ⌊.⌉ the nearest integer ap-
proximation; JmK the encryption of message m; and
sign(m) denotes sign of the number m. The modular
reduction operator is denoted by mod.

2 SUPPORT VECTOR MACHINE

SVM has been widely used in machine learning for
data classification [10], [11], [20]. It has high gen-
eralization ability which provides high reliability in
real-world applications such as image processing [16],
computer vision [12], text mining [14], natural lan-
guage processing [17], bioinformatics [18] and many
more. SVM has been invented to classify a two-class
problem, however, it has been extended later on to a
multi-class problem. In a two-class problem, the goal
of SVM is to separate both classes by a function, which
is obtained from the training data samples. The multi-
class problem can be solved by decomposing the
multi-class problem into multiple two-class subprob-
lems [19]. We formulate the classification functions
of both two-class and multi-class problems in the
following subsections. These classification functions
are crucial to derive the PP SVM proposed in Sections
3 and 4.

2.1 Two-class Problem

We start with a training set of points x̃i ∈ Rn,
i = 1, . . . , N where each point x̃i belongs to one of
the two classes denoted by a label yi ∈ {−1,+1},
i = 1, . . . , N . Using these training data samples we
can train a SVM to classify an unlabeled test sample.
Initially, the training data need to be normalized to
keep the numeric values of training samples on the
same scale. This will prevent the samples with a large
original scale from biasing the solution. Let us denote
the normalized training data samples as xi ∈ Rn,
i = 1, . . . , N where,

xi =
x̃i − x̄

σ2
, ∀i, (1)

where x̄ and σ denote the mean and standard devi-
ation of the training data samples. Depending on the
separability of the training data, the two-class prob-
lem is further divided into two: linear classification
problem and non-linear classification problem.

2.1.1 Linear Classification Problem
The goal of linear classification problem is to obtain
two parallel hyperplanes as shown in Fig. 1, w′x +
b = −1 and w′x + b = +1, where w and b are the
classification parameters obtained during the training
process. Both hyperplanes separate the training data
of the two classes such that the distance between those
hyperplanes is maximized.

After the training stage, we can classify an unla-
beled test sample, t̃ ∈ Rn. Before the classification,
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Fig. 1. Training data samples for two different classes
are denoted by + and − signs.

the test sample is required to be normalized similar
to (1) as

t =
t̃− x̄

σ2
. (2)

Now the normalized test sample, t, can be substituted
into the following classification function

f(t) = sign(w′t+ b) = sign

(∑
s∈S

αsysx
′
st+ b

)
, (3)

where f(t) ∈ {−1,+1}, αi, i = 1, . . . , N are La-
grangian variables and xs, s = 1, . . . , |S| are support
vectors. If f(t) = +1 then the test sample t̃ belongs
to +ve class else it belongs to −ve class. Please note
that a decision function d(t) can be extracted from (3)
as

d(t) = w′t+ b =
∑
s∈S

αsysx
′
st+ b, (4)

where w′x + b = 0 denotes the decision-hyperplane
which lies between the two hyperplanes (i.e. w′x+b =
−1 and w′x+ b = +1).

2.1.2 Non-linear Classification Problem

In the previous section, we have discussed the classifi-
cation problem where the training data samples were
linearly separable. However, it has been proven in
the literature that the similar approach can be used
for non-linear classification problems using kernel
tricks [21], [22]. Hence, the non-linear classification
algorithm is formally similar to linear classification
algorithms except that the dot product in (3) (i.e. x′

st)
is replaced by a various non-linear kernel functions.
These kernel functions map the data samples into
a higher dimensional feature space; hence the non-
linear classification problem transformed into linear
classification problem (see Fig. 2). In this work, we
only consider a polynomial kernel. Hence, the dot
product between xs and t in (3) can be replaced as

x′
st⇒ K(xs, t)

p = (x′
st+ 1)p, (5)

where p denotes the degree of the polynomial. Hence,
the classification function in (3) can be modified as

f(t) = sign

(∑
s∈S

αsys(x
′
st+ 1)p + b

)
︸ ︷︷ ︸

decision function d(t)

. (6)

Fig. 2. Non-linear classification problem converted into
linear classification problem after the kernel mapping.

2.2 Multi-class Problem
In order to solve a multi-class problem using SVM, it
has to be decoupled into multiple two-class subprob-
lems. There are two classical approaches to decouple
the multi-class problem: one-versus-all (1VA) and one-
versus-one (1V1) [13], [15].

2.2.1 One-versus-all Approach.
For a given Nc number of classes, we form Nc num-
ber of subproblems. Hence, we train Nc number of
SVMs. For jth subproblem, we train a SVM using jth

class training data samples as +ve class and all the
remaining samples as −ve class. In the testing phase,
for a given normalized test sample, t, the matching
class, Mc, can be obtained by modifying (6) as

Mc = argmax
j=1,...,Nc

∑
s∈Sj

αsys(x
′
st+ 1)p + bj

 , (7)

where subscript j denotes the variables associated
with the jth subproblem. Hence, a subproblem with
the largest margin value for the decision function (i.e.∑

s∈Sj
αsys(x

′
st+ 1)p + bj) will be chosen.

2.2.2 One-versus-one Approach.
For this approach, we train Nc(Nc−1)

2 number of sub-
problems, where SVM for each subproblem trained
using data only from two classes. If we consider
training samples from classes i (i.e. +ve class) and
j (i.e. −ve class) for a given subproblem, then the
classification function in (6) can be modified as

fi,j(t) = sign

 ∑
s∈Si,j

αsys(x
′
st+ 1)p + bi,j

 , (8)
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where subscript i, j denotes the variables associated
with the (i, j)th subproblem. The matching class for
the given test sample t can be obtained using majority
voting approach as

Mc = argmax
i=1,...,Nc

 N∑
j=1,j ̸=i

fi,j(t)

 , (9)

where fj,i(t) = −fi,j(t), ∀i, j.

