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Double Chain Ladder and
Bornhuetter-Ferguson

September 12, 2012

Abstract

In this paper we propose a method close to Double Chain Ladder
(DCL) introduced in Mart́ınez-Miranda, Nielsen and Verrall (2012).
The proposed method is motivated by the potential lack of stability
of Double Chain Ladder (and of the classical Chain ladder method
itself). We consider the implicit estimation of the underwriting year
inflation in the classical Chain Ladder (CLM) method and the explicit
estimation of it in DCL. This may represent a weak point for DCL
and CLM because the underwriting year inflation might be estimated
with significant uncertainty. A key feature of the new method is that
the underwriting year inflation can be estimated from the less volatile
incurred data and then transferred into the DCL model. We include
an empirical illustration which illustrates the differences between the
estimates of the IBNR and RBNS cash flows from DCL and the new
method. We also apply bootstrap estimation to approximate the pre-
dictive distributions.

Keywords: Bootstrapping; Chain Ladder; Claims Reserves; Reserve
Risk

1
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1 Introduction

Double Chain Ladder (DCL) was recently introduced in Mart́ınez-Miranda,
Nielsen and Verrall (2012) and operates on a standard reserving triangle of
aggregate paid claims with the addition of the triangle of the numbers of
claims. DCL introduces a micro-model of the claims generating process in
order to motivate the models used for estimation, which are applied to trian-
gles of aggregated data. It predicts first the reported number of claims and
then, through a delay function and a severity model, it models and predicts
future payments. DCL has the attractive feature that when the observed
reported claims are replaced by their theoretical expected values, and when
one particular estimation procedure is chosen for one parameter, then the
resulting prediction is exactly the prediction of the classical Chain Ladder
method (CLM). In some senses, one can therefore interpret the DCL method
as decomposing classical Chain Ladder into separate components which cap-
ture the separate sources of delay inherent in the way claims emerge. Thus,
the interpretation of CLM through the framework of DCL shows how the
delays determine when the claims emerge. It also shows that the severity of
claims can depend on inflation in the underwriting year direction. This in-
flation in the underwriting year direction is estimated implicitly when CLM
is applied: the estimation becomes explicit when DCL is used.

In this paper, we argue that the estimation of the underwriting year
inflation in CLM and DCL may represent a weak point because it might
be estimated with significant uncertainty. This has also been noticed in a
practical setting, and it motivated the invention of the Bornhuetter-Ferguson
technique: see Bornhuetter and Ferguson (1972). We suggest a different solu-
tion to that of Bornhuetter and Ferguson (1972), which we believe overcomes
some of the difficulties associated with the Bornhuetter-Ferguson technique.
In particular, the method we propose is less subjective and does not suffer
from the criticism that can be made of the Bornhuetter-Ferguson technique
that the numbers are chosen in order to produce the desired reserve.

Thus, this paper shows how to estimate the underwriting year inflation
from the less volatile incurred data and then transfer this into the DCL
model simply by replacing the DCL inflation estimates by those obtained
from the incurred data. Because this method replaces the underwriting year
parameters in a similar way to Bornhuetter-Ferguson, the title of this pa-
per is Double Chain Ladder and Bourhuetter-Ferguson. However, we would
emphasize that the method in this paper is much less subjective than that
suggested by Bornhuetter and Ferguson (1972). For illustrative purposes we
use the simple one-payment version of the DCL stochastic model suggested
by Mart́ınez-Miranda et al. (2012). The single payment assumption does
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not seem to be important when predicting the reserve or its distribution. An
analysis of this was provided by Mart́ınez-Miranda, Nielsen and Wüthrich
(2012) considering both the original double chain ladder and its multi pay-
ment equivalent. However, it should be noted that the method can easily be
generalized to more complicated structures as long as the first moment con-
ditions remain unchanged. The same applies to DCL, and the explanation
can be found in more detail in Mart́ınez-Miranda et al. (2012).

The paper is set out as follows. In Section 2 we describe briefly the micro
model which is used to motivate DCL. Section 3 summarizes the DCL estima-
tion method and contains expressions for the point forecasts of the relevant
quantities for claims reserving. This section also contains the description of
the alterations made to DCL in order to produce the new method, which is
referred to as BDCL (short for Bornhuetter Double Chain Ladder) hereafter.
Finally in Section 4 we include an application to personal accident data from
a major non-life insurer. We utilize bootstrap methods which are very simi-
lar to those proposed by Mart́ınez-Miranda et al. (2012) in order to provide
prediction errors and to make inferences about IBNR and RBNS claims.

