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Abstract

Many nonparametric smoothing procedures consider independent identi-

cally distributed stochastic variables. While many important smoothing appli-

cations accommodate to this type of data, there are also many nonparametric

smoothing applications, where the data is more complicated. This paper con-

siders survival data or filtered data defined as following Aalen’s multiplicative

hazard model and aggregated versions of this model. Aalen’s model based

on counting process theory allows multiple left truncations and multiple right

censoring to be present in the data. This type of filtering is omnipresent in

biostatistical and demographical applications, where people can join a study,

leave the study and perhaps join the study again. This paper provides a

data application to aggregated national mortality data, where immigrations

to and from the country correspond to respectively left truncation and right

censoring. The estimation methodology is based on a recent class of local lin-

ear density estimators to which we develop a new stable bandwidth-selector,

the do-validated estimator. Our aggregated mortality data study illustrates

that our new practical density estimators provide us with an important extra

element in our visual toolbox for understanding survival data.
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‡Cass Business School, City University, London, U.K.
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1 Introduction

Smooth density estimation has been widely studied for identically and independent

distributed data. One reason being the importance of providing density curves and

functionals of density curves of this type of data. Another and perhaps as important

reason is that the analysis of this type of data is the simplest possible and that

the insights from studying this relatively simple case can be diffused into other

areas of applications in mathematical statistics. In this paper we take advantage of

recent detailed theoretical contributions of this simple type of data, see Mammen,

Mart́ınez-Miranda, Nielsen and Sperlich (2011). That paper describes in theory

and practice why their new Do-validation bandwidth selector behave so well. In

this paper we generalize their Do-validation estimator to filtered data allowing for

left truncation and right censoring and we also show how this estimator should be

calculated if only aggregated data is available. Our approach is a real generalization

of Mammen et al. (2011) in the sense that had their been no filtering and no

aggregation and had we had only classical independent and identically distributed

data, then one element in our class of density estimators and its bandwidth selection

simply reduces to the approach of Mammen et al.(2011). Our motivating application

in this paper is old-age survival based on classical actuarial aggregated filtered data.

Most practical mortality studies seem to be based on this type of data. We argue that

while nonparametric hazard estimators become unstable when old-age is big then

density estimators do no seem to have this problem. They keep stable - also for old

age. In our particular study at hand, we consider a real life example visualizing the

fit of a mortality model recently implemented in one of Europe’s biggest pensions

funds holding annuities for all current or former employees in Denmark. Clearly

such a pension fund is not only concerned about the overall fit of their mortality

model. Old age mortality is important to control for a pension fund paying lifelong

guaranteed benefits to an entire population. The methodology provided by this
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paper shows that the parametric mortality model used by the pension fund fits very

well to the observed data. The fit is a little bit on the safe-side (seen from the pension

company) in the sense that people live a little too long according to the model. The

point of view of this paper is that such a conclusion could not have been produced

from standard hazard methodology and we therefore recommend classical densities

to be part of the toolbox also for statisticians working with survival data. Another

point of this paper is that it really has to be filtered survival data one works with.

Many good academic papers have for example worked with right censored data.

While this of course is related to our data, one could not apply such methods to

our aggregated data application with many left truncations, and one would not be

able to apply such methods to our simulated data either. When discussing what

density estimator to start from, one is to some extent in the same situation as

in the studies of density estimation with independent identically distributed data.

One could ask whether one should use standard kernel estimation as in Rosenblatt

(1956) or whether one should proceed to more sophisticated principles as the local

linear estimator of Jones (1993) or perhaps even the asymmetric kernels of Scaillet

(2004). We think the recent class of local linear density estimators for filtered data

by Nielsen, Tanggaard and Jones (2009) suffices for our purposes. It generalizes

the well accepted local linear estimator of Jones (1993) to our filtered data case.

For right censored data Kulasekera and Padgett (2006) and Bouezmarni, El Ghouch

and Mesfioui (2011) develop positive density estimators generalizing the approach

of Scaillet (2004). However, even in the area of independent, identically distributed

data, there is still a debate on the best possible way to do asymmetric kernels and

whether these estimators based on asymmetric kernels do actually outperform more

classical kernel methods. For a very good new paper in this direction see Hirukawa

and Sakudo (2012). In this paper we consider the well accepted and well understood

approach of local linear estimation. The purpose of this paper is not to define new

estimators for our type of data, but to take one good stable such estimator and make

it practical by providing the final element of choosing the level of smoothing. So far

only the crossvalidation approach has been defined for our type of estimator for our

type of data. Cheng (1997) suggests a plug-in type of estimator for the local linear
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estimator of Jones (1993). Plug-in estimation is, however, nontrivial to generalize

to our setting. Also, the recent study by Mammen, Mart́ınez-Miranda, Nielsen and

Sperlich (2011) indicates that it might not be necessary after all to develop plug-in

type estimators for our density estimator. The more practical Do-validation method

of choosing a bandwidth seems to work even better than the best plug-in estimators.

We therefore choose to generalize the much simpler approach of Do-validation to our

situation and we show that the performance of Do-validation is excellent also for

our type of data. The Do-validation approach of Mammen et al. (2011) is based on

recent developments of Hart and Yi (1998), Hart and Lee (2005), Mart́ınez-Miranda,

Nielsen and Sperlich (2009) and Savshuk, Hart and Sheather (2010a, 2010b) that

all consider indirect type of bandwidth selections. The idea being to start with a

rough problem, where crossvalidation tends to perform well and then readjust to

the original case. Do-validation seems to be the simplest possible version of this

idea. It first considers an estimator only using the left side of the kernel and then

an estimator using only the right side of the kernel. The final bandwidth is the

readjusted version of these two one-sided bandwidths. For recent contributions to

local linear hazard estimation working with right censored data, see Spierdijk (2008),

Bagkavos and Patil (2008) and Bagkavos (2011).

The paper is organized as follows. In Section 2 we set out our theoretical setting.

In Section 3, we derive crossvalidation and Do-validation bandwidth for our local

linear density estimators and Section 4 contains a finite sample study showing that

Do-validation indeed is a strong bandwidth selector also for survival data. In Section

5 we consider aggregated discrete data in general. In sections 6 and 7 we go through

the concrete aggregated mortality application. Section 8 is the conclusion.

