
              

City, University of London Institutional Repository

Citation: MacFarlane, A. (2003). On open source IR. Aslib Proceedings; New Information 

Perspectives, 55(4), pp. 217-222. doi: 10.1108/00012530310486575 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/4496/

Link to published version: https://doi.org/10.1108/00012530310486575

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


On Open Source IR 
 

A. MacFarlane,  
Centre for Interactive Systems Research, City University, London EC1V 0HB 

 
Abstract: Open source software development is becoming increasingly 
popular as a way of producing software, due to a number of factors. It is 
argued in this paper that these factors may have a significant impact on the 
future of IR systems, and that it is desirable that these systems are made 
open to all. We outline some problems that may prevent the uptake of open 
source IR systems. A number of open source IR systems are described. 

 
1.Introduction 
 
I argue here that open source software development is a promising method for producing 
Information Retrieval (IR) systems. Open source software is available freely (usually on 
the Web), and the source code is available so that changes may be made as required. 
Software which enjoys wide use has the most to gain from open source, and IR systems 
are likely to be increasingly used as more and more people and the organisations they 
work for require Web or intranet search. The paper is organised a follows. In order to 
give the reader some background in the area of open source software, we give a 
description of this type of development in section 2. In section 3 we outline some of the 
systems that are mature and available for use by IR researchers and practitioners. In 
section 4 we provide an argument for Open Source IR systems, and outline the potential 
problems and obstacles that may counter the benefits of Open Source in IR in section 5. 
An agenda is set for Open Source IR software in a conclusion.    
 
2. Open source software  
 
Open source software (Feller & Fitzgerald, 2002) is where the source code of programs is 
made freely available for anyone to change and distribute providing they abide by the 
accompanying licence. This differs from closed source or propriety software which may 
only be obtained by some form of payment either by purchase or by ‘leasing’. The 
difference between open and closed source can be characterised by the word freedom: 
users of open source software have the freedom to alter the source code while users of 
closed source software do not.  
 There are many licenses available for the use with open source software (Feller & 
Fitzgerald, 2002), but the most popular of these is the GNU Public Licence (GPL). The 
GPL gives programmers the right to alter software and re-distribute it, providing that the 
changes they have made are available to other programmers: this concept is known as 
copyleft. Thus the GPL is said to be ‘viral’ (Feller & Fitzgerald, 2002): any software 
which uses the GPL must itself be released under the GPL. The reasoning behind 
copyleft is to prevent propriety software houses from exploiting the (often unpaid) work 
of open source programmers, without some recompense. 



3.Systems currently available 
 
There is a wide range of Open Source IR systems available on the Web from sites such as 
sourceforge.net and freshmeat.net. These systems can be categorised into two main 
groups: those which use inverted files and those which use databases systems. We 
provide a short description of small number of systems, which are mature or have been 
used by either IR practitioners or researchers and which used the inverted file approach. 
All of these systems are free software and most are released under the GNU Public 
Licence (GPL). The systems we concentrate on are Xapian, Swish++, Senga, ht://Dig, 
Isearch Oasis, MG and Lemur (other freely available IR systems found in the course of 
our investigation are listed in appendix 1).  
 
3.1 Xapian (http://sourceforge.net/projects/xapian/) 
 
Xapian has had something of a chequered history. It was originally developed under the 
name of Open Muscat (Porter & Boulton, 2000) by BrightStation PLC, changed its name 
to Omsee and then to OmSeek when the BrightStation open source project was closed 
down (due to financial problems unrelated to the project itself), and then to Xapian. 
However, it continues to be developed under the GNU Public Licence (GPL).  

Xapian is not a program but a suite of libraries providing an Application 
Programming Interface (API) for services such as indexing, search and relevance 
feedback. Stemming functions are provided for English and many other European 
languages. The library is written in C++, but API’s to other languages such as Perl and 
Python are also available. The model provided as part of search is the Robertson/Sparck 
Jones probabilistic model (Robertson & Sparck Jones, 1976) and the weighting function 
used is BM25 (Robertson et al, 1995). Boolean and phrase search facilities are also 
provided. Examples of how to use the search and index facilities are provided.  
 