3 CLASSIFICATION IN THE ENCRYPTED-
DOMAIN

We consider a client-server model where the server
maintains a data set with training samples and ob-
tains the classification parameters required for the
classification functions (i.e. (6), (7) and (9)). In this
section, we show how to preserve the privacy of
the test sample, t, and the classification result from
the server and the SVM parameters from the client
when the server executes the classification function
to classify a test sample. Depending on the nature of
the problem server executes one of the classification
functions from (6), (7) and (9). First, let us explain the
required building blocks in the next section.

3.1 Homomorphic Encryption
For concreteness and without loss of generality, our
descriptions are based on the Paillier cryptosystem [9]
although any other homomorphic encryption schemes
could be used. The Paillier cryptosystem is a public-
key encryption scheme. It’s provable semantic secu-
rity is based on the decisional composite residuosity
problem. Hence, it is mathematically intractable to
decide whether an integer z is an n-residue modulo n2

for some composite n, i.e. whether there exists some
y ∈ Z∗

n2 such that z = yn mod n2. Let n = pq where
p and q are two large prime numbers. A message
m ∈ Zn can be encrypted using the Paillier cryptosys-
tem as JmK = gmrn mod n2 where g ∈ Z∗

n2 and r ∈ Z∗
n.

The Paillier cryptosystem is said to be an additively
homomorphic cryptosystem because for some given
encryptions, Jm1K and Jm2K, the encryption Jm1+m2K
of the sum m1 + m2 in the PD and the encryptionJm1.αK of the product of m1 with a constant α in the
PD can respectively be computed efficiently in the ED
as

Jm1 +m2K = Jm1KJm2K, Jm1.αK = Jm1Kα. (10)

In the setting considered by this paper, the client
distributes its public-key to the server while keeping
its private-key secret. The server performs encryptions
under this public-key and exploits the homomorphic
properties of the Paillier cryptosystem to perform the
required linear operations in the ED. However, only
the client can decrypt any encrypted messages using
its corresponding private-key.

Fig. 3. The block diagram of proposed PP SVM.

3.2 Encrypting Negative Integer

To represent negative integers, we exploit cyclic prop-
erty in modulo arithmetic. We represent −1 by n− 1
since n − 1 ≡ −1 in mod n. When the message space
is m ∈ Zn, we represent Paillier encryption of −m
using homomorphic property as follows: J−mK=J−1×
mK=JmK−1=JmKn−1. In the SVM classification problem
considered in the work, Paillier security parameter
n >> classification variables, hence, errors due to
overflow can be avoided.

3.3 Two-class Problem in the Encrypted-domain

First we present our technique for SVM classification
in the ED that solves the two-class problem. In par-
ticular, we show how server can execute (6) when the
test sample is in the ED. Let us assume that each
class is represented by an associated string classi,
i ∈ {−,+}. Fig. 3 depicts the overview of the proposed
PP SVM: client supplies a test sample in an encrypted
format to the server. The server has the normalization
parameters (i.e. mean and standard deviation) and
the SVM parameters (i.e. support vectors, Lagrangian
variables and bias) in the PD. Hence, the server
executes the four steps shown in Fig. 3, in the ED,
in order to classify the encrypted test sample.

Initially, the client encrypts each element of the
test sample t̃ individually using the public-key and
sends J̃tK to the server. In general, the training sam-
ples, test sample and the variables involved in SVM
classification are continuous data. Since the Paillier
cryptosystem only supports integers, all the variables
involved in the decision function (6) need to be quan-
tized to the nearest integer value before encryption.
However, if we quantize those variables without any
preprocessing then this will deteriorate the classifi-
cation accuracy. To address this issue, we scale the
decision function in (6) using a positive number γ2p+1

before quantization. Hence, (6) can be modified into
(11) (as shown at the top of the next page). Note that
(6) and (11) provide the same results as long as γ > 0.
It is obvious that if the scaling factor γ is sufficiently
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f(t) = sign

{
γ2p+1

[∑
s∈S

αsys(x
′
st+ 1)p + b

]}
= sign


decision function d(t)︷ ︸︸ ︷∑

s∈S

γ(αsys) [(γxs)
′(γt) + γ21]p︸ ︷︷ ︸

polynomial kernel Kp
s

+γ2p+1b

 . (11)

∑
s∈S

γ(αsys)[(γxs)
′(γt) + γ21]p + γ2p+1b ≈

∑
s∈S

⌊γαsys⌉
(
⌊γxs⌉′⌊γt⌉+ ⌊γ21⌉

)p
+ ⌊γ2p+1b⌉. (12)

large (i.e. γ > 106) then the solution obtained before
and after the quantization of variables will be nearly
equal as shown in (12). This result is crucial in order to
obtain higher accuracy when executing (11) in the ED.
Executing (11) in the ED involves four different steps
(see Fig. 3). In the following subsections, we propose
methods to compute those four steps in the ED when
the test sample, t̃, is in encrypted format.