2 Model

We consider the same model of Nielsen et al. (2009). We observe n individuals

i = 1, 2, . . . , n. Let Ni count observed failures for the ith individual in the time

interval [0, τ ]: Ni can take values 0 or 1. We assume that Ni is a one-dimensional
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counting process with respect of an increasing, right continuous, complete filtration

Ft, t ∈ [0, τ ], i.e. one that obeys less conditions habituelles, see Andersen, Borgan,

Gill and Keiding (1993, p.60). We model the random intensity as

λi(t) = α(t)Yi(t) (1)

with no restriction on the functional form of α(·). Also Yi is a predictable process

taking values in {0, 1}, indicating (by the value 1) when the ith individual is at risk.

We assume that (N1, Y1) , . . . , (Nn, Yn) are i.i.d. for the n individuals.

2.1 The class of local linear estimators

The local density estimators of Nielsen et al. (2009) involve a pilot estimator of

the survival function. We use the well known Kaplan-Meier estimator. One could

easily replace this Kaplan-Meir pilot estimator with any other pilot estimator of the

survival function if this seems appropriate for the problem at hand.

The Aalen estimator of the conditional integrated hazard function Λ(t) =
∫ t

0
α(s)ds

can be expressed as

Λ̂(t) =
n∑

i=1

∫ t

0

{
Y (n)(s)

}−1
dNi(s),

where Y (n)(s) =
∑n

i=1 Yi(s) is the risk set also called here the exposure process,

which means, the number of individuals under observation by time s. The corre-

sponding product integral estimator for the survival function,

Ŝ(t) =
∏

s≤t

{
1− dΛ̂(s)

}

is the Kaplan-Meier product limit estimator, see Fleming and Harrington (1991).

Tsai, Jewell and Wang (1987) adapt this estimator by modifying the expression

Y (n)(s) in order to account for truncated in addition to censored data.

Let K be a probability density function and define Kb(·) = b−1K(b−1·) for any

bandwidth b > 0. The local linear density estimator defined in Nielsen et al. (2009)

is

f̂b,K(t) =
n∑

i=1

∫
Kt,b(t− s)W (s)Yi(s)Ŝ(s)dNi(s), (2)
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where

Kt,b(t− s) =
a2(t)− a1(t)(t− s)

a0(t)a2(t)− {a1(t)}2
Kb(t− s)

and

aj(t) =

∫
Kb(t− s)(t− s)jW (s)Y (n)(s)ds, j = 0, 1, 2. (3)

Notice that
∫

Kt,b(t− s)W (s)Y (n)(s)ds = 1,

∫
Kt,b(t− s)(t− s)W (s)Y (n)(s)ds = 0,

∫
Kt,b(t− s)(t− s)2W (s)Y (n)(s)ds > 0,

so thatKt,b can be interpreted as a second order kernel with respect to the measure µ,

where dµ(s) = W (s)Y (n)(s)ds and W (s) is an arbitrary weight function that might

depend on the data. For any given W (s) the pointwise asymptotic behavior is the

same. Two weight functions are particularly interesting. The first is simply the unit

weight function W (s) = 1 and the second is the so called Ramlau-Hansen weighting

W (s) = {n/Y (n)(s)}I(Y (n)(s) > 0). The Ramlau-Hansen weigting is the weighting

that generalizes classical kernel density estimation in the simple case of independent

and identically distributed observations. We follow Nielsen et al. (2009) and use

the unit weighting that have some stability advantages over the Ramlau-Hansen

weighting. The final expression of our density estimator is therefore

f̂b,K(t) =
n∑

i=1

∫
Kt,b(t− s)Yi(s)Ŝ(s)dNi(s). (4)

Our Do-validation method uses directly the pointwise asymptotic theory of the local

linear estimator. We therefore quickly go through this theory in the next section.

2.2 Asymptotic theory

We assume that the following general assumptions hold:

• There exist a function γ ∈ C1([0, τ ]) positive in t which is the limit of the

exposure function, that is

sup
s∈[0,τ ]

∣∣Y (n)(s)/n− γ(s)
∣∣ P
−→ 0;
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• The bandwidth b satisfies that b → 0 and nb → ∞ as n → ∞;

• f ∈ C4([0, τ ]).

We write the error term f̂b,K(t)−f(t) as a variable part Vt converging in distribution

plus a stable part Bt converging in probability. Here Vt is not exactly the variance

and Bt is not exactly the bias, but Vt and Bt are analytically tractable quantities

that are asymptotically equivalent to the variance and the bias. Assuming that the

kernel K is symmetric, the asymptotic theory of the local linear filtered density

estimator is

(nb)1/2
(
f̂b,K(t)− f(t)− b2Bt

)
D

−→ N(0, Vt) (5)

where Bt =
1
2
κ2f

′′(t) with

κ2 =

∫
K(v)v2dv, (6)

and Vt = g1f(t)S(t) {γ(t)}
−1 with

g1 =

∫
K2(v)dv. (7)

For a one-sided kernel K∗(v) the above kernel constants simply change to κ2 =
∫
K

∗
(v)v2dv and g1 =

∫
[K

∗
(v)]2dv, involving the equivalent kernel

K
∗
(v) =

κ2 − κ1v

κ2 − κ2
1

K(v),

where κ1 =
∫
K(v)vdv. This is key to understanding our readjustment constant in

our Do-validation method.

The martingale nature of the problem transfers weak convergence into L2–convergence

(see Andersen et al. 1993), when we add the assumption

sup
s∈[0,τ ]

∣∣∣E
{
Y (n)(s)

}−1
− {γ(s)}−1

∣∣∣ −→ 0.

Under this new assumption we then get that

E
(
f̂b,K(t)− f(t)

)2

= b4B2
t + (nb)−1Vt + o

(
b4 + (nb)−1

)
.

An application of the Fubini’s Theorem therefore leads to the following asymptotic

expansion of the Mean Integrated Square Errors (MISEs)

E

∫ τ

0

(
f̂b,K(t)− f(t)

)2

dt = b4
∫ τ

0

(Bt)
2 dt+ (nb)−1

∫ τ

0

Vtdt+ o
(
b4 + (nb)−1

)
.
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These asymptotic expansions of MISEs are important when developing the Do-

validation procedure in the next section.

