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Automatic segmentation of polyps in colonoscopic
narrow-band imaging data

Melanie Ganz, Xiaoyun Yang, and Greg Slabaugh

Abstract—Colorectal cancer is the third most common type
of cancer worldwide. However, this disease can be prevented by
detection and removal of precursor adenomatous polyps during
optical colonoscopy (OC). During OC, the endoscopist looks
for colon polyps. While hyperplastic polyps are benign lesions,
adenomatous polyps are likely to become cancerous. Hence it is
common practice to remove all identified polyps and send them
to subsequent histological analysis. But removal of hyperplastic
polyps poses unnecessary risk to patients and incurs unnecessary
costs for histological analysis. In this paper, we develop the first
part of a novel optical biopsy application based on narrow-
band imaging (NBI). A barrier to an automatic system is that
polyp classification algorithms require manual segmentations of
the polyps, so we automatically segment polyps in colonoscopic
NBI data. We propose an algorithm, Shape-UCM, which is an
extension of the gPb-OWT-UCM algorithm, a state of the art
algorithm for boundary detection and segmentation. Shape-UCM
solves the intrinsic scale selection problem of gPb-OWT-UCM
by including prior knowledge about the shape of the polyps.
Shape-UCM outperforms previous methods with a specificity of
92%, a sensitivity of 71% and an accuracy of 88% for automatic
segmentation of a test set of 87 images.

I. INTRODUCTION

Colorectal cancer is the third most common cancer in men
(663,000 cases, 10.0% of the total) and the second most
common cancer in women (571,000 cases, 9.4% of the total)
worldwide. Colon cancer accounts for 8% of all deaths by
cancer, making it the fourth most common cause of death
from cancer [1].
However, this disease can be prevented by detection and
removal of precursor adenomatous polyps during optical
colonoscopy (OC), an endoscopic examination of the colon
using a flexible video camera. During OC, the endoscopist
looks for anomalous growths, which typically fall into one
of two categories: hyperplastic or adenomatous polyps. Hy-
perplastic polyps are benign lesions that confer little clinical
risk of developing into cancer and do not require removal
from the colon. In contrast, adenomatous polyps are pre-
malignant tumours that, if left unchecked, are likely to become
cancerous and are surgically removed by the endoscopist
during a polypectomy.
This decision to remove or leave alone requires expertise
beyond that of many endoscopists. Consequently, it is common
to remove all identified polyps for subsequent histological
analysis [2]. But removal of hyperplastic polyps poses un-
necessary risk to patients (as polyp removal carries a risk
of colon perforation requiring emergency surgery) and incurs
unnecessary costs for histological analysis [3]. This workflow
could be significantly improved if there was a way to perform
an immediate in vivo biopsy of a polyp during OC [2].

In this project we are interested in developing the first part of a
novel optical biopsy application for optical colonoscopy. Sev-
eral groups have researched optical biopsy based on manual
annotations of colon polyps in narrow-band imaging (NBI)
[4]–[6]. These optical biopsy algorithms have shown much
promise, with preliminary results of 80-90% classification
accuracy of hyperplastic and adenomatous polyps from NBI
images. For reference, an expert endoscopist has an accuracy
of approximately 90% [2].
However, a barrier to a fully automatic optical biopsy system
is the limitation that current methods require manual segmen-
tations of the polyps. This task is tedious and unsuitable for
practical clinical deployment. In this paper we seek to auto-
matically segment the polyp in the image, thereby facilitating
the later automation of an entire optical biopsy system.

A. Related Work

The only papers the authors are aware of that have tackled
a similar task of automatically segmenting colon polyps from
NBI data are [7], [8] and [9]. All three methods employ quite
different strategies.
In [7], Gross et al. make the first attempt at performing polyp
segmentation in NBI colonoscopy data. They employ non-
linear diffusion filtering followed by a Canny edge detector
to detect the edges of polyps and then use template matching
to identify the polyp. The article gives some results on local-
ization, but no details are given regarding the segmentation
accuracy.
Breier et al. [8] followed two years later with two different
approaches based on active contours and active rays that also
incorporate multi-scale processing. They were able to achieve
a specificity of 98-100%, with a sensitivity of 3-32% and an
accuracy of 45-58% on a set of 184 polyp images, where the
polyp was present in the center of the image.
Finally, in [9] Breier et al. improve their segmentation perfor-
mance by performing a Chan-Vese-segmentation to decrease
their specificity to 86%, while increasing their sensitivity and
accuracy to 48% and 62%, respectively, on the same data set
that was used in [8].