3.3.1 Step 1–Normalization and Scaling

As a first step, the test sample t̃ = [t̃1, . . . , t̃n]
′ has to

be normalized as in (2). Let us define a mean vector
x̄ = [x̄1, . . . , x̄n]

′ and a normalized test sample as
t = [t1, . . . , tn]

′. Hence, the scaled and normalized test
sample γt can be written as

γt = γ

(
t̃− x̄

σ2

)
=

γ

σ2
t̃− γx̄

σ2
,

⇒ γti =
γ

σ2
t̃i −

γx̄i

σ2
, ∀i. (13)

However, these operations have to be performed in
the ED by a server who receives only the encrypted
test sample, J̃tK =

[Jt̃1K, . . . , Jt̃nK]′, from the client.
Since the server knows the vector x̄, and scalars γ
and σ in the PD, he can easily compute the val-
ues −γx̄i

σ2 = (−1).γx̄i

σ2 , ∀i and encrypt each of its
components by exploiting homomorphic properties
as J(−1).γx̄i

σ2 K = Jγx̄i

σ2 K(−1), ∀i. Similarly, encryption of
γ
σ2 t̃i can be obtained as J γ

σ2 t̃iK = Jt̃iK γ

σ2 , ∀i. Hence, the
scaled and normalized value of the test sample in (13)
can be obtained in the ED as follows:

JγtiK = J γ

σ2
t̃i −

γx̄i

σ2
K = J γ

σ2
t̃iK.J−γx̄i

σ2
K, ∀i,

= Jt̃iK γ

σ2 .Jγx̄i

σ2
K(−1), ∀i. (14)

Note that every computation in (14) is performed by
the server without interacting the client. Now the
server obtains normalized and scaled test sample in
ED as JγtK = [Jγt1K, . . . , JγtnK]′.
3.3.2 Step 2–Computing the Polynomial Kernel

The encrypted test sample JγtK is used to compute
the polynomial kernel Kp

s = [(γxs)
′(γt) + γ21]p, ∀s

in (11) in the ED. Let us define the support vector
xs = [xs,1, . . . , xs,n]

′, ∀s. Consider a case when p = 1,

for which we have,

Ks = [(γxs)
′(γt) + γ21], ∀s,

= [(γxs,1).(γt1) + . . .+ (γxs,n).(γtn) + γ21], ∀s.
(15)

Thus, the server can compute (15) in the ED as

JKsK = J(γxs,1).(γt1) + . . .+ (γxs,n).(γtn) + γ21K,
= J(γxs,1).(γt1)K.....J(γxs,n).(γtn)K.Jγ21K,
= Jγt1Kγxs,1 .....JγtnKγxs,n .Jγ21K,

(16)

∀s. This can be computed as follows: since the server
knows the scalars, xs,i, ∀s, i, in the PD, he can perform
the required multiplications by exploiting (10). For
example, in order to multiply the first component, the
server has to compute Jγt1Kγxs,1 . To obtain the sum of
all these products he has to multiply the encryptions
of each component with other components. For the
case p = 1, the server computes the kernel value
without any interaction with the client. If p > 1
(i.e. Kp

s ) then, the kernel could be computed via a
secure two-party computation technique between the
server and client. If the server sends JKsK to the
client then the client can decrypt it using her private-
key, then raise the decrypted value by degree p and
send the encrypted JKp

s K back to the server. However,
this will leak the server side SVM parameters to the
client. Instead, the server blinds the encrypted JKsK
with some uniformly random element rs from the PD
as JK̃sK = JKs.rsK = JKsKrs . Note that the server
generates a fresh random element rs for each JKsK.
Then server sends the blinded JK̃sK to the client. The
client decrypts JK̃sK using her private-key, computes
K̃p

s and sends JK̃p
s K back to the server. Now the server

can remove the random mask and computes JKp
s K as

JKp
s K = JK̃p

s Kr−p
s , (17)

which provides the required results due to the follow-
ing homomorphic relation:

JK̃p
s Kr−p

s = JK̃p
s .r

−p
s K = JKp

s .r
p
s .r

−p
s K = JKp

s K.
Note that due to the blinding, the client does not learn
the values of Ks even though she had access to K̃s in
the PD (privacy analysis is given in Subsection 3.2.5).
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3.3.3 Step 3–Calculating the Decision Function

The server can now execute the third step in Fig. 3
i.e. compute the value of the decision function in (11)
in the ED as follows:

Jd(t)K = J∑
s∈S

γ(αsys)[(γxs)
′(γt) + γ21]p + γ2p+1bK,

= J∑
s∈S

γ(αsys)K
p
s + γ2p+1bK,

= Jγ2p+1bK.∏
s∈S

JKp
s Kγ(αsys). (18)

This can be done as follows. Since the server knows
the values of γ and (αsys) in the PD, he can perform
the required multiplications using (10). As an exam-
ple, in order to compute γ(αsys)K

p
s in the ED the

server computes JKp
s Kγ(αsys) for a given s. To obtain

the sum of all these products together with γ2p+1b, he
multiplies the encryptions with each other.

The only part missing now is the computation of
sign value of d(t) and inform the matched class i.e.
class+ or class− to the client. Note that, this classifi-
cation result cannot be revealed to the server. In the
next section, we describe the required secure protocol
to obtain the classification result.

3.3.4 Step 4–Obtaining the Sign of the Value of the
Decision Function

This section studies how to obtain a sign of Paillier en-
crypted number. According to (11), f(t) = sign(d(t)).
However, the server now has the value of d(t) in the
ED as in (18). Let us assume that | d(t) |< 10l, l ∈ Z
in the PD. Note that since the training and test data
samples are normalized, the value of l can be deter-
mined using the range of

∑
s∈S αsys(x

′
st+1)p+ b and

the scaling factor γ2p+1 in (11).
Now the server computes a new variable in the ED

as JzK = J10l + d(t)K = J10lK.Jd(t)K. (19)

Since |d(t)| < 10l, the most significant digit of z in PD
is either 1 (i.e. if d(t) > 0) or 0 (i.e. if d(t) < 0). Let
us denote the most significant digit of z as z̃ ∈ {1, 0}.
If z̃ = 1 then test sample belongs to class+ and if
z̃ = 0 then test sample belongs to class−. Hence, the
matched class Mc, can be obtained as

Mc = z̃.(class+ − class−) + class−. (20)

The most significant digit z̃ could be computed using
the following linear operation:

z̃ = 10−l.
[
z − (z mod 10l)

]
, (21)

where subtraction sets the least significant digits of z
into 0 while the multiplication shifts the most signifi-
cant digit down. Since z in (19) is in the ED the server
needs to obtain the z̃ in (21) in the ED. This can be

done as follows:

Jz̃K = J10−l.
[
z − (z mod 10l)

]K,
=

(JzK.Jz mod 10lK−1
)10−l

. (22)

However, z available at the server is encrypted; thus
similar to the process leading to the server being able
to compute (17), the server engages the client in a
secure two-party computation protocol to computeJz mod 10lK.