3.2 Swish++ (http://homepage.mac.com/pauljlucas/software/swish/) 
 
Swish++ (Simple Web Indexing System for Humans) is a Unix based indexing and 
search engine that has been ported to MS Windows. It is a C++ rewrite of Swish-E 
(http://sunsite.berkeley.edu/SWISH-E/) a system developed for Web search. Swish++ 
offers command line services for Web crawling, indexing and facilities to create a search 
server. Non-text documents such as Microsoft Word documents can be indexed.  
Swish++ at present only handles the English language. The search model used in the 
software is Boolean, but some form of ranking function is provided (the term weighting 
model is not specified). A significant problem with both systems is that neither Swish-E 
nor Swish++ has the ability to merge intermediate results: the user is expected to increase 
the memory capacity of the hardware in order to handle large collections. This is not an 
appropriate strategy for an information retrieval system. 
 
3.3 Senga (http://www.senga.org/) 
 
Senga (like Xapian) is a library of C++ routines for developing information retrieval 
systems. Unlike Swish++ the developer must write their own query and document 



parsers. No stemming facilities are provided unlike Xapian. Senga therefore provides a 
basic library for IR systems development. Senga shares some programming effort with 
ht://Dig, a good example of collaboration between two development groups.  The system 
appears to allow programmers to define their own weighting function, so in theory any 
term weighting model could be supported. Senga has the ability to support updates, 
therefore dynamic indexes can be supported. The author had problems in building 
executables from source code for this system: no answer was ever provided to my query 
and development work appears to have stalled.  
 
3.4 ht://Dig (http://www.htdig.org/) 
 
The ht://Dig system has already been mentioned in connection with Senga. This system 
provides programs to crawl Web sites (or Dig them in their nomenclature) merge data 
from existing database or newly found documents, and finally to search document and 
word databases. Search facilities include ranking and Boolean models, as well as special 
functions for multiple keyword search and building synonym databases. The ranking 
function is an ad-hoc one and scores words nearer the top of the document higher than 
those nearer the bottom. The ability to define a front-end web page for search is provided. 
The system appears to be quite widely used and there is much development work being 
done on it. There appears to be some problems on Linux versions: the author wasted the 
best part of a day trying to fix an intermittent bug that crashed the system and was 
impossible to find. 
 
3.5 Isearch (www.etymon.com/Isearch) 
 
Isearch was written to resolve perceived problems with freeWAIS, in particular that the 
search engine and retrieval protocol were mixed in together (Nassar, 1997). Apart from 
the article by Nassar (1997) there is very little documentation on the detailed facilities, 
but looking at the source code modules it is clear that functions such a geographical and 
date search are supported. Ranking is supported, but the model and functions used by the 
system is not declared. Nested Boolean searches are allowed as is phrase searching and 
right truncation. Isearch gives the user the ability to index various formats such as 
HTML, SGML, Medline and USMARC. The code is not longer being developed and a 
replacement called Amberfish® (which is able to deal with structured XML documents) 
has been developed to replace it.  
 
3.6 Oasis (http://oasis-europe.org) 
 
Oasis (Kluev, 2000) differs from the systems described above, as it is a program for 
distributed search on the Internet. The base system used for search is Isearch (see section 
3.5). It filters out collections using server selection methods and submits queries to 
distributed sites, merging the results from them. Oasis uses artificial intelligence and 
neural network techniques for server selection and query processing. The architecture 
used is basically three-tier middleware: the client sends a query to any Oasis server which 
contacts other Oasis servers available to obtain results. Oasis provides synchronous and 
asynchronous modes: in the latter the server acts as an intelligent agent. A collection 



broker chooses the servers, but it is not clear how server selection is done. Results are 
merged using a Neural Network technique that also removes duplicate entries: it is 
entirely possible that duplicate sets of results can be generated in this type of architecture. 
Crawler services are provided for collection building: these are described in Kluev 
(2000). The system also supports relevance feedback.  
 
