

City, University of London Institutional Repository

Citation: MacFarlane, A., McCann, J. A. & Robertson, S. E. (2000). Parallel search using

partitioned inverted files. In: Seventh International Symposium on String Processing and
Information Retrieval, 2000. SPIRE 2000. Proceedings. (pp. 209-220). IEEE COMPUTER
SOC. ISBN 0-7695-0746-8 doi: 10.1109/SPIRE.2000.878197

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4502/

Link to published version: https://doi.org/10.1109/SPIRE.2000.878197

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Parallel Methods for the Search of Partitioned Inverted Files
*A. MacFarlane, *+S.E.Robertson, *J.A.McCann

*School of Informatics, City University, London EC1V OHB
+Microsoft Research Ltd, Cambridge CB2 3NH

Abstract: We examine the search of partitioned Inverted Files with particular emphasis on
issues which arise from different types of partitioning methods. Two types of Index
Partitions are investigated: namely TermId and DocId. We describe the search operators
implemented in order to support partitioned search. We also describe higher level features
such as search topologies and relevance feedback in partitioned search. The results from
runs on both type of partitioning are compared and contrasted.

1. INTRODUCTION

 In this paper we describe search mechanism for PLIERS, a parallel Information Retrieval
system based heavily on ideas developed on the Okapi system at City University [1]. Our aim in this
research is to examine the issue of Search on Inverted files given two types of partitioning methods:
Term Identifier (TermId) Partitioning and Document Identifier (DocId) partitioning. Term Identifier
partitioning is a type of partitioning which distributes a unique word to a fragment, while Document
Identifier partitioning distributes a unique document to a fragment. A fragment is a physical division of
the Inverted file. A fuller discussion of these partitioning methods can be found in [2,3]. The
experimental aims and objectives of our research is given in section 2 which is overall to examine
which Inverted file partitioning method provides the best retrieval efficiency results. Search operation
functionality provided by PLIERS is described in section 3. The issue of search topologies is discussed
in section 4, while section 5 gives a technical description of how the operations are implemented on
different partitioning methods. How relevance feedback is supported on partitioned inverted files is
discussed in section 6. The hardware used in the experiments is outlined in section 7. The data and
settings used for the experiments are described in section 8. The results of searches on the two chosen
partitioning methods is reported in sections 9 and 10, and the conclusion in section 11 compares and
contrasts these results with our stated aims/objectives.

2. EXPERIMENTAL AIMS AND OBJECTIVES

 The previous work on the subject of search performance on Partitioned Inverted files [2,18]
used simulations in order to do the research. We attempt to use real collections using TREC queries to
examine performance. The query model used in these simulations assumed either an equal probability
of word occurring in a query [18] or did not address the issue [2]. We believe the distribution of words
in Queries to be of fundamental importance with respect to partitioning methods and we wish to
examine a Hypothesis: performance on Indexes with DocId partitioning will on average yield a better
and more predicable performance than TermId partitioning because of the Zipt distribution.
 This Hypothesis is quite abstract and needs further elaboration. Much depends on users
information needs: users formulate their queries on the basis of this information need by choosing
terms they regard as useful for retrieval [20]. User actions have a direct impact on search performance
or to put it another way performance is not independent of user action. User action determines the
distribution of words in the query. This is true of all IR systems, but becomes very important given a
fragmented index. Since users information needs may change over time it may not be possible to
produce a distribution of words in queries and there is no general agreement on word distribution in
queries [18]. To estimate the distribution of terms in Queries we would need to know every potential
term set for every Information need. Our assumption is that this is for the most part an unknowable
variable and seek ways of understanding search performance in the absence of such data. We do this
through an examination of Zipf's law [19] which informally states: a few words occur many times in a
document collection while many words will occur only once. We seek our answer through what we can
know: the distribution of words in the collection.
 The key issue is how fairly are terms distributed on average to partitions for the inverted file.
In the case of DocId partitioning we assume a random distribution of document to partitions gives an
approximately equal distribution of documents to partitions. We further assume that frequency of
words occurrence are similar if and only if and only if the document distribution is fair (this assumption
does not cover low frequency words). Given these assumptions the Zipfian distribution will roughly be
the same and query performance on each partition will be similar. However with TermId partitioning