The server blinds the JzK using an uniformly ran-
dom value r as

JzrK = Jz + rK = JzK.JrK,
and this is sent to the client who decrypts the blindedJzrK and reduces zr mod 10l. The result i.e. zr mod
10l is then encrypted and sent back to the server who
retrieves Jz mod 10lK as

Jz mod 10lK = Jz + r mod 10lK.Jr mod 10lK−1JλK10l ,
where λ ∈ {0, 1} used to avoid the underflow (i.e.
λ = 0 if z + r mod 10l > r mod 10l or λ = 1
if z + r mod 10l < r mod 10l). The client knows
z + r mod 10l in PD while server knows r mod 10l

in PD. Comparing two integers in private has been
widely studied in literature [27], [28]. Now the server
can compute Jz̃K using (22). The matching class label
of the test sample can be computed in the ED usingJz̃K and (20) as follows:

JMcK = Jz̃.(class+ − class−) + class−K,
= Jz̃K(class+−class−).Jclass−K. (23)

Now JMcK can be returned to the client who decrypts
it to find the matched label of the test sample.

Fig. 4 shows the flow diagram of the proposed
method. Note that, since the classification process
is in the ED, it is not feasible for the server to
obtain the classification result in PD without prior
knowledge of the test sample. The computational
complexity during the interactions is always less than
the computational complexity required to encrypt the
test sample because the number of elements in the
test sample is sufficiently larger than the number of
support vectors (i.e. s ≪ n). Hence, efficiency of the
proposed algorithm only depends on the number of
interaction between the client and server, where server
interacts with a client only when the homomorphic
properties are not sufficient to complete the task.
Since the server masks the kernel value, JKsK, by
multiplying by random noise, rs, instead of addition,
number of interaction required to compute decision
function in (18) is only one for any number of the
polynomial (i.e. p > 1).

3.3.5 Privacy Analysis of the Proposed Algorithm
In the proposed work, the client uses Paillier homo-
morphic encryption to encrypt the test sample. The
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Fig. 4. The flow diagram of the proposed algorithm.

server conducts the mathematical operations in the
ED. Hence, the server cannot learn about the test
sample, the intermediate results or the classification
outcome. However, the homomorphic encryption is
not sufficient to complete any non-linear operations
such as exponentiation in the ED. Hence, the server
and client securely interact with each other to perform
any non-linear operations. For this interaction, we
exploited a secure two-party computation technique
and assumed that the parties are semi-honest.

In a semi-honest model, each party follows the
rules of the protocol using its correct input. However,
the parties are free to use the intermediate values
obtained during the execution of the protocol in order
to learn about other parties input [37]–[39]. However,
a secure two-party protocol must satisfy the following
privacy definition in a semi-honest model:

Privacy definition for the secure two-party computation:
a secure two-party protocol should not reveal more
information to a semi-honest party than the informa-
tion that can be induced by looking at that party’s
input and output. The formal proof of the definition
can be found in [36].

Let us verify whether the proposed two-party com-

putation satisfies the privacy definition. In our pro-
tocol, the server cannot learn any information since
all results are protected by Paillier homomorphic en-
cryption. Hence, adversary in our model is a client.
The adversary follows the protocol correctly, but try
to infer the classification parameters of the server.
The proposed algorithm composed of four steps: 1.
normalization and scaling, 2. computing the polyno-
mial kernel, 3. calculating the decision function and
4. obtaining the sign of the value of the decision
function. Interaction between the client and server
happens only in the Step 2 (when p > 1) and the
Step 4. We now formally analyses whether the client
can infer the server side parameters from these steps.
Let us begin with Step 2 followed by Step 4.

In Step 2, the server interacts with the client in order
to exponentiate the encrypted value when polynomial
parameter p > 1. This interaction is more important
than step 4 as it is directly including the support vec-
tors of the training data during the computation, e.g
(15). Let us consider the worse case scenario of semi-
honest model where the adversary (client) trying infer
support vectors by feeding selected input instead of
actual test sample value during the interaction. There
are |S| number of support vectors where each support
vector contained n number of elements. Lets assume a
simple threat model to see whether an adversary can
find the first element from sth support vector xs i.e.
xs,1 ∀s ∈ S. To verify this, lets assume, the client could
send the following test sample t = [1 0 0 0 . . . 0]T

in the encrypted format as many times as he can
(assume that it is normalized) to the server. The server
computes Ks in the ED. Since only one element in
the test sample is one and all other values are zeros,
Ks = γxs,1 + γ. However, the server blinds Ks by
multiplying it by a random rs, hence, the client only
obtains γxs,1rs + γrs at the end. Lets assume that the
client might know the scaling factor γ; hence only task
left for the client is to extract xs,1 from xs,1rs+rs. Since
the server generates a random rs ∈ Zn (i.e. where Zn

is a very large number) every time, it is infeasible for
a client to distinguish the xs,1 from xs,1rs + rs.