3.7 MG (http://www.cs.mu.oz.au/mg/) 
 
Managing Gigabytes or MG for short (Witten, Moffat and Bell, 1999) is a text retrieval 
system which has been developed to investigate various aspects of compression for 
inverted lists. The code is released under the GPL, but is not longer being actively 
developed: further development is in the closed source model. The system provides 
facilities for indexing collections and searching them using either the Boolean or Vector 
Space models. The book by Witten, Moffat and Bell (1999) gives detailed information on 
the compression methods used in MG: there is also guide to MG in the appendices of the 
book. 
 
3.8 Lemur (http://www-2.cs.cmu.edu/~lemur) 
 
Lemur is a toolkit which is being actively developed by both the University of 
Massachusetts and Carnegie Mellon University to be used for research into the areas of 
language modelling and information retrieval. The toolkit allows programmers to develop 
all kinds of information retrieval systems such as cross-lingual IR and text 
filtering/classification. The system can either work on Unix or Windows systems. The 
license used is a private one.  
 
4.The argument for open source IR systems 
 
A number of factors demonstrate that open source software development works well 
(Moody, 2001). The biggest factor is parallel development and debugging. In closed 
systems development, programming effort is restricted to a small team who are the only 
people who can address problems in the code. It is difficult for team members to test their 
software against real problems. With open source software we may have programming 
effort shared amongst programmers who may be widely distributed all over the world. 
The number of programmers who can tackle development is far more than any 
organisation that uses closed source development could ever deploy. Having this wide 
resource of programmers allows open source developers to distribute the functions of 
debugging and testing, deploying systems to real problems and identifying problems and 
errors which can be tackled far quicker than in closed source development. It is estimated 
that up 70% to 80% of the cost of software is on maintenance (P147: Feller and 
Fitzgerald): the potential economic benefits of sharing these overheads are clear. Another 
clear advantage is in the management of the projects. Although there will be one or two 
project leaders in open source projects, in the main each developer will work 
independently without the need for any significant direction (they volunteer to tackle a 
well defined specific problem) or the need for communication with everyone on the team. 
In closed source development, significant project management is required which results 



in problems outlined by Brooks (1982), notably the offset between using more 
programmers on a project and the level of communication between them.  
 The significance of this type of development is that new IR algorithms and 
models can be released into the community very quickly for practical application and 
deployment. This contrasts with IR ideas developed in closed source systems. These 
remain secret and unused, often untested and uncompared using standard test collections 
such as TREC (Voorhees and Harman, 1999). These ideas are lost to the community who 
have no chance to discuss their impact. Porter and Boulton (2000) assert that mutual 
suspicion between IR practitioners in industry and IR researchers in academia was caused 
by closed and proprietary software development methods. To the industrialists, IR 
researchers did not understand the realities of dealing with real world problems and were 
stuck in theoretical ideas that do not tackle them. To the academics, people in industry 
did not understand the theory of IR and who stole their ideas without giving them the 
credit they thought was due. Porter and Boulton (2000) argue that this lack of co-
operation between the two camps has been damaging to both. 
 While the survey in section on ‘Systems currently available’ is by no means 
exhaustive, it is clear that some of the arguments given here are illustrated by examples in 
open source systems. There is clear co-operation between Senga and ht://Dig as well as 
between Oasis and Isearch, for the benefit of both sets of groups. However it is also clear 
that some open source developers are completely unaware of progress made in IR theory: 
term weighting functions used in many surveyed systems are either undeclared or ad-hoc 
with little or no theoretical underpinning to them. It is very hard for software developers, 
who are interested in developing systems, to keep up with new ideas emanating from the 
world of IR research.  
 