B. Our Contributions

Our contributions in this paper are three-fold:
First, we propose a new method, called Shape-UCM, which
is an extension of the gPb-OWT-UCM algorithm, a state of
the art algorithm for boundary detection and segmentation.
We are the first, to our knowledge, to apply gPb-OWT-UCM
to medical imaging. Furthermore, gPb-OWT-UCM has an
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intrinsic scale selection problem. We have solved this problem
by using prior knowledge about the shape of the objects we
want to segment. This way we have developed a completely
parameter-free algorithm that automatically segments polyps
in NBI data. Finally, in our experiments we can show that
our algorithm, Shape-UCM, outperforms previous work in this
area by a large margin.

C. Outline of the Paper
In the following we will introduce the concept of narrow-

band imaging (Section II). Then we describe our proposed
algorithm (Section III) and perform experiments to evaluate
its performance (Section IV). Finally, we discuss our results
(Section V) and give a conclusion (Section VI).

II. NARROW-BAND IMAGING

Narrow-band Imaging (NBI) is a recently introduced multi-
spectral endoscopic imaging technique that uses several (two
or three) discrete bands of light to image tissue. This technique
improves visibility of blood vessels, both on the tissue surface
(superficial) and below (subepithelial), due to the fact that
the depth penetration into the tissue mucosa depends on the
wavelengths of light used [10]. NBI became commercially
available in 2005 from Olympus. Today endoscopic diagnosis
has been rapidly progressing and has now advanced to the area
of pathology. The feasibility of NBI has been examined [11]
and it is now used for diagnosis of malignant and premalignant
gastrointestinal lesions [12]. There has also been a large
population trial regarding optical diagnosis of small colorectal
polyps based on NBI [2], which showed that the clinical
workflow could be significantly improved if there was a way
to perform an immediate in vivo biopsy of a polyp during
optical colonoscopy. In our case the images are given as screen
captures as RGB images. The screen captures also include
black background with writing of various sizes. To facilitate
automatic segmentation, we will remove this background in
our pre-processing procedure. Furthermore, in our dataset the
polyps are not always in the center of the image, but can also
be situated at the image boundary. In this paper we assume
that the endoscopist places the polyp in the center of the image
(this is for example the case in the dataset used by [8] and
[9]). Hence in our dataset for the cases where the polyp is not
in the center, we center it by choosing the segmented region
that has the center of the manual annotation in it.
An example of two original images can be seen in Figure 1.

III. AUTOMATIC POLYP SEGMENTATION

In the following we give an overview of the pre-processing
and the Shape-UCM algorithm we have devised to perform
automatic polyp segmentation from NBI data. A schematic
view of the different steps is given in Figure 2.

A. Pre-processing
Pre-processing is necessary to remove the irregular back-

ground around the image that is due to the images being
screen captures and to remove specular reflections that would
produce artificial boundaries during the segmentation part of
the algorithm.

(a)

(b)

Fig. 1: Two NBI images show-
ing (a) an adenomatous and
(b) a hyperplastic polyp.

Fig. 2: Overview of our
Shape-UCM algorithm for au-
tomatic polyp segmentation.

1) Finding a region of interest: First, we have to find a
region of interest (ROI). This is done in a two step procedure:
based on a simple thresholding, we identify the upper left
and the lower right corner of the non-black part of the image
and retrieve a rough region of interest. Since the first step
sometimes still yields a thin black rim around the image, we
additionally extract line segments associated with particular
bins for horizontal and vertical lines in a Hough transform
[13]. These extracted lines can then be employed to refine the
ROI further and remove the leftover thin black rim. The final
region of interest is shown in Figure 3 (a) and (b).