In Step 4, the server interacts with the client for
modulo reduction in order to obtain the sign of the
decision function d(t). Since, d(t) is included in z
in (19), revealing z may leak the decision function
value to the client. Hence, the server adds random
value r with z before sending it to the client. This
randomization makes it infeasible for the client to
extract any server side information. Hence, two-party
protocols used in Step 2 and Step 4 satisfy the privacy
definition.

4 MULTI-CLASS PROBLEM IN THE
ENCRYPTED-DOMAIN

We considered two classical approaches to decouple
the multi-class problem into multiple two-class sub-
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problems in Section 2.2. In the following subsections,
we propose methods for both the approaches in the
ED.

4.1 1VA Approach in the Encrypted-domain
In 1VA approach, the server has decoupled the Nc-
class problem into Nc-number of two-class subprob-
lems and obtained the corresponding support vectors,
Lagrangian variables and bias for each subproblem
in the PD. Any unlabeled test sample can be labeled
according to the predicted class using (7) in the PD.
However, in the ED the client could supply a test
sample t̃ only in the ED. Hence, the server needs
to obtain the value of the decision function for each
subproblem in the ED. A subproblem with the largest
decision function value will be chosen and the test
sample labeled to the corresponding class using (7).
Let us define the value of the decision function (scaled
version) of the jth subproblem using (7) and (11) as

dj(t) =
∑
s∈Sj

(γαsys)[(γxs)
′(γt)+γ21]p+γ2p+1bj . (24)

The server obtains the dj(t), j = 1, . . . , Nc in the ED
(i.e. Jdj(t)K, j = 1, . . . , Nc) using our methodology as
in (18). Hence, (7) can be redefined as

JMcK = J argmax
j=1,...,Nc

(dj(t))K. (25)

The only part remaining is to find the largest value
among dj(t), ∀j and the corresponding class classj
from the ED Jdj(t)K.

4.1.1 Finding the Largest Value in the Encrypted-
domain
At this stage, the server has computed Nc encrypted
values of decision functions. Hence, the aim now is
to determine the largest value and the corresponding
class based on (25) in the ED. Securely computing
the maximum of two Paillier encrypted numbers was
studied in [29]. We adopted the fundamental building
blocks used in [29]. Let us explain how to obtain the
maximum of two encrypted values Jdi(t)K and Jdj(t)K
where |di(t)|, |dj(t)| < 10l. To do this, the server
computes a positive new variable bi,j as follows:

Jbi,jK = J10l+1 + di(t)− dj(t)K
= J10l+1KJdi(t)KJdj(t)K−1.

Let us denote the most significant digit of bi,j as b̃i,j ,
where b̃i,j can be obtained using the following linear
operation:

b̃i,j = 10−l−1.
[
bi,j − (bi,j mod 10l+1)

]
.

Note that b̃i,j can be 0 or 1 and b̃i,j = 0 implies di(t) <
dj(t). Now the server can obtain the largest value of
two values in the ED as

Jd∗(t)K = Jb̃i,j .(di(t)− dj(t)) + dj(t)K (26)

using an interactive two-party computation protocol
with the client, and encryption of the matched class
corresponding to the winning subproblem is given by

Jclass∗K = Jb̃i,j .(classi − classj) + classjK. (27)

We apply a straightforward recursive algorithm in Ta-
ble 1 to obtain the largest value and the corresponding
class out of N classes. This is returned to the client
who decrypts it to find the matched class of the test
sample.

TABLE 1
Algorithm 1: Finding the largest value and the

corresponding class in the ED.

1. for n = 1 : N − 1
2. Jdi(t)K← Jdn(t)K, Jdj(t)K← Jdn+1(t)K
3. JclassiK← JclassnK, JclassjK← Jclassn+1K
4. find maximum Jd∗(t)K using (26)
5. find corresponding class Jclass∗K using (27)
6. Jdn+1(t)K ← Jd∗(t)K (overwrite)
7. Jclassn+1K ← Jclass∗K (overwrite)
8. end

4.2 1V1 Approach in the Encrypted-domain

In the 1V1 approach, the server has Nc(Nc−1)
2 number

of SVMs, where each SVM was trained using the
samples only from two classes. Then the test sample
will be classified using each SVM. According to the
majority voting approach as in (9), a class, which has
the highest number of +ve predictions, will be chosen.
For our context, (8) and (9) need to be computed in the
ED. However, (8) can be computed in the ED using the
approach described in Section 3.3. Hence, the server
has Jfi,j(t)K, i, j = 1, . . . , Nc, i ̸= j. Now server needs
to sum up the votes for each class in the ED as in (9),
in order to find the class which obtained the majority
voting. For an ith class, summation of voting in the
ED can be performed by the server as

J N∑
j=1,j ̸=i

fi,j(t)K =
N∏

j=1,j ̸=i

Jfi,j(t)K, i = 1, . . . , Nc,

where Jfj,i(t)K = Jfi,j(t)K−1. What remains is to find
the largest value out of Nc in the ED and the corre-
sponding class (i.e. majority class). This can be done
by the server using an approach similar to Algorithm
1 described in Table 1.

4.2.1 Computational Savings for the Client
We compares the required mathematical operations
for traditional classification and two-party based clas-
sification. In the traditional approach, the testing
phase of the SVM classification is done by only one
party. However, in the two-party case (i.e. similar
to the proposed method), the testing phase is done
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collaboratively between two-parties. The proposed
algorithm performs PP classification in the ED where
the test sample and the classification result are known
only to one party and the training features are known
to another party. To the best of our knowledge, there
is no one-party classification algorithm (i.e. traditional
approach) in the literature which performs PP classi-
fication in the ED. Hence, in this section, we show
the saving in the two-party approach against the
traditional approach.