The MISE derivations lead to the following optimal deterministic bandwidth selector

for the local linear density with symmetric kernel K:

bMISE =

{
g1
κ2
2

∫ τ

0
f(t)S(t){γ(t)}−1dt∫ τ

0

{
1
4
f ′′(t)2

}
dt

}1/5

n−1/5. (8)

Plug-in approaches for estimating bMISE could be defined using smooth pilot esti-

mators of the density f . However, as pointed out in the introduction, the extra

practical disadvantages of considering such pilot estimators have made us decide

that it is not worth the trouble. In particular because Do-validation seems to work

better for finite samples than the more complicated plug-in estimator anyway, see

Mammen et al. (2011).

3 Bandwidth selection by crossvalidation and do-

validation

Let f̂b,K be a density estimator depending on a bandwidth b and a kernel K. The

crossvalidation procedure below reduces to classical least-squares crossvalidated ker-

nel density estimation when the Ramlau-Hansen weighting is being used. We there-

fore see the approach below as a natural generalization of classical crossvalidation to

our more general filtered data case. Ideally, we would like to choose the smoothing

parameter as the minimizer of

Q0(b) = n−1

n∑

i=1

∫ τ

0

{
f̂b,K(s)− f(s)

}2

Yi(s)ds (9)

which is equivalent to minimizing

n−1

{
n∑

i=1

∫ τ

0

[
f̂b,K(s)

]2
Yi(s)ds− 2

n∑

i=1

∫ τ

0

f̂b,K(s)f(s)Yi(s)ds

}
.

Only the second of these terms depends on the unknown density and therefore only

the second term needs to be estimated from data. Our estimator of Q0(b) is

Q̂0(b) = n−1

{
n∑

i=1

∫ τ

0

[
f̂b,K(s)

]2
Yi(s)ds− 2

n∑

i=1

∫ τ

0

f̂
[i]
b,K(s)Ŝ(s)dNi(s)

}
, (10)
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where f̂
[i]
b,K(s) is the estimator arising when the data set is changed by setting the

stochastic process Ni equal to 0 for all s ∈ [0, τ ] and Ŝ(s) is a suitable estimator

(KM estimator in case of censoring and TJW estimator in case of censoring and

truncation) of the survival function. The cross validation bandwidth b̂CV is defined

as the minimizer of Q̂0(b). See also Nielsen et al. (2009) for more details and

motivation of this crossvalidation procedure.

The Do-validation method is based on a combination of onesided crossvalidations

that were introduced by Mart́ınez-Miranda et al. (2009) for classical kernel density

estimation

In our filtered data case, we first define the onesided crossvalidation score. Consid-

ering the leftsided kernel KL(u) = 2K(u)1(−∞,0) from a symmetric kernel K. The

left-onesided crossvalidation criterion is analogous to the crossvalidation criterion in

(10) but involving a (leftsided) local linear density estimator f̂b,KL
, namely the same

estimator as in (4) but replacing K by KL. Specifically we use the notation

OSCVL(b) = n−1

{
n∑

i=1

∫ τ

0

[
f̂b,KL

(s)
]2

Yi(s)ds− 2
n∑

i=1

∫ τ

0

f̂
[i]
b,KL

(s)Ŝ(s)dNi(s)

}
.

(11)

In exactly the same way we define the right-OSCV criterion, OSCVR, except that

f̂b,KL
in (11) is replaced by f̂b,KR

, using the rightsided kernel, KR(u) = 2K(u)1(0,∞).

The leftsided crossvalidation bandwidth comes from rescaling the minimizer of the

left-OSCV score in (11), denoted by b̂L. Specifically using the notation b̂L,OSCV, it

is defined by

b̂L,OSCV = Cb̂L, (12)

where the rescaling constant is defined as the ratio of the MISE-optimal bandwidth

for the local linear estimator f̂b,K (involving the symmetric kernelK) and its leftsided

version f̂b,L (that involves the leftsided kernel KL).

Using the asymptotic expressions for the MISE-optimal bandwidths in (8) the rescal-

ing constant becomes

C =

(
g1
g1

κ2
2

κ2
2

)−1/5

, (13)
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for the local linear estimator f̂b,K . The constants κ2 and g1 are those defined in

Section 2 but replacing K by its leftsided version KL.

Finally the Do-validation bandwidth b̂DO is given by

b̂DO =
1

2
(̂bL,OSCV + b̂R,OSCV ),

with b̂R,OSCV analogous to (12) but involving the kernel KR. As Mammen et al.

(2011) pointed left-onesided crossvalidation and right-onesided crossvalidation are

asymptotically equivalent, but not identical because of differences in the boundary.

In fact their simulations reveal that Do-validation delivers a good stable compromise

in finite samples.

4 Simulation studies

In this section we describe a simulation study close to that provided by Nielsen et

al. (2009). We assume a similar setting, but with a filtered data scheme involving

truncation and censoring and we investigate the performance of the bandwidth se-

lectors. We compare four bandwidth estimates (standard crossvalidation, left and

right onesided crossvalidation and Do-validation) for the local linear density estima-

tor f̂b,K .

4.1 Simulations with complete data

In our experiments we simulate seven different survival densities labeled fk (k =

1, . . . , 7). The three first densities are gamma distributions and the later consist

of mixtures. The density f 1 is the gamma with parameters λ = 1, r = 1, where

r/λ = 1 is the mean and r/λ2 = 1 is the variance. The density f 2 has mean 1.5 and

variance 1, while f 3 has mean 3 and variance 1. Introduce also the gamma density

g with mean 6 and variance 1. Then, the mixtures are constructed from f 2, f 3 and

g by using weight vectors, w, given by:
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Figure 1: Simulated survival densities.

f 4 : w = (1/2, 1/2, 0), f 5 : w = (1/2, 0, 1/2),

f 6 : w = (0, 1/2, 1/2), f 7 : w = (1/3, 1/3, 1/3).