5. Potential problems and obstacles 
 
Although open source development has shown in many cases to be successful, there are 
potential problems (Moody, 2001). Commercial companies do not always see the 
benefits, and are under significant pressure from shareholders who do not understand the 
open source development model. A case in point is BrightStation and Xapian. This (and 
other human factors) may cause forks. A fork occurs in open source development when a 
group developing open source software splits into two or more groups. This means that 
the groups will often duplicate work, wasting time and effort obviating the benefits listed 
above for open source development.  
 The impact on IR system developers can be considerable. The author found 36 
open source IR systems in the course of his investigation. It is entirely possible that there 
are more systems available on the Web and from other sources. Proliferation may be no 
bad thing to begin with in order to share ideas, but at some stage it would be a good idea 
to coalesce the ideas from these systems in order to get the best of them and hence to 
share them. In the long run it is desirable that only a few systems be available for reasons 
given above. However the author does not want to put off IR researchers or developers 
from releasing their code: going open source is another way of sharing ideas. One of the 
main reasons for publishing the material here is to encourage IR practitioners and 
researchers to share ideas, coalesce them from different systems and to prevent forks 
before they happen. The author accepts that it will be impossible to coalesce all the open 



source IR systems into one for significant political, social and software engineering 
reasons (e.g. differences in programming languages). 
 There is potential for wasted effort in finding problems in the software. For 
example, we may have many programmers looking at the same chunk of code, 
duplicating debugging effort and therefore reducing overall efficiency of the open source 
software development model (McConnell, 1999). There is also a workload deployment 
issue: for example some programmers have stronger expertise in some areas than other 
programmers (McConnell, 1999). There is an offset when maintaining software in the 
benefits of sharing maintenance and loss due to wasted effort. This is a significant area of 
research in open source software (Feller and Fitzgerald, 2002). 

Another significant factor and one that has received little attention is usability. 
Nichols et al (2001) argue that open source software projects need to adapt in order to 
produce systems that can be used by a typical and non-technical user. The basic problem 
is that most open source systems are written by programmers who do not understand end 
user needs and whose software is often complex and difficult to use. For example, a 
quick look at some of the indexing methods use by systems in this survey has revealed 
how difficult and complicated creating an index is. Often significant technical knowledge 
is needed in order to make the process work correctly or efficiently. This is a serious 
problem, and given the importance of interaction in IR systems it is one that must be 
addressed by open source IR developers. 
 
6.Conclusion: the way forward 
 
The benefits of sharing ideas between IR industrialists and researchers are clear. People 
in industry often have access to users which IR researchers can only dream of. Ideas can 
be tested out in real situations, often anonymously without reference to the users or 
publishing the material. These ideas can be embodied in the systems themselves and 
downloaded for use in either research or deployment in real world search. This author 
believes that good new ideas should be available to all, and both IR industrialists and 
academics stand to gain from closer co-operation. I want to encourage programmers who 
work on open source IR systems to consider the issue of usability and where possible to 
coalesce their systems. The author is aware however that efforts are being dissipated in 
the development of open source IR systems, and may this prevent the obvious benefits in 
using the open source development model. I hope that further research into the open 
source development model will be able to show tangle benefits, and that this will impact 
positively on using such a model to produce IR systems. 
 
Acknowledgements 
 
I am grateful to Francois Schiettecatte, Martin Porter and Richard Boulton for their 
comments on an early draft of this paper. 



References 
 
Brooks, F.P. (1982). The mythical man-month: essays on software engineering, Addison-
Wesley, Reading: Massachusetts. 
 
Feller, J, and Fitzgerald, B. (2002). Understanding Open Source software development, 
Addison-Wesley, London. 
 
Kluev, V. (2000). Compiling document collections from the internet, SIGIR Forum, 
34(2), 9-14. 
 
Nassar, N. (1997). Searching with Isearch.  
URL: http://www.webtechniques.com/archives/1997/05/nassar/ (visited 9th December 
2002). 
 