Let us denote the computational power required
for mathematical operations such as multiplication,
addition and sign function are as cm, ca, and cs,
respectively. Let us denote the size of the test sample
as n, and the number of support vectors required for
data classification as |S|. Firstly, we analysis the two-
class problem followed by the multi-class problem
(see Table 2). The second column in Table 2 denotes
computational cost for the client to run the data clas-
sifier without cloud-server assistance (i.e. traditional
approach). The third column denotes the computa-
tional cost for the client in two-party approach. The
fourth column, which is calculated by subtracting
computational cost in the third column from the
second column, denotes the computational saving for
the client.

Since, n, |S| > 0, the client saves a substantial
amount of computational power in two-party ap-
proach. Let us now compute the computational sav-
ings for multi-class problem. Let us denote the num-
ber of classes in a multi-class problem as Nc. Hence,
the multi-class problem can be decomposed into
Nc−, and Nc(Nc−1)

2 −numbers of two-class subprob-
lems in 1VA approach and 1V1 approach, respectively.
Hence, the computational savings for 1VA and 1V1
approaches are N {2(|S|+ 1)ca + [|S|(n+ 2) + 1]cm},
and Nc(Nc−1)

2 {2(|S|+ 1)ca + [|S|(n+ 2) + 1]cm}, re-
spectively.

5 PERFORMANCE ANALYSIS

In this section, we compare the accuracy of the pro-
posed ED methods with the conventional PD meth-
ods. For the experiments, we consider three popular
data sets from the UCI machine learning repository
called the Wisconsin Breast Cancer (WBC), Puma
Indian Diabetic (PID), and Iris data sets [23]. We
also consider a popular facial expression data set
called JAFFE [24]. The details of the data sets are
given in Table 3. The WBC and PID data sets are
medical data sets, and the Iris data set is about flowers
while the JAFFE data set is a facial expression data
set. The WBC data set contains 681 data samples
where 444 samples are benign (non-cancerous) and
237 samples are malignant (cancerous). The each sam-
ple of WBC data is composed with nine different
attributes. The PID data set contains 768 data samples
for two different classes: benign (500 samples) and

TABLE 3
The details of the data sets.

Data set No. ClassesNo. SamplesNo. Attributes
WBC 2 681 9
PID 2 768 8
Iris 3 150 4

JAFFE 7 213 51× 51

malignant (268 samples). The each sample in PID data
set composed with eight different attributes. The Iris
data set contains samples for three different classes:
Setosa, Versicolour, and Virginica, where each class
contains an equal number of data samples (i.e. 50 per
class). The JAFFE data set contains facial images of
ten Japanese females. Each subject in JAFFE database
has six facial expressions [25], i.e. angry (AN), disgust
(DI), fear (FE), happy (HA), sad (SA) and surprise
(SU), and a neutral (NE) face. In total, there are 213
gray-scale facial expression images in this database,
each with a pixel resolution of 256 × 256. For the
purpose of computational efficiency, all the images
were resized to 51× 51 pixels.

For experiment purpose, we use the leave-one-out
approach [26], that is, one data sample is removed
from the data set and all the remaining samples are
used for training the SVM. The removed sample will
be used as a test sample. This procedure will be
repeated for a different left out test sample each time
until all the data samples in a data set are tested.
In order to verify the proposed methods, we first
conduct the experiments with the test sample in the
PD. Later we repeat the experiments, however, the
test sample now in the ED, in order to compare the
performance.

5.1 Experiments in the Plain-Domain

In all experiments, we assume that the training data
is not linearly separable and therefore, we use poly-
nomial kernel method as in (6). First we consider the
two-class case, which will then be followed by the
multi-class case.

5.1.1 Two-class Case

We consider the WBC and PID data sets for two-
class experiment. Tables 4 and 5 respectively depict
the maximum classification accuracy of the WBC and
PID data sets in the PD. In our settings, the maximum
accuracy achieved using the WBC data set was 98.24%
when p = 2. Total number of correctly classified be-
nign and malignant samples were 436 out of 500 and
233 out of 237, respectively. Similarly, Table 5 shows
that the maximum classification accuracy in PID data
set was 86.98%. It is noted during the experiment that
the average number of support vectors used for the
WBC and PID data sets were 10 and 55, respectively.
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TABLE 2
Total number of mathematical operations required for the client for the two-class classification in traditional and

two-party approaches.

Traditional Approach Two-party Approach Savings
Step 1 n(ca + cm) 0 n(ca + cm)
Step 2 |S|(ncm + ca) + |S|(p− 1)cm |S|(p− 1)cm |S|(ncm + ca)
Step 3 2|S|cm + (|S|+ 1)ca 0 2|S|cm + (|S|+ 1)ca
Step 4 cs cs 0

Total (2|S|+ n+ 1)ca + [|S|(n+ 2) + 1] cm |S|(p− 1)cm + cs (2|S|+ n+ 1)ca
+|S|(p− 1)cm + cs + [|S|(n+ 2) + 1] cm

TABLE 4
The classification accuracy achieved for the WBC

data set when p = 2 in the PD.

WBC Accuracy
Benign (444) 98.20% (436)

Malignant (237) 98.31% (233)
Overall Accuracy (681) 98.24% (669)

TABLE 5
The classification accuracy achieved for the PID data

set when p = 3 in the PD.