2 The model for aggregated data

In this paper, we make the same distributional assumptions for the micro
model as in Verrall, Nielsen and Jessen (2010) and Mart́ınez-Miranda et al.
(2011, 2012). This formulation allows us to estimate the settlement delay
and therefore to predict RBNS and IBNR reserves separately. In contrast
with other approaches which involve also micro models, our aim is not to per-
form the estimation using individual claims data. Instead, we build models
which use some simplifying assumptions and which are applied to triangles
of aggregated data. We first describe the micro model, and then show how
this can be adapted in order to apply it to conventional triangles of data.

The micro model is constructed from three components: the settlement
delay, the individual payments and the reported counts. Here we simply
present some notation and the main points of the model (see the papers
cited above for a full description).

We assume that two triangles of run-off data are available and that these
both have dimension m (i.e. they each have m rows). These are a triangle
of aggregated payments, ∆m, and a triangle of incurred counts, ℵm. We use
I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m − 1; i + j ≤ m} to denote the years
for which data is available, where i denotes the origin year and j the delay
year. The data triangles can then be written as follows:

• The aggregated incurred counts triangle: ℵm = {Nij : (i, j) ∈ I},
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where Nij is the total number of claims which were incurred in year i,
which are reported in year i+ j i.e. with j periods delay from year i.

• The aggregated payments triangle: ∆m = {Xpaid
ij : (i, j) ∈ I}, with

Xpaid
ij being the total payments from claims incurred in year i and paid

with j periods delay from year i.

Both triangles consist of observed data which are usually available in
practice. The micro model is based on some assumptions about the (unob-
served) underlying individual claims data. In fact, we define a new (unob-
served) triangle in between ∆m and ℵm, which is the triangle of paid claims,
ℵpaidm = {Npaid

ij : (i, j) ∈ I}. Here Npaid
ij is the number of payments which

were incurred in year i and settled with j periods delay. Note that the set-
tlement delay (or RBNS delay) is a stochastic component which arises by
considering the number of the payments originating from the Nij reported

claims which are paid with l periods delay, Npaid
ijl . For simplicity we assume

that the maximum period of delay is m−1. Then the number of paid claims
is given by

Npaid
ij =

j∑
l=0

Npaid
i,j−l,l. (1)

We emphasize that Npaid
ij is not assumed to be part of the available data.

However, by considering its relationship to the triangle of reported incurred
counts, ℵm, and the distribution of individual claims, it is possible to build
a model for the triangle of aggregated paid claims, ∆m. Thus, we denote the
individual settled payments which arise from Npaid

ij by Y
(k)
ij , k = 1, . . . , Npaid

ij ,
(i, j) ∈ I.

With these definitions, a distributional model for DCL and BDCL is
described through the following assumptions (see Section 5 in Mart́ınez-
Miranda et al. (2012).

D1. The counts Nij are independent random variables from a Poisson dis-
tribution with multiplicative parametrization E[Nij] = αiβj and iden-
tification (Mack 1991),

∑m−1
j=0 βj = 1.

D2. Given Nij, the distribution of the numbers of paid claims follows a

multinomial distribution, so that the random vector (Npaid
ij0 , . . . , Npaid

ijd ) ∼
Multi(Nij; p0, . . . , pm−1), for each (i, j) ∈ I. Let p = (p0, . . . , pd) de-
note the delay probabilities such that

∑m−1
l=0 pl = 1 and 0 ≤ pl ≤ 1,∀l =

0, . . . ,m− 1.
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D3. The individual payments Y
(k)
ij are mutually independent with distri-

butions fi. Let µi and σ2
i denote the mean and the variance for each

i = 1, . . . ,m. Assume that µi = µγi, with µ being a mean factor and
γi the inflation in the accident years. Also the variances are σ2

i = σ2γ2i
with σ2 being a variance factor. And therefore we assume that the
individual payments depend on the accident year i but not on the total
delay j.

D4. We assume also that the variables Y
(k)
ij are independent of the counts

Nij, and also of the RBNS and IBNR delays. Also, it is assumed that
the claims are settled with a single payment or maybe as “zero-claims”.

Note that under the above assumptions the observed aggregated pay-
ments can be written as

Xpaid
ij =

Npaid
ij∑
k=1

Y
(k)
ij , for each (i, j) ∈ I,

which have conditional mean given by

E[Xpaid
ij |ℵm] = E[Npaid

ij |ℵm]E[Y
(k)
ij ] =

j∑
l=0

Ni,j−lplµγi. (2)

Verrall et al. (2010) showed that the conditional variance of Xpaid
ij is ap-

proximately proportional to the mean: V[Xpaid
ij |ℵm] ≈ ϕiE[Xpaid

ij |ℵm], where

ϕi = γiϕ and ϕ = σ2+µ2

µ
. Thus, the dispersion parameter, ϕi, depends on the

accident year, i. This approximation, which is considered in more detail in
Mart́ınez-Miranda et al. (2012), justifies the use of an over-dispersed Poisson
model to estimate the parameters σ2 and ϕ.