2) Removing specular reflections: The second step of the
pre-processing is to find the specular reflections. This is done
by transforming the image from RGB to HSV (hue, saturation,
value) color space and then employing hysteresis thresholding,
a bi-threshold procedure typically used for two class object-
background pixel segmentation [14]. The hysteresis threshold-
ing consists of three steps. First we threshold once (in the same
fashion as described in [4]) using the function

f(x) =

{
true, if (Saturation < t1) ∩ (Value > t2)

false, otherwise
(1)

for each image pixel x in HSV color space. This yields only
the high confidence pixels. Next a dilation with a circular
structuring element of the size of 5 pixels is performed on the
high confidence pixels. Then the same thresholding is applied
again with updated parameters t1 and t2 yielding a second
image after weak thresholding. Finally, we combine the two
thresholded images by choosing from among the object pixels
selected by the second (weak) thresholding only those pixels
connected to pixels in the first (high confidence) thresholding.
The thresholds were experimentally determined and are t1 =
0.29 and t2 = 0.65 for the first and t1 = 0.22 and t2 = 0.8
for the second thresholding. The outcome of identifying the
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Above the three pre-processing steps are shown: The
result of finding the region of interest of the example images
introduced in Figure 1 can be seen in (a) for an adenomatous
and (b) a hyperplastic polyp. After determining the region of
interest the specular reflections are identified. The results of
identifying the specular reflections are shown in (c) and (d).
The last step of the pre-processing consists of inpainting the
areas of specular reflections. (e) and (f) display the result of
the inpainting.

specular reflections can be seen in Figure 3 (c) and (d).
3) Inpainting: The last step of the pre-processing consist of

the application of an exemplar based inpainting method [15],
[16] to reconstruct the areas where the specular reflections
lead to a loss of image information. We need to reconstruct
the specular highlights, since their distinct and bright visual
appearance leads to artificial edges and texture that affect the
segmentation [17]. Results of the inpainting can be observed
in Figure 3 (e) and (f).

B. The Shape-UCM Algorithm

Our algorithm, Shape-UCM, consists of two steps. First
we compute a ultrametric contour map (UCM) by using the
gPb-OWT-UCM algorithm. Then we employ prior knowledge
about the shape of the polyps in order to automatically identify
the best segmentation level in the UCM for our problem to
segment the polyp surface from the NBI image.

1) Finding the UCM: The first part of the Shape-UCM
algorithm we used to segment polyps is described in [18] and

in the following we will refer to the method as gPb-OWT-
UCM algorithm.
The gPb-OWT-UCM algorithm transforms an image into LAB
(lightness and a and b color-opponent dimensions) color space
(see Figure 4 (a)-(c)) and a texture representation (see Figure
4 (d)). The texture repreentation is formed by converting the
original image to grayscale and convolving it with a set of
17 Gaussian derivative and center-surround filters (details for
the filters are given in [18]). The resulting (17-dimensional)
vectors are then clustered using K-means and each pixel in
the texture representation image is assigned the integer id
∈ [1, ..,K] of the closest cluster center.
Next the gPb-OWT-UCM algorithm finds contours in the
image by calculating the gradient magnitude G at each location
(x, y) of the image by employing the χ2 distance of histograms
between two regions surrounding the location (x, y). It then
combines the multi-scale cues from brightness, colour and
textures gradients and forms a multi-scale signal at different
orientations θ,

mPb(x, y, θ) =
∑
s

∑
i

αi,sGi,σ(i,s)(x, y, θ) (2)

where s indexes scales, i indexes feature channels and
Gi,σ(i,s)(x, y, θ) measures the histogram difference in channel
i between two halves of a disk of radius σ(i, s). Since
mPb(x, y, θ) is sampled over different orientations, its max-
imum response over all angles is determined to measure
boundary strength

mPb(x, y) = max
θ
{mPb(x, y, θ)}. (3)

An example can be seen in Figure 5. Next, gPb-OWT-UCM
incorporates global knowledge by employing spectral cluster-
ing. The local cues computed by applying oriented gradient
operators at every location in the image are combined and
yield a global eigenvalue problem. Specifically, the spectral
clustering is done by constructing a sparse symmetric affinity
matrix W ,

Wi,j = exp

(
−max
p∈ij
{mPb(p)}/ρ

)
(4)

where p is any pixel along the line segment ij connecting pix-
els i and j and ρ is a constant. Then the different eigenvectors
vk of W including their eigenvalues λk are used to construct
the spectral component of the boundary detector:

sPb(x, y, θ) =

n∑
k=1

1√
λk
· ∇θvk(x, y) (5)

Ultimately the gPb-OWT-UCM algorithm forms a final global
probability of boundary (gPb) measure [19] as a weighted sum
of local and spectral (global) signals:

gPb(x, y, θ) =
∑
s

∑
i

βi,sGi,σ(i,s)(x, y, θ)+ γ · sPb(x, y, θ).