PID Accuracy
Benign (500) 90.20% (451)

Malignant (268) 80.97% (217)
Overall Accuracy (768) 86.98% (668)

5.1.2 Multi-class case
For the multi-class case, we considered the Iris and
JAFFE data sets. Let us explain how we solve the
multi-class problem using a simple example. Since
the JAFFE data set has seven classes, the number
of required SVMs to classify a test sample for 1VA
and 1V1 approaches are 7 and 21, respectively. Ta-
bles 6 and 7 show some examples for 1VA and
1VA approaches, respectively. In Table 6, decisional
function values of seven different SVM classifiers for
four different test samples are displayed. Each test
sample is categorized to a class using (7) if the highest
decision function value belongs to that class. The
highest decision function value of the test sample 1
in Table 6 is 0.5070 and it corresponds to the AN-
vs-all SVM, which means the test sample 1 can be
categorized to the AN class. Similarly, test samples
2, 3 and 4 are also classified to the AN class. Only
one test sample has been considered in Table 7 as
an example to demonstrate the 1V1 method. The 7-
class problem is now decoupled into 21 number of
subproblems and Table 7 shows the sign of decisional
function values using (8) for all subproblems. The
sign values in Table 7 form a skew-symmetric matrix
because fj,i(t) = −fi,j(t). The last column of Table
7 shows the summation of the sign values in each
row. Using the majority-voting rule in (9) the AN
class obtained maximum votes (i.e. 4) and, therefore,

TABLE 6
Example: 1VA method.

Test image
1 2 3 4

AN-vs-all +0.5070 +1.0931 +0.4706 +0.4325
DI-vs-all -1.2123 +0.7910 -0.5935 -0.8492
FE-vs-all -1.4276 -2.3656 -1.3893 -2.0274
HA-vs-all -1.2985 -2.3203 -2.1607 -0.6268
NE-vs-all -2.0509 -2.8030 -2.1769 -1.7336
SA-vs-all -0.9503 -2.5222 -2.6247 -1.3851
SU-vs-all -1.9416 -1.8771 -1.8144 -1.1769

the test sample considered for this example can be
categorized to the AN class.

TABLE 7
Example: 1V1 method.

AN DI FE HA NE SA SU
∑

AN 0 1 1 1 1 -1 1 4
DI -1 0 -1 1 1 1 1 2
FE -1 1 0 1 1 1 -1 2
HA -1 -1 -1 0 1 -1 1 -2
NE -1 -1 -1 -1 0 -1 1 -4
SA 1 -1 -1 -1 -1 0 1 -2
SU -1 -1 1 -1 -1 -1 0 -4

The classification results for both the Iris and JAFFE
data sets are shown in Tables 8 and 9, respectively.
The 1V1 approach provides higher accuracy (87.33%)
for Iris data set than the 1VA approach (85.33%).
However, in JAFFE data set, the 1VA approach outper-
forms the 1V1 approach by nearly 1%. It is noted from
the experiment that the average numbers of support
vectors (including all subproblems) used for Iris data
set were 174 for 1VA approach while 123 for 1V1
approach. In JAFFE data set, 551 support vectors were
used for 1VA approach while 679 support vectors
were used for 1V1 approach. In the next section, we
perform the experiments described above, but where
all the test data samples are in the ED, to validate our
proposed PP SVM methods.
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TABLE 8
The classification accuracy achieved for the Iris data

set in the PD.
Iris 1VA (p = 3) 1V1 (p = 1)

Setosa (50) 84.00% (42) 98.00% 49
Versicolour (50) 78.00% (39) 74.00% 37

Virginica (50) 94.00% (47) 90.00% 45
Total (150) 85.33% (128) 87.33% (131)

TABLE 9
The classification accuracy achieved for the JAFFE

data set in the PD.
1VA (p = 1) 1V1 (p = 1)

AN (30) 93.33% (28) 100.00% (30)
DI (29) 93.10% (27) 89.66% (26)
FE (32) 90.63% (29) 84.38% (27)
HA (31) 87.10% (27) 83.87% (26)
NE (30) 100.00% (30) 93.33% (28)
SA (31) 90.32% (28) 90.32% (28)
SU (30) 90.00% (27) 86.67% (26)

Total (213) 92.02% (196) 89.67% (192)

5.2 Experiments in the Encrypted-domain

Our proposed PP SVM methods have been imple-
mented in C++ using GNU GMP library version
4.2.4. Both the server and client were modeled as
different threads of a single program, which passes
the variables to each other. The program is tested on a
computer with a 3.40 GHz Intel(R) Xeon(R) processor
and 8GB of RAM running on Windows 64−operating
system. The size of the Paillier security parameter was
2048 bits long.

As we mentioned in Section 3.3.1, the scaling factor
γ has an influence on the classification accuracy in the
ED because the Paillier cryptosystem only encrypts
integers. Table 10 shows the classification accuracy for
all four data sets for various scaling factors in the ED.
The crucial point is that the classification accuracy in
the ED eventually becomes equal to the classification
accuracy in the PD when γ is at a sufficient level, in
this case at S = 105. We also observed the correspond-
ing tables in the ED when S = 105, which are the same
as in Tables 4, 5, 8 and 9. This shows that our proposed
PP SVM enables classification to work, in fact, it
achieves the same classification accuracy as in the
PD, despite test samples having been encrypted, and,
therefore, privacy of the test samples is guaranteed.

The scaling factor γ can be determined by the
server. If we closely look at the classification function
in equation (6), classification variables and test sample
(i.e. αsys,xs, b and t) are normalized. In traditional
SVM classification, i.e. in PD, we approximate these
variables and test samples to particular decimal points
based on the accuracy required before computing the
decision function in equation (6) (i.e. keeping the
variables beyond a certain number of decimal points

will not make any significant difference in the output).
The range of variables in the test sample should also
lie in the same range as in the training sample. Hence,
it is obvious for a server to obtain the number of
decimal points required to provide a higher accuracy.
In the example considered in this paper, five decimal
points are sufficient, hence γ value above 105 will not
make any difference in the classification results.