3 Bornhuetter-Ferguson and Double

Chain Ladder

In this section, we first outline the estimation method used in DCL and then
show how to adapt this for BDCL. Note that, by its very nature, BDCL
assumes that more information is available than is contained in the triangles
of aggregated payments, ∆m, and incurred counts, ℵm. This is in line with the
Bornhuetter-Ferguson technique where it is typically assumed that there is
some external information available about the likely ratio of ultimate claims
to the premium income (the so-called ultimate claims ratio). For BDCL,
we assume that the extra information available consists of the triangle of
incurred aggregated payments, which include the case reserves.
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3.1 Model estimation: the DCL method

The Double Chain Ladder method proposed by Mart́ınez-Miranda et al.
(2012) considers the simple chain-ladder algorithm applied to the triangles of
paid claims, ∆m, and incurred counts, ℵm, to estimate all the parameters in
the model described in Section 2. Therefore, as implied by the name Double
Chain Ladder, the classical technique CLM is applied twice and from this
everything needed to estimate the outstanding claims is available. It was also
shown that this estimation procedure can give identical results as the CLM
for paid data when the observed counts are replaced by their fitted values.

An appealing feature of the DCL estimation method is that it uses the
estimates of the chain ladder parameters from the triangle of counts and the
triangle of payments. Assumption D2 in Section 2 defined a standard chain-
ladder model for the counts data, Nij. A similar model can be defined for

the triangle of paid data, Xpaid
ij , with parameters α̃i and β̃j. We denote the

estimates of the parameters, using the chain-ladder model on each triangle,

by (α̂i, β̂j) and ( ̂̃αi, ̂̃βj), respectively, for i = 1, . . . ,m, j = 0, . . . ,m− 1. Note
that it is straightforward to obtain these estimates using the development
factors provided by the chain ladder algorithm (Verrall, 1991). Consider the
counts triangle (a similar approach can be used for the parameters of the paid

triangle) and denote by λ̂j, j = 1, 2, . . . ,m− 1, the corresponding estimated
development factors. Then the estimates of βj for j = 0, . . . ,m − 1 can be
calculated by

β̂0 =
1∏m−1

l=1 λ̂l
(3)

and

β̂j =
λ̂j − 1∏m−1
l=j λ̂l

(4)

for j = 1, . . . ,m− 1 . The estimates of the parameters for the accident years
can be derived from the latest cumulative entry in each row through the
formula:

α̂i =
m−i∑
j=0

Nij

m−1∏
j=m−i+1

λ̂j. (5)

The same procedure can be used to produce ( ̂̃αi, ̂̃βj), and the DCL method
estimates the rest of the parameters in the model (formulated as D1-D4)
using just the above estimates. Specifically, the reporting delay probabilities
{p0, . . . , pm−1} can be estimated by solving the linear system given below to
obtain estimates of {π0, . . . , πm−1} and then adjusting these.
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β̃0
...
...

β̃m−1

 =


β0 0 · · · 0

β1 β0
. . . 0

...
. . . . . . 0

βm−1 · · · β1 β0




π0
...
...

πm−1

 . (6)

Once the solution {π̂0, . . . , π̂m−1} is obtained, these preliminary delay pa-
rameters are adjusted to have the desired real probability vector, (p̂0, . . . , p̂m−1)
which satisfies the restrictions that 0 ≤ p̂l < 1 and

∑m−1
l=0 p̂l = 1. For more

details of this estimation procedure, see Mart́ınez-Miranda et al. (2012).
For the mean and variance of the distribution of individual payments

DCL estimates the inflation parameters, γ = {γi : i = 1, . . . ,m}, and the
mean factor, µ, through the expression:

γ̂i =
̂̃αi
α̂iµ̂

i = 1, . . . ,m. (7)

To ensure identifiability DCL sets γ1 = 1, so that µ can be estimated by

µ̂ =
̂̃α1

α̂1

. (8)

The inflation parameters, γ̂i, are estimated by substituting µ̂ into equation
(7). It only remains to adjust the final µ̂ according to the estimates p̂l and
in order to ensure Mack’s identification holds. This is done by dividing µ̂
byκ, where κ =

∑m−1
j=0

∑j
l=0 β̂j−lp̂l. Hereafter, in a slight abuse of notation,

we will retain the notation µ̂ for the corrected estimator of µ.
The estimates of the variances, σ2

i (i = 1, . . . ,m), are obtained by first
estimating the overdispersion parameter ϕ (defined in Section 2) by