This set of densities is shown in Figure 1. For each model, an i.i.d. sample of size

n was simulated randomly providing observations X1, . . . , Xn. Specifically we have

considered sizes n = 50, 200 and 1000 and R = 250 repetitions of each model and

sample size. Under the complete data situation the corresponding failure process

at each estimation point is given by N(t) =
∑n

i=1 I[Xi ≤ t], and the risk process is

simply Y (n)(t) = n − N(t−). The local linear density estimator is calculated using

the kernel

K(x) =
3003

2048
(1− x2)6I(−1 < x < 1). (14)
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We consider two infeasible strategies for bandwidth selection. The first of these

methods is the best possible bandwidth that finds, for each simulated sample, the

best possible bandwidth, in the sense of having smallest error in estimating the true

density. The following is our measure of estimation error

Q0,l(f̂
(l)
b,K , f) = n−1

∫ τ

0

[
f̂
(l)
b,K(s)− f(s)

]2
Y (n)(s)ds (15)

for the estimator f̂
(l)
b,K of the target density f , with bandwidth b and kernel K,

computed from the lth simulated sample (l = 1, . . . , R). We also tried an average

best bandwidth strategy (labeled as abb hereafter), which amounts to finding the

bandwidth, which minimizes the averaged criterion

Q0(f̂b,K , f) =
1

R

R∑

l=1

Q0(f̂
(l)
b,K , f). (16)

We use these two infeasible bandwidth selectors as a benchmark to give us some guid-

ance to how well our feasible bandwidth selectors are doing. The feasible bandwidth

to be compared are the left and right-onesided crossvalidation b̂L,OSCV , b̂R,OSCV , the

Do-validation method b̂DO and the standard crossvalidation bandwidth b̂CV . In Sec-

tion 4.4 we provide an explicit algorithm to carry out these simulations experiments

with the software R.

Table 1 shows the performance averaged measure of the bandwidth estimates defined

in (15) for each model and sample size. Also to asses how much the Do-validation

bandwidth outperforms on the standard crossvalidation bandwidth we have calcu-

lated the relative error above Q0 with respect to the infeasible best possible band-

width (labeled as bb hereafter). Such measure is defined by

Rerr =
mDO −mBB

mCV −mBB

(17)

where m• is the average of the error measure Q0 across the R samples and consid-

ering a specific criterion for the bandwidth selection. Note that Rerr indicates the

reduction of the error Q0 using Do-validation instead of standard crossvalidation.

The resulting values for each model and sample size have been reported in Table 2.
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complete data filtered data

Density n BB CV OSCVL OSCVR DO ABB BB CV OSCVL OSCVR DO ABB

1 50 10.88 18.11 16.74 23.08 18.66 15.06 12.67 23.22 21.50 28.41 23.52 19.39

200 3.18 6.64 4.46 6.68 4.97 3.67 3.51 6.66 5.79 7.82 6.31 4.26

1000 0.85 1.46 1.11 1.37 1.14 1.01 0.93 1.65 1.27 1.58 1.33 1.06

2 50 8.56 15.71 10.40 10.91 10.51 9.23 9.33 16.22 12.90 12.97 12.80 11.58

200 2.82 4.41 3.69 3.50 3.55 3.08 2.86 4.73 3.74 3.89 3.77 3.26

1000 0.88 1.25 1.04 1.04 1.03 0.99 0.90 1.36 1.18 1.12 1.13 1.01

3 50 5.13 9.77 6.51 6.30 6.35 5.48 5.25 9.78 7.01 6.78 6.84 5.37

200 1.91 3.09 2.40 2.36 2.37 2.08 1.78 3.28 2.25 2.23 2.22 1.97

1000 0.58 0.83 0.67 0.67 0.66 0.62 0.59 0.92 0.72 0.71 0.71 0.65

4 50 5.67 9.58 7.33 7.50 7.37 6.21 6.25 9.82 9.87 9.85 9.71 7.87

200 1.99 3.23 2.52 2.58 2.52 2.30 1.90 3.08 2.90 3.08 2.96 1.98

1000 0.36 0.81 0.77 0.76 0.75 0.67 0.70 1.07 0.96 1.00 0.97 0.85

5 50 7.20 10.29 8.25 8.33 8.21 7.61 6.47 9.71 8.28 8.71 8.35 6.67

200 2.51 3.46 3.18 3.06 3.09 2.71 2.85 4.03 3.45 3.55 3.44 3.14

1000 0.70 0.86 0.79 0.79 0.78 0.76 1.18 1.40 1.34 1.33 1.32 1.23

6 50 5.02 7.35 5.78 5.67 5.68 5.21 4.46 6.86 6.01 5.80 5.84 4.48

200 1.70 2.56 2.14 2.11 2.12 1.83 2.28 3.59 2.83 2.88 2.84 2.48

1000 0.52 0.68 0.60 0.60 0.59 0.55 1.46 1.80 1.67 1.68 1.67 1.52

7 50 4.84 7.07 5.84 5.94 5.86 5.18 6.02 8.68 8.10 8.51 8.13 6.13

200 1.68 2.46 2.04 2.00 1.98 1.86 2.92 3.88 3.43 3.63 3.51 3.14

1000 0.55 0.66 0.66 0.63 0.64 0.58 1.92 2.24 2.14 2.20 2.17 1.99

Table 1: Average of errors Q0,l(f̂
(l)
b,K , f) over the replicas l = 1, . . . , 250. The numbers

have been multiplied by 103.
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Density n complete data filtered data

1 50 1.076 1.028

200 0.518 0.888

1000 0.483 0.553

2 50 0.273 0.504

200 0.459 0.487

1000 0.396 0.512

3 50 0.262 0.350

200 0.391 0.297

1000 0.325 0.363

4 50 0.435 0.969

200 0.424 0.895

1000 0.689 0.728

5 50 0.327 0.580

200 0.608 0.499

1000 0.523 0.658

6 50 0.284 0.574

200 0.485 0.429

1000 0.473 0.619

7 50 0.456 0.795

200 0.406 0.612

1000 0.844 0.753

Table 2: Relative errors (Rerr): Do-validation is compared with crossvalidation.
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4.2 Simulating data involving truncation and censoring

We focus in this section on the case where the lifetime variable X cannot be com-

pletely observed due to random left-truncation and random right-censoring. Left-

truncation may occur if the time origin of the lifetime precedes the time origin of the

observation period. Only those individuals that fail after the start of the study are

being followed, otherwise they are left-truncated. We also include right-censoring

in our simulated data. Let (T,X,C) be a random vector where X is the lifetime

with continuous distribution function (c.d.f.) F , T is the random left-truncation

time with c.d.f. L and C is the random right-censoring time with c.d.f. G. We

assume that T , X, and C are mutually independent and that we observe the sample

(T, Z, δ) only if T ≤ Z, where Z = min{X,C} and δ = I{Z = X} is the ran-

dom indicator of censoring. The data thus consist of independent samples such as

{(T1, Z1, δ1), . . . , (Tn, Zn, δn)}, with Ti ≤ Zi, for all i = 1, . . . , n. In case that T > Z

there is no observation. If we denote β = Pr{T > Z} as the probability of being

left-truncated, it is obvious that β < 1 in order to have nonempty sample sets. On

the other hand, let H be the c.d.f. of Z, then we have that H = 1− (1−F )(1−G).