(6)
Here, the weights βi,s and γ can be learned. We use the same
weights as [18].
After the contours are identified, it employs an oriented
watershed transform (OWT) to form an over-segmentation
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(a) (b)

(c) (d)

Fig. 4: The LAB color space ((a),(b) and (c)) as well as the
texton representation (d) for the image shown in Figure 3 (e).
The texton representation (d) results from convolution with 17
derivative filters, followed by clustering. Please see [19] for
details.

Fig. 5: An example of mPb(x, y) for the image shown in
Figure 3 (e). Another example of an mPb(x, y) image can be
seen in figure 6 of [19] in the lower right corner.

whose regions determine the highest level of segmentation
details; the boundary strength can then be used as an estimate
of how likely the contour is [20]. Finally, the gPb-OWT-UCM
algorithm constructs a hierarchical region tree in the form of
an ultrametric contour map (UCM) [21]. An example of a
UCM is shown in Figure 6. There are parameters in the gPb-
OWT-UCM algorithm that must be chosen, such as the scales
used for the gradient construction in the different channels.
For the brightness and texture channels we used a sigma of 5
pixels, whereas a sigma of 10 pixels was used in the case of
the color channels.

2) Shape Matching Approach: From the hierarchy of re-
gions given by the UCM, our algorithm automatically deter-
mines the level of the region tree at which the partitioning is

Fig. 6: An ultrametric contour map (UCM) can be constructed
by performing boundary detection at different scales and then
combining these hierarchical contours into a single image
where the boundary strength reflects the level of hierarchy
at which the boundary appears.

(a) UCM level = 0.0784 (b) UCM level = 0.0674

(c) UCM level = 0.0537 (d) UCM level = 0.0520

Fig. 7: We can see the gPb-OWT-UCM segmentation output at
four different levels (all levels are distributed between [0,1]).
The boundaries surrounding the center of the image are shown
in blue and to these boundaries we fit an ellipse which is
displayed in red. Then the level is chosen at which the ellipse
has the highest area overlap with the underlying region.

not an under-, but also not an over-segmentation. We employ
a shape matching technique to choose this cutoff point for
each image individually and fully automatic. Starting from
the gPb-OWT-UCM segmentation output we extract only the
boundaries of the central region at each level of the UCM.
Then we fit an ellipse using [22] to the points of the boundary
to segment the polyp. This kind of ellipse fitting is done
for every level of the ultrametric region tree. Finally, we
choose the level of the region tree at which the ellipse fits
the underlying region best by measuring the area overlap (Eq.
7) at each level. This way we identify the hierarchical level
at which the polyp presented is most ellipse-like. An example
of ellipse fittings at four different levels of the UCM is given
in Figure 7.
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C. Comparison to a brute force approach

As already stated from the hierarchy of regions given by
the UCM, our algorithm automatically determines the level
of the region tree at which the partitioning is not an under-
, but also not an over-segmentation. Apart from the Shape-
UCM algorithm, we have tested several ways of automatically
determining the operating point of the UCM for each image
separately:

1) Starting from the top of the UCM, so from an under-
segmentation, we progress through the hierarchy of
segmentations until there are at least n regions present.
A parameter sweep over training data is then used to
determine the optimal n.

2) Alternatively, instead of determining the operating point
of the UCM by the presence of a certain number of
regions, we restrict the maximal size of the regions in
the segmentation. Starting from the top of the UCM,
we lower the threshold until no single segmented region
covers more than narea of the area of the image. Again
a parameter sweep over the training data is used to
determine the optimal narea.

3) Lastly, instead of requiring a fixed number n of regions
to establish the point of optimal segmentation, we find
our optimal threshold of the UCM by performing a
parameter search over the proportional region number.
The proportional region number nprop is given by the
optimal region number nopt for each image divided by
the maximal region number nmax. Here, the maximal
region number is the maximum number of regions at
the bottom of the UCM.

The results of the parameter sweep for region number n,
region size narea and proportional region number nprop can
be seen in Figure 8. There we can observe that using nprop for
thresholding yields in general higher area overlap, than using
n or narea. nprop = 0.3 fetches the best area overlap and we
will use it as the threshold for our brute force gPb-OWT-UCM
approach in the rest of the paper.