the Zipf distribution on partitions will be different. The frequency of word occurrence will not be
similar over partitions by the very definition of TermId partitioning. In the worst case one partition may
have all of the Query words. Therefore we hypothesise that the load balance for search on DocId
partitioned indexes will be superior to those on TermId partitioned indexes on average, therefore search
will be on average faster on DocId than TermId.
 It should be stated that in some circumstances information on queries can be gather in post
search analysis. In a paper on Internet search Kirsch [21] stated that about 12% of the queries
submitted to Infoseek was by users with an interest in procreation. It may be possible to use this data to
produce a Query distribution in order to reassign some of the terms to different fragments in order to
improve load balance where TermId is used. We do not address the issue of dynamic migrating
Indexes.
 It should be noted that we address the issue of retrieval efficiency in this study, but do
mention retrieval effectiveness in order to verify that searching TermId and DocId partitioned Indexes
yield same results (as they should do).

3. SEARCH OPERATION FUNCTIONALITY

 The search operations provided by PLIERS are described in this section. The operations
discussed here are placed into three distinct classes: Boolean (AND, OR, AND-NOT), Proximity
(ADJ, SAMES, SAMEP, SAMEF) and Weighting (PLUS). The model used for search is the Search Set
model, therefore these operations are defined over sets. The semantics of these operations are described
more fully in Robertson/Walker [7] and MacFarlane et al [8].

3.1 Boolean Operations

 With Boolean operations set merges are done on the basis of document identifiers: the union
of two sets are taken for the OR operation, the intersection for the AND operation, and the difference
for the AND-NOT operation. A single OR operation or OR operations are simple queries: the
operation is associative and has the identity Æ, the empty set.

3.2 Proximity Operations

 Proximity operations on sets are defined over the position lists which are associated with each
element of a inverted list. The ADJ operator looks for words in document which are adjacent to each
other: in this particular case we have implemented an ordered ADJ i.e. A ADJ B != B ADJ A. The
SAMES operator looks for words in the same sentence, SAMEP looks for words in the same paragraph
and SAMEF looks for words in the same fields. Each of these operators is implemented as a special
case of intersection, the criteria of which is defined by the position information required to satisfy that
operations semantics. An appropriate function is associated with each set header. If we take SAMEP as
an example: words in the same paragraph must also be in the same field therefore both field and
paragraph number are checked. The implementation of the ADJ operator is slightly more complicated
as order of word position is important as are any preceding stop word between the two relevant terms.

3.3 Term Weighting Operations

 The term weighting model supported in PLIERS is the Robertson/Sparck Jones Probabilistic
model [4,9]. We use a sum of weights method (PLUS) which requires two phases for term weighting
operation: calculation of the weights and then set merge with addition of those weights. The final result
set is then sorted by weight in decreasing order of weight. In the calculation of weights method we use
a number of functions which have been applied at Okapi at TREC including bm_0, bm_11, bm_15 [10]
and bm_25 [11] (bm means best match). All results where produced on the bm_25 term weighting
function.

- do a set of searches without doclen (bm_15) to compare performance with bm_25?

Note: should I declare the formulas for the weighting function being used? (don't see point given that
its well know - maybe for the thesis only?

4. SEARCH TOPOLOGIES

 In order to facilitate parallel searches on Inverted files with differing data partitioned methods,
we need some generic method with which to service queries. We define two components of a parallel
search topology, a top node and one or more leaf nodes. Our requirements are that we should define
these components so they can be re-configured irrespective of the type of data partitioning method
used: the client sees a single Inverted file and retrieval responses with respect to effectiveness
measures are identical on any data partitioning method. These components are described in below,
followed by a discussion on search topologies.

4.1 Top Node

 The main task of the Top Node in a search topology is to act as the interface for a client to the
topology. It accepts queries from the client, distributes it to all of its child nodes and awaits the results.
Depending on the type of operation it may sort the results ready for presentation to the client, or order
merge partially ordered results from its child nodes (see section 4.3 for more discussion on this point).

4.2 Leaf Node

 The Leaf Node looks after one fragment of the Inverted files. It keeps an in-core tree of
keywords (as described in section 2) which is searched when a query is received. The inverted lists are
then built for each element of the query and merged together to form a final result set. This result set or
sets are sent to the top node. The number of leaf nodes are defined by the number of Inverted File
fragments.

4.3 Discussion on search topologies

An example of how the components are combined can be found in figure 1.