ϕ̂ =
1

n−m
∑
i,j∈I

(Xpaid
ij − X̂DCL

ij )2

X̂DCL
ij γ̂i

, (9)

where n = m(m + 1)/2 and X̂DCL
ij =

∑m−1
l=0 Ni,j−lp̂lµ̂γ̂i. Then the variance

factor of individual payment can be estimated by

σ̂2
i = σ̂2γ̂2i (10)

for each i = 1, . . . ,m, where σ̂2 = µ̂ϕ̂− µ̂2.
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3.2 The BDCL method

The BDCL method follows identical steps as DCL but instead of using the
estimates of the inflation parameters, γi, from the triangle of paid claims,
these are identified using some extra deterministic information. There are a
number of different sources that could be used for this, but in this paper it is
done by first applying DCL to the triangles of reported counts and aggregated
incurred claims. The parameters {γi : i = 1, . . . ,m} are estimated exactly
as described in Section 3.1, except that the triangle of aggregate paid claims
is replaced by the triangle of aggregated incurred claims. Thus, it is at
this point that a third triangle of data is available, which includes the case
reserves. In this way, the BDCL method then consists of the following two-
step procedure:

• Step 1: Parameter estimation.
Estimate the model parameters using DCL for the data in the triangles
ℵm and ∆m and denote the parameter estimates by (p̂0, . . . , p̂m−1), µ̂,
σ̂2 and {γ̂i,0 : i = 1, . . . ,m}.
Repeat this estimation using DCL but replacing the triangle of paid
claims by the triangle of incurred data: ∆̆m = {Xij : (i, j) ∈ I}, where
Xij is incurred claims for accident year i and development period j.
Keep only the resulting estimated inflation parameters, denoted by
{γ̂i,1 : i = 1, . . . ,m}.

• Step 2: BF adjustment.
Replace the inflation parameters {γ̂i,0 : i = 1, . . . ,m} from the paid
data by the estimates from the incurred triangle, {γ̂i,1 : i = 1, . . . ,m}.
For simplicity of notation, these are denoted hereafter by {γ̂i : i =
1, . . . ,m}.

From Steps 1 and 2 the final parameter estimates will be θ̂ = {p̂l, µ̂, σ̂2, γ̂i,
l = 0, . . . ,m− 1, i = 1, . . . ,m}. In general, it would be possible to use other
sources of information from those suggested here. Thus, Step 2 could be
defined in a more arbitrary way, thereby mimicking more closely what is
often done when the Bornhuetter-Ferguson technique is applied. In this way,
the process described in this section could be viewed in a more general way.
However, we believe that the use of the triangle of incurred claims is probably
more justifiable in a regulatory environment.

3.3 Justification of BDCL

The CLM and Bornhuetter-Ferguson (BF) methods are among the easiest
claim reserving methods, and due to their simplicity they are two of the most
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commonly used techniques in practice. Some recent papers on the BF method
include Alai, Merz and Wüthrich (2009, 2010), Mack (2008), Schmidt and
Zocher (2008), Verrall (2004). The BF method introduced by Bornhuetter
and Ferguson (1972) aims to address one of the well known weaknesses of
CLM which is the effect that outliers can have on the estimates of outstanding
claims. To do this, the BF method incorporates prior knowledge from experts
and is therefore more robust than the CLM method which relies completely
on the data contained in a run-off triangle.

Specifically CLM method estimates of outstanding claims for accident
year i > 1 by

R̂CLM
i = Ci,m−i

(
m−1∏

k=m−i+1

λ̃k − 1

)
where Ci,m−i denotes the latest observed cumulative claims and λ̃1, . . . , λ̃m−1
are the development factors. Therefore the CLM reserve depends strongly
on Ci,m−i, which means that very unstable (or even unusable) predictions
can result. This often occurs for the latest origin years, where the trian-
gle contains less information which is often more volatile. The BF method
attempts to overcome this by replacing the latest cumulative claims by an
external (prior) estimate. This estimate is obtained from an estimate of ulti-

mate claims, Uprior
i . So BF replaces Ci,m−i by Uprior

i /(
∏m−1

k=m−i+1 λ̃k) and the
BF estimate of outstanding claims is

R̂BF
i =

Uprior
i∏m−1

k=m−i+1 λ̃k

(
m−1∏

k=m−i+1

λ̃k − 1

)
.