To conduct the simulation study we consider for the lifetime X the same seven

true density functions specified in Section 4.1. We independently generate random

censoring times from the uniform U(0, aC), where aC is selected so that the desired

percentage of censoring is achieved on average across all iterations. Let denote by

α× 100% such percentage.

To implement the random left-truncation, we also consider a uniform distribution

for variable T , say U(0, aT ). We set the value of aT in order to achieve approximately

the level of truncation indicated by β. The presence of truncation in the simulations

is forcing us to generate extra values that will not be included in the sample, since

when T gives a value greater than the value observed in Z the corresponding data

is discarded. To assess the effect of truncation in our procedure we think that a

very high level of truncation is not necessary so we limit ourselves to small values

of β. This procedure results in a sample of triplets (Ti, Zi, δi) with Ti ≤ Zi, and

where approximately a α × 100% of the observations are δi = 0, that is censored.
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We consider n = 50, 200 and 1000 as in the i.i.d. case above. From this simulated

sample set we construct the failure process N(t) and the risk process Y (n)(t) at each

estimation point t by N(t) =
∑n

i=1 I[Zi ≤ t]δi and Y (n)(t) =
∑n

i=1 I[Ti ≤ t ≤ Zi],

respectively.

Using the analogous performance measures described above for non-filtered data

we compare the behavior of the four bandwidth estimates with the two unfeasible

strategies. The results are summarized in the right hand of the tables 1 and 2.

4.3 Discussion of the simulation results

We find that Do-validation systematically outperforms crossvalidation significantly.

Only in one case, the first model with 50 observations, do crossvalidation outperform

Do-validation. But even in this case the difference is small. In general Do-validation

outperforms crossvalidation with relative errors varying around half of those of cross-

validation. We also see that the left and right onesided crossvalidation do not have

the same performance. Do-validation therefore provide a good stable compromise

between the two avoiding unstable behavior when one of them does not work well.

4.4 Implementation and some computational issues

In the just presented simulation study we have implemented the continuous version

of the local linear estimator defined in (2), which runs from continuous data as

formulated in the model in Section 2. It is a different approach to the previously

considered by Nielsen et al. (2009). These authors carried out their simulations

experiments on an equally-spaced grid on the interval [0, τ ], and used a discrete

version of the local linear estimator, which runs on aggregated data as we will

describe later in Section 5.2. Under such continuous formulation we describe in

this subsection the algorithm we have used to perform the simulation experiments

described above. We also discuss some issues about optimization and numerical

integration, which is involved in the algorithm. And finally we provide a brief run-

time analysis to give an insight to the reader about the practicability of the methods

under R running on Windows platforms.
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Let consider for any given model, f ∈ {fk : k = 1, . . . , 7}, and sample size,

n, the general case of filtered data where aC and aT are defined to provide the

desired percentage of censoring and truncation, respectively. Let define intervals

Ib = [range(f)/n, range(f)/2] for bandwidth selection in each case. The simulation

algorithm can be described through the following steps:

Algorithm

Step 1. Simulate a sample: {(T1, Z1, δ1), . . . , (Tn, Zn, δn)} holding the desired levels

of censoring and truncations as was described in Section 4.2.

Step 2. Calculate the best possible bandwidth (reported by bb in Table 1) for

a given sample as the minimizer of the performance measure in (15), as a

function of b in the interval Ib.

Step 3. Calculate the crossvalidation bandwidth estimate, b̂CV , as the minimizer

in the interval Ib of the crossvalidation score

Q̂0(b) = n−1

{∫ τ

0

[
f̂b,K(s)

]2
Y (n)(s)ds− 2

n∑

i=1

f̂
[i]
b,K(Zi)Ŝ(Zi)δi

}
. (18)

Step 4. Calculate the left-onesided crossvalidation bandwidth estimate as b̂L,OSCV =

Cb̂L, where b̂L is the minimizer of the (left) onesided crossvalidation score

(11). The minimization is performed inside the rescaled interval Ib/C, where

C = 0.5874 is the constant (13) calculated for the kernel in (14).

Step 5. Calculate the right-onesided crossvalidation bandwidth estimate, b̂R,OSCV,

as in Step 4 but from the right onesided crossvalidation score.

Step 6. Calculate the do-validation bandwidth as b̂DO = (̂bL,OSCV + b̂R,OSCV)/2.

Step 7. Repeat steps 1–6 a large number of times and afterwards the best average

bandwidth in (16) is calculated as the minimizer of the average of the perfor-

mance measure along the simulated samples (as a function of b in the interval

Ib).
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Optimization. The above algorithm is a direct implementation of the bandwidth

estimates using one dimensional optimization methods designed for continuous func-

tions. In our experiments we have used the function optimize in the package

stats in R. This function implements a method being a combination of golden

section search and successive parabolic interpolation based on the Algol 60 pro-

cedure localmin by Brent 1973). Using this function we have calculated in the

simulations the bandwidth estimates by applying the function optimize to the

corresponding scores. In this aim these scores are considered as continuous func-

tions of the bandwidth parameter, b, and the optimization is defined in the interval

Ib = [range(f)/n, range(f)/2] for each model f ∈ {fk : k = 1, . . . , 7} and sample

size n.

Numerical integration. In the algorithm the local linear estimator in (2) should be

evaluated in the optimization, using the symmetric kernel and also its two onesided

versions. Then it is required the calculation of the involved moments

aj(t) =

∫
Kb(t− s)(t− s)jY (n)(s)ds, (19)

for j = 0, 1, 2. Note that these integrals can be exactly calculated for polynomial

kernels as that in (14). However it cannot be done with the performance measure

and also with the CV and OSCV scores. In this case we have considered numerical

integration through the R function integrate, which implements unidimensional

adaptive Gauss-Kronrod quadrature based on the Fortran functions DQAGE, and

DQAGIE from QUADPACK (Piessens, deDoncker-Kapenga, Uberhuber and Kahaner

1983). We use this function considering the maximum number of intervals being

100 and the relative accuracy of 1.11e− 14. Such choice is enough to provide stable

approximations of the involved integrals as we can see from Table 3. This table

shows the results from the methods when we increase this number from 100 to 200.

