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Abstract—Deployment of biometric systems in the specific
environment is not straightforward. Based on pre-deployment
performance test results, a decision maker needs to consider
the selection of sensors and matching algorithms in terms
of the cost, expected false-match and false-non-match failure
rates and the underlying quality factors. which depend on
operational scenarios, personnel training, demographics, etc. In
this paper, we investigate information aggregation through vi-
sualization of fingerprint authentication experiments obtained
from a large scale data collection with 494 participants. The
data was collected using four biometric image capture devices.
Each fingerprint image was analysed with two image quality
algorithms, and the matching scores were generated using three
different matchers. Additionally we collected and analyzed the
impact of demographic characteristics, such as gender, age,
ethnicity, height and weight, on system performance.

Keywords-Security data analysis, Visual analytics, Biomet-
rics, Decision support.

I. INTRODUCTION

Fingerprint biometric systems are commercially the most

widely used biometric modality, popular in user identifica-

tion or user identity authentication. Fingerprints get used in

a variety of applications from border control and military

operations, to business applications and mobile phones.

A complete biometric system deployment is usually com-

posed of several off-the-shelf components: a hardware and

software component for fingerprint image capture; a soft-

ware component for rating the quality of the captured image

files; and a software matching algorithm(s) which, when

given two fingerprint images as input, produce as output

a match score - an estimate of the likelihood that these two

images come from the same finger(s).

The authentication process needs (at least) two samples

of the fingerprint image from each user, one stored in the

gallery following the enrollment, and the other collected

as a probe. System architects need to anticipate a realistic

scenario in which image capture components/devices used

for collecting the gallery entry will not be the same as

the device used at the time of authentication. Hence an

important consideration for system deployment is the level

of interoperability between these devices.

Recently, we have provided a comprehensive analysis of

the effects of interoperability on the overall dependability

of the fingerprint matchers [1]. One limitation we identified

during this analysis is that system deployment teams may

have a number of questions with system performance impli-

cations that are not covered in ours or similar studies. The

users need flexible methodologies where they can quickly

investigate different questions about the data. For example,

an interesting question may be ”how do devices perform for

males who are tall and underweight”; the data set may have

relevant information for this question which may be easily

discernible with the right visualization aids.

In this paper we explore how data visualization tech-

niques help a decision maker to make better decisions

on biometric system deployment to balance the trade-offs

between cost and failure rates when combining the different

components (e.g., fingerprint image capture devices, image

quality algorithms and matchers) in a complete system for a

given environment. Because the data that the decision-maker

needs to use to make a decision is multi-dimensional (e.g.,

different components and multiple demographic aspects),

data visualization techniques are a useful mechanism to

allow the user to identify trends, anomalies and trade-offs in

a fast and intuitive manner. We introduce distinction plots,

a novel visualization technique, to represent the matching

performance for device pairs. We demonstrate the use of

these plots within a visualization framework that presents

a decision-maker with simultaneous, multiple views of the

data, giving them a rich, dynamically-changing, intuitive

interface which supports detailed analysis. We then illustrate

the use of the tool with the fingerprint biometric data.

II. RELATED WORK

Diverse fingerprint capture platforms: Marasco et al.

recently proposed a learning-based approach to improve

cross-device fingerprint verification performance [2]. They

extracted quality and intensity-based characteristics of fin-

gerprint images acquired using four different commercial

optical devices and scanned ink rolled prints. The model was

developed for both intra-device and cross-device matching



for all device pairs. Poh et al. designed a Bayesian Belief

Network (BBN) to estimate the posterior probability of

the device d given quality q, referred to as p(d—q) [3].

Clustering is applied to each device to explain hidden quality

factors. However, such data clustering does not explicitly

model the influence of each device. Jain and Ross considered

the interoperability issue as one related to the variability

induced in the feature set when different sensor technologies

are used (e.g. optical vs. capacitive) [4]. Ross and Nadgir

subsequently proposed a compensation model which com-

putes the relative distortion between images acquired using

different devices [5]. The model is based on a thin-plate

spline whose parameters rely on control points manually

selected in order to cover representative areas where dis-

tortions can occur in the fingerprint image. Their method is,

therefore, not completely automated.

Age/Gender Literature in Biometrics: Past studies ex-

amined fingerprints from different age groups and gender

[6]. Effects of ageing impact the quality of fingerprints.

Over the life of the individual, the skin becomes drier and

thinner; reduction of collagen causes skin wilting. These

factors affect the sample provided to the fingerprint sensor

[7]. Age affects the differences in quality of the physical

state of the fingerprint (e.g., skin deterioration), while the

ridge/valley pattern is believed to remain stable over the life

time of an individual. Regarding gender, most of the works

analysed ridges in the spatial domain. They observed that

females present a higher ridge density compared to males,

due to finer epidermal ridge details. In 1999, Acree manually

counted ridges in a well-defined fingerprint area [8], indi-

cating a higher density in females. In [9] [10] fingerprints

are classified based on gender / age using statistics such as

white lines count and ridge count that are manually extracted

as proposed by Acree.