IV. EXPERIMENTS

A. Data

Our data consist of two datasets from two different en-
doscope systems (Lucera and Exera) that each consist of
adenomatous and hyperplastic polyps (see Figure 9). We
construct a training set for parameter fitting of the gPb-OWT-
UCM algorithm by randomly choosing 40% of each dataset
and polyp categories and use the rest for testing. Hence the
training set consists of 58 (14 adenomatous and 7 hyperplastic
polyps of dataset 1 and 18 adenomatous and 19 hyperplastic
polyps of datset 2) and the testing set of 87 images. Further
details about the two different datasets are given below.

1) Dataset 1: Dataset 1 consists of 52 images. 35 show
adenomatous and 17 hyperplastic polyps. The data was ac-
quired from St. Marks Hospital and Academic Institute as well
as Oxford Radcliffe Hospitals. It was provided by Dr. Ana
Ignjatovic with the support of Dr. Brian P. Saunders, James E.
East, and David Burling. The images were acquired with an

Olympus Evis Lucera Spectrum endoscope video system with
a CV-260 video processor. This type of endoscope is mostly
used in Japan and the UK [23].

2) Dataset 2: Dataset 2 is made up of 46 adenomas and 47
hyperplasts. The second dataset was provided by Douglas K.
Rex from Indiana University. These images were taken with
an Olympus Evis Exera II endoscope video system with a CV-
180 video processor, which is common in Europe and North
America [23].
The data was provided to Imperial College, which then coop-
erated with us.

B. Evaluation Methodology
We consider various region-based measures to evaluate the

quality of our segmentation algorithms with regard to manual
segmentations and to be able to compare them to previous
work.
The area overlap (or Jaccard index) between two regions A
and B is defined as

J =
|A ∩B|
|A ∪B|

=
TP

FP + TP + FN
, (7)

where TP denotes true positives, FP false positives and FN
false negatives. It is commonly used to measure segmentation
quality in recognition.
To be able to compare our results to previous work on NBI
polyp segmentation we also measure the sensitivity given by

S1 =
TP

TP + FN
(8)

as well as the specificity

S2 =
TN

TN + FP
. (9)

(TN denote true negatives) and the accuracy

A =
TP + TN

TP + FP + FN + TN
. (10)

C. Inter Observer Variability
To assess the variability occurring between different indi-

viduals performing the polyp segmentation, we have acquired
three sets of manual annotations for dataset 1. The first was
made by an experienced endoscopist (Observer 1) and the
other two were made by imaging researchers (Observer 2 and
Observer 3), but afterwards checked and corrected by the expe-
rienced endoscopist. To check the inter-observer variability we
make pairwise comparisons of the manual annotations of the
three observers for the adenomatous as well as the hyperplastic
polyps. The results can be seen in Table I.

D. Shape-UCM vs. thresholded gPb-OWT-UCM
Finally, we compare our Shape-UCM algorithm directly

with the brute force method of Section III-C. In contrast to the
gPb-OWT-UCM algorithm, the Shape-UCM algorithm does
not need parameter tuning and can be run directly on the
training and the testing datasets. The results for both datasets
divided in training and testing are displayed in Tables II and
III. Examples of the resulting segmentations can be seen in
Figures 10 and 11.
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(a) n (b) narea (c) nprop

Fig. 8: Results for the gPb-OWT-UCM algorithm parameter sweeps to determine the optimal cutoffs of the UCM. (a) shows
the parameter sweep for optimal region number n, while (b) displays it for the maximal region size narea and (c) for the
proportional region number nprop. In each case the parameter is fixed at the value which yields the largest area overlap.

Fig. 9: Overview over our data: Our data consist of two
datasets from two different endoscope systems (Lucera and
Exera) that each consist of adenomatous and hyperplastic
polyps. We construct a training set for parameter fitting of
the gPb-OWT-UCM algorithm by randomly choosing 40% of
each dataset and category, the rest is used for testing.

TABLE I: Our quantitative inter observer results for (a) the
adenoma and (b) the hyperplasts of dataset 1.