Nichols, D.M, Thomson, K and Yeates, S.A. (2001). Usability and open source Software 
development. Department of Computer Science, University of Waikato. 
URL: http://www.cs.waikato.ac.nz/~say1/pubs/oss.pdf  (visited 15th  January 2003). 
 
McConnell, S. (1999). Open source methodology: ready for prime time? IEEE Software 
16(4), July/August 1999, 6-11. 
 
Moody, G. (2001). Rebel code: Linux and the open source revolution, Allen Lane, 
London. 
 
Porter, M.F. & Boulton, M. (2000). Open Muscat, an Open Source search engine, SIGIR 
Forum, 34(1), 16-17. 
 
Robertson, S.E. & Sparck Jones, K. (1976). Relevance weighting of search terms, 
Journal of the American Society of Information Science, May-June, 129-145. 
 
Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., and Gatford, M. (1995). 
Okapi at TREC3, In: Harman, D.K. (ed). Proceedings of Third Text Retrieval Conference, 
Gaithersburg, USA,  November 1994, NIST SP 500-226, (Gaithersburg: NIST), 109-126. 
 
Voorhees, E.M. & Harman, D.K. (eds). (1999).The Seventh Text Retrieval Conference 
(TREC-7), NIST Special Publication 500-242, NIST. 
 
Witten, I.H., Moffat, A., and Bell, T.C. (1999). Managing Gigabytes (2nd Edtion), 
Morgan Kaufmann, San Francisco: California.  
 



 
Appendix 1 – Other Open Source/Free Software IR projects 

 
Project 
Name 

URL Stage Licence Other  
Information 

Alkaline alkaline.vestris.com Stable Private Free for non-
commercial 
use. 

Amberfish® www.etymon.com/amberfish Stable GPL Process 
structured 
XML. 

Glimpse webglimpse.net Stable Private Free for non-
profit 
organisations. 

Ongobongo ports.tolkien.dk/ongobongo  Alpha GPL Uses 
PostgresQL. 

Perlfect perlfect.com/freescripts/search/ Stable GPL - 
ROADS www.roads.lut.ac.uk Stable GPL Yahoo like. 
SEARCH.PHP3 www.w3webmaster.com/search/install.shtml Stable GPL Uses MySQL. 
YASE www.mazumdar.demon.co.uk/yase_index.html Beta GPL - 
Exist exist.sourceforge.net Beta LGPL Uses RDMS 
PhpDig phpdig.toiletoine.net Stable GPL Uses MySQL 
NISs sourceforge.net/projects/niss Planning GPL - 
Anarchivist sourceforge.net/projects/anarchivist Planning GPL Rewrite of 

AustLII 
ASPSeek www.aspseek.org Stable GPL Uses SQL 
HISS sourceforge.net/projects/hiss Planning GPL - 
Latente sourceforge.net/projects/latente/ - - Uses Java. 
NeatSeeker neatseeker.sourceforge.net Stable Apache - 
Nose sourceforge.net/projects/nose Planning GPL - 
OpenFTS openfts.sourceforge.net Stable GPL Uses 

PostgresQL. 
Oxyus sourceforge.net/projects/oxyus Pre-

Alpha 
Apache - 

Ransacker ransacker.sourceforge.net Alpha GPL Uses Python 
siteIndexer sourceforge.net/projects/siteindexer Alpha GPL Uses MySQL 
SPINdex mattwork.potsdam.edu/projects/spandex Stable GPL - 
Doc Fox sourceforge.net/projects/docfox Planning  BSD - 
MPS 
Information 
Server 

www.fsconsult.com Stable Private - 

Lucene jakarta.apache.org/lucene/ Stable Apache Uses Java. 
freeWAIS-sf Is6-www.informatik.uni-dortmund.de/ 

    Ir/projects/freeWAIS-sf 
Stable Private - 

Harvest www.tardis.ed.ac.uk/harvest Stable Private - 
Zebra Indexdata.dk/zebra Stable Private - 
Personal 
Librarian 

www.pls.com Stable Private - 

 
 