Visualization: Interactive visualizations have been used

extensively in the analysis of multivariate and high-

dimensional data [11], [12] and feature selection [13]. In-

teractive visual analysis methods have also helped decision

makers to evaluate options when giving decisions [14].

Such solutions have been applied to various domains from

epidemic mitigation [15] to financial decision making [16].

III. DATA COLLECTION AND ANALYSIS

A. Data collection

In this study, we analyse data from a large-scale study

from 2012 in which we collected all ten fingerprints of 494

participants using 4 different biometric devices. The order

of use of fingerprint scanners was the same for all 494

volunteers. Each of them self-reported age, gender, ethnicity,

height and weight. Failures in our case are defined as false-

matches (a fingerprint is judged to belong to a person when

in fact this is not the case) and false-non-matches (a finger-

print is judged to not belong to a person when in fact this

is the case). In our analysis we use right point fingers only,

typical for authentication applications. The sample of 494

is appropriate since we are dealing with human participants

and we followed a properly approved collection protocol that

required volunteers to dedicate one hour of time to biometric

data collection for which they were adequately compensated.

The fingerprints were captured twice per person: once for

the purpose of creating the enrolment or gallery image and

the second time for the purpose of creating the probe image

for identification or authentication.

Fingerprints were acquired using four Live-scan devices

(D0 - D3)1. The devices are widely used in industry and

hence representative of common real world installations.

For each Live-scan device participants provided two sets of

fingerprints (in the same lab visit, i.e. one after the other), for

each device consisting of: rolled individual fingers on both

hands, left slap (i.e. slapping the four (non-thumb) fingers on

the device), right slap, and thumbs slap. Fingerprints were

collected without controlling the quality or the position of

the finger. For the purpose of the analysis in this paper we

have used the right hand’s index fingerprints only.

Fingerprint image quality was assessed using two different

quality algorithms: NIST Fingerprint Image Quality (NFIQ)

algorithm2; and MITRE IQF3.

We generated the match scores using three Commercial

Off-the-Shelf (COTS) fingerprint matching products:

• (M1) Identix BioEngine Software Development Kit4 ;

• (M2) Bozorth3, an open source minutiae based finger-

print matcher developed by NIST5;

• (M3) BIO-key WEB-key Software Development Kit6.

In the rest of the text, we use the abbreviations M1,

M2 and M3 to refer to these three matching algorithms.

A matching algorithm compares two fingerprint images and

returns a score based on the similarity between the two

templates. The higher the score the more likely it is that

the two templates come from the same finger.

As we can see from above, we have several different

dimensions to the dataset: two fingerprint images per par-

ticipant per device, captured with four devices (D0-D3),

each image quality score calculated with two image quality

algorithms (NFIQ and MITRE), gallery and probe images

matched with three matchers (M1-M3). Additionally we

have soft biometrics on each participant (gender, age, height

and weight). Depending on whether the probe and gallery

images are captured with the same device then we have two

matching scenarios: i) comparing two fingerprints captured

with the same device (intra-device), and ii) comparing two

fingerprints captured with different devices (inter-device).

The large number of dimensions to this dataset can be

1See [1] for details on these devices
2http://www.nist.gov/itl/iad/ig/nbis.cfm
3http://www.mitre.org/sites/default/files/pdf/07 0580.pdf
4http://www.morphotrust.com/pages/117-fingerprint-palm
5http://www.nist.gov/customcf/get pdf.cfm?pub id=51096
6http://www.bio-key.com/products/overview-2/web-key



overwhelming for a decision maker who needs to decide

on an optimal deployment for a given environment. Hence,

we decided to study data visualization techniques that may

help make this task easier for the decision maker.

B. Analysis Tasks & Requirements

As mentioned previously, in biometric systems, a match-

ing algorithm returns a matching score as output given

two fingerprint images (templates) as input. The higher the

matching score the more likely it is that the two images

belong to the same individual. During system deployment

and configuration a decision is made on where to set the

matching score threshold for genuine claims of identity: any

matching score above this threshold is assumed to result in

a claim of identity being accepted; and any value lower than

this threshold results in the claimed identity being rejected.