Here we only report results for the two first models and sample sizes in the case of

non-filtered data. However similar conclusions were derived from the other models,

filtering schemes but also bigger number of subdivisions. We can confirm from these

results that a bigger number of subdivisions does not alter the conclusions from our

experiments reported in Table 1.
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Density n sbd. BB CV OSCVL OSCVR DO

1 50 100 10.88 18.11 16.74 23.08 18.66

200 10.88 18.05 16.74 22.93 18.53

%Rdiff. 3.0e-5 3.3e-3 3.7e-4 0.85 0.43

200 100 3.18 6.64 4.46 6.68 4.97

200 3.19 6.64 4.38 6.70 4.83

%Rdiff. 0 9.4e-3 1.1e-3 0.67 0.52

2 50 100 8.56 15.71 10.40 10.91 10.51

200 8.56 15.69 10.40 10.88 10.51

%Rdiff. 6.1e-4 5.4e-2 1.4e-4 0.31 0.17

200 100 2.82 4.41 3.69 3.50 3.55

200 2.82 4.41 3.67 3.48 3.53

%Rdiff. 0 0.02 6.3e-3 0.55 0.77

Table 3: Sensitivity of the adaptive Gauss-Kronrod quadrature approximation (im-

plemented in the function integrate in R) to the fixed maximum number of sub-

divisions. The two first rows for each model and sample size show the average of

errors as in Table 1 in the complete data case, with maximum number of subdivisions

(sbd.) equal to 100 and 200, respectively. The rows labeled “%Rdiff.” shows the

medians of the relative differences, 100×
|Q

[100]
0,l (f̂

(l)

b̂,K
,f)−Q

[200]
0,l (f̂

(l)
b,K

,f)|

Q
[100]
0,l (f̂

(l)
b,K

,f)
, along the replicas.
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n Step 2 Step 3 Steps 4-5-6 Total

50 1.35 1.68 2.57 5.91

200 3.54 3.28 6.08 15.91

1000 8.88 44.92 72.60 169.87

Table 4: Approximated run-time complexity of the algorithm in minutes. Column

5 shows the total time to perform all the calculations required for one replica in the

simulations experiments. Columns 2–4 show the time in performing the main steps

in the algorithm (Step 2 → best possible bandwidth, Step 3 → b̂CV and Steps 4-5-6

→ b̂DO ). Each reported time is the average over one simulated sample from each

of the models fk (k = 1, . . . , 7).

Run-time complexity. Cross-validation strategies and therefore our do-validation

method are expensive to compute in the simulations. To overcome the time com-

plexity of the algorithm described above, we have used the R package Rmpi to

perform the simulations experiments reported in previous sections. Such package

provides an interface (wrapper) to MPI APIs and interactive R slave environment.

However we provide in Table 4 an idea of the computational complexity of the al-

gorithm running in a standard computer (Pentium (R) Dual-Core CPU-E5700 with

3.00GHz and 2.00GB-RAM with R working under Windows 7-32 bits). Specifically

we have evaluated the run-time of one arbitrary simulated (complete) sample from

each of the models, fk (k = 1, . . . , 7), for increasing values of the sample size, n. We

have carried out these experiments considering numerical integration through the R

function integrate with a maximum number of intervals of 100 and optimization

through optimize, which are the same choices used to provide the simulation re-

sults summarized in the paper. The the resulting times is reported in Table 4 for

increasing values of n.

5 Discrete and aggregated data

In this section we show that our approach is simple to adjust to discrete and aggre-

gated data.
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5.1 Discrete occurrences and exposures: a common data

representation of survival data

Survival data often takes the shape of occurrences and exposures defined on intervals.

It is for example common practice that national bureaus of statistics publish yearly

mortality occurrences and exposures for their population. The national bureaus

take their original continuous stochastic processes and transfer them to the more

easily publishable yearly occurrences and exposures. We define such occurrences

and exposures to be approximations to the following discrete approximations and

aggregations of the continuous counting processes and their exposure:

Or =
n∑

i=1

∫ Xr

Xr−1

dNi(x),

and

Er =
1

∆r

n∑

i=1

∫ Xr

Xr−1

Yi(x)dx,

where X0, . . . , Xm are discrete points and ∆r = Xr −Xr−1 (r = 1, . . . ,m).

Survival data in the shape of occurrences and exposures are also well known in many

other survival data applications and many applied statisticians and actuaries are so

used to working with them that they think of them as original data. Different data

providers might approximate their discrete occurrences and exposures from their

continuous data in different ways, but everyone tends to agree that the discretization

should be sufficiently accurate to allow for both a nonparametric and a parametric

survival analysis.

5.2 Local linear estimation for discrete data

In this section we provide the computational aspects of calculating our local lin-

ear estimator when the data provider has provided a discrete set of occurrences

and exposures. Note that our approach below also works when the discretization is

not equidistant. That will become important in our application below. While data

providers most often provide occurrences and exposures in an equidistant way, mod-

ern survival techniques might transform the data and analyze the data on a different
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time scale for example. In such cases the transform will no longer be equidistant and

this is exactly the situation in our data study below. Based on discrete occurrences

and exposures our local linear density estimator (4) can be defined as

f̃b,K(t) =
m∑

r=1

Kd,t,b(t−X∗
r )Ŝ(X

∗
r )Or

where

Kd,t,b(t−X∗
r ) =

ad,2(t)− ad,1(t)(t−X∗
r )

ad,0(t)ad,2(t)− {ad,1(t)}2
Kb(t−X∗

r )

and

ad,j(t) =
m∑

r=1

Kb(t−X∗
r )(t−X∗

r )
jEr∆r, j = 0, 1, 2,

with X∗
r = (Xr−1 + Xr)/2, r = 1, . . . ,m. Here Ŝ(X∗

r ) is the estimator of the

survival function defined by Ŝ(X∗
r ) = exp

(
−
∑r

i=1
Oi

Ei

)
, for r = 1, . . . ,m.