 The example in figure 1 is a tree topology with a top node and n leaf nodes. The service of a
query is done as follows: the top node receives a query and distributes it to Leaf Nodes 1 and 2 to n.
The result set for that query is sent back in the inverse direction merging as necessary. [note: may need
a bit more detail here- but what?]

5. SEARCH OPERATIONS ON PARTITIONED INVERTED FILES

 How search operations are implemented on partitioned Inverted Files using different sorts of
search topologies are the subject of this section. We define three sorts of Queries: a Simple Query
which can be merged immediately, Weighted Queries which are almost identical to Simple Queries but
involve the addition of weights, and Complex Queries where results may not be able to be merged until
information is received by the top process. How these queries are serviced using different types of
partitioning methods are of particular interest. We put the discussion on Boolean, Proximity and
Weighted operation in separate sections as per section 3.

 Final Result

 Top Node Client
 query
 Intermediate
 Results query

 Leaf Node1 Leaf Node2 Leaf Noden

Figure 1 - Example Search Topology configuration

5.1 Boolean Operations

 Single AND and AND-NOT operations are regarded as complex queries, AND because the
identity is a non-empty set identical to it, and AND-NOT because it is not associative. Any
combination of these three Boolean operations is a Complex query. The implementation for set merge
on a simple query containing an OR operation is straightforward in both DocId and TermId partitioning
methods: the union is applied to incoming query term sets and placed on the output link. The situation
for complex queries with regard to partitioning methods is very different. With TermId partitioning the
full information for a query is not available until all results have been received at the top node: some or
all of the sets need to be transmitted from the leaf nodes to the top node (though any internal nodes
which may be between them). However with DocId partitioning, the query can be applied to each
fragment giving a completed result set at each leaf: the union operator can then be applied to such
complete results though any internal nodes to the top nodes. Only one result set is transmitted from
each node in the topology. This has significant cost implications for different types of partitioning
methods when Boolean searches are used. In both types of partitioning methods, the client is given the
full result set.

5.2 Proximity Operations

 All operations are complex queries in TermId partitioning, but simple query processing can be
used as per Boolean operation for DocId partitioning. The distribution and collection of results is
identical to Boolean operations processing. All merges are done using the document identifier. In both
types of partitioning methods, the client is given the full result set.

5.3 Term Weighting Operations

 Some of these weighting functions require document length information: we retrieve this
information from the document map as necessary. Another very important aspect of term weighting is
the issue of collection statistics with respect to partitioning method. If we treat fragments of the
Inverted file as being in a global database we need to exchange data between the fragments if required.
For example in term frequency we need use add all occurrences of a term from all fragments when
using document id partitioning: such addition is not necessary when using term id partitioning since the
term frequency is available in one fragment. We therefore need to adjust our term weighting operations
to suit the partitioning method being used. Other statistics such as average document length and total
number of documents in the collection are also affected. It should be noted that term weighting is
possible on independent collections [12,13], but the discussion of this subject is outside the scope of
our research: our aim is too address the issue of term statistics across fragmented Inverted files. Once
weights for each element of the set have been generated we can then use a PLUS set weight operation
which is again a special case of union: if two document id's are in both sets we add their weights
otherwise we insert the unchanged posting record in the result set. Again different types of operations
are required in differing partitioned methods. Using document id partitioning we can sort local results
and only send the top n documents from that build to the parent node. With term id partitioning we
cannot sort the results set until all data has been received from all fragments. This would appear to give
document id partitioning methods an advantage over term id in that less communication is needed, but
more sorts are required in document id partitioning. The Weighted Query method is similar to Simple
Query operation but differs in that a sort is needed on the final result set. Only the n of the top set
documents identified by the weighting operation are presented to the user.

6. RELEVANCE FEEDBACK ON PARTITIONED INVERTED FILES

 We support relevance feedback on partitioned Inverted files for query expansion. The method
we use is based on assigning a weight for a term called the Term Selection Value derived by Robertson
[14]. There are three phases to the query expansion method we use: term extraction, assigning a Term
Selection Value to each term and choosing the terms which constitute the reformed query.

6.1 Term Extraction

 On inspection of documents which have been presented to the user from his or her initial
query, a number of documents are marked as being relevant to a users information need. The number of

chosen documents is assigned to R - the number of know relevant documents for a request. An index is
created for this document sent in the same way as described in [15], by taking each document analysing
it and adding its information to the index. We are therefore reusing code used in the Indexing module.
A porter stemming method is applied to the documents, and a list of stop words defined by Fox [16] are
not indexed. When the indexing has been completed each element of the index is inserted into the
queries candidate set ready for the next stage of processing.