Under the assumptions of the Poisson model with a multiplicative struc-
ture for the mean, E[Xij] = α̃iβ̃j, the relationship between CLM and BF
reserve can be most clearly seen through the following expressions:

R̂CLM
i = ̂̃αi m−1∑

k=0

̂̃
βk

∑m−1
k=m−i+1

̂̃
βk∑m−1

k=0

̂̃
βk

 = ÛCLM
i

∑m−1
k=m−i+1

̂̃
βk∑m−1

k=0

̂̃
βk


and

R̂BF
i = Uprior

i

∑m−1
k=m−i+1

̂̃
βk∑m−1

k=0

̂̃
βk

 . (11)

Here, ÛCLM
i and ̂̃αi and

̂̃
βk are the CLM estimation of the ultimate claims and

the parameters in the model, respectively. Since
∑m−1

k=0 βk = 1, ÛCLM
i = ̂̃αi,

and therefore BF replaces the estimated row parameters in the Poisson model.
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The BDCL method follows the same spirit with the aim of stabilizing
the row parameters with extra information. In this paper we do this using
the incurred aggregated claims data, but other formulations would also be
possible. Considering the assumed structure of the parameters in the DCL
model, the row parameters are

α̃i = αiµγi

for the paid data, and for the incurred data we also have the same row
parameters as we will show in the next Section, ᾰi = αiµγi, where αi is the
row parameter in the model for the reported counts. This model assumption
implies that the incurred reserves unconditionally have the correct means
for the future RBNS. Therefore when BDCL uses the estimated inflation
parameters from the incurred data, it is the more volatile parameter α̃i which
is replaced. i.e. the inflation by accident year, γi, by the estimate derived
from the triangles (ℵm, ∆̆m). In this way the predictions become more stable,
and often they can be more realistic. This is illustrated in the example in
Section 4.

3.4 Estimating the underwriting year inflation param-
eter from the incurred data

This paper shows that it is possible to stabilize the results by using the more
stable incurred underwriting year inflation in place of the less stable paid
data underwriting year inflation. To justify this, we develop in this section
the equivalent equation to the equation (2) for the incurred data.

We define X
(h)
ij as those payments stemming from underwriting year i

that are paid at time j, but belonging to claims already reported at time
h (h = 0, . . . ,m − 1). So by definition X

(h)
ij = Xpaid

ij when h ≥ j and

X
(h)
ij → Xpaid

ij as h→ j.
A very simple interpretation the incurred triangle is to define each element

Xik as

Xih =
m−1∑
j=0

E
[
X

(h)
ij |Fh

]
,

where Fh is an increasing filtration illustrating our knowledge at time h. This
is of course the ideal model of incurred data. In practice, incurred data will
often include variability and uncertainty that can not be modelled after all.
Note also that E[X

(h)
ij |Fh] = Xpaid

ij when j ≤ h.
Now the corresponding equation to equation 2 above will be derived. Let

consider first the sub-triangle ℵh = {Nij : i = 1, . . . , h, j = 0, . . . , h; i + j ≤

10
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h}

E
[
E
[
X

(h)
ij |Fh

]
|ℵh
]

= E
[
X

(h)
ij |ℵh

]
=

 E
[
Xpaid
ij |ℵh

]
for j ≤ h

E
[
X

(h)
ij |ℵh

]
for j > h

=

{ ∑j
l=0Ni,j−lplµγi for j ≤ h∑j

l=j−hNi,j−lplµγi for j > h

where we have used that j − l ≤ h⇔ l ≥ j − h.
We can therefore write the simplified expression

E
[
E
[
X

(h)
ij |Fh

]
|ℵh
]

= E
[
X

(h)
ij |ℵh

]
=

j∑
l=max(0,j−h)

Ni,j−lplµγi.

Now

E
[
Xpaid
ih |ℵh

]
=

m−1∑
j=0

E
[
E
[
X

(h)
ij |Fh

]
|ℵh
]

=

=
m−1∑
j=0

j∑
l=max(0,j−h)

Ni,j−lplµγi.

We therefore get the following unconditional mean for the incurred claims:

E [Xih] = µαiγiβh,

where βh =
m−1∑
j=0

j∑
l=max(0,j−h)

βi,j−lpl.

In its classical form, the chain ladder technique is primarily a first moment
multiplicative model: see for example Kuang, Nielsen and Nielsen (2009).
Therefore, applying the classical chain ladder method to incurred data will
yield estimates of µ, αi, γi and βh, for i = 1, . . . ,m;h = 0, . . . ,m − 1. The
double chain ladder method adds information to the classical chain ladder
approach by including counts data and allowing separate estimation of ex-
posure and inflation parameters.

In common with the philosophy underlying the Bornhuetter-Ferguson
method, the aim of this paper is to extract more stable estimates of the
inflation parameter γi from the incurred data. Hence, the only thing the
BDCL method uses from the application of the double chain ladder method
to the incurred data are the estimates of these parameters.