5.2.1 Communication Complexity
Since only the Paillier encrypted values are be-
ing communicated between the server and client,
the communication cost of the proposed algorithms
highly depends on the size of the Paillier security
parameter n; in our implementation n = 2048, hence,
the size of a Paillier ciphertext is 2048 bits. Hence,
sending an encrypted test sample with N number of
features consumes 2048N bits of bandwidth in the
communication channel. In the proposed algorithm,
the server interacts with the client for two times:
for computing polynomial kernel and for computing
the sign of an encrypted value. The server sends |S|
number of ciphertexts (i.e. equal to the total num-
ber of support vectors) during the first interaction
(i.e. polynomial kernel computation) while only one
ciphertext in the last interaction. Hence, the com-
munication cost for our algorithm is upper-bounded
by the first interaction which requires 2048|S| bits
of bandwidth. Since the number of support vectors
should be less than the size of the data set, the worst
case bandwidth requirement for WBC, PID, Iris, and
JAFFE data sets are 1.394MB, 1.573MB, 0.3MB, and
0.436MB, respectively.

5.2.2 Computational Complexity
We measure the computational complexity in terms
of average runtime required for the proposed algo-
rithms. Table 11 depicts the average computational
time required for the proposed PP algorithms in order
to complete the classification task in all four data
sets. It is noted that the average computational time

TABLE 11
The average computational times required for all four

data sets in the ED classification.

Data set Time (seconds)
WBC 7.71
PID 32.09

Iris (1VA) 98.31
Iris (1V1) 4.18

JAFFE (1VA) 120.20
JAFFE (1V1) 149.82

depends on the degree of polynomial, the number
of support vectors, and the total number of two-
class subproblems used for the classification. For an
example, let us consider the Iris 1V1 problem (p = 1)
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TABLE 10
Classification result of all four data sets in the ED for various scaling factor γ.

Scaling Factor WBC PID Iris JAFFE
One-vs-All One-vs-One One-vs-All One-vs-One

102 34.80% 67.45% 62.67% 42.67% 56.00% 2.35%
103 93.54% 86.98% 73.33% 69.33% 51.17% 40.85%
104 98.24% 86.98% 85.33% 87.33% 86.38% 89.67%
105 98.24% 86.98% 85.33% 87.33% 92.08% 89.67%
106 98.24% 86.98% 85.33% 87.33% 92.08% 89.67%

and the Iris 1VA problem (i.e. p = 3). Since there is
no interaction required between the server and client,
in order to compute the polynomial kernel when
p = 1, the average computational time required for
the earlier problem is less than the later problem. It
is also noted that the average computational time is
increasing linearly with the number of support vectors
used for classification problems when p > 1 (i.e. the
WBC and PID data sets) or when p = 1 (i.e. JAFFE
1VA problem and JAFFE 1V1 problem).

6 RELATED WORK

There were several classification algorithms devel-
oped in pattern recognition and machine learning for
different applications [35]. However, only a few of
them have been redesigned for PP classification in
literature ( [4]–[7], [29]–[34] and references therein). In
this section, we review some of the PP SVM literature.
Majority of the work in the literature were developed
for the distributed setting where different parties hold
parts of the training data sets and securely train
a common classifier without each party needing to
disclose its own training data to other parties [4]–
[7]. After the training, each party holds part of the
classification parameters. In order to classify a new
test sample, each party has to be involved equally to
compute part of the kernel matrix and then all parties
together, or the trusted third-party will classify the
test sample. The works in [5]–[7] exploited the secure
multi-party integer summation in order to compute
the kernel matrix. Basically, each party generates a
Gramm matrix using scalar products of training and
test data samples. This Gramm matrix is later revealed
to the trusted third party who will compute the kernel
matrix and then classify the test sample. Revealing
the Gramm matrix may leak the private data and,
therefore, privacy cannot be entirely preserved.

The work in [4] proposed for the first time a
strongly privacy-enhanced protocol for SVM using
cryptographic primitives where the authors assumed
that the training data is distributed. Hence, in order
to preserve the privacy they developed a protocol to
perform secure kernel sharing, prediction and training
using secret sharing and homomorphic encryption
techniques. At the end of the training, each party will
hold a share of the secret. In the testing phase, all

parties collaboratively perform the classification using
their shared secrets. At the end of the protocol, each
party will hold the share of the predicted class label.
Since the work is based on secret sharing, all parties
must be involved in every operation of calculating
the kernel values and predicting the class. Hence, it
is suitable only for the distributed scenario and not
for the client-server model considered in this paper.
In the client-server model, the client just sends the
test sample in the ED and is minimally involved in
interactions with the server during the classification
process.

The recent work in [8] discusses the issue of re-
leasing the trained SVM classifier without violating
the privacy of classification parameters. While the
Gaussian kernel was considered therein, however,
Taylor series was exploited to approximate the infinite
dimension of the Gaussian kernel into finite dimen-
sion for negligible performance loss. Since this works
purely in the PD, it cannot be modified to the client-
server scenario considered in this paper.

Note that all the early works in PP SVM classifi-
cation are restricted only to the two-class problem.
Hence, in this paper, we proposed for the first time a
PP protocol not only for the two-class but that solves
the multi-class problem.

7 CONCLUSIONS

In this paper, we have proposed PP classifier to
outsource the data classification. In particular, we
proposed the first known client-server PP SVM clas-
sification protocol for the two-class problem, and the
first known PP protocol for multi-class SVM classi-
fication. At the core of the proposed method lies an
efficient, novel, and secure protocol to obtain the sign
of a Paillier encrypted value. In order to validate
the proposed methods, we have experimented our
method on four different data sets. The experiment
results show that the classification accuracies of the
proposed ED methods are same as those in the plain
non-encrypted-domain, which proves reliability of the
proposed methods. Moreover, the benefit in our ED
methods is that test samples need not be revealed
unnecessarily as they can remain in encrypted form
at all times, even during the classification process.
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