There are two types of failures that are important to consider

during authentication and identity verification: false-matches

(incorrectly accepting a claimed identity of an impostor -

this would result from a matching score of two images from

two different people being higher than the threshold) and

false-non-matches (incorrectly denying a claim of identity

from a genuine person - this would result from a matching

score of two images from the same person being lower than

the threshold). A good biometric system minimises both of

these types of failures, but there is a clear trade-off during

configuration as attempting to minimise the probability of

one type of failure, increase the probability of another type

of failure occurring. We have previously shown [1] that the

decision on where to set the threshold seems to be highly

influenced by several factors, including the type of devices

that have been used to capture the images, the image quality,

the matcher that has generated the scores, the gender and age

of the identity claimant etc. In order to inform our design

and the analysis process we employ, we identify a number of

questions (tasks) to be addressed that are critical in making

decisions in deploying biometric systems:

T1 : Visualize the ”distinctiveness” for each probe device,

gallery device and algorithm combination: the extent to

which a threshold value clearly separates the genuine scores

from the impostor scores.

T2 : Visualize the overall inter-device, intra-device match-

ing performance and matching algorithm performance.

T3 : Investigate through visualization the relation between

soft biometrics (age, gender, height, weight) and the match-

ing performance.

IV. VISUALIZATION DESIGN

The design of our visualization is guided by the three

analysis tasks listed above. The basic building block of our

analysis is a distinction plot: the distribution of the matching

scores for a given matcher (M1, M2 and M3), using the

images (probe and gallery) captured with a given pair of

devices (from D0-D3). The device used to capture the probe
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Figure 1. Distinction plots visualize the score distribution for the impostors
and genuines separately. The overlapping region is an indication of how
likely is a classification error.

image will be abbreviated PD, and the device used to capture

the gallery image is abbreviated GD. Hence each distinction

plot gives the matching scores for a given pair of devices

(e.g. PD0-GD1-M1: represents a distinction plot of matching

scores calculated with M1, where the D0 device was used

to capture the probe images, and D1 was the device used

to capture the gallery images). As stated previously, we

can have two matching scores depending on whether the

two images belong to the fingerprint of the same person or

not: genuines and impostors. Genuines are calculated from

matching two images of the right index finger of the same

participant and impostors are calculated from matching the

images of the right index finger of each participant against

the other participants in the study.

In the plots, the genuine scores are plotted red, while the

impostor scores are plotted in blue/purple (see example in

in Figure 1). The x-axis represents the normalised matching

score (high scores to the right of the origin), and the y-

axis represents the frequency of given scores. We have

a maximum of 494 genuine matching scores per device

combination (as we have 494 participants), whereas a much

higher number of impostors scores (as each participants

image is matched with 493 others from the study). Plotting

the graphs with these actual frequencies would make it

difficult to visually compare the overlapping regions of red

and blue scores. We have therefore set the maximum of the

y-axis to be 10% of the impostor scores frequency (though

of course this can be varied depending on what the analyst

wishes to view).

With respect to the tasks we set out above, in T1 our focus

is on making it easy for the analyst to visually inspect the

level of overlap (or conversely distinction) between genuine

and impostor scores. Hence we complement the distinction

plots with simple bars indicating the range of the two types
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Figure 2. The distinction plot on the left shows a good discrimination of
genuine and impostors. This is visible from the gap between the ranges.
While in a poor distinction in a subset, the overlapping region is wider.

of scores and coloured them correspondingly (see bottom in

Figure 1). These views together are an indication of how

successful is a combination at distinguishing genuines from

impostors. A gap between the two ranges indicates a good

distinction (Figure 2, left), while a large overlap (Figure 2,

right) indicates that we cannot choose a threshold that will

perfectly separate the two classes.

To allow the analyst to visually inspect and compare

the performance of each device pair with each matcher

we had to decide how best to design the layout of the

different plots (with 4 devices and 3 matchers, this gives

us 48 different distinction plots). We present these plots

in a structured ordering as a small multiple view [17] as

seen in Figure 3. They are grouped vertically according

to the different matcher algorithm used and horizontally

according to whether the gallery and probe images where

captured with the same device (e.g. GD0-PD0) (top 4 plots

per matcher) – what we called intra-device matching earlier,

or with different devices (e.g. GD0-PD1) (bottom 12 plots

per matcher) – inter-device matching. We took this design

decision to enable the discussion of T2 from Section III-B.

In order to be able to compare all these small multiples

within the view, we use exactly the same y-axis cut-off value

for all the graphics, i.e., they all share the same scale.

The top left corner of Figure 3 shows four graphs of

normalised matching scores, generated with M1 and using

the same devices for gallery and probe. In these four graphs

we are showing the matching scores when comparing two

fingerprints captured with the same device (intra-device).

Hence the title of the top-left most graph ”PD0-GD0-M1”

means the Probe image P was obtained with device D0,

the gallery image G was obtained with device D0, and

the matching score was obtained with matcher M1. The

same convention was used for all other graphs. The left-

most bottom corner shows 12 graphs for the inter-device

comparisons (where the gallery and probe images where

obtained with different image capture devices) with matcher

M1. The middle part of Figure 1 shows the inter-device (top

4 graphs) and intra-device (bottom 12 graphs) for matcher

M2 and finally the right most part of Figure 3 contains the

corresponding graphs obtained with matcher M3.