6.2 Term Selection Value Calculation

 In order calculate the Term Selection Value the terms in the candidate set are broadcast to
each fragment, and if terms are dealt with in that fragment the no of postings for that term is recorded.
In term id partitioning this means a simple assignment of a value (or set merges and an addition if load
and stem operation is used). However the requirements for document id partitioning are more complex
in that term frequencies of each term from the separate fragments must be added together (on top of the
requirements set by term id partitioning). Once this collection information has been calculated we can
apply the Term Selection Value function to each element of the candidate set [4,14], using the evidence
gathered from relevance feedback in the generated Index for relevance documents.

Note: declare TSV weight here?

6.3 Select Terms for the Revised Query

 The last stage is to select the best set of terms (10 or 20 is suggested as being reasonable
numbers [4]) and insert them in the current term set which is then applied to the Inverted file aiming
get a more relevant set of documents for presentation to the user. The original set of current terms is
removed (but still exist in the candidate set). If the user wants to start again, both current term and
candidate term sets are cleared.

7. HARDWARE USED

 PLIERS is designed to run on several parallel architectures and is currently implemented on
those which use Sun Sparc and DEC Alpha processors. All results presented in this paper were
obtained on an 8 node Alpha farm and 8 nodes of a 12 node AP3000 at the Australian National
University, Canberra. Each node has its own local disk: the Shared Nothing Architecture [3] is used by
PLIERS. For the Alpha farm, each node is a series 600 266Mhz Digital Alpha workstation with 128
Mbytes of memory running the Digital UNIX 4.0b operating system. One of the nodes has a RAID disk
array attached to it and other nodes can access the RAID using NFS. Two types of network
interconnects were used: a 155 Mbytes/s ATM LAN with a Digital GIGASwitch and a 10 Mb/s
Ethernet LAN. Search requests were submitted on both types of Networks, but indexing was only done
on ATM. The Fujistsu AP3000 is a Distributed Memory Parallel Computer using Ultra 1 processors
running Solaris 2.5.1. Each node as a speed of 167Mhz. The machine we used has 12 nodes, but only 8
are available on a partition. The torus network has a top bandwidth of 200 Mbytes/s per second.

8. DATA AND SETTINGS USED

 The data used in the experiments was the BASE1 and BASE10 collections, both sub-sets of
the official 100 Gigabyte VLC2 collection [14]. The BASE1 is 1 Gigabytes in size, while BASE10 is
approximately 10 Gigabytes in size. For the distributed build method we use the BASE1 collection
only creating indexes on 1 to 7 processors and searches initiated on all of those indexes. The BASE1
and BASE10 collections were used for the local build method, running queries on 8 nodes down to 1
node. The queries are based on topics 351 to 400 of the TREC-7 ad-hoc track: 50 queries in all. The
terms were extracted from TREC-7 topic descriptions using an Okapi query generator utility to produce
the final query. The average number of terms per query is 19.58. As stated our atoms size is a
paragraph. We examine passage lengths of 5,10,20 and full atom length. The atom step used was
always one. For distributed build indexes we do passage retrieval on the top 1000 documents and select
the top 20 for evaluation. With local build we do passage retrieval on the top 1000 on each processors
and then select the top 20 for evaluation. We use this methodology so comparative analysis can be
done with results declared at VLC2 [17].

- who and how are queries for boolean and adj ops formed? 1) me probably! 2) manually!

9. SEARCH RESULTS FROM DOCID PARTITIONING

- include retrieval effectiveness results
- ap1000 docid only
- network version docid, termid
- what topologies are used? may just leave out internal nodes (do a test?)
- short discussion of effectiveness results

10. SEARCH RESULTS FROM TERMID PARTITIONING

- include retrieval effectiveness results- check should be same as 6 - put it in another section.
- ap1000 docid only
- network version docid, termid
- what topologies are used? may just leave out internal nodes (do a test?)
- short discussion of effectiveness results (should be same as docid cross ref).

! the point behind these experiments is to examine speed not effectivness

11. CONCLUSION

- to be done later
-docid vs termid search speed

12. Acknowledgements

This work is supported by the British Academy under grant number IS96/4203. We are also grateful to
ACSys for awarding the first author a visiting student fellowship at the Australian National University
in order to complete this research and use of their equipment. We are particularly grateful to David
Hawking for making the arrangements for the visit to the ANU.