11



Double Chain Ladder and Bornhuetter-Ferguson

3.5 Forecasting outstanding claims: the RBNS and
IBNR reserves and predictive distributions

In this section, the methods for producing estimates of outstanding claims
are described. It is also noted that bootstrapping can be used to obtain
the predictive distributions. The estimated parameters, θ̂ = {p̂l, µ̂, σ̂2, γ̂i, l =
0, . . . ,m − 1, i = 1, . . . ,m}, derived from Steps 1-2 above can be used to
calculate a point forecast of the RBNS and IBNR components of the reserve.
Using the notation of Verrall et al. (2010) and Mart́ınez-Miranda et al. (2011,
2012), we consider predictions and extend the model assumptions presented
in Section 2 over the following triangles:

J1 = {i = 2, . . . ,m; j = 0, . . . ,m− 1 so i+ j = m+ 1, . . . , 2m− 1}
J2 = {i = 1, . . . ,m; j = m, . . . , 2m− 1 so i+ j = m+ 1, . . . , 2m− 1}
J3 = {i = 2, . . . ,m; j = m, . . . 2m− 1 so i+ j = 2m, . . . , 3m− 2}.

As was pointed out in the above papers, the CLM method would produce
forecasts over only J1. In contrast, DCL and consequently BDCL provide
also estimates of the tail over J2 ∪ J3.

For the RBNS reserve we follow the original suggestion of Verrall et al.
(2010) and use the expression of the conditional mean in equation (2) i.e.

X̂rbns
ij =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i, (12)

with (i, j) ∈ J1 ∪ J2.
For the IBNR forecast reserve the chain ladder predictions of future num-

bers of reported claims are used, N̂i,j. i.e.

X̂ ibnr
ij =

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i, (13)

with (i, j) ∈ J1 ∪ J2 ∪ J3.
We also derive the bootstrap predictive distribution as Mart́ınez-Miranda

et al. (2011, 2012) proposed, using the data in the observed triangles ℵm and

∆m, and the model with estimated parameter θ̂.

4 An empirical illustration

In this paper we consider a personal accident data set from a major insurer.
The data available consists of three incremental run-off triangles of dimension

12
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m = 19: the reported counts, the aggregated paid data and the incurred
data. We use a yearly aggregation of data in our empirical illustration below.
However, in practice the insurer would often use quarterly data, and we
therefore consider quarterly data when validating the model in Section 4.1.

The data are presented in Figures 1 and 3. In Figure 1 the cumulative
payments are shown as a function of development year. Also shown are the
maximum likelihood estimates of the underwriting year effect when a multi-
plicative Poisson model is applied to the number of reported claims. Since
this gives an indication of the total number of claims expected, we use the
term “exposure” to label this. It can be seen from this initial view that it
appears that these data arise from a significant growth in business, with the
exposure rapidly increasing the first 10 years. As a result of this, it is diffi-
cult to draw inference from the paid claims alone. In Figure 3, we therefore
shows illustrations of the data scaling first by the exposure, but also by scal-
ing by the underwriting year inflation from the DCL method applied to paid
data and also from the BDCL method, which extracts the inflation from the
incurred data. Both estimated inflations are showed in Figure 2. Figure 3
shows that adjusting for exposure can help with the understanding of the
data, and that the curves for different accident years really become compa-
rable when we scale for the underwriting year estimated from either paid
data (DCL) or incurred data (BDCL). Figure 3 also presents a graph of the
coefficient of variation as a function of development year. It is the coefficient
of variation of the cumulative paid curves for each development year. It can
be seen that adjusting for underwriting year inflation significantly reduces
the coefficient of variation, thereby providing some support for the method-
ology. Note that the DCL adjustment gives a lower coefficient of variation
than the BDCL adjustment for the early development years. A reason for
this is that DCL uses just the paid data, and may therefore provide a better
goodness-of-fit, even though its forecasts may be less credible in practice.

This has provided some initial exploratory data analysis, and we now il-
lustrate the BDCL method and compare it to the simple DCL method and
classical chain ladder, using annual data. In this illustration, the effect of
BDCL is only significant in the last 4 inflation parameters, γ16, γ17, γ18, γ19.
However, these parameters have a large effect on the estimates of outstand-
ing claims, and as a result the DCL and classical chain ladder estimates
of outstanding claims are almost double as high as those from the BDCL
method. The effect is greater when considering the IBNR reserve than the
RBNS reserve. When analyzing this data set and providing a best estimate
of the reserve the actuary therefore faces a considerable challenge. Is the in-
curred information to be trusted? Is the underwriting year inflation we find
in the paid data really that wrong? Or should we find the answer in some

13
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irregularities around the practical principles underlying the incurred data at
hand? It is of course not sufficient for an actuary to dismiss one of these
two estimates of outstanding claims when setting the reserves simply from
preference for one of the two principles over the other (paid data to incurred
data). Both are estimated from data, one from real data (paid) another from
real data combined with collected expert data (incurred). The paid data is
more clean because we know exactly where it comes from, but it is also often
more unstable than the incurred data: the incurred data is often more stable,
but contains opaque elements that could be open to challenge in the process
of setting reserves.