Besides, the least-squares crossvalidation principle given in (9) can be formulated

for discretized data and the estimator f̃b,K as follows. Let consider the discretized

version of the optimality criteria in (9) given by

Qd,0(b) = n−1

m∑

r=1

(
f̃b,K(X

∗
r )− f(X∗

r )
)2

Er∆r.

Then the crossvalidation bandwidth is defined as the minimizer of the following

estimation

Q̂d,0(b) =
m∑

r=1

(
f̃b,K(X

∗
r )
)2

Er∆r − 2
m∑

r=1

f̃
[r]
b,K(X

∗
r )Ŝ(X

∗
r )Or,

where f̃
[r]
b,K(X

∗
r ) is the estimator arising when the dataset is changed by setting

Or = Or − 1. Similarly the onesided crossvalidation bandwidths are defined from

the discretized OSCV scores and therefore the Do-validation method.

6 Visual test of parametric submodel

We apply our new practical smoothed survival function to estimate the density func-

tion of a transformation of mortality data considered in Spreeuw, Nielsen and Jarner

(2012). One of the authors of this paper is a research director in one of Europe’s big
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pension funds responsible for a recent implementation of their mortality model and

hence for setting annuity reserves for all current or former employees of Denmark.

One particular important question of interest of the mortality model is whether it

is actually fitting old-age. While the filtered density approach proved very good

at answering these questions, the bandwidths had - somewhat unsatisfying - to be

chosen by eye ball. Crossvalidation did not work for this study. The nonparamet-

ric filtered density estimator was used to develop a graphical test evaluating the

suitability of a candidate parametric mixed hazard model based on a gamma frailty

mortality model. Spreeuw et al. (2012) first estimate this candidate mixed hazard

model through a standard maximum likelihood approach. Then the survival data

are transformed in such a way that had the estimated parametric mixed model been

the true model, then the transformed data would follow a uniform distribution. The

graphical test considers the density of the transformed survival data and inspect

whether it looks uniform. Since the transformed data lies in the interval [0, 1], the

good boundary-correction properties of the local linear estimator are crucial.

6.1 The parametric mixed mortality model

The considered parametric mixed mortality model generalizes the classical Gom-

pertz survival model partly by including more parameters and partly by including a

multiplicative frailty component. We first define this mortality model for identically

independent data, where the frailty interpretation is more immediate, after that we

generalize the parametric mixed mortality model to our setting.

Assume a cohort of n i.i.d. individuals and assume that the individual frailty effect

can be represented by a random gamma distributed random variable. Assume now

that B1, . . . , Bn are the n individuals i.i.d frailty parameters and assume E[Bi] = 1.

Then the conditional force of mortality at age x given Bi = bi is µ(x, bi) = biµ̄(x),

for i = 1, . . . , n. And the cohort mortality at age x is µ(x) = E[B|x]µ̄(x) .

Assume that the underlying mortality - before adjusting for the frailty - is µ̄(x) =

exp(a0 + a1x + a2x
2). We consider the gamma specification where E[B|x] = (1 +

σ2M(x))−1, with M(x) =
∫ x

0
µ(s)ds.
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6.2 Visual test of parametric survival density

The dataset consists of mortality data of women from four countries, namely United

States (US), United Kingdom (UK), Denmark and Iceland. These data were ob-

tained from Human Mortality Database and concern the calendar year 2006. The

data providers have constructed this data as approximations to the yearly occur-

rences and exposures. In the application ages from 40 to 110 were included. The

parametric mixed hazard specification of Spreeuw et al. (2012) assumes that the

underlying continuous data come from a counting process with intensity function

λi(x) = µθ(x)Yi(x)

as in (1) with

µθ(x) =
exp(a0 + a1x+ a2x

2)

1 + σ2
∫ x

0
exp(a0 + a1s+ a2s2)ds

where θ = (a0, a1, a2, σ
2) is a four-dimensional parameter. It is the same parametric

hazard shape as we had in the simplified i.i.d situation in the above section. By

including it in our stochastic framework we allow ourself to work with this parametric

specification for our general type of data set with repeated left truncations and right

censoring. Let us denote by Fθ the distribution function associated with µθ. First,

we calculate the parametric maximum likelihood estimators of θ following Borgan

(1984). Secondly, we follow Spreeuw et al. (2012) and transform the time axis with

the function Fθ̂. It is of course well known that such a transformation would result in

uniformly distributed survival times - if Fθ̂ represents the true underlying cdf of these

survival times. We can therefore construct our practical smoothed survival density

on this transformed data and visualize our estimator of the difference between the

density represented by Fθ̂ and the true underlying density. Concretely we consider

the discrete time points used for our occurrences and exposures X1, . . . , Xm and get

their transformed versions Xr = Fθ̂(Xr), for r = 1, . . . ,m and X0 = 0. If Fθ̂ is really

a good description of the true model then the transformed data should be uniformly

distributed and in such a case our density estimator based on the time transformed

occurrences and exposures should be close to the unit line.

For these data Spreeuw et al. (2012) get an estimator of the density by choosing
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Country b̂CV b̂DO bSNJ

United States 0.044 0.175 0.083
United Kingdom 0.044 0.222 0.111
Denmark 0.084 0.485 0.167
Iceland 0.592 0.497 0.333

Table 5: Estimated bandwidth for each method and the suggested value in Spreeuw
et al. (2012).

the bandwidth according to whatever looked best for the particular data set. It

leaded the authors to consider the local linear density estimator with bandwidths

b = 1/12 for US, b = 1/9 for UK, b = 1/6 for Denmark and b = 1/3 for Iceland.

These subjective choices are now compared with the bandwidth estimates b̂CV and

the Do-validation method b̂DO. The results for each country are presented in Table

5. Our above visual test could of course also be used to test other parametric models

based on filtered data as for example the classical Weibull parametric model, see for

example Balakrishnan and Mitra (2012)

Figure 2 shows the resulting estimates of the transformed points using local lin-

ear estimation with the corresponding b̂DO (solid curve) and b̂CV (discontinuous

curve). These bandwidths are also reported in second and third columns of Table

5). As can be appreciated from the table, the Do-validation method is the one

that produces the estimated values which are closer to the values that the authors

recommended (shown in the last column of the table). However standard crossval-

idation is completely wrong providing very small values for the bandwidths which

lead to inappropriate density estimators in all cases, as it is displayed in Figure 2

(discontinuous curve). Do-validation works well providing density estimates close to

the uniform. All the estimated transformed densities based on Do-validation band-

widths provide tail densities below one indicating that the parametrically estimated

mortality is too heavy-tailed. Also, all estimated densities on the transformed scale

- except for the small data Iceland case - are only a few percentages away from one.