References

[1] S. E. Robertson, Overview of the OKAPI projects, Journal of Documentation, Vol 53, No
1, January 1997.

[2] JEONG, B., and OMIECINSKI, E., Inverted file partitioning schemes in multiple disk systems,
IEEE Transactions on Parallel and Distributed Systems, 6 (2), 1995, 142-153.

[3] A. MacFarlane, S.E.Robertson, and J.A.McCann, Parallel Computing in Information Retrieval - An
updated Review, Journal of Documentation, Vol. 53, No. 3, June 1997.

[4] S.E. Robertson and K. Sparck Jones, Simple, Proven approaches to Text Retrieval, University of
Cambridge Computer Laboratory, Technical Report No. 356.

[5] S.Jones, T. Do, M Hancock-Beaulieu, A.Payne and S. Robertson, Query Modelling for IR Interface
Design, In: F. Johnson, (ed), Proceedings of the 17th Colloquim of the British Computer Society
Information Retrieval Specialist Group, Crewe, 1995, The New Review of Document and Text
Management, No 1 1995.

[6] S. Wartik, Boolean Operations, In: W. Frakes and R. Baeza-Yates (Eds), Information Retrieval:
Data Structures and Algorithms, Prentice-Hall, 1992.

[7] S.E.Robertson and S. Walker, On the logic of search sets and non-Boolean retrieval, Unpublished
paper. City University.

[8] A. MacFarlane, S.E.Robertson and J.A.McCann, On Concurrency Control for Inverted Files,
Proceedings of BCS Colloq. Manchester 1996.

[9] S.E.Robertson, and K. Sparck Jones, Relevance Weighting of Search Terms, Journal of the
American Society for Information Science, May-June 1996.

[10] S.E.Robertson, S.Walker and M.M.Hancock-Beaulieu, Large test collection experiments on an
operational, Interactive systems: Okapi at TREC, Information Processing and Management, Vol. 31,
No.3. 1995, 345-360.

[11] S.E. Robertson, S. Walker, S. Jones, M.M. Beaulieu M. Gatford and A. Payne, Okapi at TREC-4,
In: D.K.Harman, ed, Proceedings of the Fourth Text Retrieval Conference, Gaithersburg, U.S.A,
November 1995, Gaithersburg: NIST 1996.

[12] A. Singhal, AT&T at TREC-6, In: D.K.Harman, ed, Proceedings of the Sixth Text Retrieval
Conference, Gaithersburg, U.S.A, November 1997, Gaithersburg: NIST (too appear).

[13] G.V.Cormack, C.L.A.Clarke, C.R.Palmer, and S.S.L.To, Passage-Based Refinement (MultiText
Experiments for TREC-6), In: D.K.Harman, ed, Proceedings of the Sixth Text Retrieval Conference,
Gaithersburg, U.S.A, November 1997, Gaithersburg: NIST (too appear).

[14] S.E.Robertson, On Term Selection for Query Expansion, Documentation Note, Journal of
Documentation Vol 46, No 4, December 1990.

[15] A.MacFarlane, S.E.Robertson and J.A.McCann, Parallel methods for the generation of partitioned
Inverted files, In preparation.

[16] C. Fox, A stop list for General Text, SIGIR FORUM, ACM Press, Vol 24, No 4, December 1990.

[17] D. Hawking, N. Craswell and P. Thistlewaite, Overview of TREC-7 Very Large Collection Track,
In: D.K.Harman, ed, Proceedings of the Seventh Text Retrieval Conference, Gaithersburg, U.S.A,
November 1998, Gaithersburg: to appear.

[18] TOMASIC, A., and GARCIA-MOLINA, H. Performance of Inverted Indices in Shared-Nothing
Distributed Text Document Information Retrieval Systems. Proceedings of the 2nd International
Conference on Parallel and Distributed Information Systems, IEEE Computer Society Press: Los
Alomitos (CA),

[19] George Kingsley Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley Press,
Cambridge, Massachusetts, 1949.

[20] N.J.Belkin, R.N.Oddy and H.M.Brooks, ASK for Information Retrieval: Part 1 Background and
Theory, Journal of Documentation, Vol. 38, No. 2, June 1982.

[21] S. Kirsch, Infoseek's experiences searching the Internet, SIGIR Forum, Vol 32, No. 2, Fall 1998.