Adenoma Area Overlap Specificity Sensitivity Accuracy
Obs.1 vs. Obs.2 0.83 0.99 0.86 0.97
Obs.1 vs. Obs.3 0.83 0.99 0.89 0.97
Obs.2 vs. Obs.3 0.88 0.98 0.96 0.98

(a)

Hyperplasts Area Overlap Specificity Sensitivity Accuracy
Obs.1 vs. Obs.2 0.82 0.99 0.85 0.95
Obs.1 vs. Obs.3 0.81 0.97 0.87 0.94
Obs.2 vs. Obs.3 0.89 0.95 0.96 0.97

(b)

V. DISCUSSION

A. Inter Observer Variability

Focusing first on the inter-observer variability, we can see
in Table I that the inter-observer variability is relatively small
considering the variability of the data. Especially, accuracy
is extremely high and lies between 94% and 98%. Next,
there is no apparent difference in the inter observer variability

TABLE II: Our quantitative results on the training dataset for
Shape-UCM (M1) and the gPb-OWT-UCM algorithm (M2).

Method Area Overlap Specificity Sensitivity Accuracy
M1 0.52 ± 0.28 0.90 ± 0.15 0.78 ± 0.26 0.88 ± 0.14
M2 0.53 ± 0.23 0.95 ± 0.09 0.72 ± 0.25 0.92 ± 0.09

TABLE III: Our quantitative results on the testing dataset for
Shape-UCM (M1) and the gPb-OWT-UCM algorithm (M2).

Method Area Overlap Specificity Sensitivity Accuracy
M1 0.49 ± 0.27 0.92 ± 0.17 0.71 ± 0.29 0.88 ± 0.17
M2 0.44 ± 0.22 0.95 ± 0.08 0.62 ± 0.29 0.90 ± 0.10

when annotating adenoma or hyperplasts. This shows that
for human observers the task of segmenting an adenoma is
equally challenging to segmenting an hyperplast. Furthermore,
the experienced observer (Observer 1) agrees less with the two
inexperienced observers (Observer 2 and 3) than they agree
with each other. This could be the case, because the inexperi-
enced observers make the same errors for challenging polyps
whereas the experienced observer annotates more precisely.

B. Polyp Segmentation

Next we turn to the automatic segmentation task. The results
of the fully automatic segmentation of polyps are shown in
Tables II and III for the Shape-UCM and the gPb-OWT-UCM
algorithm.
Table II displays the results of both algorithms for the training
dataset. There is no statistically significant difference between
the two algorithms for training set performance. The area
overlap lies at 52-53%, the specificity between and 90%-95%,
the sensitivity between 72%-78% and the accuracy between
and 88%-92%. While the specificity for the training dataset
is only 5-10% lower than that of the manual observers, the
sensitivity and area overlap are much lower. Conversely, the
accuracy is only about 10% lower.
Table III displays the results for the testing data. In general
the results are not very different from the ones for the
training data. For the testing data the area overlap is between
44%-49%, the specificity between 92%-95%, the sensitivity



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

(a) (b)

(c) (d)

Fig. 10: Our segmentation results for the gPb-OWT-UCM
algorithm [18] for two adenomatous (a) - (b) and two hyper-
plastic polyps (c) - (d): In green the manual annotation and in
red the gPb-OWT-UCM segmentation is shown.

(a) (b)

(c) (d)

Fig. 11: Segmentation results for the Shape-UCM algorithm
(III-B2) for two adenomatous (a) - (b) and two hyperplastic
polyps (c) - (d): In green the manual annotation and in red the
Shape-UCM segmentation is shown.

between and 62%-72% and the accuracy between and 88%-
90%. But what is interesting for the testing data is that, as
expected, the gPb-OWT-UCM algorithm performs worse on
the testing then the training data. Especially area overlap and
sensitivity drop for the gPb-OWT-UCM algorithm, whereas
the Shape-UCM algorithm has a slightly lower sensitivity,
but otherwise performs just as well on the test data. Due
to the large variations there is again no statistical significant
difference between the two algorithms.
Although both algorithms perform equally well and there is

(a) Polyp coverage % of the image (b)

Fig. 12: In (a) we can see the distribution of polyps in all
of our data after size. The size varies between a coverage of
5% and 55%. (b) shows an example of a bad segmentation
(red) for a small polyp (green). If our dataset would be more
homogeneous in size, Shape-UCM could be refined and errors
like this could be avoided.