The maximal deviance around eight percent for the very old British is not sufficient

to suggest the use of alternative parametric models. We also considered the case

without any frailty. This is we simply estimated the parametric mortality model

without a frailty. Based on our do-validated bandwidths we got the same conclusion
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Figure 2: Mortality data application. Estimated density of the transformed data
to judge the suitability of the gamma frailty specification for the SAINT model.
Each panel shows local linear density estimate for each country: (a) US, (b) UK,
(c) Denmark and (d) Iceland. In all the cases we have considered the Do-validation
bandwidth (solid curve) and the crossvalidation bandwidth (dashed curve) which
were reported in Table 5.

26



as Spreeuw et al. (2012): the frailty is absolutely necessary to get satisfactory fits.

From Figure 2 we can deduce that the parametric model is a very good approxi-

mation of the data since the plots present the estimated densities very close to the

baseline at 1 i.e. the uniform density. Therefore, from our analysis, we confirm the

conclusions of the authors who asses that the SAINT model with gamma frailty gives

a very good representation of these data. Our findings here are that Do-validation

should be used to choose automatically the bandwidth.

7 The classical hazard approach

In this section we consider the same problem as above, but this time using classical

techniques from the toolbox of hazard estimation. The purpose of this section is to

show, that while hazard estimation techniques are indeed very useful, our density

estimation methodology provides crucial information that these hazard techniques

can not give.

7.1 Standard method

First we compare the empirical integrated hazard with the parametric alternative on

the transformed scale. If the estimated parametric mixed model is the true model

then the integrated hazards evaluated at the transformed survival times should be-

have according to a standard exponential distribution. So, the standard method

consists in constructing the Nelson-Aalen estimator for the transformed data and

compare it with the cumulative hazard function corresponding to the standard ex-

ponential distribution. This can be graphically done by comparing the graph of the

Nelson-Aalen estimator with a line of slope 1.

Specifically, we now transform the data as follows. Let X1, . . . , Xm be the discretiza-

tion points of the original data and let Mθ be the cumulative hazard function asso-

ciated to µθ, then we calculate X̃r = Mθ̂(Xr), for r = 1, . . . ,m, and X̃0 = 0. Here

θ̂ is our maximum likelihood estimator of the parametric hazard specified above.

Again if µθ̂ is really a good description of the true model then the transformed
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Figure 3: Nelson-Aalen estimator of the transformed data to judge the suitability
of the gamma frailty specification for the SAINT model. The panels correspond to:
(a) US, (b) UK, (c) Denmark and (d) Iceland.

data should be standard exponentially distributed. Let consider the Nelson-Aalen

estimator given by

Λ̂(X̃r) =
r∑

i=1

Oi

Ei

,

for r = 1, . . . ,m. Figure 3 shows the results of the comparison for each country.

The overall impression from the four graphs in Figure 3 is that three of them fit

well with UK as an exception. The integrated hazard graphs have a tendency to

overemphasize the importance of the early observations on the overall fit. They are

less able to express right tail behavior. Also, the four graphs are not able to give

us the same degree of understanding of the dynamics of the lack of fit as we get

from the density graphs. Therefore, one can not with confidence express whether

the assumed parametric frailty model fits well in the tail.
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7.2 Visual test based on hazards

We consider transformed mortality data and provide a smooth estimate of the hazard

rate on the transformed axis using the increments of the Nelson-Aalen estimator

derived in the previous section. Let

α̂b,K(x) =

∫ ∞

0

Kb(x− s)dΛ̂(s) =
m∑

r=1

Kb(x− X̃r)
Or

Er

,

for x > 0. This is the discrete version of the hazard estimator defined by Ramlau-

Hansen (1983). If the model is suitable, the estimated hazard function should be

close to the hazard function corresponding to a standard exponential random vari-

able. Figure 4 displays the results for the four countries where we can see that the

four hazards seem to be close to the exponential except for old-age. In fact the

hazard seems to be very wrong for old-age and it is not clear that the true density

is more heavy tailed than the estimated density. This is a clear difference between

our new density based approach and classical hazard estimation: our new density

approach is capable of making the conclusion that the original density is more heavy

tailed than the estimated density.

8 Concluding remarks

In this paper we have provided data-driven bandwidth selectors for the local linear

density estimation introduced by Nielsen et al. (2009) for survival data. These selec-

tors are based on crossvalidatory scores and among them the so-called Do-validation

bandwidth is shown to provide a good strategy in practice. Opposite to complicated

plug-in procedures Do-validation is simpler, intuitive and does not require any pilot

bandwidths. Even if a plug-in method would exist in our context, we are not sure

that we would promote it after all. Mammen et al. (2011) argued that the known

asymptotic optimality properties of plug-in estimator are not observed in practice.

In practice, Do-validation seems to outperform plug-in estimation.

We provide a real-life analysis of mortality data based on our practical approach

to filtered density smoothing and we show that our Do-validation method works
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Figure 4: Mortality data application. Estimated hazard of the transformed data to
judge the suitability of the gamma frailty specification for the SAINT model. The
panels correspond to: (a) US, (b) UK, (c) Denmark and (d) Iceland.
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well in this case, while standard crossvalidation breaks down. We also provide some

motivation for having the filtered density estimator in the toolbox of the applied

survival analyst. The survival density sometimes provides information that can

not be extracted from hazard functions. We believe that our new filtered data

bandwidth selection approach also generalizes to higher dimensional densities as in

Buch-Kromann and Nielsen (2012) that is a structured filtered data version of the

paper Buch-Kromann, Guillen, Linton and Nielsen (2011) and perhaps our approach

even generalizes to filtered data regression, see Linton, Mammen, Nielsen and Van

Keilegom (2011). Another interesting area of research is how to generalize our results

to even more complicated filtering schemes, see for example the interesting general

scheme of Balakrishnan and Kundub (2013)
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