Table 1 gives the estimates of the parameters for the model from BDCL
and from DCL. Figure 2 presents the underwriting year inflation when es-
timated from paid data (DCL) and incurred data (BDCL). As mentioned
above, various adjustments of the paid data are plotted in Figure 3.

Table 2 shows the predicted RBNS and IBNR reserve and also the total
(RBNS + IBNR) reserve for BDCL and DCL methods. The total reserve
of the BDCL method is less than 60% of the DCL and CLM reserve, with
the biggest difference being between the IBNR reserves. One interpretation
of this is could be that the DCL and the CLM methods overestimate the
underwriting year inflation dramatically the last years, and therefore the
predicted reserve increases significantly. However, the assessment of a result
such as this will depend greatly on other information that the insurer has
about the underlying changes driving the data. The reserve based on the
classical chain ladder technique applied to the incurred data is around 20%
lower that the reserve estimated by the BDCL method. Hence, the BDCL
reserve is actually closer to the estimate from the CLM applied to paid data
than the reserve resulting from the CLM applied to the incurred data. One
interpretation of this is, as observed by previous authors, that the BDCL
method finds a pragmatic solution to what is a complicated problem. The
final choice in setting the reserve should result from the insight of the actuary,
who is advised to ask many questions about the way the incurred information
is collected. In this way, the actuary has to verify whether the strong and
dominating inflation conclusions from the incurred data are to be trusted -
even when they are so much out of line with the observed paid data.

The predictive distributions relating to the RBNS and IBNR claims can
be estimated using the bootstrap methods proposed by Mart́ınez-Miranda
et al. (2012). This can be done for both BDCL and DCL methods and
the corresponding cash-flows simulated. As a comparison, the CLM predic-
tive distribution can be estimated using the bootstrap method introduced
by England and Verrall (1999). Note that this does not provide the split be-
tween the RBNS and IBNR reserves. The summary statistics for the RBNS,
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IBNR and total (RBNS + IBNR) cash-flows are shown in Table 3, and these
results provide a numerical comparison among the cash-flows derived from
the BDCL, DCL and CLM methods.

Again, it can be seen that DCL and CLM provide upper quantiles for the
total reserve which are about the double those given by the BDCL method.
Figure 4 shows box plots of the predictive distribution of the total reserve
in the future from BDCL, DCL and CLM. Also shown are histograms of the
overall total reserve for future years which represent the predictive distribu-
tion of the three compared methods. Note that the BDCL cash-flows move
around smaller values than those by the DCL method. The chain ladder
cash-flows derived by the England and Verrall (1999)’s bootstrap method
move close to the DCL cash-flows. However we can see that the England and
Verrall (1999) distribution fails in the tails, providing inadequate cash-flows
to cover the full range of reserving variability.

4.1 Further discussion and validation of the results

Traditionally, the actuary often relies on the incurred data and tries to use
this to obtain more reliable estimates where the observed information is
scarce. As we have discussed in this paper a more controlled way to in-
troduce such information is to simply incorporate the inflation parameters
from the incurred data as prior knowledge. Even though these parameters
should, in theory, be the same as those from the paid data, the estimation
can often be more stable from the incurred data since they contain more
information.

As was shown in Table 2 DCL, which uses the underwriting year infla-
tion from the paid data, seems to over-estimate the outstanding claims. On
the other hand, when we consider the BDCL method and we then use the
inflation parameters estimated from the incurred data, the estimates differ
notably. So a natural question is which method is actually the better for
the data being considered. In order to assess the accuracy of the BDCL and
DCL estimation methods we have performed a back-test on the observed
data. Such a test should be part of a wider validation process which should
be carried out in practice. The back-test was carried out as follows:

First the data was considered in its original quarterly format instead
of considering the data aggregated by years, so that it consisted of run-off
triangles with dimension m=79. From these larger triangles there is more
data with which it is possible to make comparisons of the predictions. The
back-test was performed by removing one-by-one the last calendar years (di-
agonals) in the triangles and estimating the model to obtain predictions
from both DCL and BDCL using the expressions (12) and (13). The dif-
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ference between the actual data and the estimate can then be calculated.
This was done for the last 5 calendar years and the (square root) mean
squared error calculated. Table 4 shows the results from these sub-triangles
for mc = 78, 77, 76, 75, 74. From these results it can be seen that indeed
BDCL is significantly more accurate than DCL. The error in the total re-
serve is about the 30% of the error provided by DCL estimates. The same
pattern is also observed by removing more diagonals and also considering
other subsets of the observed data.
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Figure 1: Cumulative paid data and the exposure.
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Figure 2: Estimated inflation by DCL from the paid data (blue-dotted curve)
and the incurred data (red-solid curve).
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p̂l γ̂i,BDCL γ̂i,DCL
0.0592 1.00 1.00
0.3097 1.12 1.12
0.2032 1.50 1.49
0.1996 1.74 1.75
0.1388 2.11 2.11
0.0440 2.09 2.09
0.0227 2.24 2.25
0.0095 2.12 2.13
0.0017 1.89 1.90
0.0029 2.01 2.02
0.0002 2.05 2.07
0.0026 2.21 2.27
0.0019 2.31 2.32
0.0031 2.44 2.47
0.0006 2.31 2.38
0.0000 2.39 2.84
0.0000 2.49 3.18
0.0000 2.75 4.17
0.0000 2.85 6.75
µ̂ = 2579.064
σ̂2
BDCL = 350497302
σ̂2
DCL = 286808926

Table 1: Estimated parameters: the delay probabilities p̂l (l = 0, . . . , 18),
the inflation parameters γ̂i (i = 1, . . . , 19) and the estimates of the mean and
variance parameters, µ and σ2, from the BDCL and DCL methods.
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Figure 3: Cumulative paid data adjusted by the exposure and the inflation.
The top left panel shows the cumulative payments adjusted by the expo-
sure. Each curve corresponds to a different accident year and it shows the
cumulative payments across the development years. The top right and the
bottom left panels show the same adjusted data but adjusted also by the
inflation estimated using DCL and BDCL, respectively. The bottom right
panel shows the coefficient of variation of the cumulative paid curves for each
development year.
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BDCL DCL
Future RBNS IBNR Total RBNS IBNR Total CLM

1 37813 615 38428 59845 1387 61232 61091
2 25878 3294 29172 41447 7406 48853 48061
3 17804 2537 20341 31016 5611 36627 36266
4 9485 2495 11980 17542 5502 23044 22990
5 3699 1867 5566 6443 4069 10512 10439
6 1839 821 2660 3192 1720 4912 4914
7 905 462 1366 1446 945 2391 2380
8 512 246 759 675 487 1162 1174
9 457 113 571 642 210 853 848
10 329 87 416 424 169 592 600
11 337 40 377 536 72 608 594
12 242 49 292 404 99 504 496
13 163 37 200 335 74 409 397
14 28 46 73 60 97 157 136
15 0 18 18 0 37 37 109
16 0 7 7 0 12 12 0
17 0 4 4 0 7 7 0
18 0 2 2 0 4 4 0
19 0 1 1 0 2 2
20 0 1 1 0 1 1
21 0 0 0 0 1 1
22 0 0 0 0 0 0

Total 99492 12741 112233 164007 27911 191918 190496

Table 2: Point forecasts by calendar year. Columns 2-4 show the predic-
tions from BDCL. Columns 5-7 show the predictions by DCL, and column
8 the classical Chain Ladder predictions (CLM). The quantities are given in
thousands.
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Bootstrap predictive distribution
BDCL DCL

RBNS IBNR Total RBNS IBNR Total CLM
mean 97900 12509 110409 163534 28246 191780 193149

pe 18671 6121 23160 37387 13876 48439 18206
1% 61032 3144 68131 100702 7857 112348 157572
5% 71695 4960 78153 114031 11233 128032 165976
50% 96706 11512 108451 158880 25662 184786 191578
95% 130606 23887 149298 232537 53395 280328 225784
99% 155128 32733 185638 276334 73146 343335 245683

Table 3: Predictive distribution of RBNS, IBNR and total (RBNS + IBNR)
reserve. The six first columns give the summary of the distribution from the
bootstrap method for BDCL. The following three columns show the results
from DCL. The last column shows the England and Verrall (1999) distribu-
tion. The quantities are given in thousands.

mc DCL BDCL Rerr
78 221665.5 99071.9 0.4469
77 210708.1 98297.5 0.4665
76 233875.4 84232.2 0.3602
75 317434.6 77075.6 0.2428
74 283276.9 87542.4 0.3090

Table 4: Results of the back-test to evaluate of the discrepancy between esti-
mates and actual numbers. The second and third columns show the (square
root) mean squared error of the estimates by DCL and BDCL, respectively.
The discrepancies have been evaluated on the last m −mc diagonals in the
original quarterly paid triangle. The last column shows the relative error
defined as the ratio of the BDCL and the DCL errors.
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Figure 4: Box plots representing the predictive distribution of the total
(RBNS+IBNR) reserve in the future from BDCL, DCL and CLM (rows 1,2
and 3 respectively). Right panels show the histograms of the total reserve
(the overall total for the next years) by the three methods.
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