no statistically significant difference between them, the big
advantage of the Shape-UCM algorithm is its parameter-free
nature. Whereas the brute force approach needs a training set
to determine the optimal threshold of the UCM, Shape-UCM
finds this threshold automatically which is a big advantage.
Furthermore, currently there is a large variation in polyp size
in our dataset (see Figure 12(a)). This can lead to erroneous
segmentations such as shown in Figure 12(b). If we were able
to clinically restrict the size of polyps in the NBI images to
e.g. < 50% of the area of the image, the Shape-UCM approach
could be modified to prevent polyp segmentations like in
Figure 12(b) that currently achieve only low area overlap. In
general, the segmentation results are very good (see e.g. Figure
10 and 11), but have room for improvement due to the gap
between the human and automatic performance. Especially, the
area overlap and the sensitivity has room for improvement. The
reason why automatic segmentation performance is lower is
the fact that the task is really challenging due to the biological
variability of the data in shape as well as the similarity in color
and texture between adenomatous and hyperplastic polyps
and the different scale of the polyps in the images resulting
from various zoom. A comprehensive atlas showing the large
variation in NBI images of polyps can be found in [23].

C. Comparison To Previous Work

To provide a fair assessment of our results, we also compare
it to the results of previous work in [7]–[9]. In [7] only results
regarding the localization are given and the number of polyps
detected with a certain area, but no pixel based measurements
are given, which makes comparison challenging. Conversely,
in [8] and [9] pixel based measurements of the segmentation
quality are given. A direct comparison of our results on the
testing dataset to the results given in [8] and [9] can be seen
in Table IV.
The direct comparison shows the improvement in segmenta-
tion. While maintaining 92% specificity, we improve sensi-
tivity from 30% and 48% in [8] and [9] to 71% for the test
dataset. Consequently, also the accuracy increases by more
than 20% from 59% and 62% in [8] and [9] to 88%.
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TABLE IV: Comparison of our results on the test dataset with
the results in previous work in [8] and [9] given as mean ±
standard deviation.

Method Specificity Sensitivity Accuracy
[8] (184 polyps) 0.98 ± 0.04 0.30 ± 0.26 0.59 ± 0.23
[9] (184 polyps) 0.86 ± 0.02 0.48 ± 0.21 0.62 ± 0.16
Shape-UCM (87 polyps) 0.92 ± 0.17 0.71 ± 0.29 0.88 ± 0.17

VI. CONCLUSION

In this paper we have developed the first part of a novel
application for optical colonoscopy based on narrow-band
imaging (NBI) by automatically segmenting polyps in colono-
scopic NBI data. We developed a new algorithm, called Shape-
UCM, which is an extension of the gPb-OWT-UCM algorithm,
by including prior knowledge about the shape of the polyps.
Hence our Shape-UCM algorithm can automatically determine
the optimal segmentation from a selection of hierarchical
segmentations and needs no parameter tuning. Our results
outperformed previous work on automatic polyp segmentation
in NBI data and yielded a specificity of 92%, a sensitivity
of 71% and an accuracy of 88% for automatic segmentation
in a testing dataset of 87 polyp images from two different
endoscope systems.
In conclusion, our automatic segmentation results are promis-
ing and in future work we will combine them with a polyp
classification procedure to build a fully automatic optical
biopsy system. While our results have shown that it is possible
to automatically segment polyps in NBI data, there is still
a gap to the performance of a human observer. On the one
hand, we could try to improve our existing algorithm by using
different metrics inside the gPb-OWT-UCM algorithm, such
as for example a distance measure from the recently proposed
quadratic chi distance family [24]. On the other hand we could
try to refine our Shape-UCM approach if the dataset collection
and hence size distribution of polyps in the NBI images could
be clinically restricted. While the task is left to improve the
segmentation of bowel polyps, the segmentation task could
also be extended into other organs which are inspected by
endoscopy using NBI technology, such as for example the
stomach and esophagus.
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[20] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “From contours to
regions: An empirical evaluation,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. IEEE,
2009, pp. 2294–2301.

[21] P. Arbelaez, “Boundary extraction in natural images using ultrametric
contour maps,” in Proceedings of the Conference on Computer Vision
and Pattern Recognition Workshop. IEEE Computer Society, 2006.

[22] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least-squares fitting
of ellipses,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 21, no. 5, pp. 476–480, May 1999.

[23] J. Cohen, Advanced Digestive Endoscopy: Comprehensive Atlas of High
Resolution Endoscopy and Narrowband Imaging. Blackwell Publishing,
2007.

[24] O. Pele and M. Werman, “The quadratic-chi histogram distance family,”
in Proceedings of European Conference on Computer Vision. Springer,
2010, pp. 749–762.