This view is embedded within a linked multiple view

system where the user is able to bring up several other

visualizations of the data using common statistical graphics

such as histograms and scatterplots. Such views provide the

capability to interactively generate visual queries based on

the soft biometrics. Whenever a selection in these views

is performed, all the distinction plots update automatically

to reflect the score distributions within the selected data.

This enables a decision maker to quickly vary the scope

of the analysis and get immediate feedback on how soft

biometrics affect the matching performance for different

combinations.

V. ANALYSIS OF THE RESULTS

In this section we demonstrate how the visualization of

the biometric data may help a decision maker with analysing

trends and trade-offs and hence improve their decision on

the deployment of a biometric system.

As introduced above, Figure 3 displays several normalised

matching scores for the different device combinations and

matchers in our study. The 48 distinction plots is the main

view that the data analyst observes throughout the analysis.

There are a number of observations that are immediate

from Figure 3. We notice that intra-device (same device)

matches perform better in terms of distinction. When the

algorithms are compared, we see that for the M3 plots

the blue and read plots are much easier to distinguish

visually and hence should make it easier to set a threshold

for distinguishing genuine scores from imposter scores (a

desirable quality for a matcher), although we also notice

that the impostor matching scores are higher with M3.

In Figure 4, we select the younger participants in the

study (notice the selection on the top-left plot). In response,

the distinction plots are automatically updated and they

visualize the results showing only the selected data. One

observation that pops up immediately is that the distinctions

are now much more clear. Especially the gaps between

impostors and genuines for M3 becomes very distinctive.

This is a clear indication that different device combinations

and matchers can better distinguish imposter and genuine

claims of identity for younger participants. Therefore if the

deployment for which this system is aimed is mainly targeted

towards younger participants then even possibly cheaper

devices and matchers may perform reasonably well.

We carry a similar investigation for elderly participants

(Figure 5) and observe that all the devices and matchers

perform much worse than for younger participants. This sig-

nals that for deployments with older participants the choice

of devices and matchers is more important, and may require
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Figure 3. Distinction plots as small multiples to provide an overview of all the combinations. Each graphic (multiple) represents a probe, gallery, and
algorithm combination. The multiples are grouped vertically according to the matcher algorithm and horizontally to the type of device pairs. Notice that
intra-device (same device) matches perform better in terms of distinction. Similarly, M3 appears to out-perform the two other algorithms.

of the analyst to investigate other factors more closely (e.g.

image quality of the captured fingerprint images).

We continue with an investigation of how weight affects

the matching scores (Figure 6). To investigate this we

make two selections: one for overweight (relative to average

weight of participants in our sample) and another for under-

weight participants. We notice that the performance of the

matchers M1 and M3 are in general better with overweight

participants (marked with green circles). However, for M2,

we notice that this behaviour is different and it operates

better with underweight participants (marked with orange

circles). This is an interesting finding which with support of

interactive visualization is quick and easy to spot.

Figure 4. Distinction plots for younger participants. The distinction
performance is much higher.

Due to space constrains, we stop with the results here but

our visualization tools is easily extendible to help the analyst

with other types of constrains such as height, ethnicity,

image quality, etc., which can lead to other insights that have

potentially impacts on the decision making process about the

biometric systems deployment.

VI. DISCUSSION & CONCLUSIONS

We present a visualization tool that helps a decision maker

with analysing data from a biometric fingerprint experiment.

Our framework allows for a dynamic analysis with multiple

control criteria and enables an analyst to visualise the spread

of the genuine and imposter matching scores, and hence help

Figure 5. Distinction plots for elderly participants. Notice the poor
performance (large overlaps) for all the matchers.
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Figure 6. Distinction plots (only intra-device ones) to display the
differences for overweight and underweight participants. Notice that apart
from M2, matching performances are better for overweight participants.

them with the decision on setting the threshold that will

best separate the red values (the genuine scores) from the

blue values (the impostor score) with the least amount of

overlap between the two. The actual threshold can of course

be calculated precisely with the aid of Receiver Operating

Curves (ROCs) - and we would expect that to be the next

stage of the analysis - but this earlier visualization stage is

necessary to help the decision maker analyse the raw data

and try alternatives rapidly and make decisions on where to

put the emphasis on more detailed analyses.

Our method allows a decision maker to intuitively walk

through the data and study the effects of different parameters

of interest (e.g. age, gender, height, ethnicity, weight of

participants) on the optimal threshold that should be set for a

given deployment of a biometric system with different image

capture devices, matchers, and image quality algorithms.

We plan to continue this work and engage with relevant

stakeholders from the biometrics industry so that we can

tailor the visualization environment according to the require-

ments of an analyst